xref: /linux/fs/dax.c (revision 05384213436ab690c46d9dfec706b80ef8d671ab)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41 
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47 
48 static int __init init_dax_wait_table(void)
49 {
50 	int i;
51 
52 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 		init_waitqueue_head(wait_table + i);
54 	return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57 
58 static int dax_is_pmd_entry(void *entry)
59 {
60 	return (unsigned long)entry & RADIX_DAX_PMD;
61 }
62 
63 static int dax_is_pte_entry(void *entry)
64 {
65 	return !((unsigned long)entry & RADIX_DAX_PMD);
66 }
67 
68 static int dax_is_zero_entry(void *entry)
69 {
70 	return (unsigned long)entry & RADIX_DAX_HZP;
71 }
72 
73 static int dax_is_empty_entry(void *entry)
74 {
75 	return (unsigned long)entry & RADIX_DAX_EMPTY;
76 }
77 
78 /*
79  * DAX radix tree locking
80  */
81 struct exceptional_entry_key {
82 	struct address_space *mapping;
83 	pgoff_t entry_start;
84 };
85 
86 struct wait_exceptional_entry_queue {
87 	wait_queue_t wait;
88 	struct exceptional_entry_key key;
89 };
90 
91 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
92 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
93 {
94 	unsigned long hash;
95 
96 	/*
97 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
98 	 * queue to the start of that PMD.  This ensures that all offsets in
99 	 * the range covered by the PMD map to the same bit lock.
100 	 */
101 	if (dax_is_pmd_entry(entry))
102 		index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
103 
104 	key->mapping = mapping;
105 	key->entry_start = index;
106 
107 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
108 	return wait_table + hash;
109 }
110 
111 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
112 				       int sync, void *keyp)
113 {
114 	struct exceptional_entry_key *key = keyp;
115 	struct wait_exceptional_entry_queue *ewait =
116 		container_of(wait, struct wait_exceptional_entry_queue, wait);
117 
118 	if (key->mapping != ewait->key.mapping ||
119 	    key->entry_start != ewait->key.entry_start)
120 		return 0;
121 	return autoremove_wake_function(wait, mode, sync, NULL);
122 }
123 
124 /*
125  * Check whether the given slot is locked. The function must be called with
126  * mapping->tree_lock held
127  */
128 static inline int slot_locked(struct address_space *mapping, void **slot)
129 {
130 	unsigned long entry = (unsigned long)
131 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
132 	return entry & RADIX_DAX_ENTRY_LOCK;
133 }
134 
135 /*
136  * Mark the given slot is locked. The function must be called with
137  * mapping->tree_lock held
138  */
139 static inline void *lock_slot(struct address_space *mapping, void **slot)
140 {
141 	unsigned long entry = (unsigned long)
142 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
143 
144 	entry |= RADIX_DAX_ENTRY_LOCK;
145 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
146 	return (void *)entry;
147 }
148 
149 /*
150  * Mark the given slot is unlocked. The function must be called with
151  * mapping->tree_lock held
152  */
153 static inline void *unlock_slot(struct address_space *mapping, void **slot)
154 {
155 	unsigned long entry = (unsigned long)
156 		radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
157 
158 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
159 	radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
160 	return (void *)entry;
161 }
162 
163 /*
164  * Lookup entry in radix tree, wait for it to become unlocked if it is
165  * exceptional entry and return it. The caller must call
166  * put_unlocked_mapping_entry() when he decided not to lock the entry or
167  * put_locked_mapping_entry() when he locked the entry and now wants to
168  * unlock it.
169  *
170  * The function must be called with mapping->tree_lock held.
171  */
172 static void *get_unlocked_mapping_entry(struct address_space *mapping,
173 					pgoff_t index, void ***slotp)
174 {
175 	void *entry, **slot;
176 	struct wait_exceptional_entry_queue ewait;
177 	wait_queue_head_t *wq;
178 
179 	init_wait(&ewait.wait);
180 	ewait.wait.func = wake_exceptional_entry_func;
181 
182 	for (;;) {
183 		entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
184 					  &slot);
185 		if (!entry || !radix_tree_exceptional_entry(entry) ||
186 		    !slot_locked(mapping, slot)) {
187 			if (slotp)
188 				*slotp = slot;
189 			return entry;
190 		}
191 
192 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
193 		prepare_to_wait_exclusive(wq, &ewait.wait,
194 					  TASK_UNINTERRUPTIBLE);
195 		spin_unlock_irq(&mapping->tree_lock);
196 		schedule();
197 		finish_wait(wq, &ewait.wait);
198 		spin_lock_irq(&mapping->tree_lock);
199 	}
200 }
201 
202 static void dax_unlock_mapping_entry(struct address_space *mapping,
203 				     pgoff_t index)
204 {
205 	void *entry, **slot;
206 
207 	spin_lock_irq(&mapping->tree_lock);
208 	entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
209 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
210 			 !slot_locked(mapping, slot))) {
211 		spin_unlock_irq(&mapping->tree_lock);
212 		return;
213 	}
214 	unlock_slot(mapping, slot);
215 	spin_unlock_irq(&mapping->tree_lock);
216 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
217 }
218 
219 static void put_locked_mapping_entry(struct address_space *mapping,
220 				     pgoff_t index, void *entry)
221 {
222 	if (!radix_tree_exceptional_entry(entry)) {
223 		unlock_page(entry);
224 		put_page(entry);
225 	} else {
226 		dax_unlock_mapping_entry(mapping, index);
227 	}
228 }
229 
230 /*
231  * Called when we are done with radix tree entry we looked up via
232  * get_unlocked_mapping_entry() and which we didn't lock in the end.
