xref: /linux/fs/ecryptfs/keystore.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <crypto/hash.h>
29 #include <crypto/skcipher.h>
30 #include <linux/string.h>
31 #include <linux/pagemap.h>
32 #include <linux/key.h>
33 #include <linux/random.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (data[0] - 192) * 256;
109 		(*size) += data[1] + 192;
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
150 		rc = -EINVAL;
151 		ecryptfs_printk(KERN_WARNING,
152 				"Unsupported packet size: [%zd]\n", size);
153 	}
154 	return rc;
155 }
156 
157 static int
158 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
159 		    char **packet, size_t *packet_len)
160 {
161 	size_t i = 0;
162 	size_t data_len;
163 	size_t packet_size_len;
164 	char *message;
165 	int rc;
166 
167 	/*
168 	 *              ***** TAG 64 Packet Format *****
169 	 *    | Content Type                       | 1 byte       |
170 	 *    | Key Identifier Size                | 1 or 2 bytes |
171 	 *    | Key Identifier                     | arbitrary    |
172 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
173 	 *    | Encrypted File Encryption Key      | arbitrary    |
174 	 */
175 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
176 		    + session_key->encrypted_key_size);
177 	*packet = kmalloc(data_len, GFP_KERNEL);
178 	message = *packet;
179 	if (!message) {
180 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
181 		rc = -ENOMEM;
182 		goto out;
183 	}
184 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
185 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
186 					  &packet_size_len);
187 	if (rc) {
188 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
189 				"header; cannot generate packet length\n");
190 		goto out;
191 	}
192 	i += packet_size_len;
193 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
194 	i += ECRYPTFS_SIG_SIZE_HEX;
195 	rc = ecryptfs_write_packet_length(&message[i],
196 					  session_key->encrypted_key_size,
197 					  &packet_size_len);
198 	if (rc) {
199 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
200 				"header; cannot generate packet length\n");
201 		goto out;
202 	}
203 	i += packet_size_len;
204 	memcpy(&message[i], session_key->encrypted_key,
205 	       session_key->encrypted_key_size);
206 	i += session_key->encrypted_key_size;
207 	*packet_len = i;
208 out:
209 	return rc;
210 }
211 
212 static int
213 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
214 		    struct ecryptfs_message *msg)
215 {
216 	size_t i = 0;
217 	char *data;
218 	size_t data_len;
219 	size_t m_size;
220 	size_t message_len;
221 	u16 checksum = 0;
222 	u16 expected_checksum = 0;
223 	int rc;
224 
225 	/*
226 	 *              ***** TAG 65 Packet Format *****
227 	 *         | Content Type             | 1 byte       |
228 	 *         | Status Indicator         | 1 byte       |
229 	 *         | File Encryption Key Size | 1 or 2 bytes |
230 	 *         | File Encryption Key      | arbitrary    |
231 	 */
232 	message_len = msg->data_len;
233 	data = msg->data;
234 	if (message_len < 4) {
235 		rc = -EIO;
236 		goto out;
237 	}
238 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
239 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (data[i++]) {
244 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
245 				"[%d]\n", data[i-1]);
246 		rc = -EIO;
247 		goto out;
248 	}
249 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
250 	if (rc) {
251 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
252 				"rc = [%d]\n", rc);
253 		goto out;
254 	}
255 	i += data_len;
256 	if (message_len < (i + m_size)) {
257 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
258 				"is shorter than expected\n");
259 		rc = -EIO;
260 		goto out;
261 	}
262 	if (m_size < 3) {
263 		ecryptfs_printk(KERN_ERR,
264 				"The decrypted key is not long enough to "
265 				"include a cipher code and checksum\n");
266 		rc = -EIO;
267 		goto out;
268 	}
269 	*cipher_code = data[i++];
270 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
271 	session_key->decrypted_key_size = m_size - 3;
272 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
273 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
274 				"the maximum key size [%d]\n",
275 				session_key->decrypted_key_size,
276 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
277 		rc = -EIO;
278 		goto out;
279 	}
280 	memcpy(session_key->decrypted_key, &data[i],
281 	       session_key->decrypted_key_size);
282 	i += session_key->decrypted_key_size;
283 	expected_checksum += (unsigned char)(data[i++]) << 8;
284 	expected_checksum += (unsigned char)(data[i++]);
285 	for (i = 0; i < session_key->decrypted_key_size; i++)
286 		checksum += session_key->decrypted_key[i];
287 	if (expected_checksum != checksum) {
288 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
289 				"encryption  key; expected [%x]; calculated "
290 				"[%x]\n", expected_checksum, checksum);
291 		rc = -EIO;
292 	}
293 out:
294 	return rc;
295 }
296 
297 
298 static int
299 write_tag_66_packet(char *signature, u8 cipher_code,
300 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
301 		    size_t *packet_len)
302 {
303 	size_t i = 0;
304 	size_t j;
305 	size_t data_len;
306 	size_t checksum = 0;
307 	size_t packet_size_len;
308 	char *message;
309 	int rc;
310 
311 	/*
312 	 *              ***** TAG 66 Packet Format *****
313 	 *         | Content Type             | 1 byte       |
314 	 *         | Key Identifier Size      | 1 or 2 bytes |
315 	 *         | Key Identifier           | arbitrary    |
316 	 *         | File Encryption Key Size | 1 or 2 bytes |
317 	 *         | File Encryption Key      | arbitrary    |
318 	 */
319 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
320 	*packet = kmalloc(data_len, GFP_KERNEL);
321 	message = *packet;
322 	if (!message) {
323 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
324 		rc = -ENOMEM;
325 		goto out;
326 	}
327 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
328 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
329 					  &packet_size_len);
330 	if (rc) {
331 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
332 				"header; cannot generate packet length\n");
333 		goto out;
334 	}
335 	i += packet_size_len;
336 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
337 	i += ECRYPTFS_SIG_SIZE_HEX;
338 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
339 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
340 					  &packet_size_len);
341 	if (rc) {
342 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
343 				"header; cannot generate packet length\n");
344 		goto out;
345 	}
346 	i += packet_size_len;
347 	message[i++] = cipher_code;
348 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
349 	i += crypt_stat->key_size;
350 	for (j = 0; j < crypt_stat->key_size; j++)
351 		checksum += crypt_stat->key[j];
352 	message[i++] = (checksum / 256) % 256;
353 	message[i++] = (checksum % 256);
354 	*packet_len = i;
355 out:
356 	return rc;
357 }
358 
359 static int
360 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
361 		    struct ecryptfs_message *msg)
362 {
363 	size_t i = 0;
364 	char *data;
365 	size_t data_len;
366 	size_t message_len;
367 	int rc;
368 
369 	/*
370 	 *              ***** TAG 65 Packet Format *****
371 	 *    | Content Type                       | 1 byte       |
372 	 *    | Status Indicator                   | 1 byte       |
373 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
374 	 *    | Encrypted File Encryption Key      | arbitrary    |
375 	 */
376 	message_len = msg->data_len;
377 	data = msg->data;
378 	/* verify that everything through the encrypted FEK size is present */
379 	if (message_len < 4) {
380 		rc = -EIO;
381 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
382 		       "message length is [%d]\n", __func__, message_len, 4);
383 		goto out;
384 	}
385 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
386 		rc = -EIO;
387 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
388 		       __func__);
389 		goto out;
390 	}
391 	if (data[i++]) {
392 		rc = -EIO;
393 		printk(KERN_ERR "%s: Status indicator has non zero "
394 		       "value [%d]\n", __func__, data[i-1]);
395 
396 		goto out;
397 	}
398 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
399 					  &data_len);
400 	if (rc) {
401 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
402 				"rc = [%d]\n", rc);
403 		goto out;
404 	}
405 	i += data_len;
406 	if (message_len < (i + key_rec->enc_key_size)) {
407 		rc = -EIO;
408 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
409 		       __func__, message_len, (i + key_rec->enc_key_size));
410 		goto out;
411 	}
412 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
413 		rc = -EIO;
414 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
415 		       "the maximum key size [%d]\n", __func__,
416 		       key_rec->enc_key_size,
417 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
418 		goto out;
419 	}
420 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
421 out:
422 	return rc;
423 }
424 
425 /**
426  * ecryptfs_verify_version
427  * @version: The version number to confirm
428  *
429  * Returns zero on good version; non-zero otherwise
430  */
431 static int ecryptfs_verify_version(u16 version)
432 {
433 	int rc = 0;
434 	unsigned char major;
435 	unsigned char minor;
436 
437 	major = ((version >> 8) & 0xFF);
438 	minor = (version & 0xFF);
439 	if (major != ECRYPTFS_VERSION_MAJOR) {
440 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
441 				"Expected [%d]; got [%d]\n",
442 				ECRYPTFS_VERSION_MAJOR, major);
443 		rc = -EINVAL;
444 		goto out;
445 	}
446 	if (minor != ECRYPTFS_VERSION_MINOR) {
447 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
448 				"Expected [%d]; got [%d]\n",
449 				ECRYPTFS_VERSION_MINOR, minor);
450 		rc = -EINVAL;
451 		goto out;
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_verify_auth_tok_from_key
459  * @auth_tok_key: key containing the authentication token
460  * @auth_tok: authentication token
461  *
462  * Returns zero on valid auth tok; -EINVAL otherwise
463  */
464 static int
465 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
466 				  struct ecryptfs_auth_tok **auth_tok)
467 {
468 	int rc = 0;
469 
470 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
471 	if (ecryptfs_verify_version((*auth_tok)->version)) {
472 		printk(KERN_ERR "Data structure version mismatch. Userspace "
473 		       "tools must match eCryptfs kernel module with major "
474 		       "version [%d] and minor version [%d]\n",
475 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
480 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
481 		printk(KERN_ERR "Invalid auth_tok structure "
482 		       "returned from key query\n");
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 out:
487 	return rc;
488 }
489 
490 static int
491 ecryptfs_find_global_auth_tok_for_sig(
492 	struct key **auth_tok_key,
493 	struct ecryptfs_auth_tok **auth_tok,
494 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
495 {
496 	struct ecryptfs_global_auth_tok *walker;
497 	int rc = 0;
498 
499 	(*auth_tok_key) = NULL;
500 	(*auth_tok) = NULL;
501 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
502 	list_for_each_entry(walker,
503 			    &mount_crypt_stat->global_auth_tok_list,
504 			    mount_crypt_stat_list) {
505 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
506 			continue;
507 
508 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
509 			rc = -EINVAL;
510 			goto out;
511 		}
512 
513 		rc = key_validate(walker->global_auth_tok_key);
514 		if (rc) {
515 			if (rc == -EKEYEXPIRED)
516 				goto out;
517 			goto out_invalid_auth_tok;
518 		}
519 
520 		down_write(&(walker->global_auth_tok_key->sem));
521 		rc = ecryptfs_verify_auth_tok_from_key(
522 				walker->global_auth_tok_key, auth_tok);
523 		if (rc)
524 			goto out_invalid_auth_tok_unlock;
525 
526 		(*auth_tok_key) = walker->global_auth_tok_key;
527 		key_get(*auth_tok_key);
528 		goto out;
529 	}
530 	rc = -ENOENT;
531 	goto out;
532 out_invalid_auth_tok_unlock:
533 	up_write(&(walker->global_auth_tok_key->sem));
534 out_invalid_auth_tok:
535 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
536 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
537 	key_put(walker->global_auth_tok_key);
538 	walker->global_auth_tok_key = NULL;
539 out:
540 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
541 	return rc;
542 }
543 
544 /**
545  * ecryptfs_find_auth_tok_for_sig
546  * @auth_tok: Set to the matching auth_tok; NULL if not found
547  * @crypt_stat: inode crypt_stat crypto context
548  * @sig: Sig of auth_tok to find
549  *
550  * For now, this function simply looks at the registered auth_tok's
551  * linked off the mount_crypt_stat, so all the auth_toks that can be
552  * used must be registered at mount time. This function could
553  * potentially try a lot harder to find auth_tok's (e.g., by calling
554  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
555  * that static registration of auth_tok's will no longer be necessary.
