1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "super.h" 19 #include "fs.h" 20 #include "accessors.h" 21 #include "bio.h" 22 23 /* Maximum number of zones to report per blkdev_report_zones() call */ 24 #define BTRFS_REPORT_NR_ZONES 4096 25 /* Invalid allocation pointer value for missing devices */ 26 #define WP_MISSING_DEV ((u64)-1) 27 /* Pseudo write pointer value for conventional zone */ 28 #define WP_CONVENTIONAL ((u64)-2) 29 30 /* 31 * Location of the first zone of superblock logging zone pairs. 32 * 33 * - primary superblock: 0B (zone 0) 34 * - first copy: 512G (zone starting at that offset) 35 * - second copy: 4T (zone starting at that offset) 36 */ 37 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 38 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 39 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 40 41 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 42 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 43 44 /* Number of superblock log zones */ 45 #define BTRFS_NR_SB_LOG_ZONES 2 46 47 /* 48 * Minimum of active zones we need: 49 * 50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 52 * - 1 zone for tree-log dedicated block group 53 * - 1 zone for relocation 54 */ 55 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 56 57 /* 58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 60 * We do not expect the zone size to become larger than 8GiB or smaller than 61 * 4MiB in the near future. 62 */ 63 #define BTRFS_MAX_ZONE_SIZE SZ_8G 64 #define BTRFS_MIN_ZONE_SIZE SZ_4M 65 66 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 67 68 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 70 71 static inline bool sb_zone_is_full(const struct blk_zone *zone) 72 { 73 return (zone->cond == BLK_ZONE_COND_FULL) || 74 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 75 } 76 77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 78 { 79 struct blk_zone *zones = data; 80 81 memcpy(&zones[idx], zone, sizeof(*zone)); 82 83 return 0; 84 } 85 86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 87 u64 *wp_ret) 88 { 89 bool empty[BTRFS_NR_SB_LOG_ZONES]; 90 bool full[BTRFS_NR_SB_LOG_ZONES]; 91 sector_t sector; 92 int i; 93 94 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 95 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 96 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 97 full[i] = sb_zone_is_full(&zones[i]); 98 } 99 100 /* 101 * Possible states of log buffer zones 102 * 103 * Empty[0] In use[0] Full[0] 104 * Empty[1] * 0 1 105 * In use[1] x x 1 106 * Full[1] 0 0 C 107 * 108 * Log position: 109 * *: Special case, no superblock is written 110 * 0: Use write pointer of zones[0] 111 * 1: Use write pointer of zones[1] 112 * C: Compare super blocks from zones[0] and zones[1], use the latest 113 * one determined by generation 114 * x: Invalid state 115 */ 116 117 if (empty[0] && empty[1]) { 118 /* Special case to distinguish no superblock to read */ 119 *wp_ret = zones[0].start << SECTOR_SHIFT; 120 return -ENOENT; 121 } else if (full[0] && full[1]) { 122 /* Compare two super blocks */ 123 struct address_space *mapping = bdev->bd_inode->i_mapping; 124 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 125 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 126 int i; 127 128 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 131 BTRFS_SUPER_INFO_SIZE; 132 133 page[i] = read_cache_page_gfp(mapping, 134 bytenr >> PAGE_SHIFT, GFP_NOFS); 135 if (IS_ERR(page[i])) { 136 if (i == 1) 137 btrfs_release_disk_super(super[0]); 138 return PTR_ERR(page[i]); 139 } 140 super[i] = page_address(page[i]); 141 } 142 143 if (btrfs_super_generation(super[0]) > 144 btrfs_super_generation(super[1])) 145 sector = zones[1].start; 146 else 147 sector = zones[0].start; 148 149 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 150 btrfs_release_disk_super(super[i]); 151 } else if (!full[0] && (empty[1] || full[1])) { 152 sector = zones[0].wp; 153 } else if (full[0]) { 154 sector = zones[1].wp; 155 } else { 156 return -EUCLEAN; 157 } 158 *wp_ret = sector << SECTOR_SHIFT; 159 return 0; 160 } 161 162 /* 163 * Get the first zone number of the superblock mirror 164 */ 165 static inline u32 sb_zone_number(int shift, int mirror) 166 { 167 u64 zone = U64_MAX; 168 169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 170 switch (mirror) { 171 case 0: zone = 0; break; 172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 174 } 175 176 ASSERT(zone <= U32_MAX); 177 178 return (u32)zone; 179 } 180 181 static inline sector_t zone_start_sector(u32 zone_number, 182 struct block_device *bdev) 183 { 184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 185 } 186 187 static inline u64 zone_start_physical(u32 zone_number, 188 struct btrfs_zoned_device_info *zone_info) 189 { 190 return (u64)zone_number << zone_info->zone_size_shift; 191 } 192 193 /* 194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 195 * device into static sized chunks and fake a conventional zone on each of 196 * them. 197 */ 198 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 199 struct blk_zone *zones, unsigned int nr_zones) 200 { 201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 202 sector_t bdev_size = bdev_nr_sectors(device->bdev); 203 unsigned int i; 204 205 pos >>= SECTOR_SHIFT; 206 for (i = 0; i < nr_zones; i++) { 207 zones[i].start = i * zone_sectors + pos; 208 zones[i].len = zone_sectors; 209 zones[i].capacity = zone_sectors; 210 zones[i].wp = zones[i].start + zone_sectors; 211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 212 zones[i].cond = BLK_ZONE_COND_NOT_WP; 213 214 if (zones[i].wp >= bdev_size) { 215 i++; 216 break; 217 } 218 } 219 220 return i; 221 } 222 223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 224 struct blk_zone *zones, unsigned int *nr_zones) 225 { 226 struct btrfs_zoned_device_info *zinfo = device->zone_info; 227 int ret; 228 229 if (!*nr_zones) 230 return 0; 231 232 if (!bdev_is_zoned(device->bdev)) { 233 ret = emulate_report_zones(device, pos, zones, *nr_zones); 234 *nr_zones = ret; 235 return 0; 236 } 237 238 /* Check cache */ 239 if (zinfo->zone_cache) { 240 unsigned int i; 241 u32 zno; 242 243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 244 zno = pos >> zinfo->zone_size_shift; 245 /* 246 * We cannot report zones beyond the zone end. So, it is OK to 247 * cap *nr_zones to at the end. 248 */ 249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 250 251 for (i = 0; i < *nr_zones; i++) { 252 struct blk_zone *zone_info; 253 254 zone_info = &zinfo->zone_cache[zno + i]; 255 if (!zone_info->len) 256 break; 257 } 258 259 if (i == *nr_zones) { 260 /* Cache hit on all the zones */ 261 memcpy(zones, zinfo->zone_cache + zno, 262 sizeof(*zinfo->zone_cache) * *nr_zones); 263 return 0; 264 } 265 } 266 267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 268 copy_zone_info_cb, zones); 269 if (ret < 0) { 270 btrfs_err_in_rcu(device->fs_info, 271 "zoned: failed to read zone %llu on %s (devid %llu)", 272 pos, rcu_str_deref(device->name), 273 device->devid); 274 return ret; 275 } 276 *nr_zones = ret; 277 if (!ret) 278 return -EIO; 279 280 /* Populate cache */ 281 if (zinfo->zone_cache) { 282 u32 zno = pos >> zinfo->zone_size_shift; 283 284 memcpy(zinfo->zone_cache + zno, zones, 285 sizeof(*zinfo->zone_cache) * *nr_zones); 286 } 287 288 return 0; 289 } 290 291 /* The emulated zone size is determined from the size of device extent */ 292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 293 { 294 struct btrfs_path *path; 295 struct btrfs_root *root = fs_info->dev_root; 296 struct btrfs_key key; 297 struct extent_buffer *leaf; 298 struct btrfs_dev_extent *dext; 299 int ret = 0; 300 301 key.objectid = 1; 302 key.type = BTRFS_DEV_EXTENT_KEY; 303 key.offset = 0; 304 305 path = btrfs_alloc_path(); 306 if (!path) 307 return -ENOMEM; 308 309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 310 if (ret < 0) 311 goto out; 312 313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 314 ret = btrfs_next_leaf(root, path); 315 if (ret < 0) 316 goto out; 317 /* No dev extents at all? Not good */ 318 if (ret > 0) { 319 ret = -EUCLEAN; 320 goto out; 321 } 322 } 323 324 leaf = path->nodes[0]; 325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 327 ret = 0; 328 329 out: 330 btrfs_free_path(path); 331 332 return ret; 333 } 334 335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 336 { 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 338 struct btrfs_device *device; 339 int ret = 0; 340 341 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 342 if (!btrfs_fs_incompat(fs_info, ZONED)) 343 return 0; 344 345 mutex_lock(&fs_devices->device_list_mutex); 346 list_for_each_entry(device, &fs_devices->devices, dev_list) { 347 /* We can skip reading of zone info for missing devices */ 348 if (!device->bdev) 349 continue; 350 351 ret = btrfs_get_dev_zone_info(device, true); 352 if (ret) 353 break; 354 } 355 mutex_unlock(&fs_devices->device_list_mutex); 356 357 return ret; 358 } 359 360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 361 { 362 struct btrfs_fs_info *fs_info = device->fs_info; 363 struct btrfs_zoned_device_info *zone_info = NULL; 364 struct block_device *bdev = device->bdev; 365 unsigned int max_active_zones; 366 unsigned int nactive; 367 sector_t