xref: /linux/fs/btrfs/zoned.c (revision 778e73d2411abc8f3a2d60dbf038acaec218792e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22 
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29 
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
40 
41 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43 
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46 
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
56 
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
65 
66 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67 
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70 
71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73 	return (zone->cond == BLK_ZONE_COND_FULL) ||
74 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76 
77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79 	struct blk_zone *zones = data;
80 
81 	memcpy(&zones[idx], zone, sizeof(*zone));
82 
83 	return 0;
84 }
85 
86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 			    u64 *wp_ret)
88 {
89 	bool empty[BTRFS_NR_SB_LOG_ZONES];
90 	bool full[BTRFS_NR_SB_LOG_ZONES];
91 	sector_t sector;
92 	int i;
93 
94 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 		full[i] = sb_zone_is_full(&zones[i]);
98 	}
99 
100 	/*
101 	 * Possible states of log buffer zones
102 	 *
103 	 *           Empty[0]  In use[0]  Full[0]
104 	 * Empty[1]         *          0        1
105 	 * In use[1]        x          x        1
106 	 * Full[1]          0          0        C
107 	 *
108 	 * Log position:
109 	 *   *: Special case, no superblock is written
110 	 *   0: Use write pointer of zones[0]
111 	 *   1: Use write pointer of zones[1]
112 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
113 	 *      one determined by generation
114 	 *   x: Invalid state
115 	 */
116 
117 	if (empty[0] && empty[1]) {
118 		/* Special case to distinguish no superblock to read */
119 		*wp_ret = zones[0].start << SECTOR_SHIFT;
120 		return -ENOENT;
121 	} else if (full[0] && full[1]) {
122 		/* Compare two super blocks */
123 		struct address_space *mapping = bdev->bd_inode->i_mapping;
124 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 		int i;
127 
128 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 						BTRFS_SUPER_INFO_SIZE;
132 
133 			page[i] = read_cache_page_gfp(mapping,
134 					bytenr >> PAGE_SHIFT, GFP_NOFS);
135 			if (IS_ERR(page[i])) {
136 				if (i == 1)
137 					btrfs_release_disk_super(super[0]);
138 				return PTR_ERR(page[i]);
139 			}
140 			super[i] = page_address(page[i]);
141 		}
142 
143 		if (btrfs_super_generation(super[0]) >
144 		    btrfs_super_generation(super[1]))
145 			sector = zones[1].start;
146 		else
147 			sector = zones[0].start;
148 
149 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 			btrfs_release_disk_super(super[i]);
151 	} else if (!full[0] && (empty[1] || full[1])) {
152 		sector = zones[0].wp;
153 	} else if (full[0]) {
154 		sector = zones[1].wp;
155 	} else {
156 		return -EUCLEAN;
157 	}
158 	*wp_ret = sector << SECTOR_SHIFT;
159 	return 0;
160 }
161 
162 /*
163  * Get the first zone number of the superblock mirror
164  */
165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 	u64 zone = U64_MAX;
168 
169 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 	switch (mirror) {
171 	case 0: zone = 0; break;
172 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 	}
175 
176 	ASSERT(zone <= U32_MAX);
177 
178 	return (u32)zone;
179 }
180 
181 static inline sector_t zone_start_sector(u32 zone_number,
182 					 struct block_device *bdev)
183 {
184 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186 
187 static inline u64 zone_start_physical(u32 zone_number,
188 				      struct btrfs_zoned_device_info *zone_info)
189 {
190 	return (u64)zone_number << zone_info->zone_size_shift;
191 }
192 
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 				struct blk_zone *zones, unsigned int nr_zones)
200 {
201 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 	unsigned int i;
204 
205 	pos >>= SECTOR_SHIFT;
206 	for (i = 0; i < nr_zones; i++) {
207 		zones[i].start = i * zone_sectors + pos;
208 		zones[i].len = zone_sectors;
209 		zones[i].capacity = zone_sectors;
210 		zones[i].wp = zones[i].start + zone_sectors;
211 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
213 
214 		if (zones[i].wp >= bdev_size) {
215 			i++;
216 			break;
217 		}
218 	}
219 
220 	return i;
221 }
222 
223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 			       struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 	int ret;
228 
229 	if (!*nr_zones)
230 		return 0;
231 
232 	if (!bdev_is_zoned(device->bdev)) {
233 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 		*nr_zones = ret;
235 		return 0;
236 	}
237 
238 	/* Check cache */
239 	if (zinfo->zone_cache) {
240 		unsigned int i;
241 		u32 zno;
242 
243 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 		zno = pos >> zinfo->zone_size_shift;
245 		/*
246 		 * We cannot report zones beyond the zone end. So, it is OK to
247 		 * cap *nr_zones to at the end.
248 		 */
249 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250 
251 		for (i = 0; i < *nr_zones; i++) {
252 			struct blk_zone *zone_info;
253 
254 			zone_info = &zinfo->zone_cache[zno + i];
255 			if (!zone_info->len)
256 				break;
257 		}
258 
259 		if (i == *nr_zones) {
260 			/* Cache hit on all the zones */
261 			memcpy(zones, zinfo->zone_cache + zno,
262 			       sizeof(*zinfo->zone_cache) * *nr_zones);
263 			return 0;
264 		}
265 	}
266 
267 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 				  copy_zone_info_cb, zones);
269 	if (ret < 0) {
270 		btrfs_err_in_rcu(device->fs_info,
271 				 "zoned: failed to read zone %llu on %s (devid %llu)",
272 				 pos, rcu_str_deref(device->name),
273 				 device->devid);
274 		return ret;
275 	}
276 	*nr_zones = ret;
277 	if (!ret)
278 		return -EIO;
279 
280 	/* Populate cache */
281 	if (zinfo->zone_cache) {
282 		u32 zno = pos >> zinfo->zone_size_shift;
283 
284 		memcpy(zinfo->zone_cache + zno, zones,
285 		       sizeof(*zinfo->zone_cache) * *nr_zones);
286 	}
287 
288 	return 0;
289 }
290 
291 /* The emulated zone size is determined from the size of device extent */
292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 	struct btrfs_path *path;
295 	struct btrfs_root *root = fs_info->dev_root;
296 	struct btrfs_key key;
297 	struct extent_buffer *leaf;
298 	struct btrfs_dev_extent *dext;
299 	int ret = 0;
300 
301 	key.objectid = 1;
302 	key.type = BTRFS_DEV_EXTENT_KEY;
303 	key.offset = 0;
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 	if (ret < 0)
311 		goto out;
312 
313 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 		ret = btrfs_next_leaf(root, path);
315 		if (ret < 0)
316 			goto out;
317 		/* No dev extents at all? Not good */
318 		if (ret > 0) {
319 			ret = -EUCLEAN;
320 			goto out;
321 		}
322 	}
323 
324 	leaf = path->nodes[0];
325 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 	ret = 0;
328 
329 out:
330 	btrfs_free_path(path);
331 
332 	return ret;
333 }
334 
335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 	struct btrfs_device *device;
339 	int ret = 0;
340 
341 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 	if (!btrfs_fs_incompat(fs_info, ZONED))
343 		return 0;
344 
345 	mutex_lock(&fs_devices->device_list_mutex);
346 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 		/* We can skip reading of zone info for missing devices */
348 		if (!device->bdev)
349 			continue;
350 
351 		ret = btrfs_get_dev_zone_info(device, true);
352 		if (ret)
353 			break;
354 	}
355 	mutex_unlock(&fs_devices->device_list_mutex);
356 
357 	return ret;
358 }
359 
360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362 	struct btrfs_fs_info *fs_info = device->fs_info;
363 	struct btrfs_zoned_device_info *zone_info = NULL;
364 	struct block_device *bdev = device->bdev;
365 	unsigned int max_active_zones;
366 	unsigned int nactive;
367 	sector_t nr_sectors;
368 	sector_t sector = 0;
369 	struct blk_zone *zones = NULL;
370 	unsigned int i, nreported = 0, nr_zones;
371 	sector_t zone_sectors;
372 	char *model, *emulated;
373 	int ret;
374 
375 	/*
376 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 	 * yet be set.
