xref: /linux/fs/btrfs/volumes.c (revision 4ac6d90867a4de2e12117e755dbd76e08d88697f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35 
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 	[BTRFS_RAID_RAID10] = {
38 		.sub_stripes	= 2,
39 		.dev_stripes	= 1,
40 		.devs_max	= 0,	/* 0 == as many as possible */
41 		.devs_min	= 2,
42 		.tolerated_failures = 1,
43 		.devs_increment	= 2,
44 		.ncopies	= 2,
45 		.nparity        = 0,
46 		.raid_name	= "raid10",
47 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 	},
50 	[BTRFS_RAID_RAID1] = {
51 		.sub_stripes	= 1,
52 		.dev_stripes	= 1,
53 		.devs_max	= 2,
54 		.devs_min	= 2,
55 		.tolerated_failures = 1,
56 		.devs_increment	= 2,
57 		.ncopies	= 2,
58 		.nparity        = 0,
59 		.raid_name	= "raid1",
60 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 	},
63 	[BTRFS_RAID_RAID1C3] = {
64 		.sub_stripes	= 1,
65 		.dev_stripes	= 1,
66 		.devs_max	= 3,
67 		.devs_min	= 3,
68 		.tolerated_failures = 2,
69 		.devs_increment	= 3,
70 		.ncopies	= 3,
71 		.nparity        = 0,
72 		.raid_name	= "raid1c3",
73 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 	},
76 	[BTRFS_RAID_RAID1C4] = {
77 		.sub_stripes	= 1,
78 		.dev_stripes	= 1,
79 		.devs_max	= 4,
80 		.devs_min	= 4,
81 		.tolerated_failures = 3,
82 		.devs_increment	= 4,
83 		.ncopies	= 4,
84 		.nparity        = 0,
85 		.raid_name	= "raid1c4",
86 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 	},
89 	[BTRFS_RAID_DUP] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 2,
92 		.devs_max	= 1,
93 		.devs_min	= 1,
94 		.tolerated_failures = 0,
95 		.devs_increment	= 1,
96 		.ncopies	= 2,
97 		.nparity        = 0,
98 		.raid_name	= "dup",
99 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100 		.mindev_error	= 0,
101 	},
102 	[BTRFS_RAID_RAID0] = {
103 		.sub_stripes	= 1,
104 		.dev_stripes	= 1,
105 		.devs_max	= 0,
106 		.devs_min	= 1,
107 		.tolerated_failures = 0,
108 		.devs_increment	= 1,
109 		.ncopies	= 1,
110 		.nparity        = 0,
111 		.raid_name	= "raid0",
112 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113 		.mindev_error	= 0,
114 	},
115 	[BTRFS_RAID_SINGLE] = {
116 		.sub_stripes	= 1,
117 		.dev_stripes	= 1,
118 		.devs_max	= 1,
119 		.devs_min	= 1,
120 		.tolerated_failures = 0,
121 		.devs_increment	= 1,
122 		.ncopies	= 1,
123 		.nparity        = 0,
124 		.raid_name	= "single",
125 		.bg_flag	= 0,
126 		.mindev_error	= 0,
127 	},
128 	[BTRFS_RAID_RAID5] = {
129 		.sub_stripes	= 1,
130 		.dev_stripes	= 1,
131 		.devs_max	= 0,
132 		.devs_min	= 2,
133 		.tolerated_failures = 1,
134 		.devs_increment	= 1,
135 		.ncopies	= 1,
136 		.nparity        = 1,
137 		.raid_name	= "raid5",
138 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 	},
141 	[BTRFS_RAID_RAID6] = {
142 		.sub_stripes	= 1,
143 		.dev_stripes	= 1,
144 		.devs_max	= 0,
145 		.devs_min	= 3,
146 		.tolerated_failures = 2,
147 		.devs_increment	= 1,
148 		.ncopies	= 1,
149 		.nparity        = 2,
150 		.raid_name	= "raid6",
151 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 	},
154 };
155 
156 /*
157  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158  * can be used as index to access btrfs_raid_array[].
159  */
160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 		return BTRFS_RAID_RAID10;
164 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 		return BTRFS_RAID_RAID1;
166 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 		return BTRFS_RAID_RAID1C3;
168 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 		return BTRFS_RAID_RAID1C4;
170 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 		return BTRFS_RAID_DUP;
172 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 		return BTRFS_RAID_RAID0;
174 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 		return BTRFS_RAID_RAID5;
176 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 		return BTRFS_RAID_RAID6;
178 
179 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181 
182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184 	const int index = btrfs_bg_flags_to_raid_index(flags);
185 
186 	if (index >= BTRFS_NR_RAID_TYPES)
187 		return NULL;
188 
189 	return btrfs_raid_array[index].raid_name;
190 }
191 
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198 	int i;
199 	int ret;
200 	char *bp = buf;
201 	u64 flags = bg_flags;
202 	u32 size_bp = size_buf;
203 
204 	if (!flags) {
205 		strcpy(bp, "NONE");
206 		return;
207 	}
208 
209 #define DESCRIBE_FLAG(flag, desc)						\
210 	do {								\
211 		if (flags & (flag)) {					\
212 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
213 			if (ret < 0 || ret >= size_bp)			\
214 				goto out_overflow;			\
215 			size_bp -= ret;					\
216 			bp += ret;					\
217 			flags &= ~(flag);				\
218 		}							\
219 	} while (0)
220 
221 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224 
225 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 			      btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230 
231 	if (flags) {
232 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 		size_bp -= ret;
234 	}
235 
236 	if (size_bp < size_buf)
237 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238 
239 	/*
240 	 * The text is trimmed, it's up to the caller to provide sufficiently
241 	 * large buffer
242 	 */
243 out_overflow:;
244 }
245 
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 			     enum btrfs_map_op op,
252 			     u64 logical, u64 *length,
253 			     struct btrfs_bio **bbio_ret,
254 			     int mirror_num, int need_raid_map);
255 
256 /*
257  * Device locking
258  * ==============
259  *
260  * There are several mutexes that protect manipulation of devices and low-level
261  * structures like chunks but not block groups, extents or files
262  *
263  * uuid_mutex (global lock)
264  * ------------------------
265  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267  * device) or requested by the device= mount option
268  *
269  * the mutex can be very coarse and can cover long-running operations
270  *
271  * protects: updates to fs_devices counters like missing devices, rw devices,
272  * seeding, structure cloning, opening/closing devices at mount/umount time
273  *
274  * global::fs_devs - add, remove, updates to the global list
275  *
276  * does not protect: manipulation of the fs_devices::devices list in general
277  * but in mount context it could be used to exclude list modifications by eg.
278  * scan ioctl
279  *
280  * btrfs_device::name - renames (write side), read is RCU
281  *
282  * fs_devices::device_list_mutex (per-fs, with RCU)
283  * ------------------------------------------------
284  * protects updates to fs_devices::devices, ie. adding and deleting
285  *
286  * simple list traversal with read-only actions can be done with RCU protection
287  *
288  * may be used to exclude some operations from running concurrently without any
289  * modifications to the list (see write_all_supers)
290  *
291  * Is not required at mount and close times, because our device list is
292  * protected by the uuid_mutex at that point.
293  *
294  * balance_mutex
295  * -------------
296  * protects balance structures (status, state) and context accessed from
297  * several places (internally, ioctl)
298  *
299  * chunk_mutex
300  * -----------
301  * protects chunks, adding or removing during allocation, trim or when a new
302  * device is added/removed. Additionally it also protects post_commit_list of
303  * individual devices, since they can be added to the transaction's
304  * post_commit_list only with chunk_mutex held.
305  *
306  * cleaner_mutex
307  * -------------
308  * a big lock that is held by the cleaner thread and prevents running subvolume
309  * cleaning together with relocation or delayed iputs
310  *
311  *
312  * Lock nesting
313  * ============
314  *
315  * uuid_mutex
316  *   device_list_mutex
317  *     chunk_mutex
318  *   balance_mutex
319  *
320  *
321  * Exclusive operations
322  * ====================
323  *
324  * Maintains the exclusivity of the following operations that apply to the
325  * whole filesystem and cannot run in parallel.
326  *
327  * - Balance (*)
328  * - Device add
329  * - Device remove
330  * - Device replace (*)
331  * - Resize
332  *
333  * The device operations (as above) can be in one of the following states:
334  *
335  * - Running state
336  * - Paused state
337  * - Completed state
338  *
339  * Only device operations marked with (*) can go into the Paused state for the
340  * following reasons:
341  *
342  * - ioctl (only Balance can be Paused through ioctl)
343  * - filesystem remounted as read-only
344  * - filesystem unmounted and mounted as read-only
345  * - system power-cycle and filesystem mounted as read-only
346  * - filesystem or device errors leading to forced read-only
347  *
348  * The status of exclusive operation is set and cleared atomically.
349  * During the course of Paused state, fs_info::exclusive_operation remains set.
350  * A device operation in Paused or Running state can be canceled or resumed
351  * either by ioctl (Balance only) or when remounted as read-write.
352  * The exclusive status is cleared when the device operation is canceled or
353  * completed.
354  */
355 
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360 	return &fs_uuids;
361 }
362 
363 /*
364  * alloc_fs_devices - allocate struct btrfs_fs_devices
365  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
366  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
367  *
368  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369  * The returned struct is not linked onto any lists and can be destroyed with
370  * kfree() right away.
371  */
372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 						 const u8 *metadata_fsid)
374 {
375 	struct btrfs_fs_devices *fs_devs;
376 
377 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378 	if (!fs_devs)
379 		return ERR_PTR(-ENOMEM);
380 
381 	mutex_init(&fs_devs->device_list_mutex);
382 
383 	INIT_LIST_HEAD(&fs_devs->devices);
384 	INIT_LIST_HEAD(&fs_devs->alloc_list);
385 	INIT_LIST_HEAD(&fs_devs->fs_list);
386 	INIT_LIST_HEAD(&fs_devs->seed_list);
387 	if (fsid)
388 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389 
390 	if (metadata_fsid)
391 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 	else if (fsid)
393 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394 
395 	return fs_devs;
396 }
397 
398 void btrfs_free_device(struct btrfs_device *device)
399 {
400 	WARN_ON(!list_empty(&device->post_commit_list));
401 	rcu_string_free(device->name);
402 	extent_io_tree_release(&device->alloc_state);
403 	bio_put(device->flush_bio);
404 	btrfs_destroy_dev_zone_info(device);
405 	kfree(device);
406 }
407 
408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 	struct btrfs_device *device;
411 	WARN_ON(fs_devices->opened);
412 	while (!list_empty(&fs_devices->devices)) {
413 		device = list_entry(fs_devices->devices.next,
414 				    struct btrfs_device, dev_list);
415 		list_del(&device->dev_list);
416 		btrfs_free_device(device);
417 	}
418 	kfree(fs_devices);
419 }
420 
421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 	struct btrfs_fs_devices *fs_devices;
424 
425 	while (!list_empty(&fs_uuids)) {
426 		fs_devices = list_entry(fs_uuids.next,
427 					struct btrfs_fs_devices, fs_list);
428 		list_del(&fs_devices->fs_list);
429 		free_fs_devices(fs_devices);
430 	}
431 }
432 
433 static noinline struct btrfs_fs_devices *find_fsid(
434 		const u8 *fsid, const u8 *metadata_fsid)
435 {
436 	struct btrfs_fs_devices *fs_devices;
437 
438 	ASSERT(fsid);
439 
440 	/* Handle non-split brain cases */
441 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 		if (metadata_fsid) {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 				      BTRFS_FSID_SIZE) == 0)
446 				return fs_devices;
447 		} else {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 				return fs_devices;
450 		}
451 	}
452 	return NULL;
453 }
454 
455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 				struct btrfs_super_block *disk_super)
457 {
458 
459 	struct btrfs_fs_devices *fs_devices;
460 
461 	/*
462 	 * Handle scanned device having completed its fsid change but
463 	 * belonging to a fs_devices that was created by first scanning
464 	 * a device which didn't have its fsid/metadata_uuid changed
465 	 * at all and the CHANGING_FSID_V2 flag set.
466 	 */
467 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 		if (fs_devices->fsid_change &&
469 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 			   BTRFS_FSID_SIZE) == 0 &&
471 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 			   BTRFS_FSID_SIZE) == 0) {
473 			return fs_devices;
474 		}
475 	}
476 	/*
477 	 * Handle scanned device having completed its fsid change but
478 	 * belonging to a fs_devices that was created by a device that
479 	 * has an outdated pair of fsid/metadata_uuid and
480 	 * CHANGING_FSID_V2 flag set.
481 	 */
482 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 		if (fs_devices->fsid_change &&
484 		    memcmp(fs_devices->metadata_uuid,
485 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 			   BTRFS_FSID_SIZE) == 0) {
488 			return fs_devices;
489 		}
490 	}
491 
492 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494 
495 
496 static int
497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 		      int flush, struct block_device **bdev,
499 		      struct btrfs_super_block **disk_super)
500 {
501 	int ret;
502 
503 	*bdev = blkdev_get_by_path(device_path, flags, holder);
504 
505 	if (IS_ERR(*bdev)) {
506 		ret = PTR_ERR(*bdev);
507 		goto error;
508 	}
509 
510 	if (flush)
511 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 	if (ret) {
514 		blkdev_put(*bdev, flags);
515 		goto error;
516 	}
517 	invalidate_bdev(*bdev);
518 	*disk_super = btrfs_read_dev_super(*bdev);
519 	if (IS_ERR(*disk_super)) {
520 		ret = PTR_ERR(*disk_super);
521 		blkdev_put(*bdev, flags);
522 		goto error;
523 	}
524 
525 	return 0;
526 
527 error:
528 	*bdev = NULL;
529 	return ret;
530 }
531 
532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534 	int found;
535 
536 	rcu_read_lock();
537 	found = strcmp(rcu_str_deref(device->name), path);
538 	rcu_read_unlock();
539 
540 	return found == 0;
541 }
542 
543 /*
544  *  Search and remove all stale (devices which are not mounted) devices.