nr_sectors; 368 sector_t sector = 0; 369 struct blk_zone *zones = NULL; 370 unsigned int i, nreported = 0, nr_zones; 371 sector_t zone_sectors; 372 char *model, *emulated; 373 int ret; 374 375 /* 376 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 377 * yet be set. 378 */ 379 if (!btrfs_fs_incompat(fs_info, ZONED)) 380 return 0; 381 382 if (device->zone_info) 383 return 0; 384 385 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 386 if (!zone_info) 387 return -ENOMEM; 388 389 device->zone_info = zone_info; 390 391 if (!bdev_is_zoned(bdev)) { 392 if (!fs_info->zone_size) { 393 ret = calculate_emulated_zone_size(fs_info); 394 if (ret) 395 goto out; 396 } 397 398 ASSERT(fs_info->zone_size); 399 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 400 } else { 401 zone_sectors = bdev_zone_sectors(bdev); 402 } 403 404 ASSERT(is_power_of_two_u64(zone_sectors)); 405 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 406 407 /* We reject devices with a zone size larger than 8GB */ 408 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 409 btrfs_err_in_rcu(fs_info, 410 "zoned: %s: zone size %llu larger than supported maximum %llu", 411 rcu_str_deref(device->name), 412 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 413 ret = -EINVAL; 414 goto out; 415 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 416 btrfs_err_in_rcu(fs_info, 417 "zoned: %s: zone size %llu smaller than supported minimum %u", 418 rcu_str_deref(device->name), 419 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 420 ret = -EINVAL; 421 goto out; 422 } 423 424 nr_sectors = bdev_nr_sectors(bdev); 425 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 426 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 427 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 428 zone_info->nr_zones++; 429 430 max_active_zones = bdev_max_active_zones(bdev); 431 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 432 btrfs_err_in_rcu(fs_info, 433 "zoned: %s: max active zones %u is too small, need at least %u active zones", 434 rcu_str_deref(device->name), max_active_zones, 435 BTRFS_MIN_ACTIVE_ZONES); 436 ret = -EINVAL; 437 goto out; 438 } 439 zone_info->max_active_zones = max_active_zones; 440 441 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 442 if (!zone_info->seq_zones) { 443 ret = -ENOMEM; 444 goto out; 445 } 446 447 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 448 if (!zone_info->empty_zones) { 449 ret = -ENOMEM; 450 goto out; 451 } 452 453 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 454 if (!zone_info->active_zones) { 455 ret = -ENOMEM; 456 goto out; 457 } 458 459 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 460 if (!zones) { 461 ret = -ENOMEM; 462 goto out; 463 } 464 465 /* 466 * Enable zone cache only for a zoned device. On a non-zoned device, we 467 * fill the zone info with emulated CONVENTIONAL zones, so no need to 468 * use the cache. 469 */ 470 if (populate_cache && bdev_is_zoned(device->bdev)) { 471 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 472 sizeof(struct blk_zone)); 473 if (!zone_info->zone_cache) { 474 btrfs_err_in_rcu(device->fs_info, 475 "zoned: failed to allocate zone cache for %s", 476 rcu_str_deref(device->name)); 477 ret = -ENOMEM; 478 goto out; 479 } 480 } 481 482 /* Get zones type */ 483 nactive = 0; 484 while (sector < nr_sectors) { 485 nr_zones = BTRFS_REPORT_NR_ZONES; 486 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 487 &nr_zones); 488 if (ret) 489 goto out; 490 491 for (i = 0; i < nr_zones; i++) { 492 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 493 __set_bit(nreported, zone_info->seq_zones); 494 switch (zones[i].cond) { 495 case BLK_ZONE_COND_EMPTY: 496 __set_bit(nreported, zone_info->empty_zones); 497 break; 498 case BLK_ZONE_COND_IMP_OPEN: 499 case BLK_ZONE_COND_EXP_OPEN: 500 case BLK_ZONE_COND_CLOSED: 501 __set_bit(nreported, zone_info->active_zones); 502 nactive++; 503 break; 504 } 505 nreported++; 506 } 507 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 508 } 509 510 if (nreported != zone_info->nr_zones) { 511 btrfs_err_in_rcu(device->fs_info, 512 "inconsistent number of zones on %s (%u/%u)", 513 rcu_str_deref(device->name), nreported, 514 zone_info->nr_zones); 515 ret = -EIO; 516 goto out; 517 } 518 519 if (max_active_zones) { 520 if (nactive > max_active_zones) { 521 btrfs_err_in_rcu(device->fs_info, 522 "zoned: %u active zones on %s exceeds max_active_zones %u", 523 nactive, rcu_str_deref(device->name), 524 max_active_zones); 525 ret = -EIO; 526 goto out; 527 } 528 atomic_set(&zone_info->active_zones_left, 529 max_active_zones - nactive); 530 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 531 } 532 533 /* Validate superblock log */ 534 nr_zones = BTRFS_NR_SB_LOG_ZONES; 535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 536 u32 sb_zone; 537 u64 sb_wp; 538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 539 540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 541 if (sb_zone + 1 >= zone_info->nr_zones) 542 continue; 543 544 ret = btrfs_get_dev_zones(device, 545 zone_start_physical(sb_zone, zone_info), 546 &zone_info->sb_zones[sb_pos], 547 &nr_zones); 548 if (ret) 549 goto out; 550 551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 552 btrfs_err_in_rcu(device->fs_info, 553 "zoned: failed to read super block log zone info at devid %llu zone %u", 554 device->devid, sb_zone); 555 ret = -EUCLEAN; 556 goto out; 557 } 558 559 /* 560 * If zones[0] is conventional, always use the beginning of the 561 * zone to record superblock. No need to validate in that case. 562 */ 563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 564 BLK_ZONE_TYPE_CONVENTIONAL) 565 continue; 566 567 ret = sb_write_pointer(device->bdev, 568 &zone_info->sb_zones[sb_pos], &sb_wp); 569 if (ret != -ENOENT && ret) { 570 btrfs_err_in_rcu(device->fs_info, 571 "zoned: super block log zone corrupted devid %llu zone %u", 572 device->devid, sb_zone); 573 ret = -EUCLEAN; 574 goto out; 575 } 576 } 577 578 579 kvfree(zones); 580 581 switch (bdev_zoned_model(bdev)) { 582 case BLK_ZONED_HM: 583 model = "host-managed zoned"; 584 emulated = ""; 585 break; 586 case BLK_ZONED_HA: 587 model = "host-aware zoned"; 588 emulated = ""; 589 break; 590 case BLK_ZONED_NONE: 591 model = "regular"; 592 emulated = "emulated "; 593 break; 594 default: 595 /* Just in case */ 596 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 597 bdev_zoned_model(bdev), 598 rcu_str_deref(device->name)); 599 ret = -EOPNOTSUPP; 600 goto out_free_zone_info; 601 } 602 603 btrfs_info_in_rcu(fs_info, 604 "%s block device %s, %u %szones of %llu bytes", 605 model, rcu_str_deref(device->name), zone_info->nr_zones, 606 emulated, zone_info->zone_size); 607 608 return 0; 609 610 out: 611 kvfree(zones); 612 out_free_zone_info: 613 btrfs_destroy_dev_zone_info(device); 614 615 return ret; 616 } 617 618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 619 { 620 struct btrfs_zoned_device_info *zone_info = device->zone_info; 621 622 if (!zone_info) 623 return; 624 625 bitmap_free(zone_info->active_zones); 626 bitmap_free(zone_info->seq_zones); 627 bitmap_free(zone_info->empty_zones); 628 vfree(zone_info->zone_cache); 629 kfree(zone_info); 630 device->zone_info = NULL; 631 } 632 633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 634 { 635 struct btrfs_zoned_device_info *zone_info; 636 637 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 638 if (!zone_info) 639 return NULL; 640 641 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 642 if (!zone_info->seq_zones) 643 goto out; 644 645 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 646 zone_info->nr_zones); 647 648 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 649 if (!zone_info->empty_zones) 650 goto out; 651 652 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 653 zone_info->nr_zones); 654 655 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 656 if (!zone_info->active_zones) 657 goto out; 658 659 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 660 zone_info->nr_zones); 661 zone_info->zone_cache = NULL; 662 663 return zone_info; 664 665 out: 666 bitmap_free(zone_info->seq_zones); 667 bitmap_free(zone_info->empty_zones); 668 bitmap_free(zone_info->active_zones); 669 kfree(zone_info); 670 return NULL; 671 } 672 673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 674 struct blk_zone *zone) 675 { 676 unsigned int nr_zones = 1; 677 int ret; 678 679 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 680 if (ret != 0 || !nr_zones) 681 return ret ? ret : -EIO; 682 683 return 0; 684 } 685 686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 687 { 688 struct btrfs_device *device; 689 690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 691 if (device->bdev && 692 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 693 btrfs_err(fs_info, 694 "zoned: mode not enabled but zoned device found: %pg", 695 device->bdev); 696 return -EINVAL; 697 } 698 } 699 700 return 0; 701 } 702 703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 704 { 705 struct queue_limits *lim = &fs_info->limits; 706 struct btrfs_device *device; 707 u64 zone_size = 0; 708 int ret; 709 710 /* 711 * Host-Managed devices can't be used without the ZONED flag. With the 712 * ZONED all devices can be used, using zone emulation if required. 