xref: /linux/fs/crypto/crypto.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /*
2  * This contains encryption functions for per-file encryption.
3  *
4  * Copyright (C) 2015, Google, Inc.
5  * Copyright (C) 2015, Motorola Mobility
6  *
7  * Written by Michael Halcrow, 2014.
8  *
9  * Filename encryption additions
10  *	Uday Savagaonkar, 2014
11  * Encryption policy handling additions
12  *	Ildar Muslukhov, 2014
13  * Add fscrypt_pullback_bio_page()
14  *	Jaegeuk Kim, 2015.
15  *
16  * This has not yet undergone a rigorous security audit.
17  *
18  * The usage of AES-XTS should conform to recommendations in NIST
19  * Special Publication 800-38E and IEEE P1619/D16.
20  */
21 
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32 
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35 
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 		"Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 		"Number of crypto contexts to preallocate");
42 
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44 
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47 
48 struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50 
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53 
54 /**
55  * fscrypt_release_ctx() - Releases an encryption context
56  * @ctx: The encryption context to release.
57  *
58  * If the encryption context was allocated from the pre-allocated pool, returns
59  * it to that pool. Else, frees it.
60  *
61  * If there's a bounce page in the context, this frees that.
62  */
63 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
64 {
65 	unsigned long flags;
66 
67 	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
68 		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
69 		ctx->w.bounce_page = NULL;
70 	}
71 	ctx->w.control_page = NULL;
72 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
73 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
74 	} else {
75 		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
76 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
77 		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
78 	}
79 }
80 EXPORT_SYMBOL(fscrypt_release_ctx);
81 
82 /**
83  * fscrypt_get_ctx() - Gets an encryption context
84  * @inode:       The inode for which we are doing the crypto
85  * @gfp_flags:   The gfp flag for memory allocation
86  *
87  * Allocates and initializes an encryption context.
88  *
89  * Return: An allocated and initialized encryption context on success; error
90  * value or NULL otherwise.
91  */
92 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
93 {
94 	struct fscrypt_ctx *ctx = NULL;
95 	struct fscrypt_info *ci = inode->i_crypt_info;
96 	unsigned long flags;
97 
98 	if (ci == NULL)
99 		return ERR_PTR(-ENOKEY);
100 
101 	/*
102 	 * We first try getting the ctx from a free list because in
103 	 * the common case the ctx will have an allocated and
104 	 * initialized crypto tfm, so it's probably a worthwhile
105 	 * optimization. For the bounce page, we first try getting it
106 	 * from the kernel allocator because that's just about as fast
107 	 * as getting it from a list and because a cache of free pages
108 	 * should generally be a "last resort" option for a filesystem
109 	 * to be able to do its job.
110 	 */
111 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113 					struct fscrypt_ctx, free_list);
114 	if (ctx)
115 		list_del(&ctx->free_list);
116 	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117 	if (!ctx) {
118 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119 		if (!ctx)
120 			return ERR_PTR(-ENOMEM);
121 		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122 	} else {
123 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124 	}
125 	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
126 	return ctx;
127 }
128 EXPORT_SYMBOL(fscrypt_get_ctx);
129 
130 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
131 			   u64 lblk_num, struct page *src_page,
132 			   struct page *dest_page, unsigned int len,
133 			   unsigned int offs, gfp_t gfp_flags)
134 {
135 	struct {
136 		__le64 index;
137 		u8 padding[FS_IV_SIZE - sizeof(__le64)];
138 	} iv;
139 	struct skcipher_request *req = NULL;
140 	DECLARE_CRYPTO_WAIT(wait);
141 	struct scatterlist dst, src;
142 	struct fscrypt_info *ci = inode->i_crypt_info;
143 	struct crypto_skcipher *tfm = ci->ci_ctfm;
144 	int res = 0;
145 
146 	BUG_ON(len == 0);
147 
148 	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
149 	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
150 	iv.index = cpu_to_le64(lblk_num);
151 	memset(iv.padding, 0, sizeof(iv.padding));
152 
153 	if (ci->ci_essiv_tfm != NULL) {
154 		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
155 					  (u8 *)&iv);
156 	}
157 
158 	req = skcipher_request_alloc(tfm, gfp_flags);
159 	if (!req)
160 		return -ENOMEM;
161 
162 	skcipher_request_set_callback(
163 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
164 		crypto_req_done, &wait);
165 
166 	sg_init_table(&dst, 1);
167 	sg_set_page(&dst, dest_page, len, offs);
168 	sg_init_table(&src, 1);
169 	sg_set_page(&src, src_page, len, offs);
170 	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
171 	if (rw == FS_DECRYPT)
172 		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
173 	else
174 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
175 	skcipher_request_free(req);
176 	if (res) {
177 		fscrypt_err(inode->i_sb,
178 			    "%scryption failed for inode %lu, block %llu: %d",
179 			    (rw == FS_DECRYPT ? "de" : "en"),
180 			    inode->i_ino, lblk_num, res);
181 		return res;
182 	}
183 	return 0;
184 }
185 
186 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
187 				       gfp_t gfp_flags)
188 {
189 	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
190 	if (ctx->w.bounce_page == NULL)
191 		return ERR_PTR(-ENOMEM);
192 	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
193 	return ctx->w.bounce_page;
194 }
195 
196 /**
197  * fscypt_encrypt_page() - Encrypts a page
198  * @inode:     The inode for which the encryption should take place
199  * @page:      The page to encrypt. Must be locked for bounce-page
200  *             encryption.