556  *
557  * Returns zero on no error; non-zero on error
558  */
559 static int
560 ecryptfs_find_auth_tok_for_sig(
561 	struct key **auth_tok_key,
562 	struct ecryptfs_auth_tok **auth_tok,
563 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
564 	char *sig)
565 {
566 	int rc = 0;
567 
568 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
569 						   mount_crypt_stat, sig);
570 	if (rc == -ENOENT) {
571 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
572 		 * mount_crypt_stat structure, we prevent to use auth toks that
573 		 * are not inserted through the ecryptfs_add_global_auth_tok
574 		 * function.
575 		 */
576 		if (mount_crypt_stat->flags
577 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
578 			return -EINVAL;
579 
580 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
581 						       sig);
582 	}
583 	return rc;
584 }
585 
586 /**
587  * write_tag_70_packet can gobble a lot of stack space. We stuff most
588  * of the function's parameters in a kmalloc'd struct to help reduce
589  * eCryptfs' overall stack usage.
590  */
591 struct ecryptfs_write_tag_70_packet_silly_stack {
592 	u8 cipher_code;
593 	size_t max_packet_size;
594 	size_t packet_size_len;
595 	size_t block_aligned_filename_size;
596 	size_t block_size;
597 	size_t i;
598 	size_t j;
599 	size_t num_rand_bytes;
600 	struct mutex *tfm_mutex;
601 	char *block_aligned_filename;
602 	struct ecryptfs_auth_tok *auth_tok;
603 	struct scatterlist src_sg[2];
604 	struct scatterlist dst_sg[2];
605 	struct crypto_skcipher *skcipher_tfm;
606 	struct skcipher_request *skcipher_req;
607 	char iv[ECRYPTFS_MAX_IV_BYTES];
608 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
609 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
610 	struct crypto_shash *hash_tfm;
611 	struct shash_desc *hash_desc;
612 };
613 
614 /**
615  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
616  * @filename: NULL-terminated filename string
617  *
618  * This is the simplest mechanism for achieving filename encryption in
619  * eCryptfs. It encrypts the given filename with the mount-wide
620  * filename encryption key (FNEK) and stores it in a packet to @dest,
621  * which the callee will encode and write directly into the dentry
622  * name.
623  */
624 int
625 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
626 			     size_t *packet_size,
627 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
628 			     char *filename, size_t filename_size)
629 {
630 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
631 	struct key *auth_tok_key = NULL;
632 	int rc = 0;
633 
634 	s = kzalloc(sizeof(*s), GFP_KERNEL);
635 	if (!s) {
636 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
637 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
638 		rc = -ENOMEM;
639 		goto out;
640 	}
641 	(*packet_size) = 0;
642 	rc = ecryptfs_find_auth_tok_for_sig(
643 		&auth_tok_key,
644 		&s->auth_tok, mount_crypt_stat,
645 		mount_crypt_stat->global_default_fnek_sig);
646 	if (rc) {
647 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
648 		       "fnek sig [%s]; rc = [%d]\n", __func__,
649 		       mount_crypt_stat->global_default_fnek_sig, rc);
650 		goto out;
651 	}
652 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
653 		&s->skcipher_tfm,
654 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
655 	if (unlikely(rc)) {
656 		printk(KERN_ERR "Internal error whilst attempting to get "
657 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
658 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
659 		goto out;
660 	}
661 	mutex_lock(s->tfm_mutex);
662 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
663 	/* Plus one for the \0 separator between the random prefix
664 	 * and the plaintext filename */
665 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
666 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
667 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
668 		s->num_rand_bytes += (s->block_size
669 				      - (s->block_aligned_filename_size
670 					 % s->block_size));
671 		s->block_aligned_filename_size = (s->num_rand_bytes
672 						  + filename_size);
673 	}
674 	/* Octet 0: Tag 70 identifier
675 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
676 	 *              and block-aligned encrypted filename size)
677 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
678 	 * Octet N2-N3: Cipher identifier (1 octet)
679 	 * Octets N3-N4: Block-aligned encrypted filename
680 	 *  - Consists of a minimum number of random characters, a \0
681 	 *    separator, and then the filename */
682 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
683 			      + s->block_aligned_filename_size);
684 	if (dest == NULL) {
685 		(*packet_size) = s->max_packet_size;
686 		goto out_unlock;
687 	}
688 	if (s->max_packet_size > (*remaining_bytes)) {
689 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
690 		       "[%zd] available\n", __func__, s->max_packet_size,
691 		       (*remaining_bytes));
692 		rc = -EINVAL;
693 		goto out_unlock;
694 	}
695 
696 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
697 	if (!s->skcipher_req) {
698 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
699 		       "skcipher_request_alloc for %s\n", __func__,
700 		       crypto_skcipher_driver_name(s->skcipher_tfm));
701 		rc = -ENOMEM;
702 		goto out_unlock;
703 	}
704 
705 	skcipher_request_set_callback(s->skcipher_req,
706 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
707 
708 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
709 					    GFP_KERNEL);
710 	if (!s->block_aligned_filename) {
711 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
712 		       "kzalloc [%zd] bytes\n", __func__,
713 		       s->block_aligned_filename_size);
714 		rc = -ENOMEM;
715 		goto out_unlock;
716 	}
717 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
718 	rc = ecryptfs_write_packet_length(&dest[s->i],
719 					  (ECRYPTFS_SIG_SIZE
720 					   + 1 /* Cipher code */
721 					   + s->block_aligned_filename_size),
722 					  &s->packet_size_len);
723 	if (rc) {
724 		printk(KERN_ERR "%s: Error generating tag 70 packet "
725 		       "header; cannot generate packet length; rc = [%d]\n",
726 		       __func__, rc);
727 		goto out_free_unlock;
728 	}
729 	s->i += s->packet_size_len;
730 	ecryptfs_from_hex(&dest[s->i],
731 			  mount_crypt_stat->global_default_fnek_sig,
732 			  ECRYPTFS_SIG_SIZE);
733 	s->i += ECRYPTFS_SIG_SIZE;
734 	s->cipher_code = ecryptfs_code_for_cipher_string(
735 		mount_crypt_stat->global_default_fn_cipher_name,
736 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
737 	if (s->cipher_code == 0) {
738 		printk(KERN_WARNING "%s: Unable to generate code for "
739 		       "cipher [%s] with key bytes [%zd]\n", __func__,
740 		       mount_crypt_stat->global_default_fn_cipher_name,
741 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
742 		rc = -EINVAL;
743 		goto out_free_unlock;
744 	}
745 	dest[s->i++] = s->cipher_code;
746 	/* TODO: Support other key modules than passphrase for
747 	 * filename encryption */
748 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
749 		rc = -EOPNOTSUPP;
750 		printk(KERN_INFO "%s: Filename encryption only supports "
751 		       "password tokens\n", __func__);
752 		goto out_free_unlock;
753 	}
754 	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
755 	if (IS_ERR(s->hash_tfm)) {
756 			rc = PTR_ERR(s->hash_tfm);
757 			printk(KERN_ERR "%s: Error attempting to "
758 			       "allocate hash crypto context; rc = [%d]\n",
759 			       __func__, rc);
760 			goto out_free_unlock;
761 	}
762 
763 	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
764 			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
765 	if (!s->hash_desc) {
766 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
767 		       "kmalloc [%zd] bytes\n", __func__,
768 		       sizeof(*s->hash_desc) +
769 		       crypto_shash_descsize(s->hash_tfm));
770 		rc = -ENOMEM;
771 		goto out_release_free_unlock;
772 	}
773 
774 	s->hash_desc->tfm = s->hash_tfm;
775 	s->hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
776 
777 	rc = crypto_shash_digest(s->hash_desc,
778 				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
779 				 s->auth_tok->token.password.session_key_encryption_key_bytes,
780 				 s->hash);
781 	if (rc) {
782 		printk(KERN_ERR
783 		       "%s: Error computing crypto hash; rc = [%d]\n",
784 		       __func__, rc);
785 		goto out_release_free_unlock;
786 	}
787 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
788 		s->block_aligned_filename[s->j] =
789 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
790 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
791 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
792 			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
793 						ECRYPTFS_TAG_70_DIGEST_SIZE,
794 						s->tmp_hash);
795 			if (rc) {
796 				printk(KERN_ERR
797 				       "%s: Error computing crypto hash; "
798 				       "rc = [%d]\n", __func__, rc);
799 				goto out_release_free_unlock;
800 			}
801 			memcpy(s->hash, s->tmp_hash,
802 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
803 		}
804 		if (s->block_aligned_filename[s->j] == '\0')
805 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
806 	}
807 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
808 	       filename_size);
809 	rc = virt_to_scatterlist(s->block_aligned_filename,
810 				 s->block_aligned_filename_size, s->src_sg, 2);
811 	if (rc < 1) {
812 		printk(KERN_ERR "%s: Internal error whilst attempting to "
813 		       "convert filename memory to scatterlist; rc = [%d]. "
814 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
815 		       s->block_aligned_filename_size);
816 		goto out_release_free_unlock;
817 	}
818 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
819 				 s->dst_sg, 2);
820 	if (rc < 1) {
821 		printk(KERN_ERR "%s: Internal error whilst attempting to "
822 		       "convert encrypted filename memory to scatterlist; "
823 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
824 		       __func__, rc, s->block_aligned_filename_size);
825 		goto out_release_free_unlock;
826 	}
827 	/* The characters in the first block effectively do the job
828 	 * of the IV here, so we just use 0's for the IV. Note the
829 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
830 	 * >= ECRYPTFS_MAX_IV_BYTES. */
831 	rc = crypto_skcipher_setkey(
832 		s->skcipher_tfm,
833 		s->auth_tok->token.password.session_key_encryption_key,
834 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
835 	if (rc < 0) {
836 		printk(KERN_ERR "%s: Error setting key for crypto context; "
837 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
838 		       "encryption_key = [0x%p]; mount_crypt_stat->"
839 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
840 		       rc,
841 		       s->auth_tok->token.password.session_key_encryption_key,
842 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
843 		goto out_release_free_unlock;
844 	}
845 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
