1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/pmem.h> 29 #include <linux/sched.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/iomap.h> 35 #include "internal.h" 36 37 /* We choose 4096 entries - same as per-zone page wait tables */ 38 #define DAX_WAIT_TABLE_BITS 12 39 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 40 41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 42 43 static int __init init_dax_wait_table(void) 44 { 45 int i; 46 47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 48 init_waitqueue_head(wait_table + i); 49 return 0; 50 } 51 fs_initcall(init_dax_wait_table); 52 53 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) 54 { 55 struct request_queue *q = bdev->bd_queue; 56 long rc = -EIO; 57 58 dax->addr = ERR_PTR(-EIO); 59 if (blk_queue_enter(q, true) != 0) 60 return rc; 61 62 rc = bdev_direct_access(bdev, dax); 63 if (rc < 0) { 64 dax->addr = ERR_PTR(rc); 65 blk_queue_exit(q); 66 return rc; 67 } 68 return rc; 69 } 70 71 static void dax_unmap_atomic(struct block_device *bdev, 72 const struct blk_dax_ctl *dax) 73 { 74 if (IS_ERR(dax->addr)) 75 return; 76 blk_queue_exit(bdev->bd_queue); 77 } 78 79 static int dax_is_pmd_entry(void *entry) 80 { 81 return (unsigned long)entry & RADIX_DAX_PMD; 82 } 83 84 static int dax_is_pte_entry(void *entry) 85 { 86 return !((unsigned long)entry & RADIX_DAX_PMD); 87 } 88 89 static int dax_is_zero_entry(void *entry) 90 { 91 return (unsigned long)entry & RADIX_DAX_HZP; 92 } 93 94 static int dax_is_empty_entry(void *entry) 95 { 96 return (unsigned long)entry & RADIX_DAX_EMPTY; 97 } 98 99 struct page *read_dax_sector(struct block_device *bdev, sector_t n) 100 { 101 struct page *page = alloc_pages(GFP_KERNEL, 0); 102 struct blk_dax_ctl dax = { 103 .size = PAGE_SIZE, 104 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), 105 }; 106 long rc; 107 108 if (!page) 109 return ERR_PTR(-ENOMEM); 110 111 rc = dax_map_atomic(bdev, &dax); 112 if (rc < 0) 113 return ERR_PTR(rc); 114 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); 115 dax_unmap_atomic(bdev, &dax); 116 return page; 117 } 118 119 /* 120 * DAX radix tree locking 121 */ 122 struct exceptional_entry_key { 123 struct address_space *mapping; 124 pgoff_t entry_start; 125 }; 126 127 struct wait_exceptional_entry_queue { 128 wait_queue_t wait; 129 struct exceptional_entry_key key; 130 }; 131 132 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 133 pgoff_t index, void *entry, struct exceptional_entry_key *key) 134 { 135 unsigned long hash; 136 137 /* 138 * If 'entry' is a PMD, align the 'index' that we use for the wait 139 * queue to the start of that PMD. This ensures that all offsets in 140 * the range covered by the PMD map to the same bit lock. 141 */ 142 if (dax_is_pmd_entry(entry)) 143 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1); 144 145 key->mapping = mapping; 146 key->entry_start = index; 147 148 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); 149 return wait_table + hash; 150 } 151 152 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, 153 int sync, void *keyp) 154 { 155 struct exceptional_entry_key *key = keyp; 156 struct wait_exceptional_entry_queue *ewait = 157 container_of(wait, struct wait_exceptional_entry_queue, wait); 158 159 if (key->mapping != ewait->key.mapping || 160 key->entry_start != ewait->key.entry_start) 161 return 0; 162 return autoremove_wake_function(wait, mode, sync, NULL); 163 } 164 165 /* 166 * Check whether the given slot is locked. The function must be called with 167 * mapping->tree_lock held 168 */ 169 static inline int slot_locked(struct address_space *mapping, void **slot) 170 { 171 unsigned long entry = (unsigned long) 172 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 173 return entry & RADIX_DAX_ENTRY_LOCK; 174 } 175 176 /* 177 * Mark the given slot is locked. The function must be called with 178 * mapping->tree_lock held 179 */ 180 static inline void *lock_slot(struct address_space *mapping, void **slot) 181 { 182 unsigned long entry = (unsigned long) 183 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 184 185 entry |= RADIX_DAX_ENTRY_LOCK; 186 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 187 return (void *)entry; 188 } 189 190 /* 191 * Mark the given slot is unlocked. The function must be called with 192 * mapping->tree_lock held 193 */ 194 static inline void *unlock_slot(struct address_space *mapping, void **slot) 195 { 196 unsigned long entry = (unsigned long) 197 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 198 199 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 200 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 201 return (void *)entry; 202 } 203 204 /* 205 * Lookup entry in radix tree, wait for it to become unlocked if it is 206 * exceptional entry and return it. The caller must call 207 * put_unlocked_mapping_entry() when he decided not to lock the entry or 208 * put_locked_mapping_entry() when he locked the entry and now wants to 209 * unlock it. 210 * 211 * The function must be called with mapping->tree_lock held. 212 */ 213 static void *get_unlocked_mapping_entry(struct address_space *mapping, 214 pgoff_t index, void ***slotp) 215 { 216 void *entry, **slot; 217 struct wait_exceptional_entry_queue ewait; 218 wait_queue_head_t *wq; 219 220 init_wait(&ewait.wait); 221 ewait.wait.func = wake_exceptional_entry_func; 222 223 for (;;) { 224 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, 225 &slot); 226 if (!entry || !radix_tree_exceptional_entry(entry) || 227 !slot_locked(mapping, slot)) { 228 if (slotp) 229 *slotp = slot; 230 return entry; 231 } 232 233 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); 234 prepare_to_wait_exclusive(wq, &ewait.wait, 235 TASK_UNINTERRUPTIBLE); 236 spin_unlock_irq(&mapping->tree_lock); 237 schedule(); 238 finish_wait(wq, &ewait.wait); 239 spin_lock_irq(&mapping->tree_lock); 240 } 241 } 242 243 static void put_locked_mapping_entry(struct address_space *mapping, 244 pgoff_t index, void *entry) 245 { 246 if (!radix_tree_exceptional_entry(entry)) { 247 unlock_page(entry); 248 put_page(entry); 249 } else { 250 dax_unlock_mapping_entry(mapping, index); 251 } 252 } 253 254 /* 255 * Called when we are done with radix tree entry we looked up via 256 * get_unlocked_mapping_entry() and which we didn't lock in the end. 257 */ 258 static void put_unlocked_mapping_entry(struct address_space *mapping, 259 pgoff_t index, void *entry) 260 { 261 if (!radix_tree_exceptional_entry(entry)) 262 return; 263 264 /* We have to wake up next waiter for the radix tree entry lock */ 265 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 266 } 267 268 /* 269 * Find radix tree entry at given index. If it points to a page, return with 270 * the page locked. If it points to the exceptional entry, return with the 271 * radix tree entry locked. If the radix tree doesn't contain given index, 272 * create empty exceptional entry for the index and return with it locked. 273 * 274 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will 275 * either return that locked entry or will return an error. This error will 276 * happen if there are any 4k entries (either zero pages or DAX entries) 277 * within the 2MiB range that we are requesting. 278 * 279 * We always favor 4k entries over 2MiB entries. There isn't a flow where we 280 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB 281 * insertion will fail if it finds any 4k entries already in the tree, and a 282 * 4k insertion will cause an existing 2MiB entry to be unmapped and 283 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as 284 * well as 2MiB empty entries. 285 * 286 * The exception to this downgrade path is for 2MiB DAX PMD entries that have 287 * real storage backing them. We will leave these real 2MiB DAX entries in 288 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. 289 * 290 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 291 * persistent memory the benefit is doubtful. We can add that later if we can 292 * show it helps. 293 */ 294 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, 295 unsigned long size_flag) 296 { 297 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ 298 void *entry, **slot; 299 300 restart: 301 spin_lock_irq(&mapping->tree_lock); 302 entry = get_unlocked_mapping_entry(mapping, index, &slot); 303 304 if (entry) { 305 if (size_flag & RADIX_DAX_PMD) { 306 if (!radix_tree_exceptional_entry(entry) || 307 dax_is_pte_entry(entry)) { 308 put_unlocked_mapping_entry(mapping, index, 309 entry); 310 entry = ERR_PTR(-EEXIST); 311 goto out_unlock; 312 } 313 } else { /* trying to grab a PTE entry */ 314 if (radix_tree_exceptional_entry(entry) && 315 dax_is_pmd_entry(entry) && 316 (dax_is_zero_entry(entry) || 317 dax_is_empty_entry(entry))) { 318 pmd_downgrade = true; 319 } 320 } 321 } 322 323 /* No entry for given index? Make sure radix tree is big enough. */ 324 if (!entry || pmd_downgrade) { 325 int err; 326 327 if (pmd_downgrade) { 328 /* 329 * Make sure 'entry' remains valid while we drop 330 * mapping->tree_lock. 331 */ 332 entry = lock_slot(mapping, slot); 333 } 334 335 spin_unlock_irq(&mapping->tree_lock); 336 /* 337 * Besides huge zero pages the only other thing that gets 338 * downgraded are empty entries which don't need to be 339 * unmapped. 