233  */
234 static void put_unlocked_mapping_entry(struct address_space *mapping,
235 				       pgoff_t index, void *entry)
236 {
237 	if (!radix_tree_exceptional_entry(entry))
238 		return;
239 
240 	/* We have to wake up next waiter for the radix tree entry lock */
241 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
242 }
243 
244 /*
245  * Find radix tree entry at given index. If it points to a page, return with
246  * the page locked. If it points to the exceptional entry, return with the
247  * radix tree entry locked. If the radix tree doesn't contain given index,
248  * create empty exceptional entry for the index and return with it locked.
249  *
250  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251  * either return that locked entry or will return an error.  This error will
252  * happen if there are any 4k entries (either zero pages or DAX entries)
253  * within the 2MiB range that we are requesting.
254  *
255  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
257  * insertion will fail if it finds any 4k entries already in the tree, and a
258  * 4k insertion will cause an existing 2MiB entry to be unmapped and
259  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
260  * well as 2MiB empty entries.
261  *
262  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263  * real storage backing them.  We will leave these real 2MiB DAX entries in
264  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
265  *
266  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267  * persistent memory the benefit is doubtful. We can add that later if we can
268  * show it helps.
269  */
270 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
271 		unsigned long size_flag)
272 {
273 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
274 	void *entry, **slot;
275 
276 restart:
277 	spin_lock_irq(&mapping->tree_lock);
278 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
279 
280 	if (entry) {
281 		if (size_flag & RADIX_DAX_PMD) {
282 			if (!radix_tree_exceptional_entry(entry) ||
283 			    dax_is_pte_entry(entry)) {
284 				put_unlocked_mapping_entry(mapping, index,
285 						entry);
286 				entry = ERR_PTR(-EEXIST);
287 				goto out_unlock;
288 			}
289 		} else { /* trying to grab a PTE entry */
290 			if (radix_tree_exceptional_entry(entry) &&
291 			    dax_is_pmd_entry(entry) &&
292 			    (dax_is_zero_entry(entry) ||
293 			     dax_is_empty_entry(entry))) {
294 				pmd_downgrade = true;
295 			}
296 		}
297 	}
298 
299 	/* No entry for given index? Make sure radix tree is big enough. */
300 	if (!entry || pmd_downgrade) {
301 		int err;
302 
303 		if (pmd_downgrade) {
304 			/*
305 			 * Make sure 'entry' remains valid while we drop
306 			 * mapping->tree_lock.
307 			 */
308 			entry = lock_slot(mapping, slot);
309 		}
310 
311 		spin_unlock_irq(&mapping->tree_lock);
312 		/*
313 		 * Besides huge zero pages the only other thing that gets
314 		 * downgraded are empty entries which don't need to be
315 		 * unmapped.
316 		 */
317 		if (pmd_downgrade && dax_is_zero_entry(entry))
318 			unmap_mapping_range(mapping,
319 				(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
320 
321 		err = radix_tree_preload(
322 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
323 		if (err) {
324 			if (pmd_downgrade)
325 				put_locked_mapping_entry(mapping, index, entry);
326 			return ERR_PTR(err);
327 		}
328 		spin_lock_irq(&mapping->tree_lock);
329 
330 		if (!entry) {
331 			/*
332 			 * We needed to drop the page_tree lock while calling
333 			 * radix_tree_preload() and we didn't have an entry to
334 			 * lock.  See if another thread inserted an entry at
335 			 * our index during this time.
336 			 */
337 			entry = __radix_tree_lookup(&mapping->page_tree, index,
338 					NULL, &slot);
339 			if (entry) {
340 				radix_tree_preload_end();
341 				spin_unlock_irq(&mapping->tree_lock);
342 				goto restart;
343 			}
344 		}
345 
346 		if (pmd_downgrade) {
347 			radix_tree_delete(&mapping->page_tree, index);
348 			mapping->nrexceptional--;
349 			dax_wake_mapping_entry_waiter(mapping, index, entry,
350 					true);
351 		}
352 
353 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
354 
355 		err = __radix_tree_insert(&mapping->page_tree, index,
356 				dax_radix_order(entry), entry);
357 		radix_tree_preload_end();
358 		if (err) {
359 			spin_unlock_irq(&mapping->tree_lock);
360 			/*
361 			 * Our insertion of a DAX entry failed, most likely
362 			 * because we were inserting a PMD entry and it
363 			 * collided with a PTE sized entry at a different
364 			 * index in the PMD range.  We haven't inserted
365 			 * anything into the radix tree and have no waiters to
366 			 * wake.
367 			 */
368 			return ERR_PTR(err);
369 		}
370 		/* Good, we have inserted empty locked entry into the tree. */
371 		mapping->nrexceptional++;
372 		spin_unlock_irq(&mapping->tree_lock);
373 		return entry;
374 	}
375 	/* Normal page in radix tree? */
376 	if (!radix_tree_exceptional_entry(entry)) {
377 		struct page *page = entry;
378 
379 		get_page(page);
380 		spin_unlock_irq(&mapping->tree_lock);
381 		lock_page(page);
382 		/* Page got truncated? Retry... */
383 		if (unlikely(page->mapping != mapping)) {
384 			unlock_page(page);
385 			put_page(page);
386 			goto restart;
387 		}
388 		return page;
389 	}
390 	entry = lock_slot(mapping, slot);
391  out_unlock:
392 	spin_unlock_irq(&mapping->tree_lock);
393 	return entry;
394 }
395 
396 /*
397  * We do not necessarily hold the mapping->tree_lock when we call this
398  * function so it is possible that 'entry' is no longer a valid item in the
399  * radix tree.  This is okay because all we really need to do is to find the
400  * correct waitqueue where tasks might be waiting for that old 'entry' and
401  * wake them.
402  */
403 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
404 		pgoff_t index, void *entry, bool wake_all)
405 {
406 	struct exceptional_entry_key key;
407 	wait_queue_head_t *wq;
408 
409 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
410 
411 	/*
412 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
413 	 * under mapping->tree_lock, ditto for entry handling in our callers.