378 	 */
379 	if (!btrfs_fs_incompat(fs_info, ZONED))
380 		return 0;
381 
382 	if (device->zone_info)
383 		return 0;
384 
385 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 	if (!zone_info)
387 		return -ENOMEM;
388 
389 	device->zone_info = zone_info;
390 
391 	if (!bdev_is_zoned(bdev)) {
392 		if (!fs_info->zone_size) {
393 			ret = calculate_emulated_zone_size(fs_info);
394 			if (ret)
395 				goto out;
396 		}
397 
398 		ASSERT(fs_info->zone_size);
399 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 	} else {
401 		zone_sectors = bdev_zone_sectors(bdev);
402 	}
403 
404 	ASSERT(is_power_of_two_u64(zone_sectors));
405 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406 
407 	/* We reject devices with a zone size larger than 8GB */
408 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 		btrfs_err_in_rcu(fs_info,
410 		"zoned: %s: zone size %llu larger than supported maximum %llu",
411 				 rcu_str_deref(device->name),
412 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 		ret = -EINVAL;
414 		goto out;
415 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 		btrfs_err_in_rcu(fs_info,
417 		"zoned: %s: zone size %llu smaller than supported minimum %u",
418 				 rcu_str_deref(device->name),
419 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 		ret = -EINVAL;
421 		goto out;
422 	}
423 
424 	nr_sectors = bdev_nr_sectors(bdev);
425 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 		zone_info->nr_zones++;
429 
430 	max_active_zones = bdev_max_active_zones(bdev);
431 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 		btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434 				 rcu_str_deref(device->name), max_active_zones,
435 				 BTRFS_MIN_ACTIVE_ZONES);
436 		ret = -EINVAL;
437 		goto out;
438 	}
439 	zone_info->max_active_zones = max_active_zones;
440 
441 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 	if (!zone_info->seq_zones) {
443 		ret = -ENOMEM;
444 		goto out;
445 	}
446 
447 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 	if (!zone_info->empty_zones) {
449 		ret = -ENOMEM;
450 		goto out;
451 	}
452 
453 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 	if (!zone_info->active_zones) {
455 		ret = -ENOMEM;
456 		goto out;
457 	}
458 
459 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460 	if (!zones) {
461 		ret = -ENOMEM;
462 		goto out;
463 	}
464 
465 	/*
466 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 	 * use the cache.
469 	 */
470 	if (populate_cache && bdev_is_zoned(device->bdev)) {
471 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 						sizeof(struct blk_zone));
473 		if (!zone_info->zone_cache) {
474 			btrfs_err_in_rcu(device->fs_info,
475 				"zoned: failed to allocate zone cache for %s",
476 				rcu_str_deref(device->name));
477 			ret = -ENOMEM;
478 			goto out;
479 		}
480 	}
481 
482 	/* Get zones type */
483 	nactive = 0;
484 	while (sector < nr_sectors) {
485 		nr_zones = BTRFS_REPORT_NR_ZONES;
486 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 					  &nr_zones);
488 		if (ret)
489 			goto out;
490 
491 		for (i = 0; i < nr_zones; i++) {
492 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 				__set_bit(nreported, zone_info->seq_zones);
494 			switch (zones[i].cond) {
495 			case BLK_ZONE_COND_EMPTY:
496 				__set_bit(nreported, zone_info->empty_zones);
497 				break;
498 			case BLK_ZONE_COND_IMP_OPEN:
499 			case BLK_ZONE_COND_EXP_OPEN:
500 			case BLK_ZONE_COND_CLOSED:
501 				__set_bit(nreported, zone_info->active_zones);
502 				nactive++;
503 				break;
504 			}
505 			nreported++;
506 		}
507 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 	}
509 
510 	if (nreported != zone_info->nr_zones) {
511 		btrfs_err_in_rcu(device->fs_info,
512 				 "inconsistent number of zones on %s (%u/%u)",
513 				 rcu_str_deref(device->name), nreported,
514 				 zone_info->nr_zones);
515 		ret = -EIO;
516 		goto out;
517 	}
518 
519 	if (max_active_zones) {
520 		if (nactive > max_active_zones) {
521 			btrfs_err_in_rcu(device->fs_info,
522 			"zoned: %u active zones on %s exceeds max_active_zones %u",
523 					 nactive, rcu_str_deref(device->name),
524 					 max_active_zones);
525 			ret = -EIO;
526 			goto out;
527 		}
528 		atomic_set(&zone_info->active_zones_left,
529 			   max_active_zones - nactive);
530 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531 	}
532 
533 	/* Validate superblock log */
534 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 		u32 sb_zone;
537 		u64 sb_wp;
538 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539 
540 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 		if (sb_zone + 1 >= zone_info->nr_zones)
542 			continue;
543 
544 		ret = btrfs_get_dev_zones(device,
545 					  zone_start_physical(sb_zone, zone_info),
546 					  &zone_info->sb_zones[sb_pos],
547 					  &nr_zones);
548 		if (ret)
549 			goto out;
550 
551 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 			btrfs_err_in_rcu(device->fs_info,
553 	"zoned: failed to read super block log zone info at devid %llu zone %u",
554 					 device->devid, sb_zone);
555 			ret = -EUCLEAN;
556 			goto out;
557 		}
558 
559 		/*
560 		 * If zones[0] is conventional, always use the beginning of the
561 		 * zone to record superblock. No need to validate in that case.
562 		 */
563 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 		    BLK_ZONE_TYPE_CONVENTIONAL)
565 			continue;
566 
567 		ret = sb_write_pointer(device->bdev,
568 				       &zone_info->sb_zones[sb_pos], &sb_wp);
569 		if (ret != -ENOENT && ret) {
570 			btrfs_err_in_rcu(device->fs_info,
571 			"zoned: super block log zone corrupted devid %llu zone %u",
572 					 device->devid, sb_zone);
573 			ret = -EUCLEAN;
574 			goto out;
575 		}
576 	}
577 
578 
579 	kvfree(zones);
580 
581 	switch (bdev_zoned_model(bdev)) {
582 	case BLK_ZONED_HM:
583 		model = "host-managed zoned";
584 		emulated = "";
585 		break;
586 	case BLK_ZONED_HA:
587 		model = "host-aware zoned";
588 		emulated = "";
589 		break;
590 	case BLK_ZONED_NONE:
591 		model = "regular";
592 		emulated = "emulated ";
593 		break;
594 	default:
595 		/* Just in case */
596 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 				 bdev_zoned_model(bdev),
598 				 rcu_str_deref(device->name));
599 		ret = -EOPNOTSUPP;
600 		goto out_free_zone_info;
601 	}
602 
603 	btrfs_info_in_rcu(fs_info,
604 		"%s block device %s, %u %szones of %llu bytes",
605 		model, rcu_str_deref(device->name), zone_info->nr_zones,
606 		emulated, zone_info->zone_size);
607 
608 	return 0;
609 
610 out:
611 	kvfree(zones);
612 out_free_zone_info:
613 	btrfs_destroy_dev_zone_info(device);
614 
615 	return ret;
616 }
617 
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
621 
622 	if (!zone_info)
623 		return;
624 
625 	bitmap_free(zone_info->active_zones);
626 	bitmap_free(zone_info->seq_zones);
627 	bitmap_free(zone_info->empty_zones);
628 	vfree(zone_info->zone_cache);
629 	kfree(zone_info);
630 	device->zone_info = NULL;
631 }
632 
633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635 	struct btrfs_zoned_device_info *zone_info;
636 
637 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638 	if (!zone_info)
639 		return NULL;
640 
641 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 	if (!zone_info->seq_zones)
643 		goto out;
644 
645 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646 		    zone_info->nr_zones);
647 
648 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649 	if (!zone_info->empty_zones)
650 		goto out;
651 
652 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653 		    zone_info->nr_zones);
654 
655 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656 	if (!zone_info->active_zones)
657 		goto out;
658 
659 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660 		    zone_info->nr_zones);
661 	zone_info->zone_cache = NULL;
662 
663 	return zone_info;
664 
665 out:
666 	bitmap_free(zone_info->seq_zones);
667 	bitmap_free(zone_info->empty_zones);
668 	bitmap_free(zone_info->active_zones);
669 	kfree(zone_info);
670 	return NULL;
671 }
672 
673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674 		       struct blk_zone *zone)
675 {
676 	unsigned int nr_zones = 1;
677 	int ret;
678 
679 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680 	if (ret != 0 || !nr_zones)
681 		return ret ? ret : -EIO;
682 
683 	return 0;
684 }
685 
686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688 	struct btrfs_device *device;
689 
690 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 		if (device->bdev &&
692 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693 			btrfs_err(fs_info,
694 				"zoned: mode not enabled but zoned device found: %pg",
695 				device->bdev);
696 			return -EINVAL;
697 		}
698 	}
699 
700 	return 0;
701 }
702 
703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705 	struct queue_limits *lim = &fs_info->limits;
706 	struct btrfs_device *device;
707 	u64 zone_size = 0;
708 	int ret;
709 
710 	/*
711 	 * Host-Managed devices can't be used without the ZONED flag.  With the
712 	 * ZONED all devices can be used, using zone emulation if required.
713 	 */
714 	if (!btrfs_fs_incompat(fs_info, ZONED))
715 		return btrfs_check_for_zoned_device(fs_info);
716 
717 	blk_set_stacking_limits(lim);
718 
719 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
721 
722 		if (!device->bdev)
723 			continue;
724 
725 		if (!zone_size) {
726 			zone_size = zone_info->zone_size;
727 		} else if (zone_info->zone_size != zone_size) {
728 			btrfs_err(fs_info,
729 		"zoned: unequal block device zone sizes: have %llu found %llu",
730 				  zone_info->zone_size, zone_size);
731 			return -EINVAL;
732 		}
733 
734 		/*
735 		 * With the zoned emulation, we can have non-zoned device on the
736 		 * zoned mode. In this case, we don't have a valid max zone
737 		 * append size.
738 		 */
739 		if (bdev_is_zoned(device->bdev)) {
740 			blk_stack_limits(lim,
741 					 &bdev_get_queue(device->bdev)->limits,
742 					 0);
743 		}
744 	}
745 
746 	/*
747 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749 	 * check the alignment here.
