xref: /linux/fs/exec.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 
65 #include <trace/events/task.h>
66 #include "internal.h"
67 
68 #include <trace/events/sched.h>
69 
70 int suid_dumpable = 0;
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	BUG_ON(!fmt);
78 	if (WARN_ON(!fmt->load_binary))
79 		return;
80 	write_lock(&binfmt_lock);
81 	insert ? list_add(&fmt->lh, &formats) :
82 		 list_add_tail(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
102 bool path_noexec(const struct path *path)
103 {
104 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107 
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct linux_binfmt *fmt;
118 	struct file *file;
119 	struct filename *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC,
124 		.intent = LOOKUP_OPEN,
125 		.lookup_flags = LOOKUP_FOLLOW,
126 	};
127 
128 	if (IS_ERR(tmp))
129 		goto out;
130 
131 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 	putname(tmp);
133 	error = PTR_ERR(file);
134 	if (IS_ERR(file))
135 		goto out;
136 
137 	error = -EINVAL;
138 	if (!S_ISREG(file_inode(file)->i_mode))
139 		goto exit;
140 
141 	error = -EACCES;
142 	if (path_noexec(&file->f_path))
143 		goto exit;
144 
145 	fsnotify_open(file);
146 
147 	error = -ENOEXEC;
148 
149 	read_lock(&binfmt_lock);
150 	list_for_each_entry(fmt, &formats, lh) {
151 		if (!fmt->load_shlib)
152 			continue;
153 		if (!try_module_get(fmt->module))
154 			continue;
155 		read_unlock(&binfmt_lock);
156 		error = fmt->load_shlib(file);
157 		read_lock(&binfmt_lock);
158 		put_binfmt(fmt);
159 		if (error != -ENOEXEC)
160 			break;
161 	}
162 	read_unlock(&binfmt_lock);
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 
195 #ifdef CONFIG_STACK_GROWSUP
196 	if (write) {
197 		ret = expand_downwards(bprm->vma, pos);
198 		if (ret < 0)
199 			return NULL;
200 	}
201 #endif
202 	ret = get_user_pages(current, bprm->mm, pos,
203 			1, write, 1, &page, NULL);
204 	if (ret <= 0)
205 		return NULL;
206 
207 	if (write) {
208 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 		struct rlimit *rlim;
210 
211 		acct_arg_size(bprm, size / PAGE_SIZE);
212 
213 		/*
214 		 * We've historically supported up to 32 pages (ARG_MAX)
215 		 * of argument strings even with small stacks
216 		 */
217 		if (size <= ARG_MAX)
218 			return page;
219 
220 		/*
221 		 * Limit to 1/4-th the stack size for the argv+env strings.
222 		 * This ensures that:
223 		 *  - the remaining binfmt code will not run out of stack space,
224 		 *  - the program will have a reasonable amount of stack left
225 		 *    to work from.
226 		 */
227 		rlim = current->signal->rlim;
228 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 			put_page(page);
230 			return NULL;
231 		}
232 	}
233 
234 	return page;
235 }
236 
237 static void put_arg_page(struct page *page)
238 {
239 	put_page(page);
240 }
241 
242 static void free_arg_page(struct linux_binprm *bprm, int i)
243 {
244 }
245 
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249 
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		struct page *page)
252 {
253 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255 
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct vm_area_struct *vma = NULL;
260 	struct mm_struct *mm = bprm->mm;
261 
262 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 	if (!vma)
264 		return -ENOMEM;
265 
266 	down_write(&mm->mmap_sem);
267 	vma->vm_mm = mm;
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 	INIT_LIST_HEAD(&vma->anon_vma_chain);
281 
282 	err = insert_vm_struct(mm, vma);
283 	if (err)
284 		goto err;
285 
286 	mm->stack_vm = mm->total_vm = 1;
287 	arch_bprm_mm_init(mm, vma);
288 	up_write(&mm->mmap_sem);
289 	bprm->p = vma->vm_end - sizeof(void *);
290 	return 0;
291 err:
292 	up_write(&mm->mmap_sem);
293 	bprm->vma = NULL;
294 	kmem_cache_free(vm_area_cachep, vma);
295 	return err;
296 }
297 
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300 	return len <= MAX_ARG_STRLEN;
301 }
302 
303 #else
304 
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308 
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 		int write)
311 {
312 	struct page *page;
313 
314 	page = bprm->page[pos / PAGE_SIZE];
315 	if (!page && write) {
316 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 		if (!page)
318 			return NULL;
319 		bprm->page[pos / PAGE_SIZE] = page;
320 	}
321 
322 	return page;
323 }
324 
325 static void put_arg_page(struct page *page)
326 {
327 }
328 
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331 	if (bprm->page[i]) {
332 		__free_page(bprm->page[i]);
333 		bprm->page[i] = NULL;
334 	}
335 }
336 
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339 	int i;
340 
341 	for (i = 0; i < MAX_ARG_PAGES; i++)
342 		free_arg_page(bprm, i);
343 }
344 
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 		struct page *page)
347 {
348 }
349 
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 	return 0;
354 }
355 
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358 	return len <= bprm->p;
359 }
360 
361 #endif /* CONFIG_MMU */
362 
363 /*
364  * Create a new mm_struct and populate it with a temporary stack
365  * vm_area_struct.  We don't have enough context at this point to set the stack
366  * flags, permissions, and offset, so we use temporary values.  We'll update
367  * them later in setup_arg_pages().