713 */ 714 if (!btrfs_fs_incompat(fs_info, ZONED)) 715 return btrfs_check_for_zoned_device(fs_info); 716 717 blk_set_stacking_limits(lim); 718 719 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 720 struct btrfs_zoned_device_info *zone_info = device->zone_info; 721 722 if (!device->bdev) 723 continue; 724 725 if (!zone_size) { 726 zone_size = zone_info->zone_size; 727 } else if (zone_info->zone_size != zone_size) { 728 btrfs_err(fs_info, 729 "zoned: unequal block device zone sizes: have %llu found %llu", 730 zone_info->zone_size, zone_size); 731 return -EINVAL; 732 } 733 734 /* 735 * With the zoned emulation, we can have non-zoned device on the 736 * zoned mode. In this case, we don't have a valid max zone 737 * append size. 738 */ 739 if (bdev_is_zoned(device->bdev)) { 740 blk_stack_limits(lim, 741 &bdev_get_queue(device->bdev)->limits, 742 0); 743 } 744 } 745 746 /* 747 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 748 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 749 * check the alignment here. 750 */ 751 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 752 btrfs_err(fs_info, 753 "zoned: zone size %llu not aligned to stripe %u", 754 zone_size, BTRFS_STRIPE_LEN); 755 return -EINVAL; 756 } 757 758 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 759 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 760 return -EINVAL; 761 } 762 763 fs_info->zone_size = zone_size; 764 /* 765 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 766 * Technically, we can have multiple pages per segment. But, since 767 * we add the pages one by one to a bio, and cannot increase the 768 * metadata reservation even if it increases the number of extents, it 769 * is safe to stick with the limit. 770 */ 771 fs_info->max_zone_append_size = ALIGN_DOWN( 772 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 773 (u64)lim->max_sectors << SECTOR_SHIFT, 774 (u64)lim->max_segments << PAGE_SHIFT), 775 fs_info->sectorsize); 776 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 777 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 778 fs_info->max_extent_size = fs_info->max_zone_append_size; 779 780 /* 781 * Check mount options here, because we might change fs_info->zoned 782 * from fs_info->zone_size. 783 */ 784 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 785 if (ret) 786 return ret; 787 788 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 789 return 0; 790 } 791 792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt) 793 { 794 if (!btrfs_is_zoned(info)) 795 return 0; 796 797 /* 798 * Space cache writing is not COWed. Disable that to avoid write errors 799 * in sequential zones. 800 */ 801 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 802 btrfs_err(info, "zoned: space cache v1 is not supported"); 803 return -EINVAL; 804 } 805 806 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 807 btrfs_err(info, "zoned: NODATACOW not supported"); 808 return -EINVAL; 809 } 810 811 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 812 btrfs_info(info, 813 "zoned: async discard ignored and disabled for zoned mode"); 814 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 815 } 816 817 return 0; 818 } 819 820 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 821 int rw, u64 *bytenr_ret) 822 { 823 u64 wp; 824 int ret; 825 826 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 827 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 828 return 0; 829 } 830 831 ret = sb_write_pointer(bdev, zones, &wp); 832 if (ret != -ENOENT && ret < 0) 833 return ret; 834 835 if (rw == WRITE) { 836 struct blk_zone *reset = NULL; 837 838 if (wp == zones[0].start << SECTOR_SHIFT) 839 reset = &zones[0]; 840 else if (wp == zones[1].start << SECTOR_SHIFT) 841 reset = &zones[1]; 842 843 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 844 ASSERT(sb_zone_is_full(reset)); 845 846 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 847 reset->start, reset->len, 848 GFP_NOFS); 849 if (ret) 850 return ret; 851 852 reset->cond = BLK_ZONE_COND_EMPTY; 853 reset->wp = reset->start; 854 } 855 } else if (ret != -ENOENT) { 856 /* 857 * For READ, we want the previous one. Move write pointer to 858 * the end of a zone, if it is at the head of a zone. 859 */ 860 u64 zone_end = 0; 861 862 if (wp == zones[0].start << SECTOR_SHIFT) 863 zone_end = zones[1].start + zones[1].capacity; 864 else if (wp == zones[1].start << SECTOR_SHIFT) 865 zone_end = zones[0].start + zones[0].capacity; 866 if (zone_end) 867 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 868 BTRFS_SUPER_INFO_SIZE); 869 870 wp -= BTRFS_SUPER_INFO_SIZE; 871 } 872 873 *bytenr_ret = wp; 874 return 0; 875 876 } 877 878 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 879 u64 *bytenr_ret) 880 { 881 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 882 sector_t zone_sectors; 883 u32 sb_zone; 884 int ret; 885 u8 zone_sectors_shift; 886 sector_t nr_sectors; 887 u32 nr_zones; 888 889 if (!bdev_is_zoned(bdev)) { 890 *bytenr_ret = btrfs_sb_offset(mirror); 891 return 0; 892 } 893 894 ASSERT(rw == READ || rw == WRITE); 895 896 zone_sectors = bdev_zone_sectors(bdev); 897 if (!is_power_of_2(zone_sectors)) 898 return -EINVAL; 899 zone_sectors_shift = ilog2(zone_sectors); 900 nr_sectors = bdev_nr_sectors(bdev); 901 nr_zones = nr_sectors >> zone_sectors_shift; 902 903 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 904 if (sb_zone + 1 >= nr_zones) 905 return -ENOENT; 906 907 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 908 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 909 zones); 910 if (ret < 0) 911 return ret; 912 if (ret != BTRFS_NR_SB_LOG_ZONES) 913 return -EIO; 914 915 return sb_log_location(bdev, zones, rw, bytenr_ret); 916 } 917 918 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 919 u64 *bytenr_ret) 920 { 921 struct btrfs_zoned_device_info *zinfo = device->zone_info; 922 u32 zone_num; 923 924 /* 925 * For a zoned filesystem on a non-zoned block device, use the same 926 * super block locations as regular filesystem. Doing so, the super 927 * block can always be retrieved and the zoned flag of the volume 928 * detected from the super block information. 929 */ 930 if (!bdev_is_zoned(device->bdev)) { 931 *bytenr_ret = btrfs_sb_offset(mirror); 932 return 0; 933 } 934 935 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 936 if (zone_num + 1 >= zinfo->nr_zones) 937 return -ENOENT; 938 939 return sb_log_location(device->bdev, 940 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 941 rw, bytenr_ret); 942 } 943 944 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 945 int mirror) 946 { 947 u32 zone_num; 948 949 if (!zinfo) 950 return false; 951 952 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 953 if (zone_num + 1 >= zinfo->nr_zones) 954 return false; 955 956 if (!test_bit(zone_num, zinfo->seq_zones)) 957 return false; 958 959 return true; 960 } 961 962 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 963 { 964 struct btrfs_zoned_device_info *zinfo = device->zone_info; 965 struct blk_zone *zone; 966 int i; 967 968 if (!is_sb_log_zone(zinfo, mirror)) 969 return 0; 970 971 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 972 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 973 /* Advance the next zone */ 974 if (zone->cond == BLK_ZONE_COND_FULL) { 975 zone++; 976 continue; 977 } 978 979 if (zone->cond == BLK_ZONE_COND_EMPTY) 980 zone->cond = BLK_ZONE_COND_IMP_OPEN; 981 982 zone->wp += SUPER_INFO_SECTORS; 983 984 if (sb_zone_is_full(zone)) { 985 /* 986 * No room left to write new superblock. Since 987 * superblock is written with REQ_SYNC, it is safe to 988 * finish the zone now. 989 * 990 * If the write pointer is exactly at the capacity, 991 * explicit ZONE_FINISH is not necessary. 992 */ 993 if (zone->wp != zone->start + zone->capacity) { 994 int ret; 995 996 ret = blkdev_zone_mgmt(device->bdev, 997 REQ_OP_ZONE_FINISH, zone->start, 998 zone->len, GFP_NOFS); 999 if (ret) 1000 return ret; 1001 } 1002 1003 zone->wp = zone->start + zone->len; 1004 zone->cond = BLK_ZONE_COND_FULL; 1005 } 1006 return 0; 1007 } 1008 1009 /* All the zones are FULL. Should not reach here. */ 1010 ASSERT(0); 1011 return -EIO; 1012 } 1013 1014 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1015 { 1016 sector_t zone_sectors; 1017 sector_t nr_sectors; 1018 u8 zone_sectors_shift; 1019 u32 sb_zone; 1020 u32 nr_zones; 1021 1022 zone_sectors = bdev_zone_sectors(bdev); 1023 zone_sectors_shift = ilog2(zone_sectors); 1024 nr_sectors = bdev_nr_sectors(bdev); 1025 nr_zones = nr_sectors >> zone_sectors_shift; 1026 1027 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1028 if (sb_zone + 1 >= nr_zones) 1029 return -ENOENT; 1030 1031 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1032 zone_start_sector(sb_zone, bdev), 1033 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1034 } 1035 1036 /* 1037 * Find allocatable zones within a given region. 1038 * 1039 * @device: the device to allocate a region on 1040 * @hole_start: the position of the hole to allocate the region 1041 * @num_bytes: size of wanted region 1042 * @hole_end: the end of the hole 1043 * @return: position of allocatable zones 1044 * 1045 * Allocatable region should not contain any superblock locations. 