545  *  When both inputs are NULL, it will search and release all stale devices.
546  *  path:	Optional. When provided will it release all unmounted devices
547  *		matching this path only.
548  *  skip_dev:	Optional. Will skip this device when searching for the stale
549  *		devices.
550  *  Return:	0 for success or if @path is NULL.
551  * 		-EBUSY if @path is a mounted device.
552  * 		-ENOENT if @path does not match any device in the list.
553  */
554 static int btrfs_free_stale_devices(const char *path,
555 				     struct btrfs_device *skip_device)
556 {
557 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 	struct btrfs_device *device, *tmp_device;
559 	int ret = 0;
560 
561 	if (path)
562 		ret = -ENOENT;
563 
564 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
565 
566 		mutex_lock(&fs_devices->device_list_mutex);
567 		list_for_each_entry_safe(device, tmp_device,
568 					 &fs_devices->devices, dev_list) {
569 			if (skip_device && skip_device == device)
570 				continue;
571 			if (path && !device->name)
572 				continue;
573 			if (path && !device_path_matched(path, device))
574 				continue;
575 			if (fs_devices->opened) {
576 				/* for an already deleted device return 0 */
577 				if (path && ret != 0)
578 					ret = -EBUSY;
579 				break;
580 			}
581 
582 			/* delete the stale device */
583 			fs_devices->num_devices--;
584 			list_del(&device->dev_list);
585 			btrfs_free_device(device);
586 
587 			ret = 0;
588 		}
589 		mutex_unlock(&fs_devices->device_list_mutex);
590 
591 		if (fs_devices->num_devices == 0) {
592 			btrfs_sysfs_remove_fsid(fs_devices);
593 			list_del(&fs_devices->fs_list);
594 			free_fs_devices(fs_devices);
595 		}
596 	}
597 
598 	return ret;
599 }
600 
601 /*
602  * This is only used on mount, and we are protected from competing things
603  * messing with our fs_devices by the uuid_mutex, thus we do not need the
604  * fs_devices->device_list_mutex here.
605  */
606 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607 			struct btrfs_device *device, fmode_t flags,
608 			void *holder)
609 {
610 	struct request_queue *q;
611 	struct block_device *bdev;
612 	struct btrfs_super_block *disk_super;
613 	u64 devid;
614 	int ret;
615 
616 	if (device->bdev)
617 		return -EINVAL;
618 	if (!device->name)
619 		return -EINVAL;
620 
621 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
622 				    &bdev, &disk_super);
623 	if (ret)
624 		return ret;
625 
626 	devid = btrfs_stack_device_id(&disk_super->dev_item);
627 	if (devid != device->devid)
628 		goto error_free_page;
629 
630 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
631 		goto error_free_page;
632 
633 	device->generation = btrfs_super_generation(disk_super);
634 
635 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
636 		if (btrfs_super_incompat_flags(disk_super) &
637 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638 			pr_err(
639 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
640 			goto error_free_page;
641 		}
642 
643 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 		fs_devices->seeding = true;
645 	} else {
646 		if (bdev_read_only(bdev))
647 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 		else
649 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 	}
651 
652 	q = bdev_get_queue(bdev);
653 	if (!blk_queue_nonrot(q))
654 		fs_devices->rotating = true;
655 
656 	device->bdev = bdev;
657 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
658 	device->mode = flags;
659 
660 	fs_devices->open_devices++;
661 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
663 		fs_devices->rw_devices++;
664 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
665 	}
666 	btrfs_release_disk_super(disk_super);
667 
668 	return 0;
669 
670 error_free_page:
671 	btrfs_release_disk_super(disk_super);
672 	blkdev_put(bdev, flags);
673 
674 	return -EINVAL;
675 }
676 
677 /*
678  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
679  * being created with a disk that has already completed its fsid change. Such
680  * disk can belong to an fs which has its FSID changed or to one which doesn't.
681  * Handle both cases here.
682  */
683 static struct btrfs_fs_devices *find_fsid_inprogress(
684 					struct btrfs_super_block *disk_super)
685 {
686 	struct btrfs_fs_devices *fs_devices;
687 
688 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690 			   BTRFS_FSID_SIZE) != 0 &&
691 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693 			return fs_devices;
694 		}
695 	}
696 
697 	return find_fsid(disk_super->fsid, NULL);
698 }
699 
700 
701 static struct btrfs_fs_devices *find_fsid_changed(
702 					struct btrfs_super_block *disk_super)
703 {
704 	struct btrfs_fs_devices *fs_devices;
705 
706 	/*
707 	 * Handles the case where scanned device is part of an fs that had
708 	 * multiple successful changes of FSID but currently device didn't
709 	 * observe it. Meaning our fsid will be different than theirs. We need
710 	 * to handle two subcases :
711 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
712 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
713 	 *  are equal).
714 	 */
715 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
716 		/* Changed UUIDs */
717 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718 			   BTRFS_FSID_SIZE) != 0 &&
719 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720 			   BTRFS_FSID_SIZE) == 0 &&
721 		    memcmp(fs_devices->fsid, disk_super->fsid,
722 			   BTRFS_FSID_SIZE) != 0)
723 			return fs_devices;
724 
725 		/* Unchanged UUIDs */
726 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727 			   BTRFS_FSID_SIZE) == 0 &&
728 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729 			   BTRFS_FSID_SIZE) == 0)
730 			return fs_devices;
731 	}
732 
733 	return NULL;
734 }
735 
736 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737 				struct btrfs_super_block *disk_super)
738 {
739 	struct btrfs_fs_devices *fs_devices;
740 
741 	/*
742 	 * Handle the case where the scanned device is part of an fs whose last
743 	 * metadata UUID change reverted it to the original FSID. At the same
744 	 * time * fs_devices was first created by another constitutent device
745 	 * which didn't fully observe the operation. This results in an
746 	 * btrfs_fs_devices created with metadata/fsid different AND
747 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748 	 * fs_devices equal to the FSID of the disk.
749 	 */
750 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752 			   BTRFS_FSID_SIZE) != 0 &&
753 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754 			   BTRFS_FSID_SIZE) == 0 &&
755 		    fs_devices->fsid_change)
756 			return fs_devices;
757 	}
758 
759 	return NULL;
760 }
761 /*
762  * Add new device to list of registered devices
763  *
764  * Returns:
765  * device pointer which was just added or updated when successful
766  * error pointer when failed
767  */
768 static noinline struct btrfs_device *device_list_add(const char *path,
769 			   struct btrfs_super_block *disk_super,
770 			   bool *new_device_added)
771 {
772 	struct btrfs_device *device;
773 	struct btrfs_fs_devices *fs_devices = NULL;
774 	struct rcu_string *name;
775 	u64 found_transid = btrfs_super_generation(disk_super);
776 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
777 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
779 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
781 
782 	if (fsid_change_in_progress) {
783 		if (!has_metadata_uuid)
784 			fs_devices = find_fsid_inprogress(disk_super);
785 		else
786 			fs_devices = find_fsid_changed(disk_super);
787 	} else if (has_metadata_uuid) {
788 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
789 	} else {
790 		fs_devices = find_fsid_reverted_metadata(disk_super);
791 		if (!fs_devices)
792 			fs_devices = find_fsid(disk_super->fsid, NULL);
793 	}
794 
795 
796 	if (!fs_devices) {
797 		if (has_metadata_uuid)
798 			fs_devices = alloc_fs_devices(disk_super->fsid,
799 						      disk_super->metadata_uuid);
800 		else
801 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
802 
803 		if (IS_ERR(fs_devices))
804 			return ERR_CAST(fs_devices);
805 
806 		fs_devices->fsid_change = fsid_change_in_progress;
807 
808 		mutex_lock(&fs_devices->device_list_mutex);
809 		list_add(&fs_devices->fs_list, &fs_uuids);
810 
811 		device = NULL;
812 	} else {
813 		mutex_lock(&fs_devices->device_list_mutex);
814 		device = btrfs_find_device(fs_devices, devid,
815 				disk_super->dev_item.uuid, NULL);
816 
817 		/*
818 		 * If this disk has been pulled into an fs devices created by
819 		 * a device which had the CHANGING_FSID_V2 flag then replace the
820 		 * metadata_uuid/fsid values of the fs_devices.
821 		 */
822 		if (fs_devices->fsid_change &&
823 		    found_transid > fs_devices->latest_generation) {
824 			memcpy(fs_devices->fsid, disk_super->fsid,
825 					BTRFS_FSID_SIZE);
826 
827 			if (has_metadata_uuid)
828 				memcpy(fs_devices->metadata_uuid,
829 				       disk_super->metadata_uuid,
830 				       BTRFS_FSID_SIZE);
831 			else
832 				memcpy(fs_devices->metadata_uuid,
833 				       disk_super->fsid, BTRFS_FSID_SIZE);
834 
835 			fs_devices->fsid_change = false;
836 		}
837 	}
838 
839 	if (!device) {
840 		if (fs_devices->opened) {
841 			mutex_unlock(&fs_devices->device_list_mutex);
842 			return ERR_PTR(-EBUSY);
843 		}
844 
845 		device = btrfs_alloc_device(NULL, &devid,
846 					    disk_super->dev_item.uuid);
847 		if (IS_ERR(device)) {
848 			mutex_unlock(&fs_devices->device_list_mutex);
849 			/* we can safely leave the fs_devices entry around */
850 			return device;
851 		}
852 
853 		name = rcu_string_strdup(path, GFP_NOFS);
854 		if (!name) {
855 			btrfs_free_device(device);
856 			mutex_unlock(&fs_devices->device_list_mutex);
857 			return ERR_PTR(-ENOMEM);
858 		}
859 		rcu_assign_pointer(device->name, name);
860 
861 		list_add_rcu(&device->dev_list, &fs_devices->devices);
862 		fs_devices->num_devices++;
863 
864 		device->fs_devices = fs_devices;
865 		*new_device_added = true;
866 
867 		if (disk_super->label[0])
868 			pr_info(
869 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 				disk_super->label, devid, found_transid, path,
871 				current->comm, task_pid_nr(current));
872 		else
873 			pr_info(
874 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 				disk_super->fsid, devid, found_transid, path,
876 				current->comm, task_pid_nr(current));
877 
878 	} else if (!device->name || strcmp(device->name->str, path)) {
879 		/*
880 		 * When FS is already mounted.
881 		 * 1. If you are here and if the device->name is NULL that
882 		 *    means this device was missing at time of FS mount.
883 		 * 2. If you are here and if the device->name is different
884 		 *    from 'path' that means either
885 		 *      a. The same device disappeared and reappeared with
886 		 *         different name. or
887 		 *      b. The missing-disk-which-was-replaced, has
888 		 *         reappeared now.
889 		 *
890 		 * We must allow 1 and 2a above. But 2b would be a spurious
891 		 * and unintentional.
892 		 *
893 		 * Further in case of 1 and 2a above, the disk at 'path'
894 		 * would have missed some transaction when it was away and
895 		 * in case of 2a the stale bdev has to be updated as well.
896 		 * 2b must not be allowed at all time.
897 		 */
898 
899 		/*
900 		 * For now, we do allow update to btrfs_fs_device through the
901 		 * btrfs dev scan cli after FS has been mounted.  We're still
902 		 * tracking a problem where systems fail mount by subvolume id
903 		 * when we reject replacement on a mounted FS.
904 		 */
905 		if (!fs_devices->opened && found_transid < device->generation) {
906 			/*
907 			 * That is if the FS is _not_ mounted and if you
908 			 * are here, that means there is more than one
909 			 * disk with same uuid and devid.We keep the one
910 			 * with larger generation number or the last-in if
911 			 * generation are equal.
912 			 */
913 			mutex_unlock(&fs_devices->device_list_mutex);
914 			return ERR_PTR(-EEXIST);
915 		}
916 
917 		/*
918 		 * We are going to replace the device path for a given devid,
919 		 * make sure it's the same device if the device is mounted
920 		 */
921 		if (device->bdev) {
922 			int error;
923 			dev_t path_dev;
924 
925 			error = lookup_bdev(path, &path_dev);
926 			if (error) {
927 				mutex_unlock(&fs_devices->device_list_mutex);
928 				return ERR_PTR(error);
929 			}
930 
931 			if (device->bdev->bd_dev != path_dev) {
932 				mutex_unlock(&fs_devices->device_list_mutex);
933 				/*
934 				 * device->fs_info may not be reliable here, so
935 				 * pass in a NULL instead. This avoids a
936 				 * possible use-after-free when the fs_info and
937 				 * fs_info->sb are already torn down.
