xref: /linux/fs/btrfs/volumes.c (revision e6dd9d89a64e30b25339d0dbe5c5aa589db8d530)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 	[BTRFS_RAID_RAID10] = {
37 		.sub_stripes	= 2,
38 		.dev_stripes	= 1,
39 		.devs_max	= 0,	/* 0 == as many as possible */
40 		.devs_min	= 4,
41 		.tolerated_failures = 1,
42 		.devs_increment	= 2,
43 		.ncopies	= 2,
44 		.nparity        = 0,
45 		.raid_name	= "raid10",
46 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 	},
49 	[BTRFS_RAID_RAID1] = {
50 		.sub_stripes	= 1,
51 		.dev_stripes	= 1,
52 		.devs_max	= 2,
53 		.devs_min	= 2,
54 		.tolerated_failures = 1,
55 		.devs_increment	= 2,
56 		.ncopies	= 2,
57 		.nparity        = 0,
58 		.raid_name	= "raid1",
59 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 	},
62 	[BTRFS_RAID_RAID1C3] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 3,
66 		.devs_min	= 3,
67 		.tolerated_failures = 2,
68 		.devs_increment	= 3,
69 		.ncopies	= 3,
70 		.nparity        = 0,
71 		.raid_name	= "raid1c3",
72 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
73 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 	},
75 	[BTRFS_RAID_RAID1C4] = {
76 		.sub_stripes	= 1,
77 		.dev_stripes	= 1,
78 		.devs_max	= 4,
79 		.devs_min	= 4,
80 		.tolerated_failures = 3,
81 		.devs_increment	= 4,
82 		.ncopies	= 4,
83 		.nparity        = 0,
84 		.raid_name	= "raid1c4",
85 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
86 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 	},
88 	[BTRFS_RAID_DUP] = {
89 		.sub_stripes	= 1,
90 		.dev_stripes	= 2,
91 		.devs_max	= 1,
92 		.devs_min	= 1,
93 		.tolerated_failures = 0,
94 		.devs_increment	= 1,
95 		.ncopies	= 2,
96 		.nparity        = 0,
97 		.raid_name	= "dup",
98 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99 		.mindev_error	= 0,
100 	},
101 	[BTRFS_RAID_RAID0] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 2,
106 		.tolerated_failures = 0,
107 		.devs_increment	= 1,
108 		.ncopies	= 1,
109 		.nparity        = 0,
110 		.raid_name	= "raid0",
111 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112 		.mindev_error	= 0,
113 	},
114 	[BTRFS_RAID_SINGLE] = {
115 		.sub_stripes	= 1,
116 		.dev_stripes	= 1,
117 		.devs_max	= 1,
118 		.devs_min	= 1,
119 		.tolerated_failures = 0,
120 		.devs_increment	= 1,
121 		.ncopies	= 1,
122 		.nparity        = 0,
123 		.raid_name	= "single",
124 		.bg_flag	= 0,
125 		.mindev_error	= 0,
126 	},
127 	[BTRFS_RAID_RAID5] = {
128 		.sub_stripes	= 1,
129 		.dev_stripes	= 1,
130 		.devs_max	= 0,
131 		.devs_min	= 2,
132 		.tolerated_failures = 1,
133 		.devs_increment	= 1,
134 		.ncopies	= 1,
135 		.nparity        = 1,
136 		.raid_name	= "raid5",
137 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 	},
140 	[BTRFS_RAID_RAID6] = {
141 		.sub_stripes	= 1,
142 		.dev_stripes	= 1,
143 		.devs_max	= 0,
144 		.devs_min	= 3,
145 		.tolerated_failures = 2,
146 		.devs_increment	= 1,
147 		.ncopies	= 1,
148 		.nparity        = 2,
149 		.raid_name	= "raid6",
150 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 	},
153 };
154 
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 	const int index = btrfs_bg_flags_to_raid_index(flags);
158 
159 	if (index >= BTRFS_NR_RAID_TYPES)
160 		return NULL;
161 
162 	return btrfs_raid_array[index].raid_name;
163 }
164 
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 	int i;
172 	int ret;
173 	char *bp = buf;
174 	u64 flags = bg_flags;
175 	u32 size_bp = size_buf;
176 
177 	if (!flags) {
178 		strcpy(bp, "NONE");
179 		return;
180 	}
181 
182 #define DESCRIBE_FLAG(flag, desc)						\
183 	do {								\
184 		if (flags & (flag)) {					\
185 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
186 			if (ret < 0 || ret >= size_bp)			\
187 				goto out_overflow;			\
188 			size_bp -= ret;					\
189 			bp += ret;					\
190 			flags &= ~(flag);				\
191 		}							\
192 	} while (0)
193 
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 
198 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 			      btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203 
204 	if (flags) {
205 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 		size_bp -= ret;
207 	}
208 
209 	if (size_bp < size_buf)
210 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211 
212 	/*
213 	 * The text is trimmed, it's up to the caller to provide sufficiently
214 	 * large buffer
215 	 */
216 out_overflow:;
217 }
218 
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 			     enum btrfs_map_op op,
225 			     u64 logical, u64 *length,
226 			     struct btrfs_bio **bbio_ret,
227 			     int mirror_num, int need_raid_map);
228 
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations
295  * ====================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * The status of exclusive operation is set and cleared atomically.
322  * During the course of Paused state, fs_info::exclusive_operation remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * The exclusive status is cleared when the device operation is canceled or
326  * completed.
327  */
328 
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 	return &fs_uuids;
334 }
335 
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 						 const u8 *metadata_fsid)
347 {
348 	struct btrfs_fs_devices *fs_devs;
349 
350 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 	if (!fs_devs)
352 		return ERR_PTR(-ENOMEM);
353 
354 	mutex_init(&fs_devs->device_list_mutex);
355 
356 	INIT_LIST_HEAD(&fs_devs->devices);
357 	INIT_LIST_HEAD(&fs_devs->alloc_list);
358 	INIT_LIST_HEAD(&fs_devs->fs_list);
359 	INIT_LIST_HEAD(&fs_devs->seed_list);
360 	if (fsid)
361 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362 
363 	if (metadata_fsid)
364 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 	else if (fsid)
366 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367 
368 	return fs_devs;
369 }
370 
371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 	WARN_ON(!list_empty(&device->post_commit_list));
374 	rcu_string_free(device->name);
375 	extent_io_tree_release(&device->alloc_state);
376 	bio_put(device->flush_bio);
377 	kfree(device);
378 }
379 
380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 	struct btrfs_device *device;
383 	WARN_ON(fs_devices->opened);
384 	while (!list_empty(&fs_devices->devices)) {
385 		device = list_entry(fs_devices->devices.next,
386 				    struct btrfs_device, dev_list);
387 		list_del(&device->dev_list);
388 		btrfs_free_device(device);
389 	}
390 	kfree(fs_devices);
391 }
392 
393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 	struct btrfs_fs_devices *fs_devices;
396 
397 	while (!list_empty(&fs_uuids)) {
398 		fs_devices = list_entry(fs_uuids.next,
399 					struct btrfs_fs_devices, fs_list);
400 		list_del(&fs_devices->fs_list);
401 		free_fs_devices(fs_devices);
402 	}
403 }
404 
405 /*
406  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407  * Returned struct is not linked onto any lists and must be destroyed using
408  * btrfs_free_device.
409  */
410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 	struct btrfs_device *dev;
413 
414 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 	if (!dev)
416 		return ERR_PTR(-ENOMEM);
417 
418 	/*
419 	 * Preallocate a bio that's always going to be used for flushing device
420 	 * barriers and matches the device lifespan
421 	 */
422 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 	if (!dev->flush_bio) {
424 		kfree(dev);
425 		return ERR_PTR(-ENOMEM);
426 	}
427 
428 	INIT_LIST_HEAD(&dev->dev_list);
429 	INIT_LIST_HEAD(&dev->dev_alloc_list);
430 	INIT_LIST_HEAD(&dev->post_commit_list);
431 
432 	atomic_set(&dev->reada_in_flight, 0);
433 	atomic_set(&dev->dev_stats_ccnt, 0);
434 	btrfs_device_data_ordered_init(dev, fs_info);
435 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 	extent_io_tree_init(fs_info, &dev->alloc_state,
438 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 
440 	return dev;
441 }
442 
443 static noinline struct btrfs_fs_devices *find_fsid(
444 		const u8 *fsid, const u8 *metadata_fsid)
445 {
446 	struct btrfs_fs_devices *fs_devices;
447 
448 	ASSERT(fsid);
449 
450 	/* Handle non-split brain cases */
451 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 		if (metadata_fsid) {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 				      BTRFS_FSID_SIZE) == 0)
456 				return fs_devices;
457 		} else {
458 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 				return fs_devices;
460 		}
461 	}
462 	return NULL;
463 }
464 
465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 				struct btrfs_super_block *disk_super)
467 {
468 
469 	struct btrfs_fs_devices *fs_devices;
470 
471 	/*
472 	 * Handle scanned device having completed its fsid change but
473 	 * belonging to a fs_devices that was created by first scanning
474 	 * a device which didn't have its fsid/metadata_uuid changed
475 	 * at all and the CHANGING_FSID_V2 flag set.
476 	 */
477 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 		if (fs_devices->fsid_change &&
479 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 			   BTRFS_FSID_SIZE) == 0 &&
481 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 			   BTRFS_FSID_SIZE) == 0) {
483 			return fs_devices;
484 		}
485 	}
486 	/*
487 	 * Handle scanned device having completed its fsid change but
488 	 * belonging to a fs_devices that was created by a device that
489 	 * has an outdated pair of fsid/metadata_uuid and
490 	 * CHANGING_FSID_V2 flag set.
491 	 */
492 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 		if (fs_devices->fsid_change &&
494 		    memcmp(fs_devices->metadata_uuid,
495 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 			   BTRFS_FSID_SIZE) == 0) {
498 			return fs_devices;
499 		}
500 	}
501 
502 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504 
505 
506 static int
507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 		      int flush, struct block_device **bdev,
509 		      struct btrfs_super_block **disk_super)
510 {
511 	int ret;
512 
513 	*bdev = blkdev_get_by_path(device_path, flags, holder);
514 
515 	if (IS_ERR(*bdev)) {
516 		ret = PTR_ERR(*bdev);
517 		goto error;
518 	}
519 
520 	if (flush)
521 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 	if (ret) {
524 		blkdev_put(*bdev, flags);
525 		goto error;
526 	}
527 	invalidate_bdev(*bdev);
528 	*disk_super = btrfs_read_dev_super(*bdev);
529 	if (IS_ERR(*disk_super)) {
530 		ret = PTR_ERR(*disk_super);
531 		blkdev_put(*bdev, flags);
532 		goto error;
533 	}
534 
535 	return 0;
536 
537 error:
538 	*bdev = NULL;
539 	return ret;
540 }
541 
542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 	int found;
545 
546 	rcu_read_lock();
547 	found = strcmp(rcu_str_deref(device->name), path);
548 	rcu_read_unlock();
549 
550 	return found == 0;
551 }
552 
553 /*
554  *  Search and remove all stale (devices which are not mounted) devices.
555  *  When both inputs are NULL, it will search and release all stale devices.
556  *  path:	Optional. When provided will it release all unmounted devices
557  *		matching this path only.
558  *  skip_dev:	Optional. Will skip this device when searching for the stale
559  *		devices.
560  *  Return:	0 for success or if @path is NULL.
561  * 		-EBUSY if @path is a mounted device.
562  * 		-ENOENT if @path does not match any device in the list.
563  */
564 static int btrfs_free_stale_devices(const char *path,
565 				     struct btrfs_device *skip_device)
566 {
567 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 	struct btrfs_device *device, *tmp_device;
569 	int ret = 0;
570 
571 	if (path)
572 		ret = -ENOENT;
573 
574 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
575 
576 		mutex_lock(&fs_devices->device_list_mutex);
577 		list_for_each_entry_safe(device, tmp_device,
578 					 &fs_devices->devices, dev_list) {
579 			if (skip_device && skip_device == device)
580 				continue;
581 			if (path && !device->name)
582 				continue;
583 			if (path && !device_path_matched(path, device))
584 				continue;
585 			if (fs_devices->opened) {
586 				/* for an already deleted device return 0 */
587 				if (path && ret != 0)
588 					ret = -EBUSY;
589 				break;
590 			}
591 
592 			/* delete the stale device */
593 			fs_devices->num_devices--;
594 			list_del(&device->dev_list);
595 			btrfs_free_device(device);
596 
597 			ret = 0;
598 		}
599 		mutex_unlock(&fs_devices->device_list_mutex);
600 
601 		if (fs_devices->num_devices == 0) {
602 			btrfs_sysfs_remove_fsid(fs_devices);
603 			list_del(&fs_devices->fs_list);
604 			free_fs_devices(fs_devices);
605 		}
606 	}
607 
608 	return ret;
609 }
610 
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 			struct btrfs_device *device, fmode_t flags,
618 			void *holder)
619 {
620 	struct request_queue *q;
621 	struct block_device *bdev;
622 	struct btrfs_super_block *disk_super;
623 	u64 devid;
624 	int ret;
625 
626 	if (device->bdev)
627 		return -EINVAL;
628 	if (!device->name)
629 		return -EINVAL;
630 
631 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 				    &bdev, &disk_super);
633 	if (ret)
634 		return ret;
635 
636 	devid = btrfs_stack_device_id(&disk_super->dev_item);
637 	if (devid != device->devid)
638 		goto error_free_page;
639 
640 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 		goto error_free_page;
642 
643 	device->generation = btrfs_super_generation(disk_super);
644 
645 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 		if (btrfs_super_incompat_flags(disk_super) &
647 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 			pr_err(
649 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650 			goto error_free_page;
651 		}
652 
653 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 		fs_devices->seeding = true;
655 	} else {
656 		if (bdev_read_only(bdev))
657 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 		else
659 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 	}
661 
662 	q = bdev_get_queue(bdev);
663 	if (!blk_queue_nonrot(q))
664 		fs_devices->rotating = true;
665 
666 	device->bdev = bdev;
667 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 	device->mode = flags;
669 
670 	fs_devices->open_devices++;
671 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 		fs_devices->rw_devices++;
674 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 	}
676 	btrfs_release_disk_super(disk_super);
677 
678 	return 0;
679 
680 error_free_page:
681 	btrfs_release_disk_super(disk_super);
682 	blkdev_put(bdev, flags);
683 
684 	return -EINVAL;
685 }
686 
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 					struct btrfs_super_block *disk_super)
695 {
696 	struct btrfs_fs_devices *fs_devices;
697 
698 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 			   BTRFS_FSID_SIZE) != 0 &&
701 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 			return fs_devices;
704 		}
705 	}
706 
707 	return find_fsid(disk_super->fsid, NULL);
708 }
709 
710 
711 static struct btrfs_fs_devices *find_fsid_changed(
712 					struct btrfs_super_block *disk_super)
713 {
714 	struct btrfs_fs_devices *fs_devices;
715 
716 	/*
717 	 * Handles the case where scanned device is part of an fs that had
718 	 * multiple successful changes of FSID but curently device didn't
719 	 * observe it. Meaning our fsid will be different than theirs. We need
720 	 * to handle two subcases :
721 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
722 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
723 	 *  are equal).
724 	 */
725 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 		/* Changed UUIDs */
727 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 			   BTRFS_FSID_SIZE) != 0 &&
729 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time * fs_devices was first created by another constitutent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 			   BTRFS_FSID_SIZE) != 0 &&
763 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 			   BTRFS_FSID_SIZE) == 0 &&
765 		    fs_devices->fsid_change)
766 			return fs_devices;
767 	}
768 
769 	return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 			   struct btrfs_super_block *disk_super,
780 			   bool *new_device_added)
781 {
782 	struct btrfs_device *device;
783 	struct btrfs_fs_devices *fs_devices = NULL;
784 	struct rcu_string *name;
785 	u64 found_transid = btrfs_super_generation(disk_super);
786 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791 
792 	if (fsid_change_in_progress) {
793 		if (!has_metadata_uuid)
794 			fs_devices = find_fsid_inprogress(disk_super);
795 		else
796 			fs_devices = find_fsid_changed(disk_super);
797 	} else if (has_metadata_uuid) {
798 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 	} else {
800 		fs_devices = find_fsid_reverted_metadata(disk_super);
801 		if (!fs_devices)
802 			fs_devices = find_fsid(disk_super->fsid, NULL);
803 	}
804 
805 
806 	if (!fs_devices) {
807 		if (has_metadata_uuid)
808 			fs_devices = alloc_fs_devices(disk_super->fsid,
809 						      disk_super->metadata_uuid);
810 		else
811 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812 
813 		if (IS_ERR(fs_devices))
814 			return ERR_CAST(fs_devices);
815 
816 		fs_devices->fsid_change = fsid_change_in_progress;
817 
818 		mutex_lock(&fs_devices->device_list_mutex);
819 		list_add(&fs_devices->fs_list, &fs_uuids);
820 
821 		device = NULL;
822 	} else {
823 		mutex_lock(&fs_devices->device_list_mutex);
824 		device = btrfs_find_device(fs_devices, devid,
825 				disk_super->dev_item.uuid, NULL, false);
826 
827 		/*
828 		 * If this disk has been pulled into an fs devices created by
829 		 * a device which had the CHANGING_FSID_V2 flag then replace the
830 		 * metadata_uuid/fsid values of the fs_devices.
831 		 */
832 		if (fs_devices->fsid_change &&
833 		    found_transid > fs_devices->latest_generation) {
834 			memcpy(fs_devices->fsid, disk_super->fsid,
835 					BTRFS_FSID_SIZE);
836 
837 			if (has_metadata_uuid)
838 				memcpy(fs_devices->metadata_uuid,
839 				       disk_super->metadata_uuid,
840 				       BTRFS_FSID_SIZE);
841 			else
842 				memcpy(fs_devices->metadata_uuid,
843 				       disk_super->fsid, BTRFS_FSID_SIZE);
844 
845 			fs_devices->fsid_change = false;
846 		}
847 	}
848 
849 	if (!device) {
850 		if (fs_devices->opened) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			return ERR_PTR(-EBUSY);
853 		}
854 
855 		device = btrfs_alloc_device(NULL, &devid,
856 					    disk_super->dev_item.uuid);
857 		if (IS_ERR(device)) {
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			/* we can safely leave the fs_devices entry around */
860 			return device;
861 		}
862 
863 		name = rcu_string_strdup(path, GFP_NOFS);
864 		if (!name) {
865 			btrfs_free_device(device);
866 			mutex_unlock(&fs_devices->device_list_mutex);
867 			return ERR_PTR(-ENOMEM);
868 		}
869 		rcu_assign_pointer(device->name, name);
870 
871 		list_add_rcu(&device->dev_list, &fs_devices->devices);
872 		fs_devices->num_devices++;
873 
874 		device->fs_devices = fs_devices;
875 		*new_device_added = true;
876 
877 		if (disk_super->label[0])
878 			pr_info(
879 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 				disk_super->label, devid, found_transid, path,
881 				current->comm, task_pid_nr(current));
882 		else
883 			pr_info(
884 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 				disk_super->fsid, devid, found_transid, path,
886 				current->comm, task_pid_nr(current));
887 
888 	} else if (!device->name || strcmp(device->name->str, path)) {
889 		/*
890 		 * When FS is already mounted.
891 		 * 1. If you are here and if the device->name is NULL that
892 		 *    means this device was missing at time of FS mount.
893 		 * 2. If you are here and if the device->name is different
894 		 *    from 'path' that means either
895 		 *      a. The same device disappeared and reappeared with
896 		 *         different name. or
897 		 *      b. The missing-disk-which-was-replaced, has
898 		 *         reappeared now.
899 		 *
900 		 * We must allow 1 and 2a above. But 2b would be a spurious
901 		 * and unintentional.
902 		 *
903 		 * Further in case of 1 and 2a above, the disk at 'path'
904 		 * would have missed some transaction when it was away and
905 		 * in case of 2a the stale bdev has to be updated as well.
906 		 * 2b must not be allowed at all time.
907 		 */
908 
909 		/*
910 		 * For now, we do allow update to btrfs_fs_device through the
911 		 * btrfs dev scan cli after FS has been mounted.  We're still
912 		 * tracking a problem where systems fail mount by subvolume id
913 		 * when we reject replacement on a mounted FS.
914 		 */
915 		if (!fs_devices->opened && found_transid < device->generation) {
916 			/*
917 			 * That is if the FS is _not_ mounted and if you
918 			 * are here, that means there is more than one
919 			 * disk with same uuid and devid.We keep the one
920 			 * with larger generation number or the last-in if
921 			 * generation are equal.
922 			 */
923 			mutex_unlock(&fs_devices->device_list_mutex);
924 			return ERR_PTR(-EEXIST);
925 		}
926 
927 		/*
928 		 * We are going to replace the device path for a given devid,
929 		 * make sure it's the same device if the device is mounted
930 		 */
931 		if (device->bdev) {
932 			struct block_device *path_bdev;
933 
934 			path_bdev = lookup_bdev(path);
935 			if (IS_ERR(path_bdev)) {
936 				mutex_unlock(&fs_devices->device_list_mutex);
937 				return ERR_CAST(path_bdev);
938 			}
939 
940 			if (device->bdev != path_bdev) {
941 				bdput(path_bdev);
942 				mutex_unlock(&fs_devices->device_list_mutex);
943 				btrfs_warn_in_rcu(device->fs_info,
944 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 						  path, devid, found_transid,
946 						  current->comm,
947 						  task_pid_nr(current));
948 				return ERR_PTR(-EEXIST);
949 			}
950 			bdput(path_bdev);
951 			btrfs_info_in_rcu(device->fs_info,
952 	"devid %llu device path %s changed to %s scanned by %s (%d)",
953 					  devid, rcu_str_deref(device->name),
954 					  path, current->comm,
955 					  task_pid_nr(current));
956 		}
957 
958 		name = rcu_string_strdup(path, GFP_NOFS);
959 		if (!name) {
960 			mutex_unlock(&fs_devices->device_list_mutex);
961 			return ERR_PTR(-ENOMEM);
962 		}
963 		rcu_string_free(device->name);
964 		rcu_assign_pointer(device->name, name);
965 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966 			fs_devices->missing_devices--;
967 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968 		}
969 	}
970 
971 	/*
972 	 * Unmount does not free the btrfs_device struct but would zero
973 	 * generation along with most of the other members. So just update
974 	 * it back. We need it to pick the disk with largest generation
975 	 * (as above).
976 	 */
977 	if (!fs_devices->opened) {
978 		device->generation = found_transid;
979 		fs_devices->latest_generation = max_t(u64, found_transid,
980 						fs_devices->latest_generation);
981 	}
982 
983 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
984 
985 	mutex_unlock(&fs_devices->device_list_mutex);
986 	return device;
987 }
988 
989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
990 {
991 	struct btrfs_fs_devices *fs_devices;
992 	struct btrfs_device *device;
993 	struct btrfs_device *orig_dev;
994 	int ret = 0;
995 
996 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 	if (IS_ERR(fs_devices))
998 		return fs_devices;
999 
1000 	mutex_lock(&orig->device_list_mutex);
1001 	fs_devices->total_devices = orig->total_devices;
1002 
1003 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 		struct rcu_string *name;
1005 
1006 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1007 					    orig_dev->uuid);
1008 		if (IS_ERR(device)) {
1009 			ret = PTR_ERR(device);
1010 			goto error;
1011 		}
1012 
1013 		/*
1014 		 * This is ok to do without rcu read locked because we hold the
1015 		 * uuid mutex so nothing we touch in here is going to disappear.
1016 		 */
1017 		if (orig_dev->name) {
1018 			name = rcu_string_strdup(orig_dev->name->str,
1019 					GFP_KERNEL);
1020 			if (!name) {
1021 				btrfs_free_device(device);
1022 				ret = -ENOMEM;
1023 				goto error;
1024 			}
1025 			rcu_assign_pointer(device->name, name);
1026 		}
1027 
1028 		list_add(&device->dev_list, &fs_devices->devices);
1029 		device->fs_devices = fs_devices;
1030 		fs_devices->num_devices++;
1031 	}
1032 	mutex_unlock(&orig->device_list_mutex);
1033 	return fs_devices;
1034 error:
1035 	mutex_unlock(&orig->device_list_mutex);
1036 	free_fs_devices(fs_devices);
1037 	return ERR_PTR(ret);
1038 }
1039 
1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1041 				      int step, struct btrfs_device **latest_dev)
1042 {
1043 	struct btrfs_device *device, *next;
1044 
1045 	/* This is the initialized path, it is safe to release the devices. */
1046 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049 				      &device->dev_state) &&
1050 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1051 				      &device->dev_state) &&
1052 			    (!*latest_dev ||
1053 			     device->generation > (*latest_dev)->generation)) {
1054 				*latest_dev = device;
1055 			}
1056 			continue;
1057 		}
1058 
1059 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1060 			/*
1061 			 * In the first step, keep the device which has
1062 			 * the correct fsid and the devid that is used
1063 			 * for the dev_replace procedure.
1064 			 * In the second step, the dev_replace state is
1065 			 * read from the device tree and it is known
1066 			 * whether the procedure is really active or
1067 			 * not, which means whether this device is
1068 			 * used or whether it should be removed.
1069 			 */
1070 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1071 						  &device->dev_state)) {
1072 				continue;
1073 			}
1074 		}
1075 		if (device->bdev) {
1076 			blkdev_put(device->bdev, device->mode);
1077 			device->bdev = NULL;
1078 			fs_devices->open_devices--;
1079 		}
1080 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1081 			list_del_init(&device->dev_alloc_list);
1082 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1083 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1084 				      &device->dev_state))
1085 				fs_devices->rw_devices--;
1086 		}
1087 		list_del_init(&device->dev_list);
1088 		fs_devices->num_devices--;
1089 		btrfs_free_device(device);
1090 	}
1091 
1092 }
1093 
1094 /*
1095  * After we have read the system tree and know devids belonging to this
1096  * filesystem, remove the device which does not belong there.
1097  */
1098 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1099 {
1100 	struct btrfs_device *latest_dev = NULL;
1101 	struct btrfs_fs_devices *seed_dev;
1102 
1103 	mutex_lock(&uuid_mutex);
1104 	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1105 
1106 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1107 		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1108 
1109 	fs_devices->latest_bdev = latest_dev->bdev;
1110 
1111 	mutex_unlock(&uuid_mutex);
1112 }
1113 
1114 static void btrfs_close_bdev(struct btrfs_device *device)
1115 {
1116 	if (!device->bdev)
1117 		return;
1118 
1119 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1120 		sync_blockdev(device->bdev);
1121 		invalidate_bdev(device->bdev);
1122 	}
1123 
1124 	blkdev_put(device->bdev, device->mode);
1125 }
1126 
1127 static void btrfs_close_one_device(struct btrfs_device *device)
1128 {
1129 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1130 
1131 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1132 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1133 		list_del_init(&device->dev_alloc_list);
1134 		fs_devices->rw_devices--;
1135 	}
1136 
1137 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1138 		fs_devices->missing_devices--;
1139 
1140 	btrfs_close_bdev(device);
1141 	if (device->bdev) {
1142 		fs_devices->open_devices--;
1143 		device->bdev = NULL;
1144 	}
1145 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/* Verify the device is back in a pristine state  */
1152 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 	ASSERT(list_empty(&device->dev_alloc_list));
1155 	ASSERT(list_empty(&device->post_commit_list));
1156 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1157 }
1158 
1159 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160 {
1161 	struct btrfs_device *device, *tmp;
1162 
1163 	lockdep_assert_held(&uuid_mutex);
1164 
1165 	if (--fs_devices->opened > 0)
1166 		return;
1167 
1168 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 		btrfs_close_one_device(device);
1170 
1171 	WARN_ON(fs_devices->open_devices);
1172 	WARN_ON(fs_devices->rw_devices);
1173 	fs_devices->opened = 0;
1174 	fs_devices->seeding = false;
1175 	fs_devices->fs_info = NULL;
1176 }
1177 
1178 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179 {
1180 	LIST_HEAD(list);
1181 	struct btrfs_fs_devices *tmp;
1182 
1183 	mutex_lock(&uuid_mutex);
1184 	close_fs_devices(fs_devices);
1185 	if (!fs_devices->opened)
1186 		list_splice_init(&fs_devices->seed_list, &list);
1187 
1188 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1189 		close_fs_devices(fs_devices);
1190 		list_del(&fs_devices->seed_list);
1191 		free_fs_devices(fs_devices);
1192 	}
1193 	mutex_unlock(&uuid_mutex);
1194 }
1195 
1196 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1197 				fmode_t flags, void *holder)
1198 {
1199 	struct btrfs_device *device;
1200 	struct btrfs_device *latest_dev = NULL;
1201 	struct btrfs_device *tmp_device;
1202 
1203 	flags |= FMODE_EXCL;
1204 
1205 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1206 				 dev_list) {
1207 		int ret;
1208 
1209 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1210 		if (ret == 0 &&
1211 		    (!latest_dev || device->generation > latest_dev->generation)) {
1212 			latest_dev = device;
1213 		} else if (ret == -ENODATA) {
1214 			fs_devices->num_devices--;
1215 			list_del(&device->dev_list);
1216 			btrfs_free_device(device);
1217 		}
1218 	}
1219 	if (fs_devices->open_devices == 0)
1220 		return -EINVAL;
1221 
1222 	fs_devices->opened = 1;
1223 	fs_devices->latest_bdev = latest_dev->bdev;
1224 	fs_devices->total_rw_bytes = 0;
1225 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1226 
1227 	return 0;
1228 }
1229 
1230 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1231 {
1232 	struct btrfs_device *dev1, *dev2;
1233 
1234 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1235 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1236 
1237 	if (dev1->devid < dev2->devid)
1238 		return -1;
1239 	else if (dev1->devid > dev2->devid)
1240 		return 1;
1241 	return 0;
1242 }
1243 
1244 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1245 		       fmode_t flags, void *holder)
1246 {
1247 	int ret;
1248 
1249 	lockdep_assert_held(&uuid_mutex);
1250 	/*
1251 	 * The device_list_mutex cannot be taken here in case opening the
1252 	 * underlying device takes further locks like bd_mutex.