414 	 * So at this point all tasks that could have seen our entry locked
415 	 * must be in the waitqueue and the following check will see them.
416 	 */
417 	if (waitqueue_active(wq))
418 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
419 }
420 
421 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
422 					  pgoff_t index, bool trunc)
423 {
424 	int ret = 0;
425 	void *entry;
426 	struct radix_tree_root *page_tree = &mapping->page_tree;
427 
428 	spin_lock_irq(&mapping->tree_lock);
429 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
430 	if (!entry || !radix_tree_exceptional_entry(entry))
431 		goto out;
432 	if (!trunc &&
433 	    (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
434 	     radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
435 		goto out;
436 	radix_tree_delete(page_tree, index);
437 	mapping->nrexceptional--;
438 	ret = 1;
439 out:
440 	put_unlocked_mapping_entry(mapping, index, entry);
441 	spin_unlock_irq(&mapping->tree_lock);
442 	return ret;
443 }
444 /*
445  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
446  * entry to get unlocked before deleting it.
447  */
448 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
449 {
450 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
451 
452 	/*
453 	 * This gets called from truncate / punch_hole path. As such, the caller
454 	 * must hold locks protecting against concurrent modifications of the
455 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
456 	 * caller has seen exceptional entry for this index, we better find it
457 	 * at that index as well...
458 	 */
459 	WARN_ON_ONCE(!ret);
460 	return ret;
461 }
462 
463 /*
464  * Invalidate exceptional DAX entry if easily possible. This handles DAX
465  * entries for invalidate_inode_pages() so we evict the entry only if we can
466  * do so without blocking.
467  */
468 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470 	int ret = 0;
471 	void *entry, **slot;
472 	struct radix_tree_root *page_tree = &mapping->page_tree;
473 
474 	spin_lock_irq(&mapping->tree_lock);
475 	entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
476 	if (!entry || !radix_tree_exceptional_entry(entry) ||
477 	    slot_locked(mapping, slot))
478 		goto out;
479 	if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480 	    radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
481 		goto out;
482 	radix_tree_delete(page_tree, index);
483 	mapping->nrexceptional--;
484 	ret = 1;
485 out:
486 	spin_unlock_irq(&mapping->tree_lock);
487 	if (ret)
488 		dax_wake_mapping_entry_waiter(mapping, index, entry, true);
489 	return ret;
490 }
491 
492 /*
493  * Invalidate exceptional DAX entry if it is clean.
494  */
495 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
496 				      pgoff_t index)
497 {
498 	return __dax_invalidate_mapping_entry(mapping, index, false);
499 }
500 
501 /*
502  * The user has performed a load from a hole in the file.  Allocating
503  * a new page in the file would cause excessive storage usage for
504  * workloads with sparse files.  We allocate a page cache page instead.
505  * We'll kick it out of the page cache if it's ever written to,
506  * otherwise it will simply fall out of the page cache under memory
507  * pressure without ever having been dirtied.
508  */
509 static int dax_load_hole(struct address_space *mapping, void **entry,
510 			 struct vm_fault *vmf)
511 {
512 	struct inode *inode = mapping->host;
513 	struct page *page;
514 	int ret;
515 
516 	/* Hole page already exists? Return it...  */
517 	if (!radix_tree_exceptional_entry(*entry)) {
518 		page = *entry;
519 		goto finish_fault;
520 	}
521 
522 	/* This will replace locked radix tree entry with a hole page */
523 	page = find_or_create_page(mapping, vmf->pgoff,
524 				   vmf->gfp_mask | __GFP_ZERO);
525 	if (!page) {
526 		ret = VM_FAULT_OOM;
527 		goto out;
528 	}
529 
530 finish_fault:
531 	vmf->page = page;
532 	ret = finish_fault(vmf);
533 	vmf->page = NULL;
534 	*entry = page;
535 	if (!ret) {
536 		/* Grab reference for PTE that is now referencing the page */
537 		get_page(page);
538 		ret = VM_FAULT_NOPAGE;
539 	}
540 out:
541 	trace_dax_load_hole(inode, vmf, ret);
542 	return ret;
543 }
544 
545 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
546 		sector_t sector, size_t size, struct page *to,
547 		unsigned long vaddr)
548 {
549 	void *vto, *kaddr;
550 	pgoff_t pgoff;
551 	pfn_t pfn;
552 	long rc;
553 	int id;
554 
555 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
556 	if (rc)
557 		return rc;
558 
559 	id = dax_read_lock();
560 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
561 	if (rc < 0) {
562 		dax_read_unlock(id);
563 		return rc;
564 	}
565 	vto = kmap_atomic(to);
566 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
567 	kunmap_atomic(vto);
568 	dax_read_unlock(id);
569 	return 0;
570 }
571 
572 /*
573  * By this point grab_mapping_entry() has ensured that we have a locked entry
574  * of the appropriate size so we don't have to worry about downgrading PMDs to
575  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
576  * already in the tree, we will skip the insertion and just dirty the PMD as
577  * appropriate.
578  */
579 static void *dax_insert_mapping_entry(struct address_space *mapping,
580 				      struct vm_fault *vmf,
581 				      void *entry, sector_t sector,
582 				      unsigned long flags)
583 {
584 	struct radix_tree_root *page_tree = &mapping->page_tree;
585 	int error = 0;
586 	bool hole_fill = false;
587 	void *new_entry;
588 	pgoff_t index = vmf->pgoff;
589 
590 	if (vmf->flags & FAULT_FLAG_WRITE)
591 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
592 
593 	/* Replacing hole page with block mapping? */
594 	if (!radix_tree_exceptional_entry(entry)) {
595 		hole_fill = true;
596 		/*
597 		 * Unmap the page now before we remove it from page cache below.
598 		 * The page is locked so it cannot be faulted in again.