938 				 */
939 				btrfs_warn_in_rcu(NULL,
940 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
941 						  path, devid, found_transid,
942 						  current->comm,
943 						  task_pid_nr(current));
944 				return ERR_PTR(-EEXIST);
945 			}
946 			btrfs_info_in_rcu(device->fs_info,
947 	"devid %llu device path %s changed to %s scanned by %s (%d)",
948 					  devid, rcu_str_deref(device->name),
949 					  path, current->comm,
950 					  task_pid_nr(current));
951 		}
952 
953 		name = rcu_string_strdup(path, GFP_NOFS);
954 		if (!name) {
955 			mutex_unlock(&fs_devices->device_list_mutex);
956 			return ERR_PTR(-ENOMEM);
957 		}
958 		rcu_string_free(device->name);
959 		rcu_assign_pointer(device->name, name);
960 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
961 			fs_devices->missing_devices--;
962 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
963 		}
964 	}
965 
966 	/*
967 	 * Unmount does not free the btrfs_device struct but would zero
968 	 * generation along with most of the other members. So just update
969 	 * it back. We need it to pick the disk with largest generation
970 	 * (as above).
971 	 */
972 	if (!fs_devices->opened) {
973 		device->generation = found_transid;
974 		fs_devices->latest_generation = max_t(u64, found_transid,
975 						fs_devices->latest_generation);
976 	}
977 
978 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
979 
980 	mutex_unlock(&fs_devices->device_list_mutex);
981 	return device;
982 }
983 
984 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
985 {
986 	struct btrfs_fs_devices *fs_devices;
987 	struct btrfs_device *device;
988 	struct btrfs_device *orig_dev;
989 	int ret = 0;
990 
991 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
992 	if (IS_ERR(fs_devices))
993 		return fs_devices;
994 
995 	mutex_lock(&orig->device_list_mutex);
996 	fs_devices->total_devices = orig->total_devices;
997 
998 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
999 		struct rcu_string *name;
1000 
1001 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1002 					    orig_dev->uuid);
1003 		if (IS_ERR(device)) {
1004 			ret = PTR_ERR(device);
1005 			goto error;
1006 		}
1007 
1008 		/*
1009 		 * This is ok to do without rcu read locked because we hold the
1010 		 * uuid mutex so nothing we touch in here is going to disappear.
1011 		 */
1012 		if (orig_dev->name) {
1013 			name = rcu_string_strdup(orig_dev->name->str,
1014 					GFP_KERNEL);
1015 			if (!name) {
1016 				btrfs_free_device(device);
1017 				ret = -ENOMEM;
1018 				goto error;
1019 			}
1020 			rcu_assign_pointer(device->name, name);
1021 		}
1022 
1023 		list_add(&device->dev_list, &fs_devices->devices);
1024 		device->fs_devices = fs_devices;
1025 		fs_devices->num_devices++;
1026 	}
1027 	mutex_unlock(&orig->device_list_mutex);
1028 	return fs_devices;
1029 error:
1030 	mutex_unlock(&orig->device_list_mutex);
1031 	free_fs_devices(fs_devices);
1032 	return ERR_PTR(ret);
1033 }
1034 
1035 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1036 				      struct btrfs_device **latest_dev)
1037 {
1038 	struct btrfs_device *device, *next;
1039 
1040 	/* This is the initialized path, it is safe to release the devices. */
1041 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1042 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1043 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1044 				      &device->dev_state) &&
1045 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1046 				      &device->dev_state) &&
1047 			    (!*latest_dev ||
1048 			     device->generation > (*latest_dev)->generation)) {
1049 				*latest_dev = device;
1050 			}
1051 			continue;
1052 		}
1053 
1054 		/*
1055 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1056 		 * in btrfs_init_dev_replace() so just continue.
1057 		 */
1058 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1059 			continue;
1060 
1061 		if (device->bdev) {
1062 			blkdev_put(device->bdev, device->mode);
1063 			device->bdev = NULL;
1064 			fs_devices->open_devices--;
1065 		}
1066 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1067 			list_del_init(&device->dev_alloc_list);
1068 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1069 			fs_devices->rw_devices--;
1070 		}
1071 		list_del_init(&device->dev_list);
1072 		fs_devices->num_devices--;
1073 		btrfs_free_device(device);
1074 	}
1075 
1076 }
1077 
1078 /*
1079  * After we have read the system tree and know devids belonging to this
1080  * filesystem, remove the device which does not belong there.
1081  */
1082 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1083 {
1084 	struct btrfs_device *latest_dev = NULL;
1085 	struct btrfs_fs_devices *seed_dev;
1086 
1087 	mutex_lock(&uuid_mutex);
1088 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1089 
1090 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1091 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1092 
1093 	fs_devices->latest_bdev = latest_dev->bdev;
1094 
1095 	mutex_unlock(&uuid_mutex);
1096 }
1097 
1098 static void btrfs_close_bdev(struct btrfs_device *device)
1099 {
1100 	if (!device->bdev)
1101 		return;
1102 
1103 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1104 		sync_blockdev(device->bdev);
1105 		invalidate_bdev(device->bdev);
1106 	}
1107 
1108 	blkdev_put(device->bdev, device->mode);
1109 }
1110 
1111 static void btrfs_close_one_device(struct btrfs_device *device)
1112 {
1113 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1114 
1115 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1116 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1117 		list_del_init(&device->dev_alloc_list);
1118 		fs_devices->rw_devices--;
1119 	}
1120 
1121 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1122 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1123 
1124 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1125 		fs_devices->missing_devices--;
1126 
1127 	btrfs_close_bdev(device);
1128 	if (device->bdev) {
1129 		fs_devices->open_devices--;
1130 		device->bdev = NULL;
1131 	}
1132 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 	btrfs_destroy_dev_zone_info(device);
1134 
1135 	device->fs_info = NULL;
1136 	atomic_set(&device->dev_stats_ccnt, 0);
1137 	extent_io_tree_release(&device->alloc_state);
1138 
1139 	/* Verify the device is back in a pristine state  */
1140 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1141 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1142 	ASSERT(list_empty(&device->dev_alloc_list));
1143 	ASSERT(list_empty(&device->post_commit_list));
1144 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1145 }
1146 
1147 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1148 {
1149 	struct btrfs_device *device, *tmp;
1150 
1151 	lockdep_assert_held(&uuid_mutex);
1152 
1153 	if (--fs_devices->opened > 0)
1154 		return;
1155 
1156 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1157 		btrfs_close_one_device(device);
1158 
1159 	WARN_ON(fs_devices->open_devices);
1160 	WARN_ON(fs_devices->rw_devices);
1161 	fs_devices->opened = 0;
1162 	fs_devices->seeding = false;
1163 	fs_devices->fs_info = NULL;
1164 }
1165 
1166 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1167 {
1168 	LIST_HEAD(list);
1169 	struct btrfs_fs_devices *tmp;
1170 
1171 	mutex_lock(&uuid_mutex);
1172 	close_fs_devices(fs_devices);
1173 	if (!fs_devices->opened)
1174 		list_splice_init(&fs_devices->seed_list, &list);
1175 
1176 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177 		close_fs_devices(fs_devices);
1178 		list_del(&fs_devices->seed_list);
1179 		free_fs_devices(fs_devices);
1180 	}
1181 	mutex_unlock(&uuid_mutex);
1182 }
1183 
1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185 				fmode_t flags, void *holder)
1186 {
1187 	struct btrfs_device *device;
1188 	struct btrfs_device *latest_dev = NULL;
1189 	struct btrfs_device *tmp_device;
1190 
1191 	flags |= FMODE_EXCL;
1192 
1193 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1194 				 dev_list) {
1195 		int ret;
1196 
1197 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1198 		if (ret == 0 &&
1199 		    (!latest_dev || device->generation > latest_dev->generation)) {
1200 			latest_dev = device;
1201 		} else if (ret == -ENODATA) {
1202 			fs_devices->num_devices--;
1203 			list_del(&device->dev_list);
1204 			btrfs_free_device(device);
1205 		}
1206 	}
1207 	if (fs_devices->open_devices == 0)
1208 		return -EINVAL;
1209 
1210 	fs_devices->opened = 1;
1211 	fs_devices->latest_bdev = latest_dev->bdev;
1212 	fs_devices->total_rw_bytes = 0;
1213 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1214 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1215 
1216 	return 0;
1217 }
1218 
1219 static int devid_cmp(void *priv, const struct list_head *a,
1220 		     const struct list_head *b)
1221 {
1222 	const struct btrfs_device *dev1, *dev2;
1223 
1224 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1225 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1226 
1227 	if (dev1->devid < dev2->devid)
1228 		return -1;
1229 	else if (dev1->devid > dev2->devid)
1230 		return 1;
1231 	return 0;
1232 }
1233 
1234 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1235 		       fmode_t flags, void *holder)
1236 {
1237 	int ret;
1238 
1239 	lockdep_assert_held(&uuid_mutex);
1240 	/*
1241 	 * The device_list_mutex cannot be taken here in case opening the
1242 	 * underlying device takes further locks like open_mutex.
1243 	 *
1244 	 * We also don't need the lock here as this is called during mount and
1245 	 * exclusion is provided by uuid_mutex
1246 	 */
1247 
1248 	if (fs_devices->opened) {
1249 		fs_devices->opened++;
1250 		ret = 0;
1251 	} else {
1252 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1253 		ret = open_fs_devices(fs_devices, flags, holder);
1254 	}
1255 
1256 	return ret;
1257 }
1258 
1259 void btrfs_release_disk_super(struct btrfs_super_block *super)
1260 {
1261 	struct page *page = virt_to_page(super);
1262 
1263 	put_page(page);
1264 }
1265 
1266 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1267 						       u64 bytenr, u64 bytenr_orig)
1268 {
1269 	struct btrfs_super_block *disk_super;
1270 	struct page *page;
1271 	void *p;
1272 	pgoff_t index;
1273 
1274 	/* make sure our super fits in the device */
1275 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1276 		return ERR_PTR(-EINVAL);
1277 
1278 	/* make sure our super fits in the page */
1279 	if (sizeof(*disk_super) > PAGE_SIZE)
1280 		return ERR_PTR(-EINVAL);
1281 
1282 	/* make sure our super doesn't straddle pages on disk */
1283 	index = bytenr >> PAGE_SHIFT;
1284 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1285 		return ERR_PTR(-EINVAL);
1286 
1287 	/* pull in the page with our super */
1288 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1289 
1290 	if (IS_ERR(page))
1291 		return ERR_CAST(page);
1292 
1293 	p = page_address(page);
1294 
1295 	/* align our pointer to the offset of the super block */
1296 	disk_super = p + offset_in_page(bytenr);
1297 
1298 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1299 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1300 		btrfs_release_disk_super(p);
1301 		return ERR_PTR(-EINVAL);
1302 	}
1303 
1304 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1305 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1306 
1307 	return disk_super;
1308 }
1309 
1310 int btrfs_forget_devices(const char *path)
1311 {
1312 	int ret;
1313 
1314 	mutex_lock(&uuid_mutex);
1315 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1316 	mutex_unlock(&uuid_mutex);
1317 
1318 	return ret;
1319 }
1320 
1321 /*
1322  * Look for a btrfs signature on a device. This may be called out of the mount path
1323  * and we are not allowed to call set_blocksize during the scan. The superblock
1324  * is read via pagecache
1325  */
1326 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1327 					   void *holder)
1328 {
1329 	struct btrfs_super_block *disk_super;
1330 	bool new_device_added = false;
1331 	struct btrfs_device *device = NULL;
1332 	struct block_device *bdev;
1333 	u64 bytenr, bytenr_orig;
1334 	int ret;
1335 
1336 	lockdep_assert_held(&uuid_mutex);
1337 
1338 	/*
1339 	 * we would like to check all the supers, but that would make
1340 	 * a btrfs mount succeed after a mkfs from a different FS.
1341 	 * So, we need to add a special mount option to scan for
1342 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1343 	 */
1344 	flags |= FMODE_EXCL;
1345 
1346 	bdev = blkdev_get_by_path(path, flags, holder);
1347 	if (IS_ERR(bdev))
1348 		return ERR_CAST(bdev);
1349 
1350 	bytenr_orig = btrfs_sb_offset(0);
1351 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1352 	if (ret)
1353 		return ERR_PTR(ret);
1354 
1355 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1356 	if (IS_ERR(disk_super)) {
1357 		device = ERR_CAST(disk_super);
1358 		goto error_bdev_put;
1359 	}
1360 
1361 	device = device_list_add(path, disk_super, &new_device_added);
1362 	if (!IS_ERR(device)) {
1363 		if (new_device_added)
1364 			btrfs_free_stale_devices(path, device);
1365 	}
1366 
1367 	btrfs_release_disk_super(disk_super);
1368 
1369 error_bdev_put:
1370 	blkdev_put(bdev, flags);
1371 
1372 	return device;
1373 }
1374 
1375 /*
1376  * Try to find a chunk that intersects [start, start + len] range and when one
1377  * such is found, record the end of it in *start
1378  */
1379 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1380 				    u64 len)
1381 {
1382 	u64 physical_start, physical_end;
1383 
1384 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1385 
1386 	if (!find_first_extent_bit(&device->alloc_state, *start,
1387 				   &physical_start, &physical_end,
1388 				   CHUNK_ALLOCATED, NULL)) {
1389 
1390 		if (in_range(physical_start, *start, len) ||
1391 		    in_range(*start, physical_start,
1392 			     physical_end - physical_start)) {
1393 			*start = physical_end + 1;
1394 			return true;
1395 		}
1396 	}
1397 	return false;
1398 }
1399 
1400 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1401 {
1402 	switch (device->fs_devices->chunk_alloc_policy) {
1403 	case BTRFS_CHUNK_ALLOC_REGULAR:
1404 		/*
1405 		 * We don't want to overwrite the superblock on the drive nor
1406 		 * any area used by the boot loader (grub for example), so we
1407 		 * make sure to start at an offset of at least 1MB.
