1 /* 2 * This contains encryption functions for per-file encryption. 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * Copyright (C) 2015, Motorola Mobility 6 * 7 * Written by Michael Halcrow, 2014. 8 * 9 * Filename encryption additions 10 * Uday Savagaonkar, 2014 11 * Encryption policy handling additions 12 * Ildar Muslukhov, 2014 13 * Add fscrypt_pullback_bio_page() 14 * Jaegeuk Kim, 2015. 15 * 16 * This has not yet undergone a rigorous security audit. 17 * 18 * The usage of AES-XTS should conform to recommendations in NIST 19 * Special Publication 800-38E and IEEE P1619/D16. 20 */ 21 22 #include <linux/pagemap.h> 23 #include <linux/mempool.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/ratelimit.h> 27 #include <linux/dcache.h> 28 #include <linux/namei.h> 29 #include <crypto/aes.h> 30 #include <crypto/skcipher.h> 31 #include "fscrypt_private.h" 32 33 static unsigned int num_prealloc_crypto_pages = 32; 34 static unsigned int num_prealloc_crypto_ctxs = 128; 35 36 module_param(num_prealloc_crypto_pages, uint, 0444); 37 MODULE_PARM_DESC(num_prealloc_crypto_pages, 38 "Number of crypto pages to preallocate"); 39 module_param(num_prealloc_crypto_ctxs, uint, 0444); 40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 41 "Number of crypto contexts to preallocate"); 42 43 static mempool_t *fscrypt_bounce_page_pool = NULL; 44 45 static LIST_HEAD(fscrypt_free_ctxs); 46 static DEFINE_SPINLOCK(fscrypt_ctx_lock); 47 48 struct workqueue_struct *fscrypt_read_workqueue; 49 static DEFINE_MUTEX(fscrypt_init_mutex); 50 51 static struct kmem_cache *fscrypt_ctx_cachep; 52 struct kmem_cache *fscrypt_info_cachep; 53 54 /** 55 * fscrypt_release_ctx() - Releases an encryption context 56 * @ctx: The encryption context to release. 57 * 58 * If the encryption context was allocated from the pre-allocated pool, returns 59 * it to that pool. Else, frees it. 60 * 61 * If there's a bounce page in the context, this frees that. 62 */ 63 void fscrypt_release_ctx(struct fscrypt_ctx *ctx) 64 { 65 unsigned long flags; 66 67 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) { 68 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool); 69 ctx->w.bounce_page = NULL; 70 } 71 ctx->w.control_page = NULL; 72 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { 73 kmem_cache_free(fscrypt_ctx_cachep, ctx); 74 } else { 75 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 76 list_add(&ctx->free_list, &fscrypt_free_ctxs); 77 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 78 } 79 } 80 EXPORT_SYMBOL(fscrypt_release_ctx); 81 82 /** 83 * fscrypt_get_ctx() - Gets an encryption context 84 * @inode: The inode for which we are doing the crypto 85 * @gfp_flags: The gfp flag for memory allocation 86 * 87 * Allocates and initializes an encryption context. 88 * 89 * Return: An allocated and initialized encryption context on success; error 90 * value or NULL otherwise. 91 */ 92 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags) 93 { 94 struct fscrypt_ctx *ctx = NULL; 95 struct fscrypt_info *ci = inode->i_crypt_info; 96 unsigned long flags; 97 98 if (ci == NULL) 99 return ERR_PTR(-ENOKEY); 100 101 /* 102 * We first try getting the ctx from a free list because in 103 * the common case the ctx will have an allocated and 104 * initialized crypto tfm, so it's probably a worthwhile 105 * optimization. For the bounce page, we first try getting it 106 * from the kernel allocator because that's just about as fast 107 * as getting it from a list and because a cache of free pages 108 * should generally be a "last resort" option for a filesystem 109 * to be able to do its job. 110 */ 111 spin_lock_irqsave(&fscrypt_ctx_lock, flags); 112 ctx = list_first_entry_or_null(&fscrypt_free_ctxs, 113 struct fscrypt_ctx, free_list); 114 if (ctx) 115 list_del(&ctx->free_list); 116 