1046 */ 1047 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1048 u64 hole_end, u64 num_bytes) 1049 { 1050 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1051 const u8 shift = zinfo->zone_size_shift; 1052 u64 nzones = num_bytes >> shift; 1053 u64 pos = hole_start; 1054 u64 begin, end; 1055 bool have_sb; 1056 int i; 1057 1058 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1059 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1060 1061 while (pos < hole_end) { 1062 begin = pos >> shift; 1063 end = begin + nzones; 1064 1065 if (end > zinfo->nr_zones) 1066 return hole_end; 1067 1068 /* Check if zones in the region are all empty */ 1069 if (btrfs_dev_is_sequential(device, pos) && 1070 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1071 pos += zinfo->zone_size; 1072 continue; 1073 } 1074 1075 have_sb = false; 1076 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1077 u32 sb_zone; 1078 u64 sb_pos; 1079 1080 sb_zone = sb_zone_number(shift, i); 1081 if (!(end <= sb_zone || 1082 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1083 have_sb = true; 1084 pos = zone_start_physical( 1085 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1086 break; 1087 } 1088 1089 /* We also need to exclude regular superblock positions */ 1090 sb_pos = btrfs_sb_offset(i); 1091 if (!(pos + num_bytes <= sb_pos || 1092 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1093 have_sb = true; 1094 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1095 zinfo->zone_size); 1096 break; 1097 } 1098 } 1099 if (!have_sb) 1100 break; 1101 } 1102 1103 return pos; 1104 } 1105 1106 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1107 { 1108 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1109 unsigned int zno = (pos >> zone_info->zone_size_shift); 1110 1111 /* We can use any number of zones */ 1112 if (zone_info->max_active_zones == 0) 1113 return true; 1114 1115 if (!test_bit(zno, zone_info->active_zones)) { 1116 /* Active zone left? */ 1117 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1118 return false; 1119 if (test_and_set_bit(zno, zone_info->active_zones)) { 1120 /* Someone already set the bit */ 1121 atomic_inc(&zone_info->active_zones_left); 1122 } 1123 } 1124 1125 return true; 1126 } 1127 1128 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1129 { 1130 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1131 unsigned int zno = (pos >> zone_info->zone_size_shift); 1132 1133 /* We can use any number of zones */ 1134 if (zone_info->max_active_zones == 0) 1135 return; 1136 1137 if (test_and_clear_bit(zno, zone_info->active_zones)) 1138 atomic_inc(&zone_info->active_zones_left); 1139 } 1140 1141 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1142 u64 length, u64 *bytes) 1143 { 1144 int ret; 1145 1146 *bytes = 0; 1147 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1148 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1149 GFP_NOFS); 1150 if (ret) 1151 return ret; 1152 1153 *bytes = length; 1154 while (length) { 1155 btrfs_dev_set_zone_empty(device, physical); 1156 btrfs_dev_clear_active_zone(device, physical); 1157 physical += device->zone_info->zone_size; 1158 length -= device->zone_info->zone_size; 1159 } 1160 1161 return 0; 1162 } 1163 1164 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1165 { 1166 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1167 const u8 shift = zinfo->zone_size_shift; 1168 unsigned long begin = start >> shift; 1169 unsigned long nbits = size >> shift; 1170 u64 pos; 1171 int ret; 1172 1173 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1174 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1175 1176 if (begin + nbits > zinfo->nr_zones) 1177 return -ERANGE; 1178 1179 /* All the zones are conventional */ 1180 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1181 return 0; 1182 1183 /* All the zones are sequential and empty */ 1184 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1185 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1186 return 0; 1187 1188 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1189 u64 reset_bytes; 1190 1191 if (!btrfs_dev_is_sequential(device, pos) || 1192 btrfs_dev_is_empty_zone(device, pos)) 1193 continue; 1194 1195 /* Free regions should be empty */ 1196 btrfs_warn_in_rcu( 1197 device->fs_info, 1198 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1199 rcu_str_deref(device->name), device->devid, pos >> shift); 1200 WARN_ON_ONCE(1); 1201 1202 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1203 &reset_bytes); 1204 if (ret) 1205 return ret; 1206 } 1207 1208 return 0; 1209 } 1210 1211 /* 1212 * Calculate an allocation pointer from the extent allocation information 1213 * for a block group consist of conventional zones. It is pointed to the 1214 * end of the highest addressed extent in the block group as an allocation 1215 * offset. 1216 */ 1217 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1218 u64 *offset_ret, bool new) 1219 { 1220 struct btrfs_fs_info *fs_info = cache->fs_info; 1221 struct btrfs_root *root; 1222 struct btrfs_path *path; 1223 struct btrfs_key key; 1224 struct btrfs_key found_key; 1225 int ret; 1226 u64 length; 1227 1228 /* 1229 * Avoid tree lookups for a new block group, there's no use for it. 1230 * It must always be 0. 1231 * 1232 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1233 * For new a block group, this function is called from 1234 * btrfs_make_block_group() which is already taking the chunk mutex. 1235 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1236 * buffer locks to avoid deadlock. 1237 */ 1238 if (new) { 1239 *offset_ret = 0; 1240 return 0; 1241 } 1242 1243 path = btrfs_alloc_path(); 1244 if (!path) 1245 return -ENOMEM; 1246 1247 key.objectid = cache->start + cache->length; 1248 key.type = 0; 1249 key.offset = 0; 1250 1251 root = btrfs_extent_root(fs_info, key.objectid); 1252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1253 /* We should not find the exact match */ 1254 if (!ret) 1255 ret = -EUCLEAN; 1256 if (ret < 0) 1257 goto out; 1258 1259 ret = btrfs_previous_extent_item(root, path, cache->start); 1260 if (ret) { 1261 if (ret == 1) { 1262 ret = 0; 1263 *offset_ret = 0; 1264 } 1265 goto out; 1266 } 1267 1268 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1269 1270 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1271 length = found_key.offset; 1272 else 1273 length = fs_info->nodesize; 1274 1275 if (!(found_key.objectid >= cache->start && 1276 found_key.objectid + length <= cache->start + cache->length)) { 1277 ret = -EUCLEAN; 1278 goto out; 1279 } 1280 *offset_ret = found_key.objectid + length - cache->start; 1281 ret = 0; 1282 1283 out: 1284 btrfs_free_path(path); 1285 return ret; 1286 } 1287 1288 struct zone_info { 1289 u64 physical; 1290 u64 capacity; 1291 u64 alloc_offset; 1292 }; 1293 1294 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1295 struct zone_info *info, unsigned long *active, 1296 struct btrfs_chunk_map *map) 1297 { 1298 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1299 struct btrfs_device *device = map->stripes[zone_idx].dev; 1300 int dev_replace_is_ongoing = 0; 1301 unsigned int nofs_flag; 1302 struct blk_zone zone; 1303 int ret; 1304 1305 info->physical = map->stripes[zone_idx].physical; 1306 1307 if (!device->bdev) { 1308 info->alloc_offset = WP_MISSING_DEV; 1309 return 0; 1310 } 1311 1312 /* Consider a zone as active if we can allow any number of active zones. */ 1313 if (!device->zone_info->max_active_zones) 1314 __set_bit(zone_idx, active); 1315 1316 if (!btrfs_dev_is_sequential(device, info->physical)) { 1317 info->alloc_offset = WP_CONVENTIONAL; 1318 return 0; 1319 } 1320 1321 /* This zone will be used for allocation, so mark this zone non-empty. */ 1322 btrfs_dev_clear_zone_empty(device, info->physical); 1323 1324 down_read(&dev_replace->rwsem); 1325 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1326 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1327 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1328 up_read(&dev_replace->rwsem); 1329 1330 /* 1331 * The group is mapped to a sequential zone. Get the zone write pointer 1332 * to determine the allocation offset within the zone. 1333 */ 1334 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1335 nofs_flag = memalloc_nofs_save(); 1336 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1337 memalloc_nofs_restore(nofs_flag); 1338 if (ret) { 1339 if (ret != -EIO && ret != -EOPNOTSUPP) 1340 return ret; 1341 info->alloc_offset = WP_MISSING_DEV; 1342 return 0; 1343 } 1344 1345 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1346 btrfs_err_in_rcu(fs_info, 1347 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1348 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1349 device->devid); 1350 return -EIO; 1351 } 1352 1353 info->capacity = (zone.capacity << SECTOR_SHIFT); 1354 1355 switch (zone.cond) { 1356 case BLK_ZONE_COND_OFFLINE: 1357 case BLK_ZONE_COND_READONLY: 1358 btrfs_err(fs_info, 1359 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1360 (info->physical >> device->zone_info->zone_size_shift), 1361 rcu_str_deref(device->name), device->devid); 1362 info->alloc_offset = WP_MISSING_DEV; 1363 break; 1364 case BLK_ZONE_COND_EMPTY: 1365 info->alloc_offset = 0; 1366 break; 1367 case BLK_ZONE_COND_FULL: 1368 