1408 		 */
1409 		return max_t(u64, start, SZ_1M);
1410 	case BTRFS_CHUNK_ALLOC_ZONED:
1411 		/*
1412 		 * We don't care about the starting region like regular
1413 		 * allocator, because we anyway use/reserve the first two zones
1414 		 * for superblock logging.
1415 		 */
1416 		return ALIGN(start, device->zone_info->zone_size);
1417 	default:
1418 		BUG();
1419 	}
1420 }
1421 
1422 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1423 					u64 *hole_start, u64 *hole_size,
1424 					u64 num_bytes)
1425 {
1426 	u64 zone_size = device->zone_info->zone_size;
1427 	u64 pos;
1428 	int ret;
1429 	bool changed = false;
1430 
1431 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1432 
1433 	while (*hole_size > 0) {
1434 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1435 						   *hole_start + *hole_size,
1436 						   num_bytes);
1437 		if (pos != *hole_start) {
1438 			*hole_size = *hole_start + *hole_size - pos;
1439 			*hole_start = pos;
1440 			changed = true;
1441 			if (*hole_size < num_bytes)
1442 				break;
1443 		}
1444 
1445 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1446 
1447 		/* Range is ensured to be empty */
1448 		if (!ret)
1449 			return changed;
1450 
1451 		/* Given hole range was invalid (outside of device) */
1452 		if (ret == -ERANGE) {
1453 			*hole_start += *hole_size;
1454 			*hole_size = 0;
1455 			return true;
1456 		}
1457 
1458 		*hole_start += zone_size;
1459 		*hole_size -= zone_size;
1460 		changed = true;
1461 	}
1462 
1463 	return changed;
1464 }
1465 
1466 /**
1467  * dev_extent_hole_check - check if specified hole is suitable for allocation
1468  * @device:	the device which we have the hole
1469  * @hole_start: starting position of the hole
1470  * @hole_size:	the size of the hole
1471  * @num_bytes:	the size of the free space that we need
1472  *
1473  * This function may modify @hole_start and @hole_size to reflect the suitable
1474  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1475  */
1476 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1477 				  u64 *hole_size, u64 num_bytes)
1478 {
1479 	bool changed = false;
1480 	u64 hole_end = *hole_start + *hole_size;
1481 
1482 	for (;;) {
1483 		/*
1484 		 * Check before we set max_hole_start, otherwise we could end up
1485 		 * sending back this offset anyway.
1486 		 */
1487 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1488 			if (hole_end >= *hole_start)
1489 				*hole_size = hole_end - *hole_start;
1490 			else
1491 				*hole_size = 0;
1492 			changed = true;
1493 		}
1494 
1495 		switch (device->fs_devices->chunk_alloc_policy) {
1496 		case BTRFS_CHUNK_ALLOC_REGULAR:
1497 			/* No extra check */
1498 			break;
1499 		case BTRFS_CHUNK_ALLOC_ZONED:
1500 			if (dev_extent_hole_check_zoned(device, hole_start,
1501 							hole_size, num_bytes)) {
1502 				changed = true;
1503 				/*
1504 				 * The changed hole can contain pending extent.
1505 				 * Loop again to check that.
1506 				 */
1507 				continue;
1508 			}
1509 			break;
1510 		default:
1511 			BUG();
1512 		}
1513 
1514 		break;
1515 	}
1516 
1517 	return changed;
1518 }
1519 
1520 /*
1521  * find_free_dev_extent_start - find free space in the specified device
1522  * @device:	  the device which we search the free space in
1523  * @num_bytes:	  the size of the free space that we need
1524  * @search_start: the position from which to begin the search
1525  * @start:	  store the start of the free space.
1526  * @len:	  the size of the free space. that we find, or the size
1527  *		  of the max free space if we don't find suitable free space
1528  *
1529  * this uses a pretty simple search, the expectation is that it is
1530  * called very infrequently and that a given device has a small number
1531  * of extents
1532  *
1533  * @start is used to store the start of the free space if we find. But if we
1534  * don't find suitable free space, it will be used to store the start position
1535  * of the max free space.
1536  *
1537  * @len is used to store the size of the free space that we find.
1538  * But if we don't find suitable free space, it is used to store the size of
1539  * the max free space.
1540  *
1541  * NOTE: This function will search *commit* root of device tree, and does extra
1542  * check to ensure dev extents are not double allocated.
1543  * This makes the function safe to allocate dev extents but may not report
1544  * correct usable device space, as device extent freed in current transaction
1545  * is not reported as available.
1546  */
1547 static int find_free_dev_extent_start(struct btrfs_device *device,
1548 				u64 num_bytes, u64 search_start, u64 *start,
1549 				u64 *len)
1550 {
1551 	struct btrfs_fs_info *fs_info = device->fs_info;
1552 	struct btrfs_root *root = fs_info->dev_root;
1553 	struct btrfs_key key;
1554 	struct btrfs_dev_extent *dev_extent;
1555 	struct btrfs_path *path;
1556 	u64 hole_size;
1557 	u64 max_hole_start;
1558 	u64 max_hole_size;
1559 	u64 extent_end;
1560 	u64 search_end = device->total_bytes;
1561 	int ret;
1562 	int slot;
1563 	struct extent_buffer *l;
1564 
1565 	search_start = dev_extent_search_start(device, search_start);
1566 
1567 	WARN_ON(device->zone_info &&
1568 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1569 
1570 	path = btrfs_alloc_path();
1571 	if (!path)
1572 		return -ENOMEM;
1573 
1574 	max_hole_start = search_start;
1575 	max_hole_size = 0;
1576 
1577 again:
1578 	if (search_start >= search_end ||
1579 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1580 		ret = -ENOSPC;
1581 		goto out;
1582 	}
1583 
1584 	path->reada = READA_FORWARD;
1585 	path->search_commit_root = 1;
1586 	path->skip_locking = 1;
1587 
1588 	key.objectid = device->devid;
1589 	key.offset = search_start;
1590 	key.type = BTRFS_DEV_EXTENT_KEY;
1591 
1592 	ret = btrfs_search_backwards(root, &key, path);
1593 	if (ret < 0)
1594 		goto out;
1595 
1596 	while (1) {
1597 		l = path->nodes[0];
1598 		slot = path->slots[0];
1599 		if (slot >= btrfs_header_nritems(l)) {
1600 			ret = btrfs_next_leaf(root, path);
1601 			if (ret == 0)
1602 				continue;
1603 			if (ret < 0)
1604 				goto out;
1605 
1606 			break;
1607 		}
1608 		btrfs_item_key_to_cpu(l, &key, slot);
1609 
1610 		if (key.objectid < device->devid)
1611 			goto next;
1612 
1613 		if (key.objectid > device->devid)
1614 			break;
1615 
1616 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1617 			goto next;
1618 
1619 		if (key.offset > search_start) {
1620 			hole_size = key.offset - search_start;
1621 			dev_extent_hole_check(device, &search_start, &hole_size,
1622 					      num_bytes);
1623 
1624 			if (hole_size > max_hole_size) {
1625 				max_hole_start = search_start;
1626 				max_hole_size = hole_size;
1627 			}
1628 
1629 			/*
1630 			 * If this free space is greater than which we need,
1631 			 * it must be the max free space that we have found
1632 			 * until now, so max_hole_start must point to the start
1633 			 * of this free space and the length of this free space
1634 			 * is stored in max_hole_size. Thus, we return
1635 			 * max_hole_start and max_hole_size and go back to the
1636 			 * caller.
1637 			 */
1638 			if (hole_size >= num_bytes) {
1639 				ret = 0;
1640 				goto out;
1641 			}
1642 		}
1643 
1644 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1645 		extent_end = key.offset + btrfs_dev_extent_length(l,
1646 								  dev_extent);
1647 		if (extent_end > search_start)
1648 			search_start = extent_end;
1649 next:
1650 		path->slots[0]++;
1651 		cond_resched();
1652 	}
1653 
1654 	/*
1655 	 * At this point, search_start should be the end of
1656 	 * allocated dev extents, and when shrinking the device,
1657 	 * search_end may be smaller than search_start.
1658 	 */
1659 	if (search_end > search_start) {
1660 		hole_size = search_end - search_start;
1661 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1662 					  num_bytes)) {
1663 			btrfs_release_path(path);
1664 			goto again;
1665 		}
1666 
1667 		if (hole_size > max_hole_size) {
1668 			max_hole_start = search_start;
1669 			max_hole_size = hole_size;
1670 		}
1671 	}
1672 
1673 	/* See above. */
1674 	if (max_hole_size < num_bytes)
1675 		ret = -ENOSPC;
1676 	else
1677 		ret = 0;
1678 
1679 out:
1680 	btrfs_free_path(path);
1681 	*start = max_hole_start;
1682 	if (len)
1683 		*len = max_hole_size;
1684 	return ret;
1685 }
1686 
1687 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1688 			 u64 *start, u64 *len)
1689 {
1690 	/* FIXME use last free of some kind */
1691 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1692 }
1693 
1694 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1695 			  struct btrfs_device *device,
1696 			  u64 start, u64 *dev_extent_len)
1697 {
1698 	struct btrfs_fs_info *fs_info = device->fs_info;
1699 	struct btrfs_root *root = fs_info->dev_root;
1700 	int ret;
1701 	struct btrfs_path *path;
1702 	struct btrfs_key key;
1703 	struct btrfs_key found_key;
1704 	struct extent_buffer *leaf = NULL;
1705 	struct btrfs_dev_extent *extent = NULL;
1706 
1707 	path = btrfs_alloc_path();
1708 	if (!path)
1709 		return -ENOMEM;
1710 
1711 	key.objectid = device->devid;
1712 	key.offset = start;
1713 	key.type = BTRFS_DEV_EXTENT_KEY;
1714 again:
1715 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1716 	if (ret > 0) {
1717 		ret = btrfs_previous_item(root, path, key.objectid,
1718 					  BTRFS_DEV_EXTENT_KEY);
1719 		if (ret)
1720 			goto out;
1721 		leaf = path->nodes[0];
1722 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1723 		extent = btrfs_item_ptr(leaf, path->slots[0],
1724 					struct btrfs_dev_extent);
1725 		BUG_ON(found_key.offset > start || found_key.offset +
1726 		       btrfs_dev_extent_length(leaf, extent) < start);
1727 		key = found_key;
1728 		btrfs_release_path(path);
1729 		goto again;
1730 	} else if (ret == 0) {
1731 		leaf = path->nodes[0];
1732 		extent = btrfs_item_ptr(leaf, path->slots[0],
1733 					struct btrfs_dev_extent);
1734 	} else {
1735 		goto out;
1736 	}
1737 
1738 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1739 
1740 	ret = btrfs_del_item(trans, root, path);
1741 	if (ret == 0)
1742 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1743 out:
1744 	btrfs_free_path(path);
1745 	return ret;
1746 }
1747 
1748 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1749 {
1750 	struct extent_map_tree *em_tree;
1751 	struct extent_map *em;
1752 	struct rb_node *n;
1753 	u64 ret = 0;
1754 
1755 	em_tree = &fs_info->mapping_tree;
1756 	read_lock(&em_tree->lock);
1757 	n = rb_last(&em_tree->map.rb_root);
1758 	if (n) {
1759 		em = rb_entry(n, struct extent_map, rb_node);
1760 		ret = em->start + em->len;
1761 	}
1762 	read_unlock(&em_tree->lock);
1763 
1764 	return ret;
1765 }
1766 
1767 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1768 				    u64 *devid_ret)
1769 {
1770 	int ret;
1771 	struct btrfs_key key;
1772 	struct btrfs_key found_key;
1773 	struct btrfs_path *path;
1774 
1775 	path = btrfs_alloc_path();
1776 	if (!path)
1777 		return -ENOMEM;
1778 
1779 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1780 	key.type = BTRFS_DEV_ITEM_KEY;
1781 	key.offset = (u64)-1;
1782 
1783 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1784 	if (ret < 0)
1785 		goto error;
1786 
1787 	if (ret == 0) {
1788 		/* Corruption */
1789 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1790 		ret = -EUCLEAN;
1791 		goto error;
1792 	}
1793 
1794 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1795 				  BTRFS_DEV_ITEMS_OBJECTID,
1796 				  BTRFS_DEV_ITEM_KEY);
1797 	if (ret) {
1798 		*devid_ret = 1;
1799 	} else {
1800 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1801 				      path->slots[0]);
1802 		*devid_ret = found_key.offset + 1;
1803 	}
1804 	ret = 0;
1805 error:
1806 	btrfs_free_path(path);
1807 	return ret;
1808 }
1809 
1810 /*
1811  * the device information is stored in the chunk root
1812  * the btrfs_device struct should be fully filled in
1813  */
1814 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1815 			    struct btrfs_device *device)
1816 {
1817 	int ret;
1818 	struct btrfs_path *path;
1819 	struct btrfs_dev_item *dev_item;
1820 	struct extent_buffer *leaf;
1821 	struct btrfs_key key;
1822 	unsigned long ptr;
1823 
1824 	path = btrfs_alloc_path();
1825 	if (!path)
1826 		return -ENOMEM;
1827 
1828 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1829 	key.type = BTRFS_DEV_ITEM_KEY;
1830 	key.offset = device->devid;
1831 
1832 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1833 				      &key, sizeof(*dev_item));
1834 	if (ret)
1835 		goto out;
1836 
1837 	leaf = path->nodes[0];
1838 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1839 
1840 	btrfs_set_device_id(leaf, dev_item, device->devid);
1841 	btrfs_set_device_generation(leaf, dev_item, 0);
1842 	btrfs_set_device_type(leaf, dev_item, device->type);
1843 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1844 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1845 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1846 	btrfs_set_device_total_bytes(leaf, dev_item,
1847 				     btrfs_device_get_disk_total_bytes(device));
1848 	btrfs_set_device_bytes_used(leaf, dev_item,
1849 				    btrfs_device_get_bytes_used(device));
1850 	btrfs_set_device_group(leaf, dev_item, 0);
1851 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1852 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1853 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1854 
1855 	ptr = btrfs_device_uuid(dev_item);
1856 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1857 	ptr = btrfs_device_fsid(dev_item);
1858 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1859 			    ptr, BTRFS_FSID_SIZE);
1860 	btrfs_mark_buffer_dirty(leaf);
1861 
1862 	ret = 0;
1863 out:
1864 	btrfs_free_path(path);
1865 	return ret;
1866 }
1867 
1868 /*
1869  * Function to update ctime/mtime for a given device path.