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags); 117 if (!ctx) { 118 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags); 119 if (!ctx) 120 return ERR_PTR(-ENOMEM); 121 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 122 } else { 123 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL; 124 } 125 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL; 126 return ctx; 127 } 128 EXPORT_SYMBOL(fscrypt_get_ctx); 129 130 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw, 131 u64 lblk_num, struct page *src_page, 132 struct page *dest_page, unsigned int len, 133 unsigned int offs, gfp_t gfp_flags) 134 { 135 struct { 136 __le64 index; 137 u8 padding[FS_IV_SIZE - sizeof(__le64)]; 138 } iv; 139 struct skcipher_request *req = NULL; 140 DECLARE_CRYPTO_WAIT(wait); 141 struct scatterlist dst, src; 142 struct fscrypt_info *ci = inode->i_crypt_info; 143 struct crypto_skcipher *tfm = ci->ci_ctfm; 144 int res = 0; 145 146 BUG_ON(len == 0); 147 148 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE); 149 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE); 150 iv.index = cpu_to_le64(lblk_num); 151 memset(iv.padding, 0, sizeof(iv.padding)); 152 153 if (ci->ci_essiv_tfm != NULL) { 154 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv, 155 (u8 *)&iv); 156 } 157 158 req = skcipher_request_alloc(tfm, gfp_flags); 159 if (!req) 160 return -ENOMEM; 161 162 skcipher_request_set_callback( 163 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 164 crypto_req_done, &wait); 165 166 sg_init_table(&dst, 1); 167 sg_set_page(&dst, dest_page, len, offs); 168 sg_init_table(&src, 1); 169 sg_set_page(&src, src_page, len, offs); 170 skcipher_request_set_crypt(req, &src, &dst, len, &iv); 171 if (rw == FS_DECRYPT) 172 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); 173 else 174 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 175 skcipher_request_free(req); 176 if (res) { 177 fscrypt_err(inode->i_sb, 178 "%scryption failed for inode %lu, block %llu: %d", 179 (rw == FS_DECRYPT ? "de" : "en"), 180 inode->i_ino, lblk_num, res); 181 return res; 182 } 183 return 0; 184 } 185 186 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx, 187 gfp_t gfp_flags) 188 { 189 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); 190 if (ctx->w.bounce_page == NULL) 191 return ERR_PTR(-ENOMEM); 192 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL; 193 return ctx->w.bounce_page; 194 } 195 196 /** 197 * fscypt_encrypt_page() - Encrypts a page 198 * @inode: The inode for which the encryption should take place 199 * @page: The page to encrypt. Must be locked for bounce-page 200 * encryption. 201 * @len: Length of data to encrypt in @page and encrypted 202 * data in returned page. 203 * @offs: Offset of data within @page and returned 204 * page holding encrypted data. 205 * @lblk_num: Logical block number. This must be unique for multiple 206 * calls with same inode, except when overwriting 207 * previously written data. 208 * @gfp_flags: The gfp flag for memory allocation 209 * 210 * Encrypts @page using the ctx encryption context. Performs encryption 211 * either in-place or into a newly allocated bounce page. 212 * Called on the page write path. 213 * 214 * Bounce page allocation is the default. 215 * In this case, the contents of @page are encrypted and stored in an 216 * allocated bounce page. @page has to be locked and the caller must call 217 * fscrypt_restore_control_page() on the returned ciphertext page to 218 * release the bounce buffer and the encryption context. 219 * 220 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in 221 * fscrypt_operations. Here, the input-page is returned with its content 222 * encrypted. 