xref: /linux/fs/dax.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/iomap.h>
35 #include "internal.h"
36 
37 /* We choose 4096 entries - same as per-zone page wait tables */
38 #define DAX_WAIT_TABLE_BITS 12
39 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40 
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42 
43 static int __init init_dax_wait_table(void)
44 {
45 	int i;
46 
47 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48 		init_waitqueue_head(wait_table + i);
49 	return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52 
53 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54 {
55 	struct request_queue *q = bdev->bd_queue;
56 	long rc = -EIO;
57 
58 	dax->addr = ERR_PTR(-EIO);
59 	if (blk_queue_enter(q, true) != 0)
60 		return rc;
61 
62 	rc = bdev_direct_access(bdev, dax);
63 	if (rc < 0) {
64 		dax->addr = ERR_PTR(rc);
65 		blk_queue_exit(q);
66 		return rc;
67 	}
68 	return rc;
69 }
70 
71 static void dax_unmap_atomic(struct block_device *bdev,
72 		const struct blk_dax_ctl *dax)
73 {
74 	if (IS_ERR(dax->addr))
75 		return;
76 	blk_queue_exit(bdev->bd_queue);
77 }
78 
79 static int dax_is_pmd_entry(void *entry)
80 {
81 	return (unsigned long)entry & RADIX_DAX_PMD;
82 }
83 
84 static int dax_is_pte_entry(void *entry)
85 {
86 	return !((unsigned long)entry & RADIX_DAX_PMD);
87 }
88 
89 static int dax_is_zero_entry(void *entry)
90 {
91 	return (unsigned long)entry & RADIX_DAX_HZP;
92 }
93 
94 static int dax_is_empty_entry(void *entry)
95 {
96 	return (unsigned long)entry & RADIX_DAX_EMPTY;
97 }
98 
99 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100 {
101 	struct page *page = alloc_pages(GFP_KERNEL, 0);
102 	struct blk_dax_ctl dax = {
103 		.size = PAGE_SIZE,
104 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105 	};
106 	long rc;
107 
108 	if (!page)
109 		return ERR_PTR(-ENOMEM);
110 
111 	rc = dax_map_atomic(bdev, &dax);
112 	if (rc < 0)
113 		return ERR_PTR(rc);
114 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 	dax_unmap_atomic(bdev, &dax);
116 	return page;
117 }
118 
119 /*
120  * DAX radix tree locking
121  */
122 struct exceptional_entry_key {
123 	struct address_space *mapping;
124 	pgoff_t entry_start;
125 };
126 
127 struct wait_exceptional_entry_queue {
128 	wait_queue_t wait;
129 	struct exceptional_entry_key key;
130 };
131 
132 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
133 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
134 {
135 	unsigned long hash;
136 
137 	/*
138 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
139 	 * queue to the start of that PMD.  This ensures that all offsets in
140 	 * the range covered by the PMD map to the same bit lock.
141 	 */
142 	if (dax_is_pmd_entry(entry))
143 		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
144 
145 	key->mapping = mapping;
146 	key->entry_start = index;
147 
148 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
149 	return wait_table + hash;
150 }
151 
152 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
153 				       int sync, void *keyp)
154 {
155 	struct exceptional_entry_key *key = keyp;
156 	struct wait_exceptional_entry_queue *ewait =
157 		container_of(wait, struct wait_exceptional_entry_queue, wait);
158 
159 	if (key->mapping != ewait->key.mapping ||
160 	    key->entry_start != ewait->key.entry_start)
161 		return 0;
162 	return autoremove_wake_function(wait, mode, sync, NULL);
163 }
164 
165 /*
166  * Check whether the given slot is locked. The function must be called with
167  * mapping->tree_lock held
168  */
169 static inline int slot_locked(struct address_space *mapping, void **slot)
170 {
171 	unsigned long entry = (unsigned long)
172 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
173 	return entry & RADIX_DAX_ENTRY_LOCK;
174 }
175 
176 /*
177  * Mark the given slot is locked. The function must be called with
178  * mapping->tree_lock held
179  */
180 static inline void *lock_slot(struct address_space *mapping, void **slot)
181 {
182 	unsigned long entry = (unsigned long)
183 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
184 
185 	entry |= RADIX_DAX_ENTRY_LOCK;
186 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
187 	return (void *)entry;
188 }
189 
190 /*
191  * Mark the given slot is unlocked. The function must be called with
192  * mapping->tree_lock held
193  */
194 static inline void *unlock_slot(struct address_space *mapping, void **slot)
195 {
196 	unsigned long entry = (unsigned long)
197 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
198 
199 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
200 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
201 	return (void *)entry;
202 }
203 
204 /*
205  * Lookup entry in radix tree, wait for it to become unlocked if it is
206  * exceptional entry and return it. The caller must call
207  * put_unlocked_mapping_entry() when he decided not to lock the entry or
208  * put_locked_mapping_entry() when he locked the entry and now wants to
209  * unlock it.