info->alloc_offset = info->capacity; 1369 break; 1370 default: 1371 /* Partially used zone. */ 1372 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1373 __set_bit(zone_idx, active); 1374 break; 1375 } 1376 1377 return 0; 1378 } 1379 1380 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1381 struct zone_info *info, 1382 unsigned long *active) 1383 { 1384 if (info->alloc_offset == WP_MISSING_DEV) { 1385 btrfs_err(bg->fs_info, 1386 "zoned: cannot recover write pointer for zone %llu", 1387 info->physical); 1388 return -EIO; 1389 } 1390 1391 bg->alloc_offset = info->alloc_offset; 1392 bg->zone_capacity = info->capacity; 1393 if (test_bit(0, active)) 1394 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1395 return 0; 1396 } 1397 1398 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1399 struct btrfs_chunk_map *map, 1400 struct zone_info *zone_info, 1401 unsigned long *active) 1402 { 1403 struct btrfs_fs_info *fs_info = bg->fs_info; 1404 1405 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1406 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1407 return -EINVAL; 1408 } 1409 1410 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1411 btrfs_err(bg->fs_info, 1412 "zoned: cannot recover write pointer for zone %llu", 1413 zone_info[0].physical); 1414 return -EIO; 1415 } 1416 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1417 btrfs_err(bg->fs_info, 1418 "zoned: cannot recover write pointer for zone %llu", 1419 zone_info[1].physical); 1420 return -EIO; 1421 } 1422 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1423 btrfs_err(bg->fs_info, 1424 "zoned: write pointer offset mismatch of zones in DUP profile"); 1425 return -EIO; 1426 } 1427 1428 if (test_bit(0, active) != test_bit(1, active)) { 1429 if (!btrfs_zone_activate(bg)) 1430 return -EIO; 1431 } else if (test_bit(0, active)) { 1432 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1433 } 1434 1435 bg->alloc_offset = zone_info[0].alloc_offset; 1436 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity); 1437 return 0; 1438 } 1439 1440 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1441 struct btrfs_chunk_map *map, 1442 struct zone_info *zone_info, 1443 unsigned long *active) 1444 { 1445 struct btrfs_fs_info *fs_info = bg->fs_info; 1446 int i; 1447 1448 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1449 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1450 btrfs_bg_type_to_raid_name(map->type)); 1451 return -EINVAL; 1452 } 1453 1454 for (i = 0; i < map->num_stripes; i++) { 1455 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1456 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1457 continue; 1458 1459 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1460 !btrfs_test_opt(fs_info, DEGRADED)) { 1461 btrfs_err(fs_info, 1462 "zoned: write pointer offset mismatch of zones in %s profile", 1463 btrfs_bg_type_to_raid_name(map->type)); 1464 return -EIO; 1465 } 1466 if (test_bit(0, active) != test_bit(i, active)) { 1467 if (!btrfs_test_opt(fs_info, DEGRADED) && 1468 !btrfs_zone_activate(bg)) { 1469 return -EIO; 1470 } 1471 } else { 1472 if (test_bit(0, active)) 1473 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1474 } 1475 /* In case a device is missing we have a cap of 0, so don't use it. */ 1476 bg->zone_capacity = min_not_zero(zone_info[0].capacity, 1477 zone_info[1].capacity); 1478 } 1479 1480 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1481 bg->alloc_offset = zone_info[0].alloc_offset; 1482 else 1483 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1484 1485 return 0; 1486 } 1487 1488 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1489 struct btrfs_chunk_map *map, 1490 struct zone_info *zone_info, 1491 unsigned long *active) 1492 { 1493 struct btrfs_fs_info *fs_info = bg->fs_info; 1494 1495 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1496 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1497 btrfs_bg_type_to_raid_name(map->type)); 1498 return -EINVAL; 1499 } 1500 1501 for (int i = 0; i < map->num_stripes; i++) { 1502 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1503 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1504 continue; 1505 1506 if (test_bit(0, active) != test_bit(i, active)) { 1507 if (!btrfs_zone_activate(bg)) 1508 return -EIO; 1509 } else { 1510 if (test_bit(0, active)) 1511 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1512 } 1513 bg->zone_capacity += zone_info[i].capacity; 1514 bg->alloc_offset += zone_info[i].alloc_offset; 1515 } 1516 1517 return 0; 1518 } 1519 1520 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1521 struct btrfs_chunk_map *map, 1522 struct zone_info *zone_info, 1523 unsigned long *active) 1524 { 1525 struct btrfs_fs_info *fs_info = bg->fs_info; 1526 1527 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1528 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1529 btrfs_bg_type_to_raid_name(map->type)); 1530 return -EINVAL; 1531 } 1532 1533 for (int i = 0; i < map->num_stripes; i++) { 1534 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1535 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1536 continue; 1537 1538 if (test_bit(0, active) != test_bit(i, active)) { 1539 if (!btrfs_zone_activate(bg)) 1540 return -EIO; 1541 } else { 1542 if (test_bit(0, active)) 1543 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1544 } 1545 1546 if ((i % map->sub_stripes) == 0) { 1547 bg->zone_capacity += zone_info[i].capacity; 1548 bg->alloc_offset += zone_info[i].alloc_offset; 1549 } 1550 } 1551 1552 return 0; 1553 } 1554 1555 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1556 { 1557 struct btrfs_fs_info *fs_info = cache->fs_info; 1558 struct btrfs_chunk_map *map; 1559 u64 logical = cache->start; 1560 u64 length = cache->length; 1561 struct zone_info *zone_info = NULL; 1562 int ret; 1563 int i; 1564 unsigned long *active = NULL; 1565 u64 last_alloc = 0; 1566 u32 num_sequential = 0, num_conventional = 0; 1567 1568 if (!btrfs_is_zoned(fs_info)) 1569 return 0; 1570 1571 /* Sanity check */ 1572 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1573 btrfs_err(fs_info, 1574 "zoned: block group %llu len %llu unaligned to zone size %llu", 1575 logical, length, fs_info->zone_size); 1576 return -EIO; 1577 } 1578 1579 map = btrfs_find_chunk_map(fs_info, logical, length); 1580 if (!map) 1581 return -EINVAL; 1582 1583 cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS); 1584 if (!cache->physical_map) { 1585 ret = -ENOMEM; 1586 goto out; 1587 } 1588 1589 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1590 if (!zone_info) { 1591 ret = -ENOMEM; 1592 goto out; 1593 } 1594 1595 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1596 if (!active) { 1597 ret = -ENOMEM; 1598 goto out; 1599 } 1600 1601 for (i = 0; i < map->num_stripes; i++) { 1602 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1603 if (ret) 1604 goto out; 1605 1606 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1607 num_conventional++; 1608 else 1609 num_sequential++; 1610 } 1611 1612 if (num_sequential > 0) 1613 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1614 1615 if (num_conventional > 0) { 1616 /* Zone capacity is always zone size in emulation */ 1617 cache->zone_capacity = cache->length; 1618 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1619 if (ret) { 1620 btrfs_err(fs_info, 1621 "zoned: failed to determine allocation offset of bg %llu", 1622 cache->start); 1623 goto out; 1624 } else if (map->num_stripes == num_conventional) { 1625 cache->alloc_offset = last_alloc; 1626 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1627 goto out; 1628 } 1629 } 1630 1631 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1632 case 0: /* single */ 1633 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1634 break; 1635 case BTRFS_BLOCK_GROUP_DUP: 1636 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1637 break; 1638 case BTRFS_BLOCK_GROUP_RAID1: 1639 case BTRFS_BLOCK_GROUP_RAID1C3: 1640 case BTRFS_BLOCK_GROUP_RAID1C4: 1641 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1642 break; 1643 case BTRFS_BLOCK_GROUP_RAID0: 1644 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1645 break; 1646 case BTRFS_BLOCK_GROUP_RAID10: 1647 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1648 break; 1649 case BTRFS_BLOCK_GROUP_RAID5: 1650 case BTRFS_BLOCK_GROUP_RAID6: 1651 default: 1652 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1653 btrfs_bg_type_to_raid_name(map->type)); 1654 ret = -EINVAL; 1655 goto out; 1656 } 1657 1658 out: 1659 if (cache->alloc_offset > cache->zone_capacity) { 1660 btrfs_err(fs_info, 1661 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1662 cache->alloc_offset, cache->zone_capacity, 1663 cache->start); 1664 ret = -EIO; 1665 } 1666 1667 /* An extent is allocated after the write pointer */ 1668 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1669 btrfs_err(fs_info, 1670 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1671 logical, last_alloc, cache->alloc_offset); 1672 ret = -EIO; 1673 } 1674 1675 if (!ret) { 1676 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1677 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1678 btrfs_get_block_group(cache); 1679 spin_lock(&fs_info->zone_active_bgs_lock); 1680 list_add_tail(&cache->active_bg_list, 1681 &fs_info->zone_active_bgs); 