599 		 */
600 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
601 				    PAGE_SIZE, 0);
602 		error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
603 		if (error)
604 			return ERR_PTR(error);
605 	} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
606 		/* replacing huge zero page with PMD block mapping */
607 		unmap_mapping_range(mapping,
608 			(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
609 	}
610 
611 	spin_lock_irq(&mapping->tree_lock);
612 	new_entry = dax_radix_locked_entry(sector, flags);
613 
614 	if (hole_fill) {
615 		__delete_from_page_cache(entry, NULL);
616 		/* Drop pagecache reference */
617 		put_page(entry);
618 		error = __radix_tree_insert(page_tree, index,
619 				dax_radix_order(new_entry), new_entry);
620 		if (error) {
621 			new_entry = ERR_PTR(error);
622 			goto unlock;
623 		}
624 		mapping->nrexceptional++;
625 	} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
626 		/*
627 		 * Only swap our new entry into the radix tree if the current
628 		 * entry is a zero page or an empty entry.  If a normal PTE or
629 		 * PMD entry is already in the tree, we leave it alone.  This
630 		 * means that if we are trying to insert a PTE and the
631 		 * existing entry is a PMD, we will just leave the PMD in the
632 		 * tree and dirty it if necessary.
633 		 */
634 		struct radix_tree_node *node;
635 		void **slot;
636 		void *ret;
637 
638 		ret = __radix_tree_lookup(page_tree, index, &node, &slot);
639 		WARN_ON_ONCE(ret != entry);
640 		__radix_tree_replace(page_tree, node, slot,
641 				     new_entry, NULL, NULL);
642 	}
643 	if (vmf->flags & FAULT_FLAG_WRITE)
644 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
645  unlock:
646 	spin_unlock_irq(&mapping->tree_lock);
647 	if (hole_fill) {
648 		radix_tree_preload_end();
649 		/*
650 		 * We don't need hole page anymore, it has been replaced with
651 		 * locked radix tree entry now.
652 		 */
653 		if (mapping->a_ops->freepage)
654 			mapping->a_ops->freepage(entry);
655 		unlock_page(entry);
656 		put_page(entry);
657 	}
658 	return new_entry;
659 }
660 
661 static inline unsigned long
662 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
663 {
664 	unsigned long address;
665 
666 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
667 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
668 	return address;
669 }
670 
671 /* Walk all mappings of a given index of a file and writeprotect them */
672 static void dax_mapping_entry_mkclean(struct address_space *mapping,
673 				      pgoff_t index, unsigned long pfn)
674 {
675 	struct vm_area_struct *vma;
676 	pte_t pte, *ptep = NULL;
677 	pmd_t *pmdp = NULL;
678 	spinlock_t *ptl;
679 	bool changed;
680 
681 	i_mmap_lock_read(mapping);
682 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
683 		unsigned long address;
684 
685 		cond_resched();
686 
687 		if (!(vma->vm_flags & VM_SHARED))
688 			continue;
689 
690 		address = pgoff_address(index, vma);
691 		changed = false;
692 		if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
693 			continue;
694 
695 		if (pmdp) {
696 #ifdef CONFIG_FS_DAX_PMD
697 			pmd_t pmd;
698 
699 			if (pfn != pmd_pfn(*pmdp))
700 				goto unlock_pmd;
701 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
702 				goto unlock_pmd;
703 
704 			flush_cache_page(vma, address, pfn);
705 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
706 			pmd = pmd_wrprotect(pmd);
707 			pmd = pmd_mkclean(pmd);
708 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
709 			changed = true;
710 unlock_pmd:
711 			spin_unlock(ptl);
712 #endif
713 		} else {
714 			if (pfn != pte_pfn(*ptep))
715 				goto unlock_pte;
716 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
717 				goto unlock_pte;
718 
719 			flush_cache_page(vma, address, pfn);
720 			pte = ptep_clear_flush(vma, address, ptep);
721 			pte = pte_wrprotect(pte);
722 			pte = pte_mkclean(pte);
723 			set_pte_at(vma->vm_mm, address, ptep, pte);
724 			changed = true;
725 unlock_pte:
726 			pte_unmap_unlock(ptep, ptl);
727 		}
728 
729 		if (changed)
730 			mmu_notifier_invalidate_page(vma->vm_mm, address);
731 	}
732 	i_mmap_unlock_read(mapping);
733 }
734 
735 static int dax_writeback_one(struct block_device *bdev,
736 		struct dax_device *dax_dev, struct address_space *mapping,
737 		pgoff_t index, void *entry)
738 {
739 	struct radix_tree_root *page_tree = &mapping->page_tree;
740 	void *entry2, **slot, *kaddr;
741 	long ret = 0, id;
742 	sector_t sector;
743 	pgoff_t pgoff;
744 	size_t size;
745 	pfn_t pfn;
746 
747 	/*
748 	 * A page got tagged dirty in DAX mapping? Something is seriously
749 	 * wrong.
750 	 */
751 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
752 		return -EIO;
753 
754 	spin_lock_irq(&mapping->tree_lock);
755 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
756 	/* Entry got punched out / reallocated? */
757 	if (!entry2 || !radix_tree_exceptional_entry(entry2))
758 		goto put_unlocked;
759 	/*
760 	 * Entry got reallocated elsewhere? No need to writeback. We have to
761 	 * compare sectors as we must not bail out due to difference in lockbit
762 	 * or entry type.
763 	 */
764 	if (dax_radix_sector(entry2) != dax_radix_sector(entry))
765 		goto put_unlocked;
766 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
767 				dax_is_zero_entry(entry))) {
768 		ret = -EIO;
769 		goto put_unlocked;
770 	}
771 
772 	/* Another fsync thread may have already written back this entry */
773 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
774 		goto put_unlocked;
775 	/* Lock the entry to serialize with page faults */
776 	entry = lock_slot(mapping, slot);
777 	/*
778 	 * We can clear the tag now but we have to be careful so that concurrent
779 	 * dax_writeback_one() calls for the same index cannot finish before we
780 	 * actually flush the caches. This is achieved as the calls will look
781 	 * at the entry only under tree_lock and once they do that they will
782 	 * see the entry locked and wait for it to unlock.