210  *
211  * The function must be called with mapping->tree_lock held.
212  */
213 static void *get_unlocked_mapping_entry(struct address_space *mapping,
214 					pgoff_t index, void ***slotp)
215 {
216 	void *entry, **slot;
217 	struct wait_exceptional_entry_queue ewait;
218 	wait_queue_head_t *wq;
219 
220 	init_wait(&ewait.wait);
221 	ewait.wait.func = wake_exceptional_entry_func;
222 
223 	for (;;) {
224 		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
225 					  &slot);
226 		if (!entry || !radix_tree_exceptional_entry(entry) ||
227 		    !slot_locked(mapping, slot)) {
228 			if (slotp)
229 				*slotp = slot;
230 			return entry;
231 		}
232 
233 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
234 		prepare_to_wait_exclusive(wq, &ewait.wait,
235 					  TASK_UNINTERRUPTIBLE);
236 		spin_unlock_irq(&mapping->tree_lock);
237 		schedule();
238 		finish_wait(wq, &ewait.wait);
239 		spin_lock_irq(&mapping->tree_lock);
240 	}
241 }
242 
243 static void put_locked_mapping_entry(struct address_space *mapping,
244 				     pgoff_t index, void *entry)
245 {
246 	if (!radix_tree_exceptional_entry(entry)) {
247 		unlock_page(entry);
248 		put_page(entry);
249 	} else {
250 		dax_unlock_mapping_entry(mapping, index);
251 	}
252 }
253 
254 /*
255  * Called when we are done with radix tree entry we looked up via
256  * get_unlocked_mapping_entry() and which we didn't lock in the end.
257  */
258 static void put_unlocked_mapping_entry(struct address_space *mapping,
259 				       pgoff_t index, void *entry)
260 {
261 	if (!radix_tree_exceptional_entry(entry))
262 		return;
263 
264 	/* We have to wake up next waiter for the radix tree entry lock */
265 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
266 }
267 
268 /*
269  * Find radix tree entry at given index. If it points to a page, return with
270  * the page locked. If it points to the exceptional entry, return with the
271  * radix tree entry locked. If the radix tree doesn't contain given index,
272  * create empty exceptional entry for the index and return with it locked.
273  *
274  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
275  * either return that locked entry or will return an error.  This error will
276  * happen if there are any 4k entries (either zero pages or DAX entries)
277  * within the 2MiB range that we are requesting.
278  *
279  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
280  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
281  * insertion will fail if it finds any 4k entries already in the tree, and a
282  * 4k insertion will cause an existing 2MiB entry to be unmapped and
283  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
284  * well as 2MiB empty entries.
285  *
286  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
287  * real storage backing them.  We will leave these real 2MiB DAX entries in
288  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
289  *
290  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
291  * persistent memory the benefit is doubtful. We can add that later if we can
292  * show it helps.
293  */
294 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
295 		unsigned long size_flag)
296 {
297 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
298 	void *entry, **slot;
299 
300 restart:
301 	spin_lock_irq(&mapping->tree_lock);
302 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
303 
304 	if (entry) {
305 		if (size_flag & RADIX_DAX_PMD) {
306 			if (!radix_tree_exceptional_entry(entry) ||
307 			    dax_is_pte_entry(entry)) {
308 				put_unlocked_mapping_entry(mapping, index,
309 						entry);
310 				entry = ERR_PTR(-EEXIST);
311 				goto out_unlock;
312 			}
313 		} else { /* trying to grab a PTE entry */
314 			if (radix_tree_exceptional_entry(entry) &&
315 			    dax_is_pmd_entry(entry) &&
316 			    (dax_is_zero_entry(entry) ||
317 			     dax_is_empty_entry(entry))) {
318 				pmd_downgrade = true;
319 			}
320 		}
321 	}
322 
323 	/* No entry for given index? Make sure radix tree is big enough. */
324 	if (!entry || pmd_downgrade) {
325 		int err;
326 
327 		if (pmd_downgrade) {
328 			/*
329 			 * Make sure 'entry' remains valid while we drop
330 			 * mapping->tree_lock.
331 			 */
332 			entry = lock_slot(mapping, slot);
333 		}
334 
335 		spin_unlock_irq(&mapping->tree_lock);
336 		/*
337 		 * Besides huge zero pages the only other thing that gets
338 		 * downgraded are empty entries which don't need to be
339 		 * unmapped.
340 		 */
341 		if (pmd_downgrade && dax_is_zero_entry(entry))
342 			unmap_mapping_range(mapping,
343 				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
344 
345 		err = radix_tree_preload(
346 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
347 		if (err) {
348 			if (pmd_downgrade)
349 				put_locked_mapping_entry(mapping, index, entry);
350 			return ERR_PTR(err);
351 		}
352 		spin_lock_irq(&mapping->tree_lock);
353 
354 		if (pmd_downgrade) {
355 			radix_tree_delete(&mapping->page_tree, index);
356 			mapping->nrexceptional--;
357 			dax_wake_mapping_entry_waiter(mapping, index, entry,
358 					true);
359 		}
360 
361 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
362 
363 		err = __radix_tree_insert(&mapping->page_tree, index,
364 				dax_radix_order(entry), entry);
365 		radix_tree_preload_end();
366 		if (err) {
367 			spin_unlock_irq(&mapping->tree_lock);
368 			/*
369 			 * Someone already created the entry?  This is a
370 			 * normal failure when inserting PMDs in a range
371 			 * that already contains PTEs.  In that case we want
372 			 * to return -EEXIST immediately.