340 */ 341 if (pmd_downgrade && dax_is_zero_entry(entry)) 342 unmap_mapping_range(mapping, 343 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 344 345 err = radix_tree_preload( 346 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 347 if (err) { 348 if (pmd_downgrade) 349 put_locked_mapping_entry(mapping, index, entry); 350 return ERR_PTR(err); 351 } 352 spin_lock_irq(&mapping->tree_lock); 353 354 if (pmd_downgrade) { 355 radix_tree_delete(&mapping->page_tree, index); 356 mapping->nrexceptional--; 357 dax_wake_mapping_entry_waiter(mapping, index, entry, 358 true); 359 } 360 361 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); 362 363 err = __radix_tree_insert(&mapping->page_tree, index, 364 dax_radix_order(entry), entry); 365 radix_tree_preload_end(); 366 if (err) { 367 spin_unlock_irq(&mapping->tree_lock); 368 /* 369 * Someone already created the entry? This is a 370 * normal failure when inserting PMDs in a range 371 * that already contains PTEs. In that case we want 372 * to return -EEXIST immediately. 373 */ 374 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD)) 375 goto restart; 376 /* 377 * Our insertion of a DAX PMD entry failed, most 378 * likely because it collided with a PTE sized entry 379 * at a different index in the PMD range. We haven't 380 * inserted anything into the radix tree and have no 381 * waiters to wake. 382 */ 383 return ERR_PTR(err); 384 } 385 /* Good, we have inserted empty locked entry into the tree. */ 386 mapping->nrexceptional++; 387 spin_unlock_irq(&mapping->tree_lock); 388 return entry; 389 } 390 /* Normal page in radix tree? */ 391 if (!radix_tree_exceptional_entry(entry)) { 392 struct page *page = entry; 393 394 get_page(page); 395 spin_unlock_irq(&mapping->tree_lock); 396 lock_page(page); 397 /* Page got truncated? Retry... */ 398 if (unlikely(page->mapping != mapping)) { 399 unlock_page(page); 400 put_page(page); 401 goto restart; 402 } 403 return page; 404 } 405 entry = lock_slot(mapping, slot); 406 out_unlock: 407 spin_unlock_irq(&mapping->tree_lock); 408 return entry; 409 } 410 411 /* 412 * We do not necessarily hold the mapping->tree_lock when we call this 413 * function so it is possible that 'entry' is no longer a valid item in the 414 * radix tree. This is okay because all we really need to do is to find the 415 * correct waitqueue where tasks might be waiting for that old 'entry' and 416 * wake them. 417 */ 418 void dax_wake_mapping_entry_waiter(struct address_space *mapping, 419 pgoff_t index, void *entry, bool wake_all) 420 { 421 struct exceptional_entry_key key; 422 wait_queue_head_t *wq; 423 424 wq = dax_entry_waitqueue(mapping, index, entry, &key); 425 426 /* 427 * Checking for locked entry and prepare_to_wait_exclusive() happens 428 * under mapping->tree_lock, ditto for entry handling in our callers. 429 * So at this point all tasks that could have seen our entry locked 430 * must be in the waitqueue and the following check will see them. 431 */ 432 if (waitqueue_active(wq)) 433 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 434 } 435 436 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index) 437 { 438 void *entry, **slot; 439 440 spin_lock_irq(&mapping->tree_lock); 441 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); 442 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || 443 !slot_locked(mapping, slot))) { 444 spin_unlock_irq(&mapping->tree_lock); 445 return; 446 } 447 unlock_slot(mapping, slot); 448 spin_unlock_irq(&mapping->tree_lock); 449 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 450 } 451 452 /* 453 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 454 * entry to get unlocked before deleting it. 455 */ 456 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 457 { 458 void *entry; 459 460 spin_lock_irq(&mapping->tree_lock); 461 entry = get_unlocked_mapping_entry(mapping, index, NULL); 462 /* 463 * This gets called from truncate / punch_hole path. As such, the caller 464 * must hold locks protecting against concurrent modifications of the 465 * radix tree (usually fs-private i_mmap_sem for writing). Since the 466 * caller has seen exceptional entry for this index, we better find it 467 * at that index as well... 468 */ 469 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) { 470 spin_unlock_irq(&mapping->tree_lock); 471 return 0; 472 } 473 radix_tree_delete(&mapping->page_tree, index); 474 mapping->nrexceptional--; 475 spin_unlock_irq(&mapping->tree_lock); 476 dax_wake_mapping_entry_waiter(mapping, index, entry, true); 477 478 return 1; 479 } 480 481 /* 482 * The user has performed a load from a hole in the file. Allocating 483 * a new page in the file would cause excessive storage usage for 484 * workloads with sparse files. We allocate a page cache page instead. 