846 				   s->block_aligned_filename_size, s->iv);
847 	rc = crypto_skcipher_encrypt(s->skcipher_req);
848 	if (rc) {
849 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
850 		       "rc = [%d]\n", __func__, rc);
851 		goto out_release_free_unlock;
852 	}
853 	s->i += s->block_aligned_filename_size;
854 	(*packet_size) = s->i;
855 	(*remaining_bytes) -= (*packet_size);
856 out_release_free_unlock:
857 	crypto_free_shash(s->hash_tfm);
858 out_free_unlock:
859 	kzfree(s->block_aligned_filename);
860 out_unlock:
861 	mutex_unlock(s->tfm_mutex);
862 out:
863 	if (auth_tok_key) {
864 		up_write(&(auth_tok_key->sem));
865 		key_put(auth_tok_key);
866 	}
867 	skcipher_request_free(s->skcipher_req);
868 	kzfree(s->hash_desc);
869 	kfree(s);
870 	return rc;
871 }
872 
873 struct ecryptfs_parse_tag_70_packet_silly_stack {
874 	u8 cipher_code;
875 	size_t max_packet_size;
876 	size_t packet_size_len;
877 	size_t parsed_tag_70_packet_size;
878 	size_t block_aligned_filename_size;
879 	size_t block_size;
880 	size_t i;
881 	struct mutex *tfm_mutex;
882 	char *decrypted_filename;
883 	struct ecryptfs_auth_tok *auth_tok;
884 	struct scatterlist src_sg[2];
885 	struct scatterlist dst_sg[2];
886 	struct crypto_skcipher *skcipher_tfm;
887 	struct skcipher_request *skcipher_req;
888 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
889 	char iv[ECRYPTFS_MAX_IV_BYTES];
890 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
891 };
892 
893 /**
894  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
895  * @filename: This function kmalloc's the memory for the filename
896  * @filename_size: This function sets this to the amount of memory
897  *                 kmalloc'd for the filename
898  * @packet_size: This function sets this to the the number of octets
899  *               in the packet parsed
900  * @mount_crypt_stat: The mount-wide cryptographic context
901  * @data: The memory location containing the start of the tag 70
902  *        packet
903  * @max_packet_size: The maximum legal size of the packet to be parsed
904  *                   from @data
905  *
906  * Returns zero on success; non-zero otherwise
907  */
908 int
909 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
910 			     size_t *packet_size,
911 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
912 			     char *data, size_t max_packet_size)
913 {
914 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
915 	struct key *auth_tok_key = NULL;
916 	int rc = 0;
917 
918 	(*packet_size) = 0;
919 	(*filename_size) = 0;
920 	(*filename) = NULL;
921 	s = kzalloc(sizeof(*s), GFP_KERNEL);
922 	if (!s) {
923 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
924 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
925 		rc = -ENOMEM;
926 		goto out;
927 	}
928 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
929 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
930 		       "at least [%d]\n", __func__, max_packet_size,
931 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
932 		rc = -EINVAL;
933 		goto out;
934 	}
935 	/* Octet 0: Tag 70 identifier
936 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
937 	 *              and block-aligned encrypted filename size)
938 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
939 	 * Octet N2-N3: Cipher identifier (1 octet)
940 	 * Octets N3-N4: Block-aligned encrypted filename
941 	 *  - Consists of a minimum number of random numbers, a \0
942 	 *    separator, and then the filename */
943 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
944 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
945 		       "tag [0x%.2x]\n", __func__,
946 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
947 		rc = -EINVAL;
948 		goto out;
949 	}
950 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
951 					  &s->parsed_tag_70_packet_size,
952 					  &s->packet_size_len);
953 	if (rc) {
954 		printk(KERN_WARNING "%s: Error parsing packet length; "
955 		       "rc = [%d]\n", __func__, rc);
956 		goto out;
957 	}
958 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
959 					  - ECRYPTFS_SIG_SIZE - 1);
960 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
961 	    > max_packet_size) {
962 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
963 		       "size is [%zd]\n", __func__, max_packet_size,
964 		       (1 + s->packet_size_len + 1
965 			+ s->block_aligned_filename_size));
966 		rc = -EINVAL;
967 		goto out;
968 	}
969 	(*packet_size) += s->packet_size_len;
970 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
971 			ECRYPTFS_SIG_SIZE);
972 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
973 	(*packet_size) += ECRYPTFS_SIG_SIZE;
974 	s->cipher_code = data[(*packet_size)++];
975 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
976 	if (rc) {
977 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
978 		       __func__, s->cipher_code);
979 		goto out;
980 	}
981 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
982 					    &s->auth_tok, mount_crypt_stat,
983 					    s->fnek_sig_hex);
984 	if (rc) {
985 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
986 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
987 		       rc);
988 		goto out;
989 	}
990 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
991 							&s->tfm_mutex,
992 							s->cipher_string);
993 	if (unlikely(rc)) {
994 		printk(KERN_ERR "Internal error whilst attempting to get "
995 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
996 		       s->cipher_string, rc);
997 		goto out;
998 	}
999 	mutex_lock(s->tfm_mutex);
1000 	rc = virt_to_scatterlist(&data[(*packet_size)],
1001 				 s->block_aligned_filename_size, s->src_sg, 2);
1002 	if (rc < 1) {
1003 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1004 		       "convert encrypted filename memory to scatterlist; "
1005 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1006 		       __func__, rc, s->block_aligned_filename_size);
1007 		goto out_unlock;
1008 	}
1009 	(*packet_size) += s->block_aligned_filename_size;
1010 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1011 					GFP_KERNEL);
1012 	if (!s->decrypted_filename) {
1013 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1014 		       "kmalloc [%zd] bytes\n", __func__,
1015 		       s->block_aligned_filename_size);
1016 		rc = -ENOMEM;
1017 		goto out_unlock;
1018 	}
1019 	rc = virt_to_scatterlist(s->decrypted_filename,
1020 				 s->block_aligned_filename_size, s->dst_sg, 2);
1021 	if (rc < 1) {
1022 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1023 		       "convert decrypted filename memory to scatterlist; "
1024 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1025 		       __func__, rc, s->block_aligned_filename_size);
1026 		goto out_free_unlock;
1027 	}
1028 
1029 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1030 	if (!s->skcipher_req) {
1031 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1032 		       "skcipher_request_alloc for %s\n", __func__,
1033 		       crypto_skcipher_driver_name(s->skcipher_tfm));
1034 		rc = -ENOMEM;
1035 		goto out_free_unlock;
1036 	}
1037 
1038 	skcipher_request_set_callback(s->skcipher_req,
1039 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1040 
1041 	/* The characters in the first block effectively do the job of
1042 	 * the IV here, so we just use 0's for the IV. Note the
1043 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1044 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1045 	/* TODO: Support other key modules than passphrase for
1046 	 * filename encryption */
1047 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1048 		rc = -EOPNOTSUPP;
1049 		printk(KERN_INFO "%s: Filename encryption only supports "
1050 		       "password tokens\n", __func__);
1051 		goto out_free_unlock;
1052 	}
1053 	rc = crypto_skcipher_setkey(
1054 		s->skcipher_tfm,
1055 		s->auth_tok->token.password.session_key_encryption_key,
1056 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1057 	if (rc < 0) {
1058 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1059 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1060 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1061 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1062 		       rc,
1063 		       s->auth_tok->token.password.session_key_encryption_key,
1064 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1065 		goto out_free_unlock;
1066 	}
1067 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1068 				   s->block_aligned_filename_size, s->iv);
1069 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1070 	if (rc) {
1071 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1072 		       "rc = [%d]\n", __func__, rc);
1073 		goto out_free_unlock;
1074 	}
1075 	while (s->decrypted_filename[s->i] != '\0'
1076 	       && s->i < s->block_aligned_filename_size)
1077 		s->i++;
1078 	if (s->i == s->block_aligned_filename_size) {
1079 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1080 		       "find valid separator between random characters and "
1081 		       "the filename\n", __func__);
1082 		rc = -EINVAL;
1083 		goto out_free_unlock;
1084 	}
1085 	s->i++;
1086 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1087 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1088 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1089 		       "invalid\n", __func__, (*filename_size));
1090 		rc = -EINVAL;
1091 		goto out_free_unlock;
1092 	}
1093 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1094 	if (!(*filename)) {
1095 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1096 		       "kmalloc [%zd] bytes\n", __func__,
1097 		       ((*filename_size) + 1));
1098 		rc = -ENOMEM;
1099 		goto out_free_unlock;
1100 	}
1101 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1102 	(*filename)[(*filename_size)] = '\0';
1103 out_free_unlock:
1104 	kfree(s->decrypted_filename);
1105 out_unlock:
1106 	mutex_unlock(s->tfm_mutex);
1107 out:
1108 	if (rc) {
1109 		(*packet_size) = 0;
1110 		(*filename_size) = 0;
1111 		(*filename) = NULL;
1112 	}
1113 	if (auth_tok_key) {
1114 		up_write(&(auth_tok_key->sem));
1115 		key_put(auth_tok_key);
1116 	}
1117 	skcipher_request_free(s->skcipher_req);
1118 	kfree(s);
1119 	return rc;
1120 }
1121 
1122 static int
1123 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1124 {
1125 	int rc = 0;
1126 
1127 	(*sig) = NULL;
1128 	switch (auth_tok->token_type) {
1129 	case ECRYPTFS_PASSWORD:
1130 		(*sig) = auth_tok->token.password.signature;
1131 		break;
1132 	case ECRYPTFS_PRIVATE_KEY:
1133 		(*sig) = auth_tok->token.private_key.signature;
1134 		break;
1135 	default:
1136 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1137 		       auth_tok->token_type);
1138 		rc = -EINVAL;
1139 	}
1140 	return rc;
1141 }
1142 
1143 /**
1144  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1145  * @auth_tok: The key authentication token used to decrypt the session key
1146  * @crypt_stat: The cryptographic context
1147  *
1148  * Returns zero on success; non-zero error otherwise.