1682 spin_unlock(&fs_info->zone_active_bgs_lock); 1683 } 1684 } else { 1685 btrfs_free_chunk_map(cache->physical_map); 1686 cache->physical_map = NULL; 1687 } 1688 bitmap_free(active); 1689 kfree(zone_info); 1690 1691 return ret; 1692 } 1693 1694 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1695 { 1696 u64 unusable, free; 1697 1698 if (!btrfs_is_zoned(cache->fs_info)) 1699 return; 1700 1701 WARN_ON(cache->bytes_super != 0); 1702 unusable = (cache->alloc_offset - cache->used) + 1703 (cache->length - cache->zone_capacity); 1704 free = cache->zone_capacity - cache->alloc_offset; 1705 1706 /* We only need ->free_space in ALLOC_SEQ block groups */ 1707 cache->cached = BTRFS_CACHE_FINISHED; 1708 cache->free_space_ctl->free_space = free; 1709 cache->zone_unusable = unusable; 1710 } 1711 1712 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1713 { 1714 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1715 struct btrfs_inode *inode = bbio->inode; 1716 struct btrfs_fs_info *fs_info = bbio->fs_info; 1717 struct btrfs_block_group *cache; 1718 bool ret = false; 1719 1720 if (!btrfs_is_zoned(fs_info)) 1721 return false; 1722 1723 if (!inode || !is_data_inode(&inode->vfs_inode)) 1724 return false; 1725 1726 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1727 return false; 1728 1729 /* 1730 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1731 * extent layout the relocation code has. 1732 * Furthermore we have set aside own block-group from which only the 1733 * relocation "process" can allocate and make sure only one process at a 1734 * time can add pages to an extent that gets relocated, so it's safe to 1735 * use regular REQ_OP_WRITE for this special case. 1736 */ 1737 if (btrfs_is_data_reloc_root(inode->root)) 1738 return false; 1739 1740 cache = btrfs_lookup_block_group(fs_info, start); 1741 ASSERT(cache); 1742 if (!cache) 1743 return false; 1744 1745 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1746 btrfs_put_block_group(cache); 1747 1748 return ret; 1749 } 1750 1751 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1752 { 1753 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1754 struct btrfs_ordered_sum *sum = bbio->sums; 1755 1756 if (physical < bbio->orig_physical) 1757 sum->logical -= bbio->orig_physical - physical; 1758 else 1759 sum->logical += physical - bbio->orig_physical; 1760 } 1761 1762 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1763 u64 logical) 1764 { 1765 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree; 1766 struct extent_map *em; 1767 1768 ordered->disk_bytenr = logical; 1769 1770 write_lock(&em_tree->lock); 1771 em = search_extent_mapping(em_tree, ordered->file_offset, 1772 ordered->num_bytes); 1773 em->block_start = logical; 1774 free_extent_map(em); 1775 write_unlock(&em_tree->lock); 1776 } 1777 1778 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1779 u64 logical, u64 len) 1780 { 1781 struct btrfs_ordered_extent *new; 1782 1783 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1784 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset, 1785 ordered->num_bytes, len, logical)) 1786 return false; 1787 1788 new = btrfs_split_ordered_extent(ordered, len); 1789 if (IS_ERR(new)) 1790 return false; 1791 new->disk_bytenr = logical; 1792 btrfs_finish_one_ordered(new); 1793 return true; 1794 } 1795 1796 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1797 { 1798 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1799 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1800 struct btrfs_ordered_sum *sum; 1801 u64 logical, len; 1802 1803 /* 1804 * Write to pre-allocated region is for the data relocation, and so 1805 * it should use WRITE operation. No split/rewrite are necessary. 1806 */ 1807 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1808 return; 1809 1810 ASSERT(!list_empty(&ordered->list)); 1811 /* The ordered->list can be empty in the above pre-alloc case. */ 1812 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1813 logical = sum->logical; 1814 len = sum->len; 1815 1816 while (len < ordered->disk_num_bytes) { 1817 sum = list_next_entry(sum, list); 1818 if (sum->logical == logical + len) { 1819 len += sum->len; 1820 continue; 1821 } 1822 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1823 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1824 btrfs_err(fs_info, "failed to split ordered extent"); 1825 goto out; 1826 } 1827 logical = sum->logical; 1828 len = sum->len; 1829 } 1830 1831 if (ordered->disk_bytenr != logical) 1832 btrfs_rewrite_logical_zoned(ordered, logical); 1833 1834 out: 1835 /* 1836 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1837 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1838 * addresses and don't contain actual checksums. We thus must free them 1839 * here so that we don't attempt to log the csums later. 1840 */ 1841 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1842 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) { 1843 while ((sum = list_first_entry_or_null(&ordered->list, 1844 typeof(*sum), list))) { 1845 list_del(&sum->list); 1846 kfree(sum); 1847 } 1848 } 1849 } 1850 1851 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1852 struct btrfs_block_group **active_bg) 1853 { 1854 const struct writeback_control *wbc = ctx->wbc; 1855 struct btrfs_block_group *block_group = ctx->zoned_bg; 1856 struct btrfs_fs_info *fs_info = block_group->fs_info; 1857 1858 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1859 return true; 1860 1861 if (fs_info->treelog_bg == block_group->start) { 1862 if (!btrfs_zone_activate(block_group)) { 1863 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1864 1865 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1866 return false; 1867 } 1868 } else if (*active_bg != block_group) { 1869 struct btrfs_block_group *tgt = *active_bg; 1870 1871 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1872 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1873 1874 if (tgt) { 1875 /* 1876 * If there is an unsent IO left in the allocated area, 1877 * we cannot wait for them as it may cause a deadlock. 1878 */ 1879 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1880 if (wbc->sync_mode == WB_SYNC_NONE || 1881 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1882 return false; 1883 } 1884 1885 /* Pivot active metadata/system block group. */ 1886 btrfs_zoned_meta_io_unlock(fs_info); 1887 wait_eb_writebacks(tgt); 1888 do_zone_finish(tgt, true); 1889 btrfs_zoned_meta_io_lock(fs_info); 1890 if (*active_bg == tgt) { 1891 btrfs_put_block_group(tgt); 1892 *active_bg = NULL; 1893 } 1894 } 1895 if (!btrfs_zone_activate(block_group)) 1896 return false; 1897 if (*active_bg != block_group) { 1898 ASSERT(*active_bg == NULL); 1899 *active_bg = block_group; 1900 btrfs_get_block_group(block_group); 1901 } 1902 } 1903 1904 return true; 1905 } 1906 1907 /* 1908 * Check if @ctx->eb is aligned to the write pointer. 1909 * 1910 * Return: 1911 * 0: @ctx->eb is at the write pointer. You can write it. 1912 * -EAGAIN: There is a hole. The caller should handle the case. 1913 * -EBUSY: There is a hole, but the caller can just bail out. 1914 */ 1915 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1916 struct btrfs_eb_write_context *ctx) 1917 { 1918 const struct writeback_control *wbc = ctx->wbc; 1919 const struct extent_buffer *eb = ctx->eb; 1920 struct btrfs_block_group *block_group = ctx->zoned_bg; 1921 1922 if (!btrfs_is_zoned(fs_info)) 1923 return 0; 1924 1925 if (block_group) { 1926 if (block_group->start > eb->start || 1927 block_group->start + block_group->length <= eb->start) { 1928 btrfs_put_block_group(block_group); 1929 block_group = NULL; 1930 ctx->zoned_bg = NULL; 1931 } 1932 } 1933 1934 if (!block_group) { 1935 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1936 if (!block_group) 1937 return 0; 1938 ctx->zoned_bg = block_group; 1939 } 1940 1941 if (block_group->meta_write_pointer == eb->start) { 1942 struct btrfs_block_group **tgt; 1943 1944 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1945 return 0; 1946 1947 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1948 tgt = &fs_info->active_system_bg; 1949 else 1950 tgt = &fs_info->active_meta_bg; 1951 if (check_bg_is_active(ctx, tgt)) 1952 return 0; 1953 } 1954 1955 /* 1956 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1957 * start writing this eb. In that case, we can just bail out. 1958 */ 1959 if (block_group->meta_write_pointer > eb->start) 1960 return -EBUSY; 1961 1962 /* If for_sync, this hole will be filled with trasnsaction commit. */ 1963 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1964 return -EAGAIN; 1965 return -EBUSY; 1966 } 1967 1968 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1969 { 1970 if (!btrfs_dev_is_sequential(device, physical)) 1971 return -EOPNOTSUPP; 1972 1973 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1974 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1975 } 1976 1977 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1978 struct blk_zone *zone) 1979 { 1980 struct btrfs_io_context *bioc = NULL; 1981 u64 mapped_length = PAGE_SIZE; 1982 unsigned int nofs_flag; 1983 int nmirrors; 1984 int i, ret; 1985 1986 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1987 &mapped_length, &bioc, NULL, NULL); 1988 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1989 ret = -EIO; 1990 goto out_put_bioc; 1991 } 1992 1993 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1994 ret = -EINVAL; 1995 goto out_put_bioc; 1996 } 1997 1998 nofs_flag = memalloc_nofs_save(); 1999 nmirrors = (int)bioc->num_stripes; 2000 for (i = 0; i < nmirrors; i++) { 2001 u64 physical = bioc->stripes[i].physical; 2002 struct btrfs_device *dev = bioc->stripes[i].dev; 2003 2004 /* Missing device */ 2005 if (!dev->bdev) 2006 continue; 2007 2008 ret = btrfs_get_dev_zone(dev, physical, zone); 2009 /* Failing device */ 2010 if (ret == -EIO || ret == -EOPNOTSUPP) 2011 continue; 2012 break; 2013 } 2014 memalloc_nofs_restore(nofs_flag); 2015 out_put_bioc: 2016 btrfs_put_bioc(bioc); 2017 return ret; 2018 } 2019 2020 /* 2021 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2022 * filling zeros between @physical_pos to a write pointer of dev-replace 2023 * source device. 