1253 	 *
1254 	 * We also don't need the lock here as this is called during mount and
1255 	 * exclusion is provided by uuid_mutex
1256 	 */
1257 
1258 	if (fs_devices->opened) {
1259 		fs_devices->opened++;
1260 		ret = 0;
1261 	} else {
1262 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1263 		ret = open_fs_devices(fs_devices, flags, holder);
1264 	}
1265 
1266 	return ret;
1267 }
1268 
1269 void btrfs_release_disk_super(struct btrfs_super_block *super)
1270 {
1271 	struct page *page = virt_to_page(super);
1272 
1273 	put_page(page);
1274 }
1275 
1276 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1277 						       u64 bytenr)
1278 {
1279 	struct btrfs_super_block *disk_super;
1280 	struct page *page;
1281 	void *p;
1282 	pgoff_t index;
1283 
1284 	/* make sure our super fits in the device */
1285 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1286 		return ERR_PTR(-EINVAL);
1287 
1288 	/* make sure our super fits in the page */
1289 	if (sizeof(*disk_super) > PAGE_SIZE)
1290 		return ERR_PTR(-EINVAL);
1291 
1292 	/* make sure our super doesn't straddle pages on disk */
1293 	index = bytenr >> PAGE_SHIFT;
1294 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	/* pull in the page with our super */
1298 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1299 
1300 	if (IS_ERR(page))
1301 		return ERR_CAST(page);
1302 
1303 	p = page_address(page);
1304 
1305 	/* align our pointer to the offset of the super block */
1306 	disk_super = p + offset_in_page(bytenr);
1307 
1308 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1309 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1310 		btrfs_release_disk_super(p);
1311 		return ERR_PTR(-EINVAL);
1312 	}
1313 
1314 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1315 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1316 
1317 	return disk_super;
1318 }
1319 
1320 int btrfs_forget_devices(const char *path)
1321 {
1322 	int ret;
1323 
1324 	mutex_lock(&uuid_mutex);
1325 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1326 	mutex_unlock(&uuid_mutex);
1327 
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Look for a btrfs signature on a device. This may be called out of the mount path
1333  * and we are not allowed to call set_blocksize during the scan. The superblock
1334  * is read via pagecache
1335  */
1336 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1337 					   void *holder)
1338 {
1339 	struct btrfs_super_block *disk_super;
1340 	bool new_device_added = false;
1341 	struct btrfs_device *device = NULL;
1342 	struct block_device *bdev;
1343 	u64 bytenr;
1344 
1345 	lockdep_assert_held(&uuid_mutex);
1346 
1347 	/*
1348 	 * we would like to check all the supers, but that would make
1349 	 * a btrfs mount succeed after a mkfs from a different FS.
1350 	 * So, we need to add a special mount option to scan for
1351 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1352 	 */
1353 	bytenr = btrfs_sb_offset(0);
1354 	flags |= FMODE_EXCL;
1355 
1356 	bdev = blkdev_get_by_path(path, flags, holder);
1357 	if (IS_ERR(bdev))
1358 		return ERR_CAST(bdev);
1359 
1360 	disk_super = btrfs_read_disk_super(bdev, bytenr);
1361 	if (IS_ERR(disk_super)) {
1362 		device = ERR_CAST(disk_super);
1363 		goto error_bdev_put;
1364 	}
1365 
1366 	device = device_list_add(path, disk_super, &new_device_added);
1367 	if (!IS_ERR(device)) {
1368 		if (new_device_added)
1369 			btrfs_free_stale_devices(path, device);
1370 	}
1371 
1372 	btrfs_release_disk_super(disk_super);
1373 
1374 error_bdev_put:
1375 	blkdev_put(bdev, flags);
1376 
1377 	return device;
1378 }
1379 
1380 /*
1381  * Try to find a chunk that intersects [start, start + len] range and when one
1382  * such is found, record the end of it in *start
1383  */
1384 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1385 				    u64 len)
1386 {
1387 	u64 physical_start, physical_end;
1388 
1389 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1390 
1391 	if (!find_first_extent_bit(&device->alloc_state, *start,
1392 				   &physical_start, &physical_end,
1393 				   CHUNK_ALLOCATED, NULL)) {
1394 
1395 		if (in_range(physical_start, *start, len) ||
1396 		    in_range(*start, physical_start,
1397 			     physical_end - physical_start)) {
1398 			*start = physical_end + 1;
1399 			return true;
1400 		}
1401 	}
1402 	return false;
1403 }
1404 
1405 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1406 {
1407 	switch (device->fs_devices->chunk_alloc_policy) {
1408 	case BTRFS_CHUNK_ALLOC_REGULAR:
1409 		/*
1410 		 * We don't want to overwrite the superblock on the drive nor
1411 		 * any area used by the boot loader (grub for example), so we
1412 		 * make sure to start at an offset of at least 1MB.
1413 		 */
1414 		return max_t(u64, start, SZ_1M);
1415 	default:
1416 		BUG();
1417 	}
1418 }
1419 
1420 /**
1421  * dev_extent_hole_check - check if specified hole is suitable for allocation
1422  * @device:	the device which we have the hole
1423  * @hole_start: starting position of the hole
1424  * @hole_size:	the size of the hole
1425  * @num_bytes:	the size of the free space that we need
1426  *
1427  * This function may modify @hole_start and @hole_end to reflect the suitable
1428  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1429  */
1430 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1431 				  u64 *hole_size, u64 num_bytes)
1432 {
1433 	bool changed = false;
1434 	u64 hole_end = *hole_start + *hole_size;
1435 
1436 	/*
1437 	 * Check before we set max_hole_start, otherwise we could end up
1438 	 * sending back this offset anyway.
1439 	 */
1440 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1441 		if (hole_end >= *hole_start)
1442 			*hole_size = hole_end - *hole_start;
1443 		else
1444 			*hole_size = 0;
1445 		changed = true;
1446 	}
1447 
1448 	switch (device->fs_devices->chunk_alloc_policy) {
1449 	case BTRFS_CHUNK_ALLOC_REGULAR:
1450 		/* No extra check */
1451 		break;
1452 	default:
1453 		BUG();
1454 	}
1455 
1456 	return changed;
1457 }
1458 
1459 /*
1460  * find_free_dev_extent_start - find free space in the specified device
1461  * @device:	  the device which we search the free space in
1462  * @num_bytes:	  the size of the free space that we need
1463  * @search_start: the position from which to begin the search
1464  * @start:	  store the start of the free space.
1465  * @len:	  the size of the free space. that we find, or the size
1466  *		  of the max free space if we don't find suitable free space
1467  *
1468  * this uses a pretty simple search, the expectation is that it is
1469  * called very infrequently and that a given device has a small number
1470  * of extents
1471  *
1472  * @start is used to store the start of the free space if we find. But if we
1473  * don't find suitable free space, it will be used to store the start position
1474  * of the max free space.
1475  *
1476  * @len is used to store the size of the free space that we find.
1477  * But if we don't find suitable free space, it is used to store the size of
1478  * the max free space.
1479  *
1480  * NOTE: This function will search *commit* root of device tree, and does extra
1481  * check to ensure dev extents are not double allocated.
1482  * This makes the function safe to allocate dev extents but may not report
1483  * correct usable device space, as device extent freed in current transaction
1484  * is not reported as avaiable.
1485  */
1486 static int find_free_dev_extent_start(struct btrfs_device *device,
1487 				u64 num_bytes, u64 search_start, u64 *start,
1488 				u64 *len)
1489 {
1490 	struct btrfs_fs_info *fs_info = device->fs_info;
1491 	struct btrfs_root *root = fs_info->dev_root;
1492 	struct btrfs_key key;
1493 	struct btrfs_dev_extent *dev_extent;
1494 	struct btrfs_path *path;
1495 	u64 hole_size;
1496 	u64 max_hole_start;
1497 	u64 max_hole_size;
1498 	u64 extent_end;
1499 	u64 search_end = device->total_bytes;
1500 	int ret;
1501 	int slot;
1502 	struct extent_buffer *l;
1503 
1504 	search_start = dev_extent_search_start(device, search_start);
1505 
1506 	path = btrfs_alloc_path();
1507 	if (!path)
1508 		return -ENOMEM;
1509 
1510 	max_hole_start = search_start;
1511 	max_hole_size = 0;
1512 
1513 again:
1514 	if (search_start >= search_end ||
1515 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1516 		ret = -ENOSPC;
1517 		goto out;
1518 	}
1519 
1520 	path->reada = READA_FORWARD;
1521 	path->search_commit_root = 1;
1522 	path->skip_locking = 1;
1523 
1524 	key.objectid = device->devid;
1525 	key.offset = search_start;
1526 	key.type = BTRFS_DEV_EXTENT_KEY;
1527 
1528 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1529 	if (ret < 0)
1530 		goto out;
1531 	if (ret > 0) {
1532 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1533 		if (ret < 0)
1534 			goto out;
1535 	}
1536 
1537 	while (1) {
1538 		l = path->nodes[0];
1539 		slot = path->slots[0];
1540 		if (slot >= btrfs_header_nritems(l)) {
1541 			ret = btrfs_next_leaf(root, path);
1542 			if (ret == 0)
1543 				continue;
1544 			if (ret < 0)
1545 				goto out;
1546 
1547 			break;
1548 		}
1549 		btrfs_item_key_to_cpu(l, &key, slot);
1550 
1551 		if (key.objectid < device->devid)
1552 			goto next;
1553 
1554 		if (key.objectid > device->devid)
1555 			break;
1556 
1557 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1558 			goto next;
1559 
1560 		if (key.offset > search_start) {
1561 			hole_size = key.offset - search_start;
1562 			dev_extent_hole_check(device, &search_start, &hole_size,
1563 					      num_bytes);
1564 
1565 			if (hole_size > max_hole_size) {
1566 				max_hole_start = search_start;
1567 				max_hole_size = hole_size;
1568 			}
1569 
1570 			/*
1571 			 * If this free space is greater than which we need,
1572 			 * it must be the max free space that we have found
1573 			 * until now, so max_hole_start must point to the start
1574 			 * of this free space and the length of this free space
1575 			 * is stored in max_hole_size. Thus, we return
1576 			 * max_hole_start and max_hole_size and go back to the
1577 			 * caller.
1578 			 */
1579 			if (hole_size >= num_bytes) {
1580 				ret = 0;
1581 				goto out;
1582 			}
1583 		}
1584 
1585 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1586 		extent_end = key.offset + btrfs_dev_extent_length(l,
1587 								  dev_extent);
1588 		if (extent_end > search_start)
1589 			search_start = extent_end;
1590 next:
1591 		path->slots[0]++;
1592 		cond_resched();
1593 	}
1594 
1595 	/*
1596 	 * At this point, search_start should be the end of
1597 	 * allocated dev extents, and when shrinking the device,
1598 	 * search_end may be smaller than search_start.
1599 	 */
1600 	if (search_end > search_start) {
1601 		hole_size = search_end - search_start;
1602 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1603 					  num_bytes)) {
1604 			btrfs_release_path(path);
1605 			goto again;
1606 		}
1607 
1608 		if (hole_size > max_hole_size) {
1609 			max_hole_start = search_start;
1610 			max_hole_size = hole_size;
1611 		}
1612 	}
1613 
1614 	/* See above. */
1615 	if (max_hole_size < num_bytes)
1616 		ret = -ENOSPC;
1617 	else
1618 		ret = 0;
1619 
1620 out:
1621 	btrfs_free_path(path);
1622 	*start = max_hole_start;
1623 	if (len)
1624 		*len = max_hole_size;
1625 	return ret;
1626 }
1627 
1628 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1629 			 u64 *start, u64 *len)
1630 {
1631 	/* FIXME use last free of some kind */
1632 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1633 }
1634 
1635 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1636 			  struct btrfs_device *device,
1637 			  u64 start, u64 *dev_extent_len)
1638 {
1639 	struct btrfs_fs_info *fs_info = device->fs_info;
1640 	struct btrfs_root *root = fs_info->dev_root;
1641 	int ret;
1642 	struct btrfs_path *path;
1643 	struct btrfs_key key;
1644 	struct btrfs_key found_key;
1645 	struct extent_buffer *leaf = NULL;
1646 	struct btrfs_dev_extent *extent = NULL;
1647 
1648 	path = btrfs_alloc_path();
1649 	if (!path)
1650 		return -ENOMEM;
1651 
1652 	key.objectid = device->devid;
1653 	key.offset = start;
1654 	key.type = BTRFS_DEV_EXTENT_KEY;
1655 again:
1656 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1657 	if (ret > 0) {
1658 		ret = btrfs_previous_item(root, path, key.objectid,
1659 					  BTRFS_DEV_EXTENT_KEY);
1660 		if (ret)
1661 			goto out;
1662 		leaf = path->nodes[0];
1663 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1664 		extent = btrfs_item_ptr(leaf, path->slots[0],
1665 					struct btrfs_dev_extent);
1666 		BUG_ON(found_key.offset > start || found_key.offset +
1667 		       btrfs_dev_extent_length(leaf, extent) < start);
1668 		key = found_key;
1669 		btrfs_release_path(path);
1670 		goto again;
1671 	} else if (ret == 0) {
1672 		leaf = path->nodes[0];
1673 		extent = btrfs_item_ptr(leaf, path->slots[0],
1674 					struct btrfs_dev_extent);
1675 	} else {
1676 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1677 		goto out;
1678 	}
1679 
1680 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1681 
1682 	ret = btrfs_del_item(trans, root, path);
1683 	if (ret) {
1684 		btrfs_handle_fs_error(fs_info, ret,
1685 				      "Failed to remove dev extent item");
1686 	} else {
1687 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1688 	}
1689 out:
1690 	btrfs_free_path(path);
1691 	return ret;
1692 }
1693 
1694 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1695 				  struct btrfs_device *device,
1696 				  u64 chunk_offset, u64 start, u64 num_bytes)
1697 {
1698 	int ret;
1699 	struct btrfs_path *path;
1700 	struct btrfs_fs_info *fs_info = device->fs_info;
1701 	struct btrfs_root *root = fs_info->dev_root;
1702 	struct btrfs_dev_extent *extent;
1703 	struct extent_buffer *leaf;
1704 	struct btrfs_key key;
1705 
1706 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1707 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1708 	path = btrfs_alloc_path();
1709 	if (!path)
1710 		return -ENOMEM;
1711 
1712 	key.objectid = device->devid;
1713 	key.offset = start;
1714 	key.type = BTRFS_DEV_EXTENT_KEY;
1715 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1716 				      sizeof(*extent));
1717 	if (ret)
1718 		goto out;
1719 
1720 	leaf = path->nodes[0];
1721 	extent = btrfs_item_ptr(leaf, path->slots[0],
1722 				struct btrfs_dev_extent);
1723 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1724 					BTRFS_CHUNK_TREE_OBJECTID);
1725 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1726 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1727 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1728 
1729 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1730 	btrfs_mark_buffer_dirty(leaf);
1731 out:
1732 	btrfs_free_path(path);
1733 	return ret;
1734 }
1735 
1736 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1737 {
1738 	struct extent_map_tree *em_tree;
1739 	struct extent_map *em;
1740 	struct rb_node *n;
1741 	u64 ret = 0;
1742 
1743 	em_tree = &fs_info->mapping_tree;
1744 	read_lock(&em_tree->lock);
1745 	n = rb_last(&em_tree->map.rb_root);
1746 	if (n) {
1747 		em = rb_entry(n, struct extent_map, rb_node);
1748 		ret = em->start + em->len;
1749 	}
1750 	read_unlock(&em_tree->lock);
1751 
1752 	return ret;
1753 }
1754 
1755 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1756 				    u64 *devid_ret)
1757 {
1758 	int ret;
1759 	struct btrfs_key key;
1760 	struct btrfs_key found_key;
1761 	struct btrfs_path *path;
1762 
1763 	path = btrfs_alloc_path();
1764 	if (!path)
1765 		return -ENOMEM;
1766 
1767 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1768 	key.type = BTRFS_DEV_ITEM_KEY;
1769 	key.offset = (u64)-1;
1770 
1771 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1772 	if (ret < 0)
1773 		goto error;
1774 
1775 	if (ret == 0) {
1776 		/* Corruption */
1777 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1778 		ret = -EUCLEAN;
1779 		goto error;
1780 	}
1781 
1782 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1783 				  BTRFS_DEV_ITEMS_OBJECTID,
1784 				  BTRFS_DEV_ITEM_KEY);
1785 	if (ret) {
1786 		*devid_ret = 1;
1787 	} else {
1788 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1789 				      path->slots[0]);
1790 		*devid_ret = found_key.offset + 1;
1791 	}
1792 	ret = 0;
1793 error:
1794 	btrfs_free_path(path);
1795 	return ret;
1796 }
1797 
1798 /*
1799  * the device information is stored in the chunk root
1800  * the btrfs_device struct should be fully filled in
1801  */
1802 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1803 			    struct btrfs_device *device)
1804 {
1805 	int ret;
1806 	struct btrfs_path *path;
1807 	struct btrfs_dev_item *dev_item;
1808 	struct extent_buffer *leaf;
1809 	struct btrfs_key key;
1810 	unsigned long ptr;
1811 
1812 	path = btrfs_alloc_path();
1813 	if (!path)
1814 		return -ENOMEM;
1815 
1816 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1817 	key.type = BTRFS_DEV_ITEM_KEY;
1818 	key.offset = device->devid;
1819 
1820 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1821 				      &key, sizeof(*dev_item));
1822 	if (ret)
1823 		goto out;
1824 
1825 	leaf = path->nodes[0];
1826 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1827 
1828 	btrfs_set_device_id(leaf, dev_item, device->devid);
1829 	btrfs_set_device_generation(leaf, dev_item, 0);
1830 	btrfs_set_device_type(leaf, dev_item, device->type);
1831 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1832 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1833 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1834 	btrfs_set_device_total_bytes(leaf, dev_item,
1835 				     btrfs_device_get_disk_total_bytes(device));
1836 	btrfs_set_device_bytes_used(leaf, dev_item,
1837 				    btrfs_device_get_bytes_used(device));
1838 	btrfs_set_device_group(leaf, dev_item, 0);
1839 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1840 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1841 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1842 
1843 	ptr = btrfs_device_uuid(dev_item);
1844 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1845 	ptr = btrfs_device_fsid(dev_item);
1846 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1847 			    ptr, BTRFS_FSID_SIZE);
1848 	btrfs_mark_buffer_dirty(leaf);
1849 
1850 	ret = 0;
1851 out:
1852 	btrfs_free_path(path);
1853 	return ret;
1854 }
1855 
1856 /*
1857  * Function to update ctime/mtime for a given device path.
1858  * Mainly used for ctime/mtime based probe like libblkid.
1859  */
1860 static void update_dev_time(const char *path_name)
1861 {
1862 	struct file *filp;
1863 
1864 	filp = filp_open(path_name, O_RDWR, 0);
1865 	if (IS_ERR(filp))
1866 		return;
1867 	file_update_time(filp);
1868 	filp_close(filp, NULL);
1869 }
1870 
1871 static int btrfs_rm_dev_item(struct btrfs_device *device)
1872 {
1873 	struct btrfs_root *root = device->fs_info->chunk_root;
1874 	int ret;
1875 	struct btrfs_path *path;
1876 	struct btrfs_key key;
1877 	struct btrfs_trans_handle *trans;
1878 
1879 	path = btrfs_alloc_path();
1880 	if (!path)
1881 		return -ENOMEM;
1882 
1883 	trans = btrfs_start_transaction(root, 0);
1884 	if (IS_ERR(trans)) {
1885 		btrfs_free_path(path);
1886 		return PTR_ERR(trans);
1887 	}
1888 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889 	key.type = BTRFS_DEV_ITEM_KEY;
1890 	key.offset = device->devid;
1891 
1892 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1893 	if (ret) {
1894 		if (ret > 0)
1895 			ret = -ENOENT;
1896 		btrfs_abort_transaction(trans, ret);
1897 		btrfs_end_transaction(trans);
1898 		goto out;
1899 	}
1900 
1901 	ret = btrfs_del_item(trans, root, path);
1902 	if (ret) {
1903 		btrfs_abort_transaction(trans, ret);
1904 		btrfs_end_transaction(trans);
1905 	}
1906 
1907 out:
1908 	btrfs_free_path(path);
1909 	if (!ret)
1910 		ret = btrfs_commit_transaction(trans);
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1916  * filesystem. It's up to the caller to adjust that number regarding eg. device
1917  * replace.
1918  */
1919 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1920 		u64 num_devices)
1921 {
1922 	u64 all_avail;
1923 	unsigned seq;
1924 	int i;
1925 
1926 	do {
1927 		seq = read_seqbegin(&fs_info->profiles_lock);
1928 
1929 		all_avail = fs_info->avail_data_alloc_bits |
1930 			    fs_info->avail_system_alloc_bits |
1931 			    fs_info->avail_metadata_alloc_bits;
1932 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1933 
1934 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1935 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1936 			continue;
1937 
1938 		if (num_devices < btrfs_raid_array[i].devs_min) {
1939 			int ret = btrfs_raid_array[i].mindev_error;
1940 
1941 			if (ret)
1942 				return ret;
1943 		}
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static struct btrfs_device * btrfs_find_next_active_device(
1950 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1951 {
1952 	struct btrfs_device *next_device;
1953 
1954 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1955 		if (next_device != device &&
1956 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1957 		    && next_device->bdev)
1958 			return next_device;
1959 	}
1960 
1961 	return NULL;
1962 }
1963 
1964 /*
1965  * Helper function to check if the given device is part of s_bdev / latest_bdev
1966  * and replace it with the provided or the next active device, in the context
1967  * where this function called, there should be always be another device (or
1968  * this_dev) which is active.
1969  */
1970 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1971 					    struct btrfs_device *next_device)
1972 {
1973 	struct btrfs_fs_info *fs_info = device->fs_info;
1974 
1975 	if (!next_device)
1976 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1977 							    device);
1978 	ASSERT(next_device);
1979 
1980 	if (fs_info->sb->s_bdev &&
1981 			(fs_info->sb->s_bdev == device->bdev))
1982 		fs_info->sb->s_bdev = next_device->bdev;
1983 
1984 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1985 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1986 }
1987 
1988 /*
1989  * Return btrfs_fs_devices::num_devices excluding the device that's being
1990  * currently replaced.
1991  */
1992 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1993 {
1994 	u64 num_devices = fs_info->fs_devices->num_devices;
1995 
1996 	down_read(&fs_info->dev_replace.rwsem);
1997 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1998 		ASSERT(num_devices > 1);
1999 		num_devices--;
2000 	}
2001 	up_read(&fs_info->dev_replace.rwsem);
2002 
2003 	return num_devices;
2004 }
2005 
2006 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2007 			       struct block_device *bdev,
2008 			       const char *device_path)
2009 {
2010 	struct btrfs_super_block *disk_super;
2011 	int copy_num;
2012 
2013 	if (!bdev)
2014 		return;
2015 
2016 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2017 		struct page *page;
2018 		int ret;
2019 
2020 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2021 		if (IS_ERR(disk_super))
2022 			continue;
2023 
2024 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2025 
2026 		page = virt_to_page(disk_super);
2027 		set_page_dirty(page);
2028 		lock_page(page);
2029 		/* write_on_page() unlocks the page */
2030 		ret = write_one_page(page);
2031 		if (ret)
2032 			btrfs_warn(fs_info,
2033 				"error clearing superblock number %d (%d)",
2034 				copy_num, ret);
2035 		btrfs_release_disk_super(disk_super);
2036 
2037 	}
2038 
2039 	/* Notify udev that device has changed */
2040 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2041 
2042 	/* Update ctime/mtime for device path for libblkid */
2043 	update_dev_time(device_path);
2044 }
2045 
2046 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2047 		    u64 devid)
2048 {
2049 	struct btrfs_device *device;
2050 	struct btrfs_fs_devices *cur_devices;
2051 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2052 	u64 num_devices;
2053 	int ret = 0;
2054 
2055 	mutex_lock(&uuid_mutex);
2056 
2057 	num_devices = btrfs_num_devices(fs_info);
2058 
2059 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2060 	if (ret)
2061 		goto out;
2062 
2063 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2064 
2065 	if (IS_ERR(device)) {
2066 		if (PTR_ERR(device) == -ENOENT &&
2067 		    strcmp(device_path, "missing") == 0)
2068 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2069 		else
2070 			ret = PTR_ERR(device);
2071 		goto out;
2072 	}
2073 
2074 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2075 		btrfs_warn_in_rcu(fs_info,
2076 		  "cannot remove device %s (devid %llu) due to active swapfile",
2077 				  rcu_str_deref(device->name), device->devid);
2078 		ret = -ETXTBSY;
2079 		goto out;
2080 	}
2081 
2082 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2083 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2084 		goto out;
2085 	}
2086 
2087 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2088 	    fs_info->fs_devices->rw_devices == 1) {
2089 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2090 		goto out;
2091 	}
2092 
2093 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2094 		mutex_lock(&fs_info->chunk_mutex);
2095 		list_del_init(&device->dev_alloc_list);
2096 		device->fs_devices->rw_devices--;
2097 		mutex_unlock(&fs_info->chunk_mutex);
2098 	}
2099 
2100 	mutex_unlock(&uuid_mutex);
2101 	ret = btrfs_shrink_device(device, 0);
2102 	if (!ret)
2103 		btrfs_reada_remove_dev(device);
2104 	mutex_lock(&uuid_mutex);
2105 	if (ret)
2106 		goto error_undo;
2107 
2108 	/*
2109 	 * TODO: the superblock still includes this device in its num_devices
2110 	 * counter although write_all_supers() is not locked out. This
2111 	 * could give a filesystem state which requires a degraded mount.
2112 	 */
2113 	ret = btrfs_rm_dev_item(device);
2114 	if (ret)
2115 		goto error_undo;
2116 
2117 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2118 	btrfs_scrub_cancel_dev(device);
2119 
2120 	/*
2121 	 * the device list mutex makes sure that we don't change
2122 	 * the device list while someone else is writing out all
2123 	 * the device supers. Whoever is writing all supers, should
2124 	 * lock the device list mutex before getting the number of
2125 	 * devices in the super block (super_copy). Conversely,
2126 	 * whoever updates the number of devices in the super block
2127 	 * (super_copy) should hold the device list mutex.
2128 	 */
2129 
2130 	/*
2131 	 * In normal cases the cur_devices == fs_devices. But in case
2132 	 * of deleting a seed device, the cur_devices should point to
2133 	 * its own fs_devices listed under the fs_devices->seed.
2134 	 */
2135 	cur_devices = device->fs_devices;
2136 	mutex_lock(&fs_devices->device_list_mutex);
2137 	list_del_rcu(&device->dev_list);
2138 
2139 	cur_devices->num_devices--;
2140 	cur_devices->total_devices--;
2141 	/* Update total_devices of the parent fs_devices if it's seed */
2142 	if (cur_devices != fs_devices)
2143 		fs_devices->total_devices--;
2144 
2145 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2146 		cur_devices->missing_devices--;
2147 
2148 	btrfs_assign_next_active_device(device, NULL);
2149 
2150 	if (device->bdev) {
2151 		cur_devices->open_devices--;
2152 		/* remove sysfs entry */
2153 		btrfs_sysfs_remove_device(device);
2154 	}
2155 
2156 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2157 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2158 	mutex_unlock(&fs_devices->device_list_mutex);
2159 
2160 	/*
2161 	 * at this point, the device is zero sized and detached from
2162 	 * the devices list.  All that's left is to zero out the old
2163 	 * supers and free the device.
