1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/wait.h> 5 #include <linux/slab.h> 6 #include <linux/gfp.h> 7 #include <linux/sched.h> 8 #include <linux/debugfs.h> 9 #include <linux/seq_file.h> 10 #include <linux/utsname.h> 11 #include <linux/ratelimit.h> 12 13 #include "super.h" 14 #include "mds_client.h" 15 16 #include <linux/ceph/ceph_features.h> 17 #include <linux/ceph/messenger.h> 18 #include <linux/ceph/decode.h> 19 #include <linux/ceph/pagelist.h> 20 #include <linux/ceph/auth.h> 21 #include <linux/ceph/debugfs.h> 22 23 /* 24 * A cluster of MDS (metadata server) daemons is responsible for 25 * managing the file system namespace (the directory hierarchy and 26 * inodes) and for coordinating shared access to storage. Metadata is 27 * partitioning hierarchically across a number of servers, and that 28 * partition varies over time as the cluster adjusts the distribution 29 * in order to balance load. 30 * 31 * The MDS client is primarily responsible to managing synchronous 32 * metadata requests for operations like open, unlink, and so forth. 33 * If there is a MDS failure, we find out about it when we (possibly 34 * request and) receive a new MDS map, and can resubmit affected 35 * requests. 36 * 37 * For the most part, though, we take advantage of a lossless 38 * communications channel to the MDS, and do not need to worry about 39 * timing out or resubmitting requests. 40 * 41 * We maintain a stateful "session" with each MDS we interact with. 42 * Within each session, we sent periodic heartbeat messages to ensure 43 * any capabilities or leases we have been issues remain valid. If 44 * the session times out and goes stale, our leases and capabilities 45 * are no longer valid. 46 */ 47 48 struct ceph_reconnect_state { 49 int nr_caps; 50 struct ceph_pagelist *pagelist; 51 bool flock; 52 }; 53 54 static void __wake_requests(struct ceph_mds_client *mdsc, 55 struct list_head *head); 56 57 static const struct ceph_connection_operations mds_con_ops; 58 59 60 /* 61 * mds reply parsing 62 */ 63 64 /* 65 * parse individual inode info 66 */ 67 static int parse_reply_info_in(void **p, void *end, 68 struct ceph_mds_reply_info_in *info, 69 u64 features) 70 { 71 int err = -EIO; 72 73 info->in = *p; 74 *p += sizeof(struct ceph_mds_reply_inode) + 75 sizeof(*info->in->fragtree.splits) * 76 le32_to_cpu(info->in->fragtree.nsplits); 77 78 ceph_decode_32_safe(p, end, info->symlink_len, bad); 79 ceph_decode_need(p, end, info->symlink_len, bad); 80 info->symlink = *p; 81 *p += info->symlink_len; 82 83 if (features & CEPH_FEATURE_DIRLAYOUTHASH) 84 ceph_decode_copy_safe(p, end, &info->dir_layout, 85 sizeof(info->dir_layout), bad); 86 else 87 memset(&info->dir_layout, 0, sizeof(info->dir_layout)); 88 89 ceph_decode_32_safe(p, end, info->xattr_len, bad); 90 ceph_decode_need(p, end, info->xattr_len, bad); 91 info->xattr_data = *p; 92 *p += info->xattr_len; 93 94 if (features & CEPH_FEATURE_MDS_INLINE_DATA) { 95 ceph_decode_64_safe(p, end, info->inline_version, bad); 96 ceph_decode_32_safe(p, end, info->inline_len, bad); 97 ceph_decode_need(p, end, info->inline_len, bad); 98 info->inline_data = *p; 99 *p += info->inline_len; 100 } else 101 info->inline_version = CEPH_INLINE_NONE; 102 103 if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) { 104 ceph_decode_32_safe(p, end, info->pool_ns_len, bad); 105 ceph_decode_need(p, end, info->pool_ns_len, bad); 106 *p += info->pool_ns_len; 107 } else { 108 info->pool_ns_len = 0; 109 } 110 111 return 0; 112 bad: 113 return err; 114 } 115 116 /* 117 * parse a normal reply, which may contain a (dir+)dentry and/or a 118 * target inode. 119 */ 120 static int parse_reply_info_trace(void **p, void *end, 121 struct ceph_mds_reply_info_parsed *info, 122 u64 features) 123 { 124 int err; 125 126 if (info->head->is_dentry) { 127 err = parse_reply_info_in(p, end, &info->diri, features); 128 if (err < 0) 129 goto out_bad; 130 131 if (unlikely(*p + sizeof(*info->dirfrag) > end)) 132 goto bad; 133 info->dirfrag = *p; 134 *p += sizeof(*info->dirfrag) + 135 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist); 136 if (unlikely(*p > end)) 137 goto bad; 138 139 ceph_decode_32_safe(p, end, info->dname_len, bad); 140 ceph_decode_need(p, end, info->dname_len, bad); 141 info->dname = *p; 142 *p += info->dname_len; 143 info->dlease = *p; 144 *p += sizeof(*info->dlease); 145 } 146 147 if (info->head->is_target) { 148 err = parse_reply_info_in(p, end, &info->targeti, features); 149 if (err < 0) 150 goto out_bad; 151 } 152 153 if (unlikely(*p != end)) 154 goto bad; 155 return 0; 156 157 bad: 158 err = -EIO; 159 out_bad: 160 pr_err("problem parsing mds trace %d\n", err); 161 return err; 162 } 163 164 /* 165 * parse readdir results 166 */ 167 static int parse_reply_info_dir(void **p, void *end, 168 struct ceph_mds_reply_info_parsed *info, 169 u64 features) 170 { 171 u32 num, i = 0; 172 int err; 173 174 info->dir_dir = *p; 175 if (*p + sizeof(*info->dir_dir) > end) 176 goto bad; 177 *p += sizeof(*info->dir_dir) + 178 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist); 179 if (*p > end) 180 goto bad; 181 182 ceph_decode_need(p, end, sizeof(num) + 2, bad); 183 num = ceph_decode_32(p); 184 info->dir_end = ceph_decode_8(p); 185 info->dir_complete = ceph_decode_8(p); 186 if (num == 0) 187 goto done; 188 189 BUG_ON(!info->dir_in); 190 info->dir_dname = (void *)(info->dir_in + num); 191 info->dir_dname_len = (void *)(info->dir_dname + num); 192 info->dir_dlease = (void *)(info->dir_dname_len + num); 193 if ((unsigned long)(info->dir_dlease + num) > 194 (unsigned long)info->dir_in + info->dir_buf_size) { 195 pr_err("dir contents are larger than expected\n"); 196 WARN_ON(1); 197 goto bad; 198 } 199 200 info->dir_nr = num; 201 while (num) { 202 /* dentry */ 203 ceph_decode_need(p, end, sizeof(u32)*2, bad); 204 info->dir_dname_len[i] = ceph_decode_32(p); 205 ceph_decode_need(p, end, info->dir_dname_len[i], bad); 206 info->dir_dname[i] = *p; 207 *p += info->dir_dname_len[i]; 208 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i], 209 info->dir_dname[i]); 210 info->dir_dlease[i] = *p; 211 *p += sizeof(struct ceph_mds_reply_lease); 212 213 /* inode */ 214 err = parse_reply_info_in(p, end, &info->dir_in[i], features); 215 if (err < 0) 216 goto out_bad; 217 i++; 218 num--; 219 } 220 221 done: 222 if (*p != end) 223 goto bad; 224 return 0; 225 226 bad: 227 err = -EIO; 228 out_bad: 229 pr_err("problem parsing dir contents %d\n", err); 230 return err; 231 } 232 233 /* 234 * parse fcntl F_GETLK results 235 */ 236 static int parse_reply_info_filelock(void **p, void *end, 237 struct ceph_mds_reply_info_parsed *info, 238 u64 features) 239 { 240 if (*p + sizeof(*info->filelock_reply) > end) 241 goto bad; 242 243 info->filelock_reply = *p; 244 *p += sizeof(*info->filelock_reply); 245 246 if (unlikely(*p != end)) 247 goto bad; 248 return 0; 249 250 bad: 251 return -EIO; 252 } 253 254 /* 255 * parse create results 256 */ 257 static int parse_reply_info_create(void **p, void *end, 258 struct ceph_mds_reply_info_parsed *info, 259 u64 features) 260 { 261 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) { 262 if (*p == end) { 263 info->has_create_ino = false; 264 } else { 265 info->has_create_ino = true; 266 info->ino = ceph_decode_64(p); 267 } 268 } 269 270 if (unlikely(*p != end)) 271 goto bad; 272 return 0; 273 274 bad: 275 return -EIO; 276 } 277 278 /* 279 * parse extra results 280 */ 281 static int parse_reply_info_extra(void **p, void *end, 282 struct ceph_mds_reply_info_parsed *info, 283 u64 features) 284 { 285 if (info->head->op == CEPH_MDS_OP_GETFILELOCK) 286 return parse_reply_info_filelock(p, end, info, features); 287 else if (info->head->op == CEPH_MDS_OP_READDIR || 288 info->head->op == CEPH_MDS_OP_LSSNAP) 289 return parse_reply_info_dir(p, end, info, features); 290 else if (info->head->op == CEPH_MDS_OP_CREATE) 291 return parse_reply_info_create(p, end, info, features); 292 else 293 return -EIO; 294 } 295 296 /* 297 * parse entire mds reply 298 */ 299 static int parse_reply_info(struct ceph_msg *msg, 300 struct ceph_mds_reply_info_parsed *info, 301 u64 features) 302 { 303 void *p, *end; 304 u32 len; 305 int err; 306 307 info->head = msg->front.iov_base; 308 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head); 309 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head); 310 311 /* trace */ 312 ceph_decode_32_safe(&p, end, len, bad); 313 if (len > 0) { 314 ceph_decode_need(&p, end, len, bad); 315 err = parse_reply_info_trace(&p, p+len, info, features); 316 if (err < 0) 317 goto out_bad; 318 } 319 320 /* extra */ 321 ceph_decode_32_safe(&p, end, len, bad); 322 if (len > 0) { 323 ceph_decode_need(&p, end, len, bad); 324 err = parse_reply_info_extra(&p, p+len, info, features); 325 if (err < 0) 326 goto out_bad; 327 } 328 329 /* snap blob */ 330 ceph_decode_32_safe(&p, end, len, bad); 331 info->snapblob_len = len; 332 info->snapblob = p; 333 p += len; 334 335 if (p != end) 336 goto bad; 337 return 0; 338 339 bad: 340 err = -EIO; 341 out_bad: 342 pr_err("mds parse_reply err %d\n", err); 343 return err; 344 } 345 346 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info) 347 { 348 if (!info->dir_in) 349 return; 350 free_pages((unsigned long)info->dir_in, get_order(info->dir_buf_size)); 351 } 352 353 354 /* 355 * sessions 356 */ 357 const char *ceph_session_state_name(int s) 358 { 359 switch (s) { 360 case CEPH_MDS_SESSION_NEW: return "new"; 361 case CEPH_MDS_SESSION_OPENING: return "opening"; 362 case CEPH_MDS_SESSION_OPEN: return "open"; 363 case CEPH_MDS_SESSION_HUNG: return "hung"; 364 case CEPH_MDS_SESSION_CLOSING: return "closing"; 365 case CEPH_MDS_SESSION_RESTARTING: return "restarting"; 366 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting"; 367 default: return "???"; 368 } 369 } 370 371 static struct ceph_mds_session *get_session(struct ceph_mds_session *s) 372 { 373 if (atomic_inc_not_zero(&s->s_ref)) { 374 dout("mdsc get_session %p %d -> %d\n", s, 375 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref)); 376 return s; 377 } else { 378 dout("mdsc get_session %p 0 -- FAIL", s); 379 return NULL; 380 } 381 } 382 383 void ceph_put_mds_session(struct ceph_mds_session *s) 384 { 385 dout("mdsc put_session %p %d -> %d\n", s, 386 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1); 387 if (atomic_dec_and_test(&s->s_ref)) { 388 if (s->s_auth.authorizer) 389 ceph_auth_destroy_authorizer( 390 s->s_mdsc->fsc->client->monc.auth, 391 s->s_auth.authorizer); 392 kfree(s); 393 } 394 } 395 396 /* 397 * called under mdsc->mutex 398 */ 399 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc, 400 int mds) 401 { 402 struct ceph_mds_session *session; 403 404 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL) 405 return NULL; 406 session = mdsc->sessions[mds]; 407 dout("lookup_mds_session %p %d\n", session, 408 atomic_read(&session->s_ref)); 409 get_session(session); 410 return session; 411 } 412 413 static bool __have_session(struct ceph_mds_client *mdsc, int mds) 414 { 415 if (mds >= mdsc->max_sessions) 416 return false; 417 return mdsc->sessions[mds]; 418 } 419 420 static int __verify_registered_session(struct ceph_mds_client *mdsc, 421 struct ceph_mds_session *s) 422 { 423 if (s->s_mds >= mdsc->max_sessions || 424 mdsc->sessions[s->s_mds] != s) 425 return -ENOENT; 426 return 0; 427 } 428 429 /* 430 * create+register a new session for given mds. 431 * called under mdsc->mutex. 432 */ 433 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc, 434 int mds) 435 { 436 struct ceph_mds_session *s; 437 438 if (mds >= mdsc->mdsmap->m_max_mds) 439 return ERR_PTR(-EINVAL); 440 441 s = kzalloc(sizeof(*s), GFP_NOFS); 442 if (!s) 443 return ERR_PTR(-ENOMEM); 444 s->s_mdsc = mdsc; 445 s->s_mds = mds; 446 s->s_state = CEPH_MDS_SESSION_NEW; 447 s->s_ttl = 0; 448 s->s_seq = 0; 449 mutex_init(&s->s_mutex); 450 451 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr); 452 453 spin_lock_init(&s->s_gen_ttl_lock); 454 s->s_cap_gen = 0; 455 s->s_cap_ttl = jiffies - 1; 456 457 spin_lock_init(&s->s_cap_lock); 458 s->s_renew_requested = 0; 459 s->s_renew_seq = 0; 460 INIT_LIST_HEAD(&s->s_caps); 461 s->s_nr_caps = 0; 462 s->s_trim_caps = 0; 463 atomic_set(&s->s_ref, 1); 464 INIT_LIST_HEAD(&s->s_waiting); 465 INIT_LIST_HEAD(&s->s_unsafe); 466 s->s_num_cap_releases = 0; 467 s->s_cap_reconnect = 0; 468 s->s_cap_iterator = NULL; 469 INIT_LIST_HEAD(&s->s_cap_releases); 470 INIT_LIST_HEAD(&s->s_cap_flushing); 471 INIT_LIST_HEAD(&s->s_cap_snaps_flushing); 472 473 dout("register_session mds%d\n", mds); 474 if (mds >= mdsc->max_sessions) { 475 int newmax = 1 << get_count_order(mds+1); 476 struct ceph_mds_session **sa; 477 478 dout("register_session realloc to %d\n", newmax); 479 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS); 480 if (sa == NULL) 481 goto fail_realloc; 482 if (mdsc->sessions) { 483 memcpy(sa, mdsc->sessions, 484 mdsc->max_sessions * sizeof(void *)); 485 kfree(mdsc->sessions); 486 } 487 mdsc->sessions = sa; 488 mdsc->max_sessions = newmax; 489 } 490 mdsc->sessions[mds] = s; 491 atomic_inc(&mdsc->num_sessions); 492 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */ 493 494 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds, 495 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 496 497 return s; 498 499 fail_realloc: 500 kfree(s); 501 return ERR_PTR(-ENOMEM); 502 } 503 504 /* 505 * called under mdsc->mutex 506 */ 507 static void __unregister_session(struct ceph_mds_client *mdsc, 508 struct ceph_mds_session *s) 509 { 510 dout("__unregister_session mds%d %p\n", s->s_mds, s); 511 BUG_ON(mdsc->sessions[s->s_mds] != s); 512 mdsc->sessions[s->s_mds] = NULL; 513 ceph_con_close(&s->s_con); 514 ceph_put_mds_session(s); 515 atomic_dec(&mdsc->num_sessions); 516 } 517 518 /* 519 * drop session refs in request. 520 * 521 * should be last request ref, or hold mdsc->mutex 522 */ 523 static void put_request_session(struct ceph_mds_request *req) 524 { 525 if (req->r_session) { 526 ceph_put_mds_session(req->r_session); 527 req->r_session = NULL; 528 } 529 } 530 531 void ceph_mdsc_release_request(struct kref *kref) 532 { 533 struct ceph_mds_request *req = container_of(kref, 534 struct ceph_mds_request, 535 r_kref); 536 destroy_reply_info(&req->r_reply_info); 537 if (req->r_request) 538 ceph_msg_put(req->r_request); 539 if (req->r_reply) 540 ceph_msg_put(req->r_reply); 541 if (req->r_inode) { 542 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 543 iput(req->r_inode); 544 } 545 if (req->r_locked_dir) 546 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 547 iput(req->r_target_inode); 548 if (req->r_dentry) 549 dput(req->r_dentry); 550 if (req->r_old_dentry) 551 dput(req->r_old_dentry); 552 if (req->r_old_dentry_dir) { 553 /* 554 * track (and drop pins for) r_old_dentry_dir 555 * separately, since r_old_dentry's d_parent may have 556 * changed between the dir mutex being dropped and 557 * this request being freed. 