xref: /linux/fs/dlm/lowcomms.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64 
65 #define NEEDED_RMEM (4*1024*1024)
66 
67 struct connection {
68 	struct socket *sock;	/* NULL if not connected */
69 	uint32_t nodeid;	/* So we know who we are in the list */
70 	/* this semaphore is used to allow parallel recv/send in read
71 	 * lock mode. When we release a sock we need to held the write lock.
72 	 *
73 	 * However this is locking code and not nice. When we remove the
74 	 * othercon handling we can look into other mechanism to synchronize
75 	 * io handling to call sock_release() at the right time.
76 	 */
77 	struct rw_semaphore sock_lock;
78 	unsigned long flags;
79 #define CF_APP_LIMITED 0
80 #define CF_RECV_PENDING 1
81 #define CF_SEND_PENDING 2
82 #define CF_RECV_INTR 3
83 #define CF_IO_STOP 4
84 #define CF_IS_OTHERCON 5
85 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
86 	spinlock_t writequeue_lock;
87 	int retries;
88 	struct hlist_node list;
89 	/* due some connect()/accept() races we currently have this cross over
90 	 * connection attempt second connection for one node.
91 	 *
92 	 * There is a solution to avoid the race by introducing a connect
93 	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
94 	 * connect. Otherside can connect but will only be considered that
95 	 * the other side wants to have a reconnect.
96 	 *
97 	 * However changing to this behaviour will break backwards compatible.
98 	 * In a DLM protocol major version upgrade we should remove this!
99 	 */
100 	struct connection *othercon;
101 	struct work_struct rwork; /* receive worker */
102 	struct work_struct swork; /* send worker */
103 	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
104 	int rx_leftover;
105 	int mark;
106 	int addr_count;
107 	int curr_addr_index;
108 	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
109 	spinlock_t addrs_lock;
110 	struct rcu_head rcu;
111 };
112 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
113 
114 struct listen_connection {
115 	struct socket *sock;
116 	struct work_struct rwork;
117 };
118 
119 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
120 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
121 
122 /* An entry waiting to be sent */
123 struct writequeue_entry {
124 	struct list_head list;
125 	struct page *page;
126 	int offset;
127 	int len;
128 	int end;
129 	int users;
130 	bool dirty;
131 	struct connection *con;
132 	struct list_head msgs;
133 	struct kref ref;
134 };
135 
136 struct dlm_msg {
137 	struct writequeue_entry *entry;
138 	struct dlm_msg *orig_msg;
139 	bool retransmit;
140 	void *ppc;
141 	int len;
142 	int idx; /* new()/commit() idx exchange */
143 
144 	struct list_head list;
145 	struct kref ref;
146 };
147 
148 struct processqueue_entry {
149 	unsigned char *buf;
150 	int nodeid;
151 	int buflen;
152 
153 	struct list_head list;
154 };
155 
156 struct dlm_proto_ops {
157 	bool try_new_addr;
158 	const char *name;
159 	int proto;
160 
161 	int (*connect)(struct connection *con, struct socket *sock,
162 		       struct sockaddr *addr, int addr_len);
163 	void (*sockopts)(struct socket *sock);
164 	int (*bind)(struct socket *sock);
165 	int (*listen_validate)(void);
166 	void (*listen_sockopts)(struct socket *sock);
167 	int (*listen_bind)(struct socket *sock);
168 };
169 
170 static struct listen_sock_callbacks {
171 	void (*sk_error_report)(struct sock *);
172 	void (*sk_data_ready)(struct sock *);
173 	void (*sk_state_change)(struct sock *);
174 	void (*sk_write_space)(struct sock *);
175 } listen_sock;
176 
177 static struct listen_connection listen_con;
178 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
179 static int dlm_local_count;
180 
181 /* Work queues */
182 static struct workqueue_struct *io_workqueue;
183 static struct workqueue_struct *process_workqueue;
184 
185 static struct hlist_head connection_hash[CONN_HASH_SIZE];
186 static DEFINE_SPINLOCK(connections_lock);
187 DEFINE_STATIC_SRCU(connections_srcu);
188 
189 static const struct dlm_proto_ops *dlm_proto_ops;
190 
191 #define DLM_IO_SUCCESS 0
192 #define DLM_IO_END 1
193 #define DLM_IO_EOF 2
194 #define DLM_IO_RESCHED 3
195 
196 static void process_recv_sockets(struct work_struct *work);
197 static void process_send_sockets(struct work_struct *work);
198 static void process_dlm_messages(struct work_struct *work);
199 
200 static DECLARE_WORK(process_work, process_dlm_messages);
201 static DEFINE_SPINLOCK(processqueue_lock);
202 static bool process_dlm_messages_pending;
203 static LIST_HEAD(processqueue);
204 
205 bool dlm_lowcomms_is_running(void)
206 {
207 	return !!listen_con.sock;
208 }
209 
210 static void lowcomms_queue_swork(struct connection *con)
211 {
212 	assert_spin_locked(&con->writequeue_lock);
213 
214 	if (!test_bit(CF_IO_STOP, &con->flags) &&
215 	    !test_bit(CF_APP_LIMITED, &con->flags) &&
216 	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
217 		queue_work(io_workqueue, &con->swork);
218 }
219 
220 static void lowcomms_queue_rwork(struct connection *con)
221 {
222 #ifdef CONFIG_LOCKDEP
223 	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
224 #endif
225 
226 	if (!test_bit(CF_IO_STOP, &con->flags) &&
227 	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
228 		queue_work(io_workqueue, &con->rwork);
229 }
230 
231 static void writequeue_entry_ctor(void *data)
232 {
233 	struct writequeue_entry *entry = data;
234 
235 	INIT_LIST_HEAD(&entry->msgs);
236 }
237 
238 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
239 {
240 	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
241 				 0, 0, writequeue_entry_ctor);
242 }
243 
244 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
245 {
246 	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
247 }
248 
249 /* need to held writequeue_lock */
250 static struct writequeue_entry *con_next_wq(struct connection *con)
251 {
252 	struct writequeue_entry *e;
253 
254 	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
255 				     list);
256 	/* if len is zero nothing is to send, if there are users filling
257 	 * buffers we wait until the users are done so we can send more.
258 	 */
259 	if (!e || e->users || e->len == 0)
260 		return NULL;
261 
262 	return e;
263 }
264 
265 static struct connection *__find_con(int nodeid, int r)
266 {
267 	struct connection *con;
268 
269 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
270 		if (con->nodeid == nodeid)
271 			return con;
272 	}
273 
274 	return NULL;
275 }
276 
277 static void dlm_con_init(struct connection *con, int nodeid)
278 {
279 	con->nodeid = nodeid;
280 	init_rwsem(&con->sock_lock);
281 	INIT_LIST_HEAD(&con->writequeue);
282 	spin_lock_init(&con->writequeue_lock);
283 	INIT_WORK(&con->swork, process_send_sockets);
284 	INIT_WORK(&con->rwork, process_recv_sockets);
285 	spin_lock_init(&con->addrs_lock);
286 }
287 
288 /*
289  * If 'allocation' is zero then we don't attempt to create a new
290  * connection structure for this node.
291  */
292 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
293 {
294 	struct connection *con, *tmp;
295 	int r;
296 
297 	r = nodeid_hash(nodeid);
298 	con = __find_con(nodeid, r);
299 	if (con || !alloc)
300 		return con;
301 
302 	con = kzalloc(sizeof(*con), alloc);
303 	if (!con)
304 		return NULL;
305 
306 	dlm_con_init(con, nodeid);
307 
308 	spin_lock(&connections_lock);
309 	/* Because multiple workqueues/threads calls this function it can
310 	 * race on multiple cpu's. Instead of locking hot path __find_con()
311 	 * we just check in rare cases of recently added nodes again
312 	 * under protection of connections_lock. If this is the case we
313 	 * abort our connection creation and return the existing connection.