2164 	 */
2165 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2166 		btrfs_scratch_superblocks(fs_info, device->bdev,
2167 					  device->name->str);
2168 
2169 	btrfs_close_bdev(device);
2170 	synchronize_rcu();
2171 	btrfs_free_device(device);
2172 
2173 	if (cur_devices->open_devices == 0) {
2174 		list_del_init(&cur_devices->seed_list);
2175 		close_fs_devices(cur_devices);
2176 		free_fs_devices(cur_devices);
2177 	}
2178 
2179 out:
2180 	mutex_unlock(&uuid_mutex);
2181 	return ret;
2182 
2183 error_undo:
2184 	btrfs_reada_undo_remove_dev(device);
2185 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186 		mutex_lock(&fs_info->chunk_mutex);
2187 		list_add(&device->dev_alloc_list,
2188 			 &fs_devices->alloc_list);
2189 		device->fs_devices->rw_devices++;
2190 		mutex_unlock(&fs_info->chunk_mutex);
2191 	}
2192 	goto out;
2193 }
2194 
2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196 {
2197 	struct btrfs_fs_devices *fs_devices;
2198 
2199 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200 
2201 	/*
2202 	 * in case of fs with no seed, srcdev->fs_devices will point
2203 	 * to fs_devices of fs_info. However when the dev being replaced is
2204 	 * a seed dev it will point to the seed's local fs_devices. In short
2205 	 * srcdev will have its correct fs_devices in both the cases.
2206 	 */
2207 	fs_devices = srcdev->fs_devices;
2208 
2209 	list_del_rcu(&srcdev->dev_list);
2210 	list_del(&srcdev->dev_alloc_list);
2211 	fs_devices->num_devices--;
2212 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213 		fs_devices->missing_devices--;
2214 
2215 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216 		fs_devices->rw_devices--;
2217 
2218 	if (srcdev->bdev)
2219 		fs_devices->open_devices--;
2220 }
2221 
2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223 {
2224 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2225 
2226 	mutex_lock(&uuid_mutex);
2227 
2228 	btrfs_close_bdev(srcdev);
2229 	synchronize_rcu();
2230 	btrfs_free_device(srcdev);
2231 
2232 	/* if this is no devs we rather delete the fs_devices */
2233 	if (!fs_devices->num_devices) {
2234 		/*
2235 		 * On a mounted FS, num_devices can't be zero unless it's a
2236 		 * seed. In case of a seed device being replaced, the replace
2237 		 * target added to the sprout FS, so there will be no more
2238 		 * device left under the seed FS.
2239 		 */
2240 		ASSERT(fs_devices->seeding);
2241 
2242 		list_del_init(&fs_devices->seed_list);
2243 		close_fs_devices(fs_devices);
2244 		free_fs_devices(fs_devices);
2245 	}
2246 	mutex_unlock(&uuid_mutex);
2247 }
2248 
2249 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2250 {
2251 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2252 
2253 	mutex_lock(&fs_devices->device_list_mutex);
2254 
2255 	btrfs_sysfs_remove_device(tgtdev);
2256 
2257 	if (tgtdev->bdev)
2258 		fs_devices->open_devices--;
2259 
2260 	fs_devices->num_devices--;
2261 
2262 	btrfs_assign_next_active_device(tgtdev, NULL);
2263 
2264 	list_del_rcu(&tgtdev->dev_list);
2265 
2266 	mutex_unlock(&fs_devices->device_list_mutex);
2267 
2268 	/*
2269 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2270 	 * may lead to a call to btrfs_show_devname() which will try
2271 	 * to hold device_list_mutex. And here this device
2272 	 * is already out of device list, so we don't have to hold
2273 	 * the device_list_mutex lock.
2274 	 */
2275 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2276 				  tgtdev->name->str);
2277 
2278 	btrfs_close_bdev(tgtdev);
2279 	synchronize_rcu();
2280 	btrfs_free_device(tgtdev);
2281 }
2282 
2283 static struct btrfs_device *btrfs_find_device_by_path(
2284 		struct btrfs_fs_info *fs_info, const char *device_path)
2285 {
2286 	int ret = 0;
2287 	struct btrfs_super_block *disk_super;
2288 	u64 devid;
2289 	u8 *dev_uuid;
2290 	struct block_device *bdev;
2291 	struct btrfs_device *device;
2292 
2293 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2294 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2295 	if (ret)
2296 		return ERR_PTR(ret);
2297 
2298 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2299 	dev_uuid = disk_super->dev_item.uuid;
2300 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2301 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2302 					   disk_super->metadata_uuid, true);
2303 	else
2304 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2305 					   disk_super->fsid, true);
2306 
2307 	btrfs_release_disk_super(disk_super);
2308 	if (!device)
2309 		device = ERR_PTR(-ENOENT);
2310 	blkdev_put(bdev, FMODE_READ);
2311 	return device;
2312 }
2313 
2314 /*
2315  * Lookup a device given by device id, or the path if the id is 0.
2316  */
2317 struct btrfs_device *btrfs_find_device_by_devspec(
2318 		struct btrfs_fs_info *fs_info, u64 devid,
2319 		const char *device_path)
2320 {
2321 	struct btrfs_device *device;
2322 
2323 	if (devid) {
2324 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2325 					   NULL, true);
2326 		if (!device)
2327 			return ERR_PTR(-ENOENT);
2328 		return device;
2329 	}
2330 
2331 	if (!device_path || !device_path[0])
2332 		return ERR_PTR(-EINVAL);
2333 
2334 	if (strcmp(device_path, "missing") == 0) {
2335 		/* Find first missing device */
2336 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2337 				    dev_list) {
2338 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2339 				     &device->dev_state) && !device->bdev)
2340 				return device;
2341 		}
2342 		return ERR_PTR(-ENOENT);
2343 	}
2344 
2345 	return btrfs_find_device_by_path(fs_info, device_path);
2346 }
2347 
2348 /*
2349  * does all the dirty work required for changing file system's UUID.
2350  */
2351 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2352 {
2353 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2354 	struct btrfs_fs_devices *old_devices;
2355 	struct btrfs_fs_devices *seed_devices;
2356 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 	struct btrfs_device *device;
2358 	u64 super_flags;
2359 
2360 	lockdep_assert_held(&uuid_mutex);
2361 	if (!fs_devices->seeding)
2362 		return -EINVAL;
2363 
2364 	/*
2365 	 * Private copy of the seed devices, anchored at
2366 	 * fs_info->fs_devices->seed_list
2367 	 */
2368 	seed_devices = alloc_fs_devices(NULL, NULL);
2369 	if (IS_ERR(seed_devices))
2370 		return PTR_ERR(seed_devices);
2371 
2372 	/*
2373 	 * It's necessary to retain a copy of the original seed fs_devices in
2374 	 * fs_uuids so that filesystems which have been seeded can successfully
2375 	 * reference the seed device from open_seed_devices. This also supports
2376 	 * multiple fs seed.
2377 	 */
2378 	old_devices = clone_fs_devices(fs_devices);
2379 	if (IS_ERR(old_devices)) {
2380 		kfree(seed_devices);
2381 		return PTR_ERR(old_devices);
2382 	}
2383 
2384 	list_add(&old_devices->fs_list, &fs_uuids);
2385 
2386 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2387 	seed_devices->opened = 1;
2388 	INIT_LIST_HEAD(&seed_devices->devices);
2389 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2390 	mutex_init(&seed_devices->device_list_mutex);
2391 
2392 	mutex_lock(&fs_devices->device_list_mutex);
2393 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2394 			      synchronize_rcu);
2395 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2396 		device->fs_devices = seed_devices;
2397 
2398 	fs_devices->seeding = false;
2399 	fs_devices->num_devices = 0;
2400 	fs_devices->open_devices = 0;
2401 	fs_devices->missing_devices = 0;
2402 	fs_devices->rotating = false;
2403 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2404 
2405 	generate_random_uuid(fs_devices->fsid);
2406 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2407 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2408 	mutex_unlock(&fs_devices->device_list_mutex);
2409 
2410 	super_flags = btrfs_super_flags(disk_super) &
2411 		      ~BTRFS_SUPER_FLAG_SEEDING;
2412 	btrfs_set_super_flags(disk_super, super_flags);
2413 
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Store the expected generation for seed devices in device items.
2419  */
2420 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2421 {
2422 	struct btrfs_fs_info *fs_info = trans->fs_info;
2423 	struct btrfs_root *root = fs_info->chunk_root;
2424 	struct btrfs_path *path;
2425 	struct extent_buffer *leaf;
2426 	struct btrfs_dev_item *dev_item;
2427 	struct btrfs_device *device;
2428 	struct btrfs_key key;
2429 	u8 fs_uuid[BTRFS_FSID_SIZE];
2430 	u8 dev_uuid[BTRFS_UUID_SIZE];
2431 	u64 devid;
2432 	int ret;
2433 
2434 	path = btrfs_alloc_path();
2435 	if (!path)
2436 		return -ENOMEM;
2437 
2438 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2439 	key.offset = 0;
2440 	key.type = BTRFS_DEV_ITEM_KEY;
2441 
2442 	while (1) {
2443 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2444 		if (ret < 0)
2445 			goto error;
2446 
2447 		leaf = path->nodes[0];
2448 next_slot:
2449 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2450 			ret = btrfs_next_leaf(root, path);
2451 			if (ret > 0)
2452 				break;
2453 			if (ret < 0)
2454 				goto error;
2455 			leaf = path->nodes[0];
2456 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2457 			btrfs_release_path(path);
2458 			continue;
2459 		}
2460 
2461 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2462 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2463 		    key.type != BTRFS_DEV_ITEM_KEY)
2464 			break;
2465 
2466 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2467 					  struct btrfs_dev_item);
2468 		devid = btrfs_device_id(leaf, dev_item);
2469 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2470 				   BTRFS_UUID_SIZE);
2471 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2472 				   BTRFS_FSID_SIZE);
2473 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2474 					   fs_uuid, true);
2475 		BUG_ON(!device); /* Logic error */
2476 
2477 		if (device->fs_devices->seeding) {
2478 			btrfs_set_device_generation(leaf, dev_item,
2479 						    device->generation);
2480 			btrfs_mark_buffer_dirty(leaf);
2481 		}
2482 
2483 		path->slots[0]++;
2484 		goto next_slot;
2485 	}
2486 	ret = 0;
2487 error:
2488 	btrfs_free_path(path);
2489 	return ret;
2490 }
2491 
2492 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2493 {
2494 	struct btrfs_root *root = fs_info->dev_root;
2495 	struct request_queue *q;
2496 	struct btrfs_trans_handle *trans;
2497 	struct btrfs_device *device;
2498 	struct block_device *bdev;
2499 	struct super_block *sb = fs_info->sb;
2500 	struct rcu_string *name;
2501 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2502 	u64 orig_super_total_bytes;
2503 	u64 orig_super_num_devices;
2504 	int seeding_dev = 0;
2505 	int ret = 0;
2506 	bool locked = false;
2507 
2508 	if (sb_rdonly(sb) && !fs_devices->seeding)
2509 		return -EROFS;
2510 
2511 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2512 				  fs_info->bdev_holder);
2513 	if (IS_ERR(bdev))
2514 		return PTR_ERR(bdev);
2515 
2516 	if (fs_devices->seeding) {
2517 		seeding_dev = 1;
2518 		down_write(&sb->s_umount);
2519 		mutex_lock(&uuid_mutex);
2520 		locked = true;
2521 	}
2522 
2523 	sync_blockdev(bdev);
2524 
2525 	rcu_read_lock();
2526 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2527 		if (device->bdev == bdev) {
2528 			ret = -EEXIST;
2529 			rcu_read_unlock();
2530 			goto error;
2531 		}
2532 	}
2533 	rcu_read_unlock();
2534 
2535 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2536 	if (IS_ERR(device)) {
2537 		/* we can safely leave the fs_devices entry around */
2538 		ret = PTR_ERR(device);
2539 		goto error;
2540 	}
2541 
2542 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2543 	if (!name) {
2544 		ret = -ENOMEM;
2545 		goto error_free_device;
2546 	}
2547 	rcu_assign_pointer(device->name, name);
2548 
2549 	trans = btrfs_start_transaction(root, 0);
2550 	if (IS_ERR(trans)) {
2551 		ret = PTR_ERR(trans);
2552 		goto error_free_device;
2553 	}
2554 
2555 	q = bdev_get_queue(bdev);
2556 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2557 	device->generation = trans->transid;
2558 	device->io_width = fs_info->sectorsize;
2559 	device->io_align = fs_info->sectorsize;
2560 	device->sector_size = fs_info->sectorsize;
2561 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2562 					 fs_info->sectorsize);
2563 	device->disk_total_bytes = device->total_bytes;
2564 	device->commit_total_bytes = device->total_bytes;
2565 	device->fs_info = fs_info;
2566 	device->bdev = bdev;
2567 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2568 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2569 	device->mode = FMODE_EXCL;
2570 	device->dev_stats_valid = 1;
2571 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2572 
2573 	if (seeding_dev) {
2574 		sb->s_flags &= ~SB_RDONLY;
2575 		ret = btrfs_prepare_sprout(fs_info);
2576 		if (ret) {
2577 			btrfs_abort_transaction(trans, ret);
2578 			goto error_trans;
2579 		}
2580 	}
2581 
2582 	device->fs_devices = fs_devices;
2583 
2584 	mutex_lock(&fs_devices->device_list_mutex);
2585 	mutex_lock(&fs_info->chunk_mutex);
2586 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2587 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2588 	fs_devices->num_devices++;
2589 	fs_devices->open_devices++;
2590 	fs_devices->rw_devices++;
2591 	fs_devices->total_devices++;
2592 	fs_devices->total_rw_bytes += device->total_bytes;
2593 
2594 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2595 
2596 	if (!blk_queue_nonrot(q))
2597 		fs_devices->rotating = true;
2598 
2599 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2600 	btrfs_set_super_total_bytes(fs_info->super_copy,
2601 		round_down(orig_super_total_bytes + device->total_bytes,
2602 			   fs_info->sectorsize));
2603 
2604 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2605 	btrfs_set_super_num_devices(fs_info->super_copy,
2606 				    orig_super_num_devices + 1);
2607 
2608 	/*
2609 	 * we've got more storage, clear any full flags on the space
2610 	 * infos
2611 	 */
2612 	btrfs_clear_space_info_full(fs_info);
2613 
2614 	mutex_unlock(&fs_info->chunk_mutex);
2615 
2616 	/* Add sysfs device entry */
2617 	btrfs_sysfs_add_device(device);
2618 
2619 	mutex_unlock(&fs_devices->device_list_mutex);
2620 
2621 	if (seeding_dev) {
2622 		mutex_lock(&fs_info->chunk_mutex);
2623 		ret = init_first_rw_device(trans);
2624 		mutex_unlock(&fs_info->chunk_mutex);
2625 		if (ret) {
2626 			btrfs_abort_transaction(trans, ret);
2627 			goto error_sysfs;
2628 		}
2629 	}
2630 
2631 	ret = btrfs_add_dev_item(trans, device);
2632 	if (ret) {
2633 		btrfs_abort_transaction(trans, ret);
2634 		goto error_sysfs;
2635 	}
2636 
2637 	if (seeding_dev) {
2638 		ret = btrfs_finish_sprout(trans);
2639 		if (ret) {
2640 			btrfs_abort_transaction(trans, ret);
2641 			goto error_sysfs;
2642 		}
2643 
2644 		/*
2645 		 * fs_devices now represents the newly sprouted filesystem and
2646 		 * its fsid has been changed by btrfs_prepare_sprout
2647 		 */
2648 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2649 	}
2650 
2651 	ret = btrfs_commit_transaction(trans);
2652 
2653 	if (seeding_dev) {
2654 		mutex_unlock(&uuid_mutex);
2655 		up_write(&sb->s_umount);
2656 		locked = false;
2657 
2658 		if (ret) /* transaction commit */
2659 			return ret;
2660 
2661 		ret = btrfs_relocate_sys_chunks(fs_info);
2662 		if (ret < 0)
2663 			btrfs_handle_fs_error(fs_info, ret,
2664 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2665 		trans = btrfs_attach_transaction(root);
2666 		if (IS_ERR(trans)) {
2667 			if (PTR_ERR(trans) == -ENOENT)
2668 				return 0;
2669 			ret = PTR_ERR(trans);
2670 			trans = NULL;
2671 			goto error_sysfs;
2672 		}
2673 		ret = btrfs_commit_transaction(trans);
2674 	}
2675 
2676 	/*
2677 	 * Now that we have written a new super block to this device, check all
2678 	 * other fs_devices list if device_path alienates any other scanned
2679 	 * device.
2680 	 * We can ignore the return value as it typically returns -EINVAL and
2681 	 * only succeeds if the device was an alien.
2682 	 */
2683 	btrfs_forget_devices(device_path);
2684 
2685 	/* Update ctime/mtime for blkid or udev */
2686 	update_dev_time(device_path);
2687 
2688 	return ret;
2689 
2690 error_sysfs:
2691 	btrfs_sysfs_remove_device(device);
2692 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2693 	mutex_lock(&fs_info->chunk_mutex);
2694 	list_del_rcu(&device->dev_list);
2695 	list_del(&device->dev_alloc_list);
2696 	fs_info->fs_devices->num_devices--;
2697 	fs_info->fs_devices->open_devices--;
2698 	fs_info->fs_devices->rw_devices--;
2699 	fs_info->fs_devices->total_devices--;
2700 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2701 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2702 	btrfs_set_super_total_bytes(fs_info->super_copy,
2703 				    orig_super_total_bytes);
2704 	btrfs_set_super_num_devices(fs_info->super_copy,
2705 				    orig_super_num_devices);
2706 	mutex_unlock(&fs_info->chunk_mutex);
2707 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2708 error_trans:
2709 	if (seeding_dev)
2710 		sb->s_flags |= SB_RDONLY;
2711 	if (trans)
2712 		btrfs_end_transaction(trans);
2713 error_free_device:
2714 	btrfs_free_device(device);
2715 error:
2716 	blkdev_put(bdev, FMODE_EXCL);
2717 	if (locked) {
2718 		mutex_unlock(&uuid_mutex);
2719 		up_write(&sb->s_umount);
2720 	}
2721 	return ret;
2722 }
2723 
2724 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2725 					struct btrfs_device *device)
2726 {
2727 	int ret;
2728 	struct btrfs_path *path;
2729 	struct btrfs_root *root = device->fs_info->chunk_root;
2730 	struct btrfs_dev_item *dev_item;
2731 	struct extent_buffer *leaf;
2732 	struct btrfs_key key;
2733 
2734 	path = btrfs_alloc_path();
2735 	if (!path)
2736 		return -ENOMEM;
2737 
2738 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2739 	key.type = BTRFS_DEV_ITEM_KEY;
2740 	key.offset = device->devid;
2741 
2742 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2743 	if (ret < 0)
2744 		goto out;
2745 
2746 	if (ret > 0) {
2747 		ret = -ENOENT;
2748 		goto out;
2749 	}
2750 
2751 	leaf = path->nodes[0];
2752 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2753 
2754 	btrfs_set_device_id(leaf, dev_item, device->devid);
2755 	btrfs_set_device_type(leaf, dev_item, device->type);
2756 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2757 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2758 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2759 	btrfs_set_device_total_bytes(leaf, dev_item,
2760 				     btrfs_device_get_disk_total_bytes(device));
2761 	btrfs_set_device_bytes_used(leaf, dev_item,
2762 				    btrfs_device_get_bytes_used(device));
2763 	btrfs_mark_buffer_dirty(leaf);
2764 
2765 out:
2766 	btrfs_free_path(path);
2767 	return ret;
2768 }
2769 
2770 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2771 		      struct btrfs_device *device, u64 new_size)
2772 {
2773 	struct btrfs_fs_info *fs_info = device->fs_info;
2774 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2775 	u64 old_total;
2776 	u64 diff;
2777 
2778 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2779 		return -EACCES;
2780 
2781 	new_size = round_down(new_size, fs_info->sectorsize);
2782 
2783 	mutex_lock(&fs_info->chunk_mutex);
2784 	old_total = btrfs_super_total_bytes(super_copy);
2785 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2786 
2787 	if (new_size <= device->total_bytes ||
2788 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2789 		mutex_unlock(&fs_info->chunk_mutex);
2790 		return -EINVAL;
2791 	}
2792 
2793 	btrfs_set_super_total_bytes(super_copy,
2794 			round_down(old_total + diff, fs_info->sectorsize));
2795 	device->fs_devices->total_rw_bytes += diff;
2796 
2797 	btrfs_device_set_total_bytes(device, new_size);
2798 	btrfs_device_set_disk_total_bytes(device, new_size);
2799 	btrfs_clear_space_info_full(device->fs_info);
2800 	if (list_empty(&device->post_commit_list))
2801 		list_add_tail(&device->post_commit_list,
2802 			      &trans->transaction->dev_update_list);
2803 	mutex_unlock(&fs_info->chunk_mutex);
2804 
2805 	return btrfs_update_device(trans, device);
2806 }
2807 
2808 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2809 {
2810 	struct btrfs_fs_info *fs_info = trans->fs_info;
2811 	struct btrfs_root *root = fs_info->chunk_root;
2812 	int ret;
2813 	struct btrfs_path *path;
2814 	struct btrfs_key key;
2815 
2816 	path = btrfs_alloc_path();
2817 	if (!path)
2818 		return -ENOMEM;
2819 
2820 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2821 	key.offset = chunk_offset;
2822 	key.type = BTRFS_CHUNK_ITEM_KEY;
2823 
2824 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2825 	if (ret < 0)
2826 		goto out;
2827 	else if (ret > 0) { /* Logic error or corruption */
2828 		btrfs_handle_fs_error(fs_info, -ENOENT,
2829 				      "Failed lookup while freeing chunk.");
2830 		ret = -ENOENT;
2831 		goto out;
2832 	}
2833 
2834 	ret = btrfs_del_item(trans, root, path);
2835 	if (ret < 0)
2836 		btrfs_handle_fs_error(fs_info, ret,
2837 				      "Failed to delete chunk item.");
2838 out:
2839 	btrfs_free_path(path);
2840 	return ret;
2841 }
2842 
2843 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2844 {
2845 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2846 	struct btrfs_disk_key *disk_key;
2847 	struct btrfs_chunk *chunk;
2848 	u8 *ptr;
2849 	int ret = 0;
2850 	u32 num_stripes;
2851 	u32 array_size;
2852 	u32 len = 0;
2853 	u32 cur;
2854 	struct btrfs_key key;
2855 
2856 	mutex_lock(&fs_info->chunk_mutex);
2857 	array_size = btrfs_super_sys_array_size(super_copy);
2858 
2859 	ptr = super_copy->sys_chunk_array;
2860 	cur = 0;
2861 
2862 	while (cur < array_size) {
2863 		disk_key = (struct btrfs_disk_key *)ptr;
2864 		btrfs_disk_key_to_cpu(&key, disk_key);
2865 
2866 		len = sizeof(*disk_key);
2867 
2868 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2869 			chunk = (struct btrfs_chunk *)(ptr + len);
2870 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2871 			len += btrfs_chunk_item_size(num_stripes);
2872 		} else {
2873 			ret = -EIO;
2874 			break;
2875 		}
2876 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2877 		    key.offset == chunk_offset) {
2878 			memmove(ptr, ptr + len, array_size - (cur + len));
2879 			array_size -= len;
2880 			btrfs_set_super_sys_array_size(super_copy, array_size);
2881 		} else {
2882 			ptr += len;
2883 			cur += len;
2884 		}
2885 	}
2886 	mutex_unlock(&fs_info->chunk_mutex);
2887 	return ret;
2888 }
2889 
2890 /*
2891  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2892  * @logical: Logical block offset in bytes.
2893  * @length: Length of extent in bytes.
2894  *
2895  * Return: Chunk mapping or ERR_PTR.
2896  */
2897 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2898 				       u64 logical, u64 length)
2899 {
2900 	struct extent_map_tree *em_tree;
2901 	struct extent_map *em;
2902 
2903 	em_tree = &fs_info->mapping_tree;
2904 	read_lock(&em_tree->lock);
2905 	em = lookup_extent_mapping(em_tree, logical, length);
2906 	read_unlock(&em_tree->lock);
2907 
2908 	if (!em) {
2909 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2910 			   logical, length);
2911 		return ERR_PTR(-EINVAL);
2912 	}
2913 
2914 	if (em->start > logical || em->start + em->len < logical) {
2915 		btrfs_crit(fs_info,
2916 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2917 			   logical, length, em->start, em->start + em->len);
2918 		free_extent_map(em);
2919 		return ERR_PTR(-EINVAL);
2920 	}
2921 
2922 	/* callers are responsible for dropping em's ref. */
2923 	return em;
2924 }
2925 
2926 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2927 {
2928 	struct btrfs_fs_info *fs_info = trans->fs_info;
2929 	struct extent_map *em;
2930 	struct map_lookup *map;
2931 	u64 dev_extent_len = 0;
2932 	int i, ret = 0;
2933 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2934 
2935 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2936 	if (IS_ERR(em)) {
2937 		/*
2938 		 * This is a logic error, but we don't want to just rely on the
2939 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2940 		 * do anything we still error out.
2941 		 */
2942 		ASSERT(0);
2943 		return PTR_ERR(em);
2944 	}
2945 	map = em->map_lookup;
2946 	mutex_lock(&fs_info->chunk_mutex);
2947 	check_system_chunk(trans, map->type);
2948 	mutex_unlock(&fs_info->chunk_mutex);
2949 
2950 	/*
2951 	 * Take the device list mutex to prevent races with the final phase of
2952 	 * a device replace operation that replaces the device object associated
2953 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2954 	 */
2955 	mutex_lock(&fs_devices->device_list_mutex);
2956 	for (i = 0; i < map->num_stripes; i++) {
2957 		struct btrfs_device *device = map->stripes[i].dev;
2958 		ret = btrfs_free_dev_extent(trans, device,
2959 					    map->stripes[i].physical,
2960 					    &dev_extent_len);
2961 		if (ret) {
2962 			mutex_unlock(&fs_devices->device_list_mutex);
2963 			btrfs_abort_transaction(trans, ret);
2964 			goto out;
2965 		}
2966 
2967 		if (device->bytes_used > 0) {
2968 			mutex_lock(&fs_info->chunk_mutex);
2969 			btrfs_device_set_bytes_used(device,
2970 					device->bytes_used - dev_extent_len);
2971 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2972 			btrfs_clear_space_info_full(fs_info);
2973 			mutex_unlock(&fs_info->chunk_mutex);
2974 		}
2975 
2976 		ret = btrfs_update_device(trans, device);
2977 		if (ret) {
2978 			mutex_unlock(&fs_devices->device_list_mutex);
2979 			btrfs_abort_transaction(trans, ret);
2980 			goto out;
2981 		}
2982 	}
2983 	mutex_unlock(&fs_devices->device_list_mutex);
2984 
2985 	ret = btrfs_free_chunk(trans, chunk_offset);
2986 	if (ret) {
2987 		btrfs_abort_transaction(trans, ret);
2988 		goto out;
2989 	}
2990 
2991 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2992 
2993 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2994 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2995 		if (ret) {
2996 			btrfs_abort_transaction(trans, ret);
2997 			goto out;
2998 		}
2999 	}
3000 
3001 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3002 	if (ret) {
3003 		btrfs_abort_transaction(trans, ret);
3004 		goto out;
3005 	}
3006 
3007 out:
3008 	/* once for us */
3009 	free_extent_map(em);
3010 	return ret;
3011 }
3012 
3013 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3014 {
3015 	struct btrfs_root *root = fs_info->chunk_root;
3016 	struct btrfs_trans_handle *trans;
3017 	struct btrfs_block_group *block_group;
3018 	int ret;
3019 
3020 	/*
3021 	 * Prevent races with automatic removal of unused block groups.
3022 	 * After we relocate and before we remove the chunk with offset
3023 	 * chunk_offset, automatic removal of the block group can kick in,
3024 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3025 	 *
3026 	 * Make sure to acquire this mutex before doing a tree search (dev
3027 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3028 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3029 	 * we release the path used to search the chunk/dev tree and before
3030 	 * the current task acquires this mutex and calls us.