558 */ 559 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir), 560 CEPH_CAP_PIN); 561 iput(req->r_old_dentry_dir); 562 } 563 kfree(req->r_path1); 564 kfree(req->r_path2); 565 if (req->r_pagelist) 566 ceph_pagelist_release(req->r_pagelist); 567 put_request_session(req); 568 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation); 569 kfree(req); 570 } 571 572 /* 573 * lookup session, bump ref if found. 574 * 575 * called under mdsc->mutex. 576 */ 577 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc, 578 u64 tid) 579 { 580 struct ceph_mds_request *req; 581 struct rb_node *n = mdsc->request_tree.rb_node; 582 583 while (n) { 584 req = rb_entry(n, struct ceph_mds_request, r_node); 585 if (tid < req->r_tid) 586 n = n->rb_left; 587 else if (tid > req->r_tid) 588 n = n->rb_right; 589 else { 590 ceph_mdsc_get_request(req); 591 return req; 592 } 593 } 594 return NULL; 595 } 596 597 static void __insert_request(struct ceph_mds_client *mdsc, 598 struct ceph_mds_request *new) 599 { 600 struct rb_node **p = &mdsc->request_tree.rb_node; 601 struct rb_node *parent = NULL; 602 struct ceph_mds_request *req = NULL; 603 604 while (*p) { 605 parent = *p; 606 req = rb_entry(parent, struct ceph_mds_request, r_node); 607 if (new->r_tid < req->r_tid) 608 p = &(*p)->rb_left; 609 else if (new->r_tid > req->r_tid) 610 p = &(*p)->rb_right; 611 else 612 BUG(); 613 } 614 615 rb_link_node(&new->r_node, parent, p); 616 rb_insert_color(&new->r_node, &mdsc->request_tree); 617 } 618 619 /* 620 * Register an in-flight request, and assign a tid. Link to directory 621 * are modifying (if any). 622 * 623 * Called under mdsc->mutex. 624 */ 625 static void __register_request(struct ceph_mds_client *mdsc, 626 struct ceph_mds_request *req, 627 struct inode *dir) 628 { 629 req->r_tid = ++mdsc->last_tid; 630 if (req->r_num_caps) 631 ceph_reserve_caps(mdsc, &req->r_caps_reservation, 632 req->r_num_caps); 633 dout("__register_request %p tid %lld\n", req, req->r_tid); 634 ceph_mdsc_get_request(req); 635 __insert_request(mdsc, req); 636 637 req->r_uid = current_fsuid(); 638 req->r_gid = current_fsgid(); 639 640 if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK) 641 mdsc->oldest_tid = req->r_tid; 642 643 if (dir) { 644 ihold(dir); 645 req->r_unsafe_dir = dir; 646 } 647 } 648 649 static void __unregister_request(struct ceph_mds_client *mdsc, 650 struct ceph_mds_request *req) 651 { 652 dout("__unregister_request %p tid %lld\n", req, req->r_tid); 653 654 if (req->r_tid == mdsc->oldest_tid) { 655 struct rb_node *p = rb_next(&req->r_node); 656 mdsc->oldest_tid = 0; 657 while (p) { 658 struct ceph_mds_request *next_req = 659 rb_entry(p, struct ceph_mds_request, r_node); 660 if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) { 661 mdsc->oldest_tid = next_req->r_tid; 662 break; 663 } 664 p = rb_next(p); 665 } 666 } 667 668 rb_erase(&req->r_node, &mdsc->request_tree); 669 RB_CLEAR_NODE(&req->r_node); 670 671 if (req->r_unsafe_dir && req->r_got_unsafe) { 672 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir); 673 spin_lock(&ci->i_unsafe_lock); 674 list_del_init(&req->r_unsafe_dir_item); 675 spin_unlock(&ci->i_unsafe_lock); 676 } 677 if (req->r_target_inode && req->r_got_unsafe) { 678 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 679 spin_lock(&ci->i_unsafe_lock); 680 list_del_init(&req->r_unsafe_target_item); 681 spin_unlock(&ci->i_unsafe_lock); 682 } 683 684 if (req->r_unsafe_dir) { 685 iput(req->r_unsafe_dir); 686 req->r_unsafe_dir = NULL; 687 } 688 689 complete_all(&req->r_safe_completion); 690 691 ceph_mdsc_put_request(req); 692 } 693 694 /* 695 * Choose mds to send request to next. If there is a hint set in the 696 * request (e.g., due to a prior forward hint from the mds), use that. 697 * Otherwise, consult frag tree and/or caps to identify the 698 * appropriate mds. If all else fails, choose randomly. 699 * 700 * Called under mdsc->mutex. 701 */ 702 static struct dentry *get_nonsnap_parent(struct dentry *dentry) 703 { 704 /* 705 * we don't need to worry about protecting the d_parent access 706 * here because we never renaming inside the snapped namespace 707 * except to resplice to another snapdir, and either the old or new 708 * result is a valid result. 709 */ 710 while (!IS_ROOT(dentry) && ceph_snap(d_inode(dentry)) != CEPH_NOSNAP) 711 dentry = dentry->d_parent; 712 return dentry; 713 } 714 715 static int __choose_mds(struct ceph_mds_client *mdsc, 716 struct ceph_mds_request *req) 717 { 718 struct inode *inode; 719 struct ceph_inode_info *ci; 720 struct ceph_cap *cap; 721 int mode = req->r_direct_mode; 722 int mds = -1; 723 u32 hash = req->r_direct_hash; 724 bool is_hash = req->r_direct_is_hash; 725 726 /* 727 * is there a specific mds we should try? ignore hint if we have 728 * no session and the mds is not up (active or recovering). 729 */ 730 if (req->r_resend_mds >= 0 && 731 (__have_session(mdsc, req->r_resend_mds) || 732 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) { 733 dout("choose_mds using resend_mds mds%d\n", 734 req->r_resend_mds); 735 return req->r_resend_mds; 736 } 737 738 if (mode == USE_RANDOM_MDS) 739 goto random; 740 741 inode = NULL; 742 if (req->r_inode) { 743 inode = req->r_inode; 744 } else if (req->r_dentry) { 745 /* ignore race with rename; old or new d_parent is okay */ 746 struct dentry *parent = req->r_dentry->d_parent; 747 struct inode *dir = d_inode(parent); 748 749 if (dir->i_sb != mdsc->fsc->sb) { 750 /* not this fs! */ 751 inode = d_inode(req->r_dentry); 752 } else if (ceph_snap(dir) != CEPH_NOSNAP) { 753 /* direct snapped/virtual snapdir requests 754 * based on parent dir inode */ 755 struct dentry *dn = get_nonsnap_parent(parent); 756 inode = d_inode(dn); 757 dout("__choose_mds using nonsnap parent %p\n", inode); 758 } else { 759 /* dentry target */ 760 inode = d_inode(req->r_dentry); 761 if (!inode || mode == USE_AUTH_MDS) { 762 /* dir + name */ 763 inode = dir; 764 hash = ceph_dentry_hash(dir, req->r_dentry); 765 is_hash = true; 766 } 767 } 768 } 769 770 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash, 771 (int)hash, mode); 772 if (!inode) 773 goto random; 774 ci = ceph_inode(inode); 775 776 if (is_hash && S_ISDIR(inode->i_mode)) { 777 struct ceph_inode_frag frag; 778 int found; 779 780 ceph_choose_frag(ci, hash, &frag, &found); 781 if (found) { 782 if (mode == USE_ANY_MDS && frag.ndist > 0) { 783 u8 r; 784 785 /* choose a random replica */ 786 get_random_bytes(&r, 1); 787 r %= frag.ndist; 788 mds = frag.dist[r]; 789 dout("choose_mds %p %llx.%llx " 790 "frag %u mds%d (%d/%d)\n", 791 inode, ceph_vinop(inode), 792 frag.frag, mds, 793 (int)r, frag.ndist); 794 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 795 CEPH_MDS_STATE_ACTIVE) 796 return mds; 797 } 798 799 /* since this file/dir wasn't known to be 800 * replicated, then we want to look for the 801 * authoritative mds. */ 802 mode = USE_AUTH_MDS; 803 if (frag.mds >= 0) { 804 /* choose auth mds */ 805 mds = frag.mds; 806 dout("choose_mds %p %llx.%llx " 807 "frag %u mds%d (auth)\n", 808 inode, ceph_vinop(inode), frag.frag, mds); 809 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >= 810 CEPH_MDS_STATE_ACTIVE) 811 return mds; 812 } 813 } 814 } 815 816 spin_lock(&ci->i_ceph_lock); 817 cap = NULL; 818 if (mode == USE_AUTH_MDS) 819 cap = ci->i_auth_cap; 820 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps)) 821 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node); 822 if (!cap) { 823 spin_unlock(&ci->i_ceph_lock); 824 goto random; 825 } 826 mds = cap->session->s_mds; 827 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n", 828 inode, ceph_vinop(inode), mds, 829 cap == ci->i_auth_cap ? "auth " : "", cap); 830 spin_unlock(&ci->i_ceph_lock); 831 return mds; 832 833 random: 834 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap); 835 dout("choose_mds chose random mds%d\n", mds); 836 return mds; 837 } 838 839 840 /* 841 * session messages 842 */ 843 static struct ceph_msg *create_session_msg(u32 op, u64 seq) 844 { 845 struct ceph_msg *msg; 846 struct ceph_mds_session_head *h; 847 848 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS, 849 false); 850 if (!msg) { 851 pr_err("create_session_msg ENOMEM creating msg\n"); 852 return NULL; 853 } 854 h = msg->front.iov_base; 855 h->op = cpu_to_le32(op); 856 h->seq = cpu_to_le64(seq); 857 858 return msg; 859 } 860 861 /* 862 * session message, specialization for CEPH_SESSION_REQUEST_OPEN 863 * to include additional client metadata fields. 864 */ 865 static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq) 866 { 867 struct ceph_msg *msg; 868 struct ceph_mds_session_head *h; 869 int i = -1; 870 int metadata_bytes = 0; 871 int metadata_key_count = 0; 872 struct ceph_options *opt = mdsc->fsc->client->options; 873 void *p; 874 875 const char* metadata[][2] = { 876 {"hostname", utsname()->nodename}, 877 {"kernel_version", utsname()->release}, 878 {"entity_id", opt->name ? opt->name : ""}, 879 {NULL, NULL} 880 }; 881 882 /* Calculate serialized length of metadata */ 883 metadata_bytes = 4; /* map length */ 884 for (i = 0; metadata[i][0] != NULL; ++i) { 885 metadata_bytes += 8 + strlen(metadata[i][0]) + 886 strlen(metadata[i][1]); 887 metadata_key_count++; 888 } 889 890 /* Allocate the message */ 891 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + metadata_bytes, 892 GFP_NOFS, false); 893 if (!msg) { 894 pr_err("create_session_msg ENOMEM creating msg\n"); 895 return NULL; 896 } 897 h = msg->front.iov_base; 898 h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN); 899 h->seq = cpu_to_le64(seq); 900 901 /* 902 * Serialize client metadata into waiting buffer space, using 903 * the format that userspace expects for map<string, string> 904 * 905 * ClientSession messages with metadata are v2 906 */ 907 msg->hdr.version = cpu_to_le16(2); 908 msg->hdr.compat_version = cpu_to_le16(1); 909 910 /* The write pointer, following the session_head structure */ 911 p = msg->front.iov_base + sizeof(*h); 912 913 /* Number of entries in the map */ 914 ceph_encode_32(&p, metadata_key_count); 915 916 /* Two length-prefixed strings for each entry in the map */ 917 for (i = 0; metadata[i][0] != NULL; ++i) { 918 size_t const key_len = strlen(metadata[i][0]); 919 size_t const val_len = strlen(metadata[i][1]); 920 921 ceph_encode_32(&p, key_len); 922 memcpy(p, metadata[i][0], key_len); 923 p += key_len; 924 ceph_encode_32(&p, val_len); 925 memcpy(p, metadata[i][1], val_len); 926 p += val_len; 927 } 928 929 return msg; 930 } 931 932 /* 933 * send session open request. 934 * 935 * called under mdsc->mutex 936 */ 937 static int __open_session(struct ceph_mds_client *mdsc, 938 struct ceph_mds_session *session) 939 { 940 struct ceph_msg *msg; 941 int mstate; 942 int mds = session->s_mds; 943 944 /* wait for mds to go active? */ 945 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds); 946 dout("open_session to mds%d (%s)\n", mds, 947 ceph_mds_state_name(mstate)); 948 session->s_state = CEPH_MDS_SESSION_OPENING; 949 session->s_renew_requested = jiffies; 950 951 /* send connect message */ 952 msg = create_session_open_msg(mdsc, session->s_seq); 953 if (!msg) 954 return -ENOMEM; 955 ceph_con_send(&session->s_con, msg); 956 return 0; 957 } 958 959 /* 960 * open sessions for any export targets for the given mds 961 * 962 * called under mdsc->mutex 963 */ 964 static struct ceph_mds_session * 965 __open_export_target_session(struct ceph_mds_client *mdsc, int target) 966 { 967 struct ceph_mds_session *session; 968 969 session = __ceph_lookup_mds_session(mdsc, target); 970 if (!session) { 971 session = register_session(mdsc, target); 972 if (IS_ERR(session)) 973 return session; 974 } 975 if (session->s_state == CEPH_MDS_SESSION_NEW || 976 session->s_state == CEPH_MDS_SESSION_CLOSING) 977 __open_session(mdsc, session); 978 979 return session; 980 } 981 982 struct ceph_mds_session * 983 ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target) 984 { 985 struct ceph_mds_session *session; 986 987 dout("open_export_target_session to mds%d\n", target); 988 989 mutex_lock(&mdsc->mutex); 990 session = __open_export_target_session(mdsc, target); 991 mutex_unlock(&mdsc->mutex); 992 993 return session; 994 } 995 996 static void __open_export_target_sessions(struct ceph_mds_client *mdsc, 997 struct ceph_mds_session *session) 998 { 999 struct ceph_mds_info *mi; 1000 struct ceph_mds_session *ts; 1001 int i, mds = session->s_mds; 1002 1003 if (mds >= mdsc->mdsmap->m_max_mds) 1004 return; 1005 1006 mi = &mdsc->mdsmap->m_info[mds]; 1007 dout("open_export_target_sessions for mds%d (%d targets)\n", 1008 session->s_mds, mi->num_export_targets); 1009 1010 for (i = 0; i < mi->num_export_targets; i++) { 1011 ts = __open_export_target_session(mdsc, mi->export_targets[i]); 1012 if (!IS_ERR(ts)) 1013 ceph_put_mds_session(ts); 1014 } 1015 } 1016 1017 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc, 1018 struct ceph_mds_session *session) 1019 { 1020 mutex_lock(&mdsc->mutex); 1021 __open_export_target_sessions(mdsc, session); 1022 mutex_unlock(&mdsc->mutex); 1023 } 1024 1025 /* 1026 * session caps 1027 */ 1028 1029 /* caller holds s_cap_lock, we drop it */ 1030 static void cleanup_cap_releases(struct ceph_mds_client *mdsc, 1031 struct ceph_mds_session *session) 1032 __releases(session->s_cap_lock) 1033 { 1034 LIST_HEAD(tmp_list); 1035 list_splice_init(&session->s_cap_releases, &tmp_list); 1036 session->s_num_cap_releases = 0; 1037 spin_unlock(&session->s_cap_lock); 1038 1039 dout("cleanup_cap_releases mds%d\n", session->s_mds); 1040 while (!list_empty(&tmp_list)) { 1041 struct ceph_cap *cap; 1042 /* zero out the in-progress message */ 1043 cap = list_first_entry(&tmp_list, 1044 struct ceph_cap, session_caps); 1045 list_del(&cap->session_caps); 1046 ceph_put_cap(mdsc, cap); 1047 } 1048 } 1049 1050 static void cleanup_session_requests(struct ceph_mds_client *mdsc, 1051 struct ceph_mds_session *session) 1052 { 1053 struct ceph_mds_request *req; 1054 struct rb_node *p; 1055 1056 dout("cleanup_session_requests mds%d\n", session->s_mds); 1057 mutex_lock(&mdsc->mutex); 1058 while (!list_empty(&session->s_unsafe)) { 1059 req = list_first_entry(&session->s_unsafe, 1060 struct ceph_mds_request, r_unsafe_item); 1061 list_del_init(&req->r_unsafe_item); 1062 pr_warn_ratelimited(" dropping unsafe request %llu\n", 1063 req->r_tid); 1064 __unregister_request(mdsc, req); 1065 } 1066 /* zero r_attempts, so kick_requests() will re-send requests */ 1067 p = rb_first(&mdsc->request_tree); 1068 while (p) { 1069 req = rb_entry(p, struct ceph_mds_request, r_node); 1070 p = rb_next(p); 1071 if (req->r_session && 1072 req->r_session->s_mds == session->s_mds) 1073 req->r_attempts = 0; 1074 } 1075 mutex_unlock(&mdsc->mutex); 1076 } 1077 1078 /* 1079 * Helper to safely iterate over all caps associated with a session, with 1080 * special care taken to handle a racing __ceph_remove_cap(). 