485 * We'll kick it out of the page cache if it's ever written to, 486 * otherwise it will simply fall out of the page cache under memory 487 * pressure without ever having been dirtied. 488 */ 489 static int dax_load_hole(struct address_space *mapping, void *entry, 490 struct vm_fault *vmf) 491 { 492 struct page *page; 493 494 /* Hole page already exists? Return it... */ 495 if (!radix_tree_exceptional_entry(entry)) { 496 vmf->page = entry; 497 return VM_FAULT_LOCKED; 498 } 499 500 /* This will replace locked radix tree entry with a hole page */ 501 page = find_or_create_page(mapping, vmf->pgoff, 502 vmf->gfp_mask | __GFP_ZERO); 503 if (!page) { 504 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 505 return VM_FAULT_OOM; 506 } 507 vmf->page = page; 508 return VM_FAULT_LOCKED; 509 } 510 511 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, 512 struct page *to, unsigned long vaddr) 513 { 514 struct blk_dax_ctl dax = { 515 .sector = sector, 516 .size = size, 517 }; 518 void *vto; 519 520 if (dax_map_atomic(bdev, &dax) < 0) 521 return PTR_ERR(dax.addr); 522 vto = kmap_atomic(to); 523 copy_user_page(vto, (void __force *)dax.addr, vaddr, to); 524 kunmap_atomic(vto); 525 dax_unmap_atomic(bdev, &dax); 526 return 0; 527 } 528 529 /* 530 * By this point grab_mapping_entry() has ensured that we have a locked entry 531 * of the appropriate size so we don't have to worry about downgrading PMDs to 532 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 533 * already in the tree, we will skip the insertion and just dirty the PMD as 534 * appropriate. 535 */ 536 static void *dax_insert_mapping_entry(struct address_space *mapping, 537 struct vm_fault *vmf, 538 void *entry, sector_t sector, 539 unsigned long flags) 540 { 541 struct radix_tree_root *page_tree = &mapping->page_tree; 542 int error = 0; 543 bool hole_fill = false; 544 void *new_entry; 545 pgoff_t index = vmf->pgoff; 546 547 if (vmf->flags & FAULT_FLAG_WRITE) 548 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 549 550 /* Replacing hole page with block mapping? */ 551 if (!radix_tree_exceptional_entry(entry)) { 552 hole_fill = true; 553 /* 554 * Unmap the page now before we remove it from page cache below. 555 * The page is locked so it cannot be faulted in again. 556 */ 557 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 558 PAGE_SIZE, 0); 559 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); 560 if (error) 561 return ERR_PTR(error); 562 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) { 563 /* replacing huge zero page with PMD block mapping */ 564 unmap_mapping_range(mapping, 565 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 566 } 567 568 spin_lock_irq(&mapping->tree_lock); 569 new_entry = dax_radix_locked_entry(sector, flags); 570 571 if (hole_fill) { 572 __delete_from_page_cache(entry, NULL); 573 /* Drop pagecache reference */ 574 put_page(entry); 575 error = __radix_tree_insert(page_tree, index, 576 dax_radix_order(new_entry), new_entry); 577 if (error) { 578 new_entry = ERR_PTR(error); 579 goto unlock; 580 } 581 mapping->nrexceptional++; 582 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 583 /* 584 * Only swap our new entry into the radix tree if the current 585 * entry is a zero page or an empty entry. If a normal PTE or 586 * PMD entry is already in the tree, we leave it alone. This 587 * means that if we are trying to insert a PTE and the 588 * existing entry is a PMD, we will just leave the PMD in the 589 * tree and dirty it if necessary. 590 */ 591 struct radix_tree_node *node; 592 void **slot; 593 void *ret; 594 595 ret = __radix_tree_lookup(page_tree, index, &node, &slot); 596 WARN_ON_ONCE(ret != entry); 597 __radix_tree_replace(page_tree, node, slot, 598 new_entry, NULL, NULL); 599 } 600 if (vmf->flags & FAULT_FLAG_WRITE) 601 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); 602 unlock: 603 spin_unlock_irq(&mapping->tree_lock); 604 if (hole_fill) { 605 radix_tree_preload_end(); 606 /* 607 * We don't need hole page anymore, it has been replaced with 608 * locked radix tree entry now. 609 */ 610 if (mapping->a_ops->freepage) 611 mapping->a_ops->freepage(entry); 612 unlock_page(entry); 613 put_page(entry); 614 } 615 return new_entry; 616 } 617 618 static int dax_writeback_one(struct block_device *bdev, 619 struct address_space *mapping, pgoff_t index, void *entry) 620 { 621 struct radix_tree_root *page_tree = &mapping->page_tree; 622 struct radix_tree_node *node; 623 struct blk_dax_ctl dax; 624 void **slot; 625 int ret = 0; 626 627 spin_lock_irq(&mapping->tree_lock); 628 /* 629 * Regular page slots are stabilized by the page lock even 630 * without the tree itself locked. These unlocked entries 631 * need verification under the tree lock. 632 */ 633 if (!