201  * @len:       Length of data to encrypt in @page and encrypted
202  *             data in returned page.
203  * @offs:      Offset of data within @page and returned
204  *             page holding encrypted data.
205  * @lblk_num:  Logical block number. This must be unique for multiple
206  *             calls with same inode, except when overwriting
207  *             previously written data.
208  * @gfp_flags: The gfp flag for memory allocation
209  *
210  * Encrypts @page using the ctx encryption context. Performs encryption
211  * either in-place or into a newly allocated bounce page.
212  * Called on the page write path.
213  *
214  * Bounce page allocation is the default.
215  * In this case, the contents of @page are encrypted and stored in an
216  * allocated bounce page. @page has to be locked and the caller must call
217  * fscrypt_restore_control_page() on the returned ciphertext page to
218  * release the bounce buffer and the encryption context.
219  *
220  * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
221  * fscrypt_operations. Here, the input-page is returned with its content
222  * encrypted.
223  *
224  * Return: A page with the encrypted content on success. Else, an
225  * error value or NULL.
226  */
227 struct page *fscrypt_encrypt_page(const struct inode *inode,
228 				struct page *page,
229 				unsigned int len,
230 				unsigned int offs,
231 				u64 lblk_num, gfp_t gfp_flags)
232 
233 {
234 	struct fscrypt_ctx *ctx;
235 	struct page *ciphertext_page = page;
236 	int err;
237 
238 	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
239 
240 	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
241 		/* with inplace-encryption we just encrypt the page */
242 		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
243 					     ciphertext_page, len, offs,
244 					     gfp_flags);
245 		if (err)
246 			return ERR_PTR(err);
247 
248 		return ciphertext_page;
249 	}
250 
251 	BUG_ON(!PageLocked(page));
252 
253 	ctx = fscrypt_get_ctx(inode, gfp_flags);
254 	if (IS_ERR(ctx))
255 		return (struct page *)ctx;
256 
257 	/* The encryption operation will require a bounce page. */
258 	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
259 	if (IS_ERR(ciphertext_page))
260 		goto errout;
261 
262 	ctx->w.control_page = page;
263 	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
264 				     page, ciphertext_page, len, offs,
265 				     gfp_flags);
266 	if (err) {
267 		ciphertext_page = ERR_PTR(err);
268 		goto errout;
269 	}
270 	SetPagePrivate(ciphertext_page);
271 	set_page_private(ciphertext_page, (unsigned long)ctx);
272 	lock_page(ciphertext_page);
273 	return ciphertext_page;
274 
275 errout:
276 	fscrypt_release_ctx(ctx);
277 	return ciphertext_page;
278 }
279 EXPORT_SYMBOL(fscrypt_encrypt_page);
280 
281 /**
282  * fscrypt_decrypt_page() - Decrypts a page in-place
283  * @inode:     The corresponding inode for the page to decrypt.
284  * @page:      The page to decrypt. Must be locked in case
285  *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
286  * @len:       Number of bytes in @page to be decrypted.
287  * @offs:      Start of data in @page.
288  * @lblk_num:  Logical block number.
289  *
290  * Decrypts page in-place using the ctx encryption context.
291  *
292  * Called from the read completion callback.
293  *
294  * Return: Zero on success, non-zero otherwise.
295  */
296 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
297 			unsigned int len, unsigned int offs, u64 lblk_num)
298 {
299 	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
300 		BUG_ON(!PageLocked(page));
301 
302 	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
303 				      len, offs, GFP_NOFS);
304 }
305 EXPORT_SYMBOL(fscrypt_decrypt_page);
306 
307 /*
308  * Validate dentries for encrypted directories to make sure we aren't
309  * potentially caching stale data after a key has been added or
310  * removed.
311  */
312 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
313 {
314 	struct dentry *dir;
315 	int dir_has_key, cached_with_key;
316 
317 	if (flags & LOOKUP_RCU)
318 		return -ECHILD;
319 
320 	dir = dget_parent(dentry);
321 	if (!IS_ENCRYPTED(d_inode(dir))) {
322 		dput(dir);
323 		return 0;
324 	}
325 
326 	spin_lock(&dentry->d_lock);
327 	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
328 	spin_unlock(&dentry->d_lock);
329 	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
330 	dput(dir);
331 
332 	/*
333 	 * If the dentry was cached without the key, and it is a
334 	 * negative dentry, it might be a valid name.  We can't check
335 	 * if the key has since been made available due to locking
336 	 * reasons, so we fail the validation so ext4_lookup() can do
337 	 * this check.
338 	 *
339 	 * We also fail the validation if the dentry was created with
340 	 * the key present, but we no longer have the key, or vice versa.