1081 * 1082 * Caller must hold session s_mutex. 1083 */ 1084 static int iterate_session_caps(struct ceph_mds_session *session, 1085 int (*cb)(struct inode *, struct ceph_cap *, 1086 void *), void *arg) 1087 { 1088 struct list_head *p; 1089 struct ceph_cap *cap; 1090 struct inode *inode, *last_inode = NULL; 1091 struct ceph_cap *old_cap = NULL; 1092 int ret; 1093 1094 dout("iterate_session_caps %p mds%d\n", session, session->s_mds); 1095 spin_lock(&session->s_cap_lock); 1096 p = session->s_caps.next; 1097 while (p != &session->s_caps) { 1098 cap = list_entry(p, struct ceph_cap, session_caps); 1099 inode = igrab(&cap->ci->vfs_inode); 1100 if (!inode) { 1101 p = p->next; 1102 continue; 1103 } 1104 session->s_cap_iterator = cap; 1105 spin_unlock(&session->s_cap_lock); 1106 1107 if (last_inode) { 1108 iput(last_inode); 1109 last_inode = NULL; 1110 } 1111 if (old_cap) { 1112 ceph_put_cap(session->s_mdsc, old_cap); 1113 old_cap = NULL; 1114 } 1115 1116 ret = cb(inode, cap, arg); 1117 last_inode = inode; 1118 1119 spin_lock(&session->s_cap_lock); 1120 p = p->next; 1121 if (cap->ci == NULL) { 1122 dout("iterate_session_caps finishing cap %p removal\n", 1123 cap); 1124 BUG_ON(cap->session != session); 1125 cap->session = NULL; 1126 list_del_init(&cap->session_caps); 1127 session->s_nr_caps--; 1128 if (cap->queue_release) { 1129 list_add_tail(&cap->session_caps, 1130 &session->s_cap_releases); 1131 session->s_num_cap_releases++; 1132 } else { 1133 old_cap = cap; /* put_cap it w/o locks held */ 1134 } 1135 } 1136 if (ret < 0) 1137 goto out; 1138 } 1139 ret = 0; 1140 out: 1141 session->s_cap_iterator = NULL; 1142 spin_unlock(&session->s_cap_lock); 1143 1144 iput(last_inode); 1145 if (old_cap) 1146 ceph_put_cap(session->s_mdsc, old_cap); 1147 1148 return ret; 1149 } 1150 1151 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap, 1152 void *arg) 1153 { 1154 struct ceph_inode_info *ci = ceph_inode(inode); 1155 LIST_HEAD(to_remove); 1156 int drop = 0; 1157 1158 dout("removing cap %p, ci is %p, inode is %p\n", 1159 cap, ci, &ci->vfs_inode); 1160 spin_lock(&ci->i_ceph_lock); 1161 __ceph_remove_cap(cap, false); 1162 if (!ci->i_auth_cap) { 1163 struct ceph_cap_flush *cf; 1164 struct ceph_mds_client *mdsc = 1165 ceph_sb_to_client(inode->i_sb)->mdsc; 1166 1167 while (true) { 1168 struct rb_node *n = rb_first(&ci->i_cap_flush_tree); 1169 if (!n) 1170 break; 1171 cf = rb_entry(n, struct ceph_cap_flush, i_node); 1172 rb_erase(&cf->i_node, &ci->i_cap_flush_tree); 1173 list_add(&cf->list, &to_remove); 1174 } 1175 1176 spin_lock(&mdsc->cap_dirty_lock); 1177 1178 list_for_each_entry(cf, &to_remove, list) 1179 rb_erase(&cf->g_node, &mdsc->cap_flush_tree); 1180 1181 if (!list_empty(&ci->i_dirty_item)) { 1182 pr_warn_ratelimited( 1183 " dropping dirty %s state for %p %lld\n", 1184 ceph_cap_string(ci->i_dirty_caps), 1185 inode, ceph_ino(inode)); 1186 ci->i_dirty_caps = 0; 1187 list_del_init(&ci->i_dirty_item); 1188 drop = 1; 1189 } 1190 if (!list_empty(&ci->i_flushing_item)) { 1191 pr_warn_ratelimited( 1192 " dropping dirty+flushing %s state for %p %lld\n", 1193 ceph_cap_string(ci->i_flushing_caps), 1194 inode, ceph_ino(inode)); 1195 ci->i_flushing_caps = 0; 1196 list_del_init(&ci->i_flushing_item); 1197 mdsc->num_cap_flushing--; 1198 drop = 1; 1199 } 1200 spin_unlock(&mdsc->cap_dirty_lock); 1201 1202 if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { 1203 list_add(&ci->i_prealloc_cap_flush->list, &to_remove); 1204 ci->i_prealloc_cap_flush = NULL; 1205 } 1206 } 1207 spin_unlock(&ci->i_ceph_lock); 1208 while (!list_empty(&to_remove)) { 1209 struct ceph_cap_flush *cf; 1210 cf = list_first_entry(&to_remove, 1211 struct ceph_cap_flush, list); 1212 list_del(&cf->list); 1213 ceph_free_cap_flush(cf); 1214 } 1215 while (drop--) 1216 iput(inode); 1217 return 0; 1218 } 1219 1220 /* 1221 * caller must hold session s_mutex 1222 */ 1223 static void remove_session_caps(struct ceph_mds_session *session) 1224 { 1225 dout("remove_session_caps on %p\n", session); 1226 iterate_session_caps(session, remove_session_caps_cb, NULL); 1227 1228 spin_lock(&session->s_cap_lock); 1229 if (session->s_nr_caps > 0) { 1230 struct super_block *sb = session->s_mdsc->fsc->sb; 1231 struct inode *inode; 1232 struct ceph_cap *cap, *prev = NULL; 1233 struct ceph_vino vino; 1234 /* 1235 * iterate_session_caps() skips inodes that are being 1236 * deleted, we need to wait until deletions are complete. 1237 * __wait_on_freeing_inode() is designed for the job, 1238 * but it is not exported, so use lookup inode function 1239 * to access it. 1240 */ 1241 while (!list_empty(&session->s_caps)) { 1242 cap = list_entry(session->s_caps.next, 1243 struct ceph_cap, session_caps); 1244 if (cap == prev) 1245 break; 1246 prev = cap; 1247 vino = cap->ci->i_vino; 1248 spin_unlock(&session->s_cap_lock); 1249 1250 inode = ceph_find_inode(sb, vino); 1251 iput(inode); 1252 1253 spin_lock(&session->s_cap_lock); 1254 } 1255 } 1256 1257 // drop cap expires and unlock s_cap_lock 1258 cleanup_cap_releases(session->s_mdsc, session); 1259 1260 BUG_ON(session->s_nr_caps > 0); 1261 BUG_ON(!list_empty(&session->s_cap_flushing)); 1262 } 1263 1264 /* 1265 * wake up any threads waiting on this session's caps. if the cap is 1266 * old (didn't get renewed on the client reconnect), remove it now. 1267 * 1268 * caller must hold s_mutex. 1269 */ 1270 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap, 1271 void *arg) 1272 { 1273 struct ceph_inode_info *ci = ceph_inode(inode); 1274 1275 wake_up_all(&ci->i_cap_wq); 1276 if (arg) { 1277 spin_lock(&ci->i_ceph_lock); 1278 ci->i_wanted_max_size = 0; 1279 ci->i_requested_max_size = 0; 1280 spin_unlock(&ci->i_ceph_lock); 1281 } 1282 return 0; 1283 } 1284 1285 static void wake_up_session_caps(struct ceph_mds_session *session, 1286 int reconnect) 1287 { 1288 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds); 1289 iterate_session_caps(session, wake_up_session_cb, 1290 (void *)(unsigned long)reconnect); 1291 } 1292 1293 /* 1294 * Send periodic message to MDS renewing all currently held caps. The 1295 * ack will reset the expiration for all caps from this session. 1296 * 1297 * caller holds s_mutex 1298 */ 1299 static int send_renew_caps(struct ceph_mds_client *mdsc, 1300 struct ceph_mds_session *session) 1301 { 1302 struct ceph_msg *msg; 1303 int state; 1304 1305 if (time_after_eq(jiffies, session->s_cap_ttl) && 1306 time_after_eq(session->s_cap_ttl, session->s_renew_requested)) 1307 pr_info("mds%d caps stale\n", session->s_mds); 1308 session->s_renew_requested = jiffies; 1309 1310 /* do not try to renew caps until a recovering mds has reconnected 1311 * with its clients. */ 1312 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds); 1313 if (state < CEPH_MDS_STATE_RECONNECT) { 1314 dout("send_renew_caps ignoring mds%d (%s)\n", 1315 session->s_mds, ceph_mds_state_name(state)); 1316 return 0; 1317 } 1318 1319 dout("send_renew_caps to mds%d (%s)\n", session->s_mds, 1320 ceph_mds_state_name(state)); 1321 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS, 1322 ++session->s_renew_seq); 1323 if (!msg) 1324 return -ENOMEM; 1325 ceph_con_send(&session->s_con, msg); 1326 return 0; 1327 } 1328 1329 static int send_flushmsg_ack(struct ceph_mds_client *mdsc, 1330 struct ceph_mds_session *session, u64 seq) 1331 { 1332 struct ceph_msg *msg; 1333 1334 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n", 1335 session->s_mds, ceph_session_state_name(session->s_state), seq); 1336 msg = create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq); 1337 if (!msg) 1338 return -ENOMEM; 1339 ceph_con_send(&session->s_con, msg); 1340 return 0; 1341 } 1342 1343 1344 /* 1345 * Note new cap ttl, and any transition from stale -> not stale (fresh?). 1346 * 1347 * Called under session->s_mutex 1348 */ 1349 static void renewed_caps(struct ceph_mds_client *mdsc, 1350 struct ceph_mds_session *session, int is_renew) 1351 { 1352 int was_stale; 1353 int wake = 0; 1354 1355 spin_lock(&session->s_cap_lock); 1356 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl); 1357 1358 session->s_cap_ttl = session->s_renew_requested + 1359 mdsc->mdsmap->m_session_timeout*HZ; 1360 1361 if (was_stale) { 1362 if (time_before(jiffies, session->s_cap_ttl)) { 1363 pr_info("mds%d caps renewed\n", session->s_mds); 1364 wake = 1; 1365 } else { 1366 pr_info("mds%d caps still stale\n", session->s_mds); 1367 } 1368 } 1369 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n", 1370 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh", 1371 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh"); 1372 spin_unlock(&session->s_cap_lock); 1373 1374 if (wake) 1375 wake_up_session_caps(session, 0); 1376 } 1377 1378 /* 1379 * send a session close request 1380 */ 1381 static int request_close_session(struct ceph_mds_client *mdsc, 1382 struct ceph_mds_session *session) 1383 { 1384 struct ceph_msg *msg; 1385 1386 dout("request_close_session mds%d state %s seq %lld\n", 1387 session->s_mds, ceph_session_state_name(session->s_state), 1388 session->s_seq); 1389 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq); 1390 if (!msg) 1391 return -ENOMEM; 1392 ceph_con_send(&session->s_con, msg); 1393 return 0; 1394 } 1395 1396 /* 1397 * Called with s_mutex held. 1398 */ 1399 static int __close_session(struct ceph_mds_client *mdsc, 1400 struct ceph_mds_session *session) 1401 { 1402 if (session->s_state >= CEPH_MDS_SESSION_CLOSING) 1403 return 0; 1404 session->s_state = CEPH_MDS_SESSION_CLOSING; 1405 return request_close_session(mdsc, session); 1406 } 1407 1408 /* 1409 * Trim old(er) caps. 1410 * 1411 * Because we can't cache an inode without one or more caps, we do 1412 * this indirectly: if a cap is unused, we prune its aliases, at which 1413 * point the inode will hopefully get dropped to. 1414 * 1415 * Yes, this is a bit sloppy. Our only real goal here is to respond to 1416 * memory pressure from the MDS, though, so it needn't be perfect. 1417 */ 1418 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg) 1419 { 1420 struct ceph_mds_session *session = arg; 1421 struct ceph_inode_info *ci = ceph_inode(inode); 1422 int used, wanted, oissued, mine; 1423 1424 if (session->s_trim_caps <= 0) 1425 return -1; 1426 1427 spin_lock(&ci->i_ceph_lock); 1428 mine = cap->issued | cap->implemented; 1429 used = __ceph_caps_used(ci); 1430 wanted = __ceph_caps_file_wanted(ci); 1431 oissued = __ceph_caps_issued_other(ci, cap); 1432 1433 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n", 1434 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued), 1435 ceph_cap_string(used), ceph_cap_string(wanted)); 1436 if (cap == ci->i_auth_cap) { 1437 if (ci->i_dirty_caps || ci->i_flushing_caps || 1438 !list_empty(&ci->i_cap_snaps)) 1439 goto out; 1440 if ((used | wanted) & CEPH_CAP_ANY_WR) 1441 goto out; 1442 } 1443 /* The inode has cached pages, but it's no longer used. 1444 * we can safely drop it */ 1445 if (wanted == 0 && used == CEPH_CAP_FILE_CACHE && 1446 !(oissued & CEPH_CAP_FILE_CACHE)) { 1447 used = 0; 1448 oissued = 0; 1449 } 1450 if ((used | wanted) & ~oissued & mine) 1451 goto out; /* we need these caps */ 1452 1453 session->s_trim_caps--; 1454 if (oissued) { 1455 /* we aren't the only cap.. just remove us */ 1456 __ceph_remove_cap(cap, true); 1457 } else { 1458 /* try dropping referring dentries */ 1459 spin_unlock(&ci->i_ceph_lock); 1460 d_prune_aliases(inode); 1461 dout("trim_caps_cb %p cap %p pruned, count now %d\n", 1462 inode, cap, atomic_read(&inode->i_count)); 1463 return 0; 1464 } 1465 1466 out: 1467 spin_unlock(&ci->i_ceph_lock); 1468 return 0; 1469 } 1470 1471 /* 1472 * Trim session cap count down to some max number. 