783 	 */
784 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
785 	spin_unlock_irq(&mapping->tree_lock);
786 
787 	/*
788 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
789 	 * in the middle of a PMD, the 'index' we are given will be aligned to
790 	 * the start index of the PMD, as will the sector we pull from
791 	 * 'entry'.  This allows us to flush for PMD_SIZE and not have to
792 	 * worry about partial PMD writebacks.
793 	 */
794 	sector = dax_radix_sector(entry);
795 	size = PAGE_SIZE << dax_radix_order(entry);
796 
797 	id = dax_read_lock();
798 	ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
799 	if (ret)
800 		goto dax_unlock;
801 
802 	/*
803 	 * dax_direct_access() may sleep, so cannot hold tree_lock over
804 	 * its invocation.
805 	 */
806 	ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
807 	if (ret < 0)
808 		goto dax_unlock;
809 
810 	if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
811 		ret = -EIO;
812 		goto dax_unlock;
813 	}
814 
815 	dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
816 	wb_cache_pmem(kaddr, size);
817 	/*
818 	 * After we have flushed the cache, we can clear the dirty tag. There
819 	 * cannot be new dirty data in the pfn after the flush has completed as
820 	 * the pfn mappings are writeprotected and fault waits for mapping
821 	 * entry lock.
822 	 */
823 	spin_lock_irq(&mapping->tree_lock);
824 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
825 	spin_unlock_irq(&mapping->tree_lock);
826 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
827  dax_unlock:
828 	dax_read_unlock(id);
829 	put_locked_mapping_entry(mapping, index, entry);
830 	return ret;
831 
832  put_unlocked:
833 	put_unlocked_mapping_entry(mapping, index, entry2);
834 	spin_unlock_irq(&mapping->tree_lock);
835 	return ret;
836 }
837 
838 /*
839  * Flush the mapping to the persistent domain within the byte range of [start,
840  * end]. This is required by data integrity operations to ensure file data is
841  * on persistent storage prior to completion of the operation.
842  */
843 int dax_writeback_mapping_range(struct address_space *mapping,
844 		struct block_device *bdev, struct writeback_control *wbc)
845 {
846 	struct inode *inode = mapping->host;
847 	pgoff_t start_index, end_index;
848 	pgoff_t indices[PAGEVEC_SIZE];
849 	struct dax_device *dax_dev;
850 	struct pagevec pvec;
851 	bool done = false;
852 	int i, ret = 0;
853 
854 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
855 		return -EIO;
856 
857 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
858 		return 0;
859 
860 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
861 	if (!dax_dev)
862 		return -EIO;
863 
864 	start_index = wbc->range_start >> PAGE_SHIFT;
865 	end_index = wbc->range_end >> PAGE_SHIFT;
866 
867 	trace_dax_writeback_range(inode, start_index, end_index);
868 
869 	tag_pages_for_writeback(mapping, start_index, end_index);
870 
871 	pagevec_init(&pvec, 0);
872 	while (!done) {
873 		pvec.nr = find_get_entries_tag(mapping, start_index,
874 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
875 				pvec.pages, indices);
876 
877 		if (pvec.nr == 0)
878 			break;
879 
880 		for (i = 0; i < pvec.nr; i++) {
881 			if (indices[i] > end_index) {
882 				done = true;
883 				break;
884 			}
885 
886 			ret = dax_writeback_one(bdev, dax_dev, mapping,
887 					indices[i], pvec.pages[i]);
888 			if (ret < 0)
889 				goto out;
890 		}
891 	}
892 out:
893 	put_dax(dax_dev);
894 	trace_dax_writeback_range_done(inode, start_index, end_index);
895 	return (ret < 0 ? ret : 0);
896 }
897 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
898 
899 static int dax_insert_mapping(struct address_space *mapping,
900 		struct block_device *bdev, struct dax_device *dax_dev,
901 		sector_t sector, size_t size, void **entryp,
902 		struct vm_area_struct *vma, struct vm_fault *vmf)
903 {
904 	unsigned long vaddr = vmf->address;
905 	void *entry = *entryp;
906 	void *ret, *kaddr;
907 	pgoff_t pgoff;
908 	int id, rc;
909 	pfn_t pfn;
910 
911 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
912 	if (rc)
913 		return rc;
914 
915 	id = dax_read_lock();
916 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
917 	if (rc < 0) {
918 		dax_read_unlock(id);
919 		return rc;
920 	}
921 	dax_read_unlock(id);
922 
923 	ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
924 	if (IS_ERR(ret))
925 		return PTR_ERR(ret);
926 	*entryp = ret;
927 
928 	trace_dax_insert_mapping(mapping->host, vmf, ret);
929 	return vm_insert_mixed(vma, vaddr, pfn);
930 }
931 
932 /**
933  * dax_pfn_mkwrite - handle first write to DAX page
934  * @vmf: The description of the fault
935  */
936 int dax_pfn_mkwrite(struct vm_fault *vmf)
937 {
938 	struct file *file = vmf->vma->vm_file;
939 	struct address_space *mapping = file->f_mapping;
940 	struct inode *inode = mapping->host;
941 	void *entry, **slot;
942 	pgoff_t index = vmf->pgoff;
943 
944 	spin_lock_irq(&mapping->tree_lock);
945 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
946 	if (!entry || !radix_tree_exceptional_entry(entry)) {
947 		if (entry)
948 			put_unlocked_mapping_entry(mapping, index, entry);
949 		spin_unlock_irq(&mapping->tree_lock);
950 		trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
951 		return VM_FAULT_NOPAGE;
952 	}
953 	radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
954 	entry = lock_slot(mapping, slot);
955 	spin_unlock_irq(&mapping->tree_lock);
956 	/*
957 	 * If we race with somebody updating the PTE and finish_mkwrite_fault()
958 	 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
959 	 * the fault in either case.