3031 	 */
3032 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3033 
3034 	/* step one, relocate all the extents inside this chunk */
3035 	btrfs_scrub_pause(fs_info);
3036 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3037 	btrfs_scrub_continue(fs_info);
3038 	if (ret)
3039 		return ret;
3040 
3041 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3042 	if (!block_group)
3043 		return -ENOENT;
3044 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3045 	btrfs_put_block_group(block_group);
3046 
3047 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3048 						     chunk_offset);
3049 	if (IS_ERR(trans)) {
3050 		ret = PTR_ERR(trans);
3051 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3052 		return ret;
3053 	}
3054 
3055 	/*
3056 	 * step two, delete the device extents and the
3057 	 * chunk tree entries
3058 	 */
3059 	ret = btrfs_remove_chunk(trans, chunk_offset);
3060 	btrfs_end_transaction(trans);
3061 	return ret;
3062 }
3063 
3064 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3065 {
3066 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3067 	struct btrfs_path *path;
3068 	struct extent_buffer *leaf;
3069 	struct btrfs_chunk *chunk;
3070 	struct btrfs_key key;
3071 	struct btrfs_key found_key;
3072 	u64 chunk_type;
3073 	bool retried = false;
3074 	int failed = 0;
3075 	int ret;
3076 
3077 	path = btrfs_alloc_path();
3078 	if (!path)
3079 		return -ENOMEM;
3080 
3081 again:
3082 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3083 	key.offset = (u64)-1;
3084 	key.type = BTRFS_CHUNK_ITEM_KEY;
3085 
3086 	while (1) {
3087 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3088 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3089 		if (ret < 0) {
3090 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3091 			goto error;
3092 		}
3093 		BUG_ON(ret == 0); /* Corruption */
3094 
3095 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3096 					  key.type);
3097 		if (ret)
3098 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3099 		if (ret < 0)
3100 			goto error;
3101 		if (ret > 0)
3102 			break;
3103 
3104 		leaf = path->nodes[0];
3105 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3106 
3107 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3108 				       struct btrfs_chunk);
3109 		chunk_type = btrfs_chunk_type(leaf, chunk);
3110 		btrfs_release_path(path);
3111 
3112 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3113 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3114 			if (ret == -ENOSPC)
3115 				failed++;
3116 			else
3117 				BUG_ON(ret);
3118 		}
3119 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3120 
3121 		if (found_key.offset == 0)
3122 			break;
3123 		key.offset = found_key.offset - 1;
3124 	}
3125 	ret = 0;
3126 	if (failed && !retried) {
3127 		failed = 0;
3128 		retried = true;
3129 		goto again;
3130 	} else if (WARN_ON(failed && retried)) {
3131 		ret = -ENOSPC;
3132 	}
3133 error:
3134 	btrfs_free_path(path);
3135 	return ret;
3136 }
3137 
3138 /*
3139  * return 1 : allocate a data chunk successfully,
3140  * return <0: errors during allocating a data chunk,
3141  * return 0 : no need to allocate a data chunk.
3142  */
3143 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3144 				      u64 chunk_offset)
3145 {
3146 	struct btrfs_block_group *cache;
3147 	u64 bytes_used;
3148 	u64 chunk_type;
3149 
3150 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3151 	ASSERT(cache);
3152 	chunk_type = cache->flags;
3153 	btrfs_put_block_group(cache);
3154 
3155 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3156 		return 0;
3157 
3158 	spin_lock(&fs_info->data_sinfo->lock);
3159 	bytes_used = fs_info->data_sinfo->bytes_used;
3160 	spin_unlock(&fs_info->data_sinfo->lock);
3161 
3162 	if (!bytes_used) {
3163 		struct btrfs_trans_handle *trans;
3164 		int ret;
3165 
3166 		trans =	btrfs_join_transaction(fs_info->tree_root);
3167 		if (IS_ERR(trans))
3168 			return PTR_ERR(trans);
3169 
3170 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3171 		btrfs_end_transaction(trans);
3172 		if (ret < 0)
3173 			return ret;
3174 		return 1;
3175 	}
3176 
3177 	return 0;
3178 }
3179 
3180 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3181 			       struct btrfs_balance_control *bctl)
3182 {
3183 	struct btrfs_root *root = fs_info->tree_root;
3184 	struct btrfs_trans_handle *trans;
3185 	struct btrfs_balance_item *item;
3186 	struct btrfs_disk_balance_args disk_bargs;
3187 	struct btrfs_path *path;
3188 	struct extent_buffer *leaf;
3189 	struct btrfs_key key;
3190 	int ret, err;
3191 
3192 	path = btrfs_alloc_path();
3193 	if (!path)
3194 		return -ENOMEM;
3195 
3196 	trans = btrfs_start_transaction(root, 0);
3197 	if (IS_ERR(trans)) {
3198 		btrfs_free_path(path);
3199 		return PTR_ERR(trans);
3200 	}
3201 
3202 	key.objectid = BTRFS_BALANCE_OBJECTID;
3203 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3204 	key.offset = 0;
3205 
3206 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3207 				      sizeof(*item));
3208 	if (ret)
3209 		goto out;
3210 
3211 	leaf = path->nodes[0];
3212 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3213 
3214 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3215 
3216 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3217 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3218 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3219 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3220 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3221 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3222 
3223 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3224 
3225 	btrfs_mark_buffer_dirty(leaf);
3226 out:
3227 	btrfs_free_path(path);
3228 	err = btrfs_commit_transaction(trans);
3229 	if (err && !ret)
3230 		ret = err;
3231 	return ret;
3232 }
3233 
3234 static int del_balance_item(struct btrfs_fs_info *fs_info)
3235 {
3236 	struct btrfs_root *root = fs_info->tree_root;
3237 	struct btrfs_trans_handle *trans;
3238 	struct btrfs_path *path;
3239 	struct btrfs_key key;
3240 	int ret, err;
3241 
3242 	path = btrfs_alloc_path();
3243 	if (!path)
3244 		return -ENOMEM;
3245 
3246 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3247 	if (IS_ERR(trans)) {
3248 		btrfs_free_path(path);
3249 		return PTR_ERR(trans);
3250 	}
3251 
3252 	key.objectid = BTRFS_BALANCE_OBJECTID;
3253 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3254 	key.offset = 0;
3255 
3256 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3257 	if (ret < 0)
3258 		goto out;
3259 	if (ret > 0) {
3260 		ret = -ENOENT;
3261 		goto out;
3262 	}
3263 
3264 	ret = btrfs_del_item(trans, root, path);
3265 out:
3266 	btrfs_free_path(path);
3267 	err = btrfs_commit_transaction(trans);
3268 	if (err && !ret)
3269 		ret = err;
3270 	return ret;
3271 }
3272 
3273 /*
3274  * This is a heuristic used to reduce the number of chunks balanced on
3275  * resume after balance was interrupted.
3276  */
3277 static void update_balance_args(struct btrfs_balance_control *bctl)
3278 {
3279 	/*
3280 	 * Turn on soft mode for chunk types that were being converted.
3281 	 */
3282 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3283 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3284 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3285 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3286 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3287 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3288 
3289 	/*
3290 	 * Turn on usage filter if is not already used.  The idea is
3291 	 * that chunks that we have already balanced should be
3292 	 * reasonably full.  Don't do it for chunks that are being
3293 	 * converted - that will keep us from relocating unconverted
3294 	 * (albeit full) chunks.
3295 	 */
3296 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3298 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3299 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3300 		bctl->data.usage = 90;
3301 	}
3302 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3303 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3304 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3305 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3306 		bctl->sys.usage = 90;
3307 	}
3308 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3309 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3310 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3311 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3312 		bctl->meta.usage = 90;
3313 	}
3314 }
3315 
3316 /*
3317  * Clear the balance status in fs_info and delete the balance item from disk.
3318  */
3319 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3320 {
3321 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3322 	int ret;
3323 
3324 	BUG_ON(!fs_info->balance_ctl);
3325 
3326 	spin_lock(&fs_info->balance_lock);
3327 	fs_info->balance_ctl = NULL;
3328 	spin_unlock(&fs_info->balance_lock);
3329 
3330 	kfree(bctl);
3331 	ret = del_balance_item(fs_info);
3332 	if (ret)
3333 		btrfs_handle_fs_error(fs_info, ret, NULL);
3334 }
3335 
3336 /*
3337  * Balance filters.  Return 1 if chunk should be filtered out
3338  * (should not be balanced).
3339  */
3340 static int chunk_profiles_filter(u64 chunk_type,
3341 				 struct btrfs_balance_args *bargs)
3342 {
3343 	chunk_type = chunk_to_extended(chunk_type) &
3344 				BTRFS_EXTENDED_PROFILE_MASK;
3345 
3346 	if (bargs->profiles & chunk_type)
3347 		return 0;
3348 
3349 	return 1;
3350 }
3351 
3352 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3353 			      struct btrfs_balance_args *bargs)
3354 {
3355 	struct btrfs_block_group *cache;
3356 	u64 chunk_used;
3357 	u64 user_thresh_min;
3358 	u64 user_thresh_max;
3359 	int ret = 1;
3360 
3361 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3362 	chunk_used = cache->used;
3363 
3364 	if (bargs->usage_min == 0)
3365 		user_thresh_min = 0;
3366 	else
3367 		user_thresh_min = div_factor_fine(cache->length,
3368 						  bargs->usage_min);
3369 
3370 	if (bargs->usage_max == 0)
3371 		user_thresh_max = 1;
3372 	else if (bargs->usage_max > 100)
3373 		user_thresh_max = cache->length;
3374 	else
3375 		user_thresh_max = div_factor_fine(cache->length,
3376 						  bargs->usage_max);
3377 
3378 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3379 		ret = 0;
3380 
3381 	btrfs_put_block_group(cache);
3382 	return ret;
3383 }
3384 
3385 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3386 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3387 {
3388 	struct btrfs_block_group *cache;
3389 	u64 chunk_used, user_thresh;
3390 	int ret = 1;
3391 
3392 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3393 	chunk_used = cache->used;
3394 
3395 	if (bargs->usage_min == 0)
3396 		user_thresh = 1;
3397 	else if (bargs->usage > 100)
3398 		user_thresh = cache->length;
3399 	else
3400 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3401 
3402 	if (chunk_used < user_thresh)
3403 		ret = 0;
3404 
3405 	btrfs_put_block_group(cache);
3406 	return ret;
3407 }
3408 
3409 static int chunk_devid_filter(struct extent_buffer *leaf,
3410 			      struct btrfs_chunk *chunk,
3411 			      struct btrfs_balance_args *bargs)
3412 {
3413 	struct btrfs_stripe *stripe;
3414 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3415 	int i;
3416 
3417 	for (i = 0; i < num_stripes; i++) {
3418 		stripe = btrfs_stripe_nr(chunk, i);
3419 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3420 			return 0;
3421 	}
3422 
3423 	return 1;
3424 }
3425 
3426 static u64 calc_data_stripes(u64 type, int num_stripes)
3427 {
3428 	const int index = btrfs_bg_flags_to_raid_index(type);
3429 	const int ncopies = btrfs_raid_array[index].ncopies;
3430 	const int nparity = btrfs_raid_array[index].nparity;
3431 
3432 	if (nparity)
3433 		return num_stripes - nparity;
3434 	else
3435 		return num_stripes / ncopies;
3436 }
3437 
3438 /* [pstart, pend) */
3439 static int chunk_drange_filter(struct extent_buffer *leaf,
3440 			       struct btrfs_chunk *chunk,
3441 			       struct btrfs_balance_args *bargs)
3442 {
3443 	struct btrfs_stripe *stripe;
3444 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3445 	u64 stripe_offset;
3446 	u64 stripe_length;
3447 	u64 type;
3448 	int factor;
3449 	int i;
3450 
3451 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3452 		return 0;
3453 
3454 	type = btrfs_chunk_type(leaf, chunk);
3455 	factor = calc_data_stripes(type, num_stripes);
3456 
3457 	for (i = 0; i < num_stripes; i++) {
3458 		stripe = btrfs_stripe_nr(chunk, i);
3459 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3460 			continue;
3461 
3462 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3463 		stripe_length = btrfs_chunk_length(leaf, chunk);
3464 		stripe_length = div_u64(stripe_length, factor);
3465 
3466 		if (stripe_offset < bargs->pend &&
3467 		    stripe_offset + stripe_length > bargs->pstart)
3468 			return 0;
3469 	}
3470 
3471 	return 1;
3472 }
3473 
3474 /* [vstart, vend) */
3475 static int chunk_vrange_filter(struct extent_buffer *leaf,
3476 			       struct btrfs_chunk *chunk,
3477 			       u64 chunk_offset,
3478 			       struct btrfs_balance_args *bargs)
3479 {
3480 	if (chunk_offset < bargs->vend &&
3481 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3482 		/* at least part of the chunk is inside this vrange */
3483 		return 0;
3484 
3485 	return 1;
3486 }
3487 
3488 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3489 			       struct btrfs_chunk *chunk,
3490 			       struct btrfs_balance_args *bargs)
3491 {
3492 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3493 
3494 	if (bargs->stripes_min <= num_stripes
3495 			&& num_stripes <= bargs->stripes_max)
3496 		return 0;
3497 
3498 	return 1;
3499 }
3500 
3501 static int chunk_soft_convert_filter(u64 chunk_type,
3502 				     struct btrfs_balance_args *bargs)
3503 {
3504 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3505 		return 0;
3506 
3507 	chunk_type = chunk_to_extended(chunk_type) &
3508 				BTRFS_EXTENDED_PROFILE_MASK;
3509 
3510 	if (bargs->target == chunk_type)
3511 		return 1;
3512 
3513 	return 0;
3514 }
3515 
3516 static int should_balance_chunk(struct extent_buffer *leaf,
3517 				struct btrfs_chunk *chunk, u64 chunk_offset)
3518 {
3519 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3520 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3521 	struct btrfs_balance_args *bargs = NULL;
3522 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3523 
3524 	/* type filter */
3525 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3526 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3527 		return 0;
3528 	}
3529 
3530 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3531 		bargs = &bctl->data;
3532 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3533 		bargs = &bctl->sys;
3534 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3535 		bargs = &bctl->meta;
3536 
3537 	/* profiles filter */
3538 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3539 	    chunk_profiles_filter(chunk_type, bargs)) {
3540 		return 0;
3541 	}
3542 
3543 	/* usage filter */
3544 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3545 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3546 		return 0;
3547 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3548 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3549 		return 0;
3550 	}
3551 
3552 	/* devid filter */
3553 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3554 	    chunk_devid_filter(leaf, chunk, bargs)) {
3555 		return 0;
3556 	}
3557 
3558 	/* drange filter, makes sense only with devid filter */
3559 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3560 	    chunk_drange_filter(leaf, chunk, bargs)) {
3561 		return 0;
3562 	}
3563 
3564 	/* vrange filter */
3565 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3566 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3567 		return 0;
3568 	}
3569 
3570 	/* stripes filter */
3571 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3572 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3573 		return 0;
3574 	}
3575 
3576 	/* soft profile changing mode */
3577 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3578 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3579 		return 0;
3580 	}
3581 
3582 	/*
3583 	 * limited by count, must be the last filter
3584 	 */
3585 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3586 		if (bargs->limit == 0)
3587 			return 0;
3588 		else
3589 			bargs->limit--;
3590 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3591 		/*
3592 		 * Same logic as the 'limit' filter; the minimum cannot be
3593 		 * determined here because we do not have the global information
3594 		 * about the count of all chunks that satisfy the filters.
3595 		 */
3596 		if (bargs->limit_max == 0)
3597 			return 0;
3598 		else
3599 			bargs->limit_max--;
3600 	}
3601 
3602 	return 1;
3603 }
3604 
3605 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3606 {
3607 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3608 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3609 	u64 chunk_type;
3610 	struct btrfs_chunk *chunk;
3611 	struct btrfs_path *path = NULL;
3612 	struct btrfs_key key;
3613 	struct btrfs_key found_key;
3614 	struct extent_buffer *leaf;
3615 	int slot;
3616 	int ret;
3617 	int enospc_errors = 0;
3618 	bool counting = true;
3619 	/* The single value limit and min/max limits use the same bytes in the */
3620 	u64 limit_data = bctl->data.limit;
3621 	u64 limit_meta = bctl->meta.limit;
3622 	u64 limit_sys = bctl->sys.limit;
3623 	u32 count_data = 0;
3624 	u32 count_meta = 0;
3625 	u32 count_sys = 0;
3626 	int chunk_reserved = 0;
3627 
3628 	path = btrfs_alloc_path();
3629 	if (!path) {
3630 		ret = -ENOMEM;
3631 		goto error;
3632 	}
3633 
3634 	/* zero out stat counters */
3635 	spin_lock(&fs_info->balance_lock);
3636 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3637 	spin_unlock(&fs_info->balance_lock);
3638 again:
3639 	if (!counting) {
3640 		/*
3641 		 * The single value limit and min/max limits use the same bytes
3642 		 * in the
3643 		 */
3644 		bctl->data.limit = limit_data;
3645 		bctl->meta.limit = limit_meta;
3646 		bctl->sys.limit = limit_sys;
3647 	}
3648 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3649 	key.offset = (u64)-1;
3650 	key.type = BTRFS_CHUNK_ITEM_KEY;
3651 
3652 	while (1) {
3653 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3654 		    atomic_read(&fs_info->balance_cancel_req)) {
3655 			ret = -ECANCELED;
3656 			goto error;
3657 		}
3658 
3659 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3660 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3661 		if (ret < 0) {
3662 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3663 			goto error;
3664 		}
3665 
3666 		/*
3667 		 * this shouldn't happen, it means the last relocate
3668 		 * failed
3669 		 */
3670 		if (ret == 0)
3671 			BUG(); /* FIXME break ? */
3672 
3673 		ret = btrfs_previous_item(chunk_root, path, 0,
3674 					  BTRFS_CHUNK_ITEM_KEY);
3675 		if (ret) {
3676 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 			ret = 0;
3678 			break;
3679 		}
3680 
3681 		leaf = path->nodes[0];
3682 		slot = path->slots[0];
3683 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3684 
3685 		if (found_key.objectid != key.objectid) {
3686 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3687 			break;
3688 		}
3689 
3690 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3691 		chunk_type = btrfs_chunk_type(leaf, chunk);
3692 
3693 		if (!counting) {
3694 			spin_lock(&fs_info->balance_lock);
3695 			bctl->stat.considered++;
3696 			spin_unlock(&fs_info->balance_lock);
3697 		}
3698 
3699 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3700 
3701 		btrfs_release_path(path);
3702 		if (!ret) {
3703 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3704 			goto loop;
3705 		}
3706 
3707 		if (counting) {
3708 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3709 			spin_lock(&fs_info->balance_lock);
3710 			bctl->stat.expected++;
3711 			spin_unlock(&fs_info->balance_lock);
3712 
3713 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3714 				count_data++;
3715 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3716 				count_sys++;
3717 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3718 				count_meta++;
3719 
3720 			goto loop;
3721 		}
3722 
3723 		/*
3724 		 * Apply limit_min filter, no need to check if the LIMITS
3725 		 * filter is used, limit_min is 0 by default
3726 		 */
3727 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3728 					count_data < bctl->data.limit_min)
3729 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3730 					count_meta < bctl->meta.limit_min)
3731 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3732 					count_sys < bctl->sys.limit_min)) {
3733 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3734 			goto loop;
3735 		}
3736 
3737 		if (!chunk_reserved) {
3738 			/*
3739 			 * We may be relocating the only data chunk we have,
3740 			 * which could potentially end up with losing data's
3741 			 * raid profile, so lets allocate an empty one in
3742 			 * advance.
3743 			 */
3744 			ret = btrfs_may_alloc_data_chunk(fs_info,
3745 							 found_key.offset);
3746 			if (ret < 0) {
3747 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3748 				goto error;
3749 			} else if (ret == 1) {
3750 				chunk_reserved = 1;
3751 			}
3752 		}
3753 
3754 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3755 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3756 		if (ret == -ENOSPC) {
3757 			enospc_errors++;
3758 		} else if (ret == -ETXTBSY) {
3759 			btrfs_info(fs_info,
3760 	   "skipping relocation of block group %llu due to active swapfile",
3761 				   found_key.offset);
3762 			ret = 0;
3763 		} else if (ret) {
3764 			goto error;
3765 		} else {
3766 			spin_lock(&fs_info->balance_lock);
3767 			bctl->stat.completed++;
3768 			spin_unlock(&fs_info->balance_lock);
3769 		}
3770 loop:
3771 		if (found_key.offset == 0)
3772 			break;
3773 		key.offset = found_key.offset - 1;
3774 	}
3775 
3776 	if (counting) {
3777 		btrfs_release_path(path);
3778 		counting = false;
3779 		goto again;
3780 	}
3781 error:
3782 	btrfs_free_path(path);
3783 	if (enospc_errors) {
3784 		btrfs_info(fs_info, "%d enospc errors during balance",
3785 			   enospc_errors);
3786 		if (!ret)
3787 			ret = -ENOSPC;
3788 	}
3789 
3790 	return ret;
3791 }
3792 
3793 /**
3794  * alloc_profile_is_valid - see if a given profile is valid and reduced
3795  * @flags: profile to validate
3796  * @extended: if true @flags is treated as an extended profile
3797  */
3798 static int alloc_profile_is_valid(u64 flags, int extended)
3799 {
3800 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3801 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3802 
3803 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3804 
3805 	/* 1) check that all other bits are zeroed */
3806 	if (flags & ~mask)
3807 		return 0;
3808 
3809 	/* 2) see if profile is reduced */
3810 	if (flags == 0)
3811 		return !extended; /* "0" is valid for usual profiles */
3812 
3813 	return has_single_bit_set(flags);
3814 }
3815 
3816 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3817 {
3818 	/* cancel requested || normal exit path */
3819 	return atomic_read(&fs_info->balance_cancel_req) ||
3820 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3821 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3822 }
3823 
3824 /*
3825  * Validate target profile against allowed profiles and return true if it's OK.
3826  * Otherwise print the error message and return false.
3827  */
3828 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3829 		const struct btrfs_balance_args *bargs,
3830 		u64 allowed, const char *type)
3831 {
3832 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3833 		return true;
3834 
3835 	/* Profile is valid and does not have bits outside of the allowed set */
3836 	if (alloc_profile_is_valid(bargs->target, 1) &&
3837 	    (bargs->target & ~allowed) == 0)
3838 		return true;
3839 
3840 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3841 			type, btrfs_bg_type_to_raid_name(bargs->target));
3842 	return false;
3843 }
3844 
3845 /*
3846  * Fill @buf with textual description of balance filter flags @bargs, up to
3847  * @size_buf including the terminating null. The output may be trimmed if it
3848  * does not fit into the provided buffer.
3849  */
3850 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3851 				 u32 size_buf)
3852 {
3853 	int ret;
3854 	u32 size_bp = size_buf;
3855 	char *bp = buf;
3856 	u64 flags = bargs->flags;
3857 	char tmp_buf[128] = {'\0'};
3858 
3859 	if (!flags)
3860 		return;
3861 
3862 #define CHECK_APPEND_NOARG(a)						\
3863 	do {								\
3864 		ret = snprintf(bp, size_bp, (a));			\
3865 		if (ret < 0 || ret >= size_bp)				\
3866 			goto out_overflow;				\
3867 		size_bp -= ret;						\
3868 		bp += ret;						\
3869 	} while (0)
3870 
3871 #define CHECK_APPEND_1ARG(a, v1)					\
3872 	do {								\
3873 		ret = snprintf(bp, size_bp, (a), (v1));			\
3874 		if (ret < 0 || ret >= size_bp)				\
3875 			goto out_overflow;				\
3876 		size_bp -= ret;						\
3877 		bp += ret;						\
3878 	} while (0)
3879 
3880 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3881 	do {								\
3882 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3883 		if (ret < 0 || ret >= size_bp)				\
3884 			goto out_overflow;				\
3885 		size_bp -= ret;						\
3886 		bp += ret;						\
3887 	} while (0)
3888 
3889 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3890 		CHECK_APPEND_1ARG("convert=%s,",
3891 				  btrfs_bg_type_to_raid_name(bargs->target));
3892 
3893 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3894 		CHECK_APPEND_NOARG("soft,");
3895 
3896 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3897 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3898 					    sizeof(tmp_buf));
3899 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3900 	}
3901 
3902 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3903 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3904 
3905 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3906 		CHECK_APPEND_2ARG("usage=%u..%u,",
3907 				  bargs->usage_min, bargs->usage_max);
3908 
3909 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3910 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3911 
3912 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3913 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3914 				  bargs->pstart, bargs->pend);
3915 
3916 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3917 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3918 				  bargs->vstart, bargs->vend);
3919 
3920 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3921 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3922 
3923 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3924 		CHECK_APPEND_2ARG("limit=%u..%u,",
3925 				bargs->limit_min, bargs->limit_max);
3926 
3927 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3928 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3929 				  bargs->stripes_min, bargs->stripes_max);
3930 
3931 #undef CHECK_APPEND_2ARG
3932 #undef CHECK_APPEND_1ARG
3933 #undef CHECK_APPEND_NOARG
3934 
3935 out_overflow:
3936 
3937 	if (size_bp < size_buf)
3938 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3939 	else
3940 		buf[0] = '\0';
3941 }
3942 
3943 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3944 {
3945 	u32 size_buf = 1024;
3946 	char tmp_buf[192] = {'\0'};
3947 	char *buf;
3948 	char *bp;
3949 	u32 size_bp = size_buf;
3950 	int ret;
3951 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3952 
3953 	buf = kzalloc(size_buf, GFP_KERNEL);
3954 	if (!buf)
3955 		return;
3956 
3957 	bp = buf;
3958 
3959 #define CHECK_APPEND_1ARG(a, v1)					\
3960 	do {								\
3961 		ret = snprintf(bp, size_bp, (a), (v1));			\
3962 		if (ret < 0 || ret >= size_bp)				\
3963 			goto out_overflow;				\
3964 		size_bp -= ret;						\
3965 		bp += ret;						\
3966 	} while (0)
3967 
3968 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3969 		CHECK_APPEND_1ARG("%s", "-f ");
3970 
3971 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3972 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3973 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3974 	}
3975 
3976 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3977 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3978 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3979 	}
3980 
3981 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3982 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3983 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3984 	}
3985 
3986 #undef CHECK_APPEND_1ARG
3987 
3988 out_overflow:
3989 
3990 	if (size_bp < size_buf)
3991 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3992 	btrfs_info(fs_info, "balance: %s %s",
3993 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3994 		   "resume" : "start", buf);
3995 
3996 	kfree(buf);
3997 }
3998 
3999 /*
4000  * Should be called with balance mutexe held
4001  */
4002 int btrfs_balance(struct btrfs_fs_info *fs_info,
4003 		  struct btrfs_balance_control *bctl,
4004 		  struct btrfs_ioctl_balance_args *bargs)
4005 {
4006 	u64 meta_target, data_target;
4007 	u64 allowed;
4008 	int mixed = 0;
4009 	int ret;
4010 	u64 num_devices;
4011 	unsigned seq;
4012 	bool reducing_redundancy;
4013 	int i;
4014 
4015 	if (btrfs_fs_closing(fs_info) ||
4016 	    atomic_read(&fs_info->balance_pause_req) ||
4017 	    btrfs_should_cancel_balance(fs_info)) {
4018 		ret = -EINVAL;
4019 		goto out;
4020 	}
4021 
4022 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4023 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4024 		mixed = 1;
4025 
4026 	/*
4027 	 * In case of mixed groups both data and meta should be picked,
4028 	 * and identical options should be given for both of them.
4029 	 */
4030 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4031 	if (mixed && (bctl->flags & allowed)) {
4032 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4033 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4034 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4035 			btrfs_err(fs_info,
4036 	  "balance: mixed groups data and metadata options must be the same");
4037 			ret = -EINVAL;
4038 			goto out;
4039 		}
4040 	}
4041 
4042 	/*
4043 	 * rw_devices will not change at the moment, device add/delete/replace
4044 	 * are exclusive
4045 	 */
4046 	num_devices = fs_info->fs_devices->rw_devices;
4047 
4048 	/*
4049 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4050 	 * special bit for it, to make it easier to distinguish.  Thus we need
4051 	 * to set it manually, or balance would refuse the profile.