750 	 */
751 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 		btrfs_err(fs_info,
753 			  "zoned: zone size %llu not aligned to stripe %u",
754 			  zone_size, BTRFS_STRIPE_LEN);
755 		return -EINVAL;
756 	}
757 
758 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
760 		return -EINVAL;
761 	}
762 
763 	fs_info->zone_size = zone_size;
764 	/*
765 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766 	 * Technically, we can have multiple pages per segment. But, since
767 	 * we add the pages one by one to a bio, and cannot increase the
768 	 * metadata reservation even if it increases the number of extents, it
769 	 * is safe to stick with the limit.
770 	 */
771 	fs_info->max_zone_append_size = ALIGN_DOWN(
772 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773 		     (u64)lim->max_sectors << SECTOR_SHIFT,
774 		     (u64)lim->max_segments << PAGE_SHIFT),
775 		fs_info->sectorsize);
776 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778 		fs_info->max_extent_size = fs_info->max_zone_append_size;
779 
780 	/*
781 	 * Check mount options here, because we might change fs_info->zoned
782 	 * from fs_info->zone_size.
783 	 */
784 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
785 	if (ret)
786 		return ret;
787 
788 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789 	return 0;
790 }
791 
792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
793 {
794 	if (!btrfs_is_zoned(info))
795 		return 0;
796 
797 	/*
798 	 * Space cache writing is not COWed. Disable that to avoid write errors
799 	 * in sequential zones.
800 	 */
801 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
802 		btrfs_err(info, "zoned: space cache v1 is not supported");
803 		return -EINVAL;
804 	}
805 
806 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
807 		btrfs_err(info, "zoned: NODATACOW not supported");
808 		return -EINVAL;
809 	}
810 
811 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
812 		btrfs_info(info,
813 			   "zoned: async discard ignored and disabled for zoned mode");
814 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
815 	}
816 
817 	return 0;
818 }
819 
820 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
821 			   int rw, u64 *bytenr_ret)
822 {
823 	u64 wp;
824 	int ret;
825 
826 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
827 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
828 		return 0;
829 	}
830 
831 	ret = sb_write_pointer(bdev, zones, &wp);
832 	if (ret != -ENOENT && ret < 0)
833 		return ret;
834 
835 	if (rw == WRITE) {
836 		struct blk_zone *reset = NULL;
837 
838 		if (wp == zones[0].start << SECTOR_SHIFT)
839 			reset = &zones[0];
840 		else if (wp == zones[1].start << SECTOR_SHIFT)
841 			reset = &zones[1];
842 
843 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
844 			ASSERT(sb_zone_is_full(reset));
845 
846 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
847 					       reset->start, reset->len,
848 					       GFP_NOFS);
849 			if (ret)
850 				return ret;
851 
852 			reset->cond = BLK_ZONE_COND_EMPTY;
853 			reset->wp = reset->start;
854 		}
855 	} else if (ret != -ENOENT) {
856 		/*
857 		 * For READ, we want the previous one. Move write pointer to
858 		 * the end of a zone, if it is at the head of a zone.
859 		 */
860 		u64 zone_end = 0;
861 
862 		if (wp == zones[0].start << SECTOR_SHIFT)
863 			zone_end = zones[1].start + zones[1].capacity;
864 		else if (wp == zones[1].start << SECTOR_SHIFT)
865 			zone_end = zones[0].start + zones[0].capacity;
866 		if (zone_end)
867 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
868 					BTRFS_SUPER_INFO_SIZE);
869 
870 		wp -= BTRFS_SUPER_INFO_SIZE;
871 	}
872 
873 	*bytenr_ret = wp;
874 	return 0;
875 
876 }
877 
878 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
879 			       u64 *bytenr_ret)
880 {
881 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
882 	sector_t zone_sectors;
883 	u32 sb_zone;
884 	int ret;
885 	u8 zone_sectors_shift;
886 	sector_t nr_sectors;
887 	u32 nr_zones;
888 
889 	if (!bdev_is_zoned(bdev)) {
890 		*bytenr_ret = btrfs_sb_offset(mirror);
891 		return 0;
892 	}
893 
894 	ASSERT(rw == READ || rw == WRITE);
895 
896 	zone_sectors = bdev_zone_sectors(bdev);
897 	if (!is_power_of_2(zone_sectors))
898 		return -EINVAL;
899 	zone_sectors_shift = ilog2(zone_sectors);
900 	nr_sectors = bdev_nr_sectors(bdev);
901 	nr_zones = nr_sectors >> zone_sectors_shift;
902 
903 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
904 	if (sb_zone + 1 >= nr_zones)
905 		return -ENOENT;
906 
907 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
908 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
909 				  zones);
910 	if (ret < 0)
911 		return ret;
912 	if (ret != BTRFS_NR_SB_LOG_ZONES)
913 		return -EIO;
914 
915 	return sb_log_location(bdev, zones, rw, bytenr_ret);
916 }
917 
918 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
919 			  u64 *bytenr_ret)
920 {
921 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
922 	u32 zone_num;
923 
924 	/*
925 	 * For a zoned filesystem on a non-zoned block device, use the same
926 	 * super block locations as regular filesystem. Doing so, the super
927 	 * block can always be retrieved and the zoned flag of the volume
928 	 * detected from the super block information.
929 	 */
930 	if (!bdev_is_zoned(device->bdev)) {
931 		*bytenr_ret = btrfs_sb_offset(mirror);
932 		return 0;
933 	}
934 
935 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
936 	if (zone_num + 1 >= zinfo->nr_zones)
937 		return -ENOENT;
938 
939 	return sb_log_location(device->bdev,
940 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
941 			       rw, bytenr_ret);
942 }
943 
944 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
945 				  int mirror)
946 {
947 	u32 zone_num;
948 
949 	if (!zinfo)
950 		return false;
951 
952 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
953 	if (zone_num + 1 >= zinfo->nr_zones)
954 		return false;
955 
956 	if (!test_bit(zone_num, zinfo->seq_zones))
957 		return false;
958 
959 	return true;
960 }
961 
962 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
963 {
964 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
965 	struct blk_zone *zone;
966 	int i;
967 
968 	if (!is_sb_log_zone(zinfo, mirror))
969 		return 0;
970 
971 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
972 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
973 		/* Advance the next zone */
974 		if (zone->cond == BLK_ZONE_COND_FULL) {
975 			zone++;
976 			continue;
977 		}
978 
979 		if (zone->cond == BLK_ZONE_COND_EMPTY)
980 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
981 
982 		zone->wp += SUPER_INFO_SECTORS;
983 
984 		if (sb_zone_is_full(zone)) {
985 			/*
986 			 * No room left to write new superblock. Since
987 			 * superblock is written with REQ_SYNC, it is safe to
988 			 * finish the zone now.
989 			 *
990 			 * If the write pointer is exactly at the capacity,
991 			 * explicit ZONE_FINISH is not necessary.
992 			 */
993 			if (zone->wp != zone->start + zone->capacity) {
994 				int ret;
995 
996 				ret = blkdev_zone_mgmt(device->bdev,
997 						REQ_OP_ZONE_FINISH, zone->start,
998 						zone->len, GFP_NOFS);
999 				if (ret)
1000 					return ret;
1001 			}
1002 
1003 			zone->wp = zone->start + zone->len;
1004 			zone->cond = BLK_ZONE_COND_FULL;
1005 		}
1006 		return 0;
1007 	}
1008 
1009 	/* All the zones are FULL. Should not reach here. */
1010 	ASSERT(0);
1011 	return -EIO;
1012 }
1013 
1014 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1015 {
1016 	sector_t zone_sectors;
1017 	sector_t nr_sectors;
1018 	u8 zone_sectors_shift;
1019 	u32 sb_zone;
1020 	u32 nr_zones;
1021 
1022 	zone_sectors = bdev_zone_sectors(bdev);
1023 	zone_sectors_shift = ilog2(zone_sectors);
1024 	nr_sectors = bdev_nr_sectors(bdev);
1025 	nr_zones = nr_sectors >> zone_sectors_shift;
1026 
1027 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1028 	if (sb_zone + 1 >= nr_zones)
1029 		return -ENOENT;
1030 
1031 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1032 				zone_start_sector(sb_zone, bdev),
1033 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1034 }
1035 
1036 /*
1037  * Find allocatable zones within a given region.
1038  *
1039  * @device:	the device to allocate a region on
1040  * @hole_start: the position of the hole to allocate the region
1041  * @num_bytes:	size of wanted region
1042  * @hole_end:	the end of the hole
1043  * @return:	position of allocatable zones
1044  *
1045  * Allocatable region should not contain any superblock locations.