373 			 */
374 			if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
375 				goto restart;
376 			/*
377 			 * Our insertion of a DAX PMD entry failed, most
378 			 * likely because it collided with a PTE sized entry
379 			 * at a different index in the PMD range.  We haven't
380 			 * inserted anything into the radix tree and have no
381 			 * waiters to wake.
382 			 */
383 			return ERR_PTR(err);
384 		}
385 		/* Good, we have inserted empty locked entry into the tree. */
386 		mapping->nrexceptional++;
387 		spin_unlock_irq(&mapping->tree_lock);
388 		return entry;
389 	}
390 	/* Normal page in radix tree? */
391 	if (!radix_tree_exceptional_entry(entry)) {
392 		struct page *page = entry;
393 
394 		get_page(page);
395 		spin_unlock_irq(&mapping->tree_lock);
396 		lock_page(page);
397 		/* Page got truncated? Retry... */
398 		if (unlikely(page->mapping != mapping)) {
399 			unlock_page(page);
400 			put_page(page);
401 			goto restart;
402 		}
403 		return page;
404 	}
405 	entry = lock_slot(mapping, slot);
406  out_unlock:
407 	spin_unlock_irq(&mapping->tree_lock);
408 	return entry;
409 }
410 
411 /*
412  * We do not necessarily hold the mapping->tree_lock when we call this
413  * function so it is possible that 'entry' is no longer a valid item in the
414  * radix tree.  This is okay because all we really need to do is to find the
415  * correct waitqueue where tasks might be waiting for that old 'entry' and
416  * wake them.
417  */
418 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
419 		pgoff_t index, void *entry, bool wake_all)
420 {
421 	struct exceptional_entry_key key;
422 	wait_queue_head_t *wq;
423 
424 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
425 
426 	/*
427 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
428 	 * under mapping->tree_lock, ditto for entry handling in our callers.
429 	 * So at this point all tasks that could have seen our entry locked
430 	 * must be in the waitqueue and the following check will see them.
431 	 */
432 	if (waitqueue_active(wq))
433 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
434 }
435 
436 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
437 {
438 	void *entry, **slot;
439 
440 	spin_lock_irq(&mapping->tree_lock);
441 	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
442 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
443 			 !slot_locked(mapping, slot))) {
444 		spin_unlock_irq(&mapping->tree_lock);
445 		return;
446 	}
447 	unlock_slot(mapping, slot);
448 	spin_unlock_irq(&mapping->tree_lock);
449 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
450 }
451 
452 /*
453  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
454  * entry to get unlocked before deleting it.
455  */
456 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
457 {
458 	void *entry;
459 
460 	spin_lock_irq(&mapping->tree_lock);
461 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
462 	/*
463 	 * This gets called from truncate / punch_hole path. As such, the caller
464 	 * must hold locks protecting against concurrent modifications of the
465 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
466 	 * caller has seen exceptional entry for this index, we better find it
467 	 * at that index as well...
468 	 */
469 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
470 		spin_unlock_irq(&mapping->tree_lock);
471 		return 0;
472 	}
473 	radix_tree_delete(&mapping->page_tree, index);
474 	mapping->nrexceptional--;
475 	spin_unlock_irq(&mapping->tree_lock);
476 	dax_wake_mapping_entry_waiter(mapping, index, entry, true);
477 
478 	return 1;
479 }
480 
481 /*
482  * The user has performed a load from a hole in the file.  Allocating
483  * a new page in the file would cause excessive storage usage for
484  * workloads with sparse files.  We allocate a page cache page instead.
485  * We'll kick it out of the page cache if it's ever written to,
486  * otherwise it will simply fall out of the page cache under memory
487  * pressure without ever having been dirtied.
