xref: /linux/fs/buffer.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 
44 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
45 static void invalidate_bh_lrus(void);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_buffer_locked(bh);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93 
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97 	ClearPagePrivate(page);
98 	page->private = 0;
99 	page_cache_release(page);
100 }
101 
102 static void buffer_io_error(struct buffer_head *bh)
103 {
104 	char b[BDEVNAME_SIZE];
105 
106 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
107 			bdevname(bh->b_bdev, b),
108 			(unsigned long long)bh->b_blocknr);
109 }
110 
111 /*
112  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
113  * unlock the buffer. This is what ll_rw_block uses too.
114  */
115 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
116 {
117 	if (uptodate) {
118 		set_buffer_uptodate(bh);
119 	} else {
120 		/* This happens, due to failed READA attempts. */
121 		clear_buffer_uptodate(bh);
122 	}
123 	unlock_buffer(bh);
124 	put_bh(bh);
125 }
126 
127 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
128 {
129 	char b[BDEVNAME_SIZE];
130 
131 	if (uptodate) {
132 		set_buffer_uptodate(bh);
133 	} else {
134 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
135 			buffer_io_error(bh);
136 			printk(KERN_WARNING "lost page write due to "
137 					"I/O error on %s\n",
138 				       bdevname(bh->b_bdev, b));
139 		}
140 		set_buffer_write_io_error(bh);
141 		clear_buffer_uptodate(bh);
142 	}
143 	unlock_buffer(bh);
144 	put_bh(bh);
145 }
146 
147 /*
148  * Write out and wait upon all the dirty data associated with a block
149  * device via its mapping.  Does not take the superblock lock.
150  */
151 int sync_blockdev(struct block_device *bdev)
152 {
153 	int ret = 0;
154 
155 	if (bdev) {
156 		int err;
157 
158 		ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
159 		err = filemap_fdatawait(bdev->bd_inode->i_mapping);
160 		if (!ret)
161 			ret = err;
162 	}
163 	return ret;
164 }
165 EXPORT_SYMBOL(sync_blockdev);
166 
167 /*
168  * Write out and wait upon all dirty data associated with this
169  * superblock.  Filesystem data as well as the underlying block
170  * device.  Takes the superblock lock.
171  */
172 int fsync_super(struct super_block *sb)
173 {
174 	sync_inodes_sb(sb, 0);
175 	DQUOT_SYNC(sb);
176 	lock_super(sb);
177 	if (sb->s_dirt && sb->s_op->write_super)
178 		sb->s_op->write_super(sb);
179 	unlock_super(sb);
180 	if (sb->s_op->sync_fs)
181 		sb->s_op->sync_fs(sb, 1);
182 	sync_blockdev(sb->s_bdev);
183 	sync_inodes_sb(sb, 1);
184 
185 	return sync_blockdev(sb->s_bdev);
186 }
187 
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195 	struct super_block *sb = get_super(bdev);
196 	if (sb) {
197 		int res = fsync_super(sb);
198 		drop_super(sb);
199 		return res;
200 	}
201 	return sync_blockdev(bdev);
202 }
203 
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:	blockdevice to lock
207  *
208  * This takes the block device bd_mount_sem to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215 	struct super_block *sb;
216 
217 	down(&bdev->bd_mount_sem);
218 	sb = get_super(bdev);
219 	if (sb && !(sb->s_flags & MS_RDONLY)) {
220 		sb->s_frozen = SB_FREEZE_WRITE;
221 		smp_wmb();
222 
223 		sync_inodes_sb(sb, 0);
224 		DQUOT_SYNC(sb);
225 
226 		lock_super(sb);
227 		if (sb->s_dirt && sb->s_op->write_super)
228 			sb->s_op->write_super(sb);
229 		unlock_super(sb);
230 
231 		if (sb->s_op->sync_fs)
232 			sb->s_op->sync_fs(sb, 1);
233 
234 		sync_blockdev(sb->s_bdev);
235 		sync_inodes_sb(sb, 1);
236 
237 		sb->s_frozen = SB_FREEZE_TRANS;
238 		smp_wmb();
239 
240 		sync_blockdev(sb->s_bdev);
241 
242 		if (sb->s_op->write_super_lockfs)
243 			sb->s_op->write_super_lockfs(sb);
244 	}
245 
246 	sync_blockdev(bdev);
247 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
248 }
249 EXPORT_SYMBOL(freeze_bdev);
250 
251 /**
252  * thaw_bdev  -- unlock filesystem
253  * @bdev:	blockdevice to unlock
254  * @sb:		associated superblock
255  *
256  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
257  */
258 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
259 {
260 	if (sb) {
261 		BUG_ON(sb->s_bdev != bdev);
262 
263 		if (sb->s_op->unlockfs)
264 			sb->s_op->unlockfs(sb);
265 		sb->s_frozen = SB_UNFROZEN;
266 		smp_wmb();
267 		wake_up(&sb->s_wait_unfrozen);
268 		drop_super(sb);
269 	}
270 
271 	up(&bdev->bd_mount_sem);
272 }
273 EXPORT_SYMBOL(thaw_bdev);
274 
275 /*
276  * sync everything.  Start out by waking pdflush, because that writes back
277  * all queues in parallel.
278  */
279 static void do_sync(unsigned long wait)
280 {
281 	wakeup_pdflush(0);
282 	sync_inodes(0);		/* All mappings, inodes and their blockdevs */
283 	DQUOT_SYNC(NULL);
284 	sync_supers();		/* Write the superblocks */
285 	sync_filesystems(0);	/* Start syncing the filesystems */
286 	sync_filesystems(wait);	/* Waitingly sync the filesystems */
287 	sync_inodes(wait);	/* Mappings, inodes and blockdevs, again. */
288 	if (!wait)
289 		printk("Emergency Sync complete\n");
290 	if (unlikely(laptop_mode))
291 		laptop_sync_completion();
292 }
293 
294 asmlinkage long sys_sync(void)
295 {
296 	do_sync(1);
297 	return 0;
298 }
299 
300 void emergency_sync(void)
301 {
302 	pdflush_operation(do_sync, 0);
303 }
304 
305 /*
306  * Generic function to fsync a file.
307  *
308  * filp may be NULL if called via the msync of a vma.
309  */
310 
311 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
312 {
313 	struct inode * inode = dentry->d_inode;
314 	struct super_block * sb;
315 	int ret, err;
316 
317 	/* sync the inode to buffers */
318 	ret = write_inode_now(inode, 0);
319 
320 	/* sync the superblock to buffers */
321 	sb = inode->i_sb;
322 	lock_super(sb);
323 	if (sb->s_op->write_super)
324 		sb->s_op->write_super(sb);
325 	unlock_super(sb);
326 
327 	/* .. finally sync the buffers to disk */
328 	err = sync_blockdev(sb->s_bdev);
329 	if (!ret)
330 		ret = err;
331 	return ret;
332 }
333 
334 static long do_fsync(unsigned int fd, int datasync)
335 {
336 	struct file * file;
337 	struct address_space *mapping;
338 	int ret, err;
339 
340 	ret = -EBADF;
341 	file = fget(fd);
342 	if (!file)
343 		goto out;
344 
345 	ret = -EINVAL;
346 	if (!file->f_op || !file->f_op->fsync) {
347 		/* Why?  We can still call filemap_fdatawrite */
348 		goto out_putf;
349 	}
350 
351 	mapping = file->f_mapping;
352 
353 	current->flags |= PF_SYNCWRITE;
354 	ret = filemap_fdatawrite(mapping);
355 
356 	/*
357 	 * We need to protect against concurrent writers,
358 	 * which could cause livelocks in fsync_buffers_list
359 	 */
360 	down(&mapping->host->i_sem);
361 	err = file->f_op->fsync(file, file->f_dentry, datasync);
362 	if (!ret)
363 		ret = err;
364 	up(&mapping->host->i_sem);
365 	err = filemap_fdatawait(mapping);
366 	if (!ret)
367 		ret = err;
368 	current->flags &= ~PF_SYNCWRITE;
369 
370 out_putf:
371 	fput(file);
372 out:
373 	return ret;
374 }
375 
376 asmlinkage long sys_fsync(unsigned int fd)
377 {
378 	return do_fsync(fd, 0);
379 }
380 
381 asmlinkage long sys_fdatasync(unsigned int fd)
382 {
383 	return do_fsync(fd, 1);
384 }
385 
386 /*
387  * Various filesystems appear to want __find_get_block to be non-blocking.
388  * But it's the page lock which protects the buffers.  To get around this,
389  * we get exclusion from try_to_free_buffers with the blockdev mapping's
390  * private_lock.
391  *
392  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
393  * may be quite high.  This code could TryLock the page, and if that
394  * succeeds, there is no need to take private_lock. (But if
395  * private_lock is contended then so is mapping->tree_lock).
396  */
397 static struct buffer_head *
398 __find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
399 {
400 	struct inode *bd_inode = bdev->bd_inode;
401 	struct address_space *bd_mapping = bd_inode->i_mapping;
402 	struct buffer_head *ret = NULL;
403 	pgoff_t index;
404 	struct buffer_head *bh;
405 	struct buffer_head *head;
406 	struct page *page;
407 	int all_mapped = 1;
408 
409 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
410 	page = find_get_page(bd_mapping, index);
411 	if (!page)
412 		goto out;
413 
414 	spin_lock(&bd_mapping->private_lock);
415 	if (!page_has_buffers(page))
416 		goto out_unlock;
417 	head = page_buffers(page);
418 	bh = head;
419 	do {
420 		if (bh->b_blocknr == block) {
421 			ret = bh;
422 			get_bh(bh);
423 			goto out_unlock;
424 		}
425 		if (!buffer_mapped(bh))
426 			all_mapped = 0;
427 		bh = bh->b_this_page;
428 	} while (bh != head);
429 
430 	/* we might be here because some of the buffers on this page are
431 	 * not mapped.  This is due to various races between
432 	 * file io on the block device and getblk.  It gets dealt with
433 	 * elsewhere, don't buffer_error if we had some unmapped buffers
434 	 */
435 	if (all_mapped) {
436 		printk("__find_get_block_slow() failed. "
437 			"block=%llu, b_blocknr=%llu\n",
438 			(unsigned long long)block, (unsigned long long)bh->b_blocknr);
439 		printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
440 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
441 	}
442 out_unlock:
443 	spin_unlock(&bd_mapping->private_lock);
444 	page_cache_release(page);
445 out:
446 	return ret;
447 }
448 
449 /* If invalidate_buffers() will trash dirty buffers, it means some kind
450    of fs corruption is going on. Trashing dirty data always imply losing
451    information that was supposed to be just stored on the physical layer
452    by the user.
453 
454    Thus invalidate_buffers in general usage is not allwowed to trash
455    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
456    be preserved.  These buffers are simply skipped.
457 
458    We also skip buffers which are still in use.  For example this can
459    happen if a userspace program is reading the block device.
460 
461    NOTE: In the case where the user removed a removable-media-disk even if
462    there's still dirty data not synced on disk (due a bug in the device driver
463    or due an error of the user), by not destroying the dirty buffers we could
464    generate corruption also on the next media inserted, thus a parameter is
465    necessary to handle this case in the most safe way possible (trying
466    to not corrupt also the new disk inserted with the data belonging to
467    the old now corrupted disk). Also for the ramdisk the natural thing
468    to do in order to release the ramdisk memory is to destroy dirty buffers.
469 
470    These are two special cases. Normal usage imply the device driver
471    to issue a sync on the device (without waiting I/O completion) and
472    then an invalidate_buffers call that doesn't trash dirty buffers.
473 
474    For handling cache coherency with the blkdev pagecache the 'update' case
475    is been introduced. It is needed to re-read from disk any pinned
476    buffer. NOTE: re-reading from disk is destructive so we can do it only
477    when we assume nobody is changing the buffercache under our I/O and when
478    we think the disk contains more recent information than the buffercache.
479    The update == 1 pass marks the buffers we need to update, the update == 2
480    pass does the actual I/O. */
481 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
482 {
483 	invalidate_bh_lrus();
484 	/*
485 	 * FIXME: what about destroy_dirty_buffers?
486 	 * We really want to use invalidate_inode_pages2() for
487 	 * that, but not until that's cleaned up.
488 	 */
489 	invalidate_inode_pages(bdev->bd_inode->i_mapping);
490 }
491 
492 /*
493  * Kick pdflush then try to free up some ZONE_NORMAL memory.