1046  */
1047 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1048 				 u64 hole_end, u64 num_bytes)
1049 {
1050 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1051 	const u8 shift = zinfo->zone_size_shift;
1052 	u64 nzones = num_bytes >> shift;
1053 	u64 pos = hole_start;
1054 	u64 begin, end;
1055 	bool have_sb;
1056 	int i;
1057 
1058 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1059 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1060 
1061 	while (pos < hole_end) {
1062 		begin = pos >> shift;
1063 		end = begin + nzones;
1064 
1065 		if (end > zinfo->nr_zones)
1066 			return hole_end;
1067 
1068 		/* Check if zones in the region are all empty */
1069 		if (btrfs_dev_is_sequential(device, pos) &&
1070 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1071 			pos += zinfo->zone_size;
1072 			continue;
1073 		}
1074 
1075 		have_sb = false;
1076 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1077 			u32 sb_zone;
1078 			u64 sb_pos;
1079 
1080 			sb_zone = sb_zone_number(shift, i);
1081 			if (!(end <= sb_zone ||
1082 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1083 				have_sb = true;
1084 				pos = zone_start_physical(
1085 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1086 				break;
1087 			}
1088 
1089 			/* We also need to exclude regular superblock positions */
1090 			sb_pos = btrfs_sb_offset(i);
1091 			if (!(pos + num_bytes <= sb_pos ||
1092 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1093 				have_sb = true;
1094 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1095 					    zinfo->zone_size);
1096 				break;
1097 			}
1098 		}
1099 		if (!have_sb)
1100 			break;
1101 	}
1102 
1103 	return pos;
1104 }
1105 
1106 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1107 {
1108 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1109 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1110 
1111 	/* We can use any number of zones */
1112 	if (zone_info->max_active_zones == 0)
1113 		return true;
1114 
1115 	if (!test_bit(zno, zone_info->active_zones)) {
1116 		/* Active zone left? */
1117 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1118 			return false;
1119 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1120 			/* Someone already set the bit */
1121 			atomic_inc(&zone_info->active_zones_left);
1122 		}
1123 	}
1124 
1125 	return true;
1126 }
1127 
1128 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1129 {
1130 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1131 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1132 
1133 	/* We can use any number of zones */
1134 	if (zone_info->max_active_zones == 0)
1135 		return;
1136 
1137 	if (test_and_clear_bit(zno, zone_info->active_zones))
1138 		atomic_inc(&zone_info->active_zones_left);
1139 }
1140 
1141 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1142 			    u64 length, u64 *bytes)
1143 {
1144 	int ret;
1145 
1146 	*bytes = 0;
1147 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1148 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1149 			       GFP_NOFS);
1150 	if (ret)
1151 		return ret;
1152 
1153 	*bytes = length;
1154 	while (length) {
1155 		btrfs_dev_set_zone_empty(device, physical);
1156 		btrfs_dev_clear_active_zone(device, physical);
1157 		physical += device->zone_info->zone_size;
1158 		length -= device->zone_info->zone_size;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1165 {
1166 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1167 	const u8 shift = zinfo->zone_size_shift;
1168 	unsigned long begin = start >> shift;
1169 	unsigned long nbits = size >> shift;
1170 	u64 pos;
1171 	int ret;
1172 
1173 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1174 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1175 
1176 	if (begin + nbits > zinfo->nr_zones)
1177 		return -ERANGE;
1178 
1179 	/* All the zones are conventional */
1180 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1181 		return 0;
1182 
1183 	/* All the zones are sequential and empty */
1184 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1185 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1186 		return 0;
1187 
1188 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1189 		u64 reset_bytes;
1190 
1191 		if (!btrfs_dev_is_sequential(device, pos) ||
1192 		    btrfs_dev_is_empty_zone(device, pos))
1193 			continue;
1194 
1195 		/* Free regions should be empty */
1196 		btrfs_warn_in_rcu(
1197 			device->fs_info,
1198 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1199 			rcu_str_deref(device->name), device->devid, pos >> shift);
1200 		WARN_ON_ONCE(1);
1201 
1202 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1203 					      &reset_bytes);
1204 		if (ret)
1205 			return ret;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Calculate an allocation pointer from the extent allocation information
1213  * for a block group consist of conventional zones. It is pointed to the
1214  * end of the highest addressed extent in the block group as an allocation
1215  * offset.
1216  */
1217 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1218 				   u64 *offset_ret, bool new)
1219 {
1220 	struct btrfs_fs_info *fs_info = cache->fs_info;
1221 	struct btrfs_root *root;
1222 	struct btrfs_path *path;
1223 	struct btrfs_key key;
1224 	struct btrfs_key found_key;
1225 	int ret;
1226 	u64 length;
1227 
1228 	/*
1229 	 * Avoid  tree lookups for a new block group, there's no use for it.
1230 	 * It must always be 0.
1231 	 *
1232 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1233 	 * For new a block group, this function is called from
1234 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1235 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1236 	 * buffer locks to avoid deadlock.
1237 	 */
1238 	if (new) {
1239 		*offset_ret = 0;
1240 		return 0;
1241 	}
1242 
1243 	path = btrfs_alloc_path();
1244 	if (!path)
1245 		return -ENOMEM;
1246 
1247 	key.objectid = cache->start + cache->length;
1248 	key.type = 0;
1249 	key.offset = 0;
1250 
1251 	root = btrfs_extent_root(fs_info, key.objectid);
1252 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1253 	/* We should not find the exact match */
1254 	if (!ret)
1255 		ret = -EUCLEAN;
1256 	if (ret < 0)
1257 		goto out;
1258 
1259 	ret = btrfs_previous_extent_item(root, path, cache->start);
1260 	if (ret) {
1261 		if (ret == 1) {
1262 			ret = 0;
1263 			*offset_ret = 0;
1264 		}
1265 		goto out;
1266 	}
1267 
1268 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1269 
1270 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1271 		length = found_key.offset;
1272 	else
1273 		length = fs_info->nodesize;
1274 
1275 	if (!(found_key.objectid >= cache->start &&
1276 	       found_key.objectid + length <= cache->start + cache->length)) {
1277 		ret = -EUCLEAN;
1278 		goto out;
1279 	}
1280 	*offset_ret = found_key.objectid + length - cache->start;
1281 	ret = 0;
1282 
1283 out:
1284 	btrfs_free_path(path);
1285 	return ret;
1286 }
1287 
1288 struct zone_info {
1289 	u64 physical;
1290 	u64 capacity;
1291 	u64 alloc_offset;
1292 };
1293 
1294 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1295 				struct zone_info *info, unsigned long *active,
1296 				struct btrfs_chunk_map *map)
1297 {
1298 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1299 	struct btrfs_device *device = map->stripes[zone_idx].dev;
1300 	int dev_replace_is_ongoing = 0;
1301 	unsigned int nofs_flag;
1302 	struct blk_zone zone;
1303 	int ret;
1304 
1305 	info->physical = map->stripes[zone_idx].physical;
1306 
1307 	if (!device->bdev) {
1308 		info->alloc_offset = WP_MISSING_DEV;
1309 		return 0;
1310 	}
1311 
1312 	/* Consider a zone as active if we can allow any number of active zones. */
1313 	if (!device->zone_info->max_active_zones)
1314 		__set_bit(zone_idx, active);
1315 
1316 	if (!btrfs_dev_is_sequential(device, info->physical)) {
1317 		info->alloc_offset = WP_CONVENTIONAL;
1318 		return 0;
1319 	}
1320 
1321 	/* This zone will be used for allocation, so mark this zone non-empty. */
1322 	btrfs_dev_clear_zone_empty(device, info->physical);
1323 
1324 	down_read(&dev_replace->rwsem);
1325 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1326 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1327 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1328 	up_read(&dev_replace->rwsem);
1329 
1330 	/*
1331 	 * The group is mapped to a sequential zone. Get the zone write pointer
1332 	 * to determine the allocation offset within the zone.