368  */
369 static int bprm_mm_init(struct linux_binprm *bprm)
370 {
371 	int err;
372 	struct mm_struct *mm = NULL;
373 
374 	bprm->mm = mm = mm_alloc();
375 	err = -ENOMEM;
376 	if (!mm)
377 		goto err;
378 
379 	err = __bprm_mm_init(bprm);
380 	if (err)
381 		goto err;
382 
383 	return 0;
384 
385 err:
386 	if (mm) {
387 		bprm->mm = NULL;
388 		mmdrop(mm);
389 	}
390 
391 	return err;
392 }
393 
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 	bool is_compat;
397 #endif
398 	union {
399 		const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 		const compat_uptr_t __user *compat;
402 #endif
403 	} ptr;
404 };
405 
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 	const char __user *native;
409 
410 #ifdef CONFIG_COMPAT
411 	if (unlikely(argv.is_compat)) {
412 		compat_uptr_t compat;
413 
414 		if (get_user(compat, argv.ptr.compat + nr))
415 			return ERR_PTR(-EFAULT);
416 
417 		return compat_ptr(compat);
418 	}
419 #endif
420 
421 	if (get_user(native, argv.ptr.native + nr))
422 		return ERR_PTR(-EFAULT);
423 
424 	return native;
425 }
426 
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432 	int i = 0;
433 
434 	if (argv.ptr.native != NULL) {
435 		for (;;) {
436 			const char __user *p = get_user_arg_ptr(argv, i);
437 
438 			if (!p)
439 				break;
440 
441 			if (IS_ERR(p))
442 				return -EFAULT;
443 
444 			if (i >= max)
445 				return -E2BIG;
446 			++i;
447 
448 			if (fatal_signal_pending(current))
449 				return -ERESTARTNOHAND;
450 			cond_resched();
451 		}
452 	}
453 	return i;
454 }
455 
456 /*
457  * 'copy_strings()' copies argument/environment strings from the old
458  * processes's memory to the new process's stack.  The call to get_user_pages()
459  * ensures the destination page is created and not swapped out.
460  */
461 static int copy_strings(int argc, struct user_arg_ptr argv,
462 			struct linux_binprm *bprm)
463 {
464 	struct page *kmapped_page = NULL;
465 	char *kaddr = NULL;
466 	unsigned long kpos = 0;
467 	int ret;
468 
469 	while (argc-- > 0) {
470 		const char __user *str;
471 		int len;
472 		unsigned long pos;
473 
474 		ret = -EFAULT;
475 		str = get_user_arg_ptr(argv, argc);
476 		if (IS_ERR(str))
477 			goto out;
478 
479 		len = strnlen_user(str, MAX_ARG_STRLEN);
480 		if (!len)
481 			goto out;
482 
483 		ret = -E2BIG;
484 		if (!valid_arg_len(bprm, len))
485 			goto out;
486 
487 		/* We're going to work our way backwords. */
488 		pos = bprm->p;
489 		str += len;
490 		bprm->p -= len;
491 
492 		while (len > 0) {
493 			int offset, bytes_to_copy;
494 
495 			if (fatal_signal_pending(current)) {
496 				ret = -ERESTARTNOHAND;
497 				goto out;
498 			}
499 			cond_resched();
500 
501 			offset = pos % PAGE_SIZE;
502 			if (offset == 0)
503 				offset = PAGE_SIZE;
504 
505 			bytes_to_copy = offset;
506 			if (bytes_to_copy > len)
507 				bytes_to_copy = len;
508 
509 			offset -= bytes_to_copy;
510 			pos -= bytes_to_copy;
511 			str -= bytes_to_copy;
512 			len -= bytes_to_copy;
513 
514 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
515 				struct page *page;
516 
517 				page = get_arg_page(bprm, pos, 1);
518 				if (!page) {
519 					ret = -E2BIG;
520 					goto out;
521 				}
522 
523 				if (kmapped_page) {
524 					flush_kernel_dcache_page(kmapped_page);
525 					kunmap(kmapped_page);
526 					put_arg_page(kmapped_page);
527 				}
528 				kmapped_page = page;
529 				kaddr = kmap(kmapped_page);
530 				kpos = pos & PAGE_MASK;
531 				flush_arg_page(bprm, kpos, kmapped_page);
532 			}
533 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534 				ret = -EFAULT;
535 				goto out;
536 			}
537 		}
538 	}
539 	ret = 0;
540 out:
541 	if (kmapped_page) {
542 		flush_kernel_dcache_page(kmapped_page);
543 		kunmap(kmapped_page);
544 		put_arg_page(kmapped_page);
545 	}
546 	return ret;
547 }
548 
549 /*
550  * Like copy_strings, but get argv and its values from kernel memory.
551  */
552 int copy_strings_kernel(int argc, const char *const *__argv,
553 			struct linux_binprm *bprm)
554 {
555 	int r;
556 	mm_segment_t oldfs = get_fs();
557 	struct user_arg_ptr argv = {
558 		.ptr.native = (const char __user *const  __user *)__argv,
559 	};
560 
561 	set_fs(KERNEL_DS);
562 	r = copy_strings(argc, argv, bprm);
563 	set_fs(oldfs);
564 
565 	return r;
566 }
567 EXPORT_SYMBOL(copy_strings_kernel);
568 
569 #ifdef CONFIG_MMU
570 
571 /*
572  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
573  * the binfmt code determines where the new stack should reside, we shift it to
574  * its final location.  The process proceeds as follows:
575  *
576  * 1) Use shift to calculate the new vma endpoints.
577  * 2) Extend vma to cover both the old and new ranges.  This ensures the
578  *    arguments passed to subsequent functions are consistent.
579  * 3) Move vma's page tables to the new range.
580  * 4) Free up any cleared pgd range.
581  * 5) Shrink the vma to cover only the new range.
582  */
583 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
584 {
585 	struct mm_struct *mm = vma->vm_mm;
586 	unsigned long old_start = vma->vm_start;
587 	unsigned long old_end = vma->vm_end;
588 	unsigned long length = old_end - old_start;
589 	unsigned long new_start = old_start - shift;
590 	unsigned long new_end = old_end - shift;
591 	struct mmu_gather tlb;
592 
593 	BUG_ON(new_start > new_end);
594 
595 	/*
596 	 * ensure there are no vmas between where we want to go
597 	 * and where we are
598 	 */
599 	if (vma != find_vma(mm, new_start))
600 		return -EFAULT;
601 
602 	/*
603 	 * cover the whole range: [new_start, old_end)
604 	 */
605 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
606 		return -ENOMEM;
607 
608 	/*
609 	 * move the page tables downwards, on failure we rely on
610 	 * process cleanup to remove whatever mess we made.
611 	 */
612 	if (length != move_page_tables(vma, old_start,
613 				       vma, new_start, length, false))
614 		return -ENOMEM;
615 
616 	lru_add_drain();
617 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
618 	if (new_end > old_start) {
619 		/*
620 		 * when the old and new regions overlap clear from new_end.
621 		 */
622 		free_pgd_range(&tlb, new_end, old_end, new_end,
623 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
624 	} else {
625 		/*
626 		 * otherwise, clean from old_start; this is done to not touch
627 		 * the address space in [new_end, old_start) some architectures
628 		 * have constraints on va-space that make this illegal (IA64) -
629 		 * for the others its just a little faster.