1149  */
1150 static int
1151 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1152 				  struct ecryptfs_crypt_stat *crypt_stat)
1153 {
1154 	u8 cipher_code = 0;
1155 	struct ecryptfs_msg_ctx *msg_ctx;
1156 	struct ecryptfs_message *msg = NULL;
1157 	char *auth_tok_sig;
1158 	char *payload = NULL;
1159 	size_t payload_len = 0;
1160 	int rc;
1161 
1162 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1163 	if (rc) {
1164 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1165 		       auth_tok->token_type);
1166 		goto out;
1167 	}
1168 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1169 				 &payload, &payload_len);
1170 	if (rc) {
1171 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1172 		goto out;
1173 	}
1174 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1175 	if (rc) {
1176 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1177 				"ecryptfsd: %d\n", rc);
1178 		goto out;
1179 	}
1180 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1181 	if (rc) {
1182 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1183 				"from the user space daemon\n");
1184 		rc = -EIO;
1185 		goto out;
1186 	}
1187 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1188 				 &cipher_code, msg);
1189 	if (rc) {
1190 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1191 		       rc);
1192 		goto out;
1193 	}
1194 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1195 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1196 	       auth_tok->session_key.decrypted_key_size);
1197 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1198 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1199 	if (rc) {
1200 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1201 				cipher_code)
1202 		goto out;
1203 	}
1204 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1205 	if (ecryptfs_verbosity > 0) {
1206 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1207 		ecryptfs_dump_hex(crypt_stat->key,
1208 				  crypt_stat->key_size);
1209 	}
1210 out:
1211 	kfree(msg);
1212 	kfree(payload);
1213 	return rc;
1214 }
1215 
1216 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1217 {
1218 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1219 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1220 
1221 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1222 				 auth_tok_list_head, list) {
1223 		list_del(&auth_tok_list_item->list);
1224 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1225 				auth_tok_list_item);
1226 	}
1227 }
1228 
1229 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1230 
1231 /**
1232  * parse_tag_1_packet
1233  * @crypt_stat: The cryptographic context to modify based on packet contents
1234  * @data: The raw bytes of the packet.
1235  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1236  *                 a new authentication token will be placed at the
1237  *                 end of this list for this packet.
1238  * @new_auth_tok: Pointer to a pointer to memory that this function
1239  *                allocates; sets the memory address of the pointer to
1240  *                NULL on error. This object is added to the
1241  *                auth_tok_list.
1242  * @packet_size: This function writes the size of the parsed packet
1243  *               into this memory location; zero on error.
1244  * @max_packet_size: The maximum allowable packet size
1245  *
1246  * Returns zero on success; non-zero on error.
1247  */
1248 static int
1249 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1250 		   unsigned char *data, struct list_head *auth_tok_list,
1251 		   struct ecryptfs_auth_tok **new_auth_tok,
1252 		   size_t *packet_size, size_t max_packet_size)
1253 {
1254 	size_t body_size;
1255 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1256 	size_t length_size;
1257 	int rc = 0;
1258 
1259 	(*packet_size) = 0;
1260 	(*new_auth_tok) = NULL;
1261 	/**
1262 	 * This format is inspired by OpenPGP; see RFC 2440
1263 	 * packet tag 1
1264 	 *
1265 	 * Tag 1 identifier (1 byte)
1266 	 * Max Tag 1 packet size (max 3 bytes)
1267 	 * Version (1 byte)
1268 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1269 	 * Cipher identifier (1 byte)
1270 	 * Encrypted key size (arbitrary)
1271 	 *
1272 	 * 12 bytes minimum packet size
1273 	 */
1274 	if (unlikely(max_packet_size < 12)) {
1275 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1276 		rc = -EINVAL;
1277 		goto out;
1278 	}
1279 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1280 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1281 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1282 		rc = -EINVAL;
1283 		goto out;
1284 	}
1285 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1286 	 * at end of function upon failure */
1287 	auth_tok_list_item =
1288 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1289 				  GFP_KERNEL);
1290 	if (!auth_tok_list_item) {
1291 		printk(KERN_ERR "Unable to allocate memory\n");
1292 		rc = -ENOMEM;
1293 		goto out;
1294 	}
1295 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1296 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1297 					  &length_size);
1298 	if (rc) {
1299 		printk(KERN_WARNING "Error parsing packet length; "
1300 		       "rc = [%d]\n", rc);
1301 		goto out_free;
1302 	}
1303 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1304 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1305 		rc = -EINVAL;
1306 		goto out_free;
1307 	}
1308 	(*packet_size) += length_size;
1309 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1310 		printk(KERN_WARNING "Packet size exceeds max\n");
1311 		rc = -EINVAL;
1312 		goto out_free;
1313 	}
1314 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1315 		printk(KERN_WARNING "Unknown version number [%d]\n",
1316 		       data[(*packet_size) - 1]);
1317 		rc = -EINVAL;
1318 		goto out_free;
1319 	}
1320 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1321 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1322 	*packet_size += ECRYPTFS_SIG_SIZE;
1323 	/* This byte is skipped because the kernel does not need to
1324 	 * know which public key encryption algorithm was used */
1325 	(*packet_size)++;
1326 	(*new_auth_tok)->session_key.encrypted_key_size =
1327 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1328 	if ((*new_auth_tok)->session_key.encrypted_key_size
1329 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1330 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1331 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1332 		rc = -EINVAL;
1333 		goto out;
1334 	}
1335 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1336 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1337 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1338 	(*new_auth_tok)->session_key.flags &=
1339 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1340 	(*new_auth_tok)->session_key.flags |=
1341 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1342 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1343 	(*new_auth_tok)->flags = 0;
1344 	(*new_auth_tok)->session_key.flags &=
1345 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1346 	(*new_auth_tok)->session_key.flags &=
1347 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1348 	list_add(&auth_tok_list_item->list, auth_tok_list);
1349 	goto out;
1350 out_free:
1351 	(*new_auth_tok) = NULL;
1352 	memset(auth_tok_list_item, 0,
1353 	       sizeof(struct ecryptfs_auth_tok_list_item));
1354 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1355 			auth_tok_list_item);
1356 out:
1357 	if (rc)
1358 		(*packet_size) = 0;
1359 	return rc;
1360 }
1361 
1362 /**
1363  * parse_tag_3_packet
1364  * @crypt_stat: The cryptographic context to modify based on packet
1365  *              contents.
1366  * @data: The raw bytes of the packet.
1367  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1368  *                 a new authentication token will be placed at the end
1369  *                 of this list for this packet.
1370  * @new_auth_tok: Pointer to a pointer to memory that this function
1371  *                allocates; sets the memory address of the pointer to
1372  *                NULL on error. This object is added to the
1373  *                auth_tok_list.
1374  * @packet_size: This function writes the size of the parsed packet
1375  *               into this memory location; zero on error.
1376  * @max_packet_size: maximum number of bytes to parse
1377  *
1378  * Returns zero on success; non-zero on error.