314 	 */
315 	tmp = __find_con(nodeid, r);
316 	if (tmp) {
317 		spin_unlock(&connections_lock);
318 		kfree(con);
319 		return tmp;
320 	}
321 
322 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
323 	spin_unlock(&connections_lock);
324 
325 	return con;
326 }
327 
328 static int addr_compare(const struct sockaddr_storage *x,
329 			const struct sockaddr_storage *y)
330 {
331 	switch (x->ss_family) {
332 	case AF_INET: {
333 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
334 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
335 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
336 			return 0;
337 		if (sinx->sin_port != siny->sin_port)
338 			return 0;
339 		break;
340 	}
341 	case AF_INET6: {
342 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
343 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
344 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
345 			return 0;
346 		if (sinx->sin6_port != siny->sin6_port)
347 			return 0;
348 		break;
349 	}
350 	default:
351 		return 0;
352 	}
353 	return 1;
354 }
355 
356 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
357 			  struct sockaddr *sa_out, bool try_new_addr,
358 			  unsigned int *mark)
359 {
360 	struct sockaddr_storage sas;
361 	struct connection *con;
362 	int idx;
363 
364 	if (!dlm_local_count)
365 		return -1;
366 
367 	idx = srcu_read_lock(&connections_srcu);
368 	con = nodeid2con(nodeid, 0);
369 	if (!con) {
370 		srcu_read_unlock(&connections_srcu, idx);
371 		return -ENOENT;
372 	}
373 
374 	spin_lock(&con->addrs_lock);
375 	if (!con->addr_count) {
376 		spin_unlock(&con->addrs_lock);
377 		srcu_read_unlock(&connections_srcu, idx);
378 		return -ENOENT;
379 	}
380 
381 	memcpy(&sas, &con->addr[con->curr_addr_index],
382 	       sizeof(struct sockaddr_storage));
383 
384 	if (try_new_addr) {
385 		con->curr_addr_index++;
386 		if (con->curr_addr_index == con->addr_count)
387 			con->curr_addr_index = 0;
388 	}
389 
390 	*mark = con->mark;
391 	spin_unlock(&con->addrs_lock);
392 
393 	if (sas_out)
394 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
395 
396 	if (!sa_out) {
397 		srcu_read_unlock(&connections_srcu, idx);
398 		return 0;
399 	}
400 
401 	if (dlm_local_addr[0].ss_family == AF_INET) {
402 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
403 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
404 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
405 	} else {
406 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
407 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
408 		ret6->sin6_addr = in6->sin6_addr;
409 	}
410 
411 	srcu_read_unlock(&connections_srcu, idx);
412 	return 0;
413 }
414 
415 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
416 			  unsigned int *mark)
417 {
418 	struct connection *con;
419 	int i, idx, addr_i;
420 
421 	idx = srcu_read_lock(&connections_srcu);
422 	for (i = 0; i < CONN_HASH_SIZE; i++) {
423 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
424 			WARN_ON_ONCE(!con->addr_count);
425 
426 			spin_lock(&con->addrs_lock);
427 			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
428 				if (addr_compare(&con->addr[addr_i], addr)) {
429 					*nodeid = con->nodeid;
430 					*mark = con->mark;
431 					spin_unlock(&con->addrs_lock);
432 					srcu_read_unlock(&connections_srcu, idx);
433 					return 0;
434 				}
435 			}
436 			spin_unlock(&con->addrs_lock);
437 		}
438 	}
439 	srcu_read_unlock(&connections_srcu, idx);
440 
441 	return -ENOENT;
442 }
443 
444 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
445 				      const struct sockaddr_storage *addr)
446 {
447 	int i;
448 
449 	for (i = 0; i < con->addr_count; i++) {
450 		if (addr_compare(&con->addr[i], addr))
451 			return true;
452 	}
453 
454 	return false;
455 }
456 
457 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
458 {
459 	struct connection *con;
460 	bool ret, idx;
461 
462 	idx = srcu_read_lock(&connections_srcu);
463 	con = nodeid2con(nodeid, GFP_NOFS);
464 	if (!con) {
465 		srcu_read_unlock(&connections_srcu, idx);
466 		return -ENOMEM;
467 	}
468 
469 	spin_lock(&con->addrs_lock);
470 	if (!con->addr_count) {
471 		memcpy(&con->addr[0], addr, sizeof(*addr));
472 		con->addr_count = 1;
473 		con->mark = dlm_config.ci_mark;
474 		spin_unlock(&con->addrs_lock);
475 		srcu_read_unlock(&connections_srcu, idx);
476 		return 0;
477 	}
478 
479 	ret = dlm_lowcomms_con_has_addr(con, addr);
480 	if (ret) {
481 		spin_unlock(&con->addrs_lock);
482 		srcu_read_unlock(&connections_srcu, idx);
483 		return -EEXIST;
484 	}
485 
486 	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
487 		spin_unlock(&con->addrs_lock);
488 		srcu_read_unlock(&connections_srcu, idx);
489 		return -ENOSPC;
490 	}
491 
492 	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
493 	srcu_read_unlock(&connections_srcu, idx);
494 	spin_unlock(&con->addrs_lock);
495 	return 0;
496 }
497 
498 /* Data available on socket or listen socket received a connect */
499 static void lowcomms_data_ready(struct sock *sk)
500 {
501 	struct connection *con = sock2con(sk);
502 
503 	trace_sk_data_ready(sk);
504 
505 	set_bit(CF_RECV_INTR, &con->flags);
506 	lowcomms_queue_rwork(con);
507 }
508 
509 static void lowcomms_write_space(struct sock *sk)
510 {
511 	struct connection *con = sock2con(sk);
512 
513 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
514 
515 	spin_lock_bh(&con->writequeue_lock);
516 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
517 		con->sock->sk->sk_write_pending--;
518 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
519 	}
520 
521 	lowcomms_queue_swork(con);
522 	spin_unlock_bh(&con->writequeue_lock);
523 }
524 
525 static void lowcomms_state_change(struct sock *sk)
526 {
527 	/* SCTP layer is not calling sk_data_ready when the connection
528 	 * is done, so we catch the signal through here.