1333 	 */
1334 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1335 	nofs_flag = memalloc_nofs_save();
1336 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1337 	memalloc_nofs_restore(nofs_flag);
1338 	if (ret) {
1339 		if (ret != -EIO && ret != -EOPNOTSUPP)
1340 			return ret;
1341 		info->alloc_offset = WP_MISSING_DEV;
1342 		return 0;
1343 	}
1344 
1345 	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1346 		btrfs_err_in_rcu(fs_info,
1347 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1348 			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1349 			device->devid);
1350 		return -EIO;
1351 	}
1352 
1353 	info->capacity = (zone.capacity << SECTOR_SHIFT);
1354 
1355 	switch (zone.cond) {
1356 	case BLK_ZONE_COND_OFFLINE:
1357 	case BLK_ZONE_COND_READONLY:
1358 		btrfs_err(fs_info,
1359 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1360 			  (info->physical >> device->zone_info->zone_size_shift),
1361 			  rcu_str_deref(device->name), device->devid);
1362 		info->alloc_offset = WP_MISSING_DEV;
1363 		break;
1364 	case BLK_ZONE_COND_EMPTY:
1365 		info->alloc_offset = 0;
1366 		break;
1367 	case BLK_ZONE_COND_FULL:
1368 		info->alloc_offset = info->capacity;
1369 		break;
1370 	default:
1371 		/* Partially used zone. */
1372 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1373 		__set_bit(zone_idx, active);
1374 		break;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1381 					 struct zone_info *info,
1382 					 unsigned long *active)
1383 {
1384 	if (info->alloc_offset == WP_MISSING_DEV) {
1385 		btrfs_err(bg->fs_info,
1386 			"zoned: cannot recover write pointer for zone %llu",
1387 			info->physical);
1388 		return -EIO;
1389 	}
1390 
1391 	bg->alloc_offset = info->alloc_offset;
1392 	bg->zone_capacity = info->capacity;
1393 	if (test_bit(0, active))
1394 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1395 	return 0;
1396 }
1397 
1398 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1399 				      struct btrfs_chunk_map *map,
1400 				      struct zone_info *zone_info,
1401 				      unsigned long *active)
1402 {
1403 	struct btrfs_fs_info *fs_info = bg->fs_info;
1404 
1405 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1406 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1407 		return -EINVAL;
1408 	}
1409 
1410 	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1411 		btrfs_err(bg->fs_info,
1412 			  "zoned: cannot recover write pointer for zone %llu",
1413 			  zone_info[0].physical);
1414 		return -EIO;
1415 	}
1416 	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1417 		btrfs_err(bg->fs_info,
1418 			  "zoned: cannot recover write pointer for zone %llu",
1419 			  zone_info[1].physical);
1420 		return -EIO;
1421 	}
1422 	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1423 		btrfs_err(bg->fs_info,
1424 			  "zoned: write pointer offset mismatch of zones in DUP profile");
1425 		return -EIO;
1426 	}
1427 
1428 	if (test_bit(0, active) != test_bit(1, active)) {
1429 		if (!btrfs_zone_activate(bg))
1430 			return -EIO;
1431 	} else if (test_bit(0, active)) {
1432 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1433 	}
1434 
1435 	bg->alloc_offset = zone_info[0].alloc_offset;
1436 	bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1437 	return 0;
1438 }
1439 
1440 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1441 					struct btrfs_chunk_map *map,
1442 					struct zone_info *zone_info,
1443 					unsigned long *active)
1444 {
1445 	struct btrfs_fs_info *fs_info = bg->fs_info;
1446 	int i;
1447 
1448 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1449 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1450 			  btrfs_bg_type_to_raid_name(map->type));
1451 		return -EINVAL;
1452 	}
1453 
1454 	for (i = 0; i < map->num_stripes; i++) {
1455 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1456 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1457 			continue;
1458 
1459 		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1460 		    !btrfs_test_opt(fs_info, DEGRADED)) {
1461 			btrfs_err(fs_info,
1462 			"zoned: write pointer offset mismatch of zones in %s profile",
1463 				  btrfs_bg_type_to_raid_name(map->type));
1464 			return -EIO;
1465 		}
1466 		if (test_bit(0, active) != test_bit(i, active)) {
1467 			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1468 			    !btrfs_zone_activate(bg)) {
1469 				return -EIO;
1470 			}
1471 		} else {
1472 			if (test_bit(0, active))
1473 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1474 		}
1475 		/* In case a device is missing we have a cap of 0, so don't use it. */
1476 		bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1477 						 zone_info[1].capacity);
1478 	}
1479 
1480 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1481 		bg->alloc_offset = zone_info[0].alloc_offset;
1482 	else
1483 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1484 
1485 	return 0;
1486 }
1487 
1488 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1489 					struct btrfs_chunk_map *map,
1490 					struct zone_info *zone_info,
1491 					unsigned long *active)
1492 {
1493 	struct btrfs_fs_info *fs_info = bg->fs_info;
1494 
1495 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1496 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1497 			  btrfs_bg_type_to_raid_name(map->type));
1498 		return -EINVAL;
1499 	}
1500 
1501 	for (int i = 0; i < map->num_stripes; i++) {
1502 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1503 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1504 			continue;
1505 
1506 		if (test_bit(0, active) != test_bit(i, active)) {
1507 			if (!btrfs_zone_activate(bg))
1508 				return -EIO;
1509 		} else {
1510 			if (test_bit(0, active))
1511 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1512 		}
1513 		bg->zone_capacity += zone_info[i].capacity;
1514 		bg->alloc_offset += zone_info[i].alloc_offset;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1521 					 struct btrfs_chunk_map *map,
1522 					 struct zone_info *zone_info,
1523 					 unsigned long *active)
1524 {
1525 	struct btrfs_fs_info *fs_info = bg->fs_info;
1526 
1527 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1528 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1529 			  btrfs_bg_type_to_raid_name(map->type));
1530 		return -EINVAL;
1531 	}
1532 
1533 	for (int i = 0; i < map->num_stripes; i++) {
1534 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1535 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1536 			continue;
1537 
1538 		if (test_bit(0, active) != test_bit(i, active)) {
1539 			if (!btrfs_zone_activate(bg))
1540 				return -EIO;
1541 		} else {
1542 			if (test_bit(0, active))
1543 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1544 		}
1545 
1546 		if ((i % map->sub_stripes) == 0) {
1547 			bg->zone_capacity += zone_info[i].capacity;
1548 			bg->alloc_offset += zone_info[i].alloc_offset;
1549 		}
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1556 {
1557 	struct btrfs_fs_info *fs_info = cache->fs_info;
1558 	struct btrfs_chunk_map *map;
1559 	u64 logical = cache->start;
1560 	u64 length = cache->length;
1561 	struct zone_info *zone_info = NULL;
1562 	int ret;
1563 	int i;
1564 	unsigned long *active = NULL;
1565 	u64 last_alloc = 0;
1566 	u32 num_sequential = 0, num_conventional = 0;
1567 
1568 	if (!btrfs_is_zoned(fs_info))
1569 		return 0;
1570 
1571 	/* Sanity check */
1572 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1573 		btrfs_err(fs_info,
1574 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1575 			  logical, length, fs_info->zone_size);
1576 		return -EIO;
1577 	}
1578 
1579 	map = btrfs_find_chunk_map(fs_info, logical, length);
1580 	if (!map)
1581 		return -EINVAL;
1582 
1583 	cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS);
1584 	if (!cache->physical_map) {
1585 		ret = -ENOMEM;
1586 		goto out;
1587 	}
1588 
1589 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1590 	if (!zone_info) {
1591 		ret = -ENOMEM;
1592 		goto out;
1593 	}
1594 
1595 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1596 	if (!active) {
1597 		ret = -ENOMEM;
1598 		goto out;
1599 	}
1600 
1601 	for (i = 0; i < map->num_stripes; i++) {
1602 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1603 		if (ret)
1604 			goto out;
1605 
1606 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1607 			num_conventional++;
1608 		else
1609 			num_sequential++;
1610 	}
1611 
1612 	if (num_sequential > 0)
1613 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1614 
1615 	if (num_conventional > 0) {
1616 		/* Zone capacity is always zone size in emulation */
1617 		cache->zone_capacity = cache->length;
1618 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1619 		if (ret) {
1620 			btrfs_err(fs_info,
1621 			"zoned: failed to determine allocation offset of bg %llu",
1622 				  cache->start);
1623 			goto out;
1624 		} else if (map->num_stripes == num_conventional) {
1625 			cache->alloc_offset = last_alloc;
1626 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1632 	case 0: /* single */
1633 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1634 		break;
1635 	case BTRFS_BLOCK_GROUP_DUP:
1636 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1637 		break;
1638 	case BTRFS_BLOCK_GROUP_RAID1:
1639 	case BTRFS_BLOCK_GROUP_RAID1C3:
1640 	case BTRFS_BLOCK_GROUP_RAID1C4:
1641 		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1642 		break;
1643 	case BTRFS_BLOCK_GROUP_RAID0:
1644 		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1645 		break;
1646 	case BTRFS_BLOCK_GROUP_RAID10:
1647 		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1648 		break;
1649 	case BTRFS_BLOCK_GROUP_RAID5:
1650 	case BTRFS_BLOCK_GROUP_RAID6:
1651 	default:
1652 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1653 			  btrfs_bg_type_to_raid_name(map->type));
1654 		ret = -EINVAL;
1655 		goto out;
1656 	}
1657 
1658 out:
1659 	if (cache->alloc_offset > cache->zone_capacity) {
1660 		btrfs_err(fs_info,
1661 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1662 			  cache->alloc_offset, cache->zone_capacity,
1663 			  cache->start);
1664 		ret = -EIO;
1665 	}
1666 
1667 	/* An extent is allocated after the write pointer */
1668 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1669 		btrfs_err(fs_info,
1670 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1671 			  logical, last_alloc, cache->alloc_offset);
1672 		ret = -EIO;
1673 	}
1674 
1675 	if (!ret) {
1676 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1677 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1678 			btrfs_get_block_group(cache);
1679 			spin_lock(&fs_info->zone_active_bgs_lock);
1680 			list_add_tail(&cache->active_bg_list,
1681 				      &fs_info->zone_active_bgs);
1682 			spin_unlock(&fs_info->zone_active_bgs_lock);
1683 		}
1684 	} else {
1685 		btrfs_free_chunk_map(cache->physical_map);
1686 		cache->physical_map = NULL;
1687 	}
1688 	bitmap_free(active);
1689 	kfree(zone_info);
1690 
1691 	return ret;
1692 }
1693 
1694 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1695 {
1696 	u64 unusable, free;
1697 
1698 	if (!btrfs_is_zoned(cache->fs_info))
1699 		return;
1700 
1701 	WARN_ON(cache->bytes_super != 0);
1702 	unusable = (cache->alloc_offset - cache->used) +
1703 		   (cache->length - cache->zone_capacity);
1704 	free = cache->zone_capacity - cache->alloc_offset;
1705 
1706 	/* We only need ->free_space in ALLOC_SEQ block groups */
1707 	cache->cached = BTRFS_CACHE_FINISHED;
1708 	cache->free_space_ctl->free_space = free;
1709 	cache->zone_unusable = unusable;
1710 }
1711 
1712 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1713 {
1714 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1715 	struct btrfs_inode *inode = bbio->inode;
1716 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1717 	struct btrfs_block_group *cache;
1718 	bool ret = false;
1719 
1720 	if (!btrfs_is_zoned(fs_info))
1721 		return false;
1722 
1723 	if (!inode || !is_data_inode(&inode->vfs_inode))
1724 		return false;
1725 
1726 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1727 		return false;
1728 
1729 	/*
1730 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1731 	 * extent layout the relocation code has.