1379  */
1380 static int
1381 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1382 		   unsigned char *data, struct list_head *auth_tok_list,
1383 		   struct ecryptfs_auth_tok **new_auth_tok,
1384 		   size_t *packet_size, size_t max_packet_size)
1385 {
1386 	size_t body_size;
1387 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1388 	size_t length_size;
1389 	int rc = 0;
1390 
1391 	(*packet_size) = 0;
1392 	(*new_auth_tok) = NULL;
1393 	/**
1394 	 *This format is inspired by OpenPGP; see RFC 2440
1395 	 * packet tag 3
1396 	 *
1397 	 * Tag 3 identifier (1 byte)
1398 	 * Max Tag 3 packet size (max 3 bytes)
1399 	 * Version (1 byte)
1400 	 * Cipher code (1 byte)
1401 	 * S2K specifier (1 byte)
1402 	 * Hash identifier (1 byte)
1403 	 * Salt (ECRYPTFS_SALT_SIZE)
1404 	 * Hash iterations (1 byte)
1405 	 * Encrypted key (arbitrary)
1406 	 *
1407 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1408 	 */
1409 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1410 		printk(KERN_ERR "Max packet size too large\n");
1411 		rc = -EINVAL;
1412 		goto out;
1413 	}
1414 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1415 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1416 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1417 		rc = -EINVAL;
1418 		goto out;
1419 	}
1420 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1421 	 * at end of function upon failure */
1422 	auth_tok_list_item =
1423 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1424 	if (!auth_tok_list_item) {
1425 		printk(KERN_ERR "Unable to allocate memory\n");
1426 		rc = -ENOMEM;
1427 		goto out;
1428 	}
1429 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1430 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1431 					  &length_size);
1432 	if (rc) {
1433 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1434 		       rc);
1435 		goto out_free;
1436 	}
1437 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1438 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1439 		rc = -EINVAL;
1440 		goto out_free;
1441 	}
1442 	(*packet_size) += length_size;
1443 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1444 		printk(KERN_ERR "Packet size exceeds max\n");
1445 		rc = -EINVAL;
1446 		goto out_free;
1447 	}
1448 	(*new_auth_tok)->session_key.encrypted_key_size =
1449 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1450 	if ((*new_auth_tok)->session_key.encrypted_key_size
1451 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1452 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1453 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1454 		rc = -EINVAL;
1455 		goto out_free;
1456 	}
1457 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1458 		printk(KERN_WARNING "Unknown version number [%d]\n",
1459 		       data[(*packet_size) - 1]);
1460 		rc = -EINVAL;
1461 		goto out_free;
1462 	}
1463 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1464 					    (u16)data[(*packet_size)]);
1465 	if (rc)
1466 		goto out_free;
1467 	/* A little extra work to differentiate among the AES key
1468 	 * sizes; see RFC2440 */
1469 	switch(data[(*packet_size)++]) {
1470 	case RFC2440_CIPHER_AES_192:
1471 		crypt_stat->key_size = 24;
1472 		break;
1473 	default:
1474 		crypt_stat->key_size =
1475 			(*new_auth_tok)->session_key.encrypted_key_size;
1476 	}
1477 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1478 	if (rc)
1479 		goto out_free;
1480 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1481 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1482 		rc = -ENOSYS;
1483 		goto out_free;
1484 	}
1485 	/* TODO: finish the hash mapping */
1486 	switch (data[(*packet_size)++]) {
1487 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1488 		/* Choose MD5 */
1489 		memcpy((*new_auth_tok)->token.password.salt,
1490 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1491 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1492 		/* This conversion was taken straight from RFC2440 */
1493 		(*new_auth_tok)->token.password.hash_iterations =
1494 			((u32) 16 + (data[(*packet_size)] & 15))
1495 				<< ((data[(*packet_size)] >> 4) + 6);
1496 		(*packet_size)++;
1497 		/* Friendly reminder:
1498 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1499 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1500 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1501 		       &data[(*packet_size)],
1502 		       (*new_auth_tok)->session_key.encrypted_key_size);
1503 		(*packet_size) +=
1504 			(*new_auth_tok)->session_key.encrypted_key_size;
1505 		(*new_auth_tok)->session_key.flags &=
1506 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1507 		(*new_auth_tok)->session_key.flags |=
1508 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1509 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1510 		break;
1511 	default:
1512 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1513 				"[%d]\n", data[(*packet_size) - 1]);
1514 		rc = -ENOSYS;
1515 		goto out_free;
1516 	}
1517 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1518 	/* TODO: Parametarize; we might actually want userspace to
1519 	 * decrypt the session key. */
1520 	(*new_auth_tok)->session_key.flags &=
1521 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1522 	(*new_auth_tok)->session_key.flags &=
1523 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1524 	list_add(&auth_tok_list_item->list, auth_tok_list);
1525 	goto out;
1526 out_free:
1527 	(*new_auth_tok) = NULL;
1528 	memset(auth_tok_list_item, 0,
1529 	       sizeof(struct ecryptfs_auth_tok_list_item));
1530 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1531 			auth_tok_list_item);
1532 out:
1533 	if (rc)
1534 		(*packet_size) = 0;
1535 	return rc;
1536 }
1537 
1538 /**
1539  * parse_tag_11_packet
1540  * @data: The raw bytes of the packet
1541  * @contents: This function writes the data contents of the literal
1542  *            packet into this memory location
1543  * @max_contents_bytes: The maximum number of bytes that this function
1544  *                      is allowed to write into contents
1545  * @tag_11_contents_size: This function writes the size of the parsed
1546  *                        contents into this memory location; zero on
1547  *                        error
1548  * @packet_size: This function writes the size of the parsed packet
1549  *               into this memory location; zero on error
1550  * @max_packet_size: maximum number of bytes to parse
1551  *
1552  * Returns zero on success; non-zero on error.
1553  */
1554 static int
1555 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1556 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1557 		    size_t *packet_size, size_t max_packet_size)
1558 {
1559 	size_t body_size;
1560 	size_t length_size;
1561 	int rc = 0;
1562 
1563 	(*packet_size) = 0;
1564 	(*tag_11_contents_size) = 0;
1565 	/* This format is inspired by OpenPGP; see RFC 2440
1566 	 * packet tag 11
1567 	 *
1568 	 * Tag 11 identifier (1 byte)
1569 	 * Max Tag 11 packet size (max 3 bytes)
1570 	 * Binary format specifier (1 byte)
1571 	 * Filename length (1 byte)
1572 	 * Filename ("_CONSOLE") (8 bytes)
1573 	 * Modification date (4 bytes)
1574 	 * Literal data (arbitrary)
1575 	 *
1576 	 * We need at least 16 bytes of data for the packet to even be
1577 	 * valid.
1578 	 */
1579 	if (max_packet_size < 16) {
1580 		printk(KERN_ERR "Maximum packet size too small\n");
1581 		rc = -EINVAL;
1582 		goto out;
1583 	}
1584 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1585 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1586 		rc = -EINVAL;
1587 		goto out;
1588 	}
1589 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1590 					  &length_size);
1591 	if (rc) {
1592 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1593 		goto out;
1594 	}
1595 	if (body_size < 14) {
1596 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1597 		rc = -EINVAL;
1598 		goto out;
1599 	}
1600 	(*packet_size) += length_size;
1601 	(*tag_11_contents_size) = (body_size - 14);
1602 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1603 		printk(KERN_ERR "Packet size exceeds max\n");
1604 		rc = -EINVAL;
1605 		goto out;
1606 	}
1607 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1608 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1609 		       "expected size\n");
1610 		rc = -EINVAL;
1611 		goto out;
1612 	}
1613 	if (data[(*packet_size)++] != 0x62) {
1614 		printk(KERN_WARNING "Unrecognizable packet\n");
1615 		rc = -EINVAL;
1616 		goto out;
1617 	}
1618 	if (data[(*packet_size)++] != 0x08) {
1619 		printk(KERN_WARNING "Unrecognizable packet\n");
1620 		rc = -EINVAL;
1621 		goto out;
1622 	}
1623 	(*packet_size) += 12; /* Ignore filename and modification date */
1624 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1625 	(*packet_size) += (*tag_11_contents_size);
1626 out:
1627 	if (rc) {
1628 		(*packet_size) = 0;
1629 		(*tag_11_contents_size) = 0;
1630 	}
1631 	return rc;
1632 }
1633 
1634 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1635 				      struct ecryptfs_auth_tok **auth_tok,
1636 				      char *sig)
1637 {
1638 	int rc = 0;
1639 
1640 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1641 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1642 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1643 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1644 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1645 			      sig);
1646 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1647 			(*auth_tok_key) = NULL;
1648 			goto out;
1649 		}
1650 	}
1651 	down_write(&(*auth_tok_key)->sem);
1652 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1653 	if (rc) {
1654 		up_write(&(*auth_tok_key)->sem);
1655 		key_put(*auth_tok_key);
1656 		(*auth_tok_key) = NULL;
1657 		goto out;
1658 	}
1659 out:
1660 	return rc;
1661 }
1662 
1663 /**
1664  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1665  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1666  * @crypt_stat: The cryptographic context
1667  *
1668  * Returns zero on success; non-zero error otherwise
1669  */
1670 static int
1671 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1672 					 struct ecryptfs_crypt_stat *crypt_stat)
1673 {
1674 	struct scatterlist dst_sg[2];
1675 	struct scatterlist src_sg[2];
1676 	struct mutex *tfm_mutex;
1677 	struct crypto_skcipher *tfm;
1678 	struct skcipher_request *req = NULL;
1679 	int rc = 0;
1680 
1681 	if (unlikely(ecryptfs_verbosity > 0)) {
1682 		ecryptfs_printk(
1683 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1684 			auth_tok->token.password.session_key_encryption_key_bytes);
1685 		ecryptfs_dump_hex(
1686 			auth_tok->token.password.session_key_encryption_key,
1687 			auth_tok->token.password.session_key_encryption_key_bytes);
1688 	}
1689 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1690 							crypt_stat->cipher);
1691 	if (unlikely(rc)) {
1692 		printk(KERN_ERR "Internal error whilst attempting to get "
1693 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1694 		       crypt_stat->cipher, rc);
1695 		goto out;
1696 	}
1697 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1698 				 auth_tok->session_key.encrypted_key_size,
1699 				 src_sg, 2);
1700 	if (rc < 1 || rc > 2) {
1701 		printk(KERN_ERR "Internal error whilst attempting to convert "
1702 			"auth_tok->session_key.encrypted_key to scatterlist; "
1703 			"expected rc = 1; got rc = [%d]. "
1704 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1705 			auth_tok->session_key.encrypted_key_size);
1706 		goto out;
1707 	}
1708 	auth_tok->session_key.decrypted_key_size =
1709 		auth_tok->session_key.encrypted_key_size;
1710 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1711 				 auth_tok->session_key.decrypted_key_size,
1712 				 dst_sg, 2);
1713 	if (rc < 1 || rc > 2) {
1714 		printk(KERN_ERR "Internal error whilst attempting to convert "
1715 			"auth_tok->session_key.decrypted_key to scatterlist; "
1716 			"expected rc = 1; got rc = [%d]\n", rc);
1717 		goto out;
1718 	}
1719 	mutex_lock(tfm_mutex);
1720 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1721 	if (!req) {
1722 		mutex_unlock(tfm_mutex);
1723 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1724 		       "skcipher_request_alloc for %s\n", __func__,
1725 		       crypto_skcipher_driver_name(tfm));
1726 		rc = -ENOMEM;
1727 		goto out;
1728 	}
1729 
1730 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1731 				      NULL, NULL);
1732 	rc = crypto_skcipher_setkey(
1733 		tfm, auth_tok->token.password.session_key_encryption_key,
1734 		crypt_stat->key_size);
1735 	if (unlikely(rc < 0)) {
1736 		mutex_unlock(tfm_mutex);
1737 		printk(KERN_ERR "Error setting key for crypto context\n");
1738 		rc = -EINVAL;
1739 		goto out;
1740 	}
1741 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1742 				   auth_tok->session_key.encrypted_key_size,
1743 				   NULL);
1744 	rc = crypto_skcipher_decrypt(req);
1745 	mutex_unlock(tfm_mutex);
1746 	if (unlikely(rc)) {
1747 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1748 		goto out;
1749 	}
1750 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1751 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1752 	       auth_tok->session_key.decrypted_key_size);
1753 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1754 	if (unlikely(ecryptfs_verbosity > 0)) {
1755 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1756 				crypt_stat->key_size);
1757 		ecryptfs_dump_hex(crypt_stat->key,
1758 				  crypt_stat->key_size);
1759 	}
1760 out:
1761 	skcipher_request_free(req);
1762 	return rc;
1763 }
1764 
1765 /**
1766  * ecryptfs_parse_packet_set
1767  * @crypt_stat: The cryptographic context
1768  * @src: Virtual address of region of memory containing the packets
1769  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1770  *
1771  * Get crypt_stat to have the file's session key if the requisite key
1772  * is available to decrypt the session key.