2024 */ 2025 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2026 u64 physical_start, u64 physical_pos) 2027 { 2028 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2029 struct blk_zone zone; 2030 u64 length; 2031 u64 wp; 2032 int ret; 2033 2034 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2035 return 0; 2036 2037 ret = read_zone_info(fs_info, logical, &zone); 2038 if (ret) 2039 return ret; 2040 2041 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2042 2043 if (physical_pos == wp) 2044 return 0; 2045 2046 if (physical_pos > wp) 2047 return -EUCLEAN; 2048 2049 length = wp - physical_pos; 2050 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2051 } 2052 2053 /* 2054 * Activate block group and underlying device zones 2055 * 2056 * @block_group: the block group to activate 2057 * 2058 * Return: true on success, false otherwise 2059 */ 2060 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2061 { 2062 struct btrfs_fs_info *fs_info = block_group->fs_info; 2063 struct btrfs_chunk_map *map; 2064 struct btrfs_device *device; 2065 u64 physical; 2066 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2067 bool ret; 2068 int i; 2069 2070 if (!btrfs_is_zoned(block_group->fs_info)) 2071 return true; 2072 2073 map = block_group->physical_map; 2074 2075 spin_lock(&block_group->lock); 2076 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2077 ret = true; 2078 goto out_unlock; 2079 } 2080 2081 /* No space left */ 2082 if (btrfs_zoned_bg_is_full(block_group)) { 2083 ret = false; 2084 goto out_unlock; 2085 } 2086 2087 spin_lock(&fs_info->zone_active_bgs_lock); 2088 for (i = 0; i < map->num_stripes; i++) { 2089 struct btrfs_zoned_device_info *zinfo; 2090 int reserved = 0; 2091 2092 device = map->stripes[i].dev; 2093 physical = map->stripes[i].physical; 2094 zinfo = device->zone_info; 2095 2096 if (zinfo->max_active_zones == 0) 2097 continue; 2098 2099 if (is_data) 2100 reserved = zinfo->reserved_active_zones; 2101 /* 2102 * For the data block group, leave active zones for one 2103 * metadata block group and one system block group. 2104 */ 2105 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2106 ret = false; 2107 spin_unlock(&fs_info->zone_active_bgs_lock); 2108 goto out_unlock; 2109 } 2110 2111 if (!btrfs_dev_set_active_zone(device, physical)) { 2112 /* Cannot activate the zone */ 2113 ret = false; 2114 spin_unlock(&fs_info->zone_active_bgs_lock); 2115 goto out_unlock; 2116 } 2117 if (!is_data) 2118 zinfo->reserved_active_zones--; 2119 } 2120 spin_unlock(&fs_info->zone_active_bgs_lock); 2121 2122 /* Successfully activated all the zones */ 2123 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2124 spin_unlock(&block_group->lock); 2125 2126 /* For the active block group list */ 2127 btrfs_get_block_group(block_group); 2128 2129 spin_lock(&fs_info->zone_active_bgs_lock); 2130 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2131 spin_unlock(&fs_info->zone_active_bgs_lock); 2132 2133 return true; 2134 2135 out_unlock: 2136 spin_unlock(&block_group->lock); 2137 return ret; 2138 } 2139 2140 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2141 { 2142 struct btrfs_fs_info *fs_info = block_group->fs_info; 2143 const u64 end = block_group->start + block_group->length; 2144 struct radix_tree_iter iter; 2145 struct extent_buffer *eb; 2146 void __rcu **slot; 2147 2148 rcu_read_lock(); 2149 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2150 block_group->start >> fs_info->sectorsize_bits) { 2151 eb = radix_tree_deref_slot(slot); 2152 if (!eb) 2153 continue; 2154 if (radix_tree_deref_retry(eb)) { 2155 slot = radix_tree_iter_retry(&iter); 2156 continue; 2157 } 2158 2159 if (eb->start < block_group->start) 2160 continue; 2161 if (eb->start >= end) 2162 break; 2163 2164 slot = radix_tree_iter_resume(slot, &iter); 2165 rcu_read_unlock(); 2166 wait_on_extent_buffer_writeback(eb); 2167 rcu_read_lock(); 2168 } 2169 rcu_read_unlock(); 2170 } 2171 2172 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2173 { 2174 struct btrfs_fs_info *fs_info = block_group->fs_info; 2175 struct btrfs_chunk_map *map; 2176 const bool is_metadata = (block_group->flags & 2177 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2178 int ret = 0; 2179 int i; 2180 2181 spin_lock(&block_group->lock); 2182 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2183 spin_unlock(&block_group->lock); 2184 return 0; 2185 } 2186 2187 /* Check if we have unwritten allocated space */ 2188 if (is_metadata && 2189 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2190 spin_unlock(&block_group->lock); 2191 return -EAGAIN; 2192 } 2193 2194 /* 2195 * If we are sure that the block group is full (= no more room left for 2196 * new allocation) and the IO for the last usable block is completed, we 2197 * don't need to wait for the other IOs. This holds because we ensure 2198 * the sequential IO submissions using the ZONE_APPEND command for data 2199 * and block_group->meta_write_pointer for metadata. 2200 */ 2201 if (!fully_written) { 2202 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2203 spin_unlock(&block_group->lock); 2204 return -EAGAIN; 2205 } 2206 spin_unlock(&block_group->lock); 2207 2208 ret = btrfs_inc_block_group_ro(block_group, false); 2209 if (ret) 2210 return ret; 2211 2212 /* Ensure all writes in this block group finish */ 2213 btrfs_wait_block_group_reservations(block_group); 2214 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2215 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2216 block_group->length); 2217 /* Wait for extent buffers to be written. */ 2218 if (is_metadata) 2219 wait_eb_writebacks(block_group); 2220 2221 spin_lock(&block_group->lock); 2222 2223 /* 2224 * Bail out if someone already deactivated the block group, or 2225 * allocated space is left in the block group. 2226 */ 2227 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2228 &block_group->runtime_flags)) { 2229 spin_unlock(&block_group->lock); 2230 btrfs_dec_block_group_ro(block_group); 2231 return 0; 2232 } 2233 2234 if (block_group->reserved || 2235 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2236 &block_group->runtime_flags)) { 2237 spin_unlock(&block_group->lock); 2238 btrfs_dec_block_group_ro(block_group); 2239 return -EAGAIN; 2240 } 2241 } 2242 2243 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2244 block_group->alloc_offset = block_group->zone_capacity; 2245 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2246 block_group->meta_write_pointer = block_group->start + 2247 block_group->zone_capacity; 2248 block_group->free_space_ctl->free_space = 0; 2249 btrfs_clear_treelog_bg(block_group); 2250 btrfs_clear_data_reloc_bg(block_group); 2251 spin_unlock(&block_group->lock); 2252 2253 map = block_group->physical_map; 2254 for (i = 0; i < map->num_stripes; i++) { 2255 struct btrfs_device *device = map->stripes[i].dev; 2256 const u64 physical = map->stripes[i].physical; 2257 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2258 2259 if (zinfo->max_active_zones == 0) 2260 continue; 2261 2262 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2263 physical >> SECTOR_SHIFT, 2264 zinfo->zone_size >> SECTOR_SHIFT, 2265 GFP_NOFS); 2266 2267 if (ret) 2268 return ret; 2269 2270 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2271 zinfo->reserved_active_zones++; 2272 btrfs_dev_clear_active_zone(device, physical); 2273 } 2274 2275 if (!fully_written) 2276 btrfs_dec_block_group_ro(block_group); 2277 2278 spin_lock(&fs_info->zone_active_bgs_lock); 2279 ASSERT(!list_empty(&block_group->active_bg_list)); 2280 list_del_init(&block_group->active_bg_list); 2281 spin_unlock(&fs_info->zone_active_bgs_lock); 2282 2283 /* For active_bg_list */ 2284 btrfs_put_block_group(block_group); 2285 2286 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2287 2288 return 0; 2289 } 2290 2291 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2292 { 2293 if (!btrfs_is_zoned(block_group->fs_info)) 2294 return 0; 2295 2296 return do_zone_finish(block_group, false); 2297 } 2298 2299 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2300 { 2301 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2302 struct btrfs_device *device; 2303 bool ret = false; 2304 2305 if (!btrfs_is_zoned(fs_info)) 2306 return true; 2307 2308 /* Check if there is a device with active zones left */ 2309 mutex_lock(&fs_info->chunk_mutex); 