488  */
489 static int dax_load_hole(struct address_space *mapping, void *entry,
490 			 struct vm_fault *vmf)
491 {
492 	struct page *page;
493 
494 	/* Hole page already exists? Return it...  */
495 	if (!radix_tree_exceptional_entry(entry)) {
496 		vmf->page = entry;
497 		return VM_FAULT_LOCKED;
498 	}
499 
500 	/* This will replace locked radix tree entry with a hole page */
501 	page = find_or_create_page(mapping, vmf->pgoff,
502 				   vmf->gfp_mask | __GFP_ZERO);
503 	if (!page) {
504 		put_locked_mapping_entry(mapping, vmf->pgoff, entry);
505 		return VM_FAULT_OOM;
506 	}
507 	vmf->page = page;
508 	return VM_FAULT_LOCKED;
509 }
510 
511 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
512 		struct page *to, unsigned long vaddr)
513 {
514 	struct blk_dax_ctl dax = {
515 		.sector = sector,
516 		.size = size,
517 	};
518 	void *vto;
519 
520 	if (dax_map_atomic(bdev, &dax) < 0)
521 		return PTR_ERR(dax.addr);
522 	vto = kmap_atomic(to);
523 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
524 	kunmap_atomic(vto);
525 	dax_unmap_atomic(bdev, &dax);
526 	return 0;
527 }
528 
529 /*
530  * By this point grab_mapping_entry() has ensured that we have a locked entry
531  * of the appropriate size so we don't have to worry about downgrading PMDs to
532  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
533  * already in the tree, we will skip the insertion and just dirty the PMD as
534  * appropriate.
535  */
536 static void *dax_insert_mapping_entry(struct address_space *mapping,
537 				      struct vm_fault *vmf,
538 				      void *entry, sector_t sector,
539 				      unsigned long flags)
540 {
541 	struct radix_tree_root *page_tree = &mapping->page_tree;
542 	int error = 0;
543 	bool hole_fill = false;
544 	void *new_entry;
545 	pgoff_t index = vmf->pgoff;
546 
547 	if (vmf->flags & FAULT_FLAG_WRITE)
548 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
549 
550 	/* Replacing hole page with block mapping? */
551 	if (!radix_tree_exceptional_entry(entry)) {
552 		hole_fill = true;
553 		/*
554 		 * Unmap the page now before we remove it from page cache below.
555 		 * The page is locked so it cannot be faulted in again.
556 		 */
557 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
558 				    PAGE_SIZE, 0);
559 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
560 		if (error)
561 			return ERR_PTR(error);
562 	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
563 		/* replacing huge zero page with PMD block mapping */
564 		unmap_mapping_range(mapping,
565 			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
566 	}
567 
568 	spin_lock_irq(&mapping->tree_lock);
569 	new_entry = dax_radix_locked_entry(sector, flags);
570 
571 	if (hole_fill) {
572 		__delete_from_page_cache(entry, NULL);
573 		/* Drop pagecache reference */
574 		put_page(entry);
575 		error = __radix_tree_insert(page_tree, index,
576 				dax_radix_order(new_entry), new_entry);
577 		if (error) {
578 			new_entry = ERR_PTR(error);
579 			goto unlock;
580 		}
581 		mapping->nrexceptional++;
582 	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
583 		/*
584 		 * Only swap our new entry into the radix tree if the current
585 		 * entry is a zero page or an empty entry.  If a normal PTE or
586 		 * PMD entry is already in the tree, we leave it alone.  This
587 		 * means that if we are trying to insert a PTE and the
588 		 * existing entry is a PMD, we will just leave the PMD in the
589 		 * tree and dirty it if necessary.
590 		 */
591 		struct radix_tree_node *node;
592 		void **slot;
593 		void *ret;
594 
595 		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
596 		WARN_ON_ONCE(ret != entry);
597 		__radix_tree_replace(page_tree, node, slot,
598 				     new_entry, NULL, NULL);
599 	}
600 	if (vmf->flags & FAULT_FLAG_WRITE)
601 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
602  unlock:
603 	spin_unlock_irq(&mapping->tree_lock);
604 	if (hole_fill) {
605 		radix_tree_preload_end();
606 		/*
607 		 * We don't need hole page anymore, it has been replaced with
608 		 * locked radix tree entry now.
609 		 */
610 		if (mapping->a_ops->freepage)
611 			mapping->a_ops->freepage(entry);
612 		unlock_page(entry);
613 		put_page(entry);
614 	}
615 	return new_entry;
616 }
617 
618 static int dax_writeback_one(struct block_device *bdev,
619 		struct address_space *mapping, pgoff_t index, void *entry)
620 {
621 	struct radix_tree_root *page_tree = &mapping->page_tree;
622 	struct radix_tree_node *node;
623 	struct blk_dax_ctl dax;
624 	void **slot;
625 	int ret = 0;
626 
627 	spin_lock_irq(&mapping->tree_lock);
628 	/*
629 	 * Regular page slots are stabilized by the page lock even
630 	 * without the tree itself locked.  These unlocked entries
631 	 * need verification under the tree lock.
632 	 */
633 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
634 		goto unlock;
635 	if (*slot != entry)
636 		goto unlock;
637 
638 	/* another fsync thread may have already written back this entry */
639 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
640 		goto unlock;
641 
642 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
643 				dax_is_zero_entry(entry))) {
644 		ret = -EIO;
645 		goto unlock;
646 	}
647 
648 	/*
649 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
650 	 * in the middle of a PMD, the 'index' we are given will be aligned to
651 	 * the start index of the PMD, as will the sector we pull from
652 	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
653 	 * worry about partial PMD writebacks.