1473 */ 1474 static int trim_caps(struct ceph_mds_client *mdsc, 1475 struct ceph_mds_session *session, 1476 int max_caps) 1477 { 1478 int trim_caps = session->s_nr_caps - max_caps; 1479 1480 dout("trim_caps mds%d start: %d / %d, trim %d\n", 1481 session->s_mds, session->s_nr_caps, max_caps, trim_caps); 1482 if (trim_caps > 0) { 1483 session->s_trim_caps = trim_caps; 1484 iterate_session_caps(session, trim_caps_cb, session); 1485 dout("trim_caps mds%d done: %d / %d, trimmed %d\n", 1486 session->s_mds, session->s_nr_caps, max_caps, 1487 trim_caps - session->s_trim_caps); 1488 session->s_trim_caps = 0; 1489 } 1490 1491 ceph_send_cap_releases(mdsc, session); 1492 return 0; 1493 } 1494 1495 static int check_capsnap_flush(struct ceph_inode_info *ci, 1496 u64 want_snap_seq) 1497 { 1498 int ret = 1; 1499 spin_lock(&ci->i_ceph_lock); 1500 if (want_snap_seq > 0 && !list_empty(&ci->i_cap_snaps)) { 1501 struct ceph_cap_snap *capsnap = 1502 list_first_entry(&ci->i_cap_snaps, 1503 struct ceph_cap_snap, ci_item); 1504 ret = capsnap->follows >= want_snap_seq; 1505 } 1506 spin_unlock(&ci->i_ceph_lock); 1507 return ret; 1508 } 1509 1510 static int check_caps_flush(struct ceph_mds_client *mdsc, 1511 u64 want_flush_tid) 1512 { 1513 struct rb_node *n; 1514 struct ceph_cap_flush *cf; 1515 int ret = 1; 1516 1517 spin_lock(&mdsc->cap_dirty_lock); 1518 n = rb_first(&mdsc->cap_flush_tree); 1519 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL; 1520 if (cf && cf->tid <= want_flush_tid) { 1521 dout("check_caps_flush still flushing tid %llu <= %llu\n", 1522 cf->tid, want_flush_tid); 1523 ret = 0; 1524 } 1525 spin_unlock(&mdsc->cap_dirty_lock); 1526 return ret; 1527 } 1528 1529 /* 1530 * flush all dirty inode data to disk. 1531 * 1532 * returns true if we've flushed through want_flush_tid 1533 */ 1534 static void wait_caps_flush(struct ceph_mds_client *mdsc, 1535 u64 want_flush_tid, u64 want_snap_seq) 1536 { 1537 int mds; 1538 1539 dout("check_caps_flush want %llu snap want %llu\n", 1540 want_flush_tid, want_snap_seq); 1541 mutex_lock(&mdsc->mutex); 1542 for (mds = 0; mds < mdsc->max_sessions; ) { 1543 struct ceph_mds_session *session = mdsc->sessions[mds]; 1544 struct inode *inode = NULL; 1545 1546 if (!session) { 1547 mds++; 1548 continue; 1549 } 1550 get_session(session); 1551 mutex_unlock(&mdsc->mutex); 1552 1553 mutex_lock(&session->s_mutex); 1554 if (!list_empty(&session->s_cap_snaps_flushing)) { 1555 struct ceph_cap_snap *capsnap = 1556 list_first_entry(&session->s_cap_snaps_flushing, 1557 struct ceph_cap_snap, 1558 flushing_item); 1559 struct ceph_inode_info *ci = capsnap->ci; 1560 if (!check_capsnap_flush(ci, want_snap_seq)) { 1561 dout("check_cap_flush still flushing snap %p " 1562 "follows %lld <= %lld to mds%d\n", 1563 &ci->vfs_inode, capsnap->follows, 1564 want_snap_seq, mds); 1565 inode = igrab(&ci->vfs_inode); 1566 } 1567 } 1568 mutex_unlock(&session->s_mutex); 1569 ceph_put_mds_session(session); 1570 1571 if (inode) { 1572 wait_event(mdsc->cap_flushing_wq, 1573 check_capsnap_flush(ceph_inode(inode), 1574 want_snap_seq)); 1575 iput(inode); 1576 } else { 1577 mds++; 1578 } 1579 1580 mutex_lock(&mdsc->mutex); 1581 } 1582 mutex_unlock(&mdsc->mutex); 1583 1584 wait_event(mdsc->cap_flushing_wq, 1585 check_caps_flush(mdsc, want_flush_tid)); 1586 1587 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid); 1588 } 1589 1590 /* 1591 * called under s_mutex 1592 */ 1593 void ceph_send_cap_releases(struct ceph_mds_client *mdsc, 1594 struct ceph_mds_session *session) 1595 { 1596 struct ceph_msg *msg = NULL; 1597 struct ceph_mds_cap_release *head; 1598 struct ceph_mds_cap_item *item; 1599 struct ceph_cap *cap; 1600 LIST_HEAD(tmp_list); 1601 int num_cap_releases; 1602 1603 spin_lock(&session->s_cap_lock); 1604 again: 1605 list_splice_init(&session->s_cap_releases, &tmp_list); 1606 num_cap_releases = session->s_num_cap_releases; 1607 session->s_num_cap_releases = 0; 1608 spin_unlock(&session->s_cap_lock); 1609 1610 while (!list_empty(&tmp_list)) { 1611 if (!msg) { 1612 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, 1613 PAGE_CACHE_SIZE, GFP_NOFS, false); 1614 if (!msg) 1615 goto out_err; 1616 head = msg->front.iov_base; 1617 head->num = cpu_to_le32(0); 1618 msg->front.iov_len = sizeof(*head); 1619 } 1620 cap = list_first_entry(&tmp_list, struct ceph_cap, 1621 session_caps); 1622 list_del(&cap->session_caps); 1623 num_cap_releases--; 1624 1625 head = msg->front.iov_base; 1626 le32_add_cpu(&head->num, 1); 1627 item = msg->front.iov_base + msg->front.iov_len; 1628 item->ino = cpu_to_le64(cap->cap_ino); 1629 item->cap_id = cpu_to_le64(cap->cap_id); 1630 item->migrate_seq = cpu_to_le32(cap->mseq); 1631 item->seq = cpu_to_le32(cap->issue_seq); 1632 msg->front.iov_len += sizeof(*item); 1633 1634 ceph_put_cap(mdsc, cap); 1635 1636 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1637 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1638 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1639 ceph_con_send(&session->s_con, msg); 1640 msg = NULL; 1641 } 1642 } 1643 1644 BUG_ON(num_cap_releases != 0); 1645 1646 spin_lock(&session->s_cap_lock); 1647 if (!list_empty(&session->s_cap_releases)) 1648 goto again; 1649 spin_unlock(&session->s_cap_lock); 1650 1651 if (msg) { 1652 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 1653 dout("send_cap_releases mds%d %p\n", session->s_mds, msg); 1654 ceph_con_send(&session->s_con, msg); 1655 } 1656 return; 1657 out_err: 1658 pr_err("send_cap_releases mds%d, failed to allocate message\n", 1659 session->s_mds); 1660 spin_lock(&session->s_cap_lock); 1661 list_splice(&tmp_list, &session->s_cap_releases); 1662 session->s_num_cap_releases += num_cap_releases; 1663 spin_unlock(&session->s_cap_lock); 1664 } 1665 1666 /* 1667 * requests 1668 */ 1669 1670 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req, 1671 struct inode *dir) 1672 { 1673 struct ceph_inode_info *ci = ceph_inode(dir); 1674 struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; 1675 struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options; 1676 size_t size = sizeof(*rinfo->dir_in) + sizeof(*rinfo->dir_dname_len) + 1677 sizeof(*rinfo->dir_dname) + sizeof(*rinfo->dir_dlease); 1678 int order, num_entries; 1679 1680 spin_lock(&ci->i_ceph_lock); 1681 num_entries = ci->i_files + ci->i_subdirs; 1682 spin_unlock(&ci->i_ceph_lock); 1683 num_entries = max(num_entries, 1); 1684 num_entries = min(num_entries, opt->max_readdir); 1685 1686 order = get_order(size * num_entries); 1687 while (order >= 0) { 1688 rinfo->dir_in = (void*)__get_free_pages(GFP_KERNEL | 1689 __GFP_NOWARN, 1690 order); 1691 if (rinfo->dir_in) 1692 break; 1693 order--; 1694 } 1695 if (!rinfo->dir_in) 1696 return -ENOMEM; 1697 1698 num_entries = (PAGE_SIZE << order) / size; 1699 num_entries = min(num_entries, opt->max_readdir); 1700 1701 rinfo->dir_buf_size = PAGE_SIZE << order; 1702 req->r_num_caps = num_entries + 1; 1703 req->r_args.readdir.max_entries = cpu_to_le32(num_entries); 1704 req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes); 1705 return 0; 1706 } 1707 1708 /* 1709 * Create an mds request. 1710 */ 1711 struct ceph_mds_request * 1712 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode) 1713 { 1714 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS); 1715 1716 if (!req) 1717 return ERR_PTR(-ENOMEM); 1718 1719 mutex_init(&req->r_fill_mutex); 1720 req->r_mdsc = mdsc; 1721 req->r_started = jiffies; 1722 req->r_resend_mds = -1; 1723 INIT_LIST_HEAD(&req->r_unsafe_dir_item); 1724 INIT_LIST_HEAD(&req->r_unsafe_target_item); 1725 req->r_fmode = -1; 1726 kref_init(&req->r_kref); 1727 INIT_LIST_HEAD(&req->r_wait); 1728 init_completion(&req->r_completion); 1729 init_completion(&req->r_safe_completion); 1730 INIT_LIST_HEAD(&req->r_unsafe_item); 1731 1732 req->r_stamp = CURRENT_TIME; 1733 1734 req->r_op = op; 1735 req->r_direct_mode = mode; 1736 return req; 1737 } 1738 1739 /* 1740 * return oldest (lowest) request, tid in request tree, 0 if none. 1741 * 1742 * called under mdsc->mutex. 1743 */ 1744 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc) 1745 { 1746 if (RB_EMPTY_ROOT(&mdsc->request_tree)) 1747 return NULL; 1748 return rb_entry(rb_first(&mdsc->request_tree), 1749 struct ceph_mds_request, r_node); 1750 } 1751 1752 static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc) 1753 { 1754 return mdsc->oldest_tid; 1755 } 1756 1757 /* 1758 * Build a dentry's path. Allocate on heap; caller must kfree. Based 1759 * on build_path_from_dentry in fs/cifs/dir.c. 1760 * 1761 * If @stop_on_nosnap, generate path relative to the first non-snapped 1762 * inode. 1763 * 1764 * Encode hidden .snap dirs as a double /, i.e. 1765 * foo/.snap/bar -> foo//bar 1766 */ 1767 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base, 1768 int stop_on_nosnap) 1769 { 1770 struct dentry *temp; 1771 char *path; 1772 int len, pos; 1773 unsigned seq; 1774 1775 if (dentry == NULL) 1776 return ERR_PTR(-EINVAL); 1777 1778 retry: 1779 len = 0; 1780 seq = read_seqbegin(&rename_lock); 1781 rcu_read_lock(); 1782 for (temp = dentry; !IS_ROOT(temp);) { 1783 struct inode *inode = d_inode(temp); 1784 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) 1785 len++; /* slash only */ 1786 else if (stop_on_nosnap && inode && 1787 ceph_snap(inode) == CEPH_NOSNAP) 1788 break; 1789 else 1790 len += 1 + temp->d_name.len; 1791 temp = temp->d_parent; 1792 } 1793 rcu_read_unlock(); 1794 if (len) 1795 len--; /* no leading '/' */ 1796 1797 path = kmalloc(len+1, GFP_NOFS); 1798 if (path == NULL) 1799 return ERR_PTR(-ENOMEM); 1800 pos = len; 1801 path[pos] = 0; /* trailing null */ 1802 rcu_read_lock(); 1803 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) { 1804 struct inode *inode; 1805 1806 spin_lock(&temp->d_lock); 1807 inode = d_inode(temp); 1808 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) { 1809 dout("build_path path+%d: %p SNAPDIR\n", 1810 pos, temp); 1811 } else if (stop_on_nosnap && inode && 1812 ceph_snap(inode) == CEPH_NOSNAP) { 1813 spin_unlock(&temp->d_lock); 1814 break; 1815 } else { 1816 pos -= temp->d_name.len; 1817 if (pos < 0) { 1818 spin_unlock(&temp->d_lock); 1819 break; 1820 } 1821 strncpy(path + pos, temp->d_name.name, 1822 temp->d_name.len); 1823 } 1824 spin_unlock(&temp->d_lock); 1825 if (pos) 1826 path[--pos] = '/'; 1827 temp = temp->d_parent; 1828 } 1829 rcu_read_unlock(); 1830 if (pos != 0 || read_seqretry(&rename_lock, seq)) { 1831 pr_err("build_path did not end path lookup where " 1832 "expected, namelen is %d, pos is %d\n", len, pos); 1833 /* presumably this is only possible if racing with a 1834 rename of one of the parent directories (we can not 1835 lock the dentries above us to prevent this, but 1836 retrying should be harmless) */ 1837 kfree(path); 1838 goto retry; 1839 } 1840 1841 *base = ceph_ino(d_inode(temp)); 1842 *plen = len; 1843 dout("build_path on %p %d built %llx '%.*s'\n", 1844 dentry, d_count(dentry), *base, len, path); 1845 return path; 1846 } 1847 1848 static int build_dentry_path(struct dentry *dentry, 1849 const char **ppath, int *ppathlen, u64 *pino, 1850 int *pfreepath) 1851 { 1852 char *path; 1853 1854 if (ceph_snap(d_inode(dentry->d_parent)) == CEPH_NOSNAP) { 1855 *pino = ceph_ino(d_inode(dentry->d_parent)); 1856 *ppath = dentry->d_name.name; 1857 *ppathlen = dentry->d_name.len; 1858 return 0; 1859 } 1860 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1861 if (IS_ERR(path)) 1862 return PTR_ERR(path); 1863 *ppath = path; 1864 *pfreepath = 1; 1865 return 0; 1866 } 1867 1868 static int build_inode_path(struct inode *inode, 1869 const char **ppath, int *ppathlen, u64 *pino, 1870 int *pfreepath) 1871 { 1872 struct dentry *dentry; 1873 char *path; 1874 1875 if (ceph_snap(inode) == CEPH_NOSNAP) { 1876 *pino = ceph_ino(inode); 1877 *ppathlen = 0; 1878 return 0; 1879 } 1880 dentry = d_find_alias(inode); 1881 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1); 1882 dput(dentry); 1883 if (IS_ERR(path)) 1884 return PTR_ERR(path); 1885 *ppath = path; 1886 *pfreepath = 1; 1887 return 0; 1888 } 1889 1890 /* 1891 * request arguments may be specified via an inode *, a dentry *, or 1892 * an explicit ino+path. 1893 */ 1894 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry, 1895 const char *rpath, u64 rino, 1896 const char **ppath, int *pathlen, 1897 u64 *ino, int *freepath) 1898 { 1899 int r = 0; 1900 1901 if (rinode) { 1902 r = build_inode_path(rinode, ppath, pathlen, ino, freepath); 1903 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode), 1904 ceph_snap(rinode)); 1905 } else if (rdentry) { 1906 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath); 1907 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, 1908 *ppath); 1909 } else if (rpath || rino) { 1910 *ino = rino; 1911 *ppath = rpath; 1912 *pathlen = rpath ? strlen(rpath) : 0; 1913 dout(" path %.*s\n", *pathlen, rpath); 1914 } 1915 1916 return r; 1917 } 1918 1919 /* 1920 * called under mdsc->mutex 1921 */ 1922 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc, 1923 struct ceph_mds_request *req, 1924 int mds, bool drop_cap_releases) 1925 { 1926 struct ceph_msg *msg; 1927 struct ceph_mds_request_head *head; 1928 const char *path1 = NULL; 1929 const char *path2 = NULL; 1930 u64 ino1 = 0, ino2 = 0; 1931 int pathlen1 = 0, pathlen2 = 0; 1932 int freepath1 = 0, freepath2 = 0; 1933 int len; 1934 u16 releases; 1935 void *p, *end; 1936 int ret; 1937 1938 ret = set_request_path_attr(req->r_inode, req->r_dentry, 1939 req->r_path1, req->r_ino1.ino, 1940 &path1, &pathlen1, &ino1, &freepath1); 1941 if (ret < 0) { 1942 msg = ERR_PTR(ret); 1943 goto out; 1944 } 1945 1946 ret = set_request_path_attr(NULL, req->r_old_dentry, 1947 req->r_path2, req->r_ino2.ino, 1948 &path2, &pathlen2, &ino2, &freepath2); 1949 if (ret < 0) { 1950 msg = ERR_PTR(ret); 1951 goto out_free1; 1952 } 1953 1954 len = sizeof(*head) + 1955 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64)) + 1956 sizeof(struct ceph_timespec); 1957 1958 /* calculate (max) length for cap releases */ 1959 len += sizeof(struct ceph_mds_request_release) * 1960 (!!req->r_inode_drop + !!req->r_dentry_drop + 1961 !!req->r_old_inode_drop + !!req->r_old_dentry_drop); 1962 if (req->r_dentry_drop) 1963 len += req->r_dentry->d_name.len; 1964 if (req->r_old_dentry_drop) 1965 len += req->r_old_dentry->d_name.len; 1966 1967 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false); 1968 if (!msg) { 1969 msg = ERR_PTR(-ENOMEM); 1970 goto out_free2; 1971 } 1972 1973 msg->hdr.version = cpu_to_le16(2); 1974 msg->hdr.tid = cpu_to_le64(req->r_tid); 1975 1976 head = msg->front.iov_base; 1977 p = msg->front.iov_base + sizeof(*head); 1978 end = msg->front.iov_base + msg->front.iov_len; 1979 1980 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch); 1981 head->op = cpu_to_le32(req->r_op); 1982 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid)); 1983 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid)); 1984 head->args = req->r_args; 1985 1986 ceph_encode_filepath(&p, end, ino1, path1); 1987 ceph_encode_filepath(&p, end, ino2, path2); 1988 1989 /* make note of release offset, in case we need to replay */ 1990 req->r_request_release_offset = p - msg->front.iov_base; 1991 1992 /* cap releases */ 1993 releases = 0; 1994 if (req->r_inode_drop) 1995 releases += ceph_encode_inode_release(&p, 1996 req->r_inode ? req->r_inode : d_inode(req->r_dentry), 1997 mds, req->r_inode_drop, req->r_inode_unless, 0); 1998 if (req->r_dentry_drop) 1999 releases += ceph_encode_dentry_release(&p, req->r_dentry, 2000 mds, req->r_dentry_drop, req->r_dentry_unless); 2001 if (req->r_old_dentry_drop) 2002 releases += ceph_encode_dentry_release(&p, req->r_old_dentry, 2003 mds, req->r_old_dentry_drop, req->r_old_dentry_unless); 2004 if (req->r_old_inode_drop) 2005 releases += ceph_encode_inode_release(&p, 2006 d_inode(req->r_old_dentry), 2007 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0); 2008 2009 if (drop_cap_releases) { 2010 releases = 0; 2011 p = msg->front.iov_base + req->r_request_release_offset; 2012 } 2013 2014 head->num_releases = cpu_to_le16(releases); 2015 2016 /* time stamp */ 2017 { 2018 struct ceph_timespec ts; 2019 ceph_encode_timespec(&ts, &req->r_stamp); 2020 ceph_encode_copy(&p, &ts, sizeof(ts)); 2021 } 2022 2023 BUG_ON(p > end); 2024 msg->front.iov_len = p - msg->front.iov_base; 2025 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2026 2027 if (req->r_pagelist) { 2028 struct ceph_pagelist *pagelist = req->r_pagelist; 2029 atomic_inc(&pagelist->refcnt); 2030 ceph_msg_data_add_pagelist(msg, pagelist); 2031 msg->hdr.data_len = cpu_to_le32(pagelist->length); 2032 } else { 2033 msg->hdr.data_len = 0; 2034 } 2035 2036 msg->hdr.data_off = cpu_to_le16(0); 2037 2038 out_free2: 2039 if (freepath2) 2040 kfree((char *)path2); 2041 out_free1: 2042 if (freepath1) 2043 kfree((char *)path1); 2044 out: 2045 return msg; 2046 } 2047 2048 /* 2049 * called under mdsc->mutex if error, under no mutex if 2050 * success. 