2310 spin_lock(&fs_info->zone_active_bgs_lock); 2311 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2312 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2313 int reserved = 0; 2314 2315 if (!device->bdev) 2316 continue; 2317 2318 if (!zinfo->max_active_zones) { 2319 ret = true; 2320 break; 2321 } 2322 2323 if (flags & BTRFS_BLOCK_GROUP_DATA) 2324 reserved = zinfo->reserved_active_zones; 2325 2326 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2327 case 0: /* single */ 2328 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2329 break; 2330 case BTRFS_BLOCK_GROUP_DUP: 2331 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2332 break; 2333 } 2334 if (ret) 2335 break; 2336 } 2337 spin_unlock(&fs_info->zone_active_bgs_lock); 2338 mutex_unlock(&fs_info->chunk_mutex); 2339 2340 if (!ret) 2341 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2342 2343 return ret; 2344 } 2345 2346 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2347 { 2348 struct btrfs_block_group *block_group; 2349 u64 min_alloc_bytes; 2350 2351 if (!btrfs_is_zoned(fs_info)) 2352 return; 2353 2354 block_group = btrfs_lookup_block_group(fs_info, logical); 2355 ASSERT(block_group); 2356 2357 /* No MIXED_BG on zoned btrfs. */ 2358 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2359 min_alloc_bytes = fs_info->sectorsize; 2360 else 2361 min_alloc_bytes = fs_info->nodesize; 2362 2363 /* Bail out if we can allocate more data from this block group. */ 2364 if (logical + length + min_alloc_bytes <= 2365 block_group->start + block_group->zone_capacity) 2366 goto out; 2367 2368 do_zone_finish(block_group, true); 2369 2370 out: 2371 btrfs_put_block_group(block_group); 2372 } 2373 2374 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2375 { 2376 struct btrfs_block_group *bg = 2377 container_of(work, struct btrfs_block_group, zone_finish_work); 2378 2379 wait_on_extent_buffer_writeback(bg->last_eb); 2380 free_extent_buffer(bg->last_eb); 2381 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2382 btrfs_put_block_group(bg); 2383 } 2384 2385 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2386 struct extent_buffer *eb) 2387 { 2388 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2389 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2390 return; 2391 2392 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2393 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2394 bg->start); 2395 return; 2396 } 2397 2398 /* For the work */ 2399 btrfs_get_block_group(bg); 2400 atomic_inc(&eb->refs); 2401 bg->last_eb = eb; 2402 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2403 queue_work(system_unbound_wq, &bg->zone_finish_work); 2404 } 2405 2406 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2407 { 2408 struct btrfs_fs_info *fs_info = bg->fs_info; 2409 2410 spin_lock(&fs_info->relocation_bg_lock); 2411 if (fs_info->data_reloc_bg == bg->start) 2412 fs_info->data_reloc_bg = 0; 2413 spin_unlock(&fs_info->relocation_bg_lock); 2414 } 2415 2416 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2417 { 2418 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2419 struct btrfs_device *device; 2420 2421 if (!btrfs_is_zoned(fs_info)) 2422 return; 2423 2424 mutex_lock(&fs_devices->device_list_mutex); 2425 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2426 if (device->zone_info) { 2427 vfree(device->zone_info->zone_cache); 2428 device->zone_info->zone_cache = NULL; 2429 } 2430 } 2431 mutex_unlock(&fs_devices->device_list_mutex); 2432 } 2433 2434 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2435 { 2436 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2437 struct btrfs_device *device; 2438 u64 used = 0; 2439 u64 total = 0; 2440 u64 factor; 2441 2442 ASSERT(btrfs_is_zoned(fs_info)); 2443 2444 if (fs_info->bg_reclaim_threshold == 0) 2445 return false; 2446 2447 mutex_lock(&fs_devices->device_list_mutex); 2448 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2449 if (!device->bdev) 2450 continue; 2451 2452 total += device->disk_total_bytes; 2453 used += device->bytes_used; 2454 } 2455 mutex_unlock(&fs_devices->device_list_mutex); 2456 2457 factor = div64_u64(used * 100, total); 2458 return factor >= fs_info->bg_reclaim_threshold; 2459 } 2460 2461 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2462 u64 length) 2463 { 2464 struct btrfs_block_group *block_group; 2465 2466 if (!btrfs_is_zoned(fs_info)) 2467 return; 2468 2469 block_group = btrfs_lookup_block_group(fs_info, logical); 2470 /* It should be called on a previous data relocation block group. */ 2471 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2472 2473 spin_lock(&block_group->lock); 2474 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2475 goto out; 2476 2477 /* All relocation extents are written. */ 2478 if (block_group->start + block_group->alloc_offset == logical + length) { 2479 /* 2480 * Now, release this block group for further allocations and 2481 * zone finish. 2482 */ 2483 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2484 &block_group->runtime_flags); 2485 } 2486 2487 out: 2488 spin_unlock(&block_group->lock); 2489 btrfs_put_block_group(block_group); 2490 } 2491 2492 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2493 { 2494 struct btrfs_block_group *block_group; 2495 struct btrfs_block_group *min_bg = NULL; 2496 u64 min_avail = U64_MAX; 2497 int ret; 2498 2499 spin_lock(&fs_info->zone_active_bgs_lock); 2500 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2501 active_bg_list) { 2502 u64 avail; 2503 2504 spin_lock(&block_group->lock); 2505 if (block_group->reserved || block_group->alloc_offset == 0 || 2506 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2507 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2508 spin_unlock(&block_group->lock); 2509 continue; 2510 } 2511 2512 avail = block_group->zone_capacity - block_group->alloc_offset; 2513 if (min_avail > avail) { 2514 if (min_bg) 2515 btrfs_put_block_group(min_bg); 2516 min_bg = block_group; 2517 min_avail = avail; 2518 btrfs_get_block_group(min_bg); 2519 } 2520 spin_unlock(&block_group->lock); 2521 } 2522 spin_unlock(&fs_info->zone_active_bgs_lock); 2523 2524 if (!min_bg) 2525 return 0; 2526 2527 ret = btrfs_zone_finish(min_bg); 2528 btrfs_put_block_group(min_bg); 2529 2530 return ret < 0 ? ret : 1; 2531 } 2532 2533 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2534 struct btrfs_space_info *space_info, 2535 bool do_finish) 2536 { 2537 struct btrfs_block_group *bg; 2538 int index; 2539 2540 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2541 return 0; 2542 2543 for (;;) { 2544 int ret; 2545 bool need_finish = false; 2546 2547 down_read(&space_info->groups_sem); 2548 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2549 list_for_each_entry(bg, &space_info->block_groups[index], 2550 list) { 2551 if (!spin_trylock(&bg->lock)) 2552 continue; 2553 if (btrfs_zoned_bg_is_full(bg) || 2554 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2555 &bg->runtime_flags)) { 2556 spin_unlock(&bg->lock); 2557 continue; 2558 } 2559 spin_unlock(&bg->lock); 2560 2561 if (btrfs_zone_activate(bg)) { 2562 up_read(&space_info->groups_sem); 2563 return 1; 2564 } 2565 2566 need_finish = true; 2567 } 2568 } 2569 up_read(&space_info->groups_sem); 2570 2571 if (!do_finish || !need_finish) 2572 break; 2573 2574 ret = btrfs_zone_finish_one_bg(fs_info); 2575 if (ret == 0) 2576 break; 2577 if (ret < 0) 2578 return ret; 2579 } 2580 2581 return 0; 2582 } 2583 2584 /* 2585 * Reserve zones for one metadata block group, one tree-log block group, and one 2586 * system block group. 2587 */ 2588 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2589 { 2590 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2591 struct btrfs_block_group *block_group; 2592 struct btrfs_device *device; 2593 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2594 unsigned int metadata_reserve = 2; 2595 /* Reserve a zone for SINGLE system block group. */ 2596 unsigned int system_reserve = 1; 2597 2598 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2599 return; 2600 2601 /* 2602 * This function is called from the mount context. So, there is no 2603 * parallel process touching the bits. No need for read_seqretry(). 2604 */ 2605 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2606 metadata_reserve = 4; 2607 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2608 system_reserve = 2; 2609 2610 /* Apply the reservation on all the devices. */ 2611 mutex_lock(&fs_devices->device_list_mutex); 2612 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2613 if (!device->bdev) 2614 continue; 2615 2616 device->zone_info->reserved_active_zones = 2617 metadata_reserve + system_reserve; 2618 } 2619 mutex_unlock(&fs_devices->device_list_mutex); 2620 2621 /* Release reservation for currently active block groups. */ 2622 spin_lock(&fs_info->zone_active_bgs_lock); 2623 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2624 struct btrfs_chunk_map *map = block_group->physical_map; 2625 2626 if (!(block_group->flags & 2627 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2628 continue; 2629 2630 for (int i = 0; i < map->num_stripes; i++) 2631 map->stripes[i].dev->zone_info->reserved_active_zones--; 2632 } 2633 spin_unlock(&fs_info->zone_active_bgs_lock); 2634 } 2635