1732 	 * Furthermore we have set aside own block-group from which only the
1733 	 * relocation "process" can allocate and make sure only one process at a
1734 	 * time can add pages to an extent that gets relocated, so it's safe to
1735 	 * use regular REQ_OP_WRITE for this special case.
1736 	 */
1737 	if (btrfs_is_data_reloc_root(inode->root))
1738 		return false;
1739 
1740 	cache = btrfs_lookup_block_group(fs_info, start);
1741 	ASSERT(cache);
1742 	if (!cache)
1743 		return false;
1744 
1745 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1746 	btrfs_put_block_group(cache);
1747 
1748 	return ret;
1749 }
1750 
1751 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1752 {
1753 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1754 	struct btrfs_ordered_sum *sum = bbio->sums;
1755 
1756 	if (physical < bbio->orig_physical)
1757 		sum->logical -= bbio->orig_physical - physical;
1758 	else
1759 		sum->logical += physical - bbio->orig_physical;
1760 }
1761 
1762 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1763 					u64 logical)
1764 {
1765 	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1766 	struct extent_map *em;
1767 
1768 	ordered->disk_bytenr = logical;
1769 
1770 	write_lock(&em_tree->lock);
1771 	em = search_extent_mapping(em_tree, ordered->file_offset,
1772 				   ordered->num_bytes);
1773 	em->block_start = logical;
1774 	free_extent_map(em);
1775 	write_unlock(&em_tree->lock);
1776 }
1777 
1778 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1779 				      u64 logical, u64 len)
1780 {
1781 	struct btrfs_ordered_extent *new;
1782 
1783 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1784 	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1785 			     ordered->num_bytes, len, logical))
1786 		return false;
1787 
1788 	new = btrfs_split_ordered_extent(ordered, len);
1789 	if (IS_ERR(new))
1790 		return false;
1791 	new->disk_bytenr = logical;
1792 	btrfs_finish_one_ordered(new);
1793 	return true;
1794 }
1795 
1796 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1797 {
1798 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1799 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1800 	struct btrfs_ordered_sum *sum;
1801 	u64 logical, len;
1802 
1803 	/*
1804 	 * Write to pre-allocated region is for the data relocation, and so
1805 	 * it should use WRITE operation. No split/rewrite are necessary.
1806 	 */
1807 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1808 		return;
1809 
1810 	ASSERT(!list_empty(&ordered->list));
1811 	/* The ordered->list can be empty in the above pre-alloc case. */
1812 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1813 	logical = sum->logical;
1814 	len = sum->len;
1815 
1816 	while (len < ordered->disk_num_bytes) {
1817 		sum = list_next_entry(sum, list);
1818 		if (sum->logical == logical + len) {
1819 			len += sum->len;
1820 			continue;
1821 		}
1822 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1823 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1824 			btrfs_err(fs_info, "failed to split ordered extent");
1825 			goto out;
1826 		}
1827 		logical = sum->logical;
1828 		len = sum->len;
1829 	}
1830 
1831 	if (ordered->disk_bytenr != logical)
1832 		btrfs_rewrite_logical_zoned(ordered, logical);
1833 
1834 out:
1835 	/*
1836 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1837 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1838 	 * addresses and don't contain actual checksums.  We thus must free them
1839 	 * here so that we don't attempt to log the csums later.
1840 	 */
1841 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1842 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1843 		while ((sum = list_first_entry_or_null(&ordered->list,
1844 						       typeof(*sum), list))) {
1845 			list_del(&sum->list);
1846 			kfree(sum);
1847 		}
1848 	}
1849 }
1850 
1851 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1852 			       struct btrfs_block_group **active_bg)
1853 {
1854 	const struct writeback_control *wbc = ctx->wbc;
1855 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1856 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1857 
1858 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1859 		return true;
1860 
1861 	if (fs_info->treelog_bg == block_group->start) {
1862 		if (!btrfs_zone_activate(block_group)) {
1863 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1864 
1865 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1866 				return false;
1867 		}
1868 	} else if (*active_bg != block_group) {
1869 		struct btrfs_block_group *tgt = *active_bg;
1870 
1871 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1872 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1873 
1874 		if (tgt) {
1875 			/*
1876 			 * If there is an unsent IO left in the allocated area,
1877 			 * we cannot wait for them as it may cause a deadlock.
1878 			 */
1879 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1880 				if (wbc->sync_mode == WB_SYNC_NONE ||
1881 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1882 					return false;
1883 			}
1884 
1885 			/* Pivot active metadata/system block group. */
1886 			btrfs_zoned_meta_io_unlock(fs_info);
1887 			wait_eb_writebacks(tgt);
1888 			do_zone_finish(tgt, true);
1889 			btrfs_zoned_meta_io_lock(fs_info);
1890 			if (*active_bg == tgt) {
1891 				btrfs_put_block_group(tgt);
1892 				*active_bg = NULL;
1893 			}
1894 		}
1895 		if (!btrfs_zone_activate(block_group))
1896 			return false;
1897 		if (*active_bg != block_group) {
1898 			ASSERT(*active_bg == NULL);
1899 			*active_bg = block_group;
1900 			btrfs_get_block_group(block_group);
1901 		}
1902 	}
1903 
1904 	return true;
1905 }
1906 
1907 /*
1908  * Check if @ctx->eb is aligned to the write pointer.
1909  *
1910  * Return:
1911  *   0:        @ctx->eb is at the write pointer. You can write it.
1912  *   -EAGAIN:  There is a hole. The caller should handle the case.
1913  *   -EBUSY:   There is a hole, but the caller can just bail out.
1914  */
1915 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1916 				   struct btrfs_eb_write_context *ctx)
1917 {
1918 	const struct writeback_control *wbc = ctx->wbc;
1919 	const struct extent_buffer *eb = ctx->eb;
1920 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1921 
1922 	if (!btrfs_is_zoned(fs_info))
1923 		return 0;
1924 
1925 	if (block_group) {
1926 		if (block_group->start > eb->start ||
1927 		    block_group->start + block_group->length <= eb->start) {
1928 			btrfs_put_block_group(block_group);
1929 			block_group = NULL;
1930 			ctx->zoned_bg = NULL;
1931 		}
1932 	}
1933 
1934 	if (!block_group) {
1935 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1936 		if (!block_group)
1937 			return 0;
1938 		ctx->zoned_bg = block_group;
1939 	}
1940 
1941 	if (block_group->meta_write_pointer == eb->start) {
1942 		struct btrfs_block_group **tgt;
1943 
1944 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1945 			return 0;
1946 
1947 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1948 			tgt = &fs_info->active_system_bg;
1949 		else
1950 			tgt = &fs_info->active_meta_bg;
1951 		if (check_bg_is_active(ctx, tgt))
1952 			return 0;
1953 	}
1954 
1955 	/*
1956 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1957 	 * start writing this eb. In that case, we can just bail out.
1958 	 */
1959 	if (block_group->meta_write_pointer > eb->start)
1960 		return -EBUSY;
1961 
1962 	/* If for_sync, this hole will be filled with trasnsaction commit. */
1963 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1964 		return -EAGAIN;
1965 	return -EBUSY;
1966 }
1967 
1968 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1969 {
1970 	if (!btrfs_dev_is_sequential(device, physical))
1971 		return -EOPNOTSUPP;
1972 
1973 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1974 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1975 }
1976 
1977 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1978 			  struct blk_zone *zone)
1979 {
1980 	struct btrfs_io_context *bioc = NULL;
1981 	u64 mapped_length = PAGE_SIZE;
1982 	unsigned int nofs_flag;
1983 	int nmirrors;
1984 	int i, ret;
1985 
1986 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1987 			      &mapped_length, &bioc, NULL, NULL);
1988 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1989 		ret = -EIO;
1990 		goto out_put_bioc;
1991 	}
1992 
1993 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1994 		ret = -EINVAL;
1995 		goto out_put_bioc;
1996 	}
1997 
1998 	nofs_flag = memalloc_nofs_save();
1999 	nmirrors = (int)bioc->num_stripes;
2000 	for (i = 0; i < nmirrors; i++) {
2001 		u64 physical = bioc->stripes[i].physical;
2002 		struct btrfs_device *dev = bioc->stripes[i].dev;
2003 
2004 		/* Missing device */
2005 		if (!dev->bdev)
2006 			continue;
2007 
2008 		ret = btrfs_get_dev_zone(dev, physical, zone);
2009 		/* Failing device */
2010 		if (ret == -EIO || ret == -EOPNOTSUPP)
2011 			continue;
2012 		break;
2013 	}
2014 	memalloc_nofs_restore(nofs_flag);
2015 out_put_bioc:
2016 	btrfs_put_bioc(bioc);
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2022  * filling zeros between @physical_pos to a write pointer of dev-replace
2023  * source device.