1870  * Mainly used for ctime/mtime based probe like libblkid.
1871  */
1872 static void update_dev_time(const char *path_name)
1873 {
1874 	struct file *filp;
1875 
1876 	filp = filp_open(path_name, O_RDWR, 0);
1877 	if (IS_ERR(filp))
1878 		return;
1879 	file_update_time(filp);
1880 	filp_close(filp, NULL);
1881 }
1882 
1883 static int btrfs_rm_dev_item(struct btrfs_device *device)
1884 {
1885 	struct btrfs_root *root = device->fs_info->chunk_root;
1886 	int ret;
1887 	struct btrfs_path *path;
1888 	struct btrfs_key key;
1889 	struct btrfs_trans_handle *trans;
1890 
1891 	path = btrfs_alloc_path();
1892 	if (!path)
1893 		return -ENOMEM;
1894 
1895 	trans = btrfs_start_transaction(root, 0);
1896 	if (IS_ERR(trans)) {
1897 		btrfs_free_path(path);
1898 		return PTR_ERR(trans);
1899 	}
1900 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1901 	key.type = BTRFS_DEV_ITEM_KEY;
1902 	key.offset = device->devid;
1903 
1904 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1905 	if (ret) {
1906 		if (ret > 0)
1907 			ret = -ENOENT;
1908 		btrfs_abort_transaction(trans, ret);
1909 		btrfs_end_transaction(trans);
1910 		goto out;
1911 	}
1912 
1913 	ret = btrfs_del_item(trans, root, path);
1914 	if (ret) {
1915 		btrfs_abort_transaction(trans, ret);
1916 		btrfs_end_transaction(trans);
1917 	}
1918 
1919 out:
1920 	btrfs_free_path(path);
1921 	if (!ret)
1922 		ret = btrfs_commit_transaction(trans);
1923 	return ret;
1924 }
1925 
1926 /*
1927  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1928  * filesystem. It's up to the caller to adjust that number regarding eg. device
1929  * replace.
1930  */
1931 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1932 		u64 num_devices)
1933 {
1934 	u64 all_avail;
1935 	unsigned seq;
1936 	int i;
1937 
1938 	do {
1939 		seq = read_seqbegin(&fs_info->profiles_lock);
1940 
1941 		all_avail = fs_info->avail_data_alloc_bits |
1942 			    fs_info->avail_system_alloc_bits |
1943 			    fs_info->avail_metadata_alloc_bits;
1944 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1945 
1946 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1947 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1948 			continue;
1949 
1950 		if (num_devices < btrfs_raid_array[i].devs_min)
1951 			return btrfs_raid_array[i].mindev_error;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 static struct btrfs_device * btrfs_find_next_active_device(
1958 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1959 {
1960 	struct btrfs_device *next_device;
1961 
1962 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1963 		if (next_device != device &&
1964 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1965 		    && next_device->bdev)
1966 			return next_device;
1967 	}
1968 
1969 	return NULL;
1970 }
1971 
1972 /*
1973  * Helper function to check if the given device is part of s_bdev / latest_bdev
1974  * and replace it with the provided or the next active device, in the context
1975  * where this function called, there should be always be another device (or
1976  * this_dev) which is active.
1977  */
1978 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1979 					    struct btrfs_device *next_device)
1980 {
1981 	struct btrfs_fs_info *fs_info = device->fs_info;
1982 
1983 	if (!next_device)
1984 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1985 							    device);
1986 	ASSERT(next_device);
1987 
1988 	if (fs_info->sb->s_bdev &&
1989 			(fs_info->sb->s_bdev == device->bdev))
1990 		fs_info->sb->s_bdev = next_device->bdev;
1991 
1992 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1993 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1994 }
1995 
1996 /*
1997  * Return btrfs_fs_devices::num_devices excluding the device that's being
1998  * currently replaced.
1999  */
2000 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2001 {
2002 	u64 num_devices = fs_info->fs_devices->num_devices;
2003 
2004 	down_read(&fs_info->dev_replace.rwsem);
2005 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2006 		ASSERT(num_devices > 1);
2007 		num_devices--;
2008 	}
2009 	up_read(&fs_info->dev_replace.rwsem);
2010 
2011 	return num_devices;
2012 }
2013 
2014 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2015 			       struct block_device *bdev,
2016 			       const char *device_path)
2017 {
2018 	struct btrfs_super_block *disk_super;
2019 	int copy_num;
2020 
2021 	if (!bdev)
2022 		return;
2023 
2024 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2025 		struct page *page;
2026 		int ret;
2027 
2028 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2029 		if (IS_ERR(disk_super))
2030 			continue;
2031 
2032 		if (bdev_is_zoned(bdev)) {
2033 			btrfs_reset_sb_log_zones(bdev, copy_num);
2034 			continue;
2035 		}
2036 
2037 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2038 
2039 		page = virt_to_page(disk_super);
2040 		set_page_dirty(page);
2041 		lock_page(page);
2042 		/* write_on_page() unlocks the page */
2043 		ret = write_one_page(page);
2044 		if (ret)
2045 			btrfs_warn(fs_info,
2046 				"error clearing superblock number %d (%d)",
2047 				copy_num, ret);
2048 		btrfs_release_disk_super(disk_super);
2049 
2050 	}
2051 
2052 	/* Notify udev that device has changed */
2053 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2054 
2055 	/* Update ctime/mtime for device path for libblkid */
2056 	update_dev_time(device_path);
2057 }
2058 
2059 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2060 		    u64 devid)
2061 {
2062 	struct btrfs_device *device;
2063 	struct btrfs_fs_devices *cur_devices;
2064 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2065 	u64 num_devices;
2066 	int ret = 0;
2067 
2068 	mutex_lock(&uuid_mutex);
2069 
2070 	num_devices = btrfs_num_devices(fs_info);
2071 
2072 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2073 	if (ret)
2074 		goto out;
2075 
2076 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2077 
2078 	if (IS_ERR(device)) {
2079 		if (PTR_ERR(device) == -ENOENT &&
2080 		    device_path && strcmp(device_path, "missing") == 0)
2081 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2082 		else
2083 			ret = PTR_ERR(device);
2084 		goto out;
2085 	}
2086 
2087 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2088 		btrfs_warn_in_rcu(fs_info,
2089 		  "cannot remove device %s (devid %llu) due to active swapfile",
2090 				  rcu_str_deref(device->name), device->devid);
2091 		ret = -ETXTBSY;
2092 		goto out;
2093 	}
2094 
2095 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2096 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2097 		goto out;
2098 	}
2099 
2100 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2101 	    fs_info->fs_devices->rw_devices == 1) {
2102 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2103 		goto out;
2104 	}
2105 
2106 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2107 		mutex_lock(&fs_info->chunk_mutex);
2108 		list_del_init(&device->dev_alloc_list);
2109 		device->fs_devices->rw_devices--;
2110 		mutex_unlock(&fs_info->chunk_mutex);
2111 	}
2112 
2113 	mutex_unlock(&uuid_mutex);
2114 	ret = btrfs_shrink_device(device, 0);
2115 	if (!ret)
2116 		btrfs_reada_remove_dev(device);
2117 	mutex_lock(&uuid_mutex);
2118 	if (ret)
2119 		goto error_undo;
2120 
2121 	/*
2122 	 * TODO: the superblock still includes this device in its num_devices
2123 	 * counter although write_all_supers() is not locked out. This
2124 	 * could give a filesystem state which requires a degraded mount.
2125 	 */
2126 	ret = btrfs_rm_dev_item(device);
2127 	if (ret)
2128 		goto error_undo;
2129 
2130 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2131 	btrfs_scrub_cancel_dev(device);
2132 
2133 	/*
2134 	 * the device list mutex makes sure that we don't change
2135 	 * the device list while someone else is writing out all
2136 	 * the device supers. Whoever is writing all supers, should
2137 	 * lock the device list mutex before getting the number of
2138 	 * devices in the super block (super_copy). Conversely,
2139 	 * whoever updates the number of devices in the super block
2140 	 * (super_copy) should hold the device list mutex.
2141 	 */
2142 
2143 	/*
2144 	 * In normal cases the cur_devices == fs_devices. But in case
2145 	 * of deleting a seed device, the cur_devices should point to
2146 	 * its own fs_devices listed under the fs_devices->seed.
2147 	 */
2148 	cur_devices = device->fs_devices;
2149 	mutex_lock(&fs_devices->device_list_mutex);
2150 	list_del_rcu(&device->dev_list);
2151 
2152 	cur_devices->num_devices--;
2153 	cur_devices->total_devices--;
2154 	/* Update total_devices of the parent fs_devices if it's seed */
2155 	if (cur_devices != fs_devices)
2156 		fs_devices->total_devices--;
2157 
2158 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2159 		cur_devices->missing_devices--;
2160 
2161 	btrfs_assign_next_active_device(device, NULL);
2162 
2163 	if (device->bdev) {
2164 		cur_devices->open_devices--;
2165 		/* remove sysfs entry */
2166 		btrfs_sysfs_remove_device(device);
2167 	}
2168 
2169 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2170 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2171 	mutex_unlock(&fs_devices->device_list_mutex);
2172 
2173 	/*
2174 	 * at this point, the device is zero sized and detached from
2175 	 * the devices list.  All that's left is to zero out the old
2176 	 * supers and free the device.
2177 	 */
2178 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2179 		btrfs_scratch_superblocks(fs_info, device->bdev,
2180 					  device->name->str);
2181 
2182 	btrfs_close_bdev(device);
2183 	synchronize_rcu();
2184 	btrfs_free_device(device);
2185 
2186 	if (cur_devices->open_devices == 0) {
2187 		list_del_init(&cur_devices->seed_list);
2188 		close_fs_devices(cur_devices);
2189 		free_fs_devices(cur_devices);
2190 	}
2191 
2192 out:
2193 	mutex_unlock(&uuid_mutex);
2194 	return ret;
2195 
2196 error_undo:
2197 	btrfs_reada_undo_remove_dev(device);
2198 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2199 		mutex_lock(&fs_info->chunk_mutex);
2200 		list_add(&device->dev_alloc_list,
2201 			 &fs_devices->alloc_list);
2202 		device->fs_devices->rw_devices++;
2203 		mutex_unlock(&fs_info->chunk_mutex);
2204 	}
2205 	goto out;
2206 }
2207 
2208 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2209 {
2210 	struct btrfs_fs_devices *fs_devices;
2211 
2212 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2213 
2214 	/*
2215 	 * in case of fs with no seed, srcdev->fs_devices will point
2216 	 * to fs_devices of fs_info. However when the dev being replaced is
2217 	 * a seed dev it will point to the seed's local fs_devices. In short
2218 	 * srcdev will have its correct fs_devices in both the cases.
2219 	 */
2220 	fs_devices = srcdev->fs_devices;
2221 
2222 	list_del_rcu(&srcdev->dev_list);
2223 	list_del(&srcdev->dev_alloc_list);
2224 	fs_devices->num_devices--;
2225 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2226 		fs_devices->missing_devices--;
2227 
2228 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2229 		fs_devices->rw_devices--;
2230 
2231 	if (srcdev->bdev)
2232 		fs_devices->open_devices--;
2233 }
2234 
2235 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2236 {
2237 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2238 
2239 	mutex_lock(&uuid_mutex);
2240 
2241 	btrfs_close_bdev(srcdev);
2242 	synchronize_rcu();
2243 	btrfs_free_device(srcdev);
2244 
2245 	/* if this is no devs we rather delete the fs_devices */
2246 	if (!fs_devices->num_devices) {
2247 		/*
2248 		 * On a mounted FS, num_devices can't be zero unless it's a
2249 		 * seed. In case of a seed device being replaced, the replace
2250 		 * target added to the sprout FS, so there will be no more
2251 		 * device left under the seed FS.