223 * 224 * Return: A page with the encrypted content on success. Else, an 225 * error value or NULL. 226 */ 227 struct page *fscrypt_encrypt_page(const struct inode *inode, 228 struct page *page, 229 unsigned int len, 230 unsigned int offs, 231 u64 lblk_num, gfp_t gfp_flags) 232 233 { 234 struct fscrypt_ctx *ctx; 235 struct page *ciphertext_page = page; 236 int err; 237 238 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0); 239 240 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) { 241 /* with inplace-encryption we just encrypt the page */ 242 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page, 243 ciphertext_page, len, offs, 244 gfp_flags); 245 if (err) 246 return ERR_PTR(err); 247 248 return ciphertext_page; 249 } 250 251 BUG_ON(!PageLocked(page)); 252 253 ctx = fscrypt_get_ctx(inode, gfp_flags); 254 if (IS_ERR(ctx)) 255 return (struct page *)ctx; 256 257 /* The encryption operation will require a bounce page. */ 258 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags); 259 if (IS_ERR(ciphertext_page)) 260 goto errout; 261 262 ctx->w.control_page = page; 263 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, 264 page, ciphertext_page, len, offs, 265 gfp_flags); 266 if (err) { 267 ciphertext_page = ERR_PTR(err); 268 goto errout; 269 } 270 SetPagePrivate(ciphertext_page); 271 set_page_private(ciphertext_page, (unsigned long)ctx); 272 lock_page(ciphertext_page); 273 return ciphertext_page; 274 275 errout: 276 fscrypt_release_ctx(ctx); 277 return ciphertext_page; 278 } 279 EXPORT_SYMBOL(fscrypt_encrypt_page); 280 281 /** 282 * fscrypt_decrypt_page() - Decrypts a page in-place 283 * @inode: The corresponding inode for the page to decrypt. 284 * @page: The page to decrypt. Must be locked in case 285 * it is a writeback page (FS_CFLG_OWN_PAGES unset). 286 * @len: Number of bytes in @page to be decrypted. 287 * @offs: Start of data in @page. 288 * @lblk_num: Logical block number. 289 * 290 * Decrypts page in-place using the ctx encryption context. 291 * 292 * Called from the read completion callback. 293 * 294 * Return: Zero on success, non-zero otherwise. 295 */ 296 int fscrypt_decrypt_page(const struct inode *inode, struct page *page, 297 unsigned int len, unsigned int offs, u64 lblk_num) 298 { 299 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)) 300 BUG_ON(!PageLocked(page)); 301 302 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page, 303 len, offs, GFP_NOFS); 304 } 305 EXPORT_SYMBOL(fscrypt_decrypt_page); 306 307 /* 308 * Validate dentries for encrypted directories to make sure we aren't 309 * potentially caching stale data after a key has been added or 310 * removed. 311 */ 312 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) 313 { 314 struct dentry *dir; 315 int dir_has_key, cached_with_key; 316 317 if (flags & LOOKUP_RCU) 318 return -ECHILD; 319 320 dir = dget_parent(dentry); 321 if (!IS_ENCRYPTED(d_inode(dir))) { 322 dput(dir); 323 return 0; 324 } 325 326 spin_lock(&dentry->d_lock); 327 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY; 328 spin_unlock(&dentry->d_lock); 329 dir_has_key = (d_inode(dir)->i_crypt_info != NULL); 330 dput(dir); 331 332 /* 333 * If the dentry was cached without the key, and it is a 334 * negative dentry, it might be a valid name. We can't check 335 * if the key has since been made available due to locking 336 * reasons, so we fail the validation so ext4_lookup() can do 337 * this check. 338 * 339 * We also fail the validation if the dentry was created with 340 * the key present, but we no longer have the key, or vice versa. 