494  */
495 static void free_more_memory(void)
496 {
497 	struct zone **zones;
498 	pg_data_t *pgdat;
499 
500 	wakeup_pdflush(1024);
501 	yield();
502 
503 	for_each_pgdat(pgdat) {
504 		zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
505 		if (*zones)
506 			try_to_free_pages(zones, GFP_NOFS);
507 	}
508 }
509 
510 /*
511  * I/O completion handler for block_read_full_page() - pages
512  * which come unlocked at the end of I/O.
513  */
514 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
515 {
516 	unsigned long flags;
517 	struct buffer_head *first;
518 	struct buffer_head *tmp;
519 	struct page *page;
520 	int page_uptodate = 1;
521 
522 	BUG_ON(!buffer_async_read(bh));
523 
524 	page = bh->b_page;
525 	if (uptodate) {
526 		set_buffer_uptodate(bh);
527 	} else {
528 		clear_buffer_uptodate(bh);
529 		if (printk_ratelimit())
530 			buffer_io_error(bh);
531 		SetPageError(page);
532 	}
533 
534 	/*
535 	 * Be _very_ careful from here on. Bad things can happen if
536 	 * two buffer heads end IO at almost the same time and both
537 	 * decide that the page is now completely done.
538 	 */
539 	first = page_buffers(page);
540 	local_irq_save(flags);
541 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
542 	clear_buffer_async_read(bh);
543 	unlock_buffer(bh);
544 	tmp = bh;
545 	do {
546 		if (!buffer_uptodate(tmp))
547 			page_uptodate = 0;
548 		if (buffer_async_read(tmp)) {
549 			BUG_ON(!buffer_locked(tmp));
550 			goto still_busy;
551 		}
552 		tmp = tmp->b_this_page;
553 	} while (tmp != bh);
554 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
555 	local_irq_restore(flags);
556 
557 	/*
558 	 * If none of the buffers had errors and they are all
559 	 * uptodate then we can set the page uptodate.
560 	 */
561 	if (page_uptodate && !PageError(page))
562 		SetPageUptodate(page);
563 	unlock_page(page);
564 	return;
565 
566 still_busy:
567 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
568 	local_irq_restore(flags);
569 	return;
570 }
571 
572 /*
573  * Completion handler for block_write_full_page() - pages which are unlocked
574  * during I/O, and which have PageWriteback cleared upon I/O completion.
575  */
576 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
577 {
578 	char b[BDEVNAME_SIZE];
579 	unsigned long flags;
580 	struct buffer_head *first;
581 	struct buffer_head *tmp;
582 	struct page *page;
583 
584 	BUG_ON(!buffer_async_write(bh));
585 
586 	page = bh->b_page;
587 	if (uptodate) {
588 		set_buffer_uptodate(bh);
589 	} else {
590 		if (printk_ratelimit()) {
591 			buffer_io_error(bh);
592 			printk(KERN_WARNING "lost page write due to "
593 					"I/O error on %s\n",
594 			       bdevname(bh->b_bdev, b));
595 		}
596 		set_bit(AS_EIO, &page->mapping->flags);
597 		clear_buffer_uptodate(bh);
598 		SetPageError(page);
599 	}
600 
601 	first = page_buffers(page);
602 	local_irq_save(flags);
603 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
604 
605 	clear_buffer_async_write(bh);
606 	unlock_buffer(bh);
607 	tmp = bh->b_this_page;
608 	while (tmp != bh) {
609 		if (buffer_async_write(tmp)) {
610 			BUG_ON(!buffer_locked(tmp));
611 			goto still_busy;
612 		}
613 		tmp = tmp->b_this_page;
614 	}
615 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
616 	local_irq_restore(flags);
617 	end_page_writeback(page);
618 	return;
619 
620 still_busy:
621 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
622 	local_irq_restore(flags);
623 	return;
624 }
625 
626 /*
627  * If a page's buffers are under async readin (end_buffer_async_read
628  * completion) then there is a possibility that another thread of
629  * control could lock one of the buffers after it has completed
630  * but while some of the other buffers have not completed.  This
631  * locked buffer would confuse end_buffer_async_read() into not unlocking
632  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
633  * that this buffer is not under async I/O.
634  *
635  * The page comes unlocked when it has no locked buffer_async buffers
636  * left.
637  *
638  * PageLocked prevents anyone starting new async I/O reads any of
639  * the buffers.
640  *
641  * PageWriteback is used to prevent simultaneous writeout of the same
642  * page.
643  *
644  * PageLocked prevents anyone from starting writeback of a page which is
645  * under read I/O (PageWriteback is only ever set against a locked page).
646  */
647 static void mark_buffer_async_read(struct buffer_head *bh)
648 {
649 	bh->b_end_io = end_buffer_async_read;
650 	set_buffer_async_read(bh);
651 }
652 
653 void mark_buffer_async_write(struct buffer_head *bh)
654 {
655 	bh->b_end_io = end_buffer_async_write;
656 	set_buffer_async_write(bh);
657 }
658 EXPORT_SYMBOL(mark_buffer_async_write);
659 
660 
661 /*
662  * fs/buffer.c contains helper functions for buffer-backed address space's
663  * fsync functions.  A common requirement for buffer-based filesystems is
664  * that certain data from the backing blockdev needs to be written out for
665  * a successful fsync().  For example, ext2 indirect blocks need to be
666  * written back and waited upon before fsync() returns.
667  *
668  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
669  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
670  * management of a list of dependent buffers at ->i_mapping->private_list.
671  *
672  * Locking is a little subtle: try_to_free_buffers() will remove buffers
673  * from their controlling inode's queue when they are being freed.  But
674  * try_to_free_buffers() will be operating against the *blockdev* mapping
675  * at the time, not against the S_ISREG file which depends on those buffers.
676  * So the locking for private_list is via the private_lock in the address_space
677  * which backs the buffers.  Which is different from the address_space
678  * against which the buffers are listed.  So for a particular address_space,
679  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
680  * mapping->private_list will always be protected by the backing blockdev's
681  * ->private_lock.
682  *
683  * Which introduces a requirement: all buffers on an address_space's
684  * ->private_list must be from the same address_space: the blockdev's.
685  *
686  * address_spaces which do not place buffers at ->private_list via these
687  * utility functions are free to use private_lock and private_list for
688  * whatever they want.  The only requirement is that list_empty(private_list)
689  * be true at clear_inode() time.
690  *
691  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
692  * filesystems should do that.  invalidate_inode_buffers() should just go
693  * BUG_ON(!list_empty).
694  *
695  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
696  * take an address_space, not an inode.  And it should be called
697  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
698  * queued up.
699  *
700  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
701  * list if it is already on a list.  Because if the buffer is on a list,
702  * it *must* already be on the right one.  If not, the filesystem is being
703  * silly.  This will save a ton of locking.  But first we have to ensure
704  * that buffers are taken *off* the old inode's list when they are freed
705  * (presumably in truncate).  That requires careful auditing of all
706  * filesystems (do it inside bforget()).  It could also be done by bringing
707  * b_inode back.
708  */
709 
710 /*
711  * The buffer's backing address_space's private_lock must be held
712  */
713 static inline void __remove_assoc_queue(struct buffer_head *bh)
714 {
715 	list_del_init(&bh->b_assoc_buffers);
716 }
717 
718 int inode_has_buffers(struct inode *inode)
719 {
720 	return !list_empty(&inode->i_data.private_list);
721 }
722 
723 /*
724  * osync is designed to support O_SYNC io.  It waits synchronously for
725  * all already-submitted IO to complete, but does not queue any new
726  * writes to the disk.
727  *
728  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
729  * you dirty the buffers, and then use osync_inode_buffers to wait for
730  * completion.  Any other dirty buffers which are not yet queued for
731  * write will not be flushed to disk by the osync.
732  */
733 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
734 {
735 	struct buffer_head *bh;
736 	struct list_head *p;
737 	int err = 0;
738 
739 	spin_lock(lock);
740 repeat:
741 	list_for_each_prev(p, list) {
742 		bh = BH_ENTRY(p);
743 		if (buffer_locked(bh)) {
744 			get_bh(bh);
745 			spin_unlock(lock);
746 			wait_on_buffer(bh);
747 			if (!buffer_uptodate(bh))
748 				err = -EIO;
749 			brelse(bh);
750 			spin_lock(lock);
751 			goto repeat;
752 		}
753 	}
754 	spin_unlock(lock);
755 	return err;
756 }
757 
758 /**
759  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
760  *                        buffers
761  * @mapping: the mapping which wants those buffers written
762  *
763  * Starts I/O against the buffers at mapping->private_list, and waits upon
764  * that I/O.
765  *
766  * Basically, this is a convenience function for fsync().
767  * @mapping is a file or directory which needs those buffers to be written for
768  * a successful fsync().
769  */
770 int sync_mapping_buffers(struct address_space *mapping)
771 {
772 	struct address_space *buffer_mapping = mapping->assoc_mapping;
773 
774 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
775 		return 0;
776 
777 	return fsync_buffers_list(&buffer_mapping->private_lock,
778 					&mapping->private_list);
779 }
780 EXPORT_SYMBOL(sync_mapping_buffers);
781 
782 /*
783  * Called when we've recently written block `bblock', and it is known that
784  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
785  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
786  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
787  */
788 void write_boundary_block(struct block_device *bdev,
789 			sector_t bblock, unsigned blocksize)
790 {
791 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
792 	if (bh) {
793 		if (buffer_dirty(bh))
794 			ll_rw_block(WRITE, 1, &bh);
795 		put_bh(bh);
796 	}
797 }
798 
799 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
800 {
801 	struct address_space *mapping = inode->i_mapping;
802 	struct address_space *buffer_mapping = bh->b_page->mapping;
803 
804 	mark_buffer_dirty(bh);
805 	if (!mapping->assoc_mapping) {
806 		mapping->assoc_mapping = buffer_mapping;
807 	} else {
808 		if (mapping->assoc_mapping != buffer_mapping)
809 			BUG();
810 	}
811 	if (list_empty(&bh->b_assoc_buffers)) {
812 		spin_lock(&buffer_mapping->private_lock);
813 		list_move_tail(&bh->b_assoc_buffers,
814 				&mapping->private_list);
815 		spin_unlock(&buffer_mapping->private_lock);
816 	}
817 }
818 EXPORT_SYMBOL(mark_buffer_dirty_inode);
819 
820 /*
821  * Add a page to the dirty page list.
822  *
823  * It is a sad fact of life that this function is called from several places
824  * deeply under spinlocking.  It may not sleep.
825  *
826  * If the page has buffers, the uptodate buffers are set dirty, to preserve
827  * dirty-state coherency between the page and the buffers.  It the page does
828  * not have buffers then when they are later attached they will all be set
829  * dirty.
830  *
831  * The buffers are dirtied before the page is dirtied.  There's a small race
832  * window in which a writepage caller may see the page cleanness but not the
833  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
834  * before the buffers, a concurrent writepage caller could clear the page dirty
835  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
836  * page on the dirty page list.
837  *
838  * We use private_lock to lock against try_to_free_buffers while using the
839  * page's buffer list.  Also use this to protect against clean buffers being
840  * added to the page after it was set dirty.
841  *
842  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
843  * address_space though.
844  */
845 int __set_page_dirty_buffers(struct page *page)
846 {
847 	struct address_space * const mapping = page->mapping;
848 
849 	spin_lock(&mapping->private_lock);
850 	if (page_has_buffers(page)) {
851 		struct buffer_head *head = page_buffers(page);
852 		struct buffer_head *bh = head;
853 
854 		do {
855 			set_buffer_dirty(bh);
856 			bh = bh->b_this_page;
857 		} while (bh != head);
858 	}
859 	spin_unlock(&mapping->private_lock);
860 
861 	if (!TestSetPageDirty(page)) {
862 		write_lock_irq(&mapping->tree_lock);
863 		if (page->mapping) {	/* Race with truncate? */
864 			if (mapping_cap_account_dirty(mapping))
865 				inc_page_state(nr_dirty);
866 			radix_tree_tag_set(&mapping->page_tree,
867 						page_index(page),
868 						PAGECACHE_TAG_DIRTY);
869 		}
870 		write_unlock_irq(&mapping->tree_lock);
871 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
872 	}
873 
874 	return 0;
875 }
876 EXPORT_SYMBOL(__set_page_dirty_buffers);
877 
878 /*
879  * Write out and wait upon a list of buffers.
880  *
881  * We have conflicting pressures: we want to make sure that all
882  * initially dirty buffers get waited on, but that any subsequently
883  * dirtied buffers don't.  After all, we don't want fsync to last
884  * forever if somebody is actively writing to the file.
885  *
886  * Do this in two main stages: first we copy dirty buffers to a
887  * temporary inode list, queueing the writes as we go.  Then we clean
888  * up, waiting for those writes to complete.