2051 */ 2052 static void complete_request(struct ceph_mds_client *mdsc, 2053 struct ceph_mds_request *req) 2054 { 2055 if (req->r_callback) 2056 req->r_callback(mdsc, req); 2057 else 2058 complete_all(&req->r_completion); 2059 } 2060 2061 /* 2062 * called under mdsc->mutex 2063 */ 2064 static int __prepare_send_request(struct ceph_mds_client *mdsc, 2065 struct ceph_mds_request *req, 2066 int mds, bool drop_cap_releases) 2067 { 2068 struct ceph_mds_request_head *rhead; 2069 struct ceph_msg *msg; 2070 int flags = 0; 2071 2072 req->r_attempts++; 2073 if (req->r_inode) { 2074 struct ceph_cap *cap = 2075 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds); 2076 2077 if (cap) 2078 req->r_sent_on_mseq = cap->mseq; 2079 else 2080 req->r_sent_on_mseq = -1; 2081 } 2082 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req, 2083 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts); 2084 2085 if (req->r_got_unsafe) { 2086 void *p; 2087 /* 2088 * Replay. Do not regenerate message (and rebuild 2089 * paths, etc.); just use the original message. 2090 * Rebuilding paths will break for renames because 2091 * d_move mangles the src name. 2092 */ 2093 msg = req->r_request; 2094 rhead = msg->front.iov_base; 2095 2096 flags = le32_to_cpu(rhead->flags); 2097 flags |= CEPH_MDS_FLAG_REPLAY; 2098 rhead->flags = cpu_to_le32(flags); 2099 2100 if (req->r_target_inode) 2101 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode)); 2102 2103 rhead->num_retry = req->r_attempts - 1; 2104 2105 /* remove cap/dentry releases from message */ 2106 rhead->num_releases = 0; 2107 2108 /* time stamp */ 2109 p = msg->front.iov_base + req->r_request_release_offset; 2110 { 2111 struct ceph_timespec ts; 2112 ceph_encode_timespec(&ts, &req->r_stamp); 2113 ceph_encode_copy(&p, &ts, sizeof(ts)); 2114 } 2115 2116 msg->front.iov_len = p - msg->front.iov_base; 2117 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len); 2118 return 0; 2119 } 2120 2121 if (req->r_request) { 2122 ceph_msg_put(req->r_request); 2123 req->r_request = NULL; 2124 } 2125 msg = create_request_message(mdsc, req, mds, drop_cap_releases); 2126 if (IS_ERR(msg)) { 2127 req->r_err = PTR_ERR(msg); 2128 return PTR_ERR(msg); 2129 } 2130 req->r_request = msg; 2131 2132 rhead = msg->front.iov_base; 2133 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc)); 2134 if (req->r_got_unsafe) 2135 flags |= CEPH_MDS_FLAG_REPLAY; 2136 if (req->r_locked_dir) 2137 flags |= CEPH_MDS_FLAG_WANT_DENTRY; 2138 rhead->flags = cpu_to_le32(flags); 2139 rhead->num_fwd = req->r_num_fwd; 2140 rhead->num_retry = req->r_attempts - 1; 2141 rhead->ino = 0; 2142 2143 dout(" r_locked_dir = %p\n", req->r_locked_dir); 2144 return 0; 2145 } 2146 2147 /* 2148 * send request, or put it on the appropriate wait list. 2149 */ 2150 static int __do_request(struct ceph_mds_client *mdsc, 2151 struct ceph_mds_request *req) 2152 { 2153 struct ceph_mds_session *session = NULL; 2154 int mds = -1; 2155 int err = 0; 2156 2157 if (req->r_err || req->r_got_result) { 2158 if (req->r_aborted) 2159 __unregister_request(mdsc, req); 2160 goto out; 2161 } 2162 2163 if (req->r_timeout && 2164 time_after_eq(jiffies, req->r_started + req->r_timeout)) { 2165 dout("do_request timed out\n"); 2166 err = -EIO; 2167 goto finish; 2168 } 2169 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) { 2170 dout("do_request forced umount\n"); 2171 err = -EIO; 2172 goto finish; 2173 } 2174 2175 put_request_session(req); 2176 2177 mds = __choose_mds(mdsc, req); 2178 if (mds < 0 || 2179 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) { 2180 dout("do_request no mds or not active, waiting for map\n"); 2181 list_add(&req->r_wait, &mdsc->waiting_for_map); 2182 goto out; 2183 } 2184 2185 /* get, open session */ 2186 session = __ceph_lookup_mds_session(mdsc, mds); 2187 if (!session) { 2188 session = register_session(mdsc, mds); 2189 if (IS_ERR(session)) { 2190 err = PTR_ERR(session); 2191 goto finish; 2192 } 2193 } 2194 req->r_session = get_session(session); 2195 2196 dout("do_request mds%d session %p state %s\n", mds, session, 2197 ceph_session_state_name(session->s_state)); 2198 if (session->s_state != CEPH_MDS_SESSION_OPEN && 2199 session->s_state != CEPH_MDS_SESSION_HUNG) { 2200 if (session->s_state == CEPH_MDS_SESSION_NEW || 2201 session->s_state == CEPH_MDS_SESSION_CLOSING) 2202 __open_session(mdsc, session); 2203 list_add(&req->r_wait, &session->s_waiting); 2204 goto out_session; 2205 } 2206 2207 /* send request */ 2208 req->r_resend_mds = -1; /* forget any previous mds hint */ 2209 2210 if (req->r_request_started == 0) /* note request start time */ 2211 req->r_request_started = jiffies; 2212 2213 err = __prepare_send_request(mdsc, req, mds, false); 2214 if (!err) { 2215 ceph_msg_get(req->r_request); 2216 ceph_con_send(&session->s_con, req->r_request); 2217 } 2218 2219 out_session: 2220 ceph_put_mds_session(session); 2221 finish: 2222 if (err) { 2223 dout("__do_request early error %d\n", err); 2224 req->r_err = err; 2225 complete_request(mdsc, req); 2226 __unregister_request(mdsc, req); 2227 } 2228 out: 2229 return err; 2230 } 2231 2232 /* 2233 * called under mdsc->mutex 2234 */ 2235 static void __wake_requests(struct ceph_mds_client *mdsc, 2236 struct list_head *head) 2237 { 2238 struct ceph_mds_request *req; 2239 LIST_HEAD(tmp_list); 2240 2241 list_splice_init(head, &tmp_list); 2242 2243 while (!list_empty(&tmp_list)) { 2244 req = list_entry(tmp_list.next, 2245 struct ceph_mds_request, r_wait); 2246 list_del_init(&req->r_wait); 2247 dout(" wake request %p tid %llu\n", req, req->r_tid); 2248 __do_request(mdsc, req); 2249 } 2250 } 2251 2252 /* 2253 * Wake up threads with requests pending for @mds, so that they can 2254 * resubmit their requests to a possibly different mds. 2255 */ 2256 static void kick_requests(struct ceph_mds_client *mdsc, int mds) 2257 { 2258 struct ceph_mds_request *req; 2259 struct rb_node *p = rb_first(&mdsc->request_tree); 2260 2261 dout("kick_requests mds%d\n", mds); 2262 while (p) { 2263 req = rb_entry(p, struct ceph_mds_request, r_node); 2264 p = rb_next(p); 2265 if (req->r_got_unsafe) 2266 continue; 2267 if (req->r_attempts > 0) 2268 continue; /* only new requests */ 2269 if (req->r_session && 2270 req->r_session->s_mds == mds) { 2271 dout(" kicking tid %llu\n", req->r_tid); 2272 list_del_init(&req->r_wait); 2273 __do_request(mdsc, req); 2274 } 2275 } 2276 } 2277 2278 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, 2279 struct ceph_mds_request *req) 2280 { 2281 dout("submit_request on %p\n", req); 2282 mutex_lock(&mdsc->mutex); 2283 __register_request(mdsc, req, NULL); 2284 __do_request(mdsc, req); 2285 mutex_unlock(&mdsc->mutex); 2286 } 2287 2288 /* 2289 * Synchrously perform an mds request. Take care of all of the 2290 * session setup, forwarding, retry details. 2291 */ 2292 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc, 2293 struct inode *dir, 2294 struct ceph_mds_request *req) 2295 { 2296 int err; 2297 2298 dout("do_request on %p\n", req); 2299 2300 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */ 2301 if (req->r_inode) 2302 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN); 2303 if (req->r_locked_dir) 2304 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN); 2305 if (req->r_old_dentry_dir) 2306 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir), 2307 CEPH_CAP_PIN); 2308 2309 /* deny access to directories with pool_ns layouts */ 2310 if (req->r_inode && S_ISDIR(req->r_inode->i_mode) && 2311 ceph_inode(req->r_inode)->i_pool_ns_len) 2312 return -EIO; 2313 if (req->r_locked_dir && 2314 ceph_inode(req->r_locked_dir)->i_pool_ns_len) 2315 return -EIO; 2316 2317 /* issue */ 2318 mutex_lock(&mdsc->mutex); 2319 __register_request(mdsc, req, dir); 2320 __do_request(mdsc, req); 2321 2322 if (req->r_err) { 2323 err = req->r_err; 2324 goto out; 2325 } 2326 2327 /* wait */ 2328 mutex_unlock(&mdsc->mutex); 2329 dout("do_request waiting\n"); 2330 if (!req->r_timeout && req->r_wait_for_completion) { 2331 err = req->r_wait_for_completion(mdsc, req); 2332 } else { 2333 long timeleft = wait_for_completion_killable_timeout( 2334 &req->r_completion, 2335 ceph_timeout_jiffies(req->r_timeout)); 2336 if (timeleft > 0) 2337 err = 0; 2338 else if (!timeleft) 2339 err = -EIO; /* timed out */ 2340 else 2341 err = timeleft; /* killed */ 2342 } 2343 dout("do_request waited, got %d\n", err); 2344 mutex_lock(&mdsc->mutex); 2345 2346 /* only abort if we didn't race with a real reply */ 2347 if (req->r_got_result) { 2348 err = le32_to_cpu(req->r_reply_info.head->result); 2349 } else if (err < 0) { 2350 dout("aborted request %lld with %d\n", req->r_tid, err); 2351 2352 /* 2353 * ensure we aren't running concurrently with 2354 * ceph_fill_trace or ceph_readdir_prepopulate, which 2355 * rely on locks (dir mutex) held by our caller. 2356 */ 2357 mutex_lock(&req->r_fill_mutex); 2358 req->r_err = err; 2359 req->r_aborted = true; 2360 mutex_unlock(&req->r_fill_mutex); 2361 2362 if (req->r_locked_dir && 2363 (req->r_op & CEPH_MDS_OP_WRITE)) 2364 ceph_invalidate_dir_request(req); 2365 } else { 2366 err = req->r_err; 2367 } 2368 2369 out: 2370 mutex_unlock(&mdsc->mutex); 2371 dout("do_request %p done, result %d\n", req, err); 2372 return err; 2373 } 2374 2375 /* 2376 * Invalidate dir's completeness, dentry lease state on an aborted MDS 2377 * namespace request. 2378 */ 2379 void ceph_invalidate_dir_request(struct ceph_mds_request *req) 2380 { 2381 struct inode *inode = req->r_locked_dir; 2382 2383 dout("invalidate_dir_request %p (complete, lease(s))\n", inode); 2384 2385 ceph_dir_clear_complete(inode); 2386 if (req->r_dentry) 2387 ceph_invalidate_dentry_lease(req->r_dentry); 2388 if (req->r_old_dentry) 2389 ceph_invalidate_dentry_lease(req->r_old_dentry); 2390 } 2391 2392 /* 2393 * Handle mds reply. 2394 * 2395 * We take the session mutex and parse and process the reply immediately. 2396 * This preserves the logical ordering of replies, capabilities, etc., sent 2397 * by the MDS as they are applied to our local cache. 2398 */ 2399 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg) 2400 { 2401 struct ceph_mds_client *mdsc = session->s_mdsc; 2402 struct ceph_mds_request *req; 2403 struct ceph_mds_reply_head *head = msg->front.iov_base; 2404 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */ 2405 struct ceph_snap_realm *realm; 2406 u64 tid; 2407 int err, result; 2408 int mds = session->s_mds; 2409 2410 if (msg->front.iov_len < sizeof(*head)) { 2411 pr_err("mdsc_handle_reply got corrupt (short) reply\n"); 2412 ceph_msg_dump(msg); 2413 return; 2414 } 2415 2416 /* get request, session */ 2417 tid = le64_to_cpu(msg->hdr.tid); 2418 mutex_lock(&mdsc->mutex); 2419 req = __lookup_request(mdsc, tid); 2420 if (!req) { 2421 dout("handle_reply on unknown tid %llu\n", tid); 2422 mutex_unlock(&mdsc->mutex); 2423 return; 2424 } 2425 dout("handle_reply %p\n", req); 2426 2427 /* correct session? */ 2428 if (req->r_session != session) { 2429 pr_err("mdsc_handle_reply got %llu on session mds%d" 2430 " not mds%d\n", tid, session->s_mds, 2431 req->r_session ? req->r_session->s_mds : -1); 2432 mutex_unlock(&mdsc->mutex); 2433 goto out; 2434 } 2435 2436 /* dup? */ 2437 if ((req->r_got_unsafe && !head->safe) || 2438 (req->r_got_safe && head->safe)) { 2439 pr_warn("got a dup %s reply on %llu from mds%d\n", 2440 head->safe ? "safe" : "unsafe", tid, mds); 2441 mutex_unlock(&mdsc->mutex); 2442 goto out; 2443 } 2444 if (req->r_got_safe) { 2445 pr_warn("got unsafe after safe on %llu from mds%d\n", 2446 tid, mds); 2447 mutex_unlock(&mdsc->mutex); 2448 goto out; 2449 } 2450 2451 result = le32_to_cpu(head->result); 2452 2453 /* 2454 * Handle an ESTALE 2455 * if we're not talking to the authority, send to them 2456 * if the authority has changed while we weren't looking, 2457 * send to new authority 2458 * Otherwise we just have to return an ESTALE 2459 */ 2460 if (result == -ESTALE) { 2461 dout("got ESTALE on request %llu", req->r_tid); 2462 req->r_resend_mds = -1; 2463 if (req->r_direct_mode != USE_AUTH_MDS) { 2464 dout("not using auth, setting for that now"); 2465 req->r_direct_mode = USE_AUTH_MDS; 2466 __do_request(mdsc, req); 2467 mutex_unlock(&mdsc->mutex); 2468 goto out; 2469 } else { 2470 int mds = __choose_mds(mdsc, req); 2471 if (mds >= 0 && mds != req->r_session->s_mds) { 2472 dout("but auth changed, so resending"); 2473 __do_request(mdsc, req); 2474 mutex_unlock(&mdsc->mutex); 2475 goto out; 2476 } 2477 } 2478 dout("have to return ESTALE on request %llu", req->r_tid); 2479 } 2480 2481 2482 if (head->safe) { 2483 req->r_got_safe = true; 2484 __unregister_request(mdsc, req); 2485 2486 if (req->r_got_unsafe) { 2487 /* 2488 * We already handled the unsafe response, now do the 2489 * cleanup. No need to examine the response; the MDS 2490 * doesn't include any result info in the safe 2491 * response. And even if it did, there is nothing 2492 * useful we could do with a revised return value. 2493 */ 2494 dout("got safe reply %llu, mds%d\n", tid, mds); 2495 list_del_init(&req->r_unsafe_item); 2496 2497 /* last unsafe request during umount? */ 2498 if (mdsc->stopping && !