529 	 */
530 	if (sk->sk_shutdown == RCV_SHUTDOWN)
531 		lowcomms_data_ready(sk);
532 }
533 
534 static void lowcomms_listen_data_ready(struct sock *sk)
535 {
536 	trace_sk_data_ready(sk);
537 
538 	queue_work(io_workqueue, &listen_con.rwork);
539 }
540 
541 int dlm_lowcomms_connect_node(int nodeid)
542 {
543 	struct connection *con;
544 	int idx;
545 
546 	if (nodeid == dlm_our_nodeid())
547 		return 0;
548 
549 	idx = srcu_read_lock(&connections_srcu);
550 	con = nodeid2con(nodeid, 0);
551 	if (WARN_ON_ONCE(!con)) {
552 		srcu_read_unlock(&connections_srcu, idx);
553 		return -ENOENT;
554 	}
555 
556 	down_read(&con->sock_lock);
557 	if (!con->sock) {
558 		spin_lock_bh(&con->writequeue_lock);
559 		lowcomms_queue_swork(con);
560 		spin_unlock_bh(&con->writequeue_lock);
561 	}
562 	up_read(&con->sock_lock);
563 	srcu_read_unlock(&connections_srcu, idx);
564 
565 	cond_resched();
566 	return 0;
567 }
568 
569 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
570 {
571 	struct connection *con;
572 	int idx;
573 
574 	idx = srcu_read_lock(&connections_srcu);
575 	con = nodeid2con(nodeid, 0);
576 	if (!con) {
577 		srcu_read_unlock(&connections_srcu, idx);
578 		return -ENOENT;
579 	}
580 
581 	spin_lock(&con->addrs_lock);
582 	con->mark = mark;
583 	spin_unlock(&con->addrs_lock);
584 	srcu_read_unlock(&connections_srcu, idx);
585 	return 0;
586 }
587 
588 static void lowcomms_error_report(struct sock *sk)
589 {
590 	struct connection *con = sock2con(sk);
591 	struct inet_sock *inet;
592 
593 	inet = inet_sk(sk);
594 	switch (sk->sk_family) {
595 	case AF_INET:
596 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
597 				   "sending to node %d at %pI4, dport %d, "
598 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
599 				   con->nodeid, &inet->inet_daddr,
600 				   ntohs(inet->inet_dport), sk->sk_err,
601 				   sk->sk_err_soft);
602 		break;
603 #if IS_ENABLED(CONFIG_IPV6)
604 	case AF_INET6:
605 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
606 				   "sending to node %d at %pI6c, "
607 				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
608 				   con->nodeid, &sk->sk_v6_daddr,
609 				   ntohs(inet->inet_dport), sk->sk_err,
610 				   sk->sk_err_soft);
611 		break;
612 #endif
613 	default:
614 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
615 				   "invalid socket family %d set, "
616 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
617 				   sk->sk_family, sk->sk_err, sk->sk_err_soft);
618 		break;
619 	}
620 
621 	dlm_midcomms_unack_msg_resend(con->nodeid);
622 
623 	listen_sock.sk_error_report(sk);
624 }
625 
626 static void restore_callbacks(struct sock *sk)
627 {
628 #ifdef CONFIG_LOCKDEP
629 	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
630 #endif
631 
632 	sk->sk_user_data = NULL;
633 	sk->sk_data_ready = listen_sock.sk_data_ready;
634 	sk->sk_state_change = listen_sock.sk_state_change;
635 	sk->sk_write_space = listen_sock.sk_write_space;
636 	sk->sk_error_report = listen_sock.sk_error_report;
637 }
638 
639 /* Make a socket active */
640 static void add_sock(struct socket *sock, struct connection *con)
641 {
642 	struct sock *sk = sock->sk;
643 
644 	lock_sock(sk);
645 	con->sock = sock;
646 
647 	sk->sk_user_data = con;
648 	sk->sk_data_ready = lowcomms_data_ready;
649 	sk->sk_write_space = lowcomms_write_space;
650 	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
651 		sk->sk_state_change = lowcomms_state_change;
652 	sk->sk_allocation = GFP_NOFS;
653 	sk->sk_use_task_frag = false;
654 	sk->sk_error_report = lowcomms_error_report;
655 	release_sock(sk);
656 }
657 
658 /* Add the port number to an IPv6 or 4 sockaddr and return the address
659    length */
660 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
661 			  int *addr_len)
662 {
663 	saddr->ss_family =  dlm_local_addr[0].ss_family;
664 	if (saddr->ss_family == AF_INET) {
665 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
666 		in4_addr->sin_port = cpu_to_be16(port);
667 		*addr_len = sizeof(struct sockaddr_in);
668 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
669 	} else {
670 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
671 		in6_addr->sin6_port = cpu_to_be16(port);
672 		*addr_len = sizeof(struct sockaddr_in6);
673 	}
674 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
675 }
676 
677 static void dlm_page_release(struct kref *kref)
678 {
679 	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
680 						  ref);
681 
682 	__free_page(e->page);
683 	dlm_free_writequeue(e);
684 }
685 
686 static void dlm_msg_release(struct kref *kref)
687 {
688 	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
689 
690 	kref_put(&msg->entry->ref, dlm_page_release);
691 	dlm_free_msg(msg);
692 }
693 
694 static void free_entry(struct writequeue_entry *e)
695 {
696 	struct dlm_msg *msg, *tmp;
697 
698 	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
699 		if (msg->orig_msg) {
700 			msg->orig_msg->retransmit = false;
701 			kref_put(&msg->orig_msg->ref, dlm_msg_release);
702 		}
703 
704 		list_del(&msg->list);
705 		kref_put(&msg->ref, dlm_msg_release);
706 	}
707 
708 	list_del(&e->list);
709 	kref_put(&e->ref, dlm_page_release);
710 }
711 
712 static void dlm_close_sock(struct socket **sock)
713 {
714 	lock_sock((*sock)->sk);
715 	restore_callbacks((*sock)->sk);
716 	release_sock((*sock)->sk);
717 
718 	sock_release(*sock);
719 	*sock = NULL;
720 }
721 
722 static void allow_connection_io(struct connection *con)
723 {
724 	if (con->othercon)
725 		clear_bit(CF_IO_STOP, &con->othercon->flags);
726 	clear_bit(CF_IO_STOP, &con->flags);
727 }
728 
729 static void stop_connection_io(struct connection *con)
730 {
731 	if (con->othercon)
732 		stop_connection_io(con->othercon);
733 
734 	down_write(&con->sock_lock);
735 	if (con->sock) {
736 		lock_sock(con->sock->sk);
737 		restore_callbacks(con->sock->sk);
738 
739 		spin_lock_bh(&con->writequeue_lock);
740 		set_bit(CF_IO_STOP, &con->flags);
741 		spin_unlock_bh(&con->writequeue_lock);
742 		release_sock(con->sock->sk);
743 	} else {
744 		spin_lock_bh(&con->writequeue_lock);
745 		set_bit(CF_IO_STOP, &con->flags);
746 		spin_unlock_bh(&con->writequeue_lock);
747 	}
748 	up_write(&con->sock_lock);
749 
750 	cancel_work_sync(&con->swork);
751 	cancel_work_sync(&con->rwork);
752 }
753 
754 /* Close a remote connection and tidy up */
755 static void close_connection(struct connection *con, bool and_other)
756 {
757 	struct writequeue_entry *e;
758 
759 	if (con->othercon && and_other)
760 		close_connection(con->othercon, false);
761 
762 	down_write(&con->sock_lock);
763 	if (!con->sock) {
764 		up_write(&con->sock_lock);
765 		return;
766 	}
767 
768 	dlm_close_sock(&con->sock);
769 
770 	/* if we send a writequeue entry only a half way, we drop the
771 	 * whole entry because reconnection and that we not start of the
772 	 * middle of a msg which will confuse the other end.
773 	 *
774 	 * we can always drop messages because retransmits, but what we
775 	 * cannot allow is to transmit half messages which may be processed
776 	 * at the other side.
777 	 *
778 	 * our policy is to start on a clean state when disconnects, we don't
779 	 * know what's send/received on transport layer in this case.