960 	 */
961 	finish_mkwrite_fault(vmf);
962 	put_locked_mapping_entry(mapping, index, entry);
963 	trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
964 	return VM_FAULT_NOPAGE;
965 }
966 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
967 
968 static bool dax_range_is_aligned(struct block_device *bdev,
969 				 unsigned int offset, unsigned int length)
970 {
971 	unsigned short sector_size = bdev_logical_block_size(bdev);
972 
973 	if (!IS_ALIGNED(offset, sector_size))
974 		return false;
975 	if (!IS_ALIGNED(length, sector_size))
976 		return false;
977 
978 	return true;
979 }
980 
981 int __dax_zero_page_range(struct block_device *bdev,
982 		struct dax_device *dax_dev, sector_t sector,
983 		unsigned int offset, unsigned int size)
984 {
985 	if (dax_range_is_aligned(bdev, offset, size)) {
986 		sector_t start_sector = sector + (offset >> 9);
987 
988 		return blkdev_issue_zeroout(bdev, start_sector,
989 				size >> 9, GFP_NOFS, 0);
990 	} else {
991 		pgoff_t pgoff;
992 		long rc, id;
993 		void *kaddr;
994 		pfn_t pfn;
995 
996 		rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
997 		if (rc)
998 			return rc;
999 
1000 		id = dax_read_lock();
1001 		rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr,
1002 				&pfn);
1003 		if (rc < 0) {
1004 			dax_read_unlock(id);
1005 			return rc;
1006 		}
1007 		clear_pmem(kaddr + offset, size);
1008 		dax_read_unlock(id);
1009 	}
1010 	return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1013 
1014 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1015 {
1016 	return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1017 }
1018 
1019 static loff_t
1020 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1021 		struct iomap *iomap)
1022 {
1023 	struct block_device *bdev = iomap->bdev;
1024 	struct dax_device *dax_dev = iomap->dax_dev;
1025 	struct iov_iter *iter = data;
1026 	loff_t end = pos + length, done = 0;
1027 	ssize_t ret = 0;
1028 	int id;
1029 
1030 	if (iov_iter_rw(iter) == READ) {
1031 		end = min(end, i_size_read(inode));
1032 		if (pos >= end)
1033 			return 0;
1034 
1035 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1036 			return iov_iter_zero(min(length, end - pos), iter);
1037 	}
1038 
1039 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1040 		return -EIO;
1041 
1042 	/*
1043 	 * Write can allocate block for an area which has a hole page mapped
1044 	 * into page tables. We have to tear down these mappings so that data
1045 	 * written by write(2) is visible in mmap.
1046 	 */
1047 	if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1048 		invalidate_inode_pages2_range(inode->i_mapping,
1049 					      pos >> PAGE_SHIFT,
1050 					      (end - 1) >> PAGE_SHIFT);
1051 	}
1052 
1053 	id = dax_read_lock();
1054 	while (pos < end) {
1055 		unsigned offset = pos & (PAGE_SIZE - 1);
1056 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1057 		const sector_t sector = dax_iomap_sector(iomap, pos);
1058 		ssize_t map_len;
1059 		pgoff_t pgoff;
1060 		void *kaddr;
1061 		pfn_t pfn;
1062 
1063 		if (fatal_signal_pending(current)) {
1064 			ret = -EINTR;
1065 			break;
1066 		}
1067 
1068 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1069 		if (ret)
1070 			break;
1071 
1072 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1073 				&kaddr, &pfn);
1074 		if (map_len < 0) {
1075 			ret = map_len;
1076 			break;
1077 		}
1078 
1079 		map_len = PFN_PHYS(map_len);
1080 		kaddr += offset;
1081 		map_len -= offset;
1082 		if (map_len > end - pos)
1083 			map_len = end - pos;
1084 
1085 		if (iov_iter_rw(iter) == WRITE)
1086 			map_len = copy_from_iter_pmem(kaddr, map_len, iter);
1087 		else
1088 			map_len = copy_to_iter(kaddr, map_len, iter);
1089 		if (map_len <= 0) {
1090 			ret = map_len ? map_len : -EFAULT;
1091 			break;
1092 		}
1093 
1094 		pos += map_len;
1095 		length -= map_len;
1096 		done += map_len;
1097 	}
1098 	dax_read_unlock(id);
1099 
1100 	return done ? done : ret;
1101 }
1102 
1103 /**
1104  * dax_iomap_rw - Perform I/O to a DAX file
1105  * @iocb:	The control block for this I/O
1106  * @iter:	The addresses to do I/O from or to
1107  * @ops:	iomap ops passed from the file system
1108  *
1109  * This function performs read and write operations to directly mapped
1110  * persistent memory.  The callers needs to take care of read/write exclusion
1111  * and evicting any page cache pages in the region under I/O.