4052 	 */
4053 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4054 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4055 		if (num_devices >= btrfs_raid_array[i].devs_min)
4056 			allowed |= btrfs_raid_array[i].bg_flag;
4057 
4058 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4059 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4060 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4061 		ret = -EINVAL;
4062 		goto out;
4063 	}
4064 
4065 	/*
4066 	 * Allow to reduce metadata or system integrity only if force set for
4067 	 * profiles with redundancy (copies, parity)
4068 	 */
4069 	allowed = 0;
4070 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4071 		if (btrfs_raid_array[i].ncopies >= 2 ||
4072 		    btrfs_raid_array[i].tolerated_failures >= 1)
4073 			allowed |= btrfs_raid_array[i].bg_flag;
4074 	}
4075 	do {
4076 		seq = read_seqbegin(&fs_info->profiles_lock);
4077 
4078 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4079 		     (fs_info->avail_system_alloc_bits & allowed) &&
4080 		     !(bctl->sys.target & allowed)) ||
4081 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4082 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4083 		     !(bctl->meta.target & allowed)))
4084 			reducing_redundancy = true;
4085 		else
4086 			reducing_redundancy = false;
4087 
4088 		/* if we're not converting, the target field is uninitialized */
4089 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4090 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4091 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4092 			bctl->data.target : fs_info->avail_data_alloc_bits;
4093 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4094 
4095 	if (reducing_redundancy) {
4096 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4097 			btrfs_info(fs_info,
4098 			   "balance: force reducing metadata redundancy");
4099 		} else {
4100 			btrfs_err(fs_info,
4101 	"balance: reduces metadata redundancy, use --force if you want this");
4102 			ret = -EINVAL;
4103 			goto out;
4104 		}
4105 	}
4106 
4107 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4108 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4109 		btrfs_warn(fs_info,
4110 	"balance: metadata profile %s has lower redundancy than data profile %s",
4111 				btrfs_bg_type_to_raid_name(meta_target),
4112 				btrfs_bg_type_to_raid_name(data_target));
4113 	}
4114 
4115 	if (fs_info->send_in_progress) {
4116 		btrfs_warn_rl(fs_info,
4117 "cannot run balance while send operations are in progress (%d in progress)",
4118 			      fs_info->send_in_progress);
4119 		ret = -EAGAIN;
4120 		goto out;
4121 	}
4122 
4123 	ret = insert_balance_item(fs_info, bctl);
4124 	if (ret && ret != -EEXIST)
4125 		goto out;
4126 
4127 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4128 		BUG_ON(ret == -EEXIST);
4129 		BUG_ON(fs_info->balance_ctl);
4130 		spin_lock(&fs_info->balance_lock);
4131 		fs_info->balance_ctl = bctl;
4132 		spin_unlock(&fs_info->balance_lock);
4133 	} else {
4134 		BUG_ON(ret != -EEXIST);
4135 		spin_lock(&fs_info->balance_lock);
4136 		update_balance_args(bctl);
4137 		spin_unlock(&fs_info->balance_lock);
4138 	}
4139 
4140 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4141 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4142 	describe_balance_start_or_resume(fs_info);
4143 	mutex_unlock(&fs_info->balance_mutex);
4144 
4145 	ret = __btrfs_balance(fs_info);
4146 
4147 	mutex_lock(&fs_info->balance_mutex);
4148 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4149 		btrfs_info(fs_info, "balance: paused");
4150 	/*
4151 	 * Balance can be canceled by:
4152 	 *
4153 	 * - Regular cancel request
4154 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4155 	 *
4156 	 * - Fatal signal to "btrfs" process
4157 	 *   Either the signal caught by wait_reserve_ticket() and callers
4158 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4159 	 *   got -ECANCELED.
4160 	 *   Either way, in this case balance_cancel_req = 0, and
4161 	 *   ret == -EINTR or ret == -ECANCELED.
4162 	 *
4163 	 * So here we only check the return value to catch canceled balance.
4164 	 */
4165 	else if (ret == -ECANCELED || ret == -EINTR)
4166 		btrfs_info(fs_info, "balance: canceled");
4167 	else
4168 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4169 
4170 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4171 
4172 	if (bargs) {
4173 		memset(bargs, 0, sizeof(*bargs));
4174 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4175 	}
4176 
4177 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4178 	    balance_need_close(fs_info)) {
4179 		reset_balance_state(fs_info);
4180 		btrfs_exclop_finish(fs_info);
4181 	}
4182 
4183 	wake_up(&fs_info->balance_wait_q);
4184 
4185 	return ret;
4186 out:
4187 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4188 		reset_balance_state(fs_info);
4189 	else
4190 		kfree(bctl);
4191 	btrfs_exclop_finish(fs_info);
4192 
4193 	return ret;
4194 }
4195 
4196 static int balance_kthread(void *data)
4197 {
4198 	struct btrfs_fs_info *fs_info = data;
4199 	int ret = 0;
4200 
4201 	mutex_lock(&fs_info->balance_mutex);
4202 	if (fs_info->balance_ctl)
4203 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4204 	mutex_unlock(&fs_info->balance_mutex);
4205 
4206 	return ret;
4207 }
4208 
4209 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4210 {
4211 	struct task_struct *tsk;
4212 
4213 	mutex_lock(&fs_info->balance_mutex);
4214 	if (!fs_info->balance_ctl) {
4215 		mutex_unlock(&fs_info->balance_mutex);
4216 		return 0;
4217 	}
4218 	mutex_unlock(&fs_info->balance_mutex);
4219 
4220 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4221 		btrfs_info(fs_info, "balance: resume skipped");
4222 		return 0;
4223 	}
4224 
4225 	/*
4226 	 * A ro->rw remount sequence should continue with the paused balance
4227 	 * regardless of who pauses it, system or the user as of now, so set
4228 	 * the resume flag.
4229 	 */
4230 	spin_lock(&fs_info->balance_lock);
4231 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4232 	spin_unlock(&fs_info->balance_lock);
4233 
4234 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4235 	return PTR_ERR_OR_ZERO(tsk);
4236 }
4237 
4238 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4239 {
4240 	struct btrfs_balance_control *bctl;
4241 	struct btrfs_balance_item *item;
4242 	struct btrfs_disk_balance_args disk_bargs;
4243 	struct btrfs_path *path;
4244 	struct extent_buffer *leaf;
4245 	struct btrfs_key key;
4246 	int ret;
4247 
4248 	path = btrfs_alloc_path();
4249 	if (!path)
4250 		return -ENOMEM;
4251 
4252 	key.objectid = BTRFS_BALANCE_OBJECTID;
4253 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4254 	key.offset = 0;
4255 
4256 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4257 	if (ret < 0)
4258 		goto out;
4259 	if (ret > 0) { /* ret = -ENOENT; */
4260 		ret = 0;
4261 		goto out;
4262 	}
4263 
4264 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4265 	if (!bctl) {
4266 		ret = -ENOMEM;
4267 		goto out;
4268 	}
4269 
4270 	leaf = path->nodes[0];
4271 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4272 
4273 	bctl->flags = btrfs_balance_flags(leaf, item);
4274 	bctl->flags |= BTRFS_BALANCE_RESUME;
4275 
4276 	btrfs_balance_data(leaf, item, &disk_bargs);
4277 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4278 	btrfs_balance_meta(leaf, item, &disk_bargs);
4279 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4280 	btrfs_balance_sys(leaf, item, &disk_bargs);
4281 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4282 
4283 	/*
4284 	 * This should never happen, as the paused balance state is recovered
4285 	 * during mount without any chance of other exclusive ops to collide.
4286 	 *
4287 	 * This gives the exclusive op status to balance and keeps in paused
4288 	 * state until user intervention (cancel or umount). If the ownership
4289 	 * cannot be assigned, show a message but do not fail. The balance
4290 	 * is in a paused state and must have fs_info::balance_ctl properly
4291 	 * set up.
4292 	 */
4293 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4294 		btrfs_warn(fs_info,
4295 	"balance: cannot set exclusive op status, resume manually");
4296 
4297 	mutex_lock(&fs_info->balance_mutex);
4298 	BUG_ON(fs_info->balance_ctl);
4299 	spin_lock(&fs_info->balance_lock);
4300 	fs_info->balance_ctl = bctl;
4301 	spin_unlock(&fs_info->balance_lock);
4302 	mutex_unlock(&fs_info->balance_mutex);
4303 out:
4304 	btrfs_free_path(path);
4305 	return ret;
4306 }
4307 
4308 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4309 {
4310 	int ret = 0;
4311 
4312 	mutex_lock(&fs_info->balance_mutex);
4313 	if (!fs_info->balance_ctl) {
4314 		mutex_unlock(&fs_info->balance_mutex);
4315 		return -ENOTCONN;
4316 	}
4317 
4318 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4319 		atomic_inc(&fs_info->balance_pause_req);
4320 		mutex_unlock(&fs_info->balance_mutex);
4321 
4322 		wait_event(fs_info->balance_wait_q,
4323 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4324 
4325 		mutex_lock(&fs_info->balance_mutex);
4326 		/* we are good with balance_ctl ripped off from under us */
4327 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4328 		atomic_dec(&fs_info->balance_pause_req);
4329 	} else {
4330 		ret = -ENOTCONN;
4331 	}
4332 
4333 	mutex_unlock(&fs_info->balance_mutex);
4334 	return ret;
4335 }
4336 
4337 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4338 {
4339 	mutex_lock(&fs_info->balance_mutex);
4340 	if (!fs_info->balance_ctl) {
4341 		mutex_unlock(&fs_info->balance_mutex);
4342 		return -ENOTCONN;
4343 	}
4344 
4345 	/*
4346 	 * A paused balance with the item stored on disk can be resumed at
4347 	 * mount time if the mount is read-write. Otherwise it's still paused
4348 	 * and we must not allow cancelling as it deletes the item.
4349 	 */
4350 	if (sb_rdonly(fs_info->sb)) {
4351 		mutex_unlock(&fs_info->balance_mutex);
4352 		return -EROFS;
4353 	}
4354 
4355 	atomic_inc(&fs_info->balance_cancel_req);
4356 	/*
4357 	 * if we are running just wait and return, balance item is
4358 	 * deleted in btrfs_balance in this case
4359 	 */
4360 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4361 		mutex_unlock(&fs_info->balance_mutex);
4362 		wait_event(fs_info->balance_wait_q,
4363 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4364 		mutex_lock(&fs_info->balance_mutex);
4365 	} else {
4366 		mutex_unlock(&fs_info->balance_mutex);
4367 		/*
4368 		 * Lock released to allow other waiters to continue, we'll
4369 		 * reexamine the status again.
4370 		 */
4371 		mutex_lock(&fs_info->balance_mutex);
4372 
4373 		if (fs_info->balance_ctl) {
4374 			reset_balance_state(fs_info);
4375 			btrfs_exclop_finish(fs_info);
4376 			btrfs_info(fs_info, "balance: canceled");
4377 		}
4378 	}
4379 
4380 	BUG_ON(fs_info->balance_ctl ||
4381 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4382 	atomic_dec(&fs_info->balance_cancel_req);
4383 	mutex_unlock(&fs_info->balance_mutex);
4384 	return 0;
4385 }
4386 
4387 int btrfs_uuid_scan_kthread(void *data)
4388 {
4389 	struct btrfs_fs_info *fs_info = data;
4390 	struct btrfs_root *root = fs_info->tree_root;
4391 	struct btrfs_key key;
4392 	struct btrfs_path *path = NULL;
4393 	int ret = 0;
4394 	struct extent_buffer *eb;
4395 	int slot;
4396 	struct btrfs_root_item root_item;
4397 	u32 item_size;
4398 	struct btrfs_trans_handle *trans = NULL;
4399 	bool closing = false;
4400 
4401 	path = btrfs_alloc_path();
4402 	if (!path) {
4403 		ret = -ENOMEM;
4404 		goto out;
4405 	}
4406 
4407 	key.objectid = 0;
4408 	key.type = BTRFS_ROOT_ITEM_KEY;
4409 	key.offset = 0;
4410 
4411 	while (1) {
4412 		if (btrfs_fs_closing(fs_info)) {
4413 			closing = true;
4414 			break;
4415 		}
4416 		ret = btrfs_search_forward(root, &key, path,
4417 				BTRFS_OLDEST_GENERATION);
4418 		if (ret) {
4419 			if (ret > 0)
4420 				ret = 0;
4421 			break;
4422 		}
4423 
4424 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4425 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4426 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4427 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4428 			goto skip;
4429 
4430 		eb = path->nodes[0];
4431 		slot = path->slots[0];
4432 		item_size = btrfs_item_size_nr(eb, slot);
4433 		if (item_size < sizeof(root_item))
4434 			goto skip;
4435 
4436 		read_extent_buffer(eb, &root_item,
4437 				   btrfs_item_ptr_offset(eb, slot),
4438 				   (int)sizeof(root_item));
4439 		if (btrfs_root_refs(&root_item) == 0)
4440 			goto skip;
4441 
4442 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4443 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4444 			if (trans)
4445 				goto update_tree;
4446 
4447 			btrfs_release_path(path);
4448 			/*
4449 			 * 1 - subvol uuid item
4450 			 * 1 - received_subvol uuid item
4451 			 */
4452 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4453 			if (IS_ERR(trans)) {
4454 				ret = PTR_ERR(trans);
4455 				break;
4456 			}
4457 			continue;
4458 		} else {
4459 			goto skip;
4460 		}
4461 update_tree:
4462 		btrfs_release_path(path);
4463 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4464 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4465 						  BTRFS_UUID_KEY_SUBVOL,
4466 						  key.objectid);
4467 			if (ret < 0) {
4468 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4469 					ret);
4470 				break;
4471 			}
4472 		}
4473 
4474 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4475 			ret = btrfs_uuid_tree_add(trans,
4476 						  root_item.received_uuid,
4477 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4478 						  key.objectid);
4479 			if (ret < 0) {
4480 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4481 					ret);
4482 				break;
4483 			}
4484 		}
4485 
4486 skip:
4487 		btrfs_release_path(path);
4488 		if (trans) {
4489 			ret = btrfs_end_transaction(trans);
4490 			trans = NULL;
4491 			if (ret)
4492 				break;
4493 		}
4494 
4495 		if (key.offset < (u64)-1) {
4496 			key.offset++;
4497 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4498 			key.offset = 0;
4499 			key.type = BTRFS_ROOT_ITEM_KEY;
4500 		} else if (key.objectid < (u64)-1) {
4501 			key.offset = 0;
4502 			key.type = BTRFS_ROOT_ITEM_KEY;
4503 			key.objectid++;
4504 		} else {
4505 			break;
4506 		}
4507 		cond_resched();
4508 	}
4509 
4510 out:
4511 	btrfs_free_path(path);
4512 	if (trans && !IS_ERR(trans))
4513 		btrfs_end_transaction(trans);
4514 	if (ret)
4515 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4516 	else if (!closing)
4517 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4518 	up(&fs_info->uuid_tree_rescan_sem);
4519 	return 0;
4520 }
4521 
4522 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4523 {
4524 	struct btrfs_trans_handle *trans;
4525 	struct btrfs_root *tree_root = fs_info->tree_root;
4526 	struct btrfs_root *uuid_root;
4527 	struct task_struct *task;
4528 	int ret;
4529 
4530 	/*
4531 	 * 1 - root node
4532 	 * 1 - root item
4533 	 */
4534 	trans = btrfs_start_transaction(tree_root, 2);
4535 	if (IS_ERR(trans))
4536 		return PTR_ERR(trans);
4537 
4538 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4539 	if (IS_ERR(uuid_root)) {
4540 		ret = PTR_ERR(uuid_root);
4541 		btrfs_abort_transaction(trans, ret);
4542 		btrfs_end_transaction(trans);
4543 		return ret;
4544 	}
4545 
4546 	fs_info->uuid_root = uuid_root;
4547 
4548 	ret = btrfs_commit_transaction(trans);
4549 	if (ret)
4550 		return ret;
4551 
4552 	down(&fs_info->uuid_tree_rescan_sem);
4553 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4554 	if (IS_ERR(task)) {
4555 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4556 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4557 		up(&fs_info->uuid_tree_rescan_sem);
4558 		return PTR_ERR(task);
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 /*
4565  * shrinking a device means finding all of the device extents past
4566  * the new size, and then following the back refs to the chunks.
4567  * The chunk relocation code actually frees the device extent
4568  */
4569 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4570 {
4571 	struct btrfs_fs_info *fs_info = device->fs_info;
4572 	struct btrfs_root *root = fs_info->dev_root;
4573 	struct btrfs_trans_handle *trans;
4574 	struct btrfs_dev_extent *dev_extent = NULL;
4575 	struct btrfs_path *path;
4576 	u64 length;
4577 	u64 chunk_offset;
4578 	int ret;
4579 	int slot;
4580 	int failed = 0;
4581 	bool retried = false;
4582 	struct extent_buffer *l;
4583 	struct btrfs_key key;
4584 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4585 	u64 old_total = btrfs_super_total_bytes(super_copy);
4586 	u64 old_size = btrfs_device_get_total_bytes(device);
4587 	u64 diff;
4588 	u64 start;
4589 
4590 	new_size = round_down(new_size, fs_info->sectorsize);
4591 	start = new_size;
4592 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4593 
4594 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4595 		return -EINVAL;
4596 
4597 	path = btrfs_alloc_path();
4598 	if (!path)
4599 		return -ENOMEM;
4600 
4601 	path->reada = READA_BACK;
4602 
4603 	trans = btrfs_start_transaction(root, 0);
4604 	if (IS_ERR(trans)) {
4605 		btrfs_free_path(path);
4606 		return PTR_ERR(trans);
4607 	}
4608 
4609 	mutex_lock(&fs_info->chunk_mutex);
4610 
4611 	btrfs_device_set_total_bytes(device, new_size);
4612 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4613 		device->fs_devices->total_rw_bytes -= diff;
4614 		atomic64_sub(diff, &fs_info->free_chunk_space);
4615 	}
4616 
4617 	/*
4618 	 * Once the device's size has been set to the new size, ensure all
4619 	 * in-memory chunks are synced to disk so that the loop below sees them
4620 	 * and relocates them accordingly.
4621 	 */
4622 	if (contains_pending_extent(device, &start, diff)) {
4623 		mutex_unlock(&fs_info->chunk_mutex);
4624 		ret = btrfs_commit_transaction(trans);
4625 		if (ret)
4626 			goto done;
4627 	} else {
4628 		mutex_unlock(&fs_info->chunk_mutex);
4629 		btrfs_end_transaction(trans);
4630 	}
4631 
4632 again:
4633 	key.objectid = device->devid;
4634 	key.offset = (u64)-1;
4635 	key.type = BTRFS_DEV_EXTENT_KEY;
4636 
4637 	do {
4638 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4639 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4640 		if (ret < 0) {
4641 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4642 			goto done;
4643 		}
4644 
4645 		ret = btrfs_previous_item(root, path, 0, key.type);
4646 		if (ret)
4647 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4648 		if (ret < 0)
4649 			goto done;
4650 		if (ret) {
4651 			ret = 0;
4652 			btrfs_release_path(path);
4653 			break;
4654 		}
4655 
4656 		l = path->nodes[0];
4657 		slot = path->slots[0];
4658 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4659 
4660 		if (key.objectid != device->devid) {
4661 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4662 			btrfs_release_path(path);
4663 			break;
4664 		}
4665 
4666 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4667 		length = btrfs_dev_extent_length(l, dev_extent);
4668 
4669 		if (key.offset + length <= new_size) {
4670 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4671 			btrfs_release_path(path);
4672 			break;
4673 		}
4674 
4675 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4676 		btrfs_release_path(path);
4677 
4678 		/*
4679 		 * We may be relocating the only data chunk we have,
4680 		 * which could potentially end up with losing data's
4681 		 * raid profile, so lets allocate an empty one in
4682 		 * advance.
4683 		 */
4684 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4685 		if (ret < 0) {
4686 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4687 			goto done;
4688 		}
4689 
4690 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4691 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4692 		if (ret == -ENOSPC) {
4693 			failed++;
4694 		} else if (ret) {
4695 			if (ret == -ETXTBSY) {
4696 				btrfs_warn(fs_info,
4697 		   "could not shrink block group %llu due to active swapfile",
4698 					   chunk_offset);
4699 			}
4700 			goto done;
4701 		}
4702 	} while (key.offset-- > 0);
4703 
4704 	if (failed && !retried) {
4705 		failed = 0;
4706 		retried = true;
4707 		goto again;
4708 	} else if (failed && retried) {
4709 		ret = -ENOSPC;
4710 		goto done;
4711 	}
4712 
4713 	/* Shrinking succeeded, else we would be at "done". */
4714 	trans = btrfs_start_transaction(root, 0);
4715 	if (IS_ERR(trans)) {
4716 		ret = PTR_ERR(trans);
4717 		goto done;
4718 	}
4719 
4720 	mutex_lock(&fs_info->chunk_mutex);
4721 	/* Clear all state bits beyond the shrunk device size */
4722 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4723 			  CHUNK_STATE_MASK);
4724 
4725 	btrfs_device_set_disk_total_bytes(device, new_size);
4726 	if (list_empty(&device->post_commit_list))
4727 		list_add_tail(&device->post_commit_list,
4728 			      &trans->transaction->dev_update_list);
4729 
4730 	WARN_ON(diff > old_total);
4731 	btrfs_set_super_total_bytes(super_copy,
4732 			round_down(old_total - diff, fs_info->sectorsize));
4733 	mutex_unlock(&fs_info->chunk_mutex);
4734 
4735 	/* Now btrfs_update_device() will change the on-disk size. */
4736 	ret = btrfs_update_device(trans, device);
4737 	if (ret < 0) {
4738 		btrfs_abort_transaction(trans, ret);
4739 		btrfs_end_transaction(trans);
4740 	} else {
4741 		ret = btrfs_commit_transaction(trans);
4742 	}
4743 done:
4744 	btrfs_free_path(path);
4745 	if (ret) {
4746 		mutex_lock(&fs_info->chunk_mutex);
4747 		btrfs_device_set_total_bytes(device, old_size);
4748 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4749 			device->fs_devices->total_rw_bytes += diff;
4750 		atomic64_add(diff, &fs_info->free_chunk_space);
4751 		mutex_unlock(&fs_info->chunk_mutex);
4752 	}
4753 	return ret;
4754 }
4755 
4756 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4757 			   struct btrfs_key *key,
4758 			   struct btrfs_chunk *chunk, int item_size)
4759 {
4760 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4761 	struct btrfs_disk_key disk_key;
4762 	u32 array_size;
4763 	u8 *ptr;
4764 
4765 	mutex_lock(&fs_info->chunk_mutex);
4766 	array_size = btrfs_super_sys_array_size(super_copy);
4767 	if (array_size + item_size + sizeof(disk_key)
4768 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4769 		mutex_unlock(&fs_info->chunk_mutex);
4770 		return -EFBIG;
4771 	}
4772 
4773 	ptr = super_copy->sys_chunk_array + array_size;
4774 	btrfs_cpu_key_to_disk(&disk_key, key);
4775 	memcpy(ptr, &disk_key, sizeof(disk_key));
4776 	ptr += sizeof(disk_key);
4777 	memcpy(ptr, chunk, item_size);
4778 	item_size += sizeof(disk_key);
4779 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4780 	mutex_unlock(&fs_info->chunk_mutex);
4781 
4782 	return 0;
4783 }
4784 
4785 /*
4786  * sort the devices in descending order by max_avail, total_avail
4787  */
4788 static int btrfs_cmp_device_info(const void *a, const void *b)
4789 {
4790 	const struct btrfs_device_info *di_a = a;
4791 	const struct btrfs_device_info *di_b = b;
4792 
4793 	if (di_a->max_avail > di_b->max_avail)
4794 		return -1;
4795 	if (di_a->max_avail < di_b->max_avail)
4796 		return 1;
4797 	if (di_a->total_avail > di_b->total_avail)
4798 		return -1;
4799 	if (di_a->total_avail < di_b->total_avail)
4800 		return 1;
4801 	return 0;
4802 }
4803 
4804 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4805 {
4806 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4807 		return;
4808 
4809 	btrfs_set_fs_incompat(info, RAID56);
4810 }
4811 
4812 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4813 {
4814 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4815 		return;
4816 
4817 	btrfs_set_fs_incompat(info, RAID1C34);
4818 }
4819 
4820 /*
4821  * Structure used internally for __btrfs_alloc_chunk() function.
4822  * Wraps needed parameters.
4823  */
4824 struct alloc_chunk_ctl {
4825 	u64 start;
4826 	u64 type;
4827 	/* Total number of stripes to allocate */
4828 	int num_stripes;
4829 	/* sub_stripes info for map */
4830 	int sub_stripes;
4831 	/* Stripes per device */
4832 	int dev_stripes;
4833 	/* Maximum number of devices to use */
4834 	int devs_max;
4835 	/* Minimum number of devices to use */
4836 	int devs_min;
4837 	/* ndevs has to be a multiple of this */
4838 	int devs_increment;
4839 	/* Number of copies */
4840 	int ncopies;
4841 	/* Number of stripes worth of bytes to store parity information */
4842 	int nparity;
4843 	u64 max_stripe_size;
4844 	u64 max_chunk_size;
4845 	u64 dev_extent_min;
4846 	u64 stripe_size;
4847 	u64 chunk_size;
4848 	int ndevs;
4849 };
4850 
4851 static void init_alloc_chunk_ctl_policy_regular(
4852 				struct btrfs_fs_devices *fs_devices,
4853 				struct alloc_chunk_ctl *ctl)
4854 {
4855 	u64 type = ctl->type;
4856 
4857 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4858 		ctl->max_stripe_size = SZ_1G;
4859 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4860 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4861 		/* For larger filesystems, use larger metadata chunks */
4862 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4863 			ctl->max_stripe_size = SZ_1G;
4864 		else
4865 			ctl->max_stripe_size = SZ_256M;
4866 		ctl->max_chunk_size = ctl->max_stripe_size;
4867 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4868 		ctl->max_stripe_size = SZ_32M;
4869 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4870 		ctl->devs_max = min_t(int, ctl->devs_max,
4871 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4872 	} else {
4873 		BUG();
4874 	}
4875 
4876 	/* We don't want a chunk larger than 10% of writable space */
4877 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4878 				  ctl->max_chunk_size);
4879 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4880 }
4881 
4882 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4883 				 struct alloc_chunk_ctl *ctl)
4884 {
4885 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4886 
4887 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4888 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4889 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4890 	if (!ctl->devs_max)
4891 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4892 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4893 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4894 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4895 	ctl->nparity = btrfs_raid_array[index].nparity;
4896 	ctl->ndevs = 0;
4897 
4898 	switch (fs_devices->chunk_alloc_policy) {
4899 	case BTRFS_CHUNK_ALLOC_REGULAR:
4900 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4901 		break;
4902 	default:
4903 		BUG();
4904 	}
4905 }
4906 
4907 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4908 			      struct alloc_chunk_ctl *ctl,
4909 			      struct btrfs_device_info *devices_info)
4910 {
4911 	struct btrfs_fs_info *info = fs_devices->fs_info;
4912 	struct btrfs_device *device;
4913 	u64 total_avail;
4914 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4915 	int ret;
4916 	int ndevs = 0;
4917 	u64 max_avail;
4918 	u64 dev_offset;
4919 
4920 	/*
4921 	 * in the first pass through the devices list, we gather information
4922 	 * about the available holes on each device.
4923 	 */
4924 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4925 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4926 			WARN(1, KERN_ERR
4927 			       "BTRFS: read-only device in alloc_list\n");
4928 			continue;
4929 		}
4930 
4931 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4932 					&device->dev_state) ||
4933 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4934 			continue;
4935 
4936 		if (device->total_bytes > device->bytes_used)
4937 			total_avail = device->total_bytes - device->bytes_used;
4938 		else
4939 			total_avail = 0;
4940 
4941 		/* If there is no space on this device, skip it. */
4942 		if (total_avail < ctl->dev_extent_min)
4943 			continue;
4944 
4945 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4946 					   &max_avail);
4947 		if (ret && ret != -ENOSPC)
4948 			return ret;
4949 
4950 		if (ret == 0)
4951 			max_avail = dev_extent_want;
4952 
4953 		if (max_avail < ctl->dev_extent_min) {
4954 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4955 				btrfs_debug(info,
4956 			"%s: devid %llu has no free space, have=%llu want=%llu",
4957 					    __func__, device->devid, max_avail,
4958 					    ctl->dev_extent_min);
4959 			continue;
4960 		}
4961 
4962 		if (ndevs == fs_devices->rw_devices) {
4963 			WARN(1, "%s: found more than %llu devices\n",
4964 			     __func__, fs_devices->rw_devices);
4965 			break;
4966 		}
4967 		devices_info[ndevs].dev_offset = dev_offset;
4968 		devices_info[ndevs].max_avail = max_avail;
4969 		devices_info[ndevs].total_avail = total_avail;
4970 		devices_info[ndevs].dev = device;
4971 		++ndevs;
4972 	}
4973 	ctl->ndevs = ndevs;
4974 
4975 	/*
4976 	 * now sort the devices by hole size / available space
4977 	 */
4978 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4979 	     btrfs_cmp_device_info, NULL);
4980 
4981 	return 0;
4982 }
4983 
4984 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4985 				      struct btrfs_device_info *devices_info)
4986 {
4987 	/* Number of stripes that count for block group size */
4988 	int data_stripes;
4989 
4990 	/*
4991 	 * The primary goal is to maximize the number of stripes, so use as
4992 	 * many devices as possible, even if the stripes are not maximum sized.