780 	 */
781 	spin_lock_bh(&con->writequeue_lock);
782 	if (!list_empty(&con->writequeue)) {
783 		e = list_first_entry(&con->writequeue, struct writequeue_entry,
784 				     list);
785 		if (e->dirty)
786 			free_entry(e);
787 	}
788 	spin_unlock_bh(&con->writequeue_lock);
789 
790 	con->rx_leftover = 0;
791 	con->retries = 0;
792 	clear_bit(CF_APP_LIMITED, &con->flags);
793 	clear_bit(CF_RECV_PENDING, &con->flags);
794 	clear_bit(CF_SEND_PENDING, &con->flags);
795 	up_write(&con->sock_lock);
796 }
797 
798 static struct processqueue_entry *new_processqueue_entry(int nodeid,
799 							 int buflen)
800 {
801 	struct processqueue_entry *pentry;
802 
803 	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
804 	if (!pentry)
805 		return NULL;
806 
807 	pentry->buf = kmalloc(buflen, GFP_NOFS);
808 	if (!pentry->buf) {
809 		kfree(pentry);
810 		return NULL;
811 	}
812 
813 	pentry->nodeid = nodeid;
814 	return pentry;
815 }
816 
817 static void free_processqueue_entry(struct processqueue_entry *pentry)
818 {
819 	kfree(pentry->buf);
820 	kfree(pentry);
821 }
822 
823 struct dlm_processed_nodes {
824 	int nodeid;
825 
826 	struct list_head list;
827 };
828 
829 static void add_processed_node(int nodeid, struct list_head *processed_nodes)
830 {
831 	struct dlm_processed_nodes *n;
832 
833 	list_for_each_entry(n, processed_nodes, list) {
834 		/* we already remembered this node */
835 		if (n->nodeid == nodeid)
836 			return;
837 	}
838 
839 	/* if it's fails in worst case we simple don't send an ack back.
840 	 * We try it next time.
841 	 */
842 	n = kmalloc(sizeof(*n), GFP_NOFS);
843 	if (!n)
844 		return;
845 
846 	n->nodeid = nodeid;
847 	list_add(&n->list, processed_nodes);
848 }
849 
850 static void process_dlm_messages(struct work_struct *work)
851 {
852 	struct dlm_processed_nodes *n, *n_tmp;
853 	struct processqueue_entry *pentry;
854 	LIST_HEAD(processed_nodes);
855 
856 	spin_lock(&processqueue_lock);
857 	pentry = list_first_entry_or_null(&processqueue,
858 					  struct processqueue_entry, list);
859 	if (WARN_ON_ONCE(!pentry)) {
860 		spin_unlock(&processqueue_lock);
861 		return;
862 	}
863 
864 	list_del(&pentry->list);
865 	spin_unlock(&processqueue_lock);
866 
867 	for (;;) {
868 		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
869 					    pentry->buflen);
870 		add_processed_node(pentry->nodeid, &processed_nodes);
871 		free_processqueue_entry(pentry);
872 
873 		spin_lock(&processqueue_lock);
874 		pentry = list_first_entry_or_null(&processqueue,
875 						  struct processqueue_entry, list);
876 		if (!pentry) {
877 			process_dlm_messages_pending = false;
878 			spin_unlock(&processqueue_lock);
879 			break;
880 		}
881 
882 		list_del(&pentry->list);
883 		spin_unlock(&processqueue_lock);
884 	}
885 
886 	/* send ack back after we processed couple of messages */
887 	list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
888 		list_del(&n->list);
889 		dlm_midcomms_receive_done(n->nodeid);
890 		kfree(n);
891 	}
892 }
893 
894 /* Data received from remote end */
895 static int receive_from_sock(struct connection *con, int buflen)
896 {
897 	struct processqueue_entry *pentry;
898 	int ret, buflen_real;
899 	struct msghdr msg;
900 	struct kvec iov;
901 
902 	pentry = new_processqueue_entry(con->nodeid, buflen);
903 	if (!pentry)
904 		return DLM_IO_RESCHED;
905 
906 	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
907 
908 	/* calculate new buffer parameter regarding last receive and
909 	 * possible leftover bytes
910 	 */
911 	iov.iov_base = pentry->buf + con->rx_leftover;
912 	iov.iov_len = buflen - con->rx_leftover;
913 
914 	memset(&msg, 0, sizeof(msg));
915 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
916 	clear_bit(CF_RECV_INTR, &con->flags);
917 again:
918 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
919 			     msg.msg_flags);
920 	trace_dlm_recv(con->nodeid, ret);
921 	if (ret == -EAGAIN) {
922 		lock_sock(con->sock->sk);
923 		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
924 			release_sock(con->sock->sk);
925 			goto again;
926 		}
927 
928 		clear_bit(CF_RECV_PENDING, &con->flags);
929 		release_sock(con->sock->sk);
930 		free_processqueue_entry(pentry);
931 		return DLM_IO_END;
932 	} else if (ret == 0) {
933 		/* close will clear CF_RECV_PENDING */
934 		free_processqueue_entry(pentry);
935 		return DLM_IO_EOF;
936 	} else if (ret < 0) {
937 		free_processqueue_entry(pentry);
938 		return ret;
939 	}
940 
941 	/* new buflen according readed bytes and leftover from last receive */
942 	buflen_real = ret + con->rx_leftover;
943 	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
944 					   buflen_real);
945 	if (ret < 0) {
946 		free_processqueue_entry(pentry);
947 		return ret;
948 	}
949 
950 	pentry->buflen = ret;
951 
952 	/* calculate leftover bytes from process and put it into begin of
953 	 * the receive buffer, so next receive we have the full message
954 	 * at the start address of the receive buffer.
955 	 */
956 	con->rx_leftover = buflen_real - ret;
957 	memmove(con->rx_leftover_buf, pentry->buf + ret,
958 		con->rx_leftover);
959 
960 	spin_lock(&processqueue_lock);
961 	list_add_tail(&pentry->list, &processqueue);
962 	if (!process_dlm_messages_pending) {
963 		process_dlm_messages_pending = true;
964 		queue_work(process_workqueue, &process_work);
965 	}
966 	spin_unlock(&processqueue_lock);
967 
968 	return DLM_IO_SUCCESS;
969 }
970 
971 /* Listening socket is busy, accept a connection */
972 static int accept_from_sock(void)
973 {
974 	struct sockaddr_storage peeraddr;
975 	int len, idx, result, nodeid;
976 	struct connection *newcon;
977 	struct socket *newsock;
978 	unsigned int mark;
979 
980 	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
981 	if (result == -EAGAIN)
982 		return DLM_IO_END;
983 	else if (result < 0)
984 		goto accept_err;
985 
986 	/* Get the connected socket's peer */
987 	memset(&peeraddr, 0, sizeof(peeraddr));
988 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
989 	if (len < 0) {
990 		result = -ECONNABORTED;
991 		goto accept_err;
992 	}
993 
994 	/* Get the new node's NODEID */
995 	make_sockaddr(&peeraddr, 0, &len);
996 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
997 		switch (peeraddr.ss_family) {
998 		case AF_INET: {
999 			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1000 
1001 			log_print("connect from non cluster IPv4 node %pI4",
1002 				  &sin->sin_addr);
1003 			break;
1004 		}
1005 #if IS_ENABLED(CONFIG_IPV6)
1006 		case AF_INET6: {
1007 			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1008 
1009 			log_print("connect from non cluster IPv6 node %pI6c",
1010 				  &sin6->sin6_addr);
1011 			break;
1012 		}
1013 #endif
1014 		default:
1015 			log_print("invalid family from non cluster node");
1016 			break;
1017 		}
1018 
1019 		sock_release(newsock);
1020 		return -1;
1021 	}
1022 
1023 	log_print("got connection from %d", nodeid);
1024 
1025 	/*  Check to see if we already have a connection to this node. This
1026 	 *  could happen if the two nodes initiate a connection at roughly
1027 	 *  the same time and the connections cross on the wire.