1112  */
1113 ssize_t
1114 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1115 		const struct iomap_ops *ops)
1116 {
1117 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1118 	struct inode *inode = mapping->host;
1119 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1120 	unsigned flags = 0;
1121 
1122 	if (iov_iter_rw(iter) == WRITE) {
1123 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1124 		flags |= IOMAP_WRITE;
1125 	} else {
1126 		lockdep_assert_held(&inode->i_rwsem);
1127 	}
1128 
1129 	while (iov_iter_count(iter)) {
1130 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1131 				iter, dax_iomap_actor);
1132 		if (ret <= 0)
1133 			break;
1134 		pos += ret;
1135 		done += ret;
1136 	}
1137 
1138 	iocb->ki_pos += done;
1139 	return done ? done : ret;
1140 }
1141 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1142 
1143 static int dax_fault_return(int error)
1144 {
1145 	if (error == 0)
1146 		return VM_FAULT_NOPAGE;
1147 	if (error == -ENOMEM)
1148 		return VM_FAULT_OOM;
1149 	return VM_FAULT_SIGBUS;
1150 }
1151 
1152 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1153 			       const struct iomap_ops *ops)
1154 {
1155 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1156 	struct inode *inode = mapping->host;
1157 	unsigned long vaddr = vmf->address;
1158 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1159 	sector_t sector;
1160 	struct iomap iomap = { 0 };
1161 	unsigned flags = IOMAP_FAULT;
1162 	int error, major = 0;
1163 	int vmf_ret = 0;
1164 	void *entry;
1165 
1166 	trace_dax_pte_fault(inode, vmf, vmf_ret);
1167 	/*
1168 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1169 	 * to hold locks serializing us with truncate / punch hole so this is
1170 	 * a reliable test.
1171 	 */
1172 	if (pos >= i_size_read(inode)) {
1173 		vmf_ret = VM_FAULT_SIGBUS;
1174 		goto out;
1175 	}
1176 
1177 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1178 		flags |= IOMAP_WRITE;
1179 
1180 	/*
1181 	 * Note that we don't bother to use iomap_apply here: DAX required
1182 	 * the file system block size to be equal the page size, which means
1183 	 * that we never have to deal with more than a single extent here.
1184 	 */
1185 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1186 	if (error) {
1187 		vmf_ret = dax_fault_return(error);
1188 		goto out;
1189 	}
1190 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1191 		vmf_ret = dax_fault_return(-EIO);	/* fs corruption? */
1192 		goto finish_iomap;
1193 	}
1194 
1195 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1196 	if (IS_ERR(entry)) {
1197 		vmf_ret = dax_fault_return(PTR_ERR(entry));
1198 		goto finish_iomap;
1199 	}
1200 
1201 	sector = dax_iomap_sector(&iomap, pos);
1202 
1203 	if (vmf->cow_page) {
1204 		switch (iomap.type) {
1205 		case IOMAP_HOLE:
1206 		case IOMAP_UNWRITTEN:
1207 			clear_user_highpage(vmf->cow_page, vaddr);
1208 			break;
1209 		case IOMAP_MAPPED:
1210 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1211 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1212 			break;
1213 		default:
1214 			WARN_ON_ONCE(1);
1215 			error = -EIO;
1216 			break;
1217 		}
1218 
1219 		if (error)
1220 			goto error_unlock_entry;
1221 
1222 		__SetPageUptodate(vmf->cow_page);
1223 		vmf_ret = finish_fault(vmf);
1224 		if (!vmf_ret)
1225 			vmf_ret = VM_FAULT_DONE_COW;
1226 		goto unlock_entry;
1227 	}
1228 
1229 	switch (iomap.type) {
1230 	case IOMAP_MAPPED:
1231 		if (iomap.flags & IOMAP_F_NEW) {
1232 			count_vm_event(PGMAJFAULT);
1233 			mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1234 			major = VM_FAULT_MAJOR;
1235 		}
1236 		error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1237 				sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1238 		/* -EBUSY is fine, somebody else faulted on the same PTE */
1239 		if (error == -EBUSY)
1240 			error = 0;
1241 		break;
1242 	case IOMAP_UNWRITTEN:
1243 	case IOMAP_HOLE:
1244 		if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1245 			vmf_ret = dax_load_hole(mapping, &entry, vmf);
1246 			goto unlock_entry;
1247 		}
1248 		/*FALLTHRU*/
1249 	default:
1250 		WARN_ON_ONCE(1);
1251 		error = -EIO;
1252 		break;
1253 	}
1254 
1255  error_unlock_entry:
1256 	vmf_ret = dax_fault_return(error) | major;
1257  unlock_entry:
1258 	put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1259  finish_iomap:
1260 	if (ops->iomap_end) {
1261 		int copied = PAGE_SIZE;
1262 
1263 		if (vmf_ret & VM_FAULT_ERROR)
1264 			copied = 0;
1265 		/*
1266 		 * The fault is done by now and there's no way back (other
1267 		 * thread may be already happily using PTE we have installed).
1268 		 * Just ignore error from ->iomap_end since we cannot do much
1269 		 * with it.
1270 		 */
1271 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1272 	}
1273 out:
1274 	trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1275 	return vmf_ret;
1276 }
1277 
1278 #ifdef CONFIG_FS_DAX_PMD
1279 /*
1280  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1281  * more often than one might expect in the below functions.