630 		 */
631 		free_pgd_range(&tlb, old_start, old_end, new_end,
632 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 	}
634 	tlb_finish_mmu(&tlb, old_start, old_end);
635 
636 	/*
637 	 * Shrink the vma to just the new range.  Always succeeds.
638 	 */
639 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
640 
641 	return 0;
642 }
643 
644 /*
645  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646  * the stack is optionally relocated, and some extra space is added.
647  */
648 int setup_arg_pages(struct linux_binprm *bprm,
649 		    unsigned long stack_top,
650 		    int executable_stack)
651 {
652 	unsigned long ret;
653 	unsigned long stack_shift;
654 	struct mm_struct *mm = current->mm;
655 	struct vm_area_struct *vma = bprm->vma;
656 	struct vm_area_struct *prev = NULL;
657 	unsigned long vm_flags;
658 	unsigned long stack_base;
659 	unsigned long stack_size;
660 	unsigned long stack_expand;
661 	unsigned long rlim_stack;
662 
663 #ifdef CONFIG_STACK_GROWSUP
664 	/* Limit stack size */
665 	stack_base = rlimit_max(RLIMIT_STACK);
666 	if (stack_base > STACK_SIZE_MAX)
667 		stack_base = STACK_SIZE_MAX;
668 
669 	/* Add space for stack randomization. */
670 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
671 
672 	/* Make sure we didn't let the argument array grow too large. */
673 	if (vma->vm_end - vma->vm_start > stack_base)
674 		return -ENOMEM;
675 
676 	stack_base = PAGE_ALIGN(stack_top - stack_base);
677 
678 	stack_shift = vma->vm_start - stack_base;
679 	mm->arg_start = bprm->p - stack_shift;
680 	bprm->p = vma->vm_end - stack_shift;
681 #else
682 	stack_top = arch_align_stack(stack_top);
683 	stack_top = PAGE_ALIGN(stack_top);
684 
685 	if (unlikely(stack_top < mmap_min_addr) ||
686 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687 		return -ENOMEM;
688 
689 	stack_shift = vma->vm_end - stack_top;
690 
691 	bprm->p -= stack_shift;
692 	mm->arg_start = bprm->p;
693 #endif
694 
695 	if (bprm->loader)
696 		bprm->loader -= stack_shift;
697 	bprm->exec -= stack_shift;
698 
699 	down_write(&mm->mmap_sem);
700 	vm_flags = VM_STACK_FLAGS;
701 
702 	/*
703 	 * Adjust stack execute permissions; explicitly enable for
704 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705 	 * (arch default) otherwise.
706 	 */
707 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708 		vm_flags |= VM_EXEC;
709 	else if (executable_stack == EXSTACK_DISABLE_X)
710 		vm_flags &= ~VM_EXEC;
711 	vm_flags |= mm->def_flags;
712 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
713 
714 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715 			vm_flags);
716 	if (ret)
717 		goto out_unlock;
718 	BUG_ON(prev != vma);
719 
720 	/* Move stack pages down in memory. */
721 	if (stack_shift) {
722 		ret = shift_arg_pages(vma, stack_shift);
723 		if (ret)
724 			goto out_unlock;
725 	}
726 
727 	/* mprotect_fixup is overkill to remove the temporary stack flags */
728 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
729 
730 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731 	stack_size = vma->vm_end - vma->vm_start;
732 	/*
733 	 * Align this down to a page boundary as expand_stack
734 	 * will align it up.
735 	 */
736 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737 #ifdef CONFIG_STACK_GROWSUP
738 	if (stack_size + stack_expand > rlim_stack)
739 		stack_base = vma->vm_start + rlim_stack;
740 	else
741 		stack_base = vma->vm_end + stack_expand;
742 #else
743 	if (stack_size + stack_expand > rlim_stack)
744 		stack_base = vma->vm_end - rlim_stack;
745 	else
746 		stack_base = vma->vm_start - stack_expand;
747 #endif
748 	current->mm->start_stack = bprm->p;
749 	ret = expand_stack(vma, stack_base);
750 	if (ret)
751 		ret = -EFAULT;
752 
753 out_unlock:
754 	up_write(&mm->mmap_sem);
755 	return ret;
756 }
757 EXPORT_SYMBOL(setup_arg_pages);
758 
759 #endif /* CONFIG_MMU */
760 
761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
762 {
763 	struct file *file;
764 	int err;
765 	struct open_flags open_exec_flags = {
766 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 		.acc_mode = MAY_EXEC,
768 		.intent = LOOKUP_OPEN,
769 		.lookup_flags = LOOKUP_FOLLOW,
770 	};
771 
772 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
773 		return ERR_PTR(-EINVAL);
774 	if (flags & AT_SYMLINK_NOFOLLOW)
775 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
776 	if (flags & AT_EMPTY_PATH)
777 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
778 
779 	file = do_filp_open(fd, name, &open_exec_flags);
780 	if (IS_ERR(file))
781 		goto out;
782 
783 	err = -EACCES;
784 	if (!S_ISREG(file_inode(file)->i_mode))
785 		goto exit;
786 
787 	if (path_noexec(&file->f_path))
788 		goto exit;
789 
790 	err = deny_write_access(file);
791 	if (err)
792 		goto exit;
793 
794 	if (name->name[0] != '\0')
795 		fsnotify_open(file);
796 
797 out:
798 	return file;
799 
800 exit:
801 	fput(file);
802 	return ERR_PTR(err);
803 }
804 
805 struct file *open_exec(const char *name)
806 {
807 	struct filename *filename = getname_kernel(name);
808 	struct file *f = ERR_CAST(filename);
809 
810 	if (!IS_ERR(filename)) {
811 		f = do_open_execat(AT_FDCWD, filename, 0);
812 		putname(filename);
813 	}
814 	return f;
815 }
816 EXPORT_SYMBOL(open_exec);
817 
818 int kernel_read(struct file *file, loff_t offset,
819 		char *addr, unsigned long count)
820 {
821 	mm_segment_t old_fs;
822 	loff_t pos = offset;
823 	int result;
824 
825 	old_fs = get_fs();
826 	set_fs(get_ds());
827 	/* The cast to a user pointer is valid due to the set_fs() */
828 	result = vfs_read(file, (void __user *)addr, count, &pos);
829 	set_fs(old_fs);
830 	return result;
831 }
832 
833 EXPORT_SYMBOL(kernel_read);
834 