1028 	 *  In this case we store the incoming one in "othercon"
1029 	 */
1030 	idx = srcu_read_lock(&connections_srcu);
1031 	newcon = nodeid2con(nodeid, 0);
1032 	if (WARN_ON_ONCE(!newcon)) {
1033 		srcu_read_unlock(&connections_srcu, idx);
1034 		result = -ENOENT;
1035 		goto accept_err;
1036 	}
1037 
1038 	sock_set_mark(newsock->sk, mark);
1039 
1040 	down_write(&newcon->sock_lock);
1041 	if (newcon->sock) {
1042 		struct connection *othercon = newcon->othercon;
1043 
1044 		if (!othercon) {
1045 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1046 			if (!othercon) {
1047 				log_print("failed to allocate incoming socket");
1048 				up_write(&newcon->sock_lock);
1049 				srcu_read_unlock(&connections_srcu, idx);
1050 				result = -ENOMEM;
1051 				goto accept_err;
1052 			}
1053 
1054 			dlm_con_init(othercon, nodeid);
1055 			lockdep_set_subclass(&othercon->sock_lock, 1);
1056 			newcon->othercon = othercon;
1057 			set_bit(CF_IS_OTHERCON, &othercon->flags);
1058 		} else {
1059 			/* close other sock con if we have something new */
1060 			close_connection(othercon, false);
1061 		}
1062 
1063 		down_write(&othercon->sock_lock);
1064 		add_sock(newsock, othercon);
1065 
1066 		/* check if we receved something while adding */
1067 		lock_sock(othercon->sock->sk);
1068 		lowcomms_queue_rwork(othercon);
1069 		release_sock(othercon->sock->sk);
1070 		up_write(&othercon->sock_lock);
1071 	}
1072 	else {
1073 		/* accept copies the sk after we've saved the callbacks, so we
1074 		   don't want to save them a second time or comm errors will
1075 		   result in calling sk_error_report recursively. */
1076 		add_sock(newsock, newcon);
1077 
1078 		/* check if we receved something while adding */
1079 		lock_sock(newcon->sock->sk);
1080 		lowcomms_queue_rwork(newcon);
1081 		release_sock(newcon->sock->sk);
1082 	}
1083 	up_write(&newcon->sock_lock);
1084 	srcu_read_unlock(&connections_srcu, idx);
1085 
1086 	return DLM_IO_SUCCESS;
1087 
1088 accept_err:
1089 	if (newsock)
1090 		sock_release(newsock);
1091 
1092 	return result;
1093 }
1094 
1095 /*
1096  * writequeue_entry_complete - try to delete and free write queue entry
1097  * @e: write queue entry to try to delete
1098  * @completed: bytes completed
1099  *
1100  * writequeue_lock must be held.
1101  */
1102 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1103 {
1104 	e->offset += completed;
1105 	e->len -= completed;
1106 	/* signal that page was half way transmitted */
1107 	e->dirty = true;
1108 
1109 	if (e->len == 0 && e->users == 0)
1110 		free_entry(e);
1111 }
1112 
1113 /*
1114  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1115  */
1116 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1117 {
1118 	struct sockaddr_storage localaddr;
1119 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1120 	int i, addr_len, result = 0;
1121 
1122 	for (i = 0; i < dlm_local_count; i++) {
1123 		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1124 		make_sockaddr(&localaddr, port, &addr_len);
1125 
1126 		if (!i)
1127 			result = kernel_bind(sock, addr, addr_len);
1128 		else
1129 			result = sock_bind_add(sock->sk, addr, addr_len);
1130 
1131 		if (result < 0) {
1132 			log_print("Can't bind to %d addr number %d, %d.\n",
1133 				  port, i + 1, result);
1134 			break;
1135 		}
1136 	}
1137 	return result;
1138 }
1139 
1140 /* Get local addresses */
1141 static void init_local(void)
1142 {
1143 	struct sockaddr_storage sas;
1144 	int i;
1145 
1146 	dlm_local_count = 0;
1147 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1148 		if (dlm_our_addr(&sas, i))
1149 			break;
1150 
1151 		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1152 	}
1153 }
1154 
1155 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1156 {
1157 	struct writequeue_entry *entry;
1158 
1159 	entry = dlm_allocate_writequeue();
1160 	if (!entry)
1161 		return NULL;
1162 
1163 	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1164 	if (!entry->page) {
1165 		dlm_free_writequeue(entry);
1166 		return NULL;
1167 	}
1168 
1169 	entry->offset = 0;
1170 	entry->len = 0;
1171 	entry->end = 0;
1172 	entry->dirty = false;
1173 	entry->con = con;
1174 	entry->users = 1;
1175 	kref_init(&entry->ref);
1176 	return entry;
1177 }
1178 
1179 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1180 					     char **ppc, void (*cb)(void *data),
1181 					     void *data)
1182 {
1183 	struct writequeue_entry *e;
1184 
1185 	spin_lock_bh(&con->writequeue_lock);
1186 	if (!list_empty(&con->writequeue)) {
1187 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1188 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1189 			kref_get(&e->ref);
1190 
1191 			*ppc = page_address(e->page) + e->end;
1192 			if (cb)
1193 				cb(data);
1194 
1195 			e->end += len;
1196 			e->users++;
1197 			goto out;
1198 		}
1199 	}
1200 
1201 	e = new_writequeue_entry(con);
1202 	if (!e)
1203 		goto out;
1204 
1205 	kref_get(&e->ref);
1206 	*ppc = page_address(e->page);
1207 	e->end += len;
1208 	if (cb)
1209 		cb(data);
1210 
1211 	list_add_tail(&e->list, &con->writequeue);
1212 
1213 out:
1214 	spin_unlock_bh(&con->writequeue_lock);
1215 	return e;
1216 };
1217 
1218 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1219 						gfp_t allocation, char **ppc,
1220 						void (*cb)(void *data),
1221 						void *data)
1222 {
1223 	struct writequeue_entry *e;
1224 	struct dlm_msg *msg;
1225 
1226 	msg = dlm_allocate_msg(allocation);
1227 	if (!msg)
1228 		return NULL;
1229 
1230 	kref_init(&msg->ref);
1231 
1232 	e = new_wq_entry(con, len, ppc, cb, data);
1233 	if (!e) {
1234 		dlm_free_msg(msg);
1235 		return NULL;
1236 	}
1237 
1238 	msg->retransmit = false;
1239 	msg->orig_msg = NULL;
1240 	msg->ppc = *ppc;
1241 	msg->len = len;
1242 	msg->entry = e;
1243 
1244 	return msg;
1245 }
1246 
1247 /* avoid false positive for nodes_srcu, unlock happens in
1248  * dlm_lowcomms_commit_msg which is a must call if success
1249  */
1250 #ifndef __CHECKER__
1251 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1252 				     char **ppc, void (*cb)(void *data),
1253 				     void *data)
1254 {
1255 	struct connection *con;
1256 	struct dlm_msg *msg;
1257 	int idx;
1258 
1259 	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1260 	    len < sizeof(struct dlm_header)) {
1261 		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1262 		log_print("failed to allocate a buffer of size %d", len);
1263 		WARN_ON_ONCE(1);
1264 		return NULL;
1265 	}
1266 
1267 	idx = srcu_read_lock(&connections_srcu);
1268 	con = nodeid2con(nodeid, 0);
1269 	if (WARN_ON_ONCE(!con)) {
1270 		srcu_read_unlock(&connections_srcu, idx);
1271 		return NULL;
1272 	}
1273 
1274 	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1275 	if (!msg) {
1276 		srcu_read_unlock(&connections_srcu, idx);
1277 		return NULL;
1278 	}
1279 
1280 	/* for dlm_lowcomms_commit_msg() */
1281 	kref_get(&msg->ref);
1282 	/* we assume if successful commit must called */
1283 	msg->idx = idx;
1284 	return msg;
1285 }
1286 #endif
1287 
1288 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1289 {