654 	 */
655 	dax.sector = dax_radix_sector(entry);
656 	dax.size = PAGE_SIZE << dax_radix_order(entry);
657 	spin_unlock_irq(&mapping->tree_lock);
658 
659 	/*
660 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
661 	 * eventually calls cond_resched().
662 	 */
663 	ret = dax_map_atomic(bdev, &dax);
664 	if (ret < 0)
665 		return ret;
666 
667 	if (WARN_ON_ONCE(ret < dax.size)) {
668 		ret = -EIO;
669 		goto unmap;
670 	}
671 
672 	wb_cache_pmem(dax.addr, dax.size);
673 
674 	spin_lock_irq(&mapping->tree_lock);
675 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
676 	spin_unlock_irq(&mapping->tree_lock);
677  unmap:
678 	dax_unmap_atomic(bdev, &dax);
679 	return ret;
680 
681  unlock:
682 	spin_unlock_irq(&mapping->tree_lock);
683 	return ret;
684 }
685 
686 /*
687  * Flush the mapping to the persistent domain within the byte range of [start,
688  * end]. This is required by data integrity operations to ensure file data is
689  * on persistent storage prior to completion of the operation.
690  */
691 int dax_writeback_mapping_range(struct address_space *mapping,
692 		struct block_device *bdev, struct writeback_control *wbc)
693 {
694 	struct inode *inode = mapping->host;
695 	pgoff_t start_index, end_index;
696 	pgoff_t indices[PAGEVEC_SIZE];
697 	struct pagevec pvec;
698 	bool done = false;
699 	int i, ret = 0;
700 
701 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
702 		return -EIO;
703 
704 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
705 		return 0;
706 
707 	start_index = wbc->range_start >> PAGE_SHIFT;
708 	end_index = wbc->range_end >> PAGE_SHIFT;
709 
710 	tag_pages_for_writeback(mapping, start_index, end_index);
711 
712 	pagevec_init(&pvec, 0);
713 	while (!done) {
714 		pvec.nr = find_get_entries_tag(mapping, start_index,
715 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
716 				pvec.pages, indices);
717 
718 		if (pvec.nr == 0)
719 			break;
720 
721 		for (i = 0; i < pvec.nr; i++) {
722 			if (indices[i] > end_index) {
723 				done = true;
724 				break;
725 			}
726 
727 			ret = dax_writeback_one(bdev, mapping, indices[i],
728 					pvec.pages[i]);
729 			if (ret < 0)
730 				return ret;
731 		}
732 	}
733 	return 0;
734 }
735 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
736 
737 static int dax_insert_mapping(struct address_space *mapping,
738 		struct block_device *bdev, sector_t sector, size_t size,
739 		void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
740 {
741 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
742 	struct blk_dax_ctl dax = {
743 		.sector = sector,
744 		.size = size,
745 	};
746 	void *ret;
747 	void *entry = *entryp;
748 
749 	if (dax_map_atomic(bdev, &dax) < 0)
750 		return PTR_ERR(dax.addr);
751 	dax_unmap_atomic(bdev, &dax);
752 
753 	ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
754 	if (IS_ERR(ret))
755 		return PTR_ERR(ret);
756 	*entryp = ret;
757 
758 	return vm_insert_mixed(vma, vaddr, dax.pfn);
759 }
760 
761 /**
762  * dax_pfn_mkwrite - handle first write to DAX page
763  * @vma: The virtual memory area where the fault occurred
764  * @vmf: The description of the fault
765  */
766 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
767 {
768 	struct file *file = vma->vm_file;
769 	struct address_space *mapping = file->f_mapping;
770 	void *entry;
771 	pgoff_t index = vmf->pgoff;
772 
773 	spin_lock_irq(&mapping->tree_lock);
774 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
775 	if (!entry || !radix_tree_exceptional_entry(entry))
776 		goto out;
777 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
778 	put_unlocked_mapping_entry(mapping, index, entry);
779 out:
780 	spin_unlock_irq(&mapping->tree_lock);
781 	return VM_FAULT_NOPAGE;
782 }
783 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
784 
785 static bool dax_range_is_aligned(struct block_device *bdev,
786 				 unsigned int offset, unsigned int length)
787 {
788 	unsigned short sector_size = bdev_logical_block_size(bdev);
789 
790 	if (!IS_ALIGNED(offset, sector_size))
791 		return false;
792 	if (!IS_ALIGNED(length, sector_size))
793 		return false;
794 
795 	return true;
796 }
797 
798 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
799 		unsigned int offset, unsigned int length)
800 {
801 	struct blk_dax_ctl dax = {
802 		.sector		= sector,
803 		.size		= PAGE_SIZE,
804 	};
805 
806 	if (dax_range_is_aligned(bdev, offset, length)) {
807 		sector_t start_sector = dax.sector + (offset >> 9);
808 
809 		return blkdev_issue_zeroout(bdev, start_sector,
810 				length >> 9, GFP_NOFS, true);
811 	} else {
812 		if (dax_map_atomic(bdev, &dax) < 0)
813 			return PTR_ERR(dax.addr);
814 		clear_pmem(dax.addr + offset, length);
815 		dax_unmap_atomic(bdev, &dax);