__radix_tree_lookup(page_tree, index, &node, &slot)) 634 goto unlock; 635 if (*slot != entry) 636 goto unlock; 637 638 /* another fsync thread may have already written back this entry */ 639 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 640 goto unlock; 641 642 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 643 dax_is_zero_entry(entry))) { 644 ret = -EIO; 645 goto unlock; 646 } 647 648 /* 649 * Even if dax_writeback_mapping_range() was given a wbc->range_start 650 * in the middle of a PMD, the 'index' we are given will be aligned to 651 * the start index of the PMD, as will the sector we pull from 652 * 'entry'. This allows us to flush for PMD_SIZE and not have to 653 * worry about partial PMD writebacks. 654 */ 655 dax.sector = dax_radix_sector(entry); 656 dax.size = PAGE_SIZE << dax_radix_order(entry); 657 spin_unlock_irq(&mapping->tree_lock); 658 659 /* 660 * We cannot hold tree_lock while calling dax_map_atomic() because it 661 * eventually calls cond_resched(). 662 */ 663 ret = dax_map_atomic(bdev, &dax); 664 if (ret < 0) 665 return ret; 666 667 if (WARN_ON_ONCE(ret < dax.size)) { 668 ret = -EIO; 669 goto unmap; 670 } 671 672 wb_cache_pmem(dax.addr, dax.size); 673 674 spin_lock_irq(&mapping->tree_lock); 675 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); 676 spin_unlock_irq(&mapping->tree_lock); 677 unmap: 678 dax_unmap_atomic(bdev, &dax); 679 return ret; 680 681 unlock: 682 spin_unlock_irq(&mapping->tree_lock); 683 return ret; 684 } 685 686 /* 687 * Flush the mapping to the persistent domain within the byte range of [start, 688 * end]. This is required by data integrity operations to ensure file data is 689 * on persistent storage prior to completion of the operation. 690 */ 691 int dax_writeback_mapping_range(struct address_space *mapping, 692 struct block_device *bdev, struct writeback_control *wbc) 693 { 694 struct inode *inode = mapping->host; 695 pgoff_t start_index, end_index; 696 pgoff_t indices[PAGEVEC_SIZE]; 697 struct pagevec pvec; 698 bool done = false; 699 int i, ret = 0; 700 701 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 702 return -EIO; 703 704 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 705 return 0; 706 707 start_index = wbc->range_start >> PAGE_SHIFT; 708 end_index = wbc->range_end >> PAGE_SHIFT; 709 710 tag_pages_for_writeback(mapping, start_index, end_index); 711 712 pagevec_init(&pvec, 0); 713 while (!done) { 714 pvec.nr = find_get_entries_tag(mapping, start_index, 715 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 716 pvec.pages, indices); 717 718 if (pvec.nr == 0) 719 break; 720 721 for (i = 0; i < pvec.nr; i++) { 722 if (indices[i] > end_index) { 723 done = true; 724 break; 725 } 726 727 ret = dax_writeback_one(bdev, mapping, indices[i], 728 pvec.pages[i]); 729 if (ret < 0) 730 return ret; 731 } 732 } 733 return 0; 734 } 735 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 736 737 static int dax_insert_mapping(struct address_space *mapping, 738 struct block_device *bdev, sector_t sector, size_t size, 739 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) 740 { 741 unsigned long vaddr = (unsigned long)vmf->virtual_address; 742 struct blk_dax_ctl dax = { 743 .sector = sector, 744 .size = size, 745 }; 746 void *ret; 747 void *entry = *entryp; 748 749 if (dax_map_atomic(bdev, &dax) < 0) 750 return PTR_ERR(dax.addr); 751 dax_unmap_atomic(bdev, &dax); 752 753 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0); 754 if (IS_ERR(ret)) 755 return PTR_ERR(ret); 756 *entryp = ret; 757 758 return vm_insert_mixed(vma, vaddr, dax.pfn); 759 } 760 761 /** 762 * dax_pfn_mkwrite - handle first write to DAX page 763 * @vma: The virtual memory area where the fault occurred 764 * @vmf: The description of the fault 765 */ 766 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 767 { 768 struct file *file = vma->vm_file; 769 struct address_space *mapping = file->f_mapping; 770 void *entry; 771 pgoff_t index = vmf->pgoff; 772 773 spin_lock_irq(&mapping->tree_lock); 774 entry = get_unlocked_mapping_entry(mapping, index, NULL); 775 if (!entry || !radix_tree_exceptional_entry(entry)) 776 goto out; 777 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); 778 put_unlocked_mapping_entry(mapping, index, entry); 779 out: 780 spin_unlock_irq(&mapping->tree_lock); 781 return VM_FAULT_NOPAGE; 782 } 783 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 784 785 static bool dax_range_is_aligned(struct block_device *bdev, 786 unsigned int