1290 	struct writequeue_entry *e = msg->entry;
1291 	struct connection *con = e->con;
1292 	int users;
1293 
1294 	spin_lock_bh(&con->writequeue_lock);
1295 	kref_get(&msg->ref);
1296 	list_add(&msg->list, &e->msgs);
1297 
1298 	users = --e->users;
1299 	if (users)
1300 		goto out;
1301 
1302 	e->len = DLM_WQ_LENGTH_BYTES(e);
1303 
1304 	lowcomms_queue_swork(con);
1305 
1306 out:
1307 	spin_unlock_bh(&con->writequeue_lock);
1308 	return;
1309 }
1310 
1311 /* avoid false positive for nodes_srcu, lock was happen in
1312  * dlm_lowcomms_new_msg
1313  */
1314 #ifndef __CHECKER__
1315 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1316 {
1317 	_dlm_lowcomms_commit_msg(msg);
1318 	srcu_read_unlock(&connections_srcu, msg->idx);
1319 	/* because dlm_lowcomms_new_msg() */
1320 	kref_put(&msg->ref, dlm_msg_release);
1321 }
1322 #endif
1323 
1324 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1325 {
1326 	kref_put(&msg->ref, dlm_msg_release);
1327 }
1328 
1329 /* does not held connections_srcu, usage lowcomms_error_report only */
1330 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1331 {
1332 	struct dlm_msg *msg_resend;
1333 	char *ppc;
1334 
1335 	if (msg->retransmit)
1336 		return 1;
1337 
1338 	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1339 					      GFP_ATOMIC, &ppc, NULL, NULL);
1340 	if (!msg_resend)
1341 		return -ENOMEM;
1342 
1343 	msg->retransmit = true;
1344 	kref_get(&msg->ref);
1345 	msg_resend->orig_msg = msg;
1346 
1347 	memcpy(ppc, msg->ppc, msg->len);
1348 	_dlm_lowcomms_commit_msg(msg_resend);
1349 	dlm_lowcomms_put_msg(msg_resend);
1350 
1351 	return 0;
1352 }
1353 
1354 /* Send a message */
1355 static int send_to_sock(struct connection *con)
1356 {
1357 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1358 	struct writequeue_entry *e;
1359 	int len, offset, ret;
1360 
1361 	spin_lock_bh(&con->writequeue_lock);
1362 	e = con_next_wq(con);
1363 	if (!e) {
1364 		clear_bit(CF_SEND_PENDING, &con->flags);
1365 		spin_unlock_bh(&con->writequeue_lock);
1366 		return DLM_IO_END;
1367 	}
1368 
1369 	len = e->len;
1370 	offset = e->offset;
1371 	WARN_ON_ONCE(len == 0 && e->users == 0);
1372 	spin_unlock_bh(&con->writequeue_lock);
1373 
1374 	ret = kernel_sendpage(con->sock, e->page, offset, len,
1375 			      msg_flags);
1376 	trace_dlm_send(con->nodeid, ret);
1377 	if (ret == -EAGAIN || ret == 0) {
1378 		lock_sock(con->sock->sk);
1379 		spin_lock_bh(&con->writequeue_lock);
1380 		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1381 		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1382 			/* Notify TCP that we're limited by the
1383 			 * application window size.
1384 			 */
1385 			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1386 			con->sock->sk->sk_write_pending++;
1387 
1388 			clear_bit(CF_SEND_PENDING, &con->flags);
1389 			spin_unlock_bh(&con->writequeue_lock);
1390 			release_sock(con->sock->sk);
1391 
1392 			/* wait for write_space() event */
1393 			return DLM_IO_END;
1394 		}
1395 		spin_unlock_bh(&con->writequeue_lock);
1396 		release_sock(con->sock->sk);
1397 
1398 		return DLM_IO_RESCHED;
1399 	} else if (ret < 0) {
1400 		return ret;
1401 	}
1402 
1403 	spin_lock_bh(&con->writequeue_lock);
1404 	writequeue_entry_complete(e, ret);
1405 	spin_unlock_bh(&con->writequeue_lock);
1406 
1407 	return DLM_IO_SUCCESS;
1408 }
1409 
1410 static void clean_one_writequeue(struct connection *con)
1411 {
1412 	struct writequeue_entry *e, *safe;
1413 
1414 	spin_lock_bh(&con->writequeue_lock);
1415 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1416 		free_entry(e);
1417 	}
1418 	spin_unlock_bh(&con->writequeue_lock);
1419 }
1420 
1421 static void connection_release(struct rcu_head *rcu)
1422 {
1423 	struct connection *con = container_of(rcu, struct connection, rcu);
1424 
1425 	WARN_ON_ONCE(!list_empty(&con->writequeue));
1426 	WARN_ON_ONCE(con->sock);
1427 	kfree(con);
1428 }
1429 
1430 /* Called from recovery when it knows that a node has
1431    left the cluster */
1432 int dlm_lowcomms_close(int nodeid)
1433 {
1434 	struct connection *con;
1435 	int idx;
1436 
1437 	log_print("closing connection to node %d", nodeid);
1438 
1439 	idx = srcu_read_lock(&connections_srcu);
1440 	con = nodeid2con(nodeid, 0);
1441 	if (WARN_ON_ONCE(!con)) {
1442 		srcu_read_unlock(&connections_srcu, idx);
1443 		return -ENOENT;
1444 	}
1445 
1446 	stop_connection_io(con);
1447 	log_print("io handling for node: %d stopped", nodeid);
1448 	close_connection(con, true);
1449 
1450 	spin_lock(&connections_lock);
1451 	hlist_del_rcu(&con->list);
1452 	spin_unlock(&connections_lock);
1453 
1454 	clean_one_writequeue(con);
1455 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1456 	if (con->othercon) {
1457 		clean_one_writequeue(con->othercon);
1458 		if (con->othercon)
1459 			call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1460 	}
1461 	srcu_read_unlock(&connections_srcu, idx);
1462 
1463 	/* for debugging we print when we are done to compare with other
1464 	 * messages in between. This function need to be correctly synchronized
1465 	 * with io handling
1466 	 */
1467 	log_print("closing connection to node %d done", nodeid);
1468 
1469 	return 0;
1470 }
1471 
1472 /* Receive worker function */
1473 static void process_recv_sockets(struct work_struct *work)
1474 {
1475 	struct connection *con = container_of(work, struct connection, rwork);
1476 	int ret, buflen;
1477 
1478 	down_read(&con->sock_lock);
1479 	if (!con->sock) {
1480 		up_read(&con->sock_lock);
1481 		return;
1482 	}
1483 
1484 	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1485 	do {
1486 		ret = receive_from_sock(con, buflen);
1487 	} while (ret == DLM_IO_SUCCESS);
1488 	up_read(&con->sock_lock);
1489 
1490 	switch (ret) {
1491 	case DLM_IO_END:
1492 		/* CF_RECV_PENDING cleared */
1493 		break;
1494 	case DLM_IO_EOF:
1495 		close_connection(con, false);
1496 		/* CF_RECV_PENDING cleared */
1497 		break;
1498 	case DLM_IO_RESCHED:
1499 		cond_resched();
1500 		queue_work(io_workqueue, &con->rwork);
1501 		/* CF_RECV_PENDING not cleared */
1502 		break;
1503 	default:
1504 		if (ret < 0) {
1505 			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1506 				close_connection(con, false);
1507 			} else {
1508 				spin_lock_bh(&con->writequeue_lock);
1509 				lowcomms_queue_swork(con);
1510 				spin_unlock_bh(&con->writequeue_lock);
1511 			}
1512 
1513 			/* CF_RECV_PENDING cleared for othercon
1514 			 * we trigger send queue if not already done
1515 			 * and process_send_sockets will handle it
1516 			 */
1517 			break;
1518 		}
1519 
1520 		WARN_ON_ONCE(1);
1521 		break;
1522 	}
1523 }
1524 
1525 static void process_listen_recv_socket(struct work_struct *work)
1526 {
1527 	int ret;
1528 
1529 	if (WARN_ON_ONCE(!listen_con.sock))
1530 		return;
1531 
1532 	do {
1533 		ret = accept_from_sock();
1534 	} while (ret == DLM_IO_SUCCESS);
1535 
1536 	if (ret < 0)
1537 		log_print("critical error accepting connection: %d", ret);
1538 }
1539 
1540 static int dlm_connect(struct connection *con)