889  *
890  * During this second stage, any subsequent updates to the file may end
891  * up refiling the buffer on the original inode's dirty list again, so
892  * there is a chance we will end up with a buffer queued for write but
893  * not yet completed on that list.  So, as a final cleanup we go through
894  * the osync code to catch these locked, dirty buffers without requeuing
895  * any newly dirty buffers for write.
896  */
897 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
898 {
899 	struct buffer_head *bh;
900 	struct list_head tmp;
901 	int err = 0, err2;
902 
903 	INIT_LIST_HEAD(&tmp);
904 
905 	spin_lock(lock);
906 	while (!list_empty(list)) {
907 		bh = BH_ENTRY(list->next);
908 		list_del_init(&bh->b_assoc_buffers);
909 		if (buffer_dirty(bh) || buffer_locked(bh)) {
910 			list_add(&bh->b_assoc_buffers, &tmp);
911 			if (buffer_dirty(bh)) {
912 				get_bh(bh);
913 				spin_unlock(lock);
914 				/*
915 				 * Ensure any pending I/O completes so that
916 				 * ll_rw_block() actually writes the current
917 				 * contents - it is a noop if I/O is still in
918 				 * flight on potentially older contents.
919 				 */
920 				wait_on_buffer(bh);
921 				ll_rw_block(WRITE, 1, &bh);
922 				brelse(bh);
923 				spin_lock(lock);
924 			}
925 		}
926 	}
927 
928 	while (!list_empty(&tmp)) {
929 		bh = BH_ENTRY(tmp.prev);
930 		__remove_assoc_queue(bh);
931 		get_bh(bh);
932 		spin_unlock(lock);
933 		wait_on_buffer(bh);
934 		if (!buffer_uptodate(bh))
935 			err = -EIO;
936 		brelse(bh);
937 		spin_lock(lock);
938 	}
939 
940 	spin_unlock(lock);
941 	err2 = osync_buffers_list(lock, list);
942 	if (err)
943 		return err;
944 	else
945 		return err2;
946 }
947 
948 /*
949  * Invalidate any and all dirty buffers on a given inode.  We are
950  * probably unmounting the fs, but that doesn't mean we have already
951  * done a sync().  Just drop the buffers from the inode list.
952  *
953  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
954  * assumes that all the buffers are against the blockdev.  Not true
955  * for reiserfs.
956  */
957 void invalidate_inode_buffers(struct inode *inode)
958 {
959 	if (inode_has_buffers(inode)) {
960 		struct address_space *mapping = &inode->i_data;
961 		struct list_head *list = &mapping->private_list;
962 		struct address_space *buffer_mapping = mapping->assoc_mapping;
963 
964 		spin_lock(&buffer_mapping->private_lock);
965 		while (!list_empty(list))
966 			__remove_assoc_queue(BH_ENTRY(list->next));
967 		spin_unlock(&buffer_mapping->private_lock);
968 	}
969 }
970 
971 /*
972  * Remove any clean buffers from the inode's buffer list.  This is called
973  * when we're trying to free the inode itself.  Those buffers can pin it.
974  *
975  * Returns true if all buffers were removed.
976  */
977 int remove_inode_buffers(struct inode *inode)
978 {
979 	int ret = 1;
980 
981 	if (inode_has_buffers(inode)) {
982 		struct address_space *mapping = &inode->i_data;
983 		struct list_head *list = &mapping->private_list;
984 		struct address_space *buffer_mapping = mapping->assoc_mapping;
985 
986 		spin_lock(&buffer_mapping->private_lock);
987 		while (!list_empty(list)) {
988 			struct buffer_head *bh = BH_ENTRY(list->next);
989 			if (buffer_dirty(bh)) {
990 				ret = 0;
991 				break;
992 			}
993 			__remove_assoc_queue(bh);
994 		}
995 		spin_unlock(&buffer_mapping->private_lock);
996 	}
997 	return ret;
998 }
999 
1000 /*
1001  * Create the appropriate buffers when given a page for data area and
1002  * the size of each buffer.. Use the bh->b_this_page linked list to
1003  * follow the buffers created.  Return NULL if unable to create more
1004  * buffers.
1005  *
1006  * The retry flag is used to differentiate async IO (paging, swapping)
1007  * which may not fail from ordinary buffer allocations.
1008  */
1009 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1010 		int retry)
1011 {
1012 	struct buffer_head *bh, *head;
1013 	long offset;
1014 
1015 try_again:
1016 	head = NULL;
1017 	offset = PAGE_SIZE;
1018 	while ((offset -= size) >= 0) {
1019 		bh = alloc_buffer_head(GFP_NOFS);
1020 		if (!bh)
1021 			goto no_grow;
1022 
1023 		bh->b_bdev = NULL;
1024 		bh->b_this_page = head;
1025 		bh->b_blocknr = -1;
1026 		head = bh;
1027 
1028 		bh->b_state = 0;
1029 		atomic_set(&bh->b_count, 0);
1030 		bh->b_size = size;
1031 
1032 		/* Link the buffer to its page */
1033 		set_bh_page(bh, page, offset);
1034 
1035 		bh->b_end_io = NULL;
1036 	}
1037 	return head;
1038 /*
1039  * In case anything failed, we just free everything we got.
1040  */
1041 no_grow:
1042 	if (head) {
1043 		do {
1044 			bh = head;
1045 			head = head->b_this_page;
1046 			free_buffer_head(bh);
1047 		} while (head);
1048 	}
1049 
1050 	/*
1051 	 * Return failure for non-async IO requests.  Async IO requests
1052 	 * are not allowed to fail, so we have to wait until buffer heads
1053 	 * become available.  But we don't want tasks sleeping with
1054 	 * partially complete buffers, so all were released above.
1055 	 */
1056 	if (!retry)
1057 		return NULL;
1058 
1059 	/* We're _really_ low on memory. Now we just
1060 	 * wait for old buffer heads to become free due to
1061 	 * finishing IO.  Since this is an async request and
1062 	 * the reserve list is empty, we're sure there are
1063 	 * async buffer heads in use.
1064 	 */
1065 	free_more_memory();
1066 	goto try_again;
1067 }
1068 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1069 
1070 static inline void
1071 link_dev_buffers(struct page *page, struct buffer_head *head)
1072 {
1073 	struct buffer_head *bh, *tail;
1074 
1075 	bh = head;
1076 	do {
1077 		tail = bh;
1078 		bh = bh->b_this_page;
1079 	} while (bh);
1080 	tail->b_this_page = head;
1081 	attach_page_buffers(page, head);
1082 }
1083 
1084 /*
1085  * Initialise the state of a blockdev page's buffers.
1086  */
1087 static void
1088 init_page_buffers(struct page *page, struct block_device *bdev,
1089 			sector_t block, int size)
1090 {
1091 	struct buffer_head *head = page_buffers(page);
1092 	struct buffer_head *bh = head;
1093 	int uptodate = PageUptodate(page);
1094 
1095 	do {
1096 		if (!buffer_mapped(bh)) {
1097 			init_buffer(bh, NULL, NULL);
1098 			bh->b_bdev = bdev;
1099 			bh->b_blocknr = block;
1100 			if (uptodate)
1101 				set_buffer_uptodate(bh);
1102 			set_buffer_mapped(bh);
1103 		}
1104 		block++;
1105 		bh = bh->b_this_page;
1106 	} while (bh != head);
1107 }
1108 
1109 /*
1110  * Create the page-cache page that contains the requested block.
1111  *
1112  * This is user purely for blockdev mappings.
1113  */
1114 static struct page *
1115 grow_dev_page(struct block_device *bdev, sector_t block,
1116 		pgoff_t index, int size)
1117 {
1118 	struct inode *inode = bdev->bd_inode;
1119 	struct page *page;
1120 	struct buffer_head *bh;
1121 
1122 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1123 	if (!page)
1124 		return NULL;
1125 
1126 	if (!PageLocked(page))
1127 		BUG();
1128 
1129 	if (page_has_buffers(page)) {
1130 		bh = page_buffers(page);
1131 		if (bh->b_size == size) {
1132 			init_page_buffers(page, bdev, block, size);
1133 			return page;
1134 		}
1135 		if (!try_to_free_buffers(page))
1136 			goto failed;
1137 	}
1138 
1139 	/*
1140 	 * Allocate some buffers for this page
1141 	 */
1142 	bh = alloc_page_buffers(page, size, 0);
1143 	if (!bh)
1144 		goto failed;
1145 
1146 	/*
1147 	 * Link the page to the buffers and initialise them.  Take the
1148 	 * lock to be atomic wrt __find_get_block(), which does not
1149 	 * run under the page lock.
1150 	 */
1151 	spin_lock(&inode->i_mapping->private_lock);
1152 	link_dev_buffers(page, bh);
1153 	init_page_buffers(page, bdev, block, size);
1154 	spin_unlock(&inode->i_mapping->private_lock);
1155 	return page;
1156 
1157 failed:
1158 	BUG();
1159 	unlock_page(page);
1160 	page_cache_release(page);
1161 	return NULL;
1162 }
1163 
1164 /*
1165  * Create buffers for the specified block device block's page.  If
1166  * that page was dirty, the buffers are set dirty also.
1167  *
1168  * Except that's a bug.  Attaching dirty buffers to a dirty
1169  * blockdev's page can result in filesystem corruption, because
1170  * some of those buffers may be aliases of filesystem data.
1171  * grow_dev_page() will go BUG() if this happens.
1172  */
1173 static inline int
1174 grow_buffers(struct block_device *bdev, sector_t block, int size)
1175 {
1176 	struct page *page;
1177 	pgoff_t index;
1178 	int sizebits;
1179 
1180 	sizebits = -1;
1181 	do {
1182 		sizebits++;
1183 	} while ((size << sizebits) < PAGE_SIZE);
1184 
1185 	index = block >> sizebits;
1186 	block = index << sizebits;
1187 
1188 	/* Create a page with the proper size buffers.. */
1189 	page = grow_dev_page(bdev, block, index, size);
1190 	if (!page)
1191 		return 0;
1192 	unlock_page(page);
1193 	page_cache_release(page);
1194 	return 1;
1195 }
1196 
1197 static struct buffer_head *
1198 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1199 {
1200 	/* Size must be multiple of hard sectorsize */
1201 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1202 			(size < 512 || size > PAGE_SIZE))) {
1203 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1204 					size);
1205 		printk(KERN_ERR "hardsect size: %d\n",
1206 					bdev_hardsect_size(bdev));
1207 
1208 		dump_stack();
1209 		return NULL;
1210 	}
1211 
1212 	for (;;) {
1213 		struct buffer_head * bh;
1214 
1215 		bh = __find_get_block(bdev, block, size);
1216 		if (bh)
1217 			return bh;
1218 
1219 		if (!grow_buffers(bdev, block, size))
1220 			free_more_memory();
1221 	}
1222 }
1223 
1224 /*
1225  * The relationship between dirty buffers and dirty pages:
1226  *
1227  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1228  * the page is tagged dirty in its radix tree.
1229  *
1230  * At all times, the dirtiness of the buffers represents the dirtiness of
1231  * subsections of the page.  If the page has buffers, the page dirty bit is
1232  * merely a hint about the true dirty state.
1233  *
1234  * When a page is set dirty in its entirety, all its buffers are marked dirty
1235  * (if the page has buffers).
1236  *
1237  * When a buffer is marked dirty, its page is dirtied, but the page's other
1238  * buffers are not.
1239  *
1240  * Also.  When blockdev buffers are explicitly read with bread(), they
1241  * individually become uptodate.  But their backing page remains not
1242  * uptodate - even if all of its buffers are uptodate.  A subsequent
1243  * block_read_full_page() against that page will discover all the uptodate
1244  * buffers, will set the page uptodate and will perform no I/O.
1245  */
1246 
1247 /**
1248  * mark_buffer_dirty - mark a buffer_head as needing writeout
1249  * @bh: the buffer_head to mark dirty
1250  *
1251  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1252  * backing page dirty, then tag the page as dirty in its address_space's radix
1253  * tree and then attach the address_space's inode to its superblock's dirty
1254  * inode list.
1255  *
1256  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1257  * mapping->tree_lock and the global inode_lock.
1258  */
1259 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1260 {
1261 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1262 		__set_page_dirty_nobuffers(bh->b_page);
1263 }
1264 
1265 /*
1266  * Decrement a buffer_head's reference count.  If all buffers against a page
1267  * have zero reference count, are clean and unlocked, and if the page is clean
1268  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1269  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1270  * a page but it ends up not being freed, and buffers may later be reattached).