835 int kernel_read_file(struct file *file, void **buf, loff_t *size,
836 		     loff_t max_size, enum kernel_read_file_id id)
837 {
838 	loff_t i_size, pos;
839 	ssize_t bytes = 0;
840 	int ret;
841 
842 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
843 		return -EINVAL;
844 
845 	ret = security_kernel_read_file(file, id);
846 	if (ret)
847 		return ret;
848 
849 	i_size = i_size_read(file_inode(file));
850 	if (max_size > 0 && i_size > max_size)
851 		return -EFBIG;
852 	if (i_size <= 0)
853 		return -EINVAL;
854 
855 	*buf = vmalloc(i_size);
856 	if (!*buf)
857 		return -ENOMEM;
858 
859 	pos = 0;
860 	while (pos < i_size) {
861 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
862 				    i_size - pos);
863 		if (bytes < 0) {
864 			ret = bytes;
865 			goto out;
866 		}
867 
868 		if (bytes == 0)
869 			break;
870 		pos += bytes;
871 	}
872 
873 	if (pos != i_size) {
874 		ret = -EIO;
875 		goto out;
876 	}
877 
878 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
879 	if (!ret)
880 		*size = pos;
881 
882 out:
883 	if (ret < 0) {
884 		vfree(*buf);
885 		*buf = NULL;
886 	}
887 	return ret;
888 }
889 EXPORT_SYMBOL_GPL(kernel_read_file);
890 
891 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
892 			       loff_t max_size, enum kernel_read_file_id id)
893 {
894 	struct file *file;
895 	int ret;
896 
897 	if (!path || !*path)
898 		return -EINVAL;
899 
900 	file = filp_open(path, O_RDONLY, 0);
901 	if (IS_ERR(file))
902 		return PTR_ERR(file);
903 
904 	ret = kernel_read_file(file, buf, size, max_size, id);
905 	fput(file);
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
909 
910 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
911 			     enum kernel_read_file_id id)
912 {
913 	struct fd f = fdget(fd);
914 	int ret = -EBADF;
915 
916 	if (!f.file)
917 		goto out;
918 
919 	ret = kernel_read_file(f.file, buf, size, max_size, id);
920 out:
921 	fdput(f);
922 	return ret;
923 }
924 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
925 
926 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
927 {
928 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
929 	if (res > 0)
930 		flush_icache_range(addr, addr + len);
931 	return res;
932 }
933 EXPORT_SYMBOL(read_code);
934 
935 static int exec_mmap(struct mm_struct *mm)
936 {
937 	struct task_struct *tsk;
938 	struct mm_struct *old_mm, *active_mm;
939 
940 	/* Notify parent that we're no longer interested in the old VM */
941 	tsk = current;
942 	old_mm = current->mm;
943 	mm_release(tsk, old_mm);
944 
945 	if (old_mm) {
946 		sync_mm_rss(old_mm);
947 		/*
948 		 * Make sure that if there is a core dump in progress
949 		 * for the old mm, we get out and die instead of going
950 		 * through with the exec.  We must hold mmap_sem around
951 		 * checking core_state and changing tsk->mm.
952 		 */
953 		down_read(&old_mm->mmap_sem);
954 		if (unlikely(old_mm->core_state)) {
955 			up_read(&old_mm->mmap_sem);
956 			return -EINTR;
957 		}
958 	}
959 	task_lock(tsk);
960 	active_mm = tsk->active_mm;
961 	tsk->mm = mm;
962 	tsk->active_mm = mm;
963 	activate_mm(active_mm, mm);
964 	tsk->mm->vmacache_seqnum = 0;
965 	vmacache_flush(tsk);
966 	task_unlock(tsk);
967 	if (old_mm) {
968 		up_read(&old_mm->mmap_sem);
969 		BUG_ON(active_mm != old_mm);
970 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
971 		mm_update_next_owner(old_mm);
972 		mmput(old_mm);
973 		return 0;
974 	}
975 	mmdrop(active_mm);
976 	return 0;
977 }
978 
979 /*
980  * This function makes sure the current process has its own signal table,
981  * so that flush_signal_handlers can later reset the handlers without
982  * disturbing other processes.  (Other processes might share the signal
983  * table via the CLONE_SIGHAND option to clone().)
984  */
985 static int de_thread(struct task_struct *tsk)
986 {
987 	struct signal_struct *sig = tsk->signal;
988 	struct sighand_struct *oldsighand = tsk->sighand;
989 	spinlock_t *lock = &oldsighand->siglock;
990 
991 	if (thread_group_empty(tsk))
992 		goto no_thread_group;
993 
994 	/*
995 	 * Kill all other threads in the thread group.
996 	 */
997 	spin_lock_irq(lock);
998 	if (signal_group_exit(sig)) {
999 		/*
1000 		 * Another group action in progress, just
1001 		 * return so that the signal is processed.
1002 		 */
1003 		spin_unlock_irq(lock);
1004 		return -EAGAIN;
1005 	}
1006 
1007 	sig->group_exit_task = tsk;
1008 	sig->notify_count = zap_other_threads(tsk);
1009 	if (!thread_group_leader(tsk))
1010 		sig->notify_count--;
1011 
1012 	while (sig->notify_count) {
1013 		__set_current_state(TASK_KILLABLE);
1014 		spin_unlock_irq(lock);
1015 		schedule();
1016 		if (unlikely(__fatal_signal_pending(tsk)))
1017 			goto killed;
1018 		spin_lock_irq(lock);
1019 	}
1020 	spin_unlock_irq(lock);
1021 
1022 	/*
1023 	 * At this point all other threads have exited, all we have to
1024 	 * do is to wait for the thread group leader to become inactive,
1025 	 * and to assume its PID:
1026 	 */
1027 	if (!thread_group_leader(tsk)) {
1028 		struct task_struct *leader = tsk->group_leader;
1029 
1030 		for (;;) {
1031 			threadgroup_change_begin(tsk);
1032 			write_lock_irq(&tasklist_lock);
1033 			/*
1034 			 * Do this under tasklist_lock to ensure that
1035 			 * exit_notify() can't miss ->group_exit_task
1036 			 */
1037 			sig->notify_count = -1;
1038 			if (likely(leader->exit_state))
1039 				break;
1040 			__set_current_state(TASK_KILLABLE);
1041 			write_unlock_irq(&tasklist_lock);
1042 			threadgroup_change_end(tsk);
1043 			schedule();
1044 			if (unlikely(__fatal_signal_pending(tsk)))
1045 				goto killed;
1046 		}
1047 
1048 		/*
1049 		 * The only record we have of the real-time age of a
1050 		 * process, regardless of execs it's done, is start_time.