4993 	 *
4994 	 * The DUP profile stores more than one stripe per device, the
4995 	 * max_avail is the total size so we have to adjust.
4996 	 */
4997 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4998 				   ctl->dev_stripes);
4999 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5000 
5001 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5002 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5003 
5004 	/*
5005 	 * Use the number of data stripes to figure out how big this chunk is
5006 	 * really going to be in terms of logical address space, and compare
5007 	 * that answer with the max chunk size. If it's higher, we try to
5008 	 * reduce stripe_size.
5009 	 */
5010 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5011 		/*
5012 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5013 		 * then use it, unless it ends up being even bigger than the
5014 		 * previous value we had already.
5015 		 */
5016 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5017 							data_stripes), SZ_16M),
5018 				       ctl->stripe_size);
5019 	}
5020 
5021 	/* Align to BTRFS_STRIPE_LEN */
5022 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5023 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5024 
5025 	return 0;
5026 }
5027 
5028 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5029 			      struct alloc_chunk_ctl *ctl,
5030 			      struct btrfs_device_info *devices_info)
5031 {
5032 	struct btrfs_fs_info *info = fs_devices->fs_info;
5033 
5034 	/*
5035 	 * Round down to number of usable stripes, devs_increment can be any
5036 	 * number so we can't use round_down() that requires power of 2, while
5037 	 * rounddown is safe.
5038 	 */
5039 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5040 
5041 	if (ctl->ndevs < ctl->devs_min) {
5042 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5043 			btrfs_debug(info,
5044 	"%s: not enough devices with free space: have=%d minimum required=%d",
5045 				    __func__, ctl->ndevs, ctl->devs_min);
5046 		}
5047 		return -ENOSPC;
5048 	}
5049 
5050 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5051 
5052 	switch (fs_devices->chunk_alloc_policy) {
5053 	case BTRFS_CHUNK_ALLOC_REGULAR:
5054 		return decide_stripe_size_regular(ctl, devices_info);
5055 	default:
5056 		BUG();
5057 	}
5058 }
5059 
5060 static int create_chunk(struct btrfs_trans_handle *trans,
5061 			struct alloc_chunk_ctl *ctl,
5062 			struct btrfs_device_info *devices_info)
5063 {
5064 	struct btrfs_fs_info *info = trans->fs_info;
5065 	struct map_lookup *map = NULL;
5066 	struct extent_map_tree *em_tree;
5067 	struct extent_map *em;
5068 	u64 start = ctl->start;
5069 	u64 type = ctl->type;
5070 	int ret;
5071 	int i;
5072 	int j;
5073 
5074 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5075 	if (!map)
5076 		return -ENOMEM;
5077 	map->num_stripes = ctl->num_stripes;
5078 
5079 	for (i = 0; i < ctl->ndevs; ++i) {
5080 		for (j = 0; j < ctl->dev_stripes; ++j) {
5081 			int s = i * ctl->dev_stripes + j;
5082 			map->stripes[s].dev = devices_info[i].dev;
5083 			map->stripes[s].physical = devices_info[i].dev_offset +
5084 						   j * ctl->stripe_size;
5085 		}
5086 	}
5087 	map->stripe_len = BTRFS_STRIPE_LEN;
5088 	map->io_align = BTRFS_STRIPE_LEN;
5089 	map->io_width = BTRFS_STRIPE_LEN;
5090 	map->type = type;
5091 	map->sub_stripes = ctl->sub_stripes;
5092 
5093 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5094 
5095 	em = alloc_extent_map();
5096 	if (!em) {
5097 		kfree(map);
5098 		return -ENOMEM;
5099 	}
5100 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5101 	em->map_lookup = map;
5102 	em->start = start;
5103 	em->len = ctl->chunk_size;
5104 	em->block_start = 0;
5105 	em->block_len = em->len;
5106 	em->orig_block_len = ctl->stripe_size;
5107 
5108 	em_tree = &info->mapping_tree;
5109 	write_lock(&em_tree->lock);
5110 	ret = add_extent_mapping(em_tree, em, 0);
5111 	if (ret) {
5112 		write_unlock(&em_tree->lock);
5113 		free_extent_map(em);
5114 		return ret;
5115 	}
5116 	write_unlock(&em_tree->lock);
5117 
5118 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5119 	if (ret)
5120 		goto error_del_extent;
5121 
5122 	for (i = 0; i < map->num_stripes; i++) {
5123 		struct btrfs_device *dev = map->stripes[i].dev;
5124 
5125 		btrfs_device_set_bytes_used(dev,
5126 					    dev->bytes_used + ctl->stripe_size);
5127 		if (list_empty(&dev->post_commit_list))
5128 			list_add_tail(&dev->post_commit_list,
5129 				      &trans->transaction->dev_update_list);
5130 	}
5131 
5132 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5133 		     &info->free_chunk_space);
5134 
5135 	free_extent_map(em);
5136 	check_raid56_incompat_flag(info, type);
5137 	check_raid1c34_incompat_flag(info, type);
5138 
5139 	return 0;
5140 
5141 error_del_extent:
5142 	write_lock(&em_tree->lock);
5143 	remove_extent_mapping(em_tree, em);
5144 	write_unlock(&em_tree->lock);
5145 
5146 	/* One for our allocation */
5147 	free_extent_map(em);
5148 	/* One for the tree reference */
5149 	free_extent_map(em);
5150 
5151 	return ret;
5152 }
5153 
5154 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5155 {
5156 	struct btrfs_fs_info *info = trans->fs_info;
5157 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5158 	struct btrfs_device_info *devices_info = NULL;
5159 	struct alloc_chunk_ctl ctl;
5160 	int ret;
5161 
5162 	lockdep_assert_held(&info->chunk_mutex);
5163 
5164 	if (!alloc_profile_is_valid(type, 0)) {
5165 		ASSERT(0);
5166 		return -EINVAL;
5167 	}
5168 
5169 	if (list_empty(&fs_devices->alloc_list)) {
5170 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5171 			btrfs_debug(info, "%s: no writable device", __func__);
5172 		return -ENOSPC;
5173 	}
5174 
5175 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5176 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5177 		ASSERT(0);
5178 		return -EINVAL;
5179 	}
5180 
5181 	ctl.start = find_next_chunk(info);
5182 	ctl.type = type;
5183 	init_alloc_chunk_ctl(fs_devices, &ctl);
5184 
5185 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5186 			       GFP_NOFS);
5187 	if (!devices_info)
5188 		return -ENOMEM;
5189 
5190 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5191 	if (ret < 0)
5192 		goto out;
5193 
5194 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5195 	if (ret < 0)
5196 		goto out;
5197 
5198 	ret = create_chunk(trans, &ctl, devices_info);
5199 
5200 out:
5201 	kfree(devices_info);
5202 	return ret;
5203 }
5204 
5205 /*
5206  * Chunk allocation falls into two parts. The first part does work
5207  * that makes the new allocated chunk usable, but does not do any operation
5208  * that modifies the chunk tree. The second part does the work that
5209  * requires modifying the chunk tree. This division is important for the
5210  * bootstrap process of adding storage to a seed btrfs.
5211  */
5212 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5213 			     u64 chunk_offset, u64 chunk_size)
5214 {
5215 	struct btrfs_fs_info *fs_info = trans->fs_info;
5216 	struct btrfs_root *extent_root = fs_info->extent_root;
5217 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5218 	struct btrfs_key key;
5219 	struct btrfs_device *device;
5220 	struct btrfs_chunk *chunk;
5221 	struct btrfs_stripe *stripe;
5222 	struct extent_map *em;
5223 	struct map_lookup *map;
5224 	size_t item_size;
5225 	u64 dev_offset;
5226 	u64 stripe_size;
5227 	int i = 0;
5228 	int ret = 0;
5229 
5230 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5231 	if (IS_ERR(em))
5232 		return PTR_ERR(em);
5233 
5234 	map = em->map_lookup;
5235 	item_size = btrfs_chunk_item_size(map->num_stripes);
5236 	stripe_size = em->orig_block_len;
5237 
5238 	chunk = kzalloc(item_size, GFP_NOFS);
5239 	if (!chunk) {
5240 		ret = -ENOMEM;
5241 		goto out;
5242 	}
5243 
5244 	/*
5245 	 * Take the device list mutex to prevent races with the final phase of
5246 	 * a device replace operation that replaces the device object associated
5247 	 * with the map's stripes, because the device object's id can change
5248 	 * at any time during that final phase of the device replace operation
5249 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5250 	 */
5251 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5252 	for (i = 0; i < map->num_stripes; i++) {
5253 		device = map->stripes[i].dev;
5254 		dev_offset = map->stripes[i].physical;
5255 
5256 		ret = btrfs_update_device(trans, device);
5257 		if (ret)
5258 			break;
5259 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5260 					     dev_offset, stripe_size);
5261 		if (ret)
5262 			break;
5263 	}
5264 	if (ret) {
5265 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5266 		goto out;
5267 	}
5268 
5269 	stripe = &chunk->stripe;
5270 	for (i = 0; i < map->num_stripes; i++) {
5271 		device = map->stripes[i].dev;
5272 		dev_offset = map->stripes[i].physical;
5273 
5274 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5275 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5276 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5277 		stripe++;
5278 	}
5279 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5280 
5281 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5282 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5283 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5284 	btrfs_set_stack_chunk_type(chunk, map->type);
5285 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5286 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5287 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5288 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5289 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5290 
5291 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5292 	key.type = BTRFS_CHUNK_ITEM_KEY;
5293 	key.offset = chunk_offset;
5294 
5295 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5296 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5297 		/*
5298 		 * TODO: Cleanup of inserted chunk root in case of
5299 		 * failure.
5300 		 */
5301 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5302 	}
5303 
5304 out:
5305 	kfree(chunk);
5306 	free_extent_map(em);
5307 	return ret;
5308 }
5309 
5310 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5311 {
5312 	struct btrfs_fs_info *fs_info = trans->fs_info;
5313 	u64 alloc_profile;
5314 	int ret;
5315 
5316 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5317 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5318 	if (ret)
5319 		return ret;
5320 
5321 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5322 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5323 	return ret;
5324 }
5325 
5326 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5327 {
5328 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5329 
5330 	return btrfs_raid_array[index].tolerated_failures;
5331 }
5332 
5333 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5334 {
5335 	struct extent_map *em;
5336 	struct map_lookup *map;
5337 	int readonly = 0;
5338 	int miss_ndevs = 0;
5339 	int i;
5340 
5341 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5342 	if (IS_ERR(em))
5343 		return 1;
5344 
5345 	map = em->map_lookup;
5346 	for (i = 0; i < map->num_stripes; i++) {
5347 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5348 					&map->stripes[i].dev->dev_state)) {
5349 			miss_ndevs++;
5350 			continue;
5351 		}
5352 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5353 					&map->stripes[i].dev->dev_state)) {
5354 			readonly = 1;
5355 			goto end;
5356 		}
5357 	}
5358 
5359 	/*
5360 	 * If the number of missing devices is larger than max errors,
5361 	 * we can not write the data into that chunk successfully, so
5362 	 * set it readonly.
5363 	 */
5364 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5365 		readonly = 1;
5366 end:
5367 	free_extent_map(em);
5368 	return readonly;
5369 }
5370 
5371 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5372 {
5373 	struct extent_map *em;
5374 
5375 	while (1) {
5376 		write_lock(&tree->lock);
5377 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5378 		if (em)
5379 			remove_extent_mapping(tree, em);
5380 		write_unlock(&tree->lock);
5381 		if (!em)
5382 			break;
5383 		/* once for us */
5384 		free_extent_map(em);
5385 		/* once for the tree */
5386 		free_extent_map(em);
5387 	}
5388 }
5389 
5390 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5391 {
5392 	struct extent_map *em;
5393 	struct map_lookup *map;
5394 	int ret;
5395 
5396 	em = btrfs_get_chunk_map(fs_info, logical, len);
5397 	if (IS_ERR(em))
5398 		/*
5399 		 * We could return errors for these cases, but that could get
5400 		 * ugly and we'd probably do the same thing which is just not do
5401 		 * anything else and exit, so return 1 so the callers don't try
5402 		 * to use other copies.
5403 		 */
5404 		return 1;
5405 
5406 	map = em->map_lookup;
5407 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5408 		ret = map->num_stripes;
5409 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5410 		ret = map->sub_stripes;
5411 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5412 		ret = 2;
5413 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5414 		/*
5415 		 * There could be two corrupted data stripes, we need
5416 		 * to loop retry in order to rebuild the correct data.
5417 		 *
5418 		 * Fail a stripe at a time on every retry except the
5419 		 * stripe under reconstruction.
5420 		 */
5421 		ret = map->num_stripes;
5422 	else
5423 		ret = 1;
5424 	free_extent_map(em);
5425 
5426 	down_read(&fs_info->dev_replace.rwsem);
5427 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5428 	    fs_info->dev_replace.tgtdev)
5429 		ret++;
5430 	up_read(&fs_info->dev_replace.rwsem);
5431 
5432 	return ret;
5433 }
5434 
5435 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5436 				    u64 logical)
5437 {
5438 	struct extent_map *em;
5439 	struct map_lookup *map;
5440 	unsigned long len = fs_info->sectorsize;
5441 
5442 	em = btrfs_get_chunk_map(fs_info, logical, len);
5443 
5444 	if (!WARN_ON(IS_ERR(em))) {
5445 		map = em->map_lookup;
5446 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5447 			len = map->stripe_len * nr_data_stripes(map);
5448 		free_extent_map(em);
5449 	}
5450 	return len;
5451 }
5452 
5453 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5454 {
5455 	struct extent_map *em;
5456 	struct map_lookup *map;
5457 	int ret = 0;
5458 
5459 	em = btrfs_get_chunk_map(fs_info, logical, len);
5460 
5461 	if(!WARN_ON(IS_ERR(em))) {
5462 		map = em->map_lookup;
5463 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5464 			ret = 1;
5465 		free_extent_map(em);
5466 	}
5467 	return ret;
5468 }
5469 
5470 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5471 			    struct map_lookup *map, int first,
5472 			    int dev_replace_is_ongoing)
5473 {
5474 	int i;
5475 	int num_stripes;
5476 	int preferred_mirror;
5477 	int tolerance;
5478 	struct btrfs_device *srcdev;
5479 
5480 	ASSERT((map->type &
5481 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5482 
5483 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5484 		num_stripes = map->sub_stripes;
5485 	else
5486 		num_stripes = map->num_stripes;
5487 
5488 	preferred_mirror = first + current->pid % num_stripes;
5489 
5490 	if (dev_replace_is_ongoing &&
5491 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5492 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5493 		srcdev = fs_info->dev_replace.srcdev;
5494 	else
5495 		srcdev = NULL;
5496 
5497 	/*
5498 	 * try to avoid the drive that is the source drive for a
5499 	 * dev-replace procedure, only choose it if no other non-missing
5500 	 * mirror is available
5501 	 */
5502 	for (tolerance = 0; tolerance < 2; tolerance++) {
5503 		if (map->stripes[preferred_mirror].dev->bdev &&
5504 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5505 			return preferred_mirror;
5506 		for (i = first; i < first + num_stripes; i++) {
5507 			if (map->stripes[i].dev->bdev &&
5508 			    (tolerance || map->stripes[i].dev != srcdev))
5509 				return i;
5510 		}
5511 	}
5512 
5513 	/* we couldn't find one that doesn't fail.  Just return something
5514 	 * and the io error handling code will clean up eventually
5515 	 */
5516 	return preferred_mirror;
5517 }
5518 
5519 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5520 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5521 {
5522 	int i;
5523 	int again = 1;
5524 
5525 	while (again) {
5526 		again = 0;
5527 		for (i = 0; i < num_stripes - 1; i++) {
5528 			/* Swap if parity is on a smaller index */
5529 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5530 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5531 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5532 				again = 1;
5533 			}
5534 		}
5535 	}
5536 }
5537 
5538 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5539 {
5540 	struct btrfs_bio *bbio = kzalloc(
5541 		 /* the size of the btrfs_bio */
5542 		sizeof(struct btrfs_bio) +
5543 		/* plus the variable array for the stripes */
5544 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5545 		/* plus the variable array for the tgt dev */
5546 		sizeof(int) * (real_stripes) +
5547 		/*
5548 		 * plus the raid_map, which includes both the tgt dev
5549 		 * and the stripes
5550 		 */
5551 		sizeof(u64) * (total_stripes),
5552 		GFP_NOFS|__GFP_NOFAIL);
5553 
5554 	atomic_set(&bbio->error, 0);
5555 	refcount_set(&bbio->refs, 1);
5556 
5557 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5558 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5559 
5560 	return bbio;
5561 }
5562 
5563 void btrfs_get_bbio(struct btrfs_bio *bbio)
5564 {
5565 	WARN_ON(!refcount_read(&bbio->refs));
5566 	refcount_inc(&bbio->refs);
5567 }
5568 
5569 void btrfs_put_bbio(struct btrfs_bio *bbio)
5570 {
5571 	if (!bbio)
5572 		return;
5573 	if (refcount_dec_and_test(&bbio->refs))
5574 		kfree(bbio);
5575 }
5576 
5577 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5578 /*
5579  * Please note that, discard won't be sent to target device of device
5580  * replace.
5581  */
5582 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5583 					 u64 logical, u64 *length_ret,
5584 					 struct btrfs_bio **bbio_ret)
5585 {
5586 	struct extent_map *em;
5587 	struct map_lookup *map;
5588 	struct btrfs_bio *bbio;
5589 	u64 length = *length_ret;
5590 	u64 offset;
5591 	u64 stripe_nr;
5592 	u64 stripe_nr_end;
5593 	u64 stripe_end_offset;
5594 	u64 stripe_cnt;
5595 	u64 stripe_len;
5596 	u64 stripe_offset;
5597 	u64 num_stripes;
5598 	u32 stripe_index;
5599 	u32 factor = 0;
5600 	u32 sub_stripes = 0;
5601 	u64 stripes_per_dev = 0;
5602 	u32 remaining_stripes = 0;
5603 	u32 last_stripe = 0;
5604 	int ret = 0;
5605 	int i;
5606 
5607 	/* discard always return a bbio */
5608 	ASSERT(bbio_ret);
5609 
5610 	em = btrfs_get_chunk_map(fs_info, logical, length);
5611 	if (IS_ERR(em))
5612 		return PTR_ERR(em);
5613 
5614 	map = em->map_lookup;
5615 	/* we don't discard raid56 yet */
5616 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5617 		ret = -EOPNOTSUPP;
5618 		goto out;
5619 	}
5620 
5621 	offset = logical - em->start;
5622 	length = min_t(u64, em->start + em->len - logical, length);
5623 	*length_ret = length;
5624 
5625 	stripe_len = map->stripe_len;
5626 	/*
5627 	 * stripe_nr counts the total number of stripes we have to stride
5628 	 * to get to this block
5629 	 */
5630 	stripe_nr = div64_u64(offset, stripe_len);
5631 
5632 	/* stripe_offset is the offset of this block in its stripe */
5633 	stripe_offset = offset - stripe_nr * stripe_len;
5634 
5635 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5636 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5637 	stripe_cnt = stripe_nr_end - stripe_nr;
5638 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5639 			    (offset + length);
5640 	/*
5641 	 * after this, stripe_nr is the number of stripes on this
5642 	 * device we have to walk to find the data, and stripe_index is
5643 	 * the number of our device in the stripe array
5644 	 */
5645 	num_stripes = 1;
5646 	stripe_index = 0;
5647 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5648 			 BTRFS_BLOCK_GROUP_RAID10)) {
5649 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5650 			sub_stripes = 1;
5651 		else
5652 			sub_stripes = map->sub_stripes;
5653 
5654 		factor = map->num_stripes / sub_stripes;
5655 		num_stripes = min_t(u64, map->num_stripes,
5656 				    sub_stripes * stripe_cnt);
5657 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5658 		stripe_index *= sub_stripes;
5659 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5660 					      &remaining_stripes);
5661 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5662 		last_stripe *= sub_stripes;
5663 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5664 				BTRFS_BLOCK_GROUP_DUP)) {
5665 		num_stripes = map->num_stripes;
5666 	} else {
5667 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5668 					&stripe_index);
5669 	}
5670 
5671 	bbio = alloc_btrfs_bio(num_stripes, 0);
5672 	if (!bbio) {
5673 		ret = -ENOMEM;
5674 		goto out;
5675 	}
5676 
5677 	for (i = 0; i < num_stripes; i++) {
5678 		bbio->stripes[i].physical =
5679 			map->stripes[stripe_index].physical +
5680 			stripe_offset + stripe_nr * map->stripe_len;
5681 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5682 
5683 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684 				 BTRFS_BLOCK_GROUP_RAID10)) {
5685 			bbio->stripes[i].length = stripes_per_dev *
5686 				map->stripe_len;
5687 
5688 			if (i / sub_stripes < remaining_stripes)
5689 				bbio->stripes[i].length +=
5690 					map->stripe_len;
5691 
5692 			/*
5693 			 * Special for the first stripe and
5694 			 * the last stripe:
5695 			 *
5696 			 * |-------|...|-------|
5697 			 *     |----------|
5698 			 *    off     end_off
5699 			 */
5700 			if (i < sub_stripes)
5701 				bbio->stripes[i].length -=
5702 					stripe_offset;
5703 
5704 			if (stripe_index >= last_stripe &&
5705 			    stripe_index <= (last_stripe +
5706 					     sub_stripes - 1))
5707 				bbio->stripes[i].length -=
5708 					stripe_end_offset;
5709 
5710 			if (i == sub_stripes - 1)
5711 				stripe_offset = 0;
5712 		} else {
5713 			bbio->stripes[i].length = length;
5714 		}
5715 
5716 		stripe_index++;
5717 		if (stripe_index == map->num_stripes) {
5718 			stripe_index = 0;
5719 			stripe_nr++;
5720 		}
5721 	}
5722 
5723 	*bbio_ret = bbio;
5724 	bbio->map_type = map->type;
5725 	bbio->num_stripes = num_stripes;
5726 out:
5727 	free_extent_map(em);
5728 	return ret;
5729 }
5730 
5731 /*
5732  * In dev-replace case, for repair case (that's the only case where the mirror
5733  * is selected explicitly when calling btrfs_map_block), blocks left of the
5734  * left cursor can also be read from the target drive.
5735  *
5736  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5737  * array of stripes.
5738  * For READ, it also needs to be supported using the same mirror number.
5739  *
5740  * If the requested block is not left of the left cursor, EIO is returned. This
5741  * can happen because btrfs_num_copies() returns one more in the dev-replace
5742  * case.
5743  */
5744 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5745 					 u64 logical, u64 length,
5746 					 u64 srcdev_devid, int *mirror_num,
5747 					 u64 *physical)
5748 {
5749 	struct btrfs_bio *bbio = NULL;
5750 	int num_stripes;
5751 	int index_srcdev = 0;
5752 	int found = 0;
5753 	u64 physical_of_found = 0;
5754 	int i;
5755 	int ret = 0;
5756 
5757 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5758 				logical, &length, &bbio, 0, 0);
5759 	if (ret) {
5760 		ASSERT(bbio == NULL);
5761 		return ret;
5762 	}
5763 
5764 	num_stripes = bbio->num_stripes;
5765 	if (*mirror_num > num_stripes) {
5766 		/*
5767 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5768 		 * that means that the requested area is not left of the left
5769 		 * cursor
5770 		 */
5771 		btrfs_put_bbio(bbio);
5772 		return -EIO;
5773 	}
5774 
5775 	/*
5776 	 * process the rest of the function using the mirror_num of the source
5777 	 * drive. Therefore look it up first.  At the end, patch the device
5778 	 * pointer to the one of the target drive.
5779 	 */
5780 	for (i = 0; i < num_stripes; i++) {
5781 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5782 			continue;
5783 
5784 		/*
5785 		 * In case of DUP, in order to keep it simple, only add the
5786 		 * mirror with the lowest physical address
5787 		 */
5788 		if (found &&
5789 		    physical_of_found <= bbio->stripes[i].physical)
5790 			continue;
5791 
5792 		index_srcdev = i;
5793 		found = 1;
5794 		physical_of_found = bbio->stripes[i].physical;
5795 	}
5796 
5797 	btrfs_put_bbio(bbio);
5798 
5799 	ASSERT(found);
5800 	if (!found)
5801 		return -EIO;
5802 
5803 	*mirror_num = index_srcdev + 1;
5804 	*physical = physical_of_found;
5805 	return ret;
5806 }
5807 
5808 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5809 				      struct btrfs_bio **bbio_ret,
5810 				      struct btrfs_dev_replace *dev_replace,
5811 				      int *num_stripes_ret, int *max_errors_ret)
5812 {
5813 	struct btrfs_bio *bbio = *bbio_ret;
5814 	u64 srcdev_devid = dev_replace->srcdev->devid;
5815 	int tgtdev_indexes = 0;
5816 	int num_stripes = *num_stripes_ret;
5817 	int max_errors = *max_errors_ret;
5818 	int i;
5819 
5820 	if (op == BTRFS_MAP_WRITE) {
5821 		int index_where_to_add;
5822 
5823 		/*
5824 		 * duplicate the write operations while the dev replace
5825 		 * procedure is running. Since the copying of the old disk to
5826 		 * the new disk takes place at run time while the filesystem is
5827 		 * mounted writable, the regular write operations to the old
5828 		 * disk have to be duplicated to go to the new disk as well.
5829 		 *
5830 		 * Note that device->missing is handled by the caller, and that
5831 		 * the write to the old disk is already set up in the stripes
5832 		 * array.
5833 		 */
5834 		index_where_to_add = num_stripes;
5835 		for (i = 0; i < num_stripes; i++) {
5836 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5837 				/* write to new disk, too */
5838 				struct btrfs_bio_stripe *new =
5839 					bbio->stripes + index_where_to_add;
5840 				struct btrfs_bio_stripe *old =
5841 					bbio->stripes + i;
5842 
5843 				new->physical = old->physical;
5844 				new->length = old->length;
5845 				new->dev = dev_replace->tgtdev;
5846 				bbio->tgtdev_map[i] = index_where_to_add;
5847 				index_where_to_add++;
5848 				max_errors++;
5849 				tgtdev_indexes++;
5850 			}
5851 		}
5852 		num_stripes = index_where_to_add;
5853 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5854 		int index_srcdev = 0;
5855 		int found = 0;
5856 		u64 physical_of_found = 0;
5857 
5858 		/*
5859 		 * During the dev-replace procedure, the target drive can also
5860 		 * be used to read data in case it is needed to repair a corrupt
5861 		 * block elsewhere. This is possible if the requested area is
5862 		 * left of the left cursor. In this area, the target drive is a
5863 		 * full copy of the source drive.
5864 		 */
5865 		for (i = 0; i < num_stripes; i++) {
5866 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5867 				/*
5868 				 * In case of DUP, in order to keep it simple,
5869 				 * only add the mirror with the lowest physical
5870 				 * address
5871 				 */
5872 				if (found &&
5873 				    physical_of_found <=
5874 				     bbio->stripes[i].physical)
5875 					continue;
5876 				index_srcdev = i;
5877 				found = 1;
5878 				physical_of_found = bbio->stripes[i].physical;
5879 			}
5880 		}
5881 		if (found) {
5882 			struct btrfs_bio_stripe *tgtdev_stripe =
5883 				bbio->stripes + num_stripes;
5884 
5885 			tgtdev_stripe->physical = physical_of_found;
5886 			tgtdev_stripe->length =
5887 				bbio->stripes[index_srcdev].length;
5888 			tgtdev_stripe->dev = dev_replace->tgtdev;
5889 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5890 
5891 			tgtdev_indexes++;
5892 			num_stripes++;
5893 		}
5894 	}
5895 
5896 	*num_stripes_ret = num_stripes;
5897 	*max_errors_ret = max_errors;
5898 	bbio->num_tgtdevs = tgtdev_indexes;
5899 	*bbio_ret = bbio;
5900 }
5901 
5902 static bool need_full_stripe(enum btrfs_map_op op)
5903 {
5904 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5905 }
5906 
5907 /*
5908  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5909  *		       tuple. This information is used to calculate how big a
5910  *		       particular bio can get before it straddles a stripe.