1271  */
1272 void __brelse(struct buffer_head * buf)
1273 {
1274 	if (atomic_read(&buf->b_count)) {
1275 		put_bh(buf);
1276 		return;
1277 	}
1278 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1279 	WARN_ON(1);
1280 }
1281 
1282 /*
1283  * bforget() is like brelse(), except it discards any
1284  * potentially dirty data.
1285  */
1286 void __bforget(struct buffer_head *bh)
1287 {
1288 	clear_buffer_dirty(bh);
1289 	if (!list_empty(&bh->b_assoc_buffers)) {
1290 		struct address_space *buffer_mapping = bh->b_page->mapping;
1291 
1292 		spin_lock(&buffer_mapping->private_lock);
1293 		list_del_init(&bh->b_assoc_buffers);
1294 		spin_unlock(&buffer_mapping->private_lock);
1295 	}
1296 	__brelse(bh);
1297 }
1298 
1299 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1300 {
1301 	lock_buffer(bh);
1302 	if (buffer_uptodate(bh)) {
1303 		unlock_buffer(bh);
1304 		return bh;
1305 	} else {
1306 		get_bh(bh);
1307 		bh->b_end_io = end_buffer_read_sync;
1308 		submit_bh(READ, bh);
1309 		wait_on_buffer(bh);
1310 		if (buffer_uptodate(bh))
1311 			return bh;
1312 	}
1313 	brelse(bh);
1314 	return NULL;
1315 }
1316 
1317 /*
1318  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1319  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1320  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1321  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1322  * CPU's LRUs at the same time.
1323  *
1324  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1325  * sb_find_get_block().
1326  *
1327  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1328  * a local interrupt disable for that.
1329  */
1330 
1331 #define BH_LRU_SIZE	8
1332 
1333 struct bh_lru {
1334 	struct buffer_head *bhs[BH_LRU_SIZE];
1335 };
1336 
1337 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1338 
1339 #ifdef CONFIG_SMP
1340 #define bh_lru_lock()	local_irq_disable()
1341 #define bh_lru_unlock()	local_irq_enable()
1342 #else
1343 #define bh_lru_lock()	preempt_disable()
1344 #define bh_lru_unlock()	preempt_enable()
1345 #endif
1346 
1347 static inline void check_irqs_on(void)
1348 {
1349 #ifdef irqs_disabled
1350 	BUG_ON(irqs_disabled());
1351 #endif
1352 }
1353 
1354 /*
1355  * The LRU management algorithm is dopey-but-simple.  Sorry.
1356  */
1357 static void bh_lru_install(struct buffer_head *bh)
1358 {
1359 	struct buffer_head *evictee = NULL;
1360 	struct bh_lru *lru;
1361 
1362 	check_irqs_on();
1363 	bh_lru_lock();
1364 	lru = &__get_cpu_var(bh_lrus);
1365 	if (lru->bhs[0] != bh) {
1366 		struct buffer_head *bhs[BH_LRU_SIZE];
1367 		int in;
1368 		int out = 0;
1369 
1370 		get_bh(bh);
1371 		bhs[out++] = bh;
1372 		for (in = 0; in < BH_LRU_SIZE; in++) {
1373 			struct buffer_head *bh2 = lru->bhs[in];
1374 
1375 			if (bh2 == bh) {
1376 				__brelse(bh2);
1377 			} else {
1378 				if (out >= BH_LRU_SIZE) {
1379 					BUG_ON(evictee != NULL);
1380 					evictee = bh2;
1381 				} else {
1382 					bhs[out++] = bh2;
1383 				}
1384 			}
1385 		}
1386 		while (out < BH_LRU_SIZE)
1387 			bhs[out++] = NULL;
1388 		memcpy(lru->bhs, bhs, sizeof(bhs));
1389 	}
1390 	bh_lru_unlock();
1391 
1392 	if (evictee)
1393 		__brelse(evictee);
1394 }
1395 
1396 /*
1397  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1398  */
1399 static inline struct buffer_head *
1400 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1401 {
1402 	struct buffer_head *ret = NULL;
1403 	struct bh_lru *lru;
1404 	int i;
1405 
1406 	check_irqs_on();
1407 	bh_lru_lock();
1408 	lru = &__get_cpu_var(bh_lrus);
1409 	for (i = 0; i < BH_LRU_SIZE; i++) {
1410 		struct buffer_head *bh = lru->bhs[i];
1411 
1412 		if (bh && bh->b_bdev == bdev &&
1413 				bh->b_blocknr == block && bh->b_size == size) {
1414 			if (i) {
1415 				while (i) {
1416 					lru->bhs[i] = lru->bhs[i - 1];
1417 					i--;
1418 				}
1419 				lru->bhs[0] = bh;
1420 			}
1421 			get_bh(bh);
1422 			ret = bh;
1423 			break;
1424 		}
1425 	}
1426 	bh_lru_unlock();
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1432  * it in the LRU and mark it as accessed.  If it is not present then return
1433  * NULL
1434  */
1435 struct buffer_head *
1436 __find_get_block(struct block_device *bdev, sector_t block, int size)
1437 {
1438 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1439 
1440 	if (bh == NULL) {
1441 		bh = __find_get_block_slow(bdev, block, size);
1442 		if (bh)
1443 			bh_lru_install(bh);
1444 	}
1445 	if (bh)
1446 		touch_buffer(bh);
1447 	return bh;
1448 }
1449 EXPORT_SYMBOL(__find_get_block);
1450 
1451 /*
1452  * __getblk will locate (and, if necessary, create) the buffer_head
1453  * which corresponds to the passed block_device, block and size. The
1454  * returned buffer has its reference count incremented.
1455  *
1456  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1457  * illegal block number, __getblk() will happily return a buffer_head
1458  * which represents the non-existent block.  Very weird.
1459  *
1460  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1461  * attempt is failing.  FIXME, perhaps?
1462  */
1463 struct buffer_head *
1464 __getblk(struct block_device *bdev, sector_t block, int size)
1465 {
1466 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1467 
1468 	might_sleep();
1469 	if (bh == NULL)
1470 		bh = __getblk_slow(bdev, block, size);
1471 	return bh;
1472 }
1473 EXPORT_SYMBOL(__getblk);
1474 
1475 /*
1476  * Do async read-ahead on a buffer..
1477  */
1478 void __breadahead(struct block_device *bdev, sector_t block, int size)
1479 {
1480 	struct buffer_head *bh = __getblk(bdev, block, size);
1481 	ll_rw_block(READA, 1, &bh);
1482 	brelse(bh);
1483 }
1484 EXPORT_SYMBOL(__breadahead);
1485 
1486 /**
1487  *  __bread() - reads a specified block and returns the bh
1488  *  @bdev: the block_device to read from
1489  *  @block: number of block
1490  *  @size: size (in bytes) to read
1491  *
1492  *  Reads a specified block, and returns buffer head that contains it.
1493  *  It returns NULL if the block was unreadable.
1494  */
1495 struct buffer_head *
1496 __bread(struct block_device *bdev, sector_t block, int size)
1497 {
1498 	struct buffer_head *bh = __getblk(bdev, block, size);
1499 
1500 	if (!buffer_uptodate(bh))
1501 		bh = __bread_slow(bh);
1502 	return bh;
1503 }
1504 EXPORT_SYMBOL(__bread);
1505 
1506 /*
1507  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1508  * This doesn't race because it runs in each cpu either in irq
1509  * or with preempt disabled.
1510  */
1511 static void invalidate_bh_lru(void *arg)
1512 {
1513 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1514 	int i;
1515 
1516 	for (i = 0; i < BH_LRU_SIZE; i++) {
1517 		brelse(b->bhs[i]);
1518 		b->bhs[i] = NULL;
1519 	}
1520 	put_cpu_var(bh_lrus);
1521 }
1522 
1523 static void invalidate_bh_lrus(void)
1524 {
1525 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1526 }
1527 
1528 void set_bh_page(struct buffer_head *bh,
1529 		struct page *page, unsigned long offset)
1530 {
1531 	bh->b_page = page;
1532 	if (offset >= PAGE_SIZE)
1533 		BUG();
1534 	if (PageHighMem(page))
1535 		/*
1536 		 * This catches illegal uses and preserves the offset:
1537 		 */
1538 		bh->b_data = (char *)(0 + offset);
1539 	else
1540 		bh->b_data = page_address(page) + offset;
1541 }
1542 EXPORT_SYMBOL(set_bh_page);
1543 
1544 /*
1545  * Called when truncating a buffer on a page completely.
1546  */
1547 static inline void discard_buffer(struct buffer_head * bh)
1548 {
1549 	lock_buffer(bh);
1550 	clear_buffer_dirty(bh);
1551 	bh->b_bdev = NULL;
1552 	clear_buffer_mapped(bh);
1553 	clear_buffer_req(bh);
1554 	clear_buffer_new(bh);
1555 	clear_buffer_delay(bh);
1556 	unlock_buffer(bh);
1557 }
1558 
1559 /**
1560  * try_to_release_page() - release old fs-specific metadata on a page
1561  *
1562  * @page: the page which the kernel is trying to free
1563  * @gfp_mask: memory allocation flags (and I/O mode)
1564  *
1565  * The address_space is to try to release any data against the page
1566  * (presumably at page->private).  If the release was successful, return `1'.
1567  * Otherwise return zero.
1568  *
1569  * The @gfp_mask argument specifies whether I/O may be performed to release
1570  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1571  *
1572  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1573  */
1574 int try_to_release_page(struct page *page, int gfp_mask)
1575 {
1576 	struct address_space * const mapping = page->mapping;
1577 
1578 	BUG_ON(!PageLocked(page));
1579 	if (PageWriteback(page))
1580 		return 0;
1581 
1582 	if (mapping && mapping->a_ops->releasepage)
1583 		return mapping->a_ops->releasepage(page, gfp_mask);
1584 	return try_to_free_buffers(page);
1585 }
1586 EXPORT_SYMBOL(try_to_release_page);
1587 
1588 /**
1589  * block_invalidatepage - invalidate part of all of a buffer-backed page
1590  *
1591  * @page: the page which is affected
1592  * @offset: the index of the truncation point
1593  *
1594  * block_invalidatepage() is called when all or part of the page has become
1595  * invalidatedby a truncate operation.
1596  *
1597  * block_invalidatepage() does not have to release all buffers, but it must
1598  * ensure that no dirty buffer is left outside @offset and that no I/O
1599  * is underway against any of the blocks which are outside the truncation
1600  * point.  Because the caller is about to free (and possibly reuse) those
1601  * blocks on-disk.
1602  */
1603 int block_invalidatepage(struct page *page, unsigned long offset)
1604 {
1605 	struct buffer_head *head, *bh, *next;
1606 	unsigned int curr_off = 0;
1607 	int ret = 1;
1608 
1609 	BUG_ON(!PageLocked(page));
1610 	if (!page_has_buffers(page))
1611 		goto out;
1612 
1613 	head = page_buffers(page);
1614 	bh = head;
1615 	do {
1616 		unsigned int next_off = curr_off + bh->b_size;
1617 		next = bh->b_this_page;
1618 
1619 		/*
1620 		 * is this block fully invalidated?
1621 		 */
1622 		if (offset <= curr_off)
1623 			discard_buffer(bh);
1624 		curr_off = next_off;
1625 		bh = next;
1626 	} while (bh != head);
1627 
1628 	/*
1629 	 * We release buffers only if the entire page is being invalidated.
1630 	 * The get_block cached value has been unconditionally invalidated,
1631 	 * so real IO is not possible anymore.
1632 	 */
1633 	if (offset == 0)
1634 		ret = try_to_release_page(page, 0);
1635 out:
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL(block_invalidatepage);
1639 
1640 /*
1641  * We attach and possibly dirty the buffers atomically wrt
1642  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1643  * is already excluded via the page lock.
1644  */
1645 void create_empty_buffers(struct page *page,
1646 			unsigned long blocksize, unsigned long b_state)
1647 {
1648 	struct buffer_head *bh, *head, *tail;
1649 
1650 	head = alloc_page_buffers(page, blocksize, 1);
1651 	bh = head;
1652 	do {
1653 		bh->b_state |= b_state;
1654 		tail = bh;
1655 		bh = bh->b_this_page;
1656 	} while (bh);
1657 	tail->b_this_page = head;
1658 
1659 	spin_lock(&page->mapping->private_lock);
1660 	if (PageUptodate(page) || PageDirty(page)) {
1661 		bh = head;
1662 		do {
1663 			if (PageDirty(page))
1664 				set_buffer_dirty(bh);
1665 			if (PageUptodate(page))
1666 				set_buffer_uptodate(bh);
1667 			bh = bh->b_this_page;
1668 		} while (bh != head);
1669 	}
1670 	attach_page_buffers(page, head);
1671 	spin_unlock(&page->mapping->private_lock);
1672 }
1673 EXPORT_SYMBOL(create_empty_buffers);
1674 
1675 /*
1676  * We are taking a block for data and we don't want any output from any
1677  * buffer-cache aliases starting from return from that function and
1678  * until the moment when something will explicitly mark the buffer
1679  * dirty (hopefully that will not happen until we will free that block ;-)
1680  * We don't even need to mark it not-uptodate - nobody can expect
1681  * anything from a newly allocated buffer anyway. We used to used
1682  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1683  * don't want to mark the alias unmapped, for example - it would confuse
1684  * anyone who might pick it with bread() afterwards...