341 */ 342 if ((!cached_with_key && d_is_negative(dentry)) || 343 (!cached_with_key && dir_has_key) || 344 (cached_with_key && !dir_has_key)) 345 return 0; 346 return 1; 347 } 348 349 const struct dentry_operations fscrypt_d_ops = { 350 .d_revalidate = fscrypt_d_revalidate, 351 }; 352 353 void fscrypt_restore_control_page(struct page *page) 354 { 355 struct fscrypt_ctx *ctx; 356 357 ctx = (struct fscrypt_ctx *)page_private(page); 358 set_page_private(page, (unsigned long)NULL); 359 ClearPagePrivate(page); 360 unlock_page(page); 361 fscrypt_release_ctx(ctx); 362 } 363 EXPORT_SYMBOL(fscrypt_restore_control_page); 364 365 static void fscrypt_destroy(void) 366 { 367 struct fscrypt_ctx *pos, *n; 368 369 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list) 370 kmem_cache_free(fscrypt_ctx_cachep, pos); 371 INIT_LIST_HEAD(&fscrypt_free_ctxs); 372 mempool_destroy(fscrypt_bounce_page_pool); 373 fscrypt_bounce_page_pool = NULL; 374 } 375 376 /** 377 * fscrypt_initialize() - allocate major buffers for fs encryption. 378 * @cop_flags: fscrypt operations flags 379 * 380 * We only call this when we start accessing encrypted files, since it 381 * results in memory getting allocated that wouldn't otherwise be used. 382 * 383 * Return: Zero on success, non-zero otherwise. 384 */ 385 int fscrypt_initialize(unsigned int cop_flags) 386 { 387 int i, res = -ENOMEM; 388 389 /* No need to allocate a bounce page pool if this FS won't use it. */ 390 if (cop_flags & FS_CFLG_OWN_PAGES) 391 return 0; 392 393 mutex_lock(&fscrypt_init_mutex); 394 if (fscrypt_bounce_page_pool) 395 goto already_initialized; 396 397 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 398 struct fscrypt_ctx *ctx; 399 400 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS); 401 if (!ctx) 402 goto fail; 403 list_add(&ctx->free_list, &fscrypt_free_ctxs); 404 } 405 406 fscrypt_bounce_page_pool = 407 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 408 if (!fscrypt_bounce_page_pool) 409 goto fail; 410 411 already_initialized: 412 mutex_unlock(&fscrypt_init_mutex); 413 return 0; 414 fail: 415 fscrypt_destroy(); 416 mutex_unlock(&fscrypt_init_mutex); 417 return res; 418 } 419 420 void fscrypt_msg(struct super_block *sb, const char *level, 421 const char *fmt, ...) 422 { 423 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 424 DEFAULT_RATELIMIT_BURST); 425 struct va_format vaf; 426 va_list args; 427 428 if (!__ratelimit(&rs)) 429 return; 430 431 va_start(args, fmt); 432 vaf.fmt = fmt; 433 vaf.va = &args; 434 if (sb) 435 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf); 436 else 437 printk("%sfscrypt: %pV\n", level, &vaf); 438 va_end(args); 439 } 440 441 /** 442 * fscrypt_init() - Set up for fs encryption. 443 */ 444 static int __init fscrypt_init(void) 445 { 446 /* 447 * Use an unbound workqueue to allow bios to be decrypted in parallel 448 * even when they happen to complete on the same CPU. This sacrifices 449 * locality, but it's worthwhile since decryption is CPU-intensive. 450 * 451 * Also use a high-priority workqueue to prioritize decryption work, 452 * which blocks reads from completing, over regular application tasks. 453 */ 454 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", 455 WQ_UNBOUND | WQ_HIGHPRI, 456 num_online_cpus()); 457 if (!fscrypt_read_workqueue) 458 goto fail; 459 460 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT); 461 if (!fscrypt_ctx_cachep) 462 goto fail_free_queue; 463 464 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); 465 if (!fscrypt_info_cachep) 466 goto fail_free_ctx; 467 468 return 0; 469 470 fail_free_ctx: 471 kmem_cache_destroy(fscrypt_ctx_cachep); 472 fail_free_queue: 473 destroy_workqueue(fscrypt_read_workqueue); 474 fail: 475 return -ENOMEM; 476 } 477 module_init(fscrypt_init) 478 479 /** 480 * fscrypt_exit() - Shutdown the fs encryption system 481 */ 482 static void __exit fscrypt_exit(void) 483 { 484 fscrypt_destroy(); 485 486 if (fscrypt_read_workqueue) 487 destroy_workqueue(fscrypt_read_workqueue); 488 kmem_cache_destroy(fscrypt_ctx_cachep); 489 kmem_cache_destroy(fscrypt_info_cachep); 490 491 fscrypt_essiv_cleanup(); 492 } 493 module_exit(fscrypt_exit); 494 495 MODULE_LICENSE("GPL"); 496