__get_oldest_req(mdsc)) 2499 complete_all(&mdsc->safe_umount_waiters); 2500 mutex_unlock(&mdsc->mutex); 2501 goto out; 2502 } 2503 } else { 2504 req->r_got_unsafe = true; 2505 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe); 2506 if (req->r_unsafe_dir) { 2507 struct ceph_inode_info *ci = 2508 ceph_inode(req->r_unsafe_dir); 2509 spin_lock(&ci->i_unsafe_lock); 2510 list_add_tail(&req->r_unsafe_dir_item, 2511 &ci->i_unsafe_dirops); 2512 spin_unlock(&ci->i_unsafe_lock); 2513 } 2514 } 2515 2516 dout("handle_reply tid %lld result %d\n", tid, result); 2517 rinfo = &req->r_reply_info; 2518 err = parse_reply_info(msg, rinfo, session->s_con.peer_features); 2519 mutex_unlock(&mdsc->mutex); 2520 2521 mutex_lock(&session->s_mutex); 2522 if (err < 0) { 2523 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid); 2524 ceph_msg_dump(msg); 2525 goto out_err; 2526 } 2527 2528 /* snap trace */ 2529 realm = NULL; 2530 if (rinfo->snapblob_len) { 2531 down_write(&mdsc->snap_rwsem); 2532 ceph_update_snap_trace(mdsc, rinfo->snapblob, 2533 rinfo->snapblob + rinfo->snapblob_len, 2534 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP, 2535 &realm); 2536 downgrade_write(&mdsc->snap_rwsem); 2537 } else { 2538 down_read(&mdsc->snap_rwsem); 2539 } 2540 2541 /* insert trace into our cache */ 2542 mutex_lock(&req->r_fill_mutex); 2543 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session); 2544 if (err == 0) { 2545 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR || 2546 req->r_op == CEPH_MDS_OP_LSSNAP)) 2547 ceph_readdir_prepopulate(req, req->r_session); 2548 ceph_unreserve_caps(mdsc, &req->r_caps_reservation); 2549 } 2550 mutex_unlock(&req->r_fill_mutex); 2551 2552 up_read(&mdsc->snap_rwsem); 2553 if (realm) 2554 ceph_put_snap_realm(mdsc, realm); 2555 2556 if (err == 0 && req->r_got_unsafe && req->r_target_inode) { 2557 struct ceph_inode_info *ci = ceph_inode(req->r_target_inode); 2558 spin_lock(&ci->i_unsafe_lock); 2559 list_add_tail(&req->r_unsafe_target_item, &ci->i_unsafe_iops); 2560 spin_unlock(&ci->i_unsafe_lock); 2561 } 2562 out_err: 2563 mutex_lock(&mdsc->mutex); 2564 if (!req->r_aborted) { 2565 if (err) { 2566 req->r_err = err; 2567 } else { 2568 req->r_reply = ceph_msg_get(msg); 2569 req->r_got_result = true; 2570 } 2571 } else { 2572 dout("reply arrived after request %lld was aborted\n", tid); 2573 } 2574 mutex_unlock(&mdsc->mutex); 2575 2576 mutex_unlock(&session->s_mutex); 2577 2578 /* kick calling process */ 2579 complete_request(mdsc, req); 2580 out: 2581 ceph_mdsc_put_request(req); 2582 return; 2583 } 2584 2585 2586 2587 /* 2588 * handle mds notification that our request has been forwarded. 2589 */ 2590 static void handle_forward(struct ceph_mds_client *mdsc, 2591 struct ceph_mds_session *session, 2592 struct ceph_msg *msg) 2593 { 2594 struct ceph_mds_request *req; 2595 u64 tid = le64_to_cpu(msg->hdr.tid); 2596 u32 next_mds; 2597 u32 fwd_seq; 2598 int err = -EINVAL; 2599 void *p = msg->front.iov_base; 2600 void *end = p + msg->front.iov_len; 2601 2602 ceph_decode_need(&p, end, 2*sizeof(u32), bad); 2603 next_mds = ceph_decode_32(&p); 2604 fwd_seq = ceph_decode_32(&p); 2605 2606 mutex_lock(&mdsc->mutex); 2607 req = __lookup_request(mdsc, tid); 2608 if (!req) { 2609 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds); 2610 goto out; /* dup reply? */ 2611 } 2612 2613 if (req->r_aborted) { 2614 dout("forward tid %llu aborted, unregistering\n", tid); 2615 __unregister_request(mdsc, req); 2616 } else if (fwd_seq <= req->r_num_fwd) { 2617 dout("forward tid %llu to mds%d - old seq %d <= %d\n", 2618 tid, next_mds, req->r_num_fwd, fwd_seq); 2619 } else { 2620 /* resend. forward race not possible; mds would drop */ 2621 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds); 2622 BUG_ON(req->r_err); 2623 BUG_ON(req->r_got_result); 2624 req->r_attempts = 0; 2625 req->r_num_fwd = fwd_seq; 2626 req->r_resend_mds = next_mds; 2627 put_request_session(req); 2628 __do_request(mdsc, req); 2629 } 2630 ceph_mdsc_put_request(req); 2631 out: 2632 mutex_unlock(&mdsc->mutex); 2633 return; 2634 2635 bad: 2636 pr_err("mdsc_handle_forward decode error err=%d\n", err); 2637 } 2638 2639 /* 2640 * handle a mds session control message 2641 */ 2642 static void handle_session(struct ceph_mds_session *session, 2643 struct ceph_msg *msg) 2644 { 2645 struct ceph_mds_client *mdsc = session->s_mdsc; 2646 u32 op; 2647 u64 seq; 2648 int mds = session->s_mds; 2649 struct ceph_mds_session_head *h = msg->front.iov_base; 2650 int wake = 0; 2651 2652 /* decode */ 2653 if (msg->front.iov_len != sizeof(*h)) 2654 goto bad; 2655 op = le32_to_cpu(h->op); 2656 seq = le64_to_cpu(h->seq); 2657 2658 mutex_lock(&mdsc->mutex); 2659 if (op == CEPH_SESSION_CLOSE) 2660 __unregister_session(mdsc, session); 2661 /* FIXME: this ttl calculation is generous */ 2662 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose; 2663 mutex_unlock(&mdsc->mutex); 2664 2665 mutex_lock(&session->s_mutex); 2666 2667 dout("handle_session mds%d %s %p state %s seq %llu\n", 2668 mds, ceph_session_op_name(op), session, 2669 ceph_session_state_name(session->s_state), seq); 2670 2671 if (session->s_state == CEPH_MDS_SESSION_HUNG) { 2672 session->s_state = CEPH_MDS_SESSION_OPEN; 2673 pr_info("mds%d came back\n", session->s_mds); 2674 } 2675 2676 switch (op) { 2677 case CEPH_SESSION_OPEN: 2678 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2679 pr_info("mds%d reconnect success\n", session->s_mds); 2680 session->s_state = CEPH_MDS_SESSION_OPEN; 2681 renewed_caps(mdsc, session, 0); 2682 wake = 1; 2683 if (mdsc->stopping) 2684 __close_session(mdsc, session); 2685 break; 2686 2687 case CEPH_SESSION_RENEWCAPS: 2688 if (session->s_renew_seq == seq) 2689 renewed_caps(mdsc, session, 1); 2690 break; 2691 2692 case CEPH_SESSION_CLOSE: 2693 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING) 2694 pr_info("mds%d reconnect denied\n", session->s_mds); 2695 cleanup_session_requests(mdsc, session); 2696 remove_session_caps(session); 2697 wake = 2; /* for good measure */ 2698 wake_up_all(&mdsc->session_close_wq); 2699 break; 2700 2701 case CEPH_SESSION_STALE: 2702 pr_info("mds%d caps went stale, renewing\n", 2703 session->s_mds); 2704 spin_lock(&session->s_gen_ttl_lock); 2705 session->s_cap_gen++; 2706 session->s_cap_ttl = jiffies - 1; 2707 spin_unlock(&session->s_gen_ttl_lock); 2708 send_renew_caps(mdsc, session); 2709 break; 2710 2711 case CEPH_SESSION_RECALL_STATE: 2712 trim_caps(mdsc, session, le32_to_cpu(h->max_caps)); 2713 break; 2714 2715 case CEPH_SESSION_FLUSHMSG: 2716 send_flushmsg_ack(mdsc, session, seq); 2717 break; 2718 2719 case CEPH_SESSION_FORCE_RO: 2720 dout("force_session_readonly %p\n", session); 2721 spin_lock(&session->s_cap_lock); 2722 session->s_readonly = true; 2723 spin_unlock(&session->s_cap_lock); 2724 wake_up_session_caps(session, 0); 2725 break; 2726 2727 default: 2728 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds); 2729 WARN_ON(1); 2730 } 2731 2732 mutex_unlock(&session->s_mutex); 2733 if (wake) { 2734 mutex_lock(&mdsc->mutex); 2735 __wake_requests(mdsc, &session->s_waiting); 2736 if (wake == 2) 2737 kick_requests(mdsc, mds); 2738 mutex_unlock(&mdsc->mutex); 2739 } 2740 return; 2741 2742 bad: 2743 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds, 2744 (int)msg->front.iov_len); 2745 ceph_msg_dump(msg); 2746 return; 2747 } 2748 2749 2750 /* 2751 * called under session->mutex. 2752 */ 2753 static void replay_unsafe_requests(struct ceph_mds_client *mdsc, 2754 struct ceph_mds_session *session) 2755 { 2756 struct ceph_mds_request *req, *nreq; 2757 struct rb_node *p; 2758 int err; 2759 2760 dout("replay_unsafe_requests mds%d\n", session->s_mds); 2761 2762 mutex_lock(&mdsc->mutex); 2763 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) { 2764 err = __prepare_send_request(mdsc, req, session->s_mds, true); 2765 if (!err) { 2766 ceph_msg_get(req->r_request); 2767 ceph_con_send(&session->s_con, req->r_request); 2768 } 2769 } 2770 2771 /* 2772 * also re-send old requests when MDS enters reconnect stage. So that MDS 2773 * can process completed request in clientreplay stage. 2774 */ 2775 p = rb_first(&mdsc->request_tree); 2776 while (p) { 2777 req = rb_entry(p, struct ceph_mds_request, r_node); 2778 p = rb_next(p); 2779 if (req->r_got_unsafe) 2780 continue; 2781 if (req->r_attempts == 0) 2782 continue; /* only old requests */ 2783 if (req->r_session && 2784 req->r_session->s_mds == session->s_mds) { 2785 err = __prepare_send_request(mdsc, req, 2786 session->s_mds, true); 2787 if (!err) { 2788 ceph_msg_get(req->r_request); 2789 ceph_con_send(&session->s_con, req->r_request); 2790 } 2791 } 2792 } 2793 mutex_unlock(&mdsc->mutex); 2794 } 2795 2796 /* 2797 * Encode information about a cap for a reconnect with the MDS. 2798 */ 2799 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap, 2800 void *arg) 2801 { 2802 union { 2803 struct ceph_mds_cap_reconnect v2; 2804 struct ceph_mds_cap_reconnect_v1 v1; 2805 } rec; 2806 size_t reclen; 2807 struct ceph_inode_info *ci; 2808 struct ceph_reconnect_state *recon_state = arg; 2809 struct ceph_pagelist *pagelist = recon_state->pagelist; 2810 char *path; 2811 int pathlen, err; 2812 u64 pathbase; 2813 struct dentry *dentry; 2814 2815 ci = cap->ci; 2816 2817 dout(" adding %p ino %llx.%llx cap %p %lld %s\n", 2818 inode, ceph_vinop(inode), cap, cap->cap_id, 2819 ceph_cap_string(cap->issued)); 2820 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode)); 2821 if (err) 2822 return err; 2823 2824 dentry = d_find_alias(inode); 2825 if (dentry) { 2826 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0); 2827 if (IS_ERR(path)) { 2828 err = PTR_ERR(path); 2829 goto out_dput; 2830 } 2831 } else { 2832 path = NULL; 2833 pathlen = 0; 2834 } 2835 err = ceph_pagelist_encode_string(pagelist, path, pathlen); 2836 if (err) 2837 goto out_free; 2838 2839 spin_lock(&ci->i_ceph_lock); 2840 cap->seq = 0; /* reset cap seq */ 2841 cap->issue_seq = 0; /* and issue_seq */ 2842 cap->mseq = 0; /* and migrate_seq */ 2843 cap->cap_gen = cap->session->s_cap_gen; 2844 2845 if (recon_state->flock) { 2846 rec.v2.cap_id = cpu_to_le64(cap->cap_id); 2847 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2848 rec.v2.issued = cpu_to_le32(cap->issued); 2849 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2850 rec.v2.pathbase = cpu_to_le64(pathbase); 2851 rec.v2.flock_len = 0; 2852 reclen = sizeof(rec.v2); 2853 } else { 2854 rec.v1.cap_id = cpu_to_le64(cap->cap_id); 2855 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci)); 2856 rec.v1.issued = cpu_to_le32(cap->issued); 2857 rec.v1.size = cpu_to_le64(inode->i_size); 2858 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime); 2859 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime); 2860 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino); 2861 rec.v1.pathbase = cpu_to_le64(pathbase); 2862 reclen = sizeof(rec.v1); 2863 } 2864 spin_unlock(&ci->i_ceph_lock); 2865 2866 if (recon_state->flock) { 2867 int num_fcntl_locks, num_flock_locks; 2868 struct ceph_filelock *flocks; 2869 2870 encode_again: 2871 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks); 2872 flocks = kmalloc((num_fcntl_locks+num_flock_locks) * 2873 sizeof(struct ceph_filelock), GFP_NOFS); 2874 if (!flocks) { 2875 err = -ENOMEM; 2876 goto out_free; 2877 } 2878 err = ceph_encode_locks_to_buffer(inode, flocks, 2879 num_fcntl_locks, 2880 num_flock_locks); 2881 if (err) { 2882 kfree(flocks); 2883 if (err == -ENOSPC) 2884 goto encode_again; 2885 goto out_free; 2886 } 2887 /* 2888 * number of encoded locks is stable, so copy to pagelist 2889 */ 2890 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) + 2891 (num_fcntl_locks+num_flock_locks) * 2892 sizeof(struct ceph_filelock)); 2893 err = ceph_pagelist_append(pagelist, &rec, reclen); 2894 if (!err) 2895 err = ceph_locks_to_pagelist(flocks, pagelist, 2896 num_fcntl_locks, 2897 num_flock_locks); 2898 kfree(flocks); 2899 } else { 2900 err = ceph_pagelist_append(pagelist, &rec, reclen); 2901 } 2902 2903 recon_state->nr_caps++; 2904 out_free: 2905 kfree(path); 2906 out_dput: 2907 dput(dentry); 2908 return err; 2909 } 2910 2911 2912 /* 2913 * If an MDS fails and recovers, clients need to reconnect in order to 2914 * reestablish shared state. This includes all caps issued through 2915 * this session _and_ the snap_realm hierarchy. Because it's not 2916 * clear which snap realms the mds cares about, we send everything we 2917 * know about.. that ensures we'll then get any new info the 2918 * recovering MDS might have. 2919 * 2920 * This is a relatively heavyweight operation, but it's rare. 2921 * 2922 * called with mdsc->mutex held. 2923 */ 2924 static void send_mds_reconnect(struct ceph_mds_client *mdsc, 2925 struct ceph_mds_session *session) 2926 { 2927 struct ceph_msg *reply; 2928 struct rb_node *p; 2929 int mds = session->s_mds; 2930 int err = -ENOMEM; 2931 int s_nr_caps; 2932 struct ceph_pagelist *pagelist; 2933 struct ceph_reconnect_state recon_state; 2934 2935 pr_info("mds%d reconnect start\n", mds); 2936 2937 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS); 2938 if (!pagelist) 2939 goto fail_nopagelist; 2940 ceph_pagelist_init(pagelist); 2941 2942 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false); 2943 if (!reply) 2944 goto fail_nomsg; 2945 2946 mutex_lock(&session->s_mutex); 2947 session->s_state = CEPH_MDS_SESSION_RECONNECTING; 2948 session->s_seq = 0; 2949 2950 dout("session %p state %s\n", session, 2951 ceph_session_state_name(session->s_state)); 2952 2953 spin_lock(&session->s_gen_ttl_lock); 2954 session->s_cap_gen++; 2955 spin_unlock(&session->s_gen_ttl_lock); 2956 2957 spin_lock(&session->s_cap_lock); 2958 /* don't know if session is readonly */ 2959 session->s_readonly = 0; 2960 /* 2961 * notify __ceph_remove_cap() that we are composing cap reconnect. 2962 * If a cap get released before being added to the cap reconnect, 2963 * __ceph_remove_cap() should skip queuing cap release. 