816 	}
817 	return 0;
818 }
819 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
820 
821 #ifdef CONFIG_FS_IOMAP
822 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
823 {
824 	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
825 }
826 
827 static loff_t
828 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
829 		struct iomap *iomap)
830 {
831 	struct iov_iter *iter = data;
832 	loff_t end = pos + length, done = 0;
833 	ssize_t ret = 0;
834 
835 	if (iov_iter_rw(iter) == READ) {
836 		end = min(end, i_size_read(inode));
837 		if (pos >= end)
838 			return 0;
839 
840 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
841 			return iov_iter_zero(min(length, end - pos), iter);
842 	}
843 
844 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
845 		return -EIO;
846 
847 	while (pos < end) {
848 		unsigned offset = pos & (PAGE_SIZE - 1);
849 		struct blk_dax_ctl dax = { 0 };
850 		ssize_t map_len;
851 
852 		dax.sector = dax_iomap_sector(iomap, pos);
853 		dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
854 		map_len = dax_map_atomic(iomap->bdev, &dax);
855 		if (map_len < 0) {
856 			ret = map_len;
857 			break;
858 		}
859 
860 		dax.addr += offset;
861 		map_len -= offset;
862 		if (map_len > end - pos)
863 			map_len = end - pos;
864 
865 		if (iov_iter_rw(iter) == WRITE)
866 			map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
867 		else
868 			map_len = copy_to_iter(dax.addr, map_len, iter);
869 		dax_unmap_atomic(iomap->bdev, &dax);
870 		if (map_len <= 0) {
871 			ret = map_len ? map_len : -EFAULT;
872 			break;
873 		}
874 
875 		pos += map_len;
876 		length -= map_len;
877 		done += map_len;
878 	}
879 
880 	return done ? done : ret;
881 }
882 
883 /**
884  * dax_iomap_rw - Perform I/O to a DAX file
885  * @iocb:	The control block for this I/O
886  * @iter:	The addresses to do I/O from or to
887  * @ops:	iomap ops passed from the file system
888  *
889  * This function performs read and write operations to directly mapped
890  * persistent memory.  The callers needs to take care of read/write exclusion
891  * and evicting any page cache pages in the region under I/O.
892  */
893 ssize_t
894 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
895 		struct iomap_ops *ops)
896 {
897 	struct address_space *mapping = iocb->ki_filp->f_mapping;
898 	struct inode *inode = mapping->host;
899 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
900 	unsigned flags = 0;
901 
902 	if (iov_iter_rw(iter) == WRITE)
903 		flags |= IOMAP_WRITE;
904 
905 	/*
906 	 * Yes, even DAX files can have page cache attached to them:  A zeroed
907 	 * page is inserted into the pagecache when we have to serve a write
908 	 * fault on a hole.  It should never be dirtied and can simply be
909 	 * dropped from the pagecache once we get real data for the page.
910 	 *
911 	 * XXX: This is racy against mmap, and there's nothing we can do about
912 	 * it. We'll eventually need to shift this down even further so that
913 	 * we can check if we allocated blocks over a hole first.
914 	 */
915 	if (mapping->nrpages) {
916 		ret = invalidate_inode_pages2_range(mapping,
917 				pos >> PAGE_SHIFT,
918 				(pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
919 		WARN_ON_ONCE(ret);
920 	}
921 
922 	while (iov_iter_count(iter)) {
923 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
924 				iter, dax_iomap_actor);
925 		if (ret <= 0)
926 			break;
927 		pos += ret;
928 		done += ret;
929 	}
930 
931 	iocb->ki_pos += done;
932 	return done ? done : ret;
933 }
934 EXPORT_SYMBOL_GPL(dax_iomap_rw);
935 
936 /**
937  * dax_iomap_fault - handle a page fault on a DAX file
938  * @vma: The virtual memory area where the fault occurred
939  * @vmf: The description of the fault
940  * @ops: iomap ops passed from the file system
941  *
942  * When a page fault occurs, filesystems may call this helper in their fault
943  * or mkwrite handler for DAX files. Assumes the caller has done all the
944  * necessary locking for the page fault to proceed successfully.
945  */
946 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
947 			struct iomap_ops *ops)
948 {
949 	struct address_space *mapping = vma->vm_file->f_mapping;
950 	struct inode *inode = mapping->host;
951 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
952 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
953 	sector_t sector;
954 	struct iomap iomap = { 0 };
955 	unsigned flags = IOMAP_FAULT;
956 	int error, major = 0;
957 	int locked_status = 0;
958 	void *entry;
959 
960 	/*
961 	 * Check whether offset isn't beyond end of file now. Caller is supposed
962 	 * to hold locks serializing us with truncate / punch hole so this is
963 	 * a reliable test.