2024  */
2025 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2026 				    u64 physical_start, u64 physical_pos)
2027 {
2028 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2029 	struct blk_zone zone;
2030 	u64 length;
2031 	u64 wp;
2032 	int ret;
2033 
2034 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2035 		return 0;
2036 
2037 	ret = read_zone_info(fs_info, logical, &zone);
2038 	if (ret)
2039 		return ret;
2040 
2041 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2042 
2043 	if (physical_pos == wp)
2044 		return 0;
2045 
2046 	if (physical_pos > wp)
2047 		return -EUCLEAN;
2048 
2049 	length = wp - physical_pos;
2050 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2051 }
2052 
2053 /*
2054  * Activate block group and underlying device zones
2055  *
2056  * @block_group: the block group to activate
2057  *
2058  * Return: true on success, false otherwise
2059  */
2060 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2061 {
2062 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2063 	struct btrfs_chunk_map *map;
2064 	struct btrfs_device *device;
2065 	u64 physical;
2066 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2067 	bool ret;
2068 	int i;
2069 
2070 	if (!btrfs_is_zoned(block_group->fs_info))
2071 		return true;
2072 
2073 	map = block_group->physical_map;
2074 
2075 	spin_lock(&block_group->lock);
2076 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2077 		ret = true;
2078 		goto out_unlock;
2079 	}
2080 
2081 	/* No space left */
2082 	if (btrfs_zoned_bg_is_full(block_group)) {
2083 		ret = false;
2084 		goto out_unlock;
2085 	}
2086 
2087 	spin_lock(&fs_info->zone_active_bgs_lock);
2088 	for (i = 0; i < map->num_stripes; i++) {
2089 		struct btrfs_zoned_device_info *zinfo;
2090 		int reserved = 0;
2091 
2092 		device = map->stripes[i].dev;
2093 		physical = map->stripes[i].physical;
2094 		zinfo = device->zone_info;
2095 
2096 		if (zinfo->max_active_zones == 0)
2097 			continue;
2098 
2099 		if (is_data)
2100 			reserved = zinfo->reserved_active_zones;
2101 		/*
2102 		 * For the data block group, leave active zones for one
2103 		 * metadata block group and one system block group.
2104 		 */
2105 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2106 			ret = false;
2107 			spin_unlock(&fs_info->zone_active_bgs_lock);
2108 			goto out_unlock;
2109 		}
2110 
2111 		if (!btrfs_dev_set_active_zone(device, physical)) {
2112 			/* Cannot activate the zone */
2113 			ret = false;
2114 			spin_unlock(&fs_info->zone_active_bgs_lock);
2115 			goto out_unlock;
2116 		}
2117 		if (!is_data)
2118 			zinfo->reserved_active_zones--;
2119 	}
2120 	spin_unlock(&fs_info->zone_active_bgs_lock);
2121 
2122 	/* Successfully activated all the zones */
2123 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2124 	spin_unlock(&block_group->lock);
2125 
2126 	/* For the active block group list */
2127 	btrfs_get_block_group(block_group);
2128 
2129 	spin_lock(&fs_info->zone_active_bgs_lock);
2130 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2131 	spin_unlock(&fs_info->zone_active_bgs_lock);
2132 
2133 	return true;
2134 
2135 out_unlock:
2136 	spin_unlock(&block_group->lock);
2137 	return ret;
2138 }
2139 
2140 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2141 {
2142 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2143 	const u64 end = block_group->start + block_group->length;
2144 	struct radix_tree_iter iter;
2145 	struct extent_buffer *eb;
2146 	void __rcu **slot;
2147 
2148 	rcu_read_lock();
2149 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2150 				 block_group->start >> fs_info->sectorsize_bits) {
2151 		eb = radix_tree_deref_slot(slot);
2152 		if (!eb)
2153 			continue;
2154 		if (radix_tree_deref_retry(eb)) {
2155 			slot = radix_tree_iter_retry(&iter);
2156 			continue;
2157 		}
2158 
2159 		if (eb->start < block_group->start)
2160 			continue;
2161 		if (eb->start >= end)
2162 			break;
2163 
2164 		slot = radix_tree_iter_resume(slot, &iter);
2165 		rcu_read_unlock();
2166 		wait_on_extent_buffer_writeback(eb);
2167 		rcu_read_lock();
2168 	}
2169 	rcu_read_unlock();
2170 }
2171 
2172 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2173 {
2174 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2175 	struct btrfs_chunk_map *map;
2176 	const bool is_metadata = (block_group->flags &
2177 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2178 	int ret = 0;
2179 	int i;
2180 
2181 	spin_lock(&block_group->lock);
2182 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2183 		spin_unlock(&block_group->lock);
2184 		return 0;
2185 	}
2186 
2187 	/* Check if we have unwritten allocated space */
2188 	if (is_metadata &&
2189 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2190 		spin_unlock(&block_group->lock);
2191 		return -EAGAIN;
2192 	}
2193 
2194 	/*
2195 	 * If we are sure that the block group is full (= no more room left for
2196 	 * new allocation) and the IO for the last usable block is completed, we
2197 	 * don't need to wait for the other IOs. This holds because we ensure
2198 	 * the sequential IO submissions using the ZONE_APPEND command for data
2199 	 * and block_group->meta_write_pointer for metadata.
2200 	 */
2201 	if (!fully_written) {
2202 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2203 			spin_unlock(&block_group->lock);
2204 			return -EAGAIN;
2205 		}
2206 		spin_unlock(&block_group->lock);
2207 
2208 		ret = btrfs_inc_block_group_ro(block_group, false);
2209 		if (ret)
2210 			return ret;
2211 
2212 		/* Ensure all writes in this block group finish */
2213 		btrfs_wait_block_group_reservations(block_group);
2214 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2215 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2216 					 block_group->length);
2217 		/* Wait for extent buffers to be written. */
2218 		if (is_metadata)
2219 			wait_eb_writebacks(block_group);
2220 
2221 		spin_lock(&block_group->lock);
2222 
2223 		/*
2224 		 * Bail out if someone already deactivated the block group, or
2225 		 * allocated space is left in the block group.
2226 		 */
2227 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2228 			      &block_group->runtime_flags)) {
2229 			spin_unlock(&block_group->lock);
2230 			btrfs_dec_block_group_ro(block_group);
2231 			return 0;
2232 		}
2233 
2234 		if (block_group->reserved ||
2235 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2236 			     &block_group->runtime_flags)) {
2237 			spin_unlock(&block_group->lock);
2238 			btrfs_dec_block_group_ro(block_group);
2239 			return -EAGAIN;
2240 		}
2241 	}
2242 
2243 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2244 	block_group->alloc_offset = block_group->zone_capacity;
2245 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2246 		block_group->meta_write_pointer = block_group->start +
2247 						  block_group->zone_capacity;
2248 	block_group->free_space_ctl->free_space = 0;
2249 	btrfs_clear_treelog_bg(block_group);
2250 	btrfs_clear_data_reloc_bg(block_group);
2251 	spin_unlock(&block_group->lock);
2252 
2253 	map = block_group->physical_map;
2254 	for (i = 0; i < map->num_stripes; i++) {
2255 		struct btrfs_device *device = map->stripes[i].dev;
2256 		const u64 physical = map->stripes[i].physical;
2257 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2258 
2259 		if (zinfo->max_active_zones == 0)
2260 			continue;
2261 
2262 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2263 				       physical >> SECTOR_SHIFT,
2264 				       zinfo->zone_size >> SECTOR_SHIFT,
2265 				       GFP_NOFS);
2266 
2267 		if (ret)
2268 			return ret;
2269 
2270 		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2271 			zinfo->reserved_active_zones++;
2272 		btrfs_dev_clear_active_zone(device, physical);
2273 	}
2274 
2275 	if (!fully_written)
2276 		btrfs_dec_block_group_ro(block_group);
2277 
2278 	spin_lock(&fs_info->zone_active_bgs_lock);
2279 	ASSERT(!list_empty(&block_group->active_bg_list));
2280 	list_del_init(&block_group->active_bg_list);
2281 	spin_unlock(&fs_info->zone_active_bgs_lock);
2282 
2283 	/* For active_bg_list */
2284 	btrfs_put_block_group(block_group);
2285 
2286 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2287 
2288 	return 0;
2289 }
2290 
2291 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2292 {
2293 	if (!btrfs_is_zoned(block_group->fs_info))
2294 		return 0;
2295 
2296 	return do_zone_finish(block_group, false);
2297 }
2298 
2299 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2300 {
2301 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2302 	struct btrfs_device *device;
2303 	bool ret = false;
2304 
2305 	if (!btrfs_is_zoned(fs_info))
2306 		return true;
2307 
2308 	/* Check if there is a device with active zones left */
2309 	mutex_lock(&fs_info->chunk_mutex);
2310 	spin_lock(&fs_info->zone_active_bgs_lock);
2311 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2312 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2313 		int reserved = 0;
2314 
2315 		if (!device->bdev)
2316 			continue;
2317 
2318 		if (!zinfo->max_active_zones) {
2319 			ret = true;
2320 			break;
2321 		}
2322 
2323 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2324 			reserved = zinfo->reserved_active_zones;
2325 