1051 		 * All the past CPU time is accumulated in signal_struct
1052 		 * from sister threads now dead.  But in this non-leader
1053 		 * exec, nothing survives from the original leader thread,
1054 		 * whose birth marks the true age of this process now.
1055 		 * When we take on its identity by switching to its PID, we
1056 		 * also take its birthdate (always earlier than our own).
1057 		 */
1058 		tsk->start_time = leader->start_time;
1059 		tsk->real_start_time = leader->real_start_time;
1060 
1061 		BUG_ON(!same_thread_group(leader, tsk));
1062 		BUG_ON(has_group_leader_pid(tsk));
1063 		/*
1064 		 * An exec() starts a new thread group with the
1065 		 * TGID of the previous thread group. Rehash the
1066 		 * two threads with a switched PID, and release
1067 		 * the former thread group leader:
1068 		 */
1069 
1070 		/* Become a process group leader with the old leader's pid.
1071 		 * The old leader becomes a thread of the this thread group.
1072 		 * Note: The old leader also uses this pid until release_task
1073 		 *       is called.  Odd but simple and correct.
1074 		 */
1075 		tsk->pid = leader->pid;
1076 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1077 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1078 		transfer_pid(leader, tsk, PIDTYPE_SID);
1079 
1080 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1081 		list_replace_init(&leader->sibling, &tsk->sibling);
1082 
1083 		tsk->group_leader = tsk;
1084 		leader->group_leader = tsk;
1085 
1086 		tsk->exit_signal = SIGCHLD;
1087 		leader->exit_signal = -1;
1088 
1089 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1090 		leader->exit_state = EXIT_DEAD;
1091 
1092 		/*
1093 		 * We are going to release_task()->ptrace_unlink() silently,
1094 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1095 		 * the tracer wont't block again waiting for this thread.
1096 		 */
1097 		if (unlikely(leader->ptrace))
1098 			__wake_up_parent(leader, leader->parent);
1099 		write_unlock_irq(&tasklist_lock);
1100 		threadgroup_change_end(tsk);
1101 
1102 		release_task(leader);
1103 	}
1104 
1105 	sig->group_exit_task = NULL;
1106 	sig->notify_count = 0;
1107 
1108 no_thread_group:
1109 	/* we have changed execution domain */
1110 	tsk->exit_signal = SIGCHLD;
1111 
1112 	exit_itimers(sig);
1113 	flush_itimer_signals();
1114 
1115 	if (atomic_read(&oldsighand->count) != 1) {
1116 		struct sighand_struct *newsighand;
1117 		/*
1118 		 * This ->sighand is shared with the CLONE_SIGHAND
1119 		 * but not CLONE_THREAD task, switch to the new one.
1120 		 */
1121 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1122 		if (!newsighand)
1123 			return -ENOMEM;
1124 
1125 		atomic_set(&newsighand->count, 1);
1126 		memcpy(newsighand->action, oldsighand->action,
1127 		       sizeof(newsighand->action));
1128 
1129 		write_lock_irq(&tasklist_lock);
1130 		spin_lock(&oldsighand->siglock);
1131 		rcu_assign_pointer(tsk->sighand, newsighand);
1132 		spin_unlock(&oldsighand->siglock);
1133 		write_unlock_irq(&tasklist_lock);
1134 
1135 		__cleanup_sighand(oldsighand);
1136 	}
1137 
1138 	BUG_ON(!thread_group_leader(tsk));
1139 	return 0;
1140 
1141 killed:
1142 	/* protects against exit_notify() and __exit_signal() */
1143 	read_lock(&tasklist_lock);
1144 	sig->group_exit_task = NULL;
1145 	sig->notify_count = 0;
1146 	read_unlock(&tasklist_lock);
1147 	return -EAGAIN;
1148 }
1149 
1150 char *get_task_comm(char *buf, struct task_struct *tsk)
1151 {
1152 	/* buf must be at least sizeof(tsk->comm) in size */
1153 	task_lock(tsk);
1154 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1155 	task_unlock(tsk);
1156 	return buf;
1157 }
1158 EXPORT_SYMBOL_GPL(get_task_comm);
1159 
1160 /*
1161  * These functions flushes out all traces of the currently running executable
1162  * so that a new one can be started
1163  */
1164 
1165 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1166 {
1167 	task_lock(tsk);
1168 	trace_task_rename(tsk, buf);
1169 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1170 	task_unlock(tsk);
1171 	perf_event_comm(tsk, exec);
1172 }
1173 
1174 int flush_old_exec(struct linux_binprm * bprm)
1175 {
1176 	int retval;
1177 
1178 	/*
1179 	 * Make sure we have a private signal table and that
1180 	 * we are unassociated from the previous thread group.
1181 	 */
1182 	retval = de_thread(current);
1183 	if (retval)
1184 		goto out;
1185 
1186 	/*
1187 	 * Must be called _before_ exec_mmap() as bprm->mm is
1188 	 * not visibile until then. This also enables the update
1189 	 * to be lockless.