2964 */ 2965 session->s_cap_reconnect = 1; 2966 /* drop old cap expires; we're about to reestablish that state */ 2967 cleanup_cap_releases(mdsc, session); 2968 2969 /* trim unused caps to reduce MDS's cache rejoin time */ 2970 if (mdsc->fsc->sb->s_root) 2971 shrink_dcache_parent(mdsc->fsc->sb->s_root); 2972 2973 ceph_con_close(&session->s_con); 2974 ceph_con_open(&session->s_con, 2975 CEPH_ENTITY_TYPE_MDS, mds, 2976 ceph_mdsmap_get_addr(mdsc->mdsmap, mds)); 2977 2978 /* replay unsafe requests */ 2979 replay_unsafe_requests(mdsc, session); 2980 2981 down_read(&mdsc->snap_rwsem); 2982 2983 /* traverse this session's caps */ 2984 s_nr_caps = session->s_nr_caps; 2985 err = ceph_pagelist_encode_32(pagelist, s_nr_caps); 2986 if (err) 2987 goto fail; 2988 2989 recon_state.nr_caps = 0; 2990 recon_state.pagelist = pagelist; 2991 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK; 2992 err = iterate_session_caps(session, encode_caps_cb, &recon_state); 2993 if (err < 0) 2994 goto fail; 2995 2996 spin_lock(&session->s_cap_lock); 2997 session->s_cap_reconnect = 0; 2998 spin_unlock(&session->s_cap_lock); 2999 3000 /* 3001 * snaprealms. we provide mds with the ino, seq (version), and 3002 * parent for all of our realms. If the mds has any newer info, 3003 * it will tell us. 3004 */ 3005 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) { 3006 struct ceph_snap_realm *realm = 3007 rb_entry(p, struct ceph_snap_realm, node); 3008 struct ceph_mds_snaprealm_reconnect sr_rec; 3009 3010 dout(" adding snap realm %llx seq %lld parent %llx\n", 3011 realm->ino, realm->seq, realm->parent_ino); 3012 sr_rec.ino = cpu_to_le64(realm->ino); 3013 sr_rec.seq = cpu_to_le64(realm->seq); 3014 sr_rec.parent = cpu_to_le64(realm->parent_ino); 3015 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec)); 3016 if (err) 3017 goto fail; 3018 } 3019 3020 if (recon_state.flock) 3021 reply->hdr.version = cpu_to_le16(2); 3022 3023 /* raced with cap release? */ 3024 if (s_nr_caps != recon_state.nr_caps) { 3025 struct page *page = list_first_entry(&pagelist->head, 3026 struct page, lru); 3027 __le32 *addr = kmap_atomic(page); 3028 *addr = cpu_to_le32(recon_state.nr_caps); 3029 kunmap_atomic(addr); 3030 } 3031 3032 reply->hdr.data_len = cpu_to_le32(pagelist->length); 3033 ceph_msg_data_add_pagelist(reply, pagelist); 3034 3035 ceph_early_kick_flushing_caps(mdsc, session); 3036 3037 ceph_con_send(&session->s_con, reply); 3038 3039 mutex_unlock(&session->s_mutex); 3040 3041 mutex_lock(&mdsc->mutex); 3042 __wake_requests(mdsc, &session->s_waiting); 3043 mutex_unlock(&mdsc->mutex); 3044 3045 up_read(&mdsc->snap_rwsem); 3046 return; 3047 3048 fail: 3049 ceph_msg_put(reply); 3050 up_read(&mdsc->snap_rwsem); 3051 mutex_unlock(&session->s_mutex); 3052 fail_nomsg: 3053 ceph_pagelist_release(pagelist); 3054 fail_nopagelist: 3055 pr_err("error %d preparing reconnect for mds%d\n", err, mds); 3056 return; 3057 } 3058 3059 3060 /* 3061 * compare old and new mdsmaps, kicking requests 3062 * and closing out old connections as necessary 3063 * 3064 * called under mdsc->mutex. 3065 */ 3066 static void check_new_map(struct ceph_mds_client *mdsc, 3067 struct ceph_mdsmap *newmap, 3068 struct ceph_mdsmap *oldmap) 3069 { 3070 int i; 3071 int oldstate, newstate; 3072 struct ceph_mds_session *s; 3073 3074 dout("check_new_map new %u old %u\n", 3075 newmap->m_epoch, oldmap->m_epoch); 3076 3077 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) { 3078 if (mdsc->sessions[i] == NULL) 3079 continue; 3080 s = mdsc->sessions[i]; 3081 oldstate = ceph_mdsmap_get_state(oldmap, i); 3082 newstate = ceph_mdsmap_get_state(newmap, i); 3083 3084 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n", 3085 i, ceph_mds_state_name(oldstate), 3086 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "", 3087 ceph_mds_state_name(newstate), 3088 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "", 3089 ceph_session_state_name(s->s_state)); 3090 3091 if (i >= newmap->m_max_mds || 3092 memcmp(ceph_mdsmap_get_addr(oldmap, i), 3093 ceph_mdsmap_get_addr(newmap, i), 3094 sizeof(struct ceph_entity_addr))) { 3095 if (s->s_state == CEPH_MDS_SESSION_OPENING) { 3096 /* the session never opened, just close it 3097 * out now */ 3098 __wake_requests(mdsc, &s->s_waiting); 3099 __unregister_session(mdsc, s); 3100 } else { 3101 /* just close it */ 3102 mutex_unlock(&mdsc->mutex); 3103 mutex_lock(&s->s_mutex); 3104 mutex_lock(&mdsc->mutex); 3105 ceph_con_close(&s->s_con); 3106 mutex_unlock(&s->s_mutex); 3107 s->s_state = CEPH_MDS_SESSION_RESTARTING; 3108 } 3109 } else if (oldstate == newstate) { 3110 continue; /* nothing new with this mds */ 3111 } 3112 3113 /* 3114 * send reconnect? 3115 */ 3116 if (s->s_state == CEPH_MDS_SESSION_RESTARTING && 3117 newstate >= CEPH_MDS_STATE_RECONNECT) { 3118 mutex_unlock(&mdsc->mutex); 3119 send_mds_reconnect(mdsc, s); 3120 mutex_lock(&mdsc->mutex); 3121 } 3122 3123 /* 3124 * kick request on any mds that has gone active. 3125 */ 3126 if (oldstate < CEPH_MDS_STATE_ACTIVE && 3127 newstate >= CEPH_MDS_STATE_ACTIVE) { 3128 if (oldstate != CEPH_MDS_STATE_CREATING && 3129 oldstate != CEPH_MDS_STATE_STARTING) 3130 pr_info("mds%d recovery completed\n", s->s_mds); 3131 kick_requests(mdsc, i); 3132 ceph_kick_flushing_caps(mdsc, s); 3133 wake_up_session_caps(s, 1); 3134 } 3135 } 3136 3137 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) { 3138 s = mdsc->sessions[i]; 3139 if (!s) 3140 continue; 3141 if (!ceph_mdsmap_is_laggy(newmap, i)) 3142 continue; 3143 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3144 s->s_state == CEPH_MDS_SESSION_HUNG || 3145 s->s_state == CEPH_MDS_SESSION_CLOSING) { 3146 dout(" connecting to export targets of laggy mds%d\n", 3147 i); 3148 __open_export_target_sessions(mdsc, s); 3149 } 3150 } 3151 } 3152 3153 3154 3155 /* 3156 * leases 3157 */ 3158 3159 /* 3160 * caller must hold session s_mutex, dentry->d_lock 3161 */ 3162 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry) 3163 { 3164 struct ceph_dentry_info *di = ceph_dentry(dentry); 3165 3166 ceph_put_mds_session(di->lease_session); 3167 di->lease_session = NULL; 3168 } 3169 3170 static void handle_lease(struct ceph_mds_client *mdsc, 3171 struct ceph_mds_session *session, 3172 struct ceph_msg *msg) 3173 { 3174 struct super_block *sb = mdsc->fsc->sb; 3175 struct inode *inode; 3176 struct dentry *parent, *dentry; 3177 struct ceph_dentry_info *di; 3178 int mds = session->s_mds; 3179 struct ceph_mds_lease *h = msg->front.iov_base; 3180 u32 seq; 3181 struct ceph_vino vino; 3182 struct qstr dname; 3183 int release = 0; 3184 3185 dout("handle_lease from mds%d\n", mds); 3186 3187 /* decode */ 3188 if (msg->front.iov_len < sizeof(*h) + sizeof(u32)) 3189 goto bad; 3190 vino.ino = le64_to_cpu(h->ino); 3191 vino.snap = CEPH_NOSNAP; 3192 seq = le32_to_cpu(h->seq); 3193 dname.name = (void *)h + sizeof(*h) + sizeof(u32); 3194 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32); 3195 if (dname.len != get_unaligned_le32(h+1)) 3196 goto bad; 3197 3198 /* lookup inode */ 3199 inode = ceph_find_inode(sb, vino); 3200 dout("handle_lease %s, ino %llx %p %.*s\n", 3201 ceph_lease_op_name(h->action), vino.ino, inode, 3202 dname.len, dname.name); 3203 3204 mutex_lock(&session->s_mutex); 3205 session->s_seq++; 3206 3207 if (inode == NULL) { 3208 dout("handle_lease no inode %llx\n", vino.ino); 3209 goto release; 3210 } 3211 3212 /* dentry */ 3213 parent = d_find_alias(inode); 3214 if (!parent) { 3215 dout("no parent dentry on inode %p\n", inode); 3216 WARN_ON(1); 3217 goto release; /* hrm... */ 3218 } 3219 dname.hash = full_name_hash(dname.name, dname.len); 3220 dentry = d_lookup(parent, &dname); 3221 dput(parent); 3222 if (!dentry) 3223 goto release; 3224 3225 spin_lock(&dentry->d_lock); 3226 di = ceph_dentry(dentry); 3227 switch (h->action) { 3228 case CEPH_MDS_LEASE_REVOKE: 3229 if (di->lease_session == session) { 3230 if (ceph_seq_cmp(di->lease_seq, seq) > 0) 3231 h->seq = cpu_to_le32(di->lease_seq); 3232 __ceph_mdsc_drop_dentry_lease(dentry); 3233 } 3234 release = 1; 3235 break; 3236 3237 case CEPH_MDS_LEASE_RENEW: 3238 if (di->lease_session == session && 3239 di->lease_gen == session->s_cap_gen && 3240 di->lease_renew_from && 3241 di->lease_renew_after == 0) { 3242 unsigned long duration = 3243 msecs_to_jiffies(le32_to_cpu(h->duration_ms)); 3244 3245 di->lease_seq = seq; 3246 dentry->d_time = di->lease_renew_from + duration; 3247 di->lease_renew_after = di->lease_renew_from + 3248 (duration >> 1); 3249 di->lease_renew_from = 0; 3250 } 3251 break; 3252 } 3253 spin_unlock(&dentry->d_lock); 3254 dput(dentry); 3255 3256 if (!release) 3257 goto out; 3258 3259 release: 3260 /* let's just reuse the same message */ 3261 h->action = CEPH_MDS_LEASE_REVOKE_ACK; 3262 ceph_msg_get(msg); 3263 ceph_con_send(&session->s_con, msg); 3264 3265 out: 3266 iput(inode); 3267 mutex_unlock(&session->s_mutex); 3268 return; 3269 3270 bad: 3271 pr_err("corrupt lease message\n"); 3272 ceph_msg_dump(msg); 3273 } 3274 3275 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session, 3276 struct inode *inode, 3277 struct dentry *dentry, char action, 3278 u32 seq) 3279 { 3280 struct ceph_msg *msg; 3281 struct ceph_mds_lease *lease; 3282 int len = sizeof(*lease) + sizeof(u32); 3283 int dnamelen = 0; 3284 3285 dout("lease_send_msg inode %p dentry %p %s to mds%d\n", 3286 inode, dentry, ceph_lease_op_name(action), session->s_mds); 3287 dnamelen = dentry->d_name.len; 3288 len += dnamelen; 3289 3290 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false); 3291 if (!msg) 3292 return; 3293 lease = msg->front.iov_base; 3294 lease->action = action; 3295 lease->ino = cpu_to_le64(ceph_vino(inode).ino); 3296 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap); 3297 lease->seq = cpu_to_le32(seq); 3298 put_unaligned_le32(dnamelen, lease + 1); 3299 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen); 3300 3301 /* 3302 * if this is a preemptive lease RELEASE, no need to 3303 * flush request stream, since the actual request will 3304 * soon follow. 3305 */ 3306 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE); 3307 3308 ceph_con_send(&session->s_con, msg); 3309 } 3310 3311 /* 3312 * Preemptively release a lease we expect to invalidate anyway. 3313 * Pass @inode always, @dentry is optional. 3314 */ 3315 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode, 3316 struct dentry *dentry) 3317 { 3318 struct ceph_dentry_info *di; 3319 struct ceph_mds_session *session; 3320 u32 seq; 3321 3322 BUG_ON(inode == NULL); 3323 BUG_ON(dentry == NULL); 3324 3325 /* is dentry lease valid? */ 3326 spin_lock(&dentry->d_lock); 3327 di = ceph_dentry(dentry); 3328 if (!di || !di->lease_session || 3329 di->lease_session->s_mds < 0 || 3330 di->lease_gen != di->lease_session->s_cap_gen || 3331 !time_before(jiffies, dentry->d_time)) { 3332 dout("lease_release inode %p dentry %p -- " 3333 "no lease\n", 3334 inode, dentry); 3335 spin_unlock(&dentry->d_lock); 3336 return; 3337 } 3338 3339 /* we do have a lease on this dentry; note mds and seq */ 3340 session = ceph_get_mds_session(di->lease_session); 3341 seq = di->lease_seq; 3342 __ceph_mdsc_drop_dentry_lease(dentry); 3343 spin_unlock(&dentry->d_lock); 3344 3345 dout("lease_release inode %p dentry %p to mds%d\n", 3346 inode, dentry, session->s_mds); 3347 ceph_mdsc_lease_send_msg(session, inode, dentry, 3348 CEPH_MDS_LEASE_RELEASE, seq); 3349 ceph_put_mds_session(session); 3350 } 3351 3352 /* 3353 * drop all leases (and dentry refs) in preparation for umount 3354 */ 3355 static void drop_leases(struct ceph_mds_client *mdsc) 3356 { 3357 int i; 3358 3359 dout("drop_leases\n"); 3360 mutex_lock(&mdsc->mutex); 3361 for (i = 0; i < mdsc->max_sessions; i++) { 3362 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3363 if (!s) 3364 continue; 3365 mutex_unlock(&mdsc->mutex); 3366 mutex_lock(&s->s_mutex); 3367 mutex_unlock(&s->s_mutex); 3368 ceph_put_mds_session(s); 3369 mutex_lock(&mdsc->mutex); 3370 } 3371 mutex_unlock(&mdsc->mutex); 3372 } 3373 3374 3375 3376 /* 3377 * delayed work -- periodically trim expired leases, renew caps with mds 3378 */ 3379 static void schedule_delayed(struct ceph_mds_client *mdsc) 3380 { 3381 int delay = 5; 3382 unsigned hz = round_jiffies_relative(HZ * delay); 3383 schedule_delayed_work(&mdsc->delayed_work, hz); 3384 } 3385 3386 static void delayed_work(struct work_struct *work) 3387 { 3388 int i; 3389 struct ceph_mds_client *mdsc = 3390 container_of(work, struct ceph_mds_client, delayed_work.work); 3391 int renew_interval; 3392 int renew_caps; 3393 3394 dout("mdsc delayed_work\n"); 3395 ceph_check_delayed_caps(mdsc); 3396 3397 mutex_lock(&mdsc->mutex); 3398 renew_interval = mdsc->mdsmap->m_session_timeout >> 2; 3399 renew_caps = time_after_eq(jiffies, HZ*renew_interval + 3400 mdsc->last_renew_caps); 3401 if (renew_caps) 3402 mdsc->last_renew_caps = jiffies; 3403 3404 for (i = 0; i < mdsc->max_sessions; i++) { 3405 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i); 3406 if (s == NULL) 3407 continue; 3408 if (s->s_state == CEPH_MDS_SESSION_CLOSING) { 3409 dout("resending session close request for mds%d\n", 3410 s->s_mds); 3411 request_close_session(mdsc, s); 3412 ceph_put_mds_session(s); 3413 continue; 3414 } 3415 if (s->s_ttl && time_after(jiffies, s->s_ttl)) { 3416 if (s->s_state == CEPH_MDS_SESSION_OPEN) { 3417 s->s_state = CEPH_MDS_SESSION_HUNG; 3418 pr_info("mds%d hung\n", s->s_mds); 3419 } 3420 } 3421 if (s->s_state < CEPH_MDS_SESSION_OPEN) { 3422 /* this mds is failed or recovering, just wait */ 3423 ceph_put_mds_session(s); 3424 continue; 3425 } 3426 mutex_unlock(&mdsc->mutex); 3427 3428 mutex_lock(&s->s_mutex); 3429 if (renew_caps) 3430 send_renew_caps(mdsc, s); 3431 else 3432 ceph_con_keepalive(&s->s_con); 3433 if (s->s_state == CEPH_MDS_SESSION_OPEN || 3434 s->s_state == CEPH_MDS_SESSION_HUNG) 3435 ceph_send_cap_releases(mdsc, s); 3436 mutex_unlock(&s->s_mutex); 3437 ceph_put_mds_session(s); 3438 3439 mutex_lock(&mdsc->mutex); 3440 } 3441 mutex_unlock(&mdsc->mutex); 3442 3443 schedule_delayed(mdsc); 3444 } 3445 3446 int ceph_mdsc_init(struct ceph_fs_client *fsc) 3447 3448 { 3449 struct ceph_mds_client *mdsc; 3450 3451 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS); 3452 if (!mdsc) 3453 return -ENOMEM; 3454 mdsc->fsc = fsc; 3455 fsc->mdsc = mdsc; 3456 mutex_init(&mdsc->mutex); 3457 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS); 3458 if (mdsc->mdsmap == NULL) { 3459 kfree(mdsc); 3460 return -ENOMEM; 3461 } 3462 3463 init_completion(&mdsc->safe_umount_waiters); 3464 init_waitqueue_head(&mdsc->session_close_wq); 3465 INIT_LIST_HEAD(&mdsc->waiting_for_map); 3466 mdsc->sessions = NULL; 3467 atomic_set(&mdsc->num_sessions, 0); 3468 mdsc->max_sessions = 0; 3469 mdsc->stopping = 0; 3470 mdsc->last_snap_seq = 0; 3471 init_rwsem(&mdsc->snap_rwsem); 3472 mdsc->snap_realms = RB_ROOT; 3473 INIT_LIST_HEAD(&mdsc->snap_empty); 3474 spin_lock_init(&mdsc->snap_empty_lock); 3475 mdsc->last_tid = 0; 3476 mdsc->oldest_tid = 0; 3477 mdsc->request_tree = RB_ROOT; 3478 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work); 3479 mdsc->last_renew_caps = jiffies; 3480 INIT_LIST_HEAD(&mdsc->cap_delay_list); 3481 spin_lock_init(&mdsc->cap_delay_lock); 3482 INIT_LIST_HEAD(&mdsc->snap_flush_list); 3483 spin_lock_init(&mdsc->snap_flush_lock); 3484 mdsc->last_cap_flush_tid = 1; 3485 mdsc->cap_flush_tree = RB_ROOT; 3486 INIT_LIST_HEAD(&mdsc->cap_dirty); 3487 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating); 3488 mdsc->num_cap_flushing = 0; 3489 spin_lock_init(&mdsc->cap_dirty_lock); 3490 init_waitqueue_head(&mdsc->cap_flushing_wq); 3491 spin_lock_init(&mdsc->dentry_lru_lock); 3492 INIT_LIST_HEAD(&mdsc->dentry_lru); 3493 3494 ceph_caps_init(mdsc); 3495 ceph_adjust_min_caps(mdsc, fsc->min_caps); 3496 3497 init_rwsem(&mdsc->pool_perm_rwsem); 3498 mdsc->pool_perm_tree = RB_ROOT; 3499 3500 return 0; 3501 } 3502 3503 /* 3504 * Wait for safe replies on open mds requests. If we time out, drop 3505 * all requests from the tree to avoid dangling dentry refs. 3506 */ 3507 static void wait_requests(struct ceph_mds_client *mdsc) 3508 { 3509 struct ceph_options *opts = mdsc->fsc->client->options; 3510 struct ceph_mds_request *req; 3511 3512 mutex_lock(&mdsc->mutex); 3513 if (__get_oldest_req(mdsc)) { 3514 mutex_unlock(&mdsc->mutex); 3515 3516 dout("wait_requests waiting for requests\n"); 3517 wait_for_completion_timeout(&mdsc->safe_umount_waiters, 3518 ceph_timeout_jiffies(opts->mount_timeout)); 3519 3520 /* tear down remaining requests */ 3521 mutex_lock(&mdsc->mutex); 3522 while ((req = __get_oldest_req(mdsc))) { 3523 dout("wait_requests timed out on tid %llu\n", 3524 req->r_tid); 3525 __unregister_request(mdsc, req); 3526 } 3527 } 3528 mutex_unlock(&mdsc->mutex); 3529 dout("wait_requests done\n"); 3530 } 3531 3532 /* 3533 * called before mount is ro, and before dentries are torn down. 3534 * (hmm, does this still race with new lookups?) 