1773  *
1774  * Returns Zero if a valid authentication token was retrieved and
1775  * processed; negative value for file not encrypted or for error
1776  * conditions.
1777  */
1778 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1779 			      unsigned char *src,
1780 			      struct dentry *ecryptfs_dentry)
1781 {
1782 	size_t i = 0;
1783 	size_t found_auth_tok;
1784 	size_t next_packet_is_auth_tok_packet;
1785 	struct list_head auth_tok_list;
1786 	struct ecryptfs_auth_tok *matching_auth_tok;
1787 	struct ecryptfs_auth_tok *candidate_auth_tok;
1788 	char *candidate_auth_tok_sig;
1789 	size_t packet_size;
1790 	struct ecryptfs_auth_tok *new_auth_tok;
1791 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1792 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1793 	size_t tag_11_contents_size;
1794 	size_t tag_11_packet_size;
1795 	struct key *auth_tok_key = NULL;
1796 	int rc = 0;
1797 
1798 	INIT_LIST_HEAD(&auth_tok_list);
1799 	/* Parse the header to find as many packets as we can; these will be
1800 	 * added the our &auth_tok_list */
1801 	next_packet_is_auth_tok_packet = 1;
1802 	while (next_packet_is_auth_tok_packet) {
1803 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1804 
1805 		switch (src[i]) {
1806 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1807 			rc = parse_tag_3_packet(crypt_stat,
1808 						(unsigned char *)&src[i],
1809 						&auth_tok_list, &new_auth_tok,
1810 						&packet_size, max_packet_size);
1811 			if (rc) {
1812 				ecryptfs_printk(KERN_ERR, "Error parsing "
1813 						"tag 3 packet\n");
1814 				rc = -EIO;
1815 				goto out_wipe_list;
1816 			}
1817 			i += packet_size;
1818 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1819 						 sig_tmp_space,
1820 						 ECRYPTFS_SIG_SIZE,
1821 						 &tag_11_contents_size,
1822 						 &tag_11_packet_size,
1823 						 max_packet_size);
1824 			if (rc) {
1825 				ecryptfs_printk(KERN_ERR, "No valid "
1826 						"(ecryptfs-specific) literal "
1827 						"packet containing "
1828 						"authentication token "
1829 						"signature found after "
1830 						"tag 3 packet\n");
1831 				rc = -EIO;
1832 				goto out_wipe_list;
1833 			}
1834 			i += tag_11_packet_size;
1835 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1836 				ecryptfs_printk(KERN_ERR, "Expected "
1837 						"signature of size [%d]; "
1838 						"read size [%zd]\n",
1839 						ECRYPTFS_SIG_SIZE,
1840 						tag_11_contents_size);
1841 				rc = -EIO;
1842 				goto out_wipe_list;
1843 			}
1844 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1845 					sig_tmp_space, tag_11_contents_size);
1846 			new_auth_tok->token.password.signature[
1847 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1848 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1849 			break;
1850 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1851 			rc = parse_tag_1_packet(crypt_stat,
1852 						(unsigned char *)&src[i],
1853 						&auth_tok_list, &new_auth_tok,
1854 						&packet_size, max_packet_size);
1855 			if (rc) {
1856 				ecryptfs_printk(KERN_ERR, "Error parsing "
1857 						"tag 1 packet\n");
1858 				rc = -EIO;
1859 				goto out_wipe_list;
1860 			}
1861 			i += packet_size;
1862 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1863 			break;
1864 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1865 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1866 					"(Tag 11 not allowed by itself)\n");
1867 			rc = -EIO;
1868 			goto out_wipe_list;
1869 		default:
1870 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1871 					"of the file header; hex value of "
1872 					"character is [0x%.2x]\n", i, src[i]);
1873 			next_packet_is_auth_tok_packet = 0;
1874 		}
1875 	}
1876 	if (list_empty(&auth_tok_list)) {
1877 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1878 		       "eCryptfs file; this is not supported in this version "
1879 		       "of the eCryptfs kernel module\n");
1880 		rc = -EINVAL;
1881 		goto out;
1882 	}
1883 	/* auth_tok_list contains the set of authentication tokens
1884 	 * parsed from the metadata. We need to find a matching
1885 	 * authentication token that has the secret component(s)
1886 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1887 	 * the metadata. There may be several potential matches, but
1888 	 * just one will be sufficient to decrypt to get the FEK. */
1889 find_next_matching_auth_tok:
1890 	found_auth_tok = 0;
1891 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1892 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1893 		if (unlikely(ecryptfs_verbosity > 0)) {
1894 			ecryptfs_printk(KERN_DEBUG,
1895 					"Considering cadidate auth tok:\n");
1896 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1897 		}
1898 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1899 					       candidate_auth_tok);
1900 		if (rc) {
1901 			printk(KERN_ERR
1902 			       "Unrecognized candidate auth tok type: [%d]\n",
1903 			       candidate_auth_tok->token_type);
1904 			rc = -EINVAL;
1905 			goto out_wipe_list;
1906 		}
1907 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1908 					       &matching_auth_tok,
1909 					       crypt_stat->mount_crypt_stat,
1910 					       candidate_auth_tok_sig);
1911 		if (!rc) {
1912 			found_auth_tok = 1;
1913 			goto found_matching_auth_tok;
1914 		}
1915 	}
1916 	if (!found_auth_tok) {
1917 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1918 				"authentication token\n");
1919 		rc = -EIO;
1920 		goto out_wipe_list;
1921 	}
1922 found_matching_auth_tok:
1923 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1924 		memcpy(&(candidate_auth_tok->token.private_key),
1925 		       &(matching_auth_tok->token.private_key),
1926 		       sizeof(struct ecryptfs_private_key));
1927 		up_write(&(auth_tok_key->sem));
1928 		key_put(auth_tok_key);
1929 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1930 						       crypt_stat);
1931 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1932 		memcpy(&(candidate_auth_tok->token.password),
1933 		       &(matching_auth_tok->token.password),
1934 		       sizeof(struct ecryptfs_password));
1935 		up_write(&(auth_tok_key->sem));
1936 		key_put(auth_tok_key);
1937 		rc = decrypt_passphrase_encrypted_session_key(
1938 			candidate_auth_tok, crypt_stat);
1939 	} else {
1940 		up_write(&(auth_tok_key->sem));
1941 		key_put(auth_tok_key);
1942 		rc = -EINVAL;
1943 	}
1944 	if (rc) {
1945 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1946 
1947 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1948 				"session key for authentication token with sig "
1949 				"[%.*s]; rc = [%d]. Removing auth tok "
1950 				"candidate from the list and searching for "
1951 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1952 				candidate_auth_tok_sig,	rc);
1953 		list_for_each_entry_safe(auth_tok_list_item,
1954 					 auth_tok_list_item_tmp,
1955 					 &auth_tok_list, list) {
1956 			if (candidate_auth_tok
1957 			    == &auth_tok_list_item->auth_tok) {
1958 				list_del(&auth_tok_list_item->list);
1959 				kmem_cache_free(
1960 					ecryptfs_auth_tok_list_item_cache,
1961 					auth_tok_list_item);
1962 				goto find_next_matching_auth_tok;
1963 			}
1964 		}
1965 		BUG();
1966 	}
1967 	rc = ecryptfs_compute_root_iv(crypt_stat);
1968 	if (rc) {
1969 		ecryptfs_printk(KERN_ERR, "Error computing "
1970 				"the root IV\n");
1971 		goto out_wipe_list;
1972 	}
1973 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1974 	if (rc) {
1975 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1976 				"context for cipher [%s]; rc = [%d]\n",
1977 				crypt_stat->cipher, rc);
1978 	}
1979 out_wipe_list:
1980 	wipe_auth_tok_list(&auth_tok_list);
1981 out:
1982 	return rc;
1983 }
1984 
1985 static int
1986 pki_encrypt_session_key(struct key *auth_tok_key,
1987 			struct ecryptfs_auth_tok *auth_tok,
1988 			struct ecryptfs_crypt_stat *crypt_stat,
1989 			struct ecryptfs_key_record *key_rec)
1990 {
1991 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1992 	char *payload = NULL;
1993 	size_t payload_len = 0;
1994 	struct ecryptfs_message *msg;
1995 	int rc;
1996 
1997 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1998 				 ecryptfs_code_for_cipher_string(
1999 					 crypt_stat->cipher,
2000 					 crypt_stat->key_size),
2001 				 crypt_stat, &payload, &payload_len);
2002 	up_write(&(auth_tok_key->sem));
2003 	key_put(auth_tok_key);
2004 	if (rc) {
2005 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
2006 		goto out;
2007 	}
2008 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
2009 	if (rc) {
2010 		ecryptfs_printk(KERN_ERR, "Error sending message to "
2011 				"ecryptfsd: %d\n", rc);
2012 		goto out;
2013 	}
2014 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
2015 	if (rc) {
2016 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2017 				"from the user space daemon\n");
2018 		rc = -EIO;
2019 		goto out;
2020 	}
2021 	rc = parse_tag_67_packet(key_rec, msg);
2022 	if (rc)
2023 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2024 	kfree(msg);
2025 out:
2026 	kfree(payload);
2027 	return rc;
2028 }
2029 /**
2030  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2031  * @dest: Buffer into which to write the packet
2032  * @remaining_bytes: Maximum number of bytes that can be writtn
2033  * @auth_tok_key: The authentication token key to unlock and put when done with
2034  *                @auth_tok
2035  * @auth_tok: The authentication token used for generating the tag 1 packet
2036  * @crypt_stat: The cryptographic context
2037  * @key_rec: The key record struct for the tag 1 packet
2038  * @packet_size: This function will write the number of bytes that end
2039  *               up constituting the packet; set to zero on error
2040  *
2041  * Returns zero on success; non-zero on error.