1190 	 */
1191 	set_mm_exe_file(bprm->mm, bprm->file);
1192 
1193 	/*
1194 	 * Release all of the old mmap stuff
1195 	 */
1196 	acct_arg_size(bprm, 0);
1197 	retval = exec_mmap(bprm->mm);
1198 	if (retval)
1199 		goto out;
1200 
1201 	bprm->mm = NULL;		/* We're using it now */
1202 
1203 	set_fs(USER_DS);
1204 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1205 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1206 	flush_thread();
1207 	current->personality &= ~bprm->per_clear;
1208 
1209 	return 0;
1210 
1211 out:
1212 	return retval;
1213 }
1214 EXPORT_SYMBOL(flush_old_exec);
1215 
1216 void would_dump(struct linux_binprm *bprm, struct file *file)
1217 {
1218 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1219 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1220 }
1221 EXPORT_SYMBOL(would_dump);
1222 
1223 void setup_new_exec(struct linux_binprm * bprm)
1224 {
1225 	arch_pick_mmap_layout(current->mm);
1226 
1227 	/* This is the point of no return */
1228 	current->sas_ss_sp = current->sas_ss_size = 0;
1229 
1230 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1231 		set_dumpable(current->mm, SUID_DUMP_USER);
1232 	else
1233 		set_dumpable(current->mm, suid_dumpable);
1234 
1235 	perf_event_exec();
1236 	__set_task_comm(current, kbasename(bprm->filename), true);
1237 
1238 	/* Set the new mm task size. We have to do that late because it may
1239 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1240 	 * some architectures like powerpc
1241 	 */
1242 	current->mm->task_size = TASK_SIZE;
1243 
1244 	/* install the new credentials */
1245 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1246 	    !gid_eq(bprm->cred->gid, current_egid())) {
1247 		current->pdeath_signal = 0;
1248 	} else {
1249 		would_dump(bprm, bprm->file);
1250 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1251 			set_dumpable(current->mm, suid_dumpable);
1252 	}
1253 
1254 	/* An exec changes our domain. We are no longer part of the thread
1255 	   group */
1256 	current->self_exec_id++;
1257 	flush_signal_handlers(current, 0);
1258 	do_close_on_exec(current->files);
1259 }
1260 EXPORT_SYMBOL(setup_new_exec);
1261 
1262 /*
1263  * Prepare credentials and lock ->cred_guard_mutex.
1264  * install_exec_creds() commits the new creds and drops the lock.
1265  * Or, if exec fails before, free_bprm() should release ->cred and
1266  * and unlock.
1267  */
1268 int prepare_bprm_creds(struct linux_binprm *bprm)
1269 {
1270 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1271 		return -ERESTARTNOINTR;
1272 
1273 	bprm->cred = prepare_exec_creds();
1274 	if (likely(bprm->cred))
1275 		return 0;
1276 
1277 	mutex_unlock(&current->signal->cred_guard_mutex);
1278 	return -ENOMEM;
1279 }
1280 
1281 static void free_bprm(struct linux_binprm *bprm)
1282 {
1283 	free_arg_pages(bprm);
1284 	if (bprm->cred) {
1285 		mutex_unlock(&current->signal->cred_guard_mutex);
1286 		abort_creds(bprm->cred);
1287 	}
1288 	if (bprm->file) {
1289 		allow_write_access(bprm->file);
1290 		fput(bprm->file);
1291 	}
1292 	/* If a binfmt changed the interp, free it. */
1293 	if (bprm->interp != bprm->filename)
1294 		kfree(bprm->interp);
1295 	kfree(bprm);
1296 }
1297 
1298 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1299 {
1300 	/* If a binfmt changed the interp, free it first. */
1301 	if (bprm->interp != bprm->filename)
1302 		kfree(bprm->interp);
1303 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1304 	if (!bprm->interp)
1305 		return -ENOMEM;
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL(bprm_change_interp);
1309 
1310 /*
1311  * install the new credentials for this executable
1312  */
1313 void install_exec_creds(struct linux_binprm *bprm)
1314 {
1315 	security_bprm_committing_creds(bprm);
1316 
1317 	commit_creds(bprm->cred);
1318 	bprm->cred = NULL;
1319 
1320 	/*
1321 	 * Disable monitoring for regular users
1322 	 * when executing setuid binaries. Must
1323 	 * wait until new credentials are committed
1324 	 * by commit_creds() above
1325 	 */
1326 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1327 		perf_event_exit_task(current);
1328 	/*
1329 	 * cred_guard_mutex must be held at least to this point to prevent
1330 	 * ptrace_attach() from altering our determination of the task's
1331 	 * credentials; any time after this it may be unlocked.
1332 	 */
1333 	security_bprm_committed_creds(bprm);
1334 	mutex_unlock(&current->signal->cred_guard_mutex);
1335 }
1336 EXPORT_SYMBOL(install_exec_creds);
1337 
1338 /*
1339  * determine how safe it is to execute the proposed program
1340  * - the caller must hold ->cred_guard_mutex to protect against
1341  *   PTRACE_ATTACH or seccomp thread-sync
1342  */
1343 static void check_unsafe_exec(struct linux_binprm *bprm)
1344 {
1345 	struct task_struct *p = current, *t;
1346 	unsigned n_fs;
1347 
1348 	if (p->ptrace) {
1349 		if (p->ptrace & PT_PTRACE_CAP)
1350 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1351 		else
1352 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1353 	}
1354 
1355 	/*
1356 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1357 	 * mess up.
1358 	 */
1359 	if (task_no_new_privs(current))
1360 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1361 
1362 	t = p;
1363 	n_fs = 1;
1364 	spin_lock(&p->fs->lock);
1365 	rcu_read_lock();
1366 	while_each_thread(p, t) {
1367 		if (t->fs == p->fs)
1368 			n_fs++;
1369 	}
1370 	rcu_read_unlock();
1371 
1372 	if (p->fs->users > n_fs)
1373 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1374 	else
1375 		p->fs->in_exec = 1;
1376 	spin_unlock(&p->fs->lock);
1377 }
1378 
1379 static void bprm_fill_uid(struct linux_binprm *bprm)
1380 {
1381 	struct inode *inode;
1382 	unsigned int mode;
1383 	kuid_t uid;
1384 	kgid_t gid;
1385 
1386 	/* clear any previous set[ug]id data from a previous binary */
1387 	bprm->cred->euid = current_euid();
1388 	bprm->cred->egid = current_egid();
1389 
1390 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1391 		return;
1392 
1393 	if (task_no_new_privs(current))
1394 		return;
1395 
1396 	inode = file_inode(bprm->file);
1397 	mode = READ_ONCE(inode->i_mode);
1398 	if (!(mode & (S_ISUID|S_ISGID)))
1399 		return;
1400 
1401 	/* Be careful if suid/sgid is set */
1402 	inode_lock(inode);
1403 
1404 	/* reload atomically mode/uid/gid now that lock held */
1405 	mode = inode->i_mode;
1406 	uid = inode->i_uid;
1407 	gid = inode->i_gid;
1408 	inode_unlock(inode);
1409 
1410 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1411 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1412 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1413 		return;
1414 
1415 	if (mode & S_ISUID) {
1416 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1417 		bprm->cred->euid = uid;
1418 	}
1419 
1420 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1421 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1422 		bprm->cred->egid = gid;
1423 	}
1424 }
1425 
1426 /*
1427  * Fill the binprm structure from the inode.