3535 */ 3536 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc) 3537 { 3538 dout("pre_umount\n"); 3539 mdsc->stopping = 1; 3540 3541 drop_leases(mdsc); 3542 ceph_flush_dirty_caps(mdsc); 3543 wait_requests(mdsc); 3544 3545 /* 3546 * wait for reply handlers to drop their request refs and 3547 * their inode/dcache refs 3548 */ 3549 ceph_msgr_flush(); 3550 } 3551 3552 /* 3553 * wait for all write mds requests to flush. 3554 */ 3555 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid) 3556 { 3557 struct ceph_mds_request *req = NULL, *nextreq; 3558 struct rb_node *n; 3559 3560 mutex_lock(&mdsc->mutex); 3561 dout("wait_unsafe_requests want %lld\n", want_tid); 3562 restart: 3563 req = __get_oldest_req(mdsc); 3564 while (req && req->r_tid <= want_tid) { 3565 /* find next request */ 3566 n = rb_next(&req->r_node); 3567 if (n) 3568 nextreq = rb_entry(n, struct ceph_mds_request, r_node); 3569 else 3570 nextreq = NULL; 3571 if (req->r_op != CEPH_MDS_OP_SETFILELOCK && 3572 (req->r_op & CEPH_MDS_OP_WRITE)) { 3573 /* write op */ 3574 ceph_mdsc_get_request(req); 3575 if (nextreq) 3576 ceph_mdsc_get_request(nextreq); 3577 mutex_unlock(&mdsc->mutex); 3578 dout("wait_unsafe_requests wait on %llu (want %llu)\n", 3579 req->r_tid, want_tid); 3580 wait_for_completion(&req->r_safe_completion); 3581 mutex_lock(&mdsc->mutex); 3582 ceph_mdsc_put_request(req); 3583 if (!nextreq) 3584 break; /* next dne before, so we're done! */ 3585 if (RB_EMPTY_NODE(&nextreq->r_node)) { 3586 /* next request was removed from tree */ 3587 ceph_mdsc_put_request(nextreq); 3588 goto restart; 3589 } 3590 ceph_mdsc_put_request(nextreq); /* won't go away */ 3591 } 3592 req = nextreq; 3593 } 3594 mutex_unlock(&mdsc->mutex); 3595 dout("wait_unsafe_requests done\n"); 3596 } 3597 3598 void ceph_mdsc_sync(struct ceph_mds_client *mdsc) 3599 { 3600 u64 want_tid, want_flush, want_snap; 3601 3602 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3603 return; 3604 3605 dout("sync\n"); 3606 mutex_lock(&mdsc->mutex); 3607 want_tid = mdsc->last_tid; 3608 mutex_unlock(&mdsc->mutex); 3609 3610 ceph_flush_dirty_caps(mdsc); 3611 spin_lock(&mdsc->cap_dirty_lock); 3612 want_flush = mdsc->last_cap_flush_tid; 3613 spin_unlock(&mdsc->cap_dirty_lock); 3614 3615 down_read(&mdsc->snap_rwsem); 3616 want_snap = mdsc->last_snap_seq; 3617 up_read(&mdsc->snap_rwsem); 3618 3619 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n", 3620 want_tid, want_flush, want_snap); 3621 3622 wait_unsafe_requests(mdsc, want_tid); 3623 wait_caps_flush(mdsc, want_flush, want_snap); 3624 } 3625 3626 /* 3627 * true if all sessions are closed, or we force unmount 3628 */ 3629 static bool done_closing_sessions(struct ceph_mds_client *mdsc) 3630 { 3631 if (ACCESS_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) 3632 return true; 3633 return atomic_read(&mdsc->num_sessions) == 0; 3634 } 3635 3636 /* 3637 * called after sb is ro. 3638 */ 3639 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc) 3640 { 3641 struct ceph_options *opts = mdsc->fsc->client->options; 3642 struct ceph_mds_session *session; 3643 int i; 3644 3645 dout("close_sessions\n"); 3646 3647 /* close sessions */ 3648 mutex_lock(&mdsc->mutex); 3649 for (i = 0; i < mdsc->max_sessions; i++) { 3650 session = __ceph_lookup_mds_session(mdsc, i); 3651 if (!session) 3652 continue; 3653 mutex_unlock(&mdsc->mutex); 3654 mutex_lock(&session->s_mutex); 3655 __close_session(mdsc, session); 3656 mutex_unlock(&session->s_mutex); 3657 ceph_put_mds_session(session); 3658 mutex_lock(&mdsc->mutex); 3659 } 3660 mutex_unlock(&mdsc->mutex); 3661 3662 dout("waiting for sessions to close\n"); 3663 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc), 3664 ceph_timeout_jiffies(opts->mount_timeout)); 3665 3666 /* tear down remaining sessions */ 3667 mutex_lock(&mdsc->mutex); 3668 for (i = 0; i < mdsc->max_sessions; i++) { 3669 if (mdsc->sessions[i]) { 3670 session = get_session(mdsc->sessions[i]); 3671 __unregister_session(mdsc, session); 3672 mutex_unlock(&mdsc->mutex); 3673 mutex_lock(&session->s_mutex); 3674 remove_session_caps(session); 3675 mutex_unlock(&session->s_mutex); 3676 ceph_put_mds_session(session); 3677 mutex_lock(&mdsc->mutex); 3678 } 3679 } 3680 WARN_ON(!list_empty(&mdsc->cap_delay_list)); 3681 mutex_unlock(&mdsc->mutex); 3682 3683 ceph_cleanup_empty_realms(mdsc); 3684 3685 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3686 3687 dout("stopped\n"); 3688 } 3689 3690 void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc) 3691 { 3692 struct ceph_mds_session *session; 3693 int mds; 3694 3695 dout("force umount\n"); 3696 3697 mutex_lock(&mdsc->mutex); 3698 for (mds = 0; mds < mdsc->max_sessions; mds++) { 3699 session = __ceph_lookup_mds_session(mdsc, mds); 3700 if (!session) 3701 continue; 3702 mutex_unlock(&mdsc->mutex); 3703 mutex_lock(&session->s_mutex); 3704 __close_session(mdsc, session); 3705 if (session->s_state == CEPH_MDS_SESSION_CLOSING) { 3706 cleanup_session_requests(mdsc, session); 3707 remove_session_caps(session); 3708 } 3709 mutex_unlock(&session->s_mutex); 3710 ceph_put_mds_session(session); 3711 mutex_lock(&mdsc->mutex); 3712 kick_requests(mdsc, mds); 3713 } 3714 __wake_requests(mdsc, &mdsc->waiting_for_map); 3715 mutex_unlock(&mdsc->mutex); 3716 } 3717 3718 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc) 3719 { 3720 dout("stop\n"); 3721 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */ 3722 if (mdsc->mdsmap) 3723 ceph_mdsmap_destroy(mdsc->mdsmap); 3724 kfree(mdsc->sessions); 3725 ceph_caps_finalize(mdsc); 3726 ceph_pool_perm_destroy(mdsc); 3727 } 3728 3729 void ceph_mdsc_destroy(struct ceph_fs_client *fsc) 3730 { 3731 struct ceph_mds_client *mdsc = fsc->mdsc; 3732 3733 dout("mdsc_destroy %p\n", mdsc); 3734 ceph_mdsc_stop(mdsc); 3735 3736 /* flush out any connection work with references to us */ 3737 ceph_msgr_flush(); 3738 3739 fsc->mdsc = NULL; 3740 kfree(mdsc); 3741 dout("mdsc_destroy %p done\n", mdsc); 3742 } 3743 3744 3745 /* 3746 * handle mds map update. 3747 */ 3748 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg) 3749 { 3750 u32 epoch; 3751 u32 maplen; 3752 void *p = msg->front.iov_base; 3753 void *end = p + msg->front.iov_len; 3754 struct ceph_mdsmap *newmap, *oldmap; 3755 struct ceph_fsid fsid; 3756 int err = -EINVAL; 3757 3758 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad); 3759 ceph_decode_copy(&p, &fsid, sizeof(fsid)); 3760 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0) 3761 return; 3762 epoch = ceph_decode_32(&p); 3763 maplen = ceph_decode_32(&p); 3764 dout("handle_map epoch %u len %d\n", epoch, (int)maplen); 3765 3766 /* do we need it? */ 3767 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch); 3768 mutex_lock(&mdsc->mutex); 3769 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) { 3770 dout("handle_map epoch %u <= our %u\n", 3771 epoch, mdsc->mdsmap->m_epoch); 3772 mutex_unlock(&mdsc->mutex); 3773 return; 3774 } 3775 3776 newmap = ceph_mdsmap_decode(&p, end); 3777 if (IS_ERR(newmap)) { 3778 err = PTR_ERR(newmap); 3779 goto bad_unlock; 3780 } 3781 3782 /* swap into place */ 3783 if (mdsc->mdsmap) { 3784 oldmap = mdsc->mdsmap; 3785 mdsc->mdsmap = newmap; 3786 check_new_map(mdsc, newmap, oldmap); 3787 ceph_mdsmap_destroy(oldmap); 3788 } else { 3789 mdsc->mdsmap = newmap; /* first mds map */ 3790 } 3791 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size; 3792 3793 __wake_requests(mdsc, &mdsc->waiting_for_map); 3794 3795 mutex_unlock(&mdsc->mutex); 3796 schedule_delayed(mdsc); 3797 return; 3798 3799 bad_unlock: 3800 mutex_unlock(&mdsc->mutex); 3801 bad: 3802 pr_err("error decoding mdsmap %d\n", err); 3803 return; 3804 } 3805 3806 static struct ceph_connection *con_get(struct ceph_connection *con) 3807 { 3808 struct ceph_mds_session *s = con->private; 3809 3810 if (get_session(s)) { 3811 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref)); 3812 return con; 3813 } 3814 dout("mdsc con_get %p FAIL\n", s); 3815 return NULL; 3816 } 3817 3818 static void con_put(struct ceph_connection *con) 3819 { 3820 struct ceph_mds_session *s = con->private; 3821 3822 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1); 3823 ceph_put_mds_session(s); 3824 } 3825 3826 /* 3827 * if the client is unresponsive for long enough, the mds will kill 3828 * the session entirely. 3829 */ 3830 static void peer_reset(struct ceph_connection *con) 3831 { 3832 struct ceph_mds_session *s = con->private; 3833 struct ceph_mds_client *mdsc = s->s_mdsc; 3834 3835 pr_warn("mds%d closed our session\n", s->s_mds); 3836 send_mds_reconnect(mdsc, s); 3837 } 3838 3839 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg) 3840 { 3841 struct ceph_mds_session *s = con->private; 3842 struct ceph_mds_client *mdsc = s->s_mdsc; 3843 int type = le16_to_cpu(msg->hdr.type); 3844 3845 mutex_lock(&mdsc->mutex); 3846 if (__verify_registered_session(mdsc, s) < 0) { 3847 mutex_unlock(&mdsc->mutex); 3848 goto out; 3849 } 3850 mutex_unlock(&mdsc->mutex); 3851 3852 switch (type) { 3853 case CEPH_MSG_MDS_MAP: 3854 ceph_mdsc_handle_map(mdsc, msg); 3855 break; 3856 case CEPH_MSG_CLIENT_SESSION: 3857 handle_session(s, msg); 3858 break; 3859 case CEPH_MSG_CLIENT_REPLY: 3860 handle_reply(s, msg); 3861 break; 3862 case CEPH_MSG_CLIENT_REQUEST_FORWARD: 3863 handle_forward(mdsc, s, msg); 3864 break; 3865 case CEPH_MSG_CLIENT_CAPS: 3866 ceph_handle_caps(s, msg); 3867 break; 3868 case CEPH_MSG_CLIENT_SNAP: 3869 ceph_handle_snap(mdsc, s, msg); 3870 break; 3871 case CEPH_MSG_CLIENT_LEASE: 3872 handle_lease(mdsc, s, msg); 3873 break; 3874 3875 default: 3876 pr_err("received unknown message type %d %s\n", type, 3877 ceph_msg_type_name(type)); 3878 } 3879 out: 3880 ceph_msg_put(msg); 3881 } 3882 3883 /* 3884 * authentication 3885 */ 3886 3887 /* 3888 * Note: returned pointer is the address of a structure that's 3889 * managed separately. Caller must *not* attempt to free it. 3890 */ 3891 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con, 3892 int *proto, int force_new) 3893 { 3894 struct ceph_mds_session *s = con->private; 3895 struct ceph_mds_client *mdsc = s->s_mdsc; 3896 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3897 struct ceph_auth_handshake *auth = &s->s_auth; 3898 3899 if (force_new && auth->authorizer) { 3900 ceph_auth_destroy_authorizer(ac, auth->authorizer); 3901 auth->authorizer = NULL; 3902 } 3903 if (!auth->authorizer) { 3904 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3905 auth); 3906 if (ret) 3907 return ERR_PTR(ret); 3908 } else { 3909 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS, 3910 auth); 3911 if (ret) 3912 return ERR_PTR(ret); 3913 } 3914 *proto = ac->protocol; 3915 3916 return auth; 3917 } 3918 3919 3920 static int verify_authorizer_reply(struct ceph_connection *con, int len) 3921 { 3922 struct ceph_mds_session *s = con->private; 3923 struct ceph_mds_client *mdsc = s->s_mdsc; 3924 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3925 3926 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len); 3927 } 3928 3929 static int invalidate_authorizer(struct ceph_connection *con) 3930 { 3931 struct ceph_mds_session *s = con->private; 3932 struct ceph_mds_client *mdsc = s->s_mdsc; 3933 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth; 3934 3935 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS); 3936 3937 return ceph_monc_validate_auth(&mdsc->fsc->client->monc); 3938 } 3939 3940 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con, 3941 struct ceph_msg_header *hdr, int *skip) 3942 { 3943 struct ceph_msg *msg; 3944 int type = (int) le16_to_cpu(hdr->type); 3945 int front_len = (int) le32_to_cpu(hdr->front_len); 3946 3947 if (con->in_msg) 3948 return con->in_msg; 3949 3950 *skip = 0; 3951 msg = ceph_msg_new(type, front_len, GFP_NOFS, false); 3952 if (!msg) { 3953 pr_err("unable to allocate msg type %d len %d\n", 3954 type, front_len); 3955 return NULL; 3956 } 3957 3958 return msg; 3959 } 3960 3961 static int mds_sign_message(struct ceph_msg *msg) 3962 { 3963 struct ceph_mds_session *s = msg->con->private; 3964 struct ceph_auth_handshake *auth = &s->s_auth; 3965 3966 return ceph_auth_sign_message(auth, msg); 3967 } 3968 3969 static int mds_check_message_signature(struct ceph_msg *msg) 3970 { 3971 struct ceph_mds_session *s = msg->con->private; 3972 struct ceph_auth_handshake *auth = &s->s_auth; 3973 3974 return ceph_auth_check_message_signature(auth, msg); 3975 } 3976 3977 static const struct ceph_connection_operations mds_con_ops = { 3978 .get = con_get, 3979 .put = con_put, 3980 .dispatch = dispatch, 3981 .get_authorizer = get_authorizer, 3982 .verify_authorizer_reply = verify_authorizer_reply, 3983 .invalidate_authorizer = invalidate_authorizer, 3984 .peer_reset = peer_reset, 3985 .alloc_msg = mds_alloc_msg, 3986 .sign_message = mds_sign_message, 3987 .check_message_signature = mds_check_message_signature, 3988 }; 3989 3990 /* eof */ 3991