5911  *
5912  * @fs_info - the filesystem
5913  * @logical - address that we want to figure out the geometry of
5914  * @len	    - the length of IO we are going to perform, starting at @logical
5915  * @op      - type of operation - write or read
5916  * @io_geom - pointer used to return values
5917  *
5918  * Returns < 0 in case a chunk for the given logical address cannot be found,
5919  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5920  */
5921 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5922 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5923 {
5924 	struct extent_map *em;
5925 	struct map_lookup *map;
5926 	u64 offset;
5927 	u64 stripe_offset;
5928 	u64 stripe_nr;
5929 	u64 stripe_len;
5930 	u64 raid56_full_stripe_start = (u64)-1;
5931 	int data_stripes;
5932 	int ret = 0;
5933 
5934 	ASSERT(op != BTRFS_MAP_DISCARD);
5935 
5936 	em = btrfs_get_chunk_map(fs_info, logical, len);
5937 	if (IS_ERR(em))
5938 		return PTR_ERR(em);
5939 
5940 	map = em->map_lookup;
5941 	/* Offset of this logical address in the chunk */
5942 	offset = logical - em->start;
5943 	/* Len of a stripe in a chunk */
5944 	stripe_len = map->stripe_len;
5945 	/* Stripe wher this block falls in */
5946 	stripe_nr = div64_u64(offset, stripe_len);
5947 	/* Offset of stripe in the chunk */
5948 	stripe_offset = stripe_nr * stripe_len;
5949 	if (offset < stripe_offset) {
5950 		btrfs_crit(fs_info,
5951 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5952 			stripe_offset, offset, em->start, logical, stripe_len);
5953 		ret = -EINVAL;
5954 		goto out;
5955 	}
5956 
5957 	/* stripe_offset is the offset of this block in its stripe */
5958 	stripe_offset = offset - stripe_offset;
5959 	data_stripes = nr_data_stripes(map);
5960 
5961 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5962 		u64 max_len = stripe_len - stripe_offset;
5963 
5964 		/*
5965 		 * In case of raid56, we need to know the stripe aligned start
5966 		 */
5967 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5968 			unsigned long full_stripe_len = stripe_len * data_stripes;
5969 			raid56_full_stripe_start = offset;
5970 
5971 			/*
5972 			 * Allow a write of a full stripe, but make sure we
5973 			 * don't allow straddling of stripes
5974 			 */
5975 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5976 					full_stripe_len);
5977 			raid56_full_stripe_start *= full_stripe_len;
5978 
5979 			/*
5980 			 * For writes to RAID[56], allow a full stripeset across
5981 			 * all disks. For other RAID types and for RAID[56]
5982 			 * reads, just allow a single stripe (on a single disk).
5983 			 */
5984 			if (op == BTRFS_MAP_WRITE) {
5985 				max_len = stripe_len * data_stripes -
5986 					  (offset - raid56_full_stripe_start);
5987 			}
5988 		}
5989 		len = min_t(u64, em->len - offset, max_len);
5990 	} else {
5991 		len = em->len - offset;
5992 	}
5993 
5994 	io_geom->len = len;
5995 	io_geom->offset = offset;
5996 	io_geom->stripe_len = stripe_len;
5997 	io_geom->stripe_nr = stripe_nr;
5998 	io_geom->stripe_offset = stripe_offset;
5999 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6000 
6001 out:
6002 	/* once for us */
6003 	free_extent_map(em);
6004 	return ret;
6005 }
6006 
6007 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6008 			     enum btrfs_map_op op,
6009 			     u64 logical, u64 *length,
6010 			     struct btrfs_bio **bbio_ret,
6011 			     int mirror_num, int need_raid_map)
6012 {
6013 	struct extent_map *em;
6014 	struct map_lookup *map;
6015 	u64 stripe_offset;
6016 	u64 stripe_nr;
6017 	u64 stripe_len;
6018 	u32 stripe_index;
6019 	int data_stripes;
6020 	int i;
6021 	int ret = 0;
6022 	int num_stripes;
6023 	int max_errors = 0;
6024 	int tgtdev_indexes = 0;
6025 	struct btrfs_bio *bbio = NULL;
6026 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6027 	int dev_replace_is_ongoing = 0;
6028 	int num_alloc_stripes;
6029 	int patch_the_first_stripe_for_dev_replace = 0;
6030 	u64 physical_to_patch_in_first_stripe = 0;
6031 	u64 raid56_full_stripe_start = (u64)-1;
6032 	struct btrfs_io_geometry geom;
6033 
6034 	ASSERT(bbio_ret);
6035 	ASSERT(op != BTRFS_MAP_DISCARD);
6036 
6037 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6038 	if (ret < 0)
6039 		return ret;
6040 
6041 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6042 	ASSERT(!IS_ERR(em));
6043 	map = em->map_lookup;
6044 
6045 	*length = geom.len;
6046 	stripe_len = geom.stripe_len;
6047 	stripe_nr = geom.stripe_nr;
6048 	stripe_offset = geom.stripe_offset;
6049 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6050 	data_stripes = nr_data_stripes(map);
6051 
6052 	down_read(&dev_replace->rwsem);
6053 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6054 	/*
6055 	 * Hold the semaphore for read during the whole operation, write is
6056 	 * requested at commit time but must wait.
6057 	 */
6058 	if (!dev_replace_is_ongoing)
6059 		up_read(&dev_replace->rwsem);
6060 
6061 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6062 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6063 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6064 						    dev_replace->srcdev->devid,
6065 						    &mirror_num,
6066 					    &physical_to_patch_in_first_stripe);
6067 		if (ret)
6068 			goto out;
6069 		else
6070 			patch_the_first_stripe_for_dev_replace = 1;
6071 	} else if (mirror_num > map->num_stripes) {
6072 		mirror_num = 0;
6073 	}
6074 
6075 	num_stripes = 1;
6076 	stripe_index = 0;
6077 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6078 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6079 				&stripe_index);
6080 		if (!need_full_stripe(op))
6081 			mirror_num = 1;
6082 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6083 		if (need_full_stripe(op))
6084 			num_stripes = map->num_stripes;
6085 		else if (mirror_num)
6086 			stripe_index = mirror_num - 1;
6087 		else {
6088 			stripe_index = find_live_mirror(fs_info, map, 0,
6089 					    dev_replace_is_ongoing);
6090 			mirror_num = stripe_index + 1;
6091 		}
6092 
6093 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6094 		if (need_full_stripe(op)) {
6095 			num_stripes = map->num_stripes;
6096 		} else if (mirror_num) {
6097 			stripe_index = mirror_num - 1;
6098 		} else {
6099 			mirror_num = 1;
6100 		}
6101 
6102 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6103 		u32 factor = map->num_stripes / map->sub_stripes;
6104 
6105 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6106 		stripe_index *= map->sub_stripes;
6107 
6108 		if (need_full_stripe(op))
6109 			num_stripes = map->sub_stripes;
6110 		else if (mirror_num)
6111 			stripe_index += mirror_num - 1;
6112 		else {
6113 			int old_stripe_index = stripe_index;
6114 			stripe_index = find_live_mirror(fs_info, map,
6115 					      stripe_index,
6116 					      dev_replace_is_ongoing);
6117 			mirror_num = stripe_index - old_stripe_index + 1;
6118 		}
6119 
6120 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6121 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6122 			/* push stripe_nr back to the start of the full stripe */
6123 			stripe_nr = div64_u64(raid56_full_stripe_start,
6124 					stripe_len * data_stripes);
6125 
6126 			/* RAID[56] write or recovery. Return all stripes */
6127 			num_stripes = map->num_stripes;
6128 			max_errors = nr_parity_stripes(map);
6129 
6130 			*length = map->stripe_len;
6131 			stripe_index = 0;
6132 			stripe_offset = 0;
6133 		} else {
6134 			/*
6135 			 * Mirror #0 or #1 means the original data block.
6136 			 * Mirror #2 is RAID5 parity block.
6137 			 * Mirror #3 is RAID6 Q block.
6138 			 */
6139 			stripe_nr = div_u64_rem(stripe_nr,
6140 					data_stripes, &stripe_index);
6141 			if (mirror_num > 1)
6142 				stripe_index = data_stripes + mirror_num - 2;
6143 
6144 			/* We distribute the parity blocks across stripes */
6145 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6146 					&stripe_index);
6147 			if (!need_full_stripe(op) && mirror_num <= 1)
6148 				mirror_num = 1;
6149 		}
6150 	} else {
6151 		/*
6152 		 * after this, stripe_nr is the number of stripes on this
6153 		 * device we have to walk to find the data, and stripe_index is
6154 		 * the number of our device in the stripe array
6155 		 */
6156 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6157 				&stripe_index);
6158 		mirror_num = stripe_index + 1;
6159 	}
6160 	if (stripe_index >= map->num_stripes) {
6161 		btrfs_crit(fs_info,
6162 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6163 			   stripe_index, map->num_stripes);
6164 		ret = -EINVAL;
6165 		goto out;
6166 	}
6167 
6168 	num_alloc_stripes = num_stripes;
6169 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6170 		if (op == BTRFS_MAP_WRITE)
6171 			num_alloc_stripes <<= 1;
6172 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6173 			num_alloc_stripes++;
6174 		tgtdev_indexes = num_stripes;
6175 	}
6176 
6177 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6178 	if (!bbio) {
6179 		ret = -ENOMEM;
6180 		goto out;
6181 	}
6182 
6183 	for (i = 0; i < num_stripes; i++) {
6184 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6185 			stripe_offset + stripe_nr * map->stripe_len;
6186 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6187 		stripe_index++;
6188 	}
6189 
6190 	/* build raid_map */
6191 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6192 	    (need_full_stripe(op) || mirror_num > 1)) {
6193 		u64 tmp;
6194 		unsigned rot;
6195 
6196 		/* Work out the disk rotation on this stripe-set */
6197 		div_u64_rem(stripe_nr, num_stripes, &rot);
6198 
6199 		/* Fill in the logical address of each stripe */
6200 		tmp = stripe_nr * data_stripes;
6201 		for (i = 0; i < data_stripes; i++)
6202 			bbio->raid_map[(i+rot) % num_stripes] =
6203 				em->start + (tmp + i) * map->stripe_len;
6204 
6205 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6206 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6207 			bbio->raid_map[(i+rot+1) % num_stripes] =
6208 				RAID6_Q_STRIPE;
6209 
6210 		sort_parity_stripes(bbio, num_stripes);
6211 	}
6212 
6213 	if (need_full_stripe(op))
6214 		max_errors = btrfs_chunk_max_errors(map);
6215 
6216 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6217 	    need_full_stripe(op)) {
6218 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6219 					  &max_errors);
6220 	}
6221 
6222 	*bbio_ret = bbio;
6223 	bbio->map_type = map->type;
6224 	bbio->num_stripes = num_stripes;
6225 	bbio->max_errors = max_errors;
6226 	bbio->mirror_num = mirror_num;
6227 
6228 	/*
6229 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6230 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6231 	 * available as a mirror
6232 	 */
6233 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6234 		WARN_ON(num_stripes > 1);
6235 		bbio->stripes[0].dev = dev_replace->tgtdev;
6236 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6237 		bbio->mirror_num = map->num_stripes + 1;
6238 	}
6239 out:
6240 	if (dev_replace_is_ongoing) {
6241 		lockdep_assert_held(&dev_replace->rwsem);
6242 		/* Unlock and let waiting writers proceed */
6243 		up_read(&dev_replace->rwsem);
6244 	}
6245 	free_extent_map(em);
6246 	return ret;
6247 }
6248 
6249 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6250 		      u64 logical, u64 *length,
6251 		      struct btrfs_bio **bbio_ret, int mirror_num)
6252 {
6253 	if (op == BTRFS_MAP_DISCARD)
6254 		return __btrfs_map_block_for_discard(fs_info, logical,
6255 						     length, bbio_ret);
6256 
6257 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6258 				 mirror_num, 0);
6259 }
6260 
6261 /* For Scrub/replace */
6262 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6263 		     u64 logical, u64 *length,
6264 		     struct btrfs_bio **bbio_ret)
6265 {
6266 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6267 }
6268 
6269 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6270 {
6271 	bio->bi_private = bbio->private;
6272 	bio->bi_end_io = bbio->end_io;
6273 	bio_endio(bio);
6274 
6275 	btrfs_put_bbio(bbio);
6276 }
6277 
6278 static void btrfs_end_bio(struct bio *bio)
6279 {
6280 	struct btrfs_bio *bbio = bio->bi_private;
6281 	int is_orig_bio = 0;
6282 
6283 	if (bio->bi_status) {
6284 		atomic_inc(&bbio->error);
6285 		if (bio->bi_status == BLK_STS_IOERR ||
6286 		    bio->bi_status == BLK_STS_TARGET) {
6287 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6288 
6289 			ASSERT(dev->bdev);
6290 			if (bio_op(bio) == REQ_OP_WRITE)
6291 				btrfs_dev_stat_inc_and_print(dev,
6292 						BTRFS_DEV_STAT_WRITE_ERRS);
6293 			else if (!(bio->bi_opf & REQ_RAHEAD))
6294 				btrfs_dev_stat_inc_and_print(dev,
6295 						BTRFS_DEV_STAT_READ_ERRS);
6296 			if (bio->bi_opf & REQ_PREFLUSH)
6297 				btrfs_dev_stat_inc_and_print(dev,
6298 						BTRFS_DEV_STAT_FLUSH_ERRS);
6299 		}
6300 	}
6301 
6302 	if (bio == bbio->orig_bio)
6303 		is_orig_bio = 1;
6304 
6305 	btrfs_bio_counter_dec(bbio->fs_info);
6306 
6307 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6308 		if (!is_orig_bio) {
6309 			bio_put(bio);
6310 			bio = bbio->orig_bio;
6311 		}
6312 
6313 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6314 		/* only send an error to the higher layers if it is
6315 		 * beyond the tolerance of the btrfs bio
6316 		 */
6317 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6318 			bio->bi_status = BLK_STS_IOERR;
6319 		} else {
6320 			/*
6321 			 * this bio is actually up to date, we didn't
6322 			 * go over the max number of errors
6323 			 */
6324 			bio->bi_status = BLK_STS_OK;
6325 		}
6326 
6327 		btrfs_end_bbio(bbio, bio);
6328 	} else if (!is_orig_bio) {
6329 		bio_put(bio);
6330 	}
6331 }
6332 
6333 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6334 			      u64 physical, struct btrfs_device *dev)
6335 {
6336 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6337 
6338 	bio->bi_private = bbio;
6339 	btrfs_io_bio(bio)->device = dev;
6340 	bio->bi_end_io = btrfs_end_bio;
6341 	bio->bi_iter.bi_sector = physical >> 9;
6342 	btrfs_debug_in_rcu(fs_info,
6343 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6344 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6345 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6346 		dev->devid, bio->bi_iter.bi_size);
6347 	bio_set_dev(bio, dev->bdev);
6348 
6349 	btrfs_bio_counter_inc_noblocked(fs_info);
6350 
6351 	btrfsic_submit_bio(bio);
6352 }
6353 
6354 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6355 {
6356 	atomic_inc(&bbio->error);
6357 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6358 		/* Should be the original bio. */
6359 		WARN_ON(bio != bbio->orig_bio);
6360 
6361 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6362 		bio->bi_iter.bi_sector = logical >> 9;
6363 		if (atomic_read(&bbio->error) > bbio->max_errors)
6364 			bio->bi_status = BLK_STS_IOERR;
6365 		else
6366 			bio->bi_status = BLK_STS_OK;
6367 		btrfs_end_bbio(bbio, bio);
6368 	}
6369 }
6370 
6371 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6372 			   int mirror_num)
6373 {
6374 	struct btrfs_device *dev;
6375 	struct bio *first_bio = bio;
6376 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6377 	u64 length = 0;
6378 	u64 map_length;
6379 	int ret;
6380 	int dev_nr;
6381 	int total_devs;
6382 	struct btrfs_bio *bbio = NULL;
6383 
6384 	length = bio->bi_iter.bi_size;
6385 	map_length = length;
6386 
6387 	btrfs_bio_counter_inc_blocked(fs_info);
6388 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6389 				&map_length, &bbio, mirror_num, 1);
6390 	if (ret) {
6391 		btrfs_bio_counter_dec(fs_info);
6392 		return errno_to_blk_status(ret);
6393 	}
6394 
6395 	total_devs = bbio->num_stripes;
6396 	bbio->orig_bio = first_bio;
6397 	bbio->private = first_bio->bi_private;
6398 	bbio->end_io = first_bio->bi_end_io;
6399 	bbio->fs_info = fs_info;
6400 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6401 
6402 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6403 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6404 		/* In this case, map_length has been set to the length of
6405 		   a single stripe; not the whole write */
6406 		if (bio_op(bio) == REQ_OP_WRITE) {
6407 			ret = raid56_parity_write(fs_info, bio, bbio,
6408 						  map_length);
6409 		} else {
6410 			ret = raid56_parity_recover(fs_info, bio, bbio,
6411 						    map_length, mirror_num, 1);
6412 		}
6413 
6414 		btrfs_bio_counter_dec(fs_info);
6415 		return errno_to_blk_status(ret);
6416 	}
6417 
6418 	if (map_length < length) {
6419 		btrfs_crit(fs_info,
6420 			   "mapping failed logical %llu bio len %llu len %llu",
6421 			   logical, length, map_length);
6422 		BUG();
6423 	}
6424 
6425 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6426 		dev = bbio->stripes[dev_nr].dev;
6427 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6428 						   &dev->dev_state) ||
6429 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6430 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6431 			bbio_error(bbio, first_bio, logical);
6432 			continue;
6433 		}
6434 
6435 		if (dev_nr < total_devs - 1)
6436 			bio = btrfs_bio_clone(first_bio);
6437 		else
6438 			bio = first_bio;
6439 
6440 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6441 	}
6442 	btrfs_bio_counter_dec(fs_info);
6443 	return BLK_STS_OK;
6444 }
6445 
6446 /*
6447  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6448  * return NULL.
6449  *
6450  * If devid and uuid are both specified, the match must be exact, otherwise
6451  * only devid is used.
6452  *
6453  * If @seed is true, traverse through the seed devices.
6454  */
6455 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6456 				       u64 devid, u8 *uuid, u8 *fsid,
6457 				       bool seed)
6458 {
6459 	struct btrfs_device *device;
6460 	struct btrfs_fs_devices *seed_devs;
6461 
6462 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6463 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6464 			if (device->devid == devid &&
6465 			    (!uuid || memcmp(device->uuid, uuid,
6466 					     BTRFS_UUID_SIZE) == 0))
6467 				return device;
6468 		}
6469 	}
6470 
6471 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6472 		if (!fsid ||
6473 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6474 			list_for_each_entry(device, &seed_devs->devices,
6475 					    dev_list) {
6476 				if (device->devid == devid &&
6477 				    (!uuid || memcmp(device->uuid, uuid,
6478 						     BTRFS_UUID_SIZE) == 0))
6479 					return device;
6480 			}
6481 		}
6482 	}
6483 
6484 	return NULL;
6485 }
6486 
6487 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6488 					    u64 devid, u8 *dev_uuid)
6489 {
6490 	struct btrfs_device *device;
6491 	unsigned int nofs_flag;
6492 
6493 	/*
6494 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6495 	 * allocation, however we don't want to change btrfs_alloc_device() to
6496 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6497 	 * places.
6498 	 */
6499 	nofs_flag = memalloc_nofs_save();
6500 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6501 	memalloc_nofs_restore(nofs_flag);
6502 	if (IS_ERR(device))
6503 		return device;
6504 
6505 	list_add(&device->dev_list, &fs_devices->devices);
6506 	device->fs_devices = fs_devices;
6507 	fs_devices->num_devices++;
6508 
6509 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6510 	fs_devices->missing_devices++;
6511 
6512 	return device;
6513 }
6514 
6515 /**
6516  * btrfs_alloc_device - allocate struct btrfs_device
6517  * @fs_info:	used only for generating a new devid, can be NULL if
6518  *		devid is provided (i.e. @devid != NULL).
6519  * @devid:	a pointer to devid for this device.  If NULL a new devid
6520  *		is generated.
6521  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6522  *		is generated.
6523  *
6524  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6525  * on error.  Returned struct is not linked onto any lists and must be
6526  * destroyed with btrfs_free_device.
6527  */
6528 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6529 					const u64 *devid,
6530 					const u8 *uuid)
6531 {
6532 	struct btrfs_device *dev;
6533 	u64 tmp;
6534 
6535 	if (WARN_ON(!devid && !fs_info))
6536 		return ERR_PTR(-EINVAL);
6537 
6538 	dev = __alloc_device(fs_info);
6539 	if (IS_ERR(dev))
6540 		return dev;
6541 
6542 	if (devid)
6543 		tmp = *devid;
6544 	else {
6545 		int ret;
6546 
6547 		ret = find_next_devid(fs_info, &tmp);
6548 		if (ret) {
6549 			btrfs_free_device(dev);
6550 			return ERR_PTR(ret);
6551 		}
6552 	}
6553 	dev->devid = tmp;
6554 
6555 	if (uuid)
6556 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6557 	else
6558 		generate_random_uuid(dev->uuid);
6559 
6560 	return dev;
6561 }
6562 
6563 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6564 					u64 devid, u8 *uuid, bool error)
6565 {
6566 	if (error)
6567 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6568 			      devid, uuid);
6569 	else
6570 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6571 			      devid, uuid);
6572 }
6573 
6574 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6575 {
6576 	int index = btrfs_bg_flags_to_raid_index(type);
6577 	int ncopies = btrfs_raid_array[index].ncopies;
6578 	const int nparity = btrfs_raid_array[index].nparity;
6579 	int data_stripes;
6580 
6581 	if (nparity)
6582 		data_stripes = num_stripes - nparity;
6583 	else
6584 		data_stripes = num_stripes / ncopies;
6585 
6586 	return div_u64(chunk_len, data_stripes);
6587 }
6588 
6589 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6590 			  struct btrfs_chunk *chunk)
6591 {
6592 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6593 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6594 	struct map_lookup *map;
6595 	struct extent_map *em;
6596 	u64 logical;
6597 	u64 length;
6598 	u64 devid;
6599 	u8 uuid[BTRFS_UUID_SIZE];
6600 	int num_stripes;
6601 	int ret;
6602 	int i;
6603 
6604 	logical = key->offset;
6605 	length = btrfs_chunk_length(leaf, chunk);
6606 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6607 
6608 	/*
6609 	 * Only need to verify chunk item if we're reading from sys chunk array,
6610 	 * as chunk item in tree block is already verified by tree-checker.
6611 	 */
6612 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6613 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6614 		if (ret)
6615 			return ret;
6616 	}
6617 
6618 	read_lock(&map_tree->lock);
6619 	em = lookup_extent_mapping(map_tree, logical, 1);
6620 	read_unlock(&map_tree->lock);
6621 
6622 	/* already mapped? */
6623 	if (em && em->start <= logical && em->start + em->len > logical) {
6624 		free_extent_map(em);
6625 		return 0;
6626 	} else if (em) {
6627 		free_extent_map(em);
6628 	}
6629 
6630 	em = alloc_extent_map();
6631 	if (!em)
6632 		return -ENOMEM;
6633 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6634 	if (!map) {
6635 		free_extent_map(em);
6636 		return -ENOMEM;
6637 	}
6638 
6639 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6640 	em->map_lookup = map;
6641 	em->start = logical;
6642 	em->len = length;
6643 	em->orig_start = 0;
6644 	em->block_start = 0;
6645 	em->block_len = em->len;
6646 
6647 	map->num_stripes = num_stripes;
6648 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6649 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6650 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6651 	map->type = btrfs_chunk_type(leaf, chunk);
6652 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6653 	map->verified_stripes = 0;
6654 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6655 						map->num_stripes);
6656 	for (i = 0; i < num_stripes; i++) {
6657 		map->stripes[i].physical =
6658 			btrfs_stripe_offset_nr(leaf, chunk, i);
6659 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6660 		read_extent_buffer(leaf, uuid, (unsigned long)
6661 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6662 				   BTRFS_UUID_SIZE);
6663 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6664 							devid, uuid, NULL, true);
6665 		if (!map->stripes[i].dev &&
6666 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6667 			free_extent_map(em);
6668 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6669 			return -ENOENT;
6670 		}
6671 		if (!map->stripes[i].dev) {
6672 			map->stripes[i].dev =
6673 				add_missing_dev(fs_info->fs_devices, devid,
6674 						uuid);
6675 			if (IS_ERR(map->stripes[i].dev)) {
6676 				free_extent_map(em);
6677 				btrfs_err(fs_info,
6678 					"failed to init missing dev %llu: %ld",
6679 					devid, PTR_ERR(map->stripes[i].dev));
6680 				return PTR_ERR(map->stripes[i].dev);
6681 			}
6682 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6683 		}
6684 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6685 				&(map->stripes[i].dev->dev_state));
6686 
6687 	}
6688 
6689 	write_lock(&map_tree->lock);
6690 	ret = add_extent_mapping(map_tree, em, 0);
6691 	write_unlock(&map_tree->lock);
6692 	if (ret < 0) {
6693 		btrfs_err(fs_info,
6694 			  "failed to add chunk map, start=%llu len=%llu: %d",
6695 			  em->start, em->len, ret);
6696 	}
6697 	free_extent_map(em);
6698 
6699 	return ret;
6700 }
6701 
6702 static void fill_device_from_item(struct extent_buffer *leaf,
6703 				 struct btrfs_dev_item *dev_item,
6704 				 struct btrfs_device *device)
6705 {
6706 	unsigned long ptr;
6707 
6708 	device->devid = btrfs_device_id(leaf, dev_item);
6709 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6710 	device->total_bytes = device->disk_total_bytes;
6711 	device->commit_total_bytes = device->disk_total_bytes;
6712 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6713 	device->commit_bytes_used = device->bytes_used;
6714 	device->type = btrfs_device_type(leaf, dev_item);
6715 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6716 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6717 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6718 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6719 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6720 
6721 	ptr = btrfs_device_uuid(dev_item);
6722 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6723 }
6724 
6725 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6726 						  u8 *fsid)
6727 {
6728 	struct btrfs_fs_devices *fs_devices;
6729 	int ret;
6730 
6731 	lockdep_assert_held(&uuid_mutex);
6732 	ASSERT(fsid);
6733 
6734 	/* This will match only for multi-device seed fs */
6735 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6736 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6737 			return fs_devices;
6738 
6739 
6740 	fs_devices = find_fsid(fsid, NULL);
6741 	if (!fs_devices) {
6742 		if (!btrfs_test_opt(fs_info, DEGRADED))
6743 			return ERR_PTR(-ENOENT);
6744 
6745 		fs_devices = alloc_fs_devices(fsid, NULL);
6746 		if (IS_ERR(fs_devices))
6747 			return fs_devices;
6748 
6749 		fs_devices->seeding = true;
6750 		fs_devices->opened = 1;
6751 		return fs_devices;
6752 	}
6753 
6754 	/*
6755 	 * Upon first call for a seed fs fsid, just create a private copy of the
6756 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6757 	 */
6758 	fs_devices = clone_fs_devices(fs_devices);
6759 	if (IS_ERR(fs_devices))
6760 		return fs_devices;
6761 
6762 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6763 	if (ret) {
6764 		free_fs_devices(fs_devices);
6765 		return ERR_PTR(ret);
6766 	}
6767 
6768 	if (!fs_devices->seeding) {
6769 		close_fs_devices(fs_devices);
6770 		free_fs_devices(fs_devices);
6771 		return ERR_PTR(-EINVAL);
6772 	}
6773 
6774 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6775 
6776 	return fs_devices;
6777 }
6778 
6779 static int read_one_dev(struct extent_buffer *leaf,
6780 			struct btrfs_dev_item *dev_item)
6781 {
6782 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6783 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6784 	struct btrfs_device *device;
6785 	u64 devid;
6786 	int ret;
6787 	u8 fs_uuid[BTRFS_FSID_SIZE];
6788 	u8 dev_uuid[BTRFS_UUID_SIZE];
6789 
6790 	devid = btrfs_device_id(leaf, dev_item);
6791 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6792 			   BTRFS_UUID_SIZE);
6793 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6794 			   BTRFS_FSID_SIZE);
6795 
6796 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6797 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6798 		if (IS_ERR(fs_devices))
6799 			return PTR_ERR(fs_devices);
6800 	}
6801 
6802 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6803 				   fs_uuid, true);
6804 	if (!device) {
6805 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6806 			btrfs_report_missing_device(fs_info, devid,
6807 							dev_uuid, true);
6808 			return -ENOENT;
6809 		}
6810 
6811 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6812 		if (IS_ERR(device)) {
6813 			btrfs_err(fs_info,
6814 				"failed to add missing dev %llu: %ld",
6815 				devid, PTR_ERR(device));
6816 			return PTR_ERR(device);
6817 		}
6818 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6819 	} else {
6820 		if (!device->bdev) {
6821 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6822 				btrfs_report_missing_device(fs_info,
6823 						devid, dev_uuid, true);
6824 				return -ENOENT;
6825 			}
6826 			btrfs_report_missing_device(fs_info, devid,
6827 							dev_uuid, false);
6828 		}
6829 
6830 		if (!device->bdev &&
6831 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6832 			/*
6833 			 * this happens when a device that was properly setup
6834 			 * in the device info lists suddenly goes bad.