1428  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1429  *
1430  * This may be called multiple times for binary chains (scripts for example).
1431  */
1432 int prepare_binprm(struct linux_binprm *bprm)
1433 {
1434 	int retval;
1435 
1436 	bprm_fill_uid(bprm);
1437 
1438 	/* fill in binprm security blob */
1439 	retval = security_bprm_set_creds(bprm);
1440 	if (retval)
1441 		return retval;
1442 	bprm->cred_prepared = 1;
1443 
1444 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1445 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1446 }
1447 
1448 EXPORT_SYMBOL(prepare_binprm);
1449 
1450 /*
1451  * Arguments are '\0' separated strings found at the location bprm->p
1452  * points to; chop off the first by relocating brpm->p to right after
1453  * the first '\0' encountered.
1454  */
1455 int remove_arg_zero(struct linux_binprm *bprm)
1456 {
1457 	int ret = 0;
1458 	unsigned long offset;
1459 	char *kaddr;
1460 	struct page *page;
1461 
1462 	if (!bprm->argc)
1463 		return 0;
1464 
1465 	do {
1466 		offset = bprm->p & ~PAGE_MASK;
1467 		page = get_arg_page(bprm, bprm->p, 0);
1468 		if (!page) {
1469 			ret = -EFAULT;
1470 			goto out;
1471 		}
1472 		kaddr = kmap_atomic(page);
1473 
1474 		for (; offset < PAGE_SIZE && kaddr[offset];
1475 				offset++, bprm->p++)
1476 			;
1477 
1478 		kunmap_atomic(kaddr);
1479 		put_arg_page(page);
1480 
1481 		if (offset == PAGE_SIZE)
1482 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1483 	} while (offset == PAGE_SIZE);
1484 
1485 	bprm->p++;
1486 	bprm->argc--;
1487 	ret = 0;
1488 
1489 out:
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(remove_arg_zero);
1493 
1494 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1495 /*
1496  * cycle the list of binary formats handler, until one recognizes the image
1497  */
1498 int search_binary_handler(struct linux_binprm *bprm)
1499 {
1500 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1501 	struct linux_binfmt *fmt;
1502 	int retval;
1503 
1504 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1505 	if (bprm->recursion_depth > 5)
1506 		return -ELOOP;
1507 
1508 	retval = security_bprm_check(bprm);
1509 	if (retval)
1510 		return retval;
1511 
1512 	retval = -ENOENT;
1513  retry:
1514 	read_lock(&binfmt_lock);
1515 	list_for_each_entry(fmt, &formats, lh) {
1516 		if (!try_module_get(fmt->module))
1517 			continue;
1518 		read_unlock(&binfmt_lock);
1519 		bprm->recursion_depth++;
1520 		retval = fmt->load_binary(bprm);
1521 		read_lock(&binfmt_lock);
1522 		put_binfmt(fmt);
1523 		bprm->recursion_depth--;
1524 		if (retval < 0 && !bprm->mm) {
1525 			/* we got to flush_old_exec() and failed after it */
1526 			read_unlock(&binfmt_lock);
1527 			force_sigsegv(SIGSEGV, current);
1528 			return retval;
1529 		}
1530 		if (retval != -ENOEXEC || !bprm->file) {
1531 			read_unlock(&binfmt_lock);
1532 			return retval;
1533 		}
1534 	}
1535 	read_unlock(&binfmt_lock);
1536 
1537 	if (need_retry) {
1538 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1539 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1540 			return retval;
1541 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1542 			return retval;
1543 		need_retry = false;
1544 		goto retry;
1545 	}
1546 
1547 	return retval;
1548 }
1549 EXPORT_SYMBOL(search_binary_handler);
1550 
1551 static int exec_binprm(struct linux_binprm *bprm)
1552 {
1553 	pid_t old_pid, old_vpid;
1554 	int ret;
1555 
1556 	/* Need to fetch pid before load_binary changes it */
1557 	old_pid = current->pid;
1558 	rcu_read_lock();
1559 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1560 	rcu_read_unlock();
1561 
1562 	ret = search_binary_handler(bprm);
1563 	if (ret >= 0) {
1564 		audit_bprm(bprm);
1565 		trace_sched_process_exec(current, old_pid, bprm);
1566 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1567 		proc_exec_connector(current);
1568 	}
1569 
1570 	return ret;
1571 }
1572 
1573 /*
1574  * sys_execve() executes a new program.
1575  */
1576 static int do_execveat_common(int fd, struct filename *filename,
1577 			      struct user_arg_ptr argv,
1578 			      struct user_arg_ptr envp,
1579 			      int flags)
1580 {
1581 	char *pathbuf = NULL;
1582 	struct linux_binprm *bprm;
1583 	struct file *file;
1584 	struct files_struct *displaced;
1585 	int retval;
1586 
1587 	if (IS_ERR(filename))
1588 		return PTR_ERR(filename);
1589 
1590 	/*
1591 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1592 	 * set*uid() to execve() because too many poorly written programs
1593 	 * don't check setuid() return code.  Here we additionally recheck
1594 	 * whether NPROC limit is still exceeded.
1595 	 */
1596 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1597 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1598 		retval = -EAGAIN;
1599 		goto out_ret;
1600 	}
1601 
1602 	/* We're below the limit (still or again), so we don't want to make
1603 	 * further execve() calls fail. */
1604 	current->flags &= ~PF_NPROC_EXCEEDED;
1605 
1606 	retval = unshare_files(&displaced);
1607 	if (retval)
1608 		goto out_ret;
1609 
1610 	retval = -ENOMEM;
1611 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1612 	if (!bprm)
1613 		goto out_files;
1614 
1615 	retval = prepare_bprm_creds(bprm);
1616 	if (retval)
1617 		goto out_free;
1618 
1619 	check_unsafe_exec(bprm);
1620 	current->in_execve = 1;
1621 
1622 	file = do_open_execat(fd, filename, flags);
1623 	retval = PTR_ERR(file);
1624 	if (IS_ERR(file))
1625 		goto out_unmark;
1626 
1627 	sched_exec();
1628 
1629 	bprm->file = file;
1630 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1631 		bprm->filename = filename->name;
1632 	} else {
1633 		if (filename->name[0] == '\0')
1634 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1635 		else
1636 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1637 					    fd, filename->name);
1638 		if (!pathbuf) {
1639 			retval = -ENOMEM;
1640 			goto out_unmark;
1641 		}
1642 		/*
1643 		 * Record that a name derived from an O_CLOEXEC fd will be
1644 		 * inaccessible after exec. Relies on having exclusive access to
1645 		 * current->files (due to unshare_files above).