1541 {
1542 	struct sockaddr_storage addr;
1543 	int result, addr_len;
1544 	struct socket *sock;
1545 	unsigned int mark;
1546 
1547 	memset(&addr, 0, sizeof(addr));
1548 	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1549 				dlm_proto_ops->try_new_addr, &mark);
1550 	if (result < 0) {
1551 		log_print("no address for nodeid %d", con->nodeid);
1552 		return result;
1553 	}
1554 
1555 	/* Create a socket to communicate with */
1556 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1557 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1558 	if (result < 0)
1559 		return result;
1560 
1561 	sock_set_mark(sock->sk, mark);
1562 	dlm_proto_ops->sockopts(sock);
1563 
1564 	result = dlm_proto_ops->bind(sock);
1565 	if (result < 0) {
1566 		sock_release(sock);
1567 		return result;
1568 	}
1569 
1570 	add_sock(sock, con);
1571 
1572 	log_print_ratelimited("connecting to %d", con->nodeid);
1573 	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1574 	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1575 					addr_len);
1576 	switch (result) {
1577 	case -EINPROGRESS:
1578 		/* not an error */
1579 		fallthrough;
1580 	case 0:
1581 		break;
1582 	default:
1583 		if (result < 0)
1584 			dlm_close_sock(&con->sock);
1585 
1586 		break;
1587 	}
1588 
1589 	return result;
1590 }
1591 
1592 /* Send worker function */
1593 static void process_send_sockets(struct work_struct *work)
1594 {
1595 	struct connection *con = container_of(work, struct connection, swork);
1596 	int ret;
1597 
1598 	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1599 
1600 	down_read(&con->sock_lock);
1601 	if (!con->sock) {
1602 		up_read(&con->sock_lock);
1603 		down_write(&con->sock_lock);
1604 		if (!con->sock) {
1605 			ret = dlm_connect(con);
1606 			switch (ret) {
1607 			case 0:
1608 				break;
1609 			case -EINPROGRESS:
1610 				/* avoid spamming resched on connection
1611 				 * we might can switch to a state_change
1612 				 * event based mechanism if established
1613 				 */
1614 				msleep(100);
1615 				break;
1616 			default:
1617 				/* CF_SEND_PENDING not cleared */
1618 				up_write(&con->sock_lock);
1619 				log_print("connect to node %d try %d error %d",
1620 					  con->nodeid, con->retries++, ret);
1621 				msleep(1000);
1622 				/* For now we try forever to reconnect. In
1623 				 * future we should send a event to cluster
1624 				 * manager to fence itself after certain amount
1625 				 * of retries.
1626 				 */
1627 				queue_work(io_workqueue, &con->swork);
1628 				return;
1629 			}
1630 		}
1631 		downgrade_write(&con->sock_lock);
1632 	}
1633 
1634 	do {
1635 		ret = send_to_sock(con);
1636 	} while (ret == DLM_IO_SUCCESS);
1637 	up_read(&con->sock_lock);
1638 
1639 	switch (ret) {
1640 	case DLM_IO_END:
1641 		/* CF_SEND_PENDING cleared */
1642 		break;
1643 	case DLM_IO_RESCHED:
1644 		/* CF_SEND_PENDING not cleared */
1645 		cond_resched();
1646 		queue_work(io_workqueue, &con->swork);
1647 		break;
1648 	default:
1649 		if (ret < 0) {
1650 			close_connection(con, false);
1651 
1652 			/* CF_SEND_PENDING cleared */
1653 			spin_lock_bh(&con->writequeue_lock);
1654 			lowcomms_queue_swork(con);
1655 			spin_unlock_bh(&con->writequeue_lock);
1656 			break;
1657 		}
1658 
1659 		WARN_ON_ONCE(1);
1660 		break;
1661 	}
1662 }
1663 
1664 static void work_stop(void)
1665 {
1666 	if (io_workqueue) {
1667 		destroy_workqueue(io_workqueue);
1668 		io_workqueue = NULL;
1669 	}
1670 
1671 	if (process_workqueue) {
1672 		destroy_workqueue(process_workqueue);
1673 		process_workqueue = NULL;
1674 	}
1675 }
1676 
1677 static int work_start(void)
1678 {
1679 	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM,
1680 				       0);
1681 	if (!io_workqueue) {
1682 		log_print("can't start dlm_io");
1683 		return -ENOMEM;
1684 	}
1685 
1686 	/* ordered dlm message process queue,
1687 	 * should be converted to a tasklet
1688 	 */
1689 	process_workqueue = alloc_ordered_workqueue("dlm_process",
1690 						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1691 	if (!process_workqueue) {
1692 		log_print("can't start dlm_process");
1693 		destroy_workqueue(io_workqueue);
1694 		io_workqueue = NULL;
1695 		return -ENOMEM;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 void dlm_lowcomms_shutdown(void)
1702 {
1703 	/* stop lowcomms_listen_data_ready calls */
1704 	lock_sock(listen_con.sock->sk);
1705 	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1706 	release_sock(listen_con.sock->sk);
1707 
1708 	cancel_work_sync(&listen_con.rwork);
1709 	dlm_close_sock(&listen_con.sock);
1710 
1711 	flush_workqueue(process_workqueue);
1712 }
1713 
1714 void dlm_lowcomms_shutdown_node(int nodeid, bool force)
1715 {
1716 	struct connection *con;
1717 	int idx;
1718 
1719 	idx = srcu_read_lock(&connections_srcu);
1720 	con = nodeid2con(nodeid, 0);
1721 	if (WARN_ON_ONCE(!con)) {
1722 		srcu_read_unlock(&connections_srcu, idx);
1723 		return;
1724 	}
1725 
1726 	flush_work(&con->swork);
1727 	stop_connection_io(con);
1728 	WARN_ON_ONCE(!force && !list_empty(&con->writequeue));
1729 	close_connection(con, true);
1730 	clean_one_writequeue(con);
1731 	if (con->othercon)
1732 		clean_one_writequeue(con->othercon);
1733 	allow_connection_io(con);
1734 	srcu_read_unlock(&connections_srcu, idx);
1735 }
1736 
1737 void dlm_lowcomms_stop(void)
1738 {
1739 	work_stop();
1740 	dlm_proto_ops = NULL;
1741 }
1742 
1743 static int dlm_listen_for_all(void)
1744 {
1745 	struct socket *sock;
1746 	int result;
1747 
1748 	log_print("Using %s for communications",
1749 		  dlm_proto_ops->name);
1750 
1751 	result = dlm_proto_ops->listen_validate();
1752 	if (result < 0)
1753 		return result;
1754 
1755 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1756 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1757 	if (result < 0) {
1758 		log_print("Can't create comms socket: %d", result);
1759 		return result;
1760 	}
1761 
1762 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1763 	dlm_proto_ops->listen_sockopts(sock);
1764 
1765 	result = dlm_proto_ops->listen_bind(sock);
1766 	if (result < 0)
1767 		goto out;
1768 
1769 	lock_sock(sock->sk);
1770 	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1771 	listen_sock.sk_write_space = sock->sk->sk_write_space;
1772 	listen_sock.sk_error_report = sock->sk->sk_error_report;
1773 	listen_sock.sk_state_change = sock->sk->sk_state_change;
1774 
1775 	listen_con.sock = sock;
1776 
1777 	sock->sk->sk_allocation = GFP_NOFS;
1778 	sock->sk->sk_use_task_frag = false;
1779 	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1780 	release_sock(sock->sk);
1781 
1782 	result = sock->ops->listen(sock, 5);
1783 	if (result < 0) {
1784 		dlm_close_sock(&listen_con.sock);
1785 		return result;
1786 	}
1787 
1788 	return 0;
1789 
1790 out:
1791 	sock_release(sock);
1792 	return result;
1793 }
1794 
1795 static int dlm_tcp_bind(struct socket *sock)
1796 {
1797 	struct sockaddr_storage src_addr;
1798 	int result, addr_len;
1799 
1800 	/* Bind to our cluster-known address connecting to avoid
1801 	 * routing problems.