341 	 */
342 	if ((!cached_with_key && d_is_negative(dentry)) ||
343 			(!cached_with_key && dir_has_key) ||
344 			(cached_with_key && !dir_has_key))
345 		return 0;
346 	return 1;
347 }
348 
349 const struct dentry_operations fscrypt_d_ops = {
350 	.d_revalidate = fscrypt_d_revalidate,
351 };
352 
353 void fscrypt_restore_control_page(struct page *page)
354 {
355 	struct fscrypt_ctx *ctx;
356 
357 	ctx = (struct fscrypt_ctx *)page_private(page);
358 	set_page_private(page, (unsigned long)NULL);
359 	ClearPagePrivate(page);
360 	unlock_page(page);
361 	fscrypt_release_ctx(ctx);
362 }
363 EXPORT_SYMBOL(fscrypt_restore_control_page);
364 
365 static void fscrypt_destroy(void)
366 {
367 	struct fscrypt_ctx *pos, *n;
368 
369 	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
370 		kmem_cache_free(fscrypt_ctx_cachep, pos);
371 	INIT_LIST_HEAD(&fscrypt_free_ctxs);
372 	mempool_destroy(fscrypt_bounce_page_pool);
373 	fscrypt_bounce_page_pool = NULL;
374 }
375 
376 /**
377  * fscrypt_initialize() - allocate major buffers for fs encryption.
378  * @cop_flags:  fscrypt operations flags
379  *
380  * We only call this when we start accessing encrypted files, since it
381  * results in memory getting allocated that wouldn't otherwise be used.
382  *
383  * Return: Zero on success, non-zero otherwise.
384  */
385 int fscrypt_initialize(unsigned int cop_flags)
386 {
387 	int i, res = -ENOMEM;
388 
389 	/* No need to allocate a bounce page pool if this FS won't use it. */
390 	if (cop_flags & FS_CFLG_OWN_PAGES)
391 		return 0;
392 
393 	mutex_lock(&fscrypt_init_mutex);
394 	if (fscrypt_bounce_page_pool)
395 		goto already_initialized;
396 
397 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
398 		struct fscrypt_ctx *ctx;
399 
400 		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
401 		if (!ctx)
402 			goto fail;
403 		list_add(&ctx->free_list, &fscrypt_free_ctxs);
404 	}
405 
406 	fscrypt_bounce_page_pool =
407 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
408 	if (!fscrypt_bounce_page_pool)
409 		goto fail;
410 
411 already_initialized:
412 	mutex_unlock(&fscrypt_init_mutex);
413 	return 0;
414 fail:
415 	fscrypt_destroy();
416 	mutex_unlock(&fscrypt_init_mutex);
417 	return res;
418 }
419 
420 void fscrypt_msg(struct super_block *sb, const char *level,
421 		 const char *fmt, ...)
422 {
423 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
424 				      DEFAULT_RATELIMIT_BURST);
425 	struct va_format vaf;
426 	va_list args;
427 
428 	if (!__ratelimit(&rs))
429 		return;
430 
431 	va_start(args, fmt);
432 	vaf.fmt = fmt;
433 	vaf.va = &args;
434 	if (sb)
435 		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
436 	else
437 		printk("%sfscrypt: %pV\n", level, &vaf);
438 	va_end(args);
439 }
440 
441 /**
442  * fscrypt_init() - Set up for fs encryption.
443  */
444 static int __init fscrypt_init(void)
445 {
446 	/*
447 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
448 	 * even when they happen to complete on the same CPU.  This sacrifices
449 	 * locality, but it's worthwhile since decryption is CPU-intensive.
450 	 *
451 	 * Also use a high-priority workqueue to prioritize decryption work,
452 	 * which blocks reads from completing, over regular application tasks.
453 	 */
454 	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
455 						 WQ_UNBOUND | WQ_HIGHPRI,
456 						 num_online_cpus());
457 	if (!fscrypt_read_workqueue)
458 		goto fail;
459 
460 	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
461 	if (!fscrypt_ctx_cachep)
462 		goto fail_free_queue;
463 
464 	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
465 	if (!fscrypt_info_cachep)
466 		goto fail_free_ctx;
467 
468 	return 0;
469 
470 fail_free_ctx:
471 	kmem_cache_destroy(fscrypt_ctx_cachep);
472 fail_free_queue:
473 	destroy_workqueue(fscrypt_read_workqueue);
474 fail:
475 	return -ENOMEM;
476 }
477 module_init(fscrypt_init)
478 
479 /**
480  * fscrypt_exit() - Shutdown the fs encryption system
481  */
482 static void __exit fscrypt_exit(void)
483 {
484 	fscrypt_destroy();
485 
486 	if (fscrypt_read_workqueue)
487 		destroy_workqueue(fscrypt_read_workqueue);
488 	kmem_cache_destroy(fscrypt_ctx_cachep);
489 	kmem_cache_destroy(fscrypt_info_cachep);
490 
491 	fscrypt_essiv_cleanup();
492 }
493 module_exit(fscrypt_exit);
494 
495 MODULE_LICENSE("GPL");
496