1646 		 */
1647 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1648 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1649 		bprm->filename = pathbuf;
1650 	}
1651 	bprm->interp = bprm->filename;
1652 
1653 	retval = bprm_mm_init(bprm);
1654 	if (retval)
1655 		goto out_unmark;
1656 
1657 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1658 	if ((retval = bprm->argc) < 0)
1659 		goto out;
1660 
1661 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1662 	if ((retval = bprm->envc) < 0)
1663 		goto out;
1664 
1665 	retval = prepare_binprm(bprm);
1666 	if (retval < 0)
1667 		goto out;
1668 
1669 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1670 	if (retval < 0)
1671 		goto out;
1672 
1673 	bprm->exec = bprm->p;
1674 	retval = copy_strings(bprm->envc, envp, bprm);
1675 	if (retval < 0)
1676 		goto out;
1677 
1678 	retval = copy_strings(bprm->argc, argv, bprm);
1679 	if (retval < 0)
1680 		goto out;
1681 
1682 	retval = exec_binprm(bprm);
1683 	if (retval < 0)
1684 		goto out;
1685 
1686 	/* execve succeeded */
1687 	current->fs->in_exec = 0;
1688 	current->in_execve = 0;
1689 	acct_update_integrals(current);
1690 	task_numa_free(current);
1691 	free_bprm(bprm);
1692 	kfree(pathbuf);
1693 	putname(filename);
1694 	if (displaced)
1695 		put_files_struct(displaced);
1696 	return retval;
1697 
1698 out:
1699 	if (bprm->mm) {
1700 		acct_arg_size(bprm, 0);
1701 		mmput(bprm->mm);
1702 	}
1703 
1704 out_unmark:
1705 	current->fs->in_exec = 0;
1706 	current->in_execve = 0;
1707 
1708 out_free:
1709 	free_bprm(bprm);
1710 	kfree(pathbuf);
1711 
1712 out_files:
1713 	if (displaced)
1714 		reset_files_struct(displaced);
1715 out_ret:
1716 	putname(filename);
1717 	return retval;
1718 }
1719 
1720 int do_execve(struct filename *filename,
1721 	const char __user *const __user *__argv,
1722 	const char __user *const __user *__envp)
1723 {
1724 	struct user_arg_ptr argv = { .ptr.native = __argv };
1725 	struct user_arg_ptr envp = { .ptr.native = __envp };
1726 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1727 }
1728 
1729 int do_execveat(int fd, struct filename *filename,
1730 		const char __user *const __user *__argv,
1731 		const char __user *const __user *__envp,
1732 		int flags)
1733 {
1734 	struct user_arg_ptr argv = { .ptr.native = __argv };
1735 	struct user_arg_ptr envp = { .ptr.native = __envp };
1736 
1737 	return do_execveat_common(fd, filename, argv, envp, flags);
1738 }
1739 
1740 #ifdef CONFIG_COMPAT
1741 static int compat_do_execve(struct filename *filename,
1742 	const compat_uptr_t __user *__argv,
1743 	const compat_uptr_t __user *__envp)
1744 {
1745 	struct user_arg_ptr argv = {
1746 		.is_compat = true,
1747 		.ptr.compat = __argv,
1748 	};
1749 	struct user_arg_ptr envp = {
1750 		.is_compat = true,
1751 		.ptr.compat = __envp,
1752 	};
1753 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1754 }
1755 
1756 static int compat_do_execveat(int fd, struct filename *filename,
1757 			      const compat_uptr_t __user *__argv,
1758 			      const compat_uptr_t __user *__envp,
1759 			      int flags)
1760 {
1761 	struct user_arg_ptr argv = {
1762 		.is_compat = true,
1763 		.ptr.compat = __argv,
1764 	};
1765 	struct user_arg_ptr envp = {
1766 		.is_compat = true,
1767 		.ptr.compat = __envp,
1768 	};
1769 	return do_execveat_common(fd, filename, argv, envp, flags);
1770 }
1771 #endif
1772 
1773 void set_binfmt(struct linux_binfmt *new)
1774 {
1775 	struct mm_struct *mm = current->mm;
1776 
1777 	if (mm->binfmt)
1778 		module_put(mm->binfmt->module);
1779 
1780 	mm->binfmt = new;
1781 	if (new)
1782 		__module_get(new->module);
1783 }
1784 EXPORT_SYMBOL(set_binfmt);
1785 
1786 /*
1787  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1788  */
1789 void set_dumpable(struct mm_struct *mm, int value)
1790 {
1791 	unsigned long old, new;
1792 
1793 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1794 		return;
1795 
1796 	do {
1797 		old = ACCESS_ONCE(mm->flags);
1798 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1799 	} while (cmpxchg(&mm->flags, old, new) != old);
1800 }
1801 
1802 SYSCALL_DEFINE3(execve,
1803 		const char __user *, filename,
1804 		const char __user *const __user *, argv,
1805 		const char __user *const __user *, envp)
1806 {
1807 	return do_execve(getname(filename), argv, envp);
1808 }
1809 
1810 SYSCALL_DEFINE5(execveat,
1811 		int, fd, const char __user *, filename,
1812 		const char __user *const __user *, argv,
1813 		const char __user *const __user *, envp,
1814 		int, flags)
1815 {
1816 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1817 
1818 	return do_execveat(fd,
1819 			   getname_flags(filename, lookup_flags, NULL),
1820 			   argv, envp, flags);
1821 }
1822 
1823 #ifdef CONFIG_COMPAT
1824 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1825 	const compat_uptr_t __user *, argv,
1826 	const compat_uptr_t __user *, envp)
1827 {
1828 	return compat_do_execve(getname(filename), argv, envp);
1829 }
1830 
1831 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1832 		       const char __user *, filename,
1833 		       const compat_uptr_t __user *, argv,
1834 		       const compat_uptr_t __user *, envp,
1835 		       int,  flags)
1836 {
1837 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1838 
1839 	return compat_do_execveat(fd,
1840 				  getname_flags(filename, lookup_flags, NULL),
1841 				  argv, envp, flags);
1842 }
1843 #endif
1844