1802 	 */
1803 	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1804 	make_sockaddr(&src_addr, 0, &addr_len);
1805 
1806 	result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1807 				 addr_len);
1808 	if (result < 0) {
1809 		/* This *may* not indicate a critical error */
1810 		log_print("could not bind for connect: %d", result);
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1817 			   struct sockaddr *addr, int addr_len)
1818 {
1819 	return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1820 }
1821 
1822 static int dlm_tcp_listen_validate(void)
1823 {
1824 	/* We don't support multi-homed hosts */
1825 	if (dlm_local_count > 1) {
1826 		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1827 		return -EINVAL;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static void dlm_tcp_sockopts(struct socket *sock)
1834 {
1835 	/* Turn off Nagle's algorithm */
1836 	tcp_sock_set_nodelay(sock->sk);
1837 }
1838 
1839 static void dlm_tcp_listen_sockopts(struct socket *sock)
1840 {
1841 	dlm_tcp_sockopts(sock);
1842 	sock_set_reuseaddr(sock->sk);
1843 }
1844 
1845 static int dlm_tcp_listen_bind(struct socket *sock)
1846 {
1847 	int addr_len;
1848 
1849 	/* Bind to our port */
1850 	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1851 	return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1852 			       addr_len);
1853 }
1854 
1855 static const struct dlm_proto_ops dlm_tcp_ops = {
1856 	.name = "TCP",
1857 	.proto = IPPROTO_TCP,
1858 	.connect = dlm_tcp_connect,
1859 	.sockopts = dlm_tcp_sockopts,
1860 	.bind = dlm_tcp_bind,
1861 	.listen_validate = dlm_tcp_listen_validate,
1862 	.listen_sockopts = dlm_tcp_listen_sockopts,
1863 	.listen_bind = dlm_tcp_listen_bind,
1864 };
1865 
1866 static int dlm_sctp_bind(struct socket *sock)
1867 {
1868 	return sctp_bind_addrs(sock, 0);
1869 }
1870 
1871 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1872 			    struct sockaddr *addr, int addr_len)
1873 {
1874 	int ret;
1875 
1876 	/*
1877 	 * Make sock->ops->connect() function return in specified time,
1878 	 * since O_NONBLOCK argument in connect() function does not work here,
1879 	 * then, we should restore the default value of this attribute.
1880 	 */
1881 	sock_set_sndtimeo(sock->sk, 5);
1882 	ret = sock->ops->connect(sock, addr, addr_len, 0);
1883 	sock_set_sndtimeo(sock->sk, 0);
1884 	return ret;
1885 }
1886 
1887 static int dlm_sctp_listen_validate(void)
1888 {
1889 	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1890 		log_print("SCTP is not enabled by this kernel");
1891 		return -EOPNOTSUPP;
1892 	}
1893 
1894 	request_module("sctp");
1895 	return 0;
1896 }
1897 
1898 static int dlm_sctp_bind_listen(struct socket *sock)
1899 {
1900 	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1901 }
1902 
1903 static void dlm_sctp_sockopts(struct socket *sock)
1904 {
1905 	/* Turn off Nagle's algorithm */
1906 	sctp_sock_set_nodelay(sock->sk);
1907 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1908 }
1909 
1910 static const struct dlm_proto_ops dlm_sctp_ops = {
1911 	.name = "SCTP",
1912 	.proto = IPPROTO_SCTP,
1913 	.try_new_addr = true,
1914 	.connect = dlm_sctp_connect,
1915 	.sockopts = dlm_sctp_sockopts,
1916 	.bind = dlm_sctp_bind,
1917 	.listen_validate = dlm_sctp_listen_validate,
1918 	.listen_sockopts = dlm_sctp_sockopts,
1919 	.listen_bind = dlm_sctp_bind_listen,
1920 };
1921 
1922 int dlm_lowcomms_start(void)
1923 {
1924 	int error;
1925 
1926 	init_local();
1927 	if (!dlm_local_count) {
1928 		error = -ENOTCONN;
1929 		log_print("no local IP address has been set");
1930 		goto fail;
1931 	}
1932 
1933 	error = work_start();
1934 	if (error)
1935 		goto fail;
1936 
1937 	/* Start listening */
1938 	switch (dlm_config.ci_protocol) {
1939 	case DLM_PROTO_TCP:
1940 		dlm_proto_ops = &dlm_tcp_ops;
1941 		break;
1942 	case DLM_PROTO_SCTP:
1943 		dlm_proto_ops = &dlm_sctp_ops;
1944 		break;
1945 	default:
1946 		log_print("Invalid protocol identifier %d set",
1947 			  dlm_config.ci_protocol);
1948 		error = -EINVAL;
1949 		goto fail_proto_ops;
1950 	}
1951 
1952 	error = dlm_listen_for_all();
1953 	if (error)
1954 		goto fail_listen;
1955 
1956 	return 0;
1957 
1958 fail_listen:
1959 	dlm_proto_ops = NULL;
1960 fail_proto_ops:
1961 	work_stop();
1962 fail:
1963 	return error;
1964 }
1965 
1966 void dlm_lowcomms_init(void)
1967 {
1968 	int i;
1969 
1970 	for (i = 0; i < CONN_HASH_SIZE; i++)
1971 		INIT_HLIST_HEAD(&connection_hash[i]);
1972 
1973 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1974 }
1975 
1976 void dlm_lowcomms_exit(void)
1977 {
1978 	struct connection *con;
1979 	int i, idx;
1980 
1981 	idx = srcu_read_lock(&connections_srcu);
1982 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1983 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1984 			spin_lock(&connections_lock);
1985 			hlist_del_rcu(&con->list);
1986 			spin_unlock(&connections_lock);
1987 
1988 			if (con->othercon)
1989 				call_srcu(&connections_srcu, &con->othercon->rcu,
1990 					  connection_release);
1991 			call_srcu(&connections_srcu, &con->rcu, connection_release);
1992 		}
1993 	}
1994 	srcu_read_unlock(&connections_srcu, idx);
1995 }
1996