1685  *
1686  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1687  * be writeout I/O going on against recently-freed buffers.  We don't
1688  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1689  * only if we really need to.  That happens here.
1690  */
1691 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1692 {
1693 	struct buffer_head *old_bh;
1694 
1695 	might_sleep();
1696 
1697 	old_bh = __find_get_block_slow(bdev, block, 0);
1698 	if (old_bh) {
1699 		clear_buffer_dirty(old_bh);
1700 		wait_on_buffer(old_bh);
1701 		clear_buffer_req(old_bh);
1702 		__brelse(old_bh);
1703 	}
1704 }
1705 EXPORT_SYMBOL(unmap_underlying_metadata);
1706 
1707 /*
1708  * NOTE! All mapped/uptodate combinations are valid:
1709  *
1710  *	Mapped	Uptodate	Meaning
1711  *
1712  *	No	No		"unknown" - must do get_block()
1713  *	No	Yes		"hole" - zero-filled
1714  *	Yes	No		"allocated" - allocated on disk, not read in
1715  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1716  *
1717  * "Dirty" is valid only with the last case (mapped+uptodate).
1718  */
1719 
1720 /*
1721  * While block_write_full_page is writing back the dirty buffers under
1722  * the page lock, whoever dirtied the buffers may decide to clean them
1723  * again at any time.  We handle that by only looking at the buffer
1724  * state inside lock_buffer().
1725  *
1726  * If block_write_full_page() is called for regular writeback
1727  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1728  * locked buffer.   This only can happen if someone has written the buffer
1729  * directly, with submit_bh().  At the address_space level PageWriteback
1730  * prevents this contention from occurring.
1731  */
1732 static int __block_write_full_page(struct inode *inode, struct page *page,
1733 			get_block_t *get_block, struct writeback_control *wbc)
1734 {
1735 	int err;
1736 	sector_t block;
1737 	sector_t last_block;
1738 	struct buffer_head *bh, *head;
1739 	int nr_underway = 0;
1740 
1741 	BUG_ON(!PageLocked(page));
1742 
1743 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1744 
1745 	if (!page_has_buffers(page)) {
1746 		create_empty_buffers(page, 1 << inode->i_blkbits,
1747 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748 	}
1749 
1750 	/*
1751 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1752 	 * here, and the (potentially unmapped) buffers may become dirty at
1753 	 * any time.  If a buffer becomes dirty here after we've inspected it
1754 	 * then we just miss that fact, and the page stays dirty.
1755 	 *
1756 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757 	 * handle that here by just cleaning them.
1758 	 */
1759 
1760 	block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1761 	head = page_buffers(page);
1762 	bh = head;
1763 
1764 	/*
1765 	 * Get all the dirty buffers mapped to disk addresses and
1766 	 * handle any aliases from the underlying blockdev's mapping.
1767 	 */
1768 	do {
1769 		if (block > last_block) {
1770 			/*
1771 			 * mapped buffers outside i_size will occur, because
1772 			 * this page can be outside i_size when there is a
1773 			 * truncate in progress.
1774 			 */
1775 			/*
1776 			 * The buffer was zeroed by block_write_full_page()
1777 			 */
1778 			clear_buffer_dirty(bh);
1779 			set_buffer_uptodate(bh);
1780 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1781 			err = get_block(inode, block, bh, 1);
1782 			if (err)
1783 				goto recover;
1784 			if (buffer_new(bh)) {
1785 				/* blockdev mappings never come here */
1786 				clear_buffer_new(bh);
1787 				unmap_underlying_metadata(bh->b_bdev,
1788 							bh->b_blocknr);
1789 			}
1790 		}
1791 		bh = bh->b_this_page;
1792 		block++;
1793 	} while (bh != head);
1794 
1795 	do {
1796 		if (!buffer_mapped(bh))
1797 			continue;
1798 		/*
1799 		 * If it's a fully non-blocking write attempt and we cannot
1800 		 * lock the buffer then redirty the page.  Note that this can
1801 		 * potentially cause a busy-wait loop from pdflush and kswapd
1802 		 * activity, but those code paths have their own higher-level
1803 		 * throttling.
1804 		 */
1805 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1806 			lock_buffer(bh);
1807 		} else if (test_set_buffer_locked(bh)) {
1808 			redirty_page_for_writepage(wbc, page);
1809 			continue;
1810 		}
1811 		if (test_clear_buffer_dirty(bh)) {
1812 			mark_buffer_async_write(bh);
1813 		} else {
1814 			unlock_buffer(bh);
1815 		}
1816 	} while ((bh = bh->b_this_page) != head);
1817 
1818 	/*
1819 	 * The page and its buffers are protected by PageWriteback(), so we can
1820 	 * drop the bh refcounts early.
1821 	 */
1822 	BUG_ON(PageWriteback(page));
1823 	set_page_writeback(page);
1824 
1825 	do {
1826 		struct buffer_head *next = bh->b_this_page;
1827 		if (buffer_async_write(bh)) {
1828 			submit_bh(WRITE, bh);
1829 			nr_underway++;
1830 		}
1831 		bh = next;
1832 	} while (bh != head);
1833 	unlock_page(page);
1834 
1835 	err = 0;
1836 done:
1837 	if (nr_underway == 0) {
1838 		/*
1839 		 * The page was marked dirty, but the buffers were
1840 		 * clean.  Someone wrote them back by hand with
1841 		 * ll_rw_block/submit_bh.  A rare case.
1842 		 */
1843 		int uptodate = 1;
1844 		do {
1845 			if (!buffer_uptodate(bh)) {
1846 				uptodate = 0;
1847 				break;
1848 			}
1849 			bh = bh->b_this_page;
1850 		} while (bh != head);
1851 		if (uptodate)
1852 			SetPageUptodate(page);
1853 		end_page_writeback(page);
1854 		/*
1855 		 * The page and buffer_heads can be released at any time from
1856 		 * here on.
1857 		 */
1858 		wbc->pages_skipped++;	/* We didn't write this page */
1859 	}
1860 	return err;
1861 
1862 recover:
1863 	/*
1864 	 * ENOSPC, or some other error.  We may already have added some
1865 	 * blocks to the file, so we need to write these out to avoid
1866 	 * exposing stale data.
1867 	 * The page is currently locked and not marked for writeback
1868 	 */
1869 	bh = head;
1870 	/* Recovery: lock and submit the mapped buffers */
1871 	do {
1872 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1873 			lock_buffer(bh);
1874 			mark_buffer_async_write(bh);
1875 		} else {
1876 			/*
1877 			 * The buffer may have been set dirty during
1878 			 * attachment to a dirty page.
1879 			 */
1880 			clear_buffer_dirty(bh);
1881 		}
1882 	} while ((bh = bh->b_this_page) != head);
1883 	SetPageError(page);
1884 	BUG_ON(PageWriteback(page));
1885 	set_page_writeback(page);
1886 	unlock_page(page);
1887 	do {
1888 		struct buffer_head *next = bh->b_this_page;
1889 		if (buffer_async_write(bh)) {
1890 			clear_buffer_dirty(bh);
1891 			submit_bh(WRITE, bh);
1892 			nr_underway++;
1893 		}
1894 		bh = next;
1895 	} while (bh != head);
1896 	goto done;
1897 }
1898 
1899 static int __block_prepare_write(struct inode *inode, struct page *page,
1900 		unsigned from, unsigned to, get_block_t *get_block)
1901 {
1902 	unsigned block_start, block_end;
1903 	sector_t block;
1904 	int err = 0;
1905 	unsigned blocksize, bbits;
1906 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1907 
1908 	BUG_ON(!PageLocked(page));
1909 	BUG_ON(from > PAGE_CACHE_SIZE);
1910 	BUG_ON(to > PAGE_CACHE_SIZE);
1911 	BUG_ON(from > to);
1912 
1913 	blocksize = 1 << inode->i_blkbits;
1914 	if (!page_has_buffers(page))
1915 		create_empty_buffers(page, blocksize, 0);
1916 	head = page_buffers(page);
1917 
1918 	bbits = inode->i_blkbits;
1919 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1920 
1921 	for(bh = head, block_start = 0; bh != head || !block_start;
1922 	    block++, block_start=block_end, bh = bh->b_this_page) {
1923 		block_end = block_start + blocksize;
1924 		if (block_end <= from || block_start >= to) {
1925 			if (PageUptodate(page)) {
1926 				if (!buffer_uptodate(bh))
1927 					set_buffer_uptodate(bh);
1928 			}
1929 			continue;
1930 		}
1931 		if (buffer_new(bh))
1932 			clear_buffer_new(bh);
1933 		if (!buffer_mapped(bh)) {
1934 			err = get_block(inode, block, bh, 1);
1935 			if (err)
1936 				break;
1937 			if (buffer_new(bh)) {
1938 				unmap_underlying_metadata(bh->b_bdev,
1939 							bh->b_blocknr);
1940 				if (PageUptodate(page)) {
1941 					set_buffer_uptodate(bh);
1942 					continue;
1943 				}
1944 				if (block_end > to || block_start < from) {
1945 					void *kaddr;
1946 
1947 					kaddr = kmap_atomic(page, KM_USER0);
1948 					if (block_end > to)
1949 						memset(kaddr+to, 0,
1950 							block_end-to);
1951 					if (block_start < from)
1952 						memset(kaddr+block_start,
1953 							0, from-block_start);
1954 					flush_dcache_page(page);
1955 					kunmap_atomic(kaddr, KM_USER0);
1956 				}
1957 				continue;
1958 			}
1959 		}
1960 		if (PageUptodate(page)) {
1961 			if (!buffer_uptodate(bh))
1962 				set_buffer_uptodate(bh);
1963 			continue;
1964 		}
1965 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1966 		     (block_start < from || block_end > to)) {
1967 			ll_rw_block(READ, 1, &bh);
1968 			*wait_bh++=bh;
1969 		}
1970 	}
1971 	/*
1972 	 * If we issued read requests - let them complete.
1973 	 */
1974 	while(wait_bh > wait) {
1975 		wait_on_buffer(*--wait_bh);
1976 		if (!buffer_uptodate(*wait_bh))
1977 			err = -EIO;
1978 	}
1979 	if (!err) {
1980 		bh = head;
1981 		do {
1982 			if (buffer_new(bh))
1983 				clear_buffer_new(bh);
1984 		} while ((bh = bh->b_this_page) != head);
1985 		return 0;
1986 	}
1987 	/* Error case: */
1988 	/*
1989 	 * Zero out any newly allocated blocks to avoid exposing stale
1990 	 * data.  If BH_New is set, we know that the block was newly
1991 	 * allocated in the above loop.
1992 	 */
1993 	bh = head;
1994 	block_start = 0;
1995 	do {
1996 		block_end = block_start+blocksize;
1997 		if (block_end <= from)
1998 			goto next_bh;
1999 		if (block_start >= to)
2000 			break;
2001 		if (buffer_new(bh)) {
2002 			void *kaddr;
2003 
2004 			clear_buffer_new(bh);
2005 			kaddr = kmap_atomic(page, KM_USER0);
2006 			memset(kaddr+block_start, 0, bh->b_size);
2007 			kunmap_atomic(kaddr, KM_USER0);
2008 			set_buffer_uptodate(bh);
2009 			mark_buffer_dirty(bh);
2010 		}
2011 next_bh:
2012 		block_start = block_end;
2013 		bh = bh->b_this_page;
2014 	} while (bh != head);
2015 	return err;
2016 }
2017 
2018 static int __block_commit_write(struct inode *inode, struct page *page,
2019 		unsigned from, unsigned to)
2020 {
2021 	unsigned block_start, block_end;
2022 	int partial = 0;
2023 	unsigned blocksize;
2024 	struct buffer_head *bh, *head;
2025 
2026 	blocksize = 1 << inode->i_blkbits;
2027 
2028 	for(bh = head = page_buffers(page), block_start = 0;
2029 	    bh != head || !block_start;
2030 	    block_start=block_end, bh = bh->b_this_page) {
2031 		block_end = block_start + blocksize;
2032 		if (block_end <= from || block_start >= to) {
2033 			if (!buffer_uptodate(bh))
2034 				partial = 1;
2035 		} else {
2036 			set_buffer_uptodate(bh);
2037 			mark_buffer_dirty(bh);
2038 		}
2039 	}
2040 
2041 	/*
2042 	 * If this is a partial write which happened to make all buffers
2043 	 * uptodate then we can optimize away a bogus readpage() for
2044 	 * the next read(). Here we 'discover' whether the page went
2045 	 * uptodate as a result of this (potentially partial) write.