964 	 */
965 	if (pos >= i_size_read(inode))
966 		return VM_FAULT_SIGBUS;
967 
968 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
969 	if (IS_ERR(entry)) {
970 		error = PTR_ERR(entry);
971 		goto out;
972 	}
973 
974 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
975 		flags |= IOMAP_WRITE;
976 
977 	/*
978 	 * Note that we don't bother to use iomap_apply here: DAX required
979 	 * the file system block size to be equal the page size, which means
980 	 * that we never have to deal with more than a single extent here.
981 	 */
982 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
983 	if (error)
984 		goto unlock_entry;
985 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
986 		error = -EIO;		/* fs corruption? */
987 		goto finish_iomap;
988 	}
989 
990 	sector = dax_iomap_sector(&iomap, pos);
991 
992 	if (vmf->cow_page) {
993 		switch (iomap.type) {
994 		case IOMAP_HOLE:
995 		case IOMAP_UNWRITTEN:
996 			clear_user_highpage(vmf->cow_page, vaddr);
997 			break;
998 		case IOMAP_MAPPED:
999 			error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1000 					vmf->cow_page, vaddr);
1001 			break;
1002 		default:
1003 			WARN_ON_ONCE(1);
1004 			error = -EIO;
1005 			break;
1006 		}
1007 
1008 		if (error)
1009 			goto finish_iomap;
1010 		if (!radix_tree_exceptional_entry(entry)) {
1011 			vmf->page = entry;
1012 			locked_status = VM_FAULT_LOCKED;
1013 		} else {
1014 			vmf->entry = entry;
1015 			locked_status = VM_FAULT_DAX_LOCKED;
1016 		}
1017 		goto finish_iomap;
1018 	}
1019 
1020 	switch (iomap.type) {
1021 	case IOMAP_MAPPED:
1022 		if (iomap.flags & IOMAP_F_NEW) {
1023 			count_vm_event(PGMAJFAULT);
1024 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1025 			major = VM_FAULT_MAJOR;
1026 		}
1027 		error = dax_insert_mapping(mapping, iomap.bdev, sector,
1028 				PAGE_SIZE, &entry, vma, vmf);
1029 		break;
1030 	case IOMAP_UNWRITTEN:
1031 	case IOMAP_HOLE:
1032 		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1033 			locked_status = dax_load_hole(mapping, entry, vmf);
1034 			break;
1035 		}
1036 		/*FALLTHRU*/
1037 	default:
1038 		WARN_ON_ONCE(1);
1039 		error = -EIO;
1040 		break;
1041 	}
1042 
1043  finish_iomap:
1044 	if (ops->iomap_end) {
1045 		if (error) {
1046 			/* keep previous error */
1047 			ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1048 					&iomap);
1049 		} else {
1050 			error = ops->iomap_end(inode, pos, PAGE_SIZE,
1051 					PAGE_SIZE, flags, &iomap);
1052 		}
1053 	}
1054  unlock_entry:
1055 	if (!locked_status || error)
1056 		put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1057  out:
1058 	if (error == -ENOMEM)
1059 		return VM_FAULT_OOM | major;
1060 	/* -EBUSY is fine, somebody else faulted on the same PTE */
1061 	if (error < 0 && error != -EBUSY)
1062 		return VM_FAULT_SIGBUS | major;
1063 	if (locked_status) {
1064 		WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1065 		return locked_status;
1066 	}
1067 	return VM_FAULT_NOPAGE | major;
1068 }
1069 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1070 
1071 #ifdef CONFIG_FS_DAX_PMD
1072 /*
1073  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1074  * more often than one might expect in the below functions.