1282  */
1283 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
1284 
1285 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1286 		loff_t pos, void **entryp)
1287 {
1288 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1289 	const sector_t sector = dax_iomap_sector(iomap, pos);
1290 	struct dax_device *dax_dev = iomap->dax_dev;
1291 	struct block_device *bdev = iomap->bdev;
1292 	struct inode *inode = mapping->host;
1293 	const size_t size = PMD_SIZE;
1294 	void *ret = NULL, *kaddr;
1295 	long length = 0;
1296 	pgoff_t pgoff;
1297 	pfn_t pfn;
1298 	int id;
1299 
1300 	if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1301 		goto fallback;
1302 
1303 	id = dax_read_lock();
1304 	length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1305 	if (length < 0)
1306 		goto unlock_fallback;
1307 	length = PFN_PHYS(length);
1308 
1309 	if (length < size)
1310 		goto unlock_fallback;
1311 	if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1312 		goto unlock_fallback;
1313 	if (!pfn_t_devmap(pfn))
1314 		goto unlock_fallback;
1315 	dax_read_unlock(id);
1316 
1317 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1318 			RADIX_DAX_PMD);
1319 	if (IS_ERR(ret))
1320 		goto fallback;
1321 	*entryp = ret;
1322 
1323 	trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1324 	return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1325 			pfn, vmf->flags & FAULT_FLAG_WRITE);
1326 
1327 unlock_fallback:
1328 	dax_read_unlock(id);
1329 fallback:
1330 	trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1331 	return VM_FAULT_FALLBACK;
1332 }
1333 
1334 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1335 		void **entryp)
1336 {
1337 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1338 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1339 	struct inode *inode = mapping->host;
1340 	struct page *zero_page;
1341 	void *ret = NULL;
1342 	spinlock_t *ptl;
1343 	pmd_t pmd_entry;
1344 
1345 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1346 
1347 	if (unlikely(!zero_page))
1348 		goto fallback;
1349 
1350 	ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1351 			RADIX_DAX_PMD | RADIX_DAX_HZP);
1352 	if (IS_ERR(ret))
1353 		goto fallback;
1354 	*entryp = ret;
1355 
1356 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1357 	if (!pmd_none(*(vmf->pmd))) {
1358 		spin_unlock(ptl);
1359 		goto fallback;
1360 	}
1361 
1362 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1363 	pmd_entry = pmd_mkhuge(pmd_entry);
1364 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1365 	spin_unlock(ptl);
1366 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1367 	return VM_FAULT_NOPAGE;
1368 
1369 fallback:
1370 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1371 	return VM_FAULT_FALLBACK;
1372 }
1373 
1374 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1375 			       const struct iomap_ops *ops)
1376 {
1377 	struct vm_area_struct *vma = vmf->vma;
1378 	struct address_space *mapping = vma->vm_file->f_mapping;
1379 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1380 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1381 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1382 	struct inode *inode = mapping->host;
1383 	int result = VM_FAULT_FALLBACK;
1384 	struct iomap iomap = { 0 };
1385 	pgoff_t max_pgoff, pgoff;
1386 	void *entry;
1387 	loff_t pos;
1388 	int error;
1389 
1390 	/*
1391 	 * Check whether offset isn't beyond end of file now. Caller is
1392 	 * supposed to hold locks serializing us with truncate / punch hole so
1393 	 * this is a reliable test.
1394 	 */
1395 	pgoff = linear_page_index(vma, pmd_addr);
1396 	max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1397 
1398 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1399 
1400 	/* Fall back to PTEs if we're going to COW */
1401 	if (write && !(vma->vm_flags & VM_SHARED))
1402 		goto fallback;
1403 
1404 	/* If the PMD would extend outside the VMA */
1405 	if (pmd_addr < vma->vm_start)
1406 		goto fallback;
1407 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1408 		goto fallback;
1409 
1410 	if (pgoff > max_pgoff) {
1411 		result = VM_FAULT_SIGBUS;
1412 		goto out;
1413 	}
1414 
1415 	/* If the PMD would extend beyond the file size */
1416 	if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1417 		goto fallback;
1418 
1419 	/*
1420 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1421 	 * setting up a mapping, so really we're using iomap_begin() as a way
1422 	 * to look up our filesystem block.
1423 	 */
1424 	pos = (loff_t)pgoff << PAGE_SHIFT;
1425 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1426 	if (error)
1427 		goto fallback;
1428 
1429 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1430 		goto finish_iomap;
1431 
1432 	/*
1433 	 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1434 	 * PMD or a HZP entry.  If it can't (because a 4k page is already in
1435 	 * the tree, for instance), it will return -EEXIST and we just fall
1436 	 * back to 4k entries.
1437 	 */
1438 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1439 	if (IS_ERR(entry))
1440 		goto finish_iomap;
1441 
1442 	switch (iomap.type) {
1443 	case IOMAP_MAPPED:
1444 		result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1445 		break;
1446 	case IOMAP_UNWRITTEN:
1447 	case IOMAP_HOLE:
1448 		if (WARN_ON_ONCE(write))
1449 			goto unlock_entry;
1450 		result = dax_pmd_load_hole(vmf, &iomap, &entry);
1451 		break;
1452 	default:
1453 		WARN_ON_ONCE(1);
1454 		break;
1455 	}
1456 
1457  unlock_entry:
1458 	put_locked_mapping_entry(mapping, pgoff, entry);
1459  finish_iomap:
1460 	if (ops->iomap_end) {
1461 		int copied = PMD_SIZE;
1462 
1463 		if (result == VM_FAULT_FALLBACK)
1464 			copied = 0;
1465 		/*
1466 		 * The fault is done by now and there's no way back (other
1467 		 * thread may be already happily using PMD we have installed).
1468 		 * Just ignore error from ->iomap_end since we cannot do much
1469 		 * with it.
1470 		 */
1471 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1472 				&iomap);
1473 	}
1474  fallback:
1475 	if (result == VM_FAULT_FALLBACK) {
1476 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1477 		count_vm_event(THP_FAULT_FALLBACK);
1478 	}
1479 out:
1480 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1481 	return result;
1482 }
1483 #else
1484 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1485 			       const struct iomap_ops *ops)
1486 {
1487 	return VM_FAULT_FALLBACK;
1488 }
1489 #endif /* CONFIG_FS_DAX_PMD */
1490 
1491 /**
1492  * dax_iomap_fault - handle a page fault on a DAX file
1493  * @vmf: The description of the fault
1494  * @ops: iomap ops passed from the file system
1495  *
1496  * When a page fault occurs, filesystems may call this helper in
1497  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1498  * has done all the necessary locking for page fault to proceed
1499  * successfully.
1500  */
1501 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1502 		    const struct iomap_ops *ops)
1503 {
1504 	switch (pe_size) {
1505 	case PE_SIZE_PTE:
1506 		return dax_iomap_pte_fault(vmf, ops);
1507 	case PE_SIZE_PMD:
1508 		return dax_iomap_pmd_fault(vmf, ops);
1509 	default:
1510 		return VM_FAULT_FALLBACK;
1511 	}
1512 }
1513 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1514