2046 	 */
2047 	if (!partial)
2048 		SetPageUptodate(page);
2049 	return 0;
2050 }
2051 
2052 /*
2053  * Generic "read page" function for block devices that have the normal
2054  * get_block functionality. This is most of the block device filesystems.
2055  * Reads the page asynchronously --- the unlock_buffer() and
2056  * set/clear_buffer_uptodate() functions propagate buffer state into the
2057  * page struct once IO has completed.
2058  */
2059 int block_read_full_page(struct page *page, get_block_t *get_block)
2060 {
2061 	struct inode *inode = page->mapping->host;
2062 	sector_t iblock, lblock;
2063 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2064 	unsigned int blocksize;
2065 	int nr, i;
2066 	int fully_mapped = 1;
2067 
2068 	BUG_ON(!PageLocked(page));
2069 	blocksize = 1 << inode->i_blkbits;
2070 	if (!page_has_buffers(page))
2071 		create_empty_buffers(page, blocksize, 0);
2072 	head = page_buffers(page);
2073 
2074 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2075 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2076 	bh = head;
2077 	nr = 0;
2078 	i = 0;
2079 
2080 	do {
2081 		if (buffer_uptodate(bh))
2082 			continue;
2083 
2084 		if (!buffer_mapped(bh)) {
2085 			int err = 0;
2086 
2087 			fully_mapped = 0;
2088 			if (iblock < lblock) {
2089 				err = get_block(inode, iblock, bh, 0);
2090 				if (err)
2091 					SetPageError(page);
2092 			}
2093 			if (!buffer_mapped(bh)) {
2094 				void *kaddr = kmap_atomic(page, KM_USER0);
2095 				memset(kaddr + i * blocksize, 0, blocksize);
2096 				flush_dcache_page(page);
2097 				kunmap_atomic(kaddr, KM_USER0);
2098 				if (!err)
2099 					set_buffer_uptodate(bh);
2100 				continue;
2101 			}
2102 			/*
2103 			 * get_block() might have updated the buffer
2104 			 * synchronously
2105 			 */
2106 			if (buffer_uptodate(bh))
2107 				continue;
2108 		}
2109 		arr[nr++] = bh;
2110 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2111 
2112 	if (fully_mapped)
2113 		SetPageMappedToDisk(page);
2114 
2115 	if (!nr) {
2116 		/*
2117 		 * All buffers are uptodate - we can set the page uptodate
2118 		 * as well. But not if get_block() returned an error.
2119 		 */
2120 		if (!PageError(page))
2121 			SetPageUptodate(page);
2122 		unlock_page(page);
2123 		return 0;
2124 	}
2125 
2126 	/* Stage two: lock the buffers */
2127 	for (i = 0; i < nr; i++) {
2128 		bh = arr[i];
2129 		lock_buffer(bh);
2130 		mark_buffer_async_read(bh);
2131 	}
2132 
2133 	/*
2134 	 * Stage 3: start the IO.  Check for uptodateness
2135 	 * inside the buffer lock in case another process reading
2136 	 * the underlying blockdev brought it uptodate (the sct fix).
2137 	 */
2138 	for (i = 0; i < nr; i++) {
2139 		bh = arr[i];
2140 		if (buffer_uptodate(bh))
2141 			end_buffer_async_read(bh, 1);
2142 		else
2143 			submit_bh(READ, bh);
2144 	}
2145 	return 0;
2146 }
2147 
2148 /* utility function for filesystems that need to do work on expanding
2149  * truncates.  Uses prepare/commit_write to allow the filesystem to
2150  * deal with the hole.
2151  */
2152 int generic_cont_expand(struct inode *inode, loff_t size)
2153 {
2154 	struct address_space *mapping = inode->i_mapping;
2155 	struct page *page;
2156 	unsigned long index, offset, limit;
2157 	int err;
2158 
2159 	err = -EFBIG;
2160         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2161 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2162 		send_sig(SIGXFSZ, current, 0);
2163 		goto out;
2164 	}
2165 	if (size > inode->i_sb->s_maxbytes)
2166 		goto out;
2167 
2168 	offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2169 
2170 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2171 	** skip the prepare.  make sure we never send an offset for the start
2172 	** of a block
2173 	*/
2174 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2175 		offset++;
2176 	}
2177 	index = size >> PAGE_CACHE_SHIFT;
2178 	err = -ENOMEM;
2179 	page = grab_cache_page(mapping, index);
2180 	if (!page)
2181 		goto out;
2182 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2183 	if (!err) {
2184 		err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2185 	}
2186 	unlock_page(page);
2187 	page_cache_release(page);
2188 	if (err > 0)
2189 		err = 0;
2190 out:
2191 	return err;
2192 }
2193 
2194 /*
2195  * For moronic filesystems that do not allow holes in file.
2196  * We may have to extend the file.
2197  */
2198 
2199 int cont_prepare_write(struct page *page, unsigned offset,
2200 		unsigned to, get_block_t *get_block, loff_t *bytes)
2201 {
2202 	struct address_space *mapping = page->mapping;
2203 	struct inode *inode = mapping->host;
2204 	struct page *new_page;
2205 	pgoff_t pgpos;
2206 	long status;
2207 	unsigned zerofrom;
2208 	unsigned blocksize = 1 << inode->i_blkbits;
2209 	void *kaddr;
2210 
2211 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2212 		status = -ENOMEM;
2213 		new_page = grab_cache_page(mapping, pgpos);
2214 		if (!new_page)
2215 			goto out;
2216 		/* we might sleep */
2217 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2218 			unlock_page(new_page);
2219 			page_cache_release(new_page);
2220 			continue;
2221 		}
2222 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2223 		if (zerofrom & (blocksize-1)) {
2224 			*bytes |= (blocksize-1);
2225 			(*bytes)++;
2226 		}
2227 		status = __block_prepare_write(inode, new_page, zerofrom,
2228 						PAGE_CACHE_SIZE, get_block);
2229 		if (status)
2230 			goto out_unmap;
2231 		kaddr = kmap_atomic(new_page, KM_USER0);
2232 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2233 		flush_dcache_page(new_page);
2234 		kunmap_atomic(kaddr, KM_USER0);
2235 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2236 		unlock_page(new_page);
2237 		page_cache_release(new_page);
2238 	}
2239 
2240 	if (page->index < pgpos) {
2241 		/* completely inside the area */
2242 		zerofrom = offset;
2243 	} else {
2244 		/* page covers the boundary, find the boundary offset */
2245 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2246 
2247 		/* if we will expand the thing last block will be filled */
2248 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2249 			*bytes |= (blocksize-1);
2250 			(*bytes)++;
2251 		}
2252 
2253 		/* starting below the boundary? Nothing to zero out */
2254 		if (offset <= zerofrom)
2255 			zerofrom = offset;
2256 	}
2257 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2258 	if (status)
2259 		goto out1;
2260 	if (zerofrom < offset) {
2261 		kaddr = kmap_atomic(page, KM_USER0);
2262 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2263 		flush_dcache_page(page);
2264 		kunmap_atomic(kaddr, KM_USER0);
2265 		__block_commit_write(inode, page, zerofrom, offset);
2266 	}
2267 	return 0;
2268 out1:
2269 	ClearPageUptodate(page);
2270 	return status;
2271 
2272 out_unmap:
2273 	ClearPageUptodate(new_page);
2274 	unlock_page(new_page);
2275 	page_cache_release(new_page);
2276 out:
2277 	return status;
2278 }
2279 
2280 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2281 			get_block_t *get_block)
2282 {
2283 	struct inode *inode = page->mapping->host;
2284 	int err = __block_prepare_write(inode, page, from, to, get_block);
2285 	if (err)
2286 		ClearPageUptodate(page);
2287 	return err;
2288 }
2289 
2290 int block_commit_write(struct page *page, unsigned from, unsigned to)
2291 {
2292 	struct inode *inode = page->mapping->host;
2293 	__block_commit_write(inode,page,from,to);
2294 	return 0;
2295 }
2296 
2297 int generic_commit_write(struct file *file, struct page *page,
2298 		unsigned from, unsigned to)
2299 {
2300 	struct inode *inode = page->mapping->host;
2301 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2302 	__block_commit_write(inode,page,from,to);
2303 	/*
2304 	 * No need to use i_size_read() here, the i_size
2305 	 * cannot change under us because we hold i_sem.
2306 	 */
2307 	if (pos > inode->i_size) {
2308 		i_size_write(inode, pos);
2309 		mark_inode_dirty(inode);
2310 	}
2311 	return 0;
2312 }
2313 
2314 
2315 /*
2316  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2317  * immediately, while under the page lock.  So it needs a special end_io
2318  * handler which does not touch the bh after unlocking it.
2319  *
2320  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2321  * a race there is benign: unlock_buffer() only use the bh's address for
2322  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2323  * itself.
2324  */
2325 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2326 {
2327 	if (uptodate) {
2328 		set_buffer_uptodate(bh);
2329 	} else {
2330 		/* This happens, due to failed READA attempts. */
2331 		clear_buffer_uptodate(bh);
2332 	}
2333 	unlock_buffer(bh);
2334 }
2335 
2336 /*
2337  * On entry, the page is fully not uptodate.
2338  * On exit the page is fully uptodate in the areas outside (from,to)
2339  */
2340 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2341 			get_block_t *get_block)
2342 {
2343 	struct inode *inode = page->mapping->host;
2344 	const unsigned blkbits = inode->i_blkbits;
2345 	const unsigned blocksize = 1 << blkbits;
2346 	struct buffer_head map_bh;
2347 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2348 	unsigned block_in_page;
2349 	unsigned block_start;
2350 	sector_t block_in_file;
2351 	char *kaddr;
2352 	int nr_reads = 0;
2353 	int i;
2354 	int ret = 0;
2355 	int is_mapped_to_disk = 1;
2356 	int dirtied_it = 0;
2357 
2358 	if (PageMappedToDisk(page))
2359 		return 0;
2360 
2361 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2362 	map_bh.b_page = page;
2363 
2364 	/*
2365 	 * We loop across all blocks in the page, whether or not they are
2366 	 * part of the affected region.  This is so we can discover if the
2367 	 * page is fully mapped-to-disk.
2368 	 */
2369 	for (block_start = 0, block_in_page = 0;
2370 		  block_start < PAGE_CACHE_SIZE;
2371 		  block_in_page++, block_start += blocksize) {
2372 		unsigned block_end = block_start + blocksize;
2373 		int create;
2374 
2375 		map_bh.b_state = 0;
2376 		create = 1;
2377 		if (block_start >= to)
2378 			create = 0;
2379 		ret = get_block(inode, block_in_file + block_in_page,
2380 					&map_bh, create);
2381 		if (ret)
2382 			goto failed;
2383 		if (!buffer_mapped(&map_bh))
2384 			is_mapped_to_disk = 0;
2385 		if (buffer_new(&map_bh))
2386 			unmap_underlying_metadata(map_bh.b_bdev,
2387 							map_bh.b_blocknr);
2388 		if (PageUptodate(page))
2389 			continue;
2390 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2391 			kaddr = kmap_atomic(page, KM_USER0);
2392 			if (block_start < from) {
2393 				memset(kaddr+block_start, 0, from-block_start);
2394 				dirtied_it = 1;
2395 			}
2396 			if (block_end > to) {
2397 				memset(kaddr + to, 0, block_end - to);
2398 				dirtied_it = 1;
2399 			}
2400 			flush_dcache_page(page);
2401 			kunmap_atomic(kaddr, KM_USER0);
2402 			continue;
2403 		}
2404 		if (buffer_uptodate(&map_bh))
2405 			continue;	/* reiserfs does this */
2406 		if (block_start < from || block_end > to) {
2407 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2408 
2409 			if (!bh) {
2410 				ret = -ENOMEM;
2411 				goto failed;
2412 			}
2413 			bh->b_state = map_bh.b_state;
2414 			atomic_set(&bh->b_count, 0);
2415 			bh->b_this_page = NULL;
2416 			bh->b_page = page;
2417 			bh->b_blocknr = map_bh.b_blocknr;
2418 			bh->b_size = blocksize;
2419 			bh->b_data = (char *)(long)block_start;
2420 			bh->b_bdev = map_bh.b_bdev;
2421 			bh->b_private = NULL;
2422 			read_bh[nr_reads++] = bh;
2423 		}
2424 	}
2425 
2426 	if (nr_reads) {
2427 		struct buffer_head *bh;
2428 
2429 		/*
2430 		 * The page is locked, so these buffers are protected from
2431 		 * any VM or truncate activity.  Hence we don't need to care
2432 		 * for the buffer_head refcounts.