1075  */
1076 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1077 
1078 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1079 		struct vm_fault *vmf, unsigned long address,
1080 		struct iomap *iomap, loff_t pos, bool write, void **entryp)
1081 {
1082 	struct address_space *mapping = vma->vm_file->f_mapping;
1083 	struct block_device *bdev = iomap->bdev;
1084 	struct blk_dax_ctl dax = {
1085 		.sector = dax_iomap_sector(iomap, pos),
1086 		.size = PMD_SIZE,
1087 	};
1088 	long length = dax_map_atomic(bdev, &dax);
1089 	void *ret;
1090 
1091 	if (length < 0) /* dax_map_atomic() failed */
1092 		return VM_FAULT_FALLBACK;
1093 	if (length < PMD_SIZE)
1094 		goto unmap_fallback;
1095 	if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1096 		goto unmap_fallback;
1097 	if (!pfn_t_devmap(dax.pfn))
1098 		goto unmap_fallback;
1099 
1100 	dax_unmap_atomic(bdev, &dax);
1101 
1102 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1103 			RADIX_DAX_PMD);
1104 	if (IS_ERR(ret))
1105 		return VM_FAULT_FALLBACK;
1106 	*entryp = ret;
1107 
1108 	return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1109 
1110  unmap_fallback:
1111 	dax_unmap_atomic(bdev, &dax);
1112 	return VM_FAULT_FALLBACK;
1113 }
1114 
1115 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1116 		struct vm_fault *vmf, unsigned long address,
1117 		struct iomap *iomap, void **entryp)
1118 {
1119 	struct address_space *mapping = vma->vm_file->f_mapping;
1120 	unsigned long pmd_addr = address & PMD_MASK;
1121 	struct page *zero_page;
1122 	spinlock_t *ptl;
1123 	pmd_t pmd_entry;
1124 	void *ret;
1125 
1126 	zero_page = mm_get_huge_zero_page(vma->vm_mm);
1127 
1128 	if (unlikely(!zero_page))
1129 		return VM_FAULT_FALLBACK;
1130 
1131 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1132 			RADIX_DAX_PMD | RADIX_DAX_HZP);
1133 	if (IS_ERR(ret))
1134 		return VM_FAULT_FALLBACK;
1135 	*entryp = ret;
1136 
1137 	ptl = pmd_lock(vma->vm_mm, pmd);
1138 	if (!pmd_none(*pmd)) {
1139 		spin_unlock(ptl);
1140 		return VM_FAULT_FALLBACK;
1141 	}
1142 
1143 	pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1144 	pmd_entry = pmd_mkhuge(pmd_entry);
1145 	set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1146 	spin_unlock(ptl);
1147 	return VM_FAULT_NOPAGE;
1148 }
1149 
1150 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1151 		pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1152 {
1153 	struct address_space *mapping = vma->vm_file->f_mapping;
1154 	unsigned long pmd_addr = address & PMD_MASK;
1155 	bool write = flags & FAULT_FLAG_WRITE;
1156 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1157 	struct inode *inode = mapping->host;
1158 	int result = VM_FAULT_FALLBACK;
1159 	struct iomap iomap = { 0 };
1160 	pgoff_t max_pgoff, pgoff;
1161 	struct vm_fault vmf;
1162 	void *entry;
1163 	loff_t pos;
1164 	int error;
1165 
1166 	/* Fall back to PTEs if we're going to COW */
1167 	if (write && !(vma->vm_flags & VM_SHARED))
1168 		goto fallback;
1169 
1170 	/* If the PMD would extend outside the VMA */
1171 	if (pmd_addr < vma->vm_start)
1172 		goto fallback;
1173 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1174 		goto fallback;
1175 
1176 	/*
1177 	 * Check whether offset isn't beyond end of file now. Caller is
1178 	 * supposed to hold locks serializing us with truncate / punch hole so
1179 	 * this is a reliable test.
1180 	 */
1181 	pgoff = linear_page_index(vma, pmd_addr);
1182 	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1183 
1184 	if (pgoff > max_pgoff)
1185 		return VM_FAULT_SIGBUS;
1186 
1187 	/* If the PMD would extend beyond the file size */
1188 	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1189 		goto fallback;
1190 
1191 	/*
1192 	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1193 	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1194 	 * the tree, for instance), it will return -EEXIST and we just fall
1195 	 * back to 4k entries.
1196 	 */
1197 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1198 	if (IS_ERR(entry))
1199 		goto fallback;
1200 
1201 	/*
1202 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1203 	 * setting up a mapping, so really we're using iomap_begin() as a way
1204 	 * to look up our filesystem block.
1205 	 */
1206 	pos = (loff_t)pgoff << PAGE_SHIFT;
1207 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1208 	if (error)
1209 		goto unlock_entry;
1210 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1211 		goto finish_iomap;
1212 
1213 	vmf.pgoff = pgoff;
1214 	vmf.flags = flags;
1215 	vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1216 
1217 	switch (iomap.type) {
1218 	case IOMAP_MAPPED:
1219 		result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1220 				&iomap, pos, write, &entry);
1221 		break;
1222 	case IOMAP_UNWRITTEN:
1223 	case IOMAP_HOLE:
1224 		if (WARN_ON_ONCE(write))
1225 			goto finish_iomap;
1226 		result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1227 				&entry);
1228 		break;
1229 	default:
1230 		WARN_ON_ONCE(1);
1231 		break;
1232 	}
1233 
1234  finish_iomap:
1235 	if (ops->iomap_end) {
1236 		if (result == VM_FAULT_FALLBACK) {
1237 			ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1238 					&iomap);
1239 		} else {
1240 			error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1241 					iomap_flags, &iomap);
1242 			if (error)
1243 				result = VM_FAULT_FALLBACK;
1244 		}
1245 	}
1246  unlock_entry:
1247 	put_locked_mapping_entry(mapping, pgoff, entry);
1248  fallback:
1249 	if (result == VM_FAULT_FALLBACK) {
1250 		split_huge_pmd(vma, pmd, address);
1251 		count_vm_event(THP_FAULT_FALLBACK);
1252 	}
1253 	return result;
1254 }
1255 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1256 #endif /* CONFIG_FS_DAX_PMD */
1257 #endif /* CONFIG_FS_IOMAP */
1258