2252 		 */
2253 		ASSERT(fs_devices->seeding);
2254 
2255 		list_del_init(&fs_devices->seed_list);
2256 		close_fs_devices(fs_devices);
2257 		free_fs_devices(fs_devices);
2258 	}
2259 	mutex_unlock(&uuid_mutex);
2260 }
2261 
2262 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2263 {
2264 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2265 
2266 	mutex_lock(&fs_devices->device_list_mutex);
2267 
2268 	btrfs_sysfs_remove_device(tgtdev);
2269 
2270 	if (tgtdev->bdev)
2271 		fs_devices->open_devices--;
2272 
2273 	fs_devices->num_devices--;
2274 
2275 	btrfs_assign_next_active_device(tgtdev, NULL);
2276 
2277 	list_del_rcu(&tgtdev->dev_list);
2278 
2279 	mutex_unlock(&fs_devices->device_list_mutex);
2280 
2281 	/*
2282 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2283 	 * may lead to a call to btrfs_show_devname() which will try
2284 	 * to hold device_list_mutex. And here this device
2285 	 * is already out of device list, so we don't have to hold
2286 	 * the device_list_mutex lock.
2287 	 */
2288 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2289 				  tgtdev->name->str);
2290 
2291 	btrfs_close_bdev(tgtdev);
2292 	synchronize_rcu();
2293 	btrfs_free_device(tgtdev);
2294 }
2295 
2296 static struct btrfs_device *btrfs_find_device_by_path(
2297 		struct btrfs_fs_info *fs_info, const char *device_path)
2298 {
2299 	int ret = 0;
2300 	struct btrfs_super_block *disk_super;
2301 	u64 devid;
2302 	u8 *dev_uuid;
2303 	struct block_device *bdev;
2304 	struct btrfs_device *device;
2305 
2306 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2307 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2308 	if (ret)
2309 		return ERR_PTR(ret);
2310 
2311 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2312 	dev_uuid = disk_super->dev_item.uuid;
2313 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2314 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2315 					   disk_super->metadata_uuid);
2316 	else
2317 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2318 					   disk_super->fsid);
2319 
2320 	btrfs_release_disk_super(disk_super);
2321 	if (!device)
2322 		device = ERR_PTR(-ENOENT);
2323 	blkdev_put(bdev, FMODE_READ);
2324 	return device;
2325 }
2326 
2327 /*
2328  * Lookup a device given by device id, or the path if the id is 0.
2329  */
2330 struct btrfs_device *btrfs_find_device_by_devspec(
2331 		struct btrfs_fs_info *fs_info, u64 devid,
2332 		const char *device_path)
2333 {
2334 	struct btrfs_device *device;
2335 
2336 	if (devid) {
2337 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2338 					   NULL);
2339 		if (!device)
2340 			return ERR_PTR(-ENOENT);
2341 		return device;
2342 	}
2343 
2344 	if (!device_path || !device_path[0])
2345 		return ERR_PTR(-EINVAL);
2346 
2347 	if (strcmp(device_path, "missing") == 0) {
2348 		/* Find first missing device */
2349 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2350 				    dev_list) {
2351 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2352 				     &device->dev_state) && !device->bdev)
2353 				return device;
2354 		}
2355 		return ERR_PTR(-ENOENT);
2356 	}
2357 
2358 	return btrfs_find_device_by_path(fs_info, device_path);
2359 }
2360 
2361 /*
2362  * does all the dirty work required for changing file system's UUID.
2363  */
2364 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2365 {
2366 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2367 	struct btrfs_fs_devices *old_devices;
2368 	struct btrfs_fs_devices *seed_devices;
2369 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2370 	struct btrfs_device *device;
2371 	u64 super_flags;
2372 
2373 	lockdep_assert_held(&uuid_mutex);
2374 	if (!fs_devices->seeding)
2375 		return -EINVAL;
2376 
2377 	/*
2378 	 * Private copy of the seed devices, anchored at
2379 	 * fs_info->fs_devices->seed_list
2380 	 */
2381 	seed_devices = alloc_fs_devices(NULL, NULL);
2382 	if (IS_ERR(seed_devices))
2383 		return PTR_ERR(seed_devices);
2384 
2385 	/*
2386 	 * It's necessary to retain a copy of the original seed fs_devices in
2387 	 * fs_uuids so that filesystems which have been seeded can successfully
2388 	 * reference the seed device from open_seed_devices. This also supports
2389 	 * multiple fs seed.
2390 	 */
2391 	old_devices = clone_fs_devices(fs_devices);
2392 	if (IS_ERR(old_devices)) {
2393 		kfree(seed_devices);
2394 		return PTR_ERR(old_devices);
2395 	}
2396 
2397 	list_add(&old_devices->fs_list, &fs_uuids);
2398 
2399 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2400 	seed_devices->opened = 1;
2401 	INIT_LIST_HEAD(&seed_devices->devices);
2402 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2403 	mutex_init(&seed_devices->device_list_mutex);
2404 
2405 	mutex_lock(&fs_devices->device_list_mutex);
2406 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2407 			      synchronize_rcu);
2408 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2409 		device->fs_devices = seed_devices;
2410 
2411 	fs_devices->seeding = false;
2412 	fs_devices->num_devices = 0;
2413 	fs_devices->open_devices = 0;
2414 	fs_devices->missing_devices = 0;
2415 	fs_devices->rotating = false;
2416 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2417 
2418 	generate_random_uuid(fs_devices->fsid);
2419 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2420 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2421 	mutex_unlock(&fs_devices->device_list_mutex);
2422 
2423 	super_flags = btrfs_super_flags(disk_super) &
2424 		      ~BTRFS_SUPER_FLAG_SEEDING;
2425 	btrfs_set_super_flags(disk_super, super_flags);
2426 
2427 	return 0;
2428 }
2429 
2430 /*
2431  * Store the expected generation for seed devices in device items.
2432  */
2433 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2434 {
2435 	struct btrfs_fs_info *fs_info = trans->fs_info;
2436 	struct btrfs_root *root = fs_info->chunk_root;
2437 	struct btrfs_path *path;
2438 	struct extent_buffer *leaf;
2439 	struct btrfs_dev_item *dev_item;
2440 	struct btrfs_device *device;
2441 	struct btrfs_key key;
2442 	u8 fs_uuid[BTRFS_FSID_SIZE];
2443 	u8 dev_uuid[BTRFS_UUID_SIZE];
2444 	u64 devid;
2445 	int ret;
2446 
2447 	path = btrfs_alloc_path();
2448 	if (!path)
2449 		return -ENOMEM;
2450 
2451 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2452 	key.offset = 0;
2453 	key.type = BTRFS_DEV_ITEM_KEY;
2454 
2455 	while (1) {
2456 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2457 		if (ret < 0)
2458 			goto error;
2459 
2460 		leaf = path->nodes[0];
2461 next_slot:
2462 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2463 			ret = btrfs_next_leaf(root, path);
2464 			if (ret > 0)
2465 				break;
2466 			if (ret < 0)
2467 				goto error;
2468 			leaf = path->nodes[0];
2469 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2470 			btrfs_release_path(path);
2471 			continue;
2472 		}
2473 
2474 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2475 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2476 		    key.type != BTRFS_DEV_ITEM_KEY)
2477 			break;
2478 
2479 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2480 					  struct btrfs_dev_item);
2481 		devid = btrfs_device_id(leaf, dev_item);
2482 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2483 				   BTRFS_UUID_SIZE);
2484 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2485 				   BTRFS_FSID_SIZE);
2486 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2487 					   fs_uuid);
2488 		BUG_ON(!device); /* Logic error */
2489 
2490 		if (device->fs_devices->seeding) {
2491 			btrfs_set_device_generation(leaf, dev_item,
2492 						    device->generation);
2493 			btrfs_mark_buffer_dirty(leaf);
2494 		}
2495 
2496 		path->slots[0]++;
2497 		goto next_slot;
2498 	}
2499 	ret = 0;
2500 error:
2501 	btrfs_free_path(path);
2502 	return ret;
2503 }
2504 
2505 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2506 {
2507 	struct btrfs_root *root = fs_info->dev_root;
2508 	struct request_queue *q;
2509 	struct btrfs_trans_handle *trans;
2510 	struct btrfs_device *device;
2511 	struct block_device *bdev;
2512 	struct super_block *sb = fs_info->sb;
2513 	struct rcu_string *name;
2514 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2515 	u64 orig_super_total_bytes;
2516 	u64 orig_super_num_devices;
2517 	int seeding_dev = 0;
2518 	int ret = 0;
2519 	bool locked = false;
2520 
2521 	if (sb_rdonly(sb) && !fs_devices->seeding)
2522 		return -EROFS;
2523 
2524 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2525 				  fs_info->bdev_holder);
2526 	if (IS_ERR(bdev))
2527 		return PTR_ERR(bdev);
2528 
2529 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2530 		ret = -EINVAL;
2531 		goto error;
2532 	}
2533 
2534 	if (fs_devices->seeding) {
2535 		seeding_dev = 1;
2536 		down_write(&sb->s_umount);
2537 		mutex_lock(&uuid_mutex);
2538 		locked = true;
2539 	}
2540 
2541 	sync_blockdev(bdev);
2542 
2543 	rcu_read_lock();
2544 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2545 		if (device->bdev == bdev) {
2546 			ret = -EEXIST;
2547 			rcu_read_unlock();
2548 			goto error;
2549 		}
2550 	}
2551 	rcu_read_unlock();
2552 
2553 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2554 	if (IS_ERR(device)) {
2555 		/* we can safely leave the fs_devices entry around */
2556 		ret = PTR_ERR(device);
2557 		goto error;
2558 	}
2559 
2560 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2561 	if (!name) {
2562 		ret = -ENOMEM;
2563 		goto error_free_device;
2564 	}
2565 	rcu_assign_pointer(device->name, name);
2566 
2567 	device->fs_info = fs_info;
2568 	device->bdev = bdev;
2569 
2570 	ret = btrfs_get_dev_zone_info(device);
2571 	if (ret)
2572 		goto error_free_device;
2573 
2574 	trans = btrfs_start_transaction(root, 0);
2575 	if (IS_ERR(trans)) {
2576 		ret = PTR_ERR(trans);
2577 		goto error_free_zone;
2578 	}
2579 
2580 	q = bdev_get_queue(bdev);
2581 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2582 	device->generation = trans->transid;
2583 	device->io_width = fs_info->sectorsize;
2584 	device->io_align = fs_info->sectorsize;
2585 	device->sector_size = fs_info->sectorsize;
2586 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2587 					 fs_info->sectorsize);
2588 	device->disk_total_bytes = device->total_bytes;
2589 	device->commit_total_bytes = device->total_bytes;
2590 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2591 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2592 	device->mode = FMODE_EXCL;
2593 	device->dev_stats_valid = 1;
2594 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2595 
2596 	if (seeding_dev) {
2597 		btrfs_clear_sb_rdonly(sb);
2598 		ret = btrfs_prepare_sprout(fs_info);
2599 		if (ret) {
2600 			btrfs_abort_transaction(trans, ret);
2601 			goto error_trans;
2602 		}
2603 	}
2604 
2605 	device->fs_devices = fs_devices;
2606 
2607 	mutex_lock(&fs_devices->device_list_mutex);
2608 	mutex_lock(&fs_info->chunk_mutex);
2609 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2610 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2611 	fs_devices->num_devices++;
2612 	fs_devices->open_devices++;
2613 	fs_devices->rw_devices++;
2614 	fs_devices->total_devices++;
2615 	fs_devices->total_rw_bytes += device->total_bytes;
2616 
2617 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2618 
2619 	if (!blk_queue_nonrot(q))
2620 		fs_devices->rotating = true;
2621 
2622 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2623 	btrfs_set_super_total_bytes(fs_info->super_copy,
2624 		round_down(orig_super_total_bytes + device->total_bytes,
2625 			   fs_info->sectorsize));
2626 
2627 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2628 	btrfs_set_super_num_devices(fs_info->super_copy,
2629 				    orig_super_num_devices + 1);
2630 
2631 	/*
2632 	 * we've got more storage, clear any full flags on the space
2633 	 * infos
2634 	 */
2635 	btrfs_clear_space_info_full(fs_info);
2636 
2637 	mutex_unlock(&fs_info->chunk_mutex);
2638 
2639 	/* Add sysfs device entry */
2640 	btrfs_sysfs_add_device(device);
2641 
2642 	mutex_unlock(&fs_devices->device_list_mutex);
2643 
2644 	if (seeding_dev) {
2645 		mutex_lock(&fs_info->chunk_mutex);
2646 		ret = init_first_rw_device(trans);
2647 		mutex_unlock(&fs_info->chunk_mutex);
2648 		if (ret) {
2649 			btrfs_abort_transaction(trans, ret);
2650 			goto error_sysfs;
2651 		}
2652 	}
2653 
2654 	ret = btrfs_add_dev_item(trans, device);
2655 	if (ret) {
2656 		btrfs_abort_transaction(trans, ret);
2657 		goto error_sysfs;
2658 	}
2659 
2660 	if (seeding_dev) {
2661 		ret = btrfs_finish_sprout(trans);
2662 		if (ret) {
2663 			btrfs_abort_transaction(trans, ret);
2664 			goto error_sysfs;
2665 		}
2666 
2667 		/*
2668 		 * fs_devices now represents the newly sprouted filesystem and
2669 		 * its fsid has been changed by btrfs_prepare_sprout
2670 		 */
2671 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2672 	}
2673 
2674 	ret = btrfs_commit_transaction(trans);
2675 
2676 	if (seeding_dev) {
2677 		mutex_unlock(&uuid_mutex);
2678 		up_write(&sb->s_umount);
2679 		locked = false;
2680 
2681 		if (ret) /* transaction commit */
2682 			return ret;
2683 
2684 		ret = btrfs_relocate_sys_chunks(fs_info);
2685 		if (ret < 0)
2686 			btrfs_handle_fs_error(fs_info, ret,
2687 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2688 		trans = btrfs_attach_transaction(root);
2689 		if (IS_ERR(trans)) {
2690 			if (PTR_ERR(trans) == -ENOENT)
2691 				return 0;
2692 			ret = PTR_ERR(trans);
2693 			trans = NULL;
2694 			goto error_sysfs;
2695 		}
2696 		ret = btrfs_commit_transaction(trans);
2697 	}
2698 
2699 	/*
2700 	 * Now that we have written a new super block to this device, check all
2701 	 * other fs_devices list if device_path alienates any other scanned
2702 	 * device.