2433 		 */
2434 		for (i = 0; i < nr_reads; i++) {
2435 			bh = read_bh[i];
2436 			lock_buffer(bh);
2437 			bh->b_end_io = end_buffer_read_nobh;
2438 			submit_bh(READ, bh);
2439 		}
2440 		for (i = 0; i < nr_reads; i++) {
2441 			bh = read_bh[i];
2442 			wait_on_buffer(bh);
2443 			if (!buffer_uptodate(bh))
2444 				ret = -EIO;
2445 			free_buffer_head(bh);
2446 			read_bh[i] = NULL;
2447 		}
2448 		if (ret)
2449 			goto failed;
2450 	}
2451 
2452 	if (is_mapped_to_disk)
2453 		SetPageMappedToDisk(page);
2454 	SetPageUptodate(page);
2455 
2456 	/*
2457 	 * Setting the page dirty here isn't necessary for the prepare_write
2458 	 * function - commit_write will do that.  But if/when this function is
2459 	 * used within the pagefault handler to ensure that all mmapped pages
2460 	 * have backing space in the filesystem, we will need to dirty the page
2461 	 * if its contents were altered.
2462 	 */
2463 	if (dirtied_it)
2464 		set_page_dirty(page);
2465 
2466 	return 0;
2467 
2468 failed:
2469 	for (i = 0; i < nr_reads; i++) {
2470 		if (read_bh[i])
2471 			free_buffer_head(read_bh[i]);
2472 	}
2473 
2474 	/*
2475 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2476 	 * so we'll later zero out any blocks which _were_ allocated.
2477 	 */
2478 	kaddr = kmap_atomic(page, KM_USER0);
2479 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2480 	kunmap_atomic(kaddr, KM_USER0);
2481 	SetPageUptodate(page);
2482 	set_page_dirty(page);
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL(nobh_prepare_write);
2486 
2487 int nobh_commit_write(struct file *file, struct page *page,
2488 		unsigned from, unsigned to)
2489 {
2490 	struct inode *inode = page->mapping->host;
2491 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2492 
2493 	set_page_dirty(page);
2494 	if (pos > inode->i_size) {
2495 		i_size_write(inode, pos);
2496 		mark_inode_dirty(inode);
2497 	}
2498 	return 0;
2499 }
2500 EXPORT_SYMBOL(nobh_commit_write);
2501 
2502 /*
2503  * nobh_writepage() - based on block_full_write_page() except
2504  * that it tries to operate without attaching bufferheads to
2505  * the page.
2506  */
2507 int nobh_writepage(struct page *page, get_block_t *get_block,
2508 			struct writeback_control *wbc)
2509 {
2510 	struct inode * const inode = page->mapping->host;
2511 	loff_t i_size = i_size_read(inode);
2512 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2513 	unsigned offset;
2514 	void *kaddr;
2515 	int ret;
2516 
2517 	/* Is the page fully inside i_size? */
2518 	if (page->index < end_index)
2519 		goto out;
2520 
2521 	/* Is the page fully outside i_size? (truncate in progress) */
2522 	offset = i_size & (PAGE_CACHE_SIZE-1);
2523 	if (page->index >= end_index+1 || !offset) {
2524 		/*
2525 		 * The page may have dirty, unmapped buffers.  For example,
2526 		 * they may have been added in ext3_writepage().  Make them
2527 		 * freeable here, so the page does not leak.
2528 		 */
2529 #if 0
2530 		/* Not really sure about this  - do we need this ? */
2531 		if (page->mapping->a_ops->invalidatepage)
2532 			page->mapping->a_ops->invalidatepage(page, offset);
2533 #endif
2534 		unlock_page(page);
2535 		return 0; /* don't care */
2536 	}
2537 
2538 	/*
2539 	 * The page straddles i_size.  It must be zeroed out on each and every
2540 	 * writepage invocation because it may be mmapped.  "A file is mapped
2541 	 * in multiples of the page size.  For a file that is not a multiple of
2542 	 * the  page size, the remaining memory is zeroed when mapped, and
2543 	 * writes to that region are not written out to the file."
2544 	 */
2545 	kaddr = kmap_atomic(page, KM_USER0);
2546 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2547 	flush_dcache_page(page);
2548 	kunmap_atomic(kaddr, KM_USER0);
2549 out:
2550 	ret = mpage_writepage(page, get_block, wbc);
2551 	if (ret == -EAGAIN)
2552 		ret = __block_write_full_page(inode, page, get_block, wbc);
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(nobh_writepage);
2556 
2557 /*
2558  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2559  */
2560 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2561 {
2562 	struct inode *inode = mapping->host;
2563 	unsigned blocksize = 1 << inode->i_blkbits;
2564 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2565 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2566 	unsigned to;
2567 	struct page *page;
2568 	struct address_space_operations *a_ops = mapping->a_ops;
2569 	char *kaddr;
2570 	int ret = 0;
2571 
2572 	if ((offset & (blocksize - 1)) == 0)
2573 		goto out;
2574 
2575 	ret = -ENOMEM;
2576 	page = grab_cache_page(mapping, index);
2577 	if (!page)
2578 		goto out;
2579 
2580 	to = (offset + blocksize) & ~(blocksize - 1);
2581 	ret = a_ops->prepare_write(NULL, page, offset, to);
2582 	if (ret == 0) {
2583 		kaddr = kmap_atomic(page, KM_USER0);
2584 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2585 		flush_dcache_page(page);
2586 		kunmap_atomic(kaddr, KM_USER0);
2587 		set_page_dirty(page);
2588 	}
2589 	unlock_page(page);
2590 	page_cache_release(page);
2591 out:
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(nobh_truncate_page);
2595 
2596 int block_truncate_page(struct address_space *mapping,
2597 			loff_t from, get_block_t *get_block)
2598 {
2599 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2600 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2601 	unsigned blocksize;
2602 	pgoff_t iblock;
2603 	unsigned length, pos;
2604 	struct inode *inode = mapping->host;
2605 	struct page *page;
2606 	struct buffer_head *bh;
2607 	void *kaddr;
2608 	int err;
2609 
2610 	blocksize = 1 << inode->i_blkbits;
2611 	length = offset & (blocksize - 1);
2612 
2613 	/* Block boundary? Nothing to do */
2614 	if (!length)
2615 		return 0;
2616 
2617 	length = blocksize - length;
2618 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2619 
2620 	page = grab_cache_page(mapping, index);
2621 	err = -ENOMEM;
2622 	if (!page)
2623 		goto out;
2624 
2625 	if (!page_has_buffers(page))
2626 		create_empty_buffers(page, blocksize, 0);
2627 
2628 	/* Find the buffer that contains "offset" */
2629 	bh = page_buffers(page);
2630 	pos = blocksize;
2631 	while (offset >= pos) {
2632 		bh = bh->b_this_page;
2633 		iblock++;
2634 		pos += blocksize;
2635 	}
2636 
2637 	err = 0;
2638 	if (!buffer_mapped(bh)) {
2639 		err = get_block(inode, iblock, bh, 0);
2640 		if (err)
2641 			goto unlock;
2642 		/* unmapped? It's a hole - nothing to do */
2643 		if (!buffer_mapped(bh))
2644 			goto unlock;
2645 	}
2646 
2647 	/* Ok, it's mapped. Make sure it's up-to-date */
2648 	if (PageUptodate(page))
2649 		set_buffer_uptodate(bh);
2650 
2651 	if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2652 		err = -EIO;
2653 		ll_rw_block(READ, 1, &bh);
2654 		wait_on_buffer(bh);
2655 		/* Uhhuh. Read error. Complain and punt. */
2656 		if (!buffer_uptodate(bh))
2657 			goto unlock;
2658 	}
2659 
2660 	kaddr = kmap_atomic(page, KM_USER0);
2661 	memset(kaddr + offset, 0, length);
2662 	flush_dcache_page(page);
2663 	kunmap_atomic(kaddr, KM_USER0);
2664 
2665 	mark_buffer_dirty(bh);
2666 	err = 0;
2667 
2668 unlock:
2669 	unlock_page(page);
2670 	page_cache_release(page);
2671 out:
2672 	return err;
2673 }
2674 
2675 /*
2676  * The generic ->writepage function for buffer-backed address_spaces
2677  */
2678 int block_write_full_page(struct page *page, get_block_t *get_block,
2679 			struct writeback_control *wbc)
2680 {
2681 	struct inode * const inode = page->mapping->host;
2682 	loff_t i_size = i_size_read(inode);
2683 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2684 	unsigned offset;
2685 	void *kaddr;
2686 
2687 	/* Is the page fully inside i_size? */
2688 	if (page->index < end_index)
2689 		return __block_write_full_page(inode, page, get_block, wbc);
2690 
2691 	/* Is the page fully outside i_size? (truncate in progress) */
2692 	offset = i_size & (PAGE_CACHE_SIZE-1);
2693 	if (page->index >= end_index+1 || !offset) {
2694 		/*
2695 		 * The page may have dirty, unmapped buffers.  For example,
2696 		 * they may have been added in ext3_writepage().  Make them
2697 		 * freeable here, so the page does not leak.
2698 		 */
2699 		block_invalidatepage(page, 0);
2700 		unlock_page(page);
2701 		return 0; /* don't care */
2702 	}
2703 
2704 	/*
2705 	 * The page straddles i_size.  It must be zeroed out on each and every
2706 	 * writepage invokation because it may be mmapped.  "A file is mapped
2707 	 * in multiples of the page size.  For a file that is not a multiple of
2708 	 * the  page size, the remaining memory is zeroed when mapped, and
2709 	 * writes to that region are not written out to the file."
2710 	 */
2711 	kaddr = kmap_atomic(page, KM_USER0);
2712 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2713 	flush_dcache_page(page);
2714 	kunmap_atomic(kaddr, KM_USER0);
2715 	return __block_write_full_page(inode, page, get_block, wbc);
2716 }
2717 
2718 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2719 			    get_block_t *get_block)
2720 {
2721 	struct buffer_head tmp;
2722 	struct inode *inode = mapping->host;
2723 	tmp.b_state = 0;
2724 	tmp.b_blocknr = 0;
2725 	get_block(inode, block, &tmp, 0);
2726 	return tmp.b_blocknr;
2727 }
2728 
2729 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2730 {
2731 	struct buffer_head *bh = bio->bi_private;
2732 
2733 	if (bio->bi_size)
2734 		return 1;
2735 
2736 	if (err == -EOPNOTSUPP) {
2737 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2738 		set_bit(BH_Eopnotsupp, &bh->b_state);
2739 	}
2740 
2741 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2742 	bio_put(bio);
2743 	return 0;
2744 }
2745 
2746 int submit_bh(int rw, struct buffer_head * bh)
2747 {
2748 	struct bio *bio;
2749 	int ret = 0;
2750 
2751 	BUG_ON(!buffer_locked(bh));
2752 	BUG_ON(!buffer_mapped(bh));
2753 	BUG_ON(!bh->b_end_io);
2754 
2755 	if (buffer_ordered(bh) && (rw == WRITE))
2756 		rw = WRITE_BARRIER;
2757 
2758 	/*
2759 	 * Only clear out a write error when rewriting, should this
2760 	 * include WRITE_SYNC as well?