offset, unsigned int length) 787 { 788 unsigned short sector_size = bdev_logical_block_size(bdev); 789 790 if (!IS_ALIGNED(offset, sector_size)) 791 return false; 792 if (!IS_ALIGNED(length, sector_size)) 793 return false; 794 795 return true; 796 } 797 798 int __dax_zero_page_range(struct block_device *bdev, sector_t sector, 799 unsigned int offset, unsigned int length) 800 { 801 struct blk_dax_ctl dax = { 802 .sector = sector, 803 .size = PAGE_SIZE, 804 }; 805 806 if (dax_range_is_aligned(bdev, offset, length)) { 807 sector_t start_sector = dax.sector + (offset >> 9); 808 809 return blkdev_issue_zeroout(bdev, start_sector, 810 length >> 9, GFP_NOFS, true); 811 } else { 812 if (dax_map_atomic(bdev, &dax) < 0) 813 return PTR_ERR(dax.addr); 814 clear_pmem(dax.addr + offset, length); 815 dax_unmap_atomic(bdev, &dax); 816 } 817 return 0; 818 } 819 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 820 821 #ifdef CONFIG_FS_IOMAP 822 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 823 { 824 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9); 825 } 826 827 static loff_t 828 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 829 struct iomap *iomap) 830 { 831 struct iov_iter *iter = data; 832 loff_t end = pos + length, done = 0; 833 ssize_t ret = 0; 834 835 if (iov_iter_rw(iter) == READ) { 836 end = min(end, i_size_read(inode)); 837 if (pos >= end) 838 return 0; 839 840 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 841 return iov_iter_zero(min(length, end - pos), iter); 842 } 843 844 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 845 return -EIO; 846 847 while (pos < end) { 848 unsigned offset = pos & (PAGE_SIZE - 1); 849 struct blk_dax_ctl dax = { 0 }; 850 ssize_t map_len; 851 852 dax.sector = dax_iomap_sector(iomap, pos); 853 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK; 854 map_len = dax_map_atomic(iomap->bdev, &dax); 855 if (map_len < 0) { 856 ret = map_len; 857 break; 858 } 859 860 dax.addr += offset; 861 map_len -= offset; 862 if (map_len > end - pos) 863 map_len = end - pos; 864 865 if (iov_iter_rw(iter) == WRITE) 866 map_len = copy_from_iter_pmem(dax.addr, map_len, iter); 867 else 868 map_len = copy_to_iter(dax.addr, map_len, iter); 869 dax_unmap_atomic(iomap->bdev, &dax); 870 if (map_len <= 0) { 871 ret = map_len ? map_len : -EFAULT; 872 break; 873 } 874 875 pos += map_len; 876 length -= map_len; 877 done += map_len; 878 } 879 880 return done ? done : ret; 881 } 882 883 /** 884 * dax_iomap_rw - Perform I/O to a DAX file 885 * @iocb: The control block for this I/O 886 * @iter: The addresses to do I/O from or to 887 * @ops: iomap ops passed from the file system 888 * 889 * This function performs read and write operations to directly mapped 890 * persistent memory. The callers needs to take care of read/write exclusion 891 * and evicting any page cache pages in the region under I/O. 892 */ 893 ssize_t 894 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 895 struct iomap_ops *ops) 896 { 897 struct address_space *mapping = iocb->ki_filp->f_mapping; 898 struct inode *inode = mapping->host; 899 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 900 unsigned flags = 0; 901 902 if (iov_iter_rw(iter) == WRITE) 903 flags |= IOMAP_WRITE; 904 905 /* 906 * Yes, even DAX files can have page cache attached to them: A zeroed 907 * page is inserted into the pagecache when we have to serve a write 908 * fault on a hole. It should never be dirtied and can simply be 909 * dropped from the pagecache once we get real data for the page. 910 * 911 * XXX: This is racy against mmap, and there's nothing we can do about 912 * it. We'll eventually need to shift this down even further so that 913 * we can check if we allocated blocks over a hole first. 914 */ 915 if (mapping->nrpages) { 916 ret = invalidate_inode_pages2_range(mapping, 917 pos >> PAGE_SHIFT, 918 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT); 919 WARN_ON_ONCE(ret); 920 } 921 922 while (iov_iter_count(iter)) { 923 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 924 iter, dax_iomap_actor); 925 if (ret <= 0) 926 break; 927 pos += ret; 928 done += ret; 929 } 930 931 iocb->ki_pos += done; 932 return done ? done : ret; 933 } 934 EXPORT_SYMBOL_GPL(dax_iomap_rw); 935 936 /** 937 * dax_iomap_fault - handle a page fault on a DAX file 938 * @vma: The virtual memory area where the fault occurred 939 * @vmf: The description of the fault 940 * @ops: iomap ops passed from the file system 941 * 942 * When a page fault occurs, filesystems may call this helper in their fault 943 * or mkwrite handler for DAX files. Assumes the caller has done all the 944 * necessary locking for the page fault to proceed successfully. 