2703 	 * We can ignore the return value as it typically returns -EINVAL and
2704 	 * only succeeds if the device was an alien.
2705 	 */
2706 	btrfs_forget_devices(device_path);
2707 
2708 	/* Update ctime/mtime for blkid or udev */
2709 	update_dev_time(device_path);
2710 
2711 	return ret;
2712 
2713 error_sysfs:
2714 	btrfs_sysfs_remove_device(device);
2715 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2716 	mutex_lock(&fs_info->chunk_mutex);
2717 	list_del_rcu(&device->dev_list);
2718 	list_del(&device->dev_alloc_list);
2719 	fs_info->fs_devices->num_devices--;
2720 	fs_info->fs_devices->open_devices--;
2721 	fs_info->fs_devices->rw_devices--;
2722 	fs_info->fs_devices->total_devices--;
2723 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2724 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2725 	btrfs_set_super_total_bytes(fs_info->super_copy,
2726 				    orig_super_total_bytes);
2727 	btrfs_set_super_num_devices(fs_info->super_copy,
2728 				    orig_super_num_devices);
2729 	mutex_unlock(&fs_info->chunk_mutex);
2730 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2731 error_trans:
2732 	if (seeding_dev)
2733 		btrfs_set_sb_rdonly(sb);
2734 	if (trans)
2735 		btrfs_end_transaction(trans);
2736 error_free_zone:
2737 	btrfs_destroy_dev_zone_info(device);
2738 error_free_device:
2739 	btrfs_free_device(device);
2740 error:
2741 	blkdev_put(bdev, FMODE_EXCL);
2742 	if (locked) {
2743 		mutex_unlock(&uuid_mutex);
2744 		up_write(&sb->s_umount);
2745 	}
2746 	return ret;
2747 }
2748 
2749 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2750 					struct btrfs_device *device)
2751 {
2752 	int ret;
2753 	struct btrfs_path *path;
2754 	struct btrfs_root *root = device->fs_info->chunk_root;
2755 	struct btrfs_dev_item *dev_item;
2756 	struct extent_buffer *leaf;
2757 	struct btrfs_key key;
2758 
2759 	path = btrfs_alloc_path();
2760 	if (!path)
2761 		return -ENOMEM;
2762 
2763 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2764 	key.type = BTRFS_DEV_ITEM_KEY;
2765 	key.offset = device->devid;
2766 
2767 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2768 	if (ret < 0)
2769 		goto out;
2770 
2771 	if (ret > 0) {
2772 		ret = -ENOENT;
2773 		goto out;
2774 	}
2775 
2776 	leaf = path->nodes[0];
2777 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2778 
2779 	btrfs_set_device_id(leaf, dev_item, device->devid);
2780 	btrfs_set_device_type(leaf, dev_item, device->type);
2781 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2782 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2783 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2784 	btrfs_set_device_total_bytes(leaf, dev_item,
2785 				     btrfs_device_get_disk_total_bytes(device));
2786 	btrfs_set_device_bytes_used(leaf, dev_item,
2787 				    btrfs_device_get_bytes_used(device));
2788 	btrfs_mark_buffer_dirty(leaf);
2789 
2790 out:
2791 	btrfs_free_path(path);
2792 	return ret;
2793 }
2794 
2795 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2796 		      struct btrfs_device *device, u64 new_size)
2797 {
2798 	struct btrfs_fs_info *fs_info = device->fs_info;
2799 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2800 	u64 old_total;
2801 	u64 diff;
2802 
2803 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2804 		return -EACCES;
2805 
2806 	new_size = round_down(new_size, fs_info->sectorsize);
2807 
2808 	mutex_lock(&fs_info->chunk_mutex);
2809 	old_total = btrfs_super_total_bytes(super_copy);
2810 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2811 
2812 	if (new_size <= device->total_bytes ||
2813 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2814 		mutex_unlock(&fs_info->chunk_mutex);
2815 		return -EINVAL;
2816 	}
2817 
2818 	btrfs_set_super_total_bytes(super_copy,
2819 			round_down(old_total + diff, fs_info->sectorsize));
2820 	device->fs_devices->total_rw_bytes += diff;
2821 
2822 	btrfs_device_set_total_bytes(device, new_size);
2823 	btrfs_device_set_disk_total_bytes(device, new_size);
2824 	btrfs_clear_space_info_full(device->fs_info);
2825 	if (list_empty(&device->post_commit_list))
2826 		list_add_tail(&device->post_commit_list,
2827 			      &trans->transaction->dev_update_list);
2828 	mutex_unlock(&fs_info->chunk_mutex);
2829 
2830 	return btrfs_update_device(trans, device);
2831 }
2832 
2833 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2834 {
2835 	struct btrfs_fs_info *fs_info = trans->fs_info;
2836 	struct btrfs_root *root = fs_info->chunk_root;
2837 	int ret;
2838 	struct btrfs_path *path;
2839 	struct btrfs_key key;
2840 
2841 	path = btrfs_alloc_path();
2842 	if (!path)
2843 		return -ENOMEM;
2844 
2845 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2846 	key.offset = chunk_offset;
2847 	key.type = BTRFS_CHUNK_ITEM_KEY;
2848 
2849 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2850 	if (ret < 0)
2851 		goto out;
2852 	else if (ret > 0) { /* Logic error or corruption */
2853 		btrfs_handle_fs_error(fs_info, -ENOENT,
2854 				      "Failed lookup while freeing chunk.");
2855 		ret = -ENOENT;
2856 		goto out;
2857 	}
2858 
2859 	ret = btrfs_del_item(trans, root, path);
2860 	if (ret < 0)
2861 		btrfs_handle_fs_error(fs_info, ret,
2862 				      "Failed to delete chunk item.");
2863 out:
2864 	btrfs_free_path(path);
2865 	return ret;
2866 }
2867 
2868 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2869 {
2870 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2871 	struct btrfs_disk_key *disk_key;
2872 	struct btrfs_chunk *chunk;
2873 	u8 *ptr;
2874 	int ret = 0;
2875 	u32 num_stripes;
2876 	u32 array_size;
2877 	u32 len = 0;
2878 	u32 cur;
2879 	struct btrfs_key key;
2880 
2881 	lockdep_assert_held(&fs_info->chunk_mutex);
2882 	array_size = btrfs_super_sys_array_size(super_copy);
2883 
2884 	ptr = super_copy->sys_chunk_array;
2885 	cur = 0;
2886 
2887 	while (cur < array_size) {
2888 		disk_key = (struct btrfs_disk_key *)ptr;
2889 		btrfs_disk_key_to_cpu(&key, disk_key);
2890 
2891 		len = sizeof(*disk_key);
2892 
2893 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2894 			chunk = (struct btrfs_chunk *)(ptr + len);
2895 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2896 			len += btrfs_chunk_item_size(num_stripes);
2897 		} else {
2898 			ret = -EIO;
2899 			break;
2900 		}
2901 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2902 		    key.offset == chunk_offset) {
2903 			memmove(ptr, ptr + len, array_size - (cur + len));
2904 			array_size -= len;
2905 			btrfs_set_super_sys_array_size(super_copy, array_size);
2906 		} else {
2907 			ptr += len;
2908 			cur += len;
2909 		}
2910 	}
2911 	return ret;
2912 }
2913 
2914 /*
2915  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2916  * @logical: Logical block offset in bytes.
2917  * @length: Length of extent in bytes.
2918  *
2919  * Return: Chunk mapping or ERR_PTR.
2920  */
2921 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2922 				       u64 logical, u64 length)
2923 {
2924 	struct extent_map_tree *em_tree;
2925 	struct extent_map *em;
2926 
2927 	em_tree = &fs_info->mapping_tree;
2928 	read_lock(&em_tree->lock);
2929 	em = lookup_extent_mapping(em_tree, logical, length);
2930 	read_unlock(&em_tree->lock);
2931 
2932 	if (!em) {
2933 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2934 			   logical, length);
2935 		return ERR_PTR(-EINVAL);
2936 	}
2937 
2938 	if (em->start > logical || em->start + em->len < logical) {
2939 		btrfs_crit(fs_info,
2940 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2941 			   logical, length, em->start, em->start + em->len);
2942 		free_extent_map(em);
2943 		return ERR_PTR(-EINVAL);
2944 	}
2945 
2946 	/* callers are responsible for dropping em's ref. */
2947 	return em;
2948 }
2949 
2950 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2951 			     struct map_lookup *map, u64 chunk_offset)
2952 {
2953 	int i;
2954 
2955 	/*
2956 	 * Removing chunk items and updating the device items in the chunks btree
2957 	 * requires holding the chunk_mutex.
2958 	 * See the comment at btrfs_chunk_alloc() for the details.
2959 	 */
2960 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
2961 
2962 	for (i = 0; i < map->num_stripes; i++) {
2963 		int ret;
2964 
2965 		ret = btrfs_update_device(trans, map->stripes[i].dev);
2966 		if (ret)
2967 			return ret;
2968 	}
2969 
2970 	return btrfs_free_chunk(trans, chunk_offset);
2971 }
2972 
2973 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2974 {
2975 	struct btrfs_fs_info *fs_info = trans->fs_info;
2976 	struct extent_map *em;
2977 	struct map_lookup *map;
2978 	u64 dev_extent_len = 0;
2979 	int i, ret = 0;
2980 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2981 
2982 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2983 	if (IS_ERR(em)) {
2984 		/*
2985 		 * This is a logic error, but we don't want to just rely on the
2986 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2987 		 * do anything we still error out.
2988 		 */
2989 		ASSERT(0);
2990 		return PTR_ERR(em);
2991 	}
2992 	map = em->map_lookup;
2993 
2994 	/*
2995 	 * First delete the device extent items from the devices btree.
2996 	 * We take the device_list_mutex to avoid racing with the finishing phase
2997 	 * of a device replace operation. See the comment below before acquiring
2998 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
2999 	 * because that can result in a deadlock when deleting the device extent
3000 	 * items from the devices btree - COWing an extent buffer from the btree
3001 	 * may result in allocating a new metadata chunk, which would attempt to
3002 	 * lock again fs_info->chunk_mutex.
3003 	 */
3004 	mutex_lock(&fs_devices->device_list_mutex);
3005 	for (i = 0; i < map->num_stripes; i++) {
3006 		struct btrfs_device *device = map->stripes[i].dev;
3007 		ret = btrfs_free_dev_extent(trans, device,
3008 					    map->stripes[i].physical,
3009 					    &dev_extent_len);
3010 		if (ret) {
3011 			mutex_unlock(&fs_devices->device_list_mutex);
3012 			btrfs_abort_transaction(trans, ret);
3013 			goto out;
3014 		}
3015 
3016 		if (device->bytes_used > 0) {
3017 			mutex_lock(&fs_info->chunk_mutex);
3018 			btrfs_device_set_bytes_used(device,
3019 					device->bytes_used - dev_extent_len);
3020 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3021 			btrfs_clear_space_info_full(fs_info);
3022 			mutex_unlock(&fs_info->chunk_mutex);
3023 		}
3024 	}
3025 	mutex_unlock(&fs_devices->device_list_mutex);
3026 
3027 	/*
3028 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3029 	 *
3030 	 * 1) Just like with the first phase of the chunk allocation, we must
3031 	 *    reserve system space, do all chunk btree updates and deletions, and
3032 	 *    update the system chunk array in the superblock while holding this
3033 	 *    mutex. This is for similar reasons as explained on the comment at
3034 	 *    the top of btrfs_chunk_alloc();
3035 	 *
3036 	 * 2) Prevent races with the final phase of a device replace operation
3037 	 *    that replaces the device object associated with the map's stripes,
3038 	 *    because the device object's id can change at any time during that
3039 	 *    final phase of the device replace operation
3040 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3041 	 *    replaced device and then see it with an ID of
3042 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3043 	 *    the device item, which does not exists on the chunk btree.
3044 	 *    The finishing phase of device replace acquires both the
3045 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3046 	 *    safe by just acquiring the chunk_mutex.