2326 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2327 		case 0: /* single */
2328 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2329 			break;
2330 		case BTRFS_BLOCK_GROUP_DUP:
2331 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2332 			break;
2333 		}
2334 		if (ret)
2335 			break;
2336 	}
2337 	spin_unlock(&fs_info->zone_active_bgs_lock);
2338 	mutex_unlock(&fs_info->chunk_mutex);
2339 
2340 	if (!ret)
2341 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2342 
2343 	return ret;
2344 }
2345 
2346 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2347 {
2348 	struct btrfs_block_group *block_group;
2349 	u64 min_alloc_bytes;
2350 
2351 	if (!btrfs_is_zoned(fs_info))
2352 		return;
2353 
2354 	block_group = btrfs_lookup_block_group(fs_info, logical);
2355 	ASSERT(block_group);
2356 
2357 	/* No MIXED_BG on zoned btrfs. */
2358 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2359 		min_alloc_bytes = fs_info->sectorsize;
2360 	else
2361 		min_alloc_bytes = fs_info->nodesize;
2362 
2363 	/* Bail out if we can allocate more data from this block group. */
2364 	if (logical + length + min_alloc_bytes <=
2365 	    block_group->start + block_group->zone_capacity)
2366 		goto out;
2367 
2368 	do_zone_finish(block_group, true);
2369 
2370 out:
2371 	btrfs_put_block_group(block_group);
2372 }
2373 
2374 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2375 {
2376 	struct btrfs_block_group *bg =
2377 		container_of(work, struct btrfs_block_group, zone_finish_work);
2378 
2379 	wait_on_extent_buffer_writeback(bg->last_eb);
2380 	free_extent_buffer(bg->last_eb);
2381 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2382 	btrfs_put_block_group(bg);
2383 }
2384 
2385 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2386 				   struct extent_buffer *eb)
2387 {
2388 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2389 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2390 		return;
2391 
2392 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2393 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2394 			  bg->start);
2395 		return;
2396 	}
2397 
2398 	/* For the work */
2399 	btrfs_get_block_group(bg);
2400 	atomic_inc(&eb->refs);
2401 	bg->last_eb = eb;
2402 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2403 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2404 }
2405 
2406 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2407 {
2408 	struct btrfs_fs_info *fs_info = bg->fs_info;
2409 
2410 	spin_lock(&fs_info->relocation_bg_lock);
2411 	if (fs_info->data_reloc_bg == bg->start)
2412 		fs_info->data_reloc_bg = 0;
2413 	spin_unlock(&fs_info->relocation_bg_lock);
2414 }
2415 
2416 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2417 {
2418 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2419 	struct btrfs_device *device;
2420 
2421 	if (!btrfs_is_zoned(fs_info))
2422 		return;
2423 
2424 	mutex_lock(&fs_devices->device_list_mutex);
2425 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2426 		if (device->zone_info) {
2427 			vfree(device->zone_info->zone_cache);
2428 			device->zone_info->zone_cache = NULL;
2429 		}
2430 	}
2431 	mutex_unlock(&fs_devices->device_list_mutex);
2432 }
2433 
2434 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2435 {
2436 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2437 	struct btrfs_device *device;
2438 	u64 used = 0;
2439 	u64 total = 0;
2440 	u64 factor;
2441 
2442 	ASSERT(btrfs_is_zoned(fs_info));
2443 
2444 	if (fs_info->bg_reclaim_threshold == 0)
2445 		return false;
2446 
2447 	mutex_lock(&fs_devices->device_list_mutex);
2448 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2449 		if (!device->bdev)
2450 			continue;
2451 
2452 		total += device->disk_total_bytes;
2453 		used += device->bytes_used;
2454 	}
2455 	mutex_unlock(&fs_devices->device_list_mutex);
2456 
2457 	factor = div64_u64(used * 100, total);
2458 	return factor >= fs_info->bg_reclaim_threshold;
2459 }
2460 
2461 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2462 				       u64 length)
2463 {
2464 	struct btrfs_block_group *block_group;
2465 
2466 	if (!btrfs_is_zoned(fs_info))
2467 		return;
2468 
2469 	block_group = btrfs_lookup_block_group(fs_info, logical);
2470 	/* It should be called on a previous data relocation block group. */
2471 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2472 
2473 	spin_lock(&block_group->lock);
2474 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2475 		goto out;
2476 
2477 	/* All relocation extents are written. */
2478 	if (block_group->start + block_group->alloc_offset == logical + length) {
2479 		/*
2480 		 * Now, release this block group for further allocations and
2481 		 * zone finish.
2482 		 */
2483 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2484 			  &block_group->runtime_flags);
2485 	}
2486 
2487 out:
2488 	spin_unlock(&block_group->lock);
2489 	btrfs_put_block_group(block_group);
2490 }
2491 
2492 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2493 {
2494 	struct btrfs_block_group *block_group;
2495 	struct btrfs_block_group *min_bg = NULL;
2496 	u64 min_avail = U64_MAX;
2497 	int ret;
2498 
2499 	spin_lock(&fs_info->zone_active_bgs_lock);
2500 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2501 			    active_bg_list) {
2502 		u64 avail;
2503 
2504 		spin_lock(&block_group->lock);
2505 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2506 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2507 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2508 			spin_unlock(&block_group->lock);
2509 			continue;
2510 		}
2511 
2512 		avail = block_group->zone_capacity - block_group->alloc_offset;
2513 		if (min_avail > avail) {
2514 			if (min_bg)
2515 				btrfs_put_block_group(min_bg);
2516 			min_bg = block_group;
2517 			min_avail = avail;
2518 			btrfs_get_block_group(min_bg);
2519 		}
2520 		spin_unlock(&block_group->lock);
2521 	}
2522 	spin_unlock(&fs_info->zone_active_bgs_lock);
2523 
2524 	if (!min_bg)
2525 		return 0;
2526 
2527 	ret = btrfs_zone_finish(min_bg);
2528 	btrfs_put_block_group(min_bg);
2529 
2530 	return ret < 0 ? ret : 1;
2531 }
2532 
2533 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2534 				struct btrfs_space_info *space_info,
2535 				bool do_finish)
2536 {
2537 	struct btrfs_block_group *bg;
2538 	int index;
2539 
2540 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2541 		return 0;
2542 
2543 	for (;;) {
2544 		int ret;
2545 		bool need_finish = false;
2546 
2547 		down_read(&space_info->groups_sem);
2548 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2549 			list_for_each_entry(bg, &space_info->block_groups[index],
2550 					    list) {
2551 				if (!spin_trylock(&bg->lock))
2552 					continue;
2553 				if (btrfs_zoned_bg_is_full(bg) ||
2554 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2555 					     &bg->runtime_flags)) {
2556 					spin_unlock(&bg->lock);
2557 					continue;
2558 				}
2559 				spin_unlock(&bg->lock);
2560 
2561 				if (btrfs_zone_activate(bg)) {
2562 					up_read(&space_info->groups_sem);
2563 					return 1;
2564 				}
2565 
2566 				need_finish = true;
2567 			}
2568 		}
2569 		up_read(&space_info->groups_sem);
2570 
2571 		if (!do_finish || !need_finish)
2572 			break;
2573 
2574 		ret = btrfs_zone_finish_one_bg(fs_info);
2575 		if (ret == 0)
2576 			break;
2577 		if (ret < 0)
2578 			return ret;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 /*
2585  * Reserve zones for one metadata block group, one tree-log block group, and one
2586  * system block group.
2587  */
2588 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2589 {
2590 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2591 	struct btrfs_block_group *block_group;
2592 	struct btrfs_device *device;
2593 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2594 	unsigned int metadata_reserve = 2;
2595 	/* Reserve a zone for SINGLE system block group. */
2596 	unsigned int system_reserve = 1;
2597 
2598 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2599 		return;
2600 
2601 	/*
2602 	 * This function is called from the mount context. So, there is no
2603 	 * parallel process touching the bits. No need for read_seqretry().
2604 	 */
2605 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2606 		metadata_reserve = 4;
2607 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2608 		system_reserve = 2;
2609 
2610 	/* Apply the reservation on all the devices. */
2611 	mutex_lock(&fs_devices->device_list_mutex);
2612 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2613 		if (!device->bdev)
2614 			continue;
2615 
2616 		device->zone_info->reserved_active_zones =
2617 			metadata_reserve + system_reserve;
2618 	}
2619 	mutex_unlock(&fs_devices->device_list_mutex);
2620 
2621 	/* Release reservation for currently active block groups. */
2622 	spin_lock(&fs_info->zone_active_bgs_lock);
2623 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2624 		struct btrfs_chunk_map *map = block_group->physical_map;
2625 
2626 		if (!(block_group->flags &
2627 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2628 			continue;
2629 
2630 		for (int i = 0; i < map->num_stripes; i++)
2631 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2632 	}
2633 	spin_unlock(&fs_info->zone_active_bgs_lock);
2634 }
2635