6835 			 * device->bdev is NULL, and so we have to set
6836 			 * device->missing to one here
6837 			 */
6838 			device->fs_devices->missing_devices++;
6839 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6840 		}
6841 
6842 		/* Move the device to its own fs_devices */
6843 		if (device->fs_devices != fs_devices) {
6844 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6845 							&device->dev_state));
6846 
6847 			list_move(&device->dev_list, &fs_devices->devices);
6848 			device->fs_devices->num_devices--;
6849 			fs_devices->num_devices++;
6850 
6851 			device->fs_devices->missing_devices--;
6852 			fs_devices->missing_devices++;
6853 
6854 			device->fs_devices = fs_devices;
6855 		}
6856 	}
6857 
6858 	if (device->fs_devices != fs_info->fs_devices) {
6859 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6860 		if (device->generation !=
6861 		    btrfs_device_generation(leaf, dev_item))
6862 			return -EINVAL;
6863 	}
6864 
6865 	fill_device_from_item(leaf, dev_item, device);
6866 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6867 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6868 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6869 		device->fs_devices->total_rw_bytes += device->total_bytes;
6870 		atomic64_add(device->total_bytes - device->bytes_used,
6871 				&fs_info->free_chunk_space);
6872 	}
6873 	ret = 0;
6874 	return ret;
6875 }
6876 
6877 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6878 {
6879 	struct btrfs_root *root = fs_info->tree_root;
6880 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6881 	struct extent_buffer *sb;
6882 	struct btrfs_disk_key *disk_key;
6883 	struct btrfs_chunk *chunk;
6884 	u8 *array_ptr;
6885 	unsigned long sb_array_offset;
6886 	int ret = 0;
6887 	u32 num_stripes;
6888 	u32 array_size;
6889 	u32 len = 0;
6890 	u32 cur_offset;
6891 	u64 type;
6892 	struct btrfs_key key;
6893 
6894 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6895 	/*
6896 	 * This will create extent buffer of nodesize, superblock size is
6897 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6898 	 * overallocate but we can keep it as-is, only the first page is used.
6899 	 */
6900 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6901 	if (IS_ERR(sb))
6902 		return PTR_ERR(sb);
6903 	set_extent_buffer_uptodate(sb);
6904 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6905 	/*
6906 	 * The sb extent buffer is artificial and just used to read the system array.
6907 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6908 	 * pages up-to-date when the page is larger: extent does not cover the
6909 	 * whole page and consequently check_page_uptodate does not find all
6910 	 * the page's extents up-to-date (the hole beyond sb),
6911 	 * write_extent_buffer then triggers a WARN_ON.
6912 	 *
6913 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6914 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6915 	 * to silence the warning eg. on PowerPC 64.
6916 	 */
6917 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6918 		SetPageUptodate(sb->pages[0]);
6919 
6920 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6921 	array_size = btrfs_super_sys_array_size(super_copy);
6922 
6923 	array_ptr = super_copy->sys_chunk_array;
6924 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6925 	cur_offset = 0;
6926 
6927 	while (cur_offset < array_size) {
6928 		disk_key = (struct btrfs_disk_key *)array_ptr;
6929 		len = sizeof(*disk_key);
6930 		if (cur_offset + len > array_size)
6931 			goto out_short_read;
6932 
6933 		btrfs_disk_key_to_cpu(&key, disk_key);
6934 
6935 		array_ptr += len;
6936 		sb_array_offset += len;
6937 		cur_offset += len;
6938 
6939 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6940 			btrfs_err(fs_info,
6941 			    "unexpected item type %u in sys_array at offset %u",
6942 				  (u32)key.type, cur_offset);
6943 			ret = -EIO;
6944 			break;
6945 		}
6946 
6947 		chunk = (struct btrfs_chunk *)sb_array_offset;
6948 		/*
6949 		 * At least one btrfs_chunk with one stripe must be present,
6950 		 * exact stripe count check comes afterwards
6951 		 */
6952 		len = btrfs_chunk_item_size(1);
6953 		if (cur_offset + len > array_size)
6954 			goto out_short_read;
6955 
6956 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6957 		if (!num_stripes) {
6958 			btrfs_err(fs_info,
6959 			"invalid number of stripes %u in sys_array at offset %u",
6960 				  num_stripes, cur_offset);
6961 			ret = -EIO;
6962 			break;
6963 		}
6964 
6965 		type = btrfs_chunk_type(sb, chunk);
6966 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6967 			btrfs_err(fs_info,
6968 			"invalid chunk type %llu in sys_array at offset %u",
6969 				  type, cur_offset);
6970 			ret = -EIO;
6971 			break;
6972 		}
6973 
6974 		len = btrfs_chunk_item_size(num_stripes);
6975 		if (cur_offset + len > array_size)
6976 			goto out_short_read;
6977 
6978 		ret = read_one_chunk(&key, sb, chunk);
6979 		if (ret)
6980 			break;
6981 
6982 		array_ptr += len;
6983 		sb_array_offset += len;
6984 		cur_offset += len;
6985 	}
6986 	clear_extent_buffer_uptodate(sb);
6987 	free_extent_buffer_stale(sb);
6988 	return ret;
6989 
6990 out_short_read:
6991 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6992 			len, cur_offset);
6993 	clear_extent_buffer_uptodate(sb);
6994 	free_extent_buffer_stale(sb);
6995 	return -EIO;
6996 }
6997 
6998 /*
6999  * Check if all chunks in the fs are OK for read-write degraded mount
7000  *
7001  * If the @failing_dev is specified, it's accounted as missing.
7002  *
7003  * Return true if all chunks meet the minimal RW mount requirements.
7004  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7005  */
7006 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7007 					struct btrfs_device *failing_dev)
7008 {
7009 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7010 	struct extent_map *em;
7011 	u64 next_start = 0;
7012 	bool ret = true;
7013 
7014 	read_lock(&map_tree->lock);
7015 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7016 	read_unlock(&map_tree->lock);
7017 	/* No chunk at all? Return false anyway */
7018 	if (!em) {
7019 		ret = false;
7020 		goto out;
7021 	}
7022 	while (em) {
7023 		struct map_lookup *map;
7024 		int missing = 0;
7025 		int max_tolerated;
7026 		int i;
7027 
7028 		map = em->map_lookup;
7029 		max_tolerated =
7030 			btrfs_get_num_tolerated_disk_barrier_failures(
7031 					map->type);
7032 		for (i = 0; i < map->num_stripes; i++) {
7033 			struct btrfs_device *dev = map->stripes[i].dev;
7034 
7035 			if (!dev || !dev->bdev ||
7036 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7037 			    dev->last_flush_error)
7038 				missing++;
7039 			else if (failing_dev && failing_dev == dev)
7040 				missing++;
7041 		}
7042 		if (missing > max_tolerated) {
7043 			if (!failing_dev)
7044 				btrfs_warn(fs_info,
7045 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7046 				   em->start, missing, max_tolerated);
7047 			free_extent_map(em);
7048 			ret = false;
7049 			goto out;
7050 		}
7051 		next_start = extent_map_end(em);
7052 		free_extent_map(em);
7053 
7054 		read_lock(&map_tree->lock);
7055 		em = lookup_extent_mapping(map_tree, next_start,
7056 					   (u64)(-1) - next_start);
7057 		read_unlock(&map_tree->lock);
7058 	}
7059 out:
7060 	return ret;
7061 }
7062 
7063 static void readahead_tree_node_children(struct extent_buffer *node)
7064 {
7065 	int i;
7066 	const int nr_items = btrfs_header_nritems(node);
7067 
7068 	for (i = 0; i < nr_items; i++) {
7069 		u64 start;
7070 
7071 		start = btrfs_node_blockptr(node, i);
7072 		readahead_tree_block(node->fs_info, start);
7073 	}
7074 }
7075 
7076 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7077 {
7078 	struct btrfs_root *root = fs_info->chunk_root;
7079 	struct btrfs_path *path;
7080 	struct extent_buffer *leaf;
7081 	struct btrfs_key key;
7082 	struct btrfs_key found_key;
7083 	int ret;
7084 	int slot;
7085 	u64 total_dev = 0;
7086 	u64 last_ra_node = 0;
7087 
7088 	path = btrfs_alloc_path();
7089 	if (!path)
7090 		return -ENOMEM;
7091 
7092 	/*
7093 	 * uuid_mutex is needed only if we are mounting a sprout FS
7094 	 * otherwise we don't need it.
7095 	 */
7096 	mutex_lock(&uuid_mutex);
7097 
7098 	/*
7099 	 * It is possible for mount and umount to race in such a way that
7100 	 * we execute this code path, but open_fs_devices failed to clear
7101 	 * total_rw_bytes. We certainly want it cleared before reading the
7102 	 * device items, so clear it here.
7103 	 */
7104 	fs_info->fs_devices->total_rw_bytes = 0;
7105 
7106 	/*
7107 	 * Read all device items, and then all the chunk items. All
7108 	 * device items are found before any chunk item (their object id
7109 	 * is smaller than the lowest possible object id for a chunk
7110 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7111 	 */
7112 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7113 	key.offset = 0;
7114 	key.type = 0;
7115 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7116 	if (ret < 0)
7117 		goto error;
7118 	while (1) {
7119 		struct extent_buffer *node;
7120 
7121 		leaf = path->nodes[0];
7122 		slot = path->slots[0];
7123 		if (slot >= btrfs_header_nritems(leaf)) {
7124 			ret = btrfs_next_leaf(root, path);
7125 			if (ret == 0)
7126 				continue;
7127 			if (ret < 0)
7128 				goto error;
7129 			break;
7130 		}
7131 		/*
7132 		 * The nodes on level 1 are not locked but we don't need to do
7133 		 * that during mount time as nothing else can access the tree
7134 		 */
7135 		node = path->nodes[1];
7136 		if (node) {
7137 			if (last_ra_node != node->start) {
7138 				readahead_tree_node_children(node);
7139 				last_ra_node = node->start;
7140 			}
7141 		}
7142 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7143 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7144 			struct btrfs_dev_item *dev_item;
7145 			dev_item = btrfs_item_ptr(leaf, slot,
7146 						  struct btrfs_dev_item);
7147 			ret = read_one_dev(leaf, dev_item);
7148 			if (ret)
7149 				goto error;
7150 			total_dev++;
7151 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7152 			struct btrfs_chunk *chunk;
7153 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7154 			mutex_lock(&fs_info->chunk_mutex);
7155 			ret = read_one_chunk(&found_key, leaf, chunk);
7156 			mutex_unlock(&fs_info->chunk_mutex);
7157 			if (ret)
7158 				goto error;
7159 		}
7160 		path->slots[0]++;
7161 	}
7162 
7163 	/*
7164 	 * After loading chunk tree, we've got all device information,
7165 	 * do another round of validation checks.
7166 	 */
7167 	if (total_dev != fs_info->fs_devices->total_devices) {
7168 		btrfs_err(fs_info,
7169 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7170 			  btrfs_super_num_devices(fs_info->super_copy),
7171 			  total_dev);
7172 		ret = -EINVAL;
7173 		goto error;
7174 	}
7175 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7176 	    fs_info->fs_devices->total_rw_bytes) {
7177 		btrfs_err(fs_info,
7178 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7179 			  btrfs_super_total_bytes(fs_info->super_copy),
7180 			  fs_info->fs_devices->total_rw_bytes);
7181 		ret = -EINVAL;
7182 		goto error;
7183 	}
7184 	ret = 0;
7185 error:
7186 	mutex_unlock(&uuid_mutex);
7187 
7188 	btrfs_free_path(path);
7189 	return ret;
7190 }
7191 
7192 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7193 {
7194 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7195 	struct btrfs_device *device;
7196 
7197 	fs_devices->fs_info = fs_info;
7198 
7199 	mutex_lock(&fs_devices->device_list_mutex);
7200 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7201 		device->fs_info = fs_info;
7202 
7203 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7204 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7205 			device->fs_info = fs_info;
7206 
7207 		seed_devs->fs_info = fs_info;
7208 	}
7209 	mutex_unlock(&fs_devices->device_list_mutex);
7210 }
7211 
7212 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7213 				 const struct btrfs_dev_stats_item *ptr,
7214 				 int index)
7215 {
7216 	u64 val;
7217 
7218 	read_extent_buffer(eb, &val,
7219 			   offsetof(struct btrfs_dev_stats_item, values) +
7220 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7221 			   sizeof(val));
7222 	return val;
7223 }
7224 
7225 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7226 				      struct btrfs_dev_stats_item *ptr,
7227 				      int index, u64 val)
7228 {
7229 	write_extent_buffer(eb, &val,
7230 			    offsetof(struct btrfs_dev_stats_item, values) +
7231 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7232 			    sizeof(val));
7233 }
7234 
7235 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7236 				       struct btrfs_path *path)
7237 {
7238 	struct btrfs_dev_stats_item *ptr;
7239 	struct extent_buffer *eb;
7240 	struct btrfs_key key;
7241 	int item_size;
7242 	int i, ret, slot;
7243 
7244 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7245 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7246 	key.offset = device->devid;
7247 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7248 	if (ret) {
7249 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7250 			btrfs_dev_stat_set(device, i, 0);
7251 		device->dev_stats_valid = 1;
7252 		btrfs_release_path(path);
7253 		return ret < 0 ? ret : 0;
7254 	}
7255 	slot = path->slots[0];
7256 	eb = path->nodes[0];
7257 	item_size = btrfs_item_size_nr(eb, slot);
7258 
7259 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7260 
7261 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7262 		if (item_size >= (1 + i) * sizeof(__le64))
7263 			btrfs_dev_stat_set(device, i,
7264 					   btrfs_dev_stats_value(eb, ptr, i));
7265 		else
7266 			btrfs_dev_stat_set(device, i, 0);
7267 	}
7268 
7269 	device->dev_stats_valid = 1;
7270 	btrfs_dev_stat_print_on_load(device);
7271 	btrfs_release_path(path);
7272 
7273 	return 0;
7274 }
7275 
7276 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7277 {
7278 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7279 	struct btrfs_device *device;
7280 	struct btrfs_path *path = NULL;
7281 	int ret = 0;
7282 
7283 	path = btrfs_alloc_path();
7284 	if (!path)
7285 		return -ENOMEM;
7286 
7287 	mutex_lock(&fs_devices->device_list_mutex);
7288 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7289 		ret = btrfs_device_init_dev_stats(device, path);
7290 		if (ret)
7291 			goto out;
7292 	}
7293 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7294 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7295 			ret = btrfs_device_init_dev_stats(device, path);
7296 			if (ret)
7297 				goto out;
7298 		}
7299 	}
7300 out:
7301 	mutex_unlock(&fs_devices->device_list_mutex);
7302 
7303 	btrfs_free_path(path);
7304 	return ret;
7305 }
7306 
7307 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7308 				struct btrfs_device *device)
7309 {
7310 	struct btrfs_fs_info *fs_info = trans->fs_info;
7311 	struct btrfs_root *dev_root = fs_info->dev_root;
7312 	struct btrfs_path *path;
7313 	struct btrfs_key key;
7314 	struct extent_buffer *eb;
7315 	struct btrfs_dev_stats_item *ptr;
7316 	int ret;
7317 	int i;
7318 
7319 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7320 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7321 	key.offset = device->devid;
7322 
7323 	path = btrfs_alloc_path();
7324 	if (!path)
7325 		return -ENOMEM;
7326 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7327 	if (ret < 0) {
7328 		btrfs_warn_in_rcu(fs_info,
7329 			"error %d while searching for dev_stats item for device %s",
7330 			      ret, rcu_str_deref(device->name));
7331 		goto out;
7332 	}
7333 
7334 	if (ret == 0 &&
7335 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7336 		/* need to delete old one and insert a new one */
7337 		ret = btrfs_del_item(trans, dev_root, path);
7338 		if (ret != 0) {
7339 			btrfs_warn_in_rcu(fs_info,
7340 				"delete too small dev_stats item for device %s failed %d",
7341 				      rcu_str_deref(device->name), ret);
7342 			goto out;
7343 		}
7344 		ret = 1;
7345 	}
7346 
7347 	if (ret == 1) {
7348 		/* need to insert a new item */
7349 		btrfs_release_path(path);
7350 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7351 					      &key, sizeof(*ptr));
7352 		if (ret < 0) {
7353 			btrfs_warn_in_rcu(fs_info,
7354 				"insert dev_stats item for device %s failed %d",
7355 				rcu_str_deref(device->name), ret);
7356 			goto out;
7357 		}
7358 	}
7359 
7360 	eb = path->nodes[0];
7361 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7362 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7363 		btrfs_set_dev_stats_value(eb, ptr, i,
7364 					  btrfs_dev_stat_read(device, i));
7365 	btrfs_mark_buffer_dirty(eb);
7366 
7367 out:
7368 	btrfs_free_path(path);
7369 	return ret;
7370 }
7371 
7372 /*
7373  * called from commit_transaction. Writes all changed device stats to disk.
7374  */
7375 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7376 {
7377 	struct btrfs_fs_info *fs_info = trans->fs_info;
7378 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7379 	struct btrfs_device *device;
7380 	int stats_cnt;
7381 	int ret = 0;
7382 
7383 	mutex_lock(&fs_devices->device_list_mutex);
7384 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7385 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7386 		if (!device->dev_stats_valid || stats_cnt == 0)
7387 			continue;
7388 
7389 
7390 		/*
7391 		 * There is a LOAD-LOAD control dependency between the value of
7392 		 * dev_stats_ccnt and updating the on-disk values which requires
7393 		 * reading the in-memory counters. Such control dependencies
7394 		 * require explicit read memory barriers.
7395 		 *
7396 		 * This memory barriers pairs with smp_mb__before_atomic in
7397 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7398 		 * barrier implied by atomic_xchg in
7399 		 * btrfs_dev_stats_read_and_reset
7400 		 */
7401 		smp_rmb();
7402 
7403 		ret = update_dev_stat_item(trans, device);
7404 		if (!ret)
7405 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7406 	}
7407 	mutex_unlock(&fs_devices->device_list_mutex);
7408 
7409 	return ret;
7410 }
7411 
7412 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7413 {
7414 	btrfs_dev_stat_inc(dev, index);
7415 	btrfs_dev_stat_print_on_error(dev);
7416 }
7417 
7418 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7419 {
7420 	if (!dev->dev_stats_valid)
7421 		return;
7422 	btrfs_err_rl_in_rcu(dev->fs_info,
7423 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7424 			   rcu_str_deref(dev->name),
7425 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7426 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7427 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7428 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7429 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7430 }
7431 
7432 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7433 {
7434 	int i;
7435 
7436 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7437 		if (btrfs_dev_stat_read(dev, i) != 0)
7438 			break;
7439 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7440 		return; /* all values == 0, suppress message */
7441 
7442 	btrfs_info_in_rcu(dev->fs_info,
7443 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7444 	       rcu_str_deref(dev->name),
7445 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7446 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7447 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7448 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7449 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7450 }
7451 
7452 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7453 			struct btrfs_ioctl_get_dev_stats *stats)
7454 {
7455 	struct btrfs_device *dev;
7456 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7457 	int i;
7458 
7459 	mutex_lock(&fs_devices->device_list_mutex);
7460 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7461 				true);
7462 	mutex_unlock(&fs_devices->device_list_mutex);
7463 
7464 	if (!dev) {
7465 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7466 		return -ENODEV;
7467 	} else if (!dev->dev_stats_valid) {
7468 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7469 		return -ENODEV;
7470 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7471 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7472 			if (stats->nr_items > i)
7473 				stats->values[i] =
7474 					btrfs_dev_stat_read_and_reset(dev, i);
7475 			else
7476 				btrfs_dev_stat_set(dev, i, 0);
7477 		}
7478 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7479 			   current->comm, task_pid_nr(current));
7480 	} else {
7481 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7482 			if (stats->nr_items > i)
7483 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7484 	}
7485 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7486 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7487 	return 0;
7488 }
7489 
7490 /*
7491  * Update the size and bytes used for each device where it changed.  This is
7492  * delayed since we would otherwise get errors while writing out the
7493  * superblocks.
7494  *
7495  * Must be invoked during transaction commit.
7496  */
7497 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7498 {
7499 	struct btrfs_device *curr, *next;
7500 
7501 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7502 
7503 	if (list_empty(&trans->dev_update_list))
7504 		return;
7505 
7506 	/*
7507 	 * We don't need the device_list_mutex here.  This list is owned by the
7508 	 * transaction and the transaction must complete before the device is
7509 	 * released.
7510 	 */
7511 	mutex_lock(&trans->fs_info->chunk_mutex);
7512 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7513 				 post_commit_list) {
7514 		list_del_init(&curr->post_commit_list);
7515 		curr->commit_total_bytes = curr->disk_total_bytes;
7516 		curr->commit_bytes_used = curr->bytes_used;
7517 	}
7518 	mutex_unlock(&trans->fs_info->chunk_mutex);
7519 }
7520 
7521 /*
7522  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7523  */
7524 int btrfs_bg_type_to_factor(u64 flags)
7525 {
7526 	const int index = btrfs_bg_flags_to_raid_index(flags);
7527 
7528 	return btrfs_raid_array[index].ncopies;
7529 }
7530 
7531 
7532 
7533 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7534 				 u64 chunk_offset, u64 devid,
7535 				 u64 physical_offset, u64 physical_len)
7536 {
7537 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7538 	struct extent_map *em;
7539 	struct map_lookup *map;
7540 	struct btrfs_device *dev;
7541 	u64 stripe_len;
7542 	bool found = false;
7543 	int ret = 0;
7544 	int i;
7545 
7546 	read_lock(&em_tree->lock);
7547 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7548 	read_unlock(&em_tree->lock);
7549 
7550 	if (!em) {
7551 		btrfs_err(fs_info,
7552 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7553 			  physical_offset, devid);
7554 		ret = -EUCLEAN;
7555 		goto out;
7556 	}
7557 
7558 	map = em->map_lookup;
7559 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7560 	if (physical_len != stripe_len) {
7561 		btrfs_err(fs_info,
7562 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7563 			  physical_offset, devid, em->start, physical_len,
7564 			  stripe_len);
7565 		ret = -EUCLEAN;
7566 		goto out;
7567 	}
7568 
7569 	for (i = 0; i < map->num_stripes; i++) {
7570 		if (map->stripes[i].dev->devid == devid &&
7571 		    map->stripes[i].physical == physical_offset) {
7572 			found = true;
7573 			if (map->verified_stripes >= map->num_stripes) {
7574 				btrfs_err(fs_info,
7575 				"too many dev extents for chunk %llu found",
7576 					  em->start);
7577 				ret = -EUCLEAN;
7578 				goto out;
7579 			}
7580 			map->verified_stripes++;
7581 			break;
7582 		}
7583 	}
7584 	if (!found) {
7585 		btrfs_err(fs_info,
7586 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7587 			physical_offset, devid);
7588 		ret = -EUCLEAN;
7589 	}
7590 
7591 	/* Make sure no dev extent is beyond device bondary */
7592 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7593 	if (!dev) {
7594 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7595 		ret = -EUCLEAN;
7596 		goto out;
7597 	}
7598 
7599 	/* It's possible this device is a dummy for seed device */
7600 	if (dev->disk_total_bytes == 0) {
7601 		struct btrfs_fs_devices *devs;
7602 
7603 		devs = list_first_entry(&fs_info->fs_devices->seed_list,
7604 					struct btrfs_fs_devices, seed_list);
7605 		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7606 		if (!dev) {
7607 			btrfs_err(fs_info, "failed to find seed devid %llu",
7608 				  devid);
7609 			ret = -EUCLEAN;
7610 			goto out;
7611 		}
7612 	}
7613 
7614 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7615 		btrfs_err(fs_info,
7616 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7617 			  devid, physical_offset, physical_len,
7618 			  dev->disk_total_bytes);
7619 		ret = -EUCLEAN;
7620 		goto out;
7621 	}
7622 out:
7623 	free_extent_map(em);
7624 	return ret;
7625 }
7626 
7627 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7628 {
7629 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7630 	struct extent_map *em;
7631 	struct rb_node *node;
7632 	int ret = 0;
7633 
7634 	read_lock(&em_tree->lock);
7635 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7636 		em = rb_entry(node, struct extent_map, rb_node);
7637 		if (em->map_lookup->num_stripes !=
7638 		    em->map_lookup->verified_stripes) {
7639 			btrfs_err(fs_info,
7640 			"chunk %llu has missing dev extent, have %d expect %d",
7641 				  em->start, em->map_lookup->verified_stripes,
7642 				  em->map_lookup->num_stripes);
7643 			ret = -EUCLEAN;
7644 			goto out;
7645 		}
7646 	}
7647 out:
7648 	read_unlock(&em_tree->lock);
7649 	return ret;
7650 }
7651 
7652 /*
7653  * Ensure that all dev extents are mapped to correct chunk, otherwise
7654  * later chunk allocation/free would cause unexpected behavior.
7655  *
7656  * NOTE: This will iterate through the whole device tree, which should be of
7657  * the same size level as the chunk tree.  This slightly increases mount time.
7658  */
7659 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7660 {
7661 	struct btrfs_path *path;
7662 	struct btrfs_root *root = fs_info->dev_root;
7663 	struct btrfs_key key;
7664 	u64 prev_devid = 0;
7665 	u64 prev_dev_ext_end = 0;
7666 	int ret = 0;
7667 
7668 	key.objectid = 1;
7669 	key.type = BTRFS_DEV_EXTENT_KEY;
7670 	key.offset = 0;
7671 
7672 	path = btrfs_alloc_path();
7673 	if (!path)
7674 		return -ENOMEM;
7675 
7676 	path->reada = READA_FORWARD;
7677 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7678 	if (ret < 0)
7679 		goto out;
7680 
7681 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7682 		ret = btrfs_next_item(root, path);
7683 		if (ret < 0)
7684 			goto out;
7685 		/* No dev extents at all? Not good */
7686 		if (ret > 0) {
7687 			ret = -EUCLEAN;
7688 			goto out;
7689 		}
7690 	}
7691 	while (1) {
7692 		struct extent_buffer *leaf = path->nodes[0];
7693 		struct btrfs_dev_extent *dext;
7694 		int slot = path->slots[0];
7695 		u64 chunk_offset;
7696 		u64 physical_offset;
7697 		u64 physical_len;
7698 		u64 devid;
7699 
7700 		btrfs_item_key_to_cpu(leaf, &key, slot);
7701 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7702 			break;
7703 		devid = key.objectid;
7704 		physical_offset = key.offset;
7705 
7706 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7707 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7708 		physical_len = btrfs_dev_extent_length(leaf, dext);
7709 
7710 		/* Check if this dev extent overlaps with the previous one */
7711 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7712 			btrfs_err(fs_info,
7713 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7714 				  devid, physical_offset, prev_dev_ext_end);
7715 			ret = -EUCLEAN;
7716 			goto out;
7717 		}
7718 
7719 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7720 					    physical_offset, physical_len);
7721 		if (ret < 0)
7722 			goto out;
7723 		prev_devid = devid;
7724 		prev_dev_ext_end = physical_offset + physical_len;
7725 
7726 		ret = btrfs_next_item(root, path);
7727 		if (ret < 0)
7728 			goto out;
7729 		if (ret > 0) {
7730 			ret = 0;
7731 			break;
7732 		}
7733 	}
7734 
7735 	/* Ensure all chunks have corresponding dev extents */
7736 	ret = verify_chunk_dev_extent_mapping(fs_info);
7737 out:
7738 	btrfs_free_path(path);
7739 	return ret;
7740 }
7741 
7742 /*
7743  * Check whether the given block group or device is pinned by any inode being
7744  * used as a swapfile.
7745  */
7746 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7747 {
7748 	struct btrfs_swapfile_pin *sp;
7749 	struct rb_node *node;
7750 
7751 	spin_lock(&fs_info->swapfile_pins_lock);
7752 	node = fs_info->swapfile_pins.rb_node;
7753 	while (node) {
7754 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7755 		if (ptr < sp->ptr)
7756 			node = node->rb_left;
7757 		else if (ptr > sp->ptr)
7758 			node = node->rb_right;
7759 		else
7760 			break;
7761 	}
7762 	spin_unlock(&fs_info->swapfile_pins_lock);
7763 	return node != NULL;
7764 }
7765