2761 	 */
2762 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2763 		clear_buffer_write_io_error(bh);
2764 
2765 	/*
2766 	 * from here on down, it's all bio -- do the initial mapping,
2767 	 * submit_bio -> generic_make_request may further map this bio around
2768 	 */
2769 	bio = bio_alloc(GFP_NOIO, 1);
2770 
2771 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2772 	bio->bi_bdev = bh->b_bdev;
2773 	bio->bi_io_vec[0].bv_page = bh->b_page;
2774 	bio->bi_io_vec[0].bv_len = bh->b_size;
2775 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2776 
2777 	bio->bi_vcnt = 1;
2778 	bio->bi_idx = 0;
2779 	bio->bi_size = bh->b_size;
2780 
2781 	bio->bi_end_io = end_bio_bh_io_sync;
2782 	bio->bi_private = bh;
2783 
2784 	bio_get(bio);
2785 	submit_bio(rw, bio);
2786 
2787 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2788 		ret = -EOPNOTSUPP;
2789 
2790 	bio_put(bio);
2791 	return ret;
2792 }
2793 
2794 /**
2795  * ll_rw_block: low-level access to block devices (DEPRECATED)
2796  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2797  * @nr: number of &struct buffer_heads in the array
2798  * @bhs: array of pointers to &struct buffer_head
2799  *
2800  * ll_rw_block() takes an array of pointers to &struct buffer_heads,
2801  * and requests an I/O operation on them, either a %READ or a %WRITE.
2802  * The third %READA option is described in the documentation for
2803  * generic_make_request() which ll_rw_block() calls.
2804  *
2805  * This function drops any buffer that it cannot get a lock on (with the
2806  * BH_Lock state bit), any buffer that appears to be clean when doing a
2807  * write request, and any buffer that appears to be up-to-date when doing
2808  * read request.  Further it marks as clean buffers that are processed for
2809  * writing (the buffer cache won't assume that they are actually clean until
2810  * the buffer gets unlocked).
2811  *
2812  * ll_rw_block sets b_end_io to simple completion handler that marks
2813  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2814  * any waiters.
2815  *
2816  * All of the buffers must be for the same device, and must also be a
2817  * multiple of the current approved size for the device.
2818  */
2819 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2820 {
2821 	int i;
2822 
2823 	for (i = 0; i < nr; i++) {
2824 		struct buffer_head *bh = bhs[i];
2825 
2826 		if (test_set_buffer_locked(bh))
2827 			continue;
2828 
2829 		get_bh(bh);
2830 		if (rw == WRITE) {
2831 			if (test_clear_buffer_dirty(bh)) {
2832 				bh->b_end_io = end_buffer_write_sync;
2833 				submit_bh(WRITE, bh);
2834 				continue;
2835 			}
2836 		} else {
2837 			if (!buffer_uptodate(bh)) {
2838 				bh->b_end_io = end_buffer_read_sync;
2839 				submit_bh(rw, bh);
2840 				continue;
2841 			}
2842 		}
2843 		unlock_buffer(bh);
2844 		put_bh(bh);
2845 	}
2846 }
2847 
2848 /*
2849  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2850  * and then start new I/O and then wait upon it.  The caller must have a ref on
2851  * the buffer_head.
2852  */
2853 int sync_dirty_buffer(struct buffer_head *bh)
2854 {
2855 	int ret = 0;
2856 
2857 	WARN_ON(atomic_read(&bh->b_count) < 1);
2858 	lock_buffer(bh);
2859 	if (test_clear_buffer_dirty(bh)) {
2860 		get_bh(bh);
2861 		bh->b_end_io = end_buffer_write_sync;
2862 		ret = submit_bh(WRITE, bh);
2863 		wait_on_buffer(bh);
2864 		if (buffer_eopnotsupp(bh)) {
2865 			clear_buffer_eopnotsupp(bh);
2866 			ret = -EOPNOTSUPP;
2867 		}
2868 		if (!ret && !buffer_uptodate(bh))
2869 			ret = -EIO;
2870 	} else {
2871 		unlock_buffer(bh);
2872 	}
2873 	return ret;
2874 }
2875 
2876 /*
2877  * try_to_free_buffers() checks if all the buffers on this particular page
2878  * are unused, and releases them if so.
2879  *
2880  * Exclusion against try_to_free_buffers may be obtained by either
2881  * locking the page or by holding its mapping's private_lock.
2882  *
2883  * If the page is dirty but all the buffers are clean then we need to
2884  * be sure to mark the page clean as well.  This is because the page
2885  * may be against a block device, and a later reattachment of buffers
2886  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2887  * filesystem data on the same device.
2888  *
2889  * The same applies to regular filesystem pages: if all the buffers are
2890  * clean then we set the page clean and proceed.  To do that, we require
2891  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2892  * private_lock.
2893  *
2894  * try_to_free_buffers() is non-blocking.
2895  */
2896 static inline int buffer_busy(struct buffer_head *bh)
2897 {
2898 	return atomic_read(&bh->b_count) |
2899 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2900 }
2901 
2902 static int
2903 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2904 {
2905 	struct buffer_head *head = page_buffers(page);
2906 	struct buffer_head *bh;
2907 
2908 	bh = head;
2909 	do {
2910 		if (buffer_write_io_error(bh) && page->mapping)
2911 			set_bit(AS_EIO, &page->mapping->flags);
2912 		if (buffer_busy(bh))
2913 			goto failed;
2914 		bh = bh->b_this_page;
2915 	} while (bh != head);
2916 
2917 	do {
2918 		struct buffer_head *next = bh->b_this_page;
2919 
2920 		if (!list_empty(&bh->b_assoc_buffers))
2921 			__remove_assoc_queue(bh);
2922 		bh = next;
2923 	} while (bh != head);
2924 	*buffers_to_free = head;
2925 	__clear_page_buffers(page);
2926 	return 1;
2927 failed:
2928 	return 0;
2929 }
2930 
2931 int try_to_free_buffers(struct page *page)
2932 {
2933 	struct address_space * const mapping = page->mapping;
2934 	struct buffer_head *buffers_to_free = NULL;
2935 	int ret = 0;
2936 
2937 	BUG_ON(!PageLocked(page));
2938 	if (PageWriteback(page))
2939 		return 0;
2940 
2941 	if (mapping == NULL) {		/* can this still happen? */
2942 		ret = drop_buffers(page, &buffers_to_free);
2943 		goto out;
2944 	}
2945 
2946 	spin_lock(&mapping->private_lock);
2947 	ret = drop_buffers(page, &buffers_to_free);
2948 	if (ret) {
2949 		/*
2950 		 * If the filesystem writes its buffers by hand (eg ext3)
2951 		 * then we can have clean buffers against a dirty page.  We
2952 		 * clean the page here; otherwise later reattachment of buffers
2953 		 * could encounter a non-uptodate page, which is unresolvable.
2954 		 * This only applies in the rare case where try_to_free_buffers
2955 		 * succeeds but the page is not freed.
2956 		 */
2957 		clear_page_dirty(page);
2958 	}
2959 	spin_unlock(&mapping->private_lock);
2960 out:
2961 	if (buffers_to_free) {
2962 		struct buffer_head *bh = buffers_to_free;
2963 
2964 		do {
2965 			struct buffer_head *next = bh->b_this_page;
2966 			free_buffer_head(bh);
2967 			bh = next;
2968 		} while (bh != buffers_to_free);
2969 	}
2970 	return ret;
2971 }
2972 EXPORT_SYMBOL(try_to_free_buffers);
2973 
2974 int block_sync_page(struct page *page)
2975 {
2976 	struct address_space *mapping;
2977 
2978 	smp_mb();
2979 	mapping = page_mapping(page);
2980 	if (mapping)
2981 		blk_run_backing_dev(mapping->backing_dev_info, page);
2982 	return 0;
2983 }
2984 
2985 /*
2986  * There are no bdflush tunables left.  But distributions are
2987  * still running obsolete flush daemons, so we terminate them here.
2988  *
2989  * Use of bdflush() is deprecated and will be removed in a future kernel.
2990  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2991  */
2992 asmlinkage long sys_bdflush(int func, long data)
2993 {
2994 	static int msg_count;
2995 
2996 	if (!capable(CAP_SYS_ADMIN))
2997 		return -EPERM;
2998 
2999 	if (msg_count < 5) {
3000 		msg_count++;
3001 		printk(KERN_INFO
3002 			"warning: process `%s' used the obsolete bdflush"
3003 			" system call\n", current->comm);
3004 		printk(KERN_INFO "Fix your initscripts?\n");
3005 	}
3006 
3007 	if (func == 1)
3008 		do_exit(0);
3009 	return 0;
3010 }
3011 
3012 /*
3013  * Buffer-head allocation
3014  */
3015 static kmem_cache_t *bh_cachep;
3016 
3017 /*
3018  * Once the number of bh's in the machine exceeds this level, we start
3019  * stripping them in writeback.
3020  */
3021 static int max_buffer_heads;
3022 
3023 int buffer_heads_over_limit;
3024 
3025 struct bh_accounting {
3026 	int nr;			/* Number of live bh's */
3027 	int ratelimit;		/* Limit cacheline bouncing */
3028 };
3029 
3030 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3031 
3032 static void recalc_bh_state(void)
3033 {
3034 	int i;
3035 	int tot = 0;
3036 
3037 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3038 		return;
3039 	__get_cpu_var(bh_accounting).ratelimit = 0;
3040 	for_each_cpu(i)
3041 		tot += per_cpu(bh_accounting, i).nr;
3042 	buffer_heads_over_limit = (tot > max_buffer_heads);
3043 }
3044 
3045 struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags)
3046 {
3047 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3048 	if (ret) {
3049 		preempt_disable();
3050 		__get_cpu_var(bh_accounting).nr++;
3051 		recalc_bh_state();
3052 		preempt_enable();
3053 	}
3054 	return ret;
3055 }
3056 EXPORT_SYMBOL(alloc_buffer_head);
3057 
3058 void free_buffer_head(struct buffer_head *bh)
3059 {
3060 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3061 	kmem_cache_free(bh_cachep, bh);
3062 	preempt_disable();
3063 	__get_cpu_var(bh_accounting).nr--;
3064 	recalc_bh_state();
3065 	preempt_enable();
3066 }
3067 EXPORT_SYMBOL(free_buffer_head);
3068 
3069 static void
3070 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3071 {
3072 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3073 			    SLAB_CTOR_CONSTRUCTOR) {
3074 		struct buffer_head * bh = (struct buffer_head *)data;
3075 
3076 		memset(bh, 0, sizeof(*bh));
3077 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
3078 	}
3079 }
3080 
3081 #ifdef CONFIG_HOTPLUG_CPU
3082 static void buffer_exit_cpu(int cpu)
3083 {
3084 	int i;
3085 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3086 
3087 	for (i = 0; i < BH_LRU_SIZE; i++) {
3088 		brelse(b->bhs[i]);
3089 		b->bhs[i] = NULL;
3090 	}
3091 }
3092 
3093 static int buffer_cpu_notify(struct notifier_block *self,
3094 			      unsigned long action, void *hcpu)
3095 {
3096 	if (action == CPU_DEAD)
3097 		buffer_exit_cpu((unsigned long)hcpu);
3098 	return NOTIFY_OK;
3099 }
3100 #endif /* CONFIG_HOTPLUG_CPU */
3101 
3102 void __init buffer_init(void)
3103 {
3104 	int nrpages;
3105 
3106 	bh_cachep = kmem_cache_create("buffer_head",
3107 			sizeof(struct buffer_head), 0,
3108 			SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3109 
3110 	/*
3111 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3112 	 */
3113 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3114 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3115 	hotcpu_notifier(buffer_cpu_notify, 0);
3116 }
3117 
3118 EXPORT_SYMBOL(__bforget);
3119 EXPORT_SYMBOL(__brelse);
3120 EXPORT_SYMBOL(__wait_on_buffer);
3121 EXPORT_SYMBOL(block_commit_write);
3122 EXPORT_SYMBOL(block_prepare_write);
3123 EXPORT_SYMBOL(block_read_full_page);
3124 EXPORT_SYMBOL(block_sync_page);
3125 EXPORT_SYMBOL(block_truncate_page);
3126 EXPORT_SYMBOL(block_write_full_page);
3127 EXPORT_SYMBOL(cont_prepare_write);
3128 EXPORT_SYMBOL(end_buffer_async_write);
3129 EXPORT_SYMBOL(end_buffer_read_sync);
3130 EXPORT_SYMBOL(end_buffer_write_sync);
3131 EXPORT_SYMBOL(file_fsync);
3132 EXPORT_SYMBOL(fsync_bdev);
3133 EXPORT_SYMBOL(generic_block_bmap);
3134 EXPORT_SYMBOL(generic_commit_write);
3135 EXPORT_SYMBOL(generic_cont_expand);
3136 EXPORT_SYMBOL(init_buffer);
3137 EXPORT_SYMBOL(invalidate_bdev);
3138 EXPORT_SYMBOL(ll_rw_block);
3139 EXPORT_SYMBOL(mark_buffer_dirty);
3140 EXPORT_SYMBOL(submit_bh);
3141 EXPORT_SYMBOL(sync_dirty_buffer);
3142 EXPORT_SYMBOL(unlock_buffer);
3143