2042  */
2043 static int
2044 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2045 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2046 		   struct ecryptfs_crypt_stat *crypt_stat,
2047 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2048 {
2049 	size_t i;
2050 	size_t encrypted_session_key_valid = 0;
2051 	size_t packet_size_length;
2052 	size_t max_packet_size;
2053 	int rc = 0;
2054 
2055 	(*packet_size) = 0;
2056 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2057 			  ECRYPTFS_SIG_SIZE);
2058 	encrypted_session_key_valid = 0;
2059 	for (i = 0; i < crypt_stat->key_size; i++)
2060 		encrypted_session_key_valid |=
2061 			auth_tok->session_key.encrypted_key[i];
2062 	if (encrypted_session_key_valid) {
2063 		memcpy(key_rec->enc_key,
2064 		       auth_tok->session_key.encrypted_key,
2065 		       auth_tok->session_key.encrypted_key_size);
2066 		up_write(&(auth_tok_key->sem));
2067 		key_put(auth_tok_key);
2068 		goto encrypted_session_key_set;
2069 	}
2070 	if (auth_tok->session_key.encrypted_key_size == 0)
2071 		auth_tok->session_key.encrypted_key_size =
2072 			auth_tok->token.private_key.key_size;
2073 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2074 				     key_rec);
2075 	if (rc) {
2076 		printk(KERN_ERR "Failed to encrypt session key via a key "
2077 		       "module; rc = [%d]\n", rc);
2078 		goto out;
2079 	}
2080 	if (ecryptfs_verbosity > 0) {
2081 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2082 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2083 	}
2084 encrypted_session_key_set:
2085 	/* This format is inspired by OpenPGP; see RFC 2440
2086 	 * packet tag 1 */
2087 	max_packet_size = (1                         /* Tag 1 identifier */
2088 			   + 3                       /* Max Tag 1 packet size */
2089 			   + 1                       /* Version */
2090 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2091 			   + 1                       /* Cipher identifier */
2092 			   + key_rec->enc_key_size); /* Encrypted key size */
2093 	if (max_packet_size > (*remaining_bytes)) {
2094 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2095 		       "need up to [%td] bytes, but there are only [%td] "
2096 		       "available\n", max_packet_size, (*remaining_bytes));
2097 		rc = -EINVAL;
2098 		goto out;
2099 	}
2100 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2101 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2102 					  (max_packet_size - 4),
2103 					  &packet_size_length);
2104 	if (rc) {
2105 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2106 				"header; cannot generate packet length\n");
2107 		goto out;
2108 	}
2109 	(*packet_size) += packet_size_length;
2110 	dest[(*packet_size)++] = 0x03; /* version 3 */
2111 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2112 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2113 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2114 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2115 	       key_rec->enc_key_size);
2116 	(*packet_size) += key_rec->enc_key_size;
2117 out:
2118 	if (rc)
2119 		(*packet_size) = 0;
2120 	else
2121 		(*remaining_bytes) -= (*packet_size);
2122 	return rc;
2123 }
2124 
2125 /**
2126  * write_tag_11_packet
2127  * @dest: Target into which Tag 11 packet is to be written
2128  * @remaining_bytes: Maximum packet length
2129  * @contents: Byte array of contents to copy in
2130  * @contents_length: Number of bytes in contents
2131  * @packet_length: Length of the Tag 11 packet written; zero on error
2132  *
2133  * Returns zero on success; non-zero on error.
2134  */
2135 static int
2136 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2137 		    size_t contents_length, size_t *packet_length)
2138 {
2139 	size_t packet_size_length;
2140 	size_t max_packet_size;
2141 	int rc = 0;
2142 
2143 	(*packet_length) = 0;
2144 	/* This format is inspired by OpenPGP; see RFC 2440
2145 	 * packet tag 11 */
2146 	max_packet_size = (1                   /* Tag 11 identifier */
2147 			   + 3                 /* Max Tag 11 packet size */
2148 			   + 1                 /* Binary format specifier */
2149 			   + 1                 /* Filename length */
2150 			   + 8                 /* Filename ("_CONSOLE") */
2151 			   + 4                 /* Modification date */
2152 			   + contents_length); /* Literal data */
2153 	if (max_packet_size > (*remaining_bytes)) {
2154 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2155 		       "need up to [%td] bytes, but there are only [%td] "
2156 		       "available\n", max_packet_size, (*remaining_bytes));
2157 		rc = -EINVAL;
2158 		goto out;
2159 	}
2160 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2161 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2162 					  (max_packet_size - 4),
2163 					  &packet_size_length);
2164 	if (rc) {
2165 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2166 		       "generate packet length. rc = [%d]\n", rc);
2167 		goto out;
2168 	}
2169 	(*packet_length) += packet_size_length;
2170 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2171 	dest[(*packet_length)++] = 8;
2172 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2173 	(*packet_length) += 8;
2174 	memset(&dest[(*packet_length)], 0x00, 4);
2175 	(*packet_length) += 4;
2176 	memcpy(&dest[(*packet_length)], contents, contents_length);
2177 	(*packet_length) += contents_length;
2178  out:
2179 	if (rc)
2180 		(*packet_length) = 0;
2181 	else
2182 		(*remaining_bytes) -= (*packet_length);
2183 	return rc;
2184 }
2185 
2186 /**
2187  * write_tag_3_packet
2188  * @dest: Buffer into which to write the packet
2189  * @remaining_bytes: Maximum number of bytes that can be written
2190  * @auth_tok: Authentication token
2191  * @crypt_stat: The cryptographic context
2192  * @key_rec: encrypted key
2193  * @packet_size: This function will write the number of bytes that end
2194  *               up constituting the packet; set to zero on error
2195  *
2196  * Returns zero on success; non-zero on error.
2197  */
2198 static int
2199 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2200 		   struct ecryptfs_auth_tok *auth_tok,
2201 		   struct ecryptfs_crypt_stat *crypt_stat,
2202 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2203 {
2204 	size_t i;
2205 	size_t encrypted_session_key_valid = 0;
2206 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2207 	struct scatterlist dst_sg[2];
2208 	struct scatterlist src_sg[2];
2209 	struct mutex *tfm_mutex = NULL;
2210 	u8 cipher_code;
2211 	size_t packet_size_length;
2212 	size_t max_packet_size;
2213 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2214 		crypt_stat->mount_crypt_stat;
2215 	struct crypto_skcipher *tfm;
2216 	struct skcipher_request *req;
2217 	int rc = 0;
2218 
2219 	(*packet_size) = 0;
2220 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2221 			  ECRYPTFS_SIG_SIZE);
2222 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2223 							crypt_stat->cipher);
2224 	if (unlikely(rc)) {
2225 		printk(KERN_ERR "Internal error whilst attempting to get "
2226 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2227 		       crypt_stat->cipher, rc);
2228 		goto out;
2229 	}
2230 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2231 		printk(KERN_WARNING "No key size specified at mount; "
2232 		       "defaulting to [%d]\n",
2233 		       crypto_skcipher_default_keysize(tfm));
2234 		mount_crypt_stat->global_default_cipher_key_size =
2235 			crypto_skcipher_default_keysize(tfm);
2236 	}
2237 	if (crypt_stat->key_size == 0)
2238 		crypt_stat->key_size =
2239 			mount_crypt_stat->global_default_cipher_key_size;
2240 	if (auth_tok->session_key.encrypted_key_size == 0)
2241 		auth_tok->session_key.encrypted_key_size =
2242 			crypt_stat->key_size;
2243 	if (crypt_stat->key_size == 24
2244 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2245 		memset((crypt_stat->key + 24), 0, 8);
2246 		auth_tok->session_key.encrypted_key_size = 32;
2247 	} else
2248 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2249 	key_rec->enc_key_size =
2250 		auth_tok->session_key.encrypted_key_size;
2251 	encrypted_session_key_valid = 0;
2252 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2253 		encrypted_session_key_valid |=
2254 			auth_tok->session_key.encrypted_key[i];
2255 	if (encrypted_session_key_valid) {
2256 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2257 				"using auth_tok->session_key.encrypted_key, "
2258 				"where key_rec->enc_key_size = [%zd]\n",
2259 				key_rec->enc_key_size);
2260 		memcpy(key_rec->enc_key,
2261 		       auth_tok->session_key.encrypted_key,
2262 		       key_rec->enc_key_size);
2263 		goto encrypted_session_key_set;
2264 	}
2265 	if (auth_tok->token.password.flags &
2266 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2267 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2268 				"session key encryption key of size [%d]\n",
2269 				auth_tok->token.password.