945 */ 946 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 947 struct iomap_ops *ops) 948 { 949 struct address_space *mapping = vma->vm_file->f_mapping; 950 struct inode *inode = mapping->host; 951 unsigned long vaddr = (unsigned long)vmf->virtual_address; 952 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 953 sector_t sector; 954 struct iomap iomap = { 0 }; 955 unsigned flags = IOMAP_FAULT; 956 int error, major = 0; 957 int locked_status = 0; 958 void *entry; 959 960 /* 961 * Check whether offset isn't beyond end of file now. Caller is supposed 962 * to hold locks serializing us with truncate / punch hole so this is 963 * a reliable test. 964 */ 965 if (pos >= i_size_read(inode)) 966 return VM_FAULT_SIGBUS; 967 968 entry = grab_mapping_entry(mapping, vmf->pgoff, 0); 969 if (IS_ERR(entry)) { 970 error = PTR_ERR(entry); 971 goto out; 972 } 973 974 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 975 flags |= IOMAP_WRITE; 976 977 /* 978 * Note that we don't bother to use iomap_apply here: DAX required 979 * the file system block size to be equal the page size, which means 980 * that we never have to deal with more than a single extent here. 981 */ 982 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 983 if (error) 984 goto unlock_entry; 985 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 986 error = -EIO; /* fs corruption? */ 987 goto finish_iomap; 988 } 989 990 sector = dax_iomap_sector(&iomap, pos); 991 992 if (vmf->cow_page) { 993 switch (iomap.type) { 994 case IOMAP_HOLE: 995 case IOMAP_UNWRITTEN: 996 clear_user_highpage(vmf->cow_page, vaddr); 997 break; 998 case IOMAP_MAPPED: 999 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE, 1000 vmf->cow_page, vaddr); 1001 break; 1002 default: 1003 WARN_ON_ONCE(1); 1004 error = -EIO; 1005 break; 1006 } 1007 1008 if (error) 1009 goto finish_iomap; 1010 if (!radix_tree_exceptional_entry(entry)) { 1011 vmf->page = entry; 1012 locked_status = VM_FAULT_LOCKED; 1013 } else { 1014 vmf->entry = entry; 1015 locked_status = VM_FAULT_DAX_LOCKED; 1016 } 1017 goto finish_iomap; 1018 } 1019 1020 switch (iomap.type) { 1021 case IOMAP_MAPPED: 1022 if (iomap.flags & IOMAP_F_NEW) { 1023 count_vm_event(PGMAJFAULT); 1024 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1025 major = VM_FAULT_MAJOR; 1026 } 1027 error = dax_insert_mapping(mapping, iomap.bdev, sector, 1028 PAGE_SIZE, &entry, vma, vmf); 1029 break; 1030 case IOMAP_UNWRITTEN: 1031 case IOMAP_HOLE: 1032 if (!(vmf->flags & FAULT_FLAG_WRITE)) { 1033 locked_status = dax_load_hole(mapping, entry, vmf); 1034 break; 1035 } 1036 /*FALLTHRU*/ 1037 default: 1038 WARN_ON_ONCE(1); 1039 error = -EIO; 1040 break; 1041 } 1042 1043 finish_iomap: 1044 if (ops->iomap_end) { 1045 if (error) { 1046 /* keep previous error */ 1047 ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags, 1048 &iomap); 1049 } else { 1050 error = ops->iomap_end(inode, pos, PAGE_SIZE, 1051 PAGE_SIZE, flags, &iomap); 1052 } 1053 } 1054 unlock_entry: 1055 if (!locked_status || error) 1056 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 1057 out: 1058 if (error == -ENOMEM) 1059 return VM_FAULT_OOM | major; 1060 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1061 if (error < 0 && error != -EBUSY) 1062 return VM_FAULT_SIGBUS | major; 1063 if (locked_status) { 1064 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */ 1065 return locked_status; 1066 } 1067 return VM_FAULT_NOPAGE | major; 1068 } 1069 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1070 1071 #ifdef CONFIG_FS_DAX_PMD 1072 /* 1073 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 1074 * more often than one might expect in the below functions. 1075 */ 1076 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 1077 1078 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd, 1079 struct vm_fault *vmf, unsigned long address, 1080 struct iomap *iomap, loff_t pos, bool write, void **entryp) 1081 { 1082 struct address_space *mapping = vma->vm_file->f_mapping; 1083 struct block_device *bdev = iomap->bdev; 1084 struct blk_dax_ctl dax = { 1085 .sector = dax_iomap_sector(iomap, pos), 1086 .size = PMD_SIZE, 1087 }; 1088 long length = dax_map_atomic(bdev, &dax); 1089 void *ret; 1090 1091 if (length < 0) /* dax_map_atomic() failed */ 1092 return VM_FAULT_FALLBACK; 1093 if (length < PMD_SIZE) 1094 goto unmap_fallback; 1095 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) 1096 goto unmap_fallback; 1097 if (!pfn_t_devmap(dax.pfn)) 1098 goto unmap_fallback; 1099 1100 dax_unmap_atomic(bdev, &dax); 1101 1102 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector, 1103 RADIX_DAX_PMD); 1104 if (IS_ERR(ret)) 1105 return VM_FAULT_FALLBACK; 1106 *entryp = ret; 1107 1108 return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write); 1109 1110 unmap_fallback: 1111 dax_unmap_atomic(bdev, &dax); 1112 return VM_FAULT_FALLBACK; 1113 } 1114 1115 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd, 1116 struct vm_fault *vmf, unsigned long address, 1117 struct iomap *iomap, void **entryp) 1118 { 1119 struct address_space *mapping = vma->vm_file->f_mapping; 1120 unsigned long pmd_addr = address & PMD_MASK; 1121 struct page *zero_page; 1122 spinlock_t *ptl; 1123 pmd_t pmd_entry; 1124 void *ret; 1125 1126 zero_page = mm_get_huge_zero_page(vma->vm_mm); 1127 1128 if (unlikely(!zero_page)) 1129 return VM_FAULT_FALLBACK; 1130 1131 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0, 1132 RADIX_DAX_PMD | RADIX_DAX_HZP); 1133 if (IS_ERR(ret)) 1134 return VM_FAULT_FALLBACK; 1135 *entryp = ret; 1136 1137 ptl = pmd_lock(vma->vm_mm, pmd); 1138 if (!pmd_none(*pmd)) { 1139 spin_unlock(ptl); 1140 return VM_FAULT_FALLBACK; 1141 } 1142 1143 pmd_entry = mk_pmd(zero_page, vma->vm_page_prot); 1144 pmd_entry = pmd_mkhuge(pmd_entry); 1145 set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry); 1146 spin_unlock(ptl); 1147 return VM_FAULT_NOPAGE; 1148 } 1149 1150 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address, 1151 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops) 1152 { 1153 struct address_space *mapping = vma->vm_file->f_mapping; 1154 unsigned long pmd_addr = address & PMD_MASK; 1155 bool write = flags & FAULT_FLAG_WRITE; 1156 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1157 struct inode *inode = mapping->host; 1158 int result = VM_FAULT_FALLBACK; 1159 struct iomap iomap = { 0 }; 1160 pgoff_t max_pgoff, pgoff; 1161 struct vm_fault vmf; 1162 void *entry; 1163 loff_t pos; 1164 int error; 1165 1166 /* Fall back to PTEs if we're going to COW */ 1167 if (write && !(vma->vm_flags & VM_SHARED)) 1168 goto fallback; 1169 1170 /* If the PMD would extend outside the VMA */ 1171 if (pmd_addr < vma->vm_start) 1172 goto fallback; 1173 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1174 goto fallback; 1175 1176 /* 1177 * Check whether offset isn't beyond end of file now. Caller is 1178 * supposed to hold locks serializing us with truncate / punch hole so 1179 * this is a reliable test. 1180 */ 1181 pgoff = linear_page_index(vma, pmd_addr); 1182 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT; 1183 1184 if (pgoff > max_pgoff) 1185 return VM_FAULT_SIGBUS; 1186 1187 /* If the PMD would extend beyond the file size */ 1188 if ((pgoff | PG_PMD_COLOUR) > max_pgoff) 1189 goto fallback; 1190 1191 /* 1192 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX 1193 * PMD or a HZP entry. If it can't (because a 4k page is already in 1194 * the tree, for instance), it will return -EEXIST and we just fall 1195 * back to 4k entries. 1196 */ 1197 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); 1198 if (IS_ERR(entry)) 1199 goto fallback; 1200 1201 /* 1202 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1203 * setting up a mapping, so really we're using iomap_begin() as a way 1204 * to look up our filesystem block. 1205 */ 1206 pos = (loff_t)pgoff << PAGE_SHIFT; 1207 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1208 if (error) 1209 goto unlock_entry; 1210 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1211 goto finish_iomap; 1212 1213 vmf.pgoff = pgoff; 1214 vmf.flags = flags; 1215 vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO; 1216 1217 switch (iomap.type) { 1218 case IOMAP_MAPPED: 1219 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address, 1220 &iomap, pos, write, &entry); 1221 break; 1222 case IOMAP_UNWRITTEN: 1223 case IOMAP_HOLE: 1224 if (WARN_ON_ONCE(write)) 1225 goto finish_iomap; 1226 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap, 1227 &entry); 1228 break; 1229 default: 1230 WARN_ON_ONCE(1); 1231 break; 1232 } 1233 1234 finish_iomap: 1235 if (ops->iomap_end) { 1236 if (result == VM_FAULT_FALLBACK) { 1237 ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags, 1238 &iomap); 1239 } else { 1240 error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE, 1241 iomap_flags, &iomap); 1242 if (error) 1243 result = VM_FAULT_FALLBACK; 1244 } 1245 } 1246 unlock_entry: 1247 put_locked_mapping_entry(mapping, pgoff, entry); 1248 fallback: 1249 if (result == VM_FAULT_FALLBACK) { 1250 split_huge_pmd(vma, pmd, address); 1251 count_vm_event(THP_FAULT_FALLBACK); 1252 } 1253 return result; 1254 } 1255 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault); 1256 #endif /* CONFIG_FS_DAX_PMD */ 1257 #endif /* CONFIG_FS_IOMAP */ 1258