2270 				session_key_encryption_key_bytes);
2271 		memcpy(session_key_encryption_key,
2272 		       auth_tok->token.password.session_key_encryption_key,
2273 		       crypt_stat->key_size);
2274 		ecryptfs_printk(KERN_DEBUG,
2275 				"Cached session key encryption key:\n");
2276 		if (ecryptfs_verbosity > 0)
2277 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2278 	}
2279 	if (unlikely(ecryptfs_verbosity > 0)) {
2280 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2281 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2282 	}
2283 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2284 				 src_sg, 2);
2285 	if (rc < 1 || rc > 2) {
2286 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2287 				"for crypt_stat session key; expected rc = 1; "
2288 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2289 				rc, key_rec->enc_key_size);
2290 		rc = -ENOMEM;
2291 		goto out;
2292 	}
2293 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2294 				 dst_sg, 2);
2295 	if (rc < 1 || rc > 2) {
2296 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2297 				"for crypt_stat encrypted session key; "
2298 				"expected rc = 1; got rc = [%d]. "
2299 				"key_rec->enc_key_size = [%zd]\n", rc,
2300 				key_rec->enc_key_size);
2301 		rc = -ENOMEM;
2302 		goto out;
2303 	}
2304 	mutex_lock(tfm_mutex);
2305 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2306 				    crypt_stat->key_size);
2307 	if (rc < 0) {
2308 		mutex_unlock(tfm_mutex);
2309 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2310 				"context; rc = [%d]\n", rc);
2311 		goto out;
2312 	}
2313 
2314 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2315 	if (!req) {
2316 		mutex_unlock(tfm_mutex);
2317 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2318 				"attempting to skcipher_request_alloc for "
2319 				"%s\n", crypto_skcipher_driver_name(tfm));
2320 		rc = -ENOMEM;
2321 		goto out;
2322 	}
2323 
2324 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2325 				      NULL, NULL);
2326 
2327 	rc = 0;
2328 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2329 			crypt_stat->key_size);
2330 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2331 				   (*key_rec).enc_key_size, NULL);
2332 	rc = crypto_skcipher_encrypt(req);
2333 	mutex_unlock(tfm_mutex);
2334 	skcipher_request_free(req);
2335 	if (rc) {
2336 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2337 		goto out;
2338 	}
2339 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2340 	if (ecryptfs_verbosity > 0) {
2341 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2342 				key_rec->enc_key_size);
2343 		ecryptfs_dump_hex(key_rec->enc_key,
2344 				  key_rec->enc_key_size);
2345 	}
2346 encrypted_session_key_set:
2347 	/* This format is inspired by OpenPGP; see RFC 2440
2348 	 * packet tag 3 */
2349 	max_packet_size = (1                         /* Tag 3 identifier */
2350 			   + 3                       /* Max Tag 3 packet size */
2351 			   + 1                       /* Version */
2352 			   + 1                       /* Cipher code */
2353 			   + 1                       /* S2K specifier */
2354 			   + 1                       /* Hash identifier */
2355 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2356 			   + 1                       /* Hash iterations */
2357 			   + key_rec->enc_key_size); /* Encrypted key size */
2358 	if (max_packet_size > (*remaining_bytes)) {
2359 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2360 		       "there are only [%td] available\n", max_packet_size,
2361 		       (*remaining_bytes));
2362 		rc = -EINVAL;
2363 		goto out;
2364 	}
2365 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2366 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2367 	 * to get the number of octets in the actual Tag 3 packet */
2368 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2369 					  (max_packet_size - 4),
2370 					  &packet_size_length);
2371 	if (rc) {
2372 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2373 		       "generate packet length. rc = [%d]\n", rc);
2374 		goto out;
2375 	}
2376 	(*packet_size) += packet_size_length;
2377 	dest[(*packet_size)++] = 0x04; /* version 4 */
2378 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2379 	 * specified with strings */
2380 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2381 						      crypt_stat->key_size);
2382 	if (cipher_code == 0) {
2383 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2384 				"cipher [%s]\n", crypt_stat->cipher);
2385 		rc = -EINVAL;
2386 		goto out;
2387 	}
2388 	dest[(*packet_size)++] = cipher_code;
2389 	dest[(*packet_size)++] = 0x03;	/* S2K */
2390 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2391 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2392 	       ECRYPTFS_SALT_SIZE);
2393 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2394 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2395 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2396 	       key_rec->enc_key_size);
2397 	(*packet_size) += key_rec->enc_key_size;
2398 out:
2399 	if (rc)
2400 		(*packet_size) = 0;
2401 	else
2402 		(*remaining_bytes) -= (*packet_size);
2403 	return rc;
2404 }
2405 
2406 struct kmem_cache *ecryptfs_key_record_cache;
2407 
2408 /**
2409  * ecryptfs_generate_key_packet_set
2410  * @dest_base: Virtual address from which to write the key record set
2411  * @crypt_stat: The cryptographic context from which the
2412  *              authentication tokens will be retrieved
2413  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2414  *                   for the global parameters
2415  * @len: The amount written
2416  * @max: The maximum amount of data allowed to be written
2417  *
2418  * Generates a key packet set and writes it to the virtual address
2419  * passed in.
2420  *
2421  * Returns zero on success; non-zero on error.
2422  */
2423 int
2424 ecryptfs_generate_key_packet_set(char *dest_base,
2425 				 struct ecryptfs_crypt_stat *crypt_stat,
2426 				 struct dentry *ecryptfs_dentry, size_t *len,
2427 				 size_t max)
2428 {
2429 	struct ecryptfs_auth_tok *auth_tok;
2430 	struct key *auth_tok_key = NULL;
2431 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2432 		&ecryptfs_superblock_to_private(
2433 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2434 	size_t written;
2435 	struct ecryptfs_key_record *key_rec;
2436 	struct ecryptfs_key_sig *key_sig;
2437 	int rc = 0;
2438 
2439 	(*len) = 0;
2440 	mutex_lock(&crypt_stat->keysig_list_mutex);
2441 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2442 	if (!key_rec) {
2443 		rc = -ENOMEM;
2444 		goto out;
2445 	}
2446 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2447 			    crypt_stat_list) {
2448 		memset(key_rec, 0, sizeof(*key_rec));
2449 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2450 							   &auth_tok,
2451 							   mount_crypt_stat,
2452 							   key_sig->keysig);
2453 		if (rc) {
2454 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2455 			       "sig = [%s]\n", key_sig->keysig);
2456 			rc = process_find_global_auth_tok_for_sig_err(rc);
2457 			goto out_free;
2458 		}
2459 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2460 			rc = write_tag_3_packet((dest_base + (*len)),
2461 						&max, auth_tok,
2462 						crypt_stat, key_rec,
2463 						&written);
2464 			up_write(&(auth_tok_key->sem));
2465 			key_put(auth_tok_key);
2466 			if (rc) {
2467 				ecryptfs_printk(KERN_WARNING, "Error "
2468 						"writing tag 3 packet\n");
2469 				goto out_free;
2470 			}
2471 			(*len) += written;
2472 			/* Write auth tok signature packet */
2473 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2474 						 key_rec->sig,
2475 						 ECRYPTFS_SIG_SIZE, &written);
2476 			if (rc) {
2477 				ecryptfs_printk(KERN_ERR, "Error writing "
2478 						"auth tok signature packet\n");
2479 				goto out_free;
2480 			}
2481 			(*len) += written;
2482 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2483 			rc = write_tag_1_packet(dest_base + (*len), &max,
2484 						auth_tok_key, auth_tok,
2485 						crypt_stat, key_rec, &written);
2486 			if (rc) {
2487 				ecryptfs_printk(KERN_WARNING, "Error "
2488 						"writing tag 1 packet\n");
2489 				goto out_free;
2490 			}
2491 			(*len) += written;
2492 		} else {
2493 			up_write(&(auth_tok_key->sem));
2494 			key_put(auth_tok_key);
2495 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2496 					"authentication token type\n");
2497 			rc = -EINVAL;
2498 			goto out_free;
2499 		}
2500 	}
2501 	if (likely(max > 0)) {
2502 		dest_base[(*len)] = 0x00;
2503 	} else {
2504 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2505 		rc = -EIO;
2506 	}
2507 out_free:
2508 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2509 out:
2510 	if (rc)
2511 		(*len) = 0;
2512 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2513 	return rc;
2514 }
2515 
2516 struct kmem_cache *ecryptfs_key_sig_cache;
2517 
2518 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2519 {
2520 	struct ecryptfs_key_sig *new_key_sig;
2521 
2522 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2523 	if (!new_key_sig) {
2524 		printk(KERN_ERR
2525 		       "Error allocating from ecryptfs_key_sig_cache\n");
2526 		return -ENOMEM;
2527 	}
2528 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2529 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2530 	/* Caller must hold keysig_list_mutex */
2531 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2532 
2533 	return 0;
2534 }
2535 
2536 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2537 
2538 int
2539 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2540 			     char *sig, u32 global_auth_tok_flags)
2541 {
2542 	struct ecryptfs_global_auth_tok *new_auth_tok;
2543 	int rc = 0;
2544 
2545 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2546 					GFP_KERNEL);
2547 	if (!new_auth_tok) {
2548 		rc = -ENOMEM;
2549 		printk(KERN_ERR "Error allocating from "
2550 		       "ecryptfs_global_auth_tok_cache\n");
2551 		goto out;
2552 	}
2553 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2554 	new_auth_tok->flags = global_auth_tok_flags;
2555 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2556 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2557 	list_add(&new_auth_tok->mount_crypt_stat_list,
2558 		 &mount_crypt_stat->global_auth_tok_list);
2559 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2560 out:
2561 	return rc;
2562 }
2563 
2564