3047 	 */
3048 	trans->removing_chunk = true;
3049 	mutex_lock(&fs_info->chunk_mutex);
3050 
3051 	check_system_chunk(trans, map->type);
3052 
3053 	ret = remove_chunk_item(trans, map, chunk_offset);
3054 	/*
3055 	 * Normally we should not get -ENOSPC since we reserved space before
3056 	 * through the call to check_system_chunk().
3057 	 *
3058 	 * Despite our system space_info having enough free space, we may not
3059 	 * be able to allocate extents from its block groups, because all have
3060 	 * an incompatible profile, which will force us to allocate a new system
3061 	 * block group with the right profile, or right after we called
3062 	 * check_system_space() above, a scrub turned the only system block group
3063 	 * with enough free space into RO mode.
3064 	 * This is explained with more detail at do_chunk_alloc().
3065 	 *
3066 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3067 	 */
3068 	if (ret == -ENOSPC) {
3069 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3070 		struct btrfs_block_group *sys_bg;
3071 
3072 		sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3073 		if (IS_ERR(sys_bg)) {
3074 			ret = PTR_ERR(sys_bg);
3075 			btrfs_abort_transaction(trans, ret);
3076 			goto out;
3077 		}
3078 
3079 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3080 		if (ret) {
3081 			btrfs_abort_transaction(trans, ret);
3082 			goto out;
3083 		}
3084 
3085 		ret = remove_chunk_item(trans, map, chunk_offset);
3086 		if (ret) {
3087 			btrfs_abort_transaction(trans, ret);
3088 			goto out;
3089 		}
3090 	} else if (ret) {
3091 		btrfs_abort_transaction(trans, ret);
3092 		goto out;
3093 	}
3094 
3095 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3096 
3097 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3098 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3099 		if (ret) {
3100 			btrfs_abort_transaction(trans, ret);
3101 			goto out;
3102 		}
3103 	}
3104 
3105 	mutex_unlock(&fs_info->chunk_mutex);
3106 	trans->removing_chunk = false;
3107 
3108 	/*
3109 	 * We are done with chunk btree updates and deletions, so release the
3110 	 * system space we previously reserved (with check_system_chunk()).
3111 	 */
3112 	btrfs_trans_release_chunk_metadata(trans);
3113 
3114 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3115 	if (ret) {
3116 		btrfs_abort_transaction(trans, ret);
3117 		goto out;
3118 	}
3119 
3120 out:
3121 	if (trans->removing_chunk) {
3122 		mutex_unlock(&fs_info->chunk_mutex);
3123 		trans->removing_chunk = false;
3124 	}
3125 	/* once for us */
3126 	free_extent_map(em);
3127 	return ret;
3128 }
3129 
3130 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3131 {
3132 	struct btrfs_root *root = fs_info->chunk_root;
3133 	struct btrfs_trans_handle *trans;
3134 	struct btrfs_block_group *block_group;
3135 	u64 length;
3136 	int ret;
3137 
3138 	/*
3139 	 * Prevent races with automatic removal of unused block groups.
3140 	 * After we relocate and before we remove the chunk with offset
3141 	 * chunk_offset, automatic removal of the block group can kick in,
3142 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3143 	 *
3144 	 * Make sure to acquire this mutex before doing a tree search (dev
3145 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3146 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3147 	 * we release the path used to search the chunk/dev tree and before
3148 	 * the current task acquires this mutex and calls us.
3149 	 */
3150 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3151 
3152 	/* step one, relocate all the extents inside this chunk */
3153 	btrfs_scrub_pause(fs_info);
3154 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3155 	btrfs_scrub_continue(fs_info);
3156 	if (ret)
3157 		return ret;
3158 
3159 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3160 	if (!block_group)
3161 		return -ENOENT;
3162 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3163 	length = block_group->length;
3164 	btrfs_put_block_group(block_group);
3165 
3166 	/*
3167 	 * On a zoned file system, discard the whole block group, this will
3168 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3169 	 * resetting the zone fails, don't treat it as a fatal problem from the
3170 	 * filesystem's point of view.
3171 	 */
3172 	if (btrfs_is_zoned(fs_info)) {
3173 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3174 		if (ret)
3175 			btrfs_info(fs_info,
3176 				"failed to reset zone %llu after relocation",
3177 				chunk_offset);
3178 	}
3179 
3180 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3181 						     chunk_offset);
3182 	if (IS_ERR(trans)) {
3183 		ret = PTR_ERR(trans);
3184 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3185 		return ret;
3186 	}
3187 
3188 	/*
3189 	 * step two, delete the device extents and the
3190 	 * chunk tree entries
3191 	 */
3192 	ret = btrfs_remove_chunk(trans, chunk_offset);
3193 	btrfs_end_transaction(trans);
3194 	return ret;
3195 }
3196 
3197 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3198 {
3199 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3200 	struct btrfs_path *path;
3201 	struct extent_buffer *leaf;
3202 	struct btrfs_chunk *chunk;
3203 	struct btrfs_key key;
3204 	struct btrfs_key found_key;
3205 	u64 chunk_type;
3206 	bool retried = false;
3207 	int failed = 0;
3208 	int ret;
3209 
3210 	path = btrfs_alloc_path();
3211 	if (!path)
3212 		return -ENOMEM;
3213 
3214 again:
3215 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3216 	key.offset = (u64)-1;
3217 	key.type = BTRFS_CHUNK_ITEM_KEY;
3218 
3219 	while (1) {
3220 		mutex_lock(&fs_info->reclaim_bgs_lock);
3221 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3222 		if (ret < 0) {
3223 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3224 			goto error;
3225 		}
3226 		BUG_ON(ret == 0); /* Corruption */
3227 
3228 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3229 					  key.type);
3230 		if (ret)
3231 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3232 		if (ret < 0)
3233 			goto error;
3234 		if (ret > 0)
3235 			break;
3236 
3237 		leaf = path->nodes[0];
3238 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3239 
3240 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3241 				       struct btrfs_chunk);
3242 		chunk_type = btrfs_chunk_type(leaf, chunk);
3243 		btrfs_release_path(path);
3244 
3245 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3246 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3247 			if (ret == -ENOSPC)
3248 				failed++;
3249 			else
3250 				BUG_ON(ret);
3251 		}
3252 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3253 
3254 		if (found_key.offset == 0)
3255 			break;
3256 		key.offset = found_key.offset - 1;
3257 	}
3258 	ret = 0;
3259 	if (failed && !retried) {
3260 		failed = 0;
3261 		retried = true;
3262 		goto again;
3263 	} else if (WARN_ON(failed && retried)) {
3264 		ret = -ENOSPC;
3265 	}
3266 error:
3267 	btrfs_free_path(path);
3268 	return ret;
3269 }
3270 
3271 /*
3272  * return 1 : allocate a data chunk successfully,
3273  * return <0: errors during allocating a data chunk,
3274  * return 0 : no need to allocate a data chunk.
3275  */
3276 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3277 				      u64 chunk_offset)
3278 {
3279 	struct btrfs_block_group *cache;
3280 	u64 bytes_used;
3281 	u64 chunk_type;
3282 
3283 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3284 	ASSERT(cache);
3285 	chunk_type = cache->flags;
3286 	btrfs_put_block_group(cache);
3287 
3288 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3289 		return 0;
3290 
3291 	spin_lock(&fs_info->data_sinfo->lock);
3292 	bytes_used = fs_info->data_sinfo->bytes_used;
3293 	spin_unlock(&fs_info->data_sinfo->lock);
3294 
3295 	if (!bytes_used) {
3296 		struct btrfs_trans_handle *trans;
3297 		int ret;
3298 
3299 		trans =	btrfs_join_transaction(fs_info->tree_root);
3300 		if (IS_ERR(trans))
3301 			return PTR_ERR(trans);
3302 
3303 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3304 		btrfs_end_transaction(trans);
3305 		if (ret < 0)
3306 			return ret;
3307 		return 1;
3308 	}
3309 
3310 	return 0;
3311 }
3312 
3313 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3314 			       struct btrfs_balance_control *bctl)
3315 {
3316 	struct btrfs_root *root = fs_info->tree_root;
3317 	struct btrfs_trans_handle *trans;
3318 	struct btrfs_balance_item *item;
3319 	struct btrfs_disk_balance_args disk_bargs;
3320 	struct btrfs_path *path;
3321 	struct extent_buffer *leaf;
3322 	struct btrfs_key key;
3323 	int ret, err;
3324 
3325 	path = btrfs_alloc_path();
3326 	if (!path)
3327 		return -ENOMEM;
3328 
3329 	trans = btrfs_start_transaction(root, 0);
3330 	if (IS_ERR(trans)) {
3331 		btrfs_free_path(path);
3332 		return PTR_ERR(trans);
3333 	}
3334 
3335 	key.objectid = BTRFS_BALANCE_OBJECTID;
3336 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3337 	key.offset = 0;
3338 
3339 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3340 				      sizeof(*item));
3341 	if (ret)
3342 		goto out;
3343 
3344 	leaf = path->nodes[0];
3345 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3346 
3347 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3348 
3349 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3350 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3351 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3352 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3353 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3354 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3355 
3356 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3357 
3358 	btrfs_mark_buffer_dirty(leaf);
3359 out:
3360 	btrfs_free_path(path);
3361 	err = btrfs_commit_transaction(trans);
3362 	if (err && !ret)
3363 		ret = err;
3364 	return ret;
3365 }
3366 
3367 static int del_balance_item(struct btrfs_fs_info *fs_info)
3368 {
3369 	struct btrfs_root *root = fs_info->tree_root;
3370 	struct btrfs_trans_handle *trans;
3371 	struct btrfs_path *path;
3372 	struct btrfs_key key;
3373 	int ret, err;
3374 
3375 	path = btrfs_alloc_path();
3376 	if (!path)
3377 		return -ENOMEM;
3378 
3379 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3380 	if (IS_ERR(trans)) {
3381 		btrfs_free_path(path);
3382 		return PTR_ERR(trans);
3383 	}
3384 
3385 	key.objectid = BTRFS_BALANCE_OBJECTID;
3386 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3387 	key.offset = 0;
3388 
3389 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3390 	if (ret < 0)
3391 		goto out;
3392 	if (ret > 0) {
3393 		ret = -ENOENT;
3394 		goto out;
3395 	}
3396 
3397 	ret = btrfs_del_item(trans, root, path);
3398 out:
3399 	btrfs_free_path(path);
3400 	err = btrfs_commit_transaction(trans);
3401 	if (err && !ret)
3402 		ret = err;
3403 	return ret;
3404 }
3405 
3406 /*
3407  * This is a heuristic used to reduce the number of chunks balanced on
3408  * resume after balance was interrupted.
3409  */
3410 static void update_balance_args(struct btrfs_balance_control *bctl)
3411 {
3412 	/*
3413 	 * Turn on soft mode for chunk types that were being converted.
3414 	 */
3415 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3416 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3417 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3418 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3419 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3420 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3421 
3422 	/*
3423 	 * Turn on usage filter if is not already used.  The idea is
3424 	 * that chunks that we have already balanced should be
3425 	 * reasonably full.  Don't do it for chunks that are being
3426 	 * converted - that will keep us from relocating unconverted
3427 	 * (albeit full) chunks.
3428 	 */
3429 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3430 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3431 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3432 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3433 		bctl->data.usage = 90;
3434 	}
3435 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3436 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3437 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3438 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3439 		bctl->sys.usage = 90;
3440 	}
3441 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3442 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3443 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3444 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3445 		bctl->meta.usage = 90;
3446 	}
3447 }
3448 
3449 /*
3450  * Clear the balance status in fs_info and delete the balance item from disk.
3451  */
3452 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3453 {
3454 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3455 	int ret;
3456 
3457 	BUG_ON(!fs_info->balance_ctl);
3458 
3459 	spin_lock(&fs_info->balance_lock);
3460 	fs_info->balance_ctl = NULL;
3461 	spin_unlock(&fs_info->balance_lock);
3462 
3463 	kfree(bctl);
3464 	ret = del_balance_item(fs_info);
3465 	if (ret)
3466 		btrfs_handle_fs_error(fs_info, ret, NULL);
3467 }
3468 
3469 /*
3470  * Balance filters.  Return 1 if chunk should be filtered out
3471  * (should not be balanced).
3472  */
3473 static int chunk_profiles_filter(u64 chunk_type,
3474 				 struct btrfs_balance_args *bargs)
3475 {
3476 	chunk_type = chunk_to_extended(chunk_type) &
3477 				BTRFS_EXTENDED_PROFILE_MASK;
3478 
3479 	if (bargs->profiles & chunk_type)
3480 		return 0;
3481 
3482 	return 1;
3483 }
3484 
3485 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3486 			      struct btrfs_balance_args *bargs)
3487 {
3488 	struct btrfs_block_group *cache;
3489 	u64 chunk_used;
3490 	u64 user_thresh_min;
3491 	u64 user_thresh_max;
3492 	int ret = 1;
3493 
3494 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3495 	chunk_used = cache->used;
3496 
3497 	if (bargs->usage_min == 0)
3498 		user_thresh_min = 0;
3499 	else
3500 		user_thresh_min = div_factor_fine(cache->length,
3501 						  bargs->usage_min);
3502 
3503 	if (bargs->usage_max == 0)
3504 		user_thresh_max = 1;
3505 	else if (bargs->usage_max > 100)
3506 		user_thresh_max = cache->length;
3507 	else
3508 		user_thresh_max = div_factor_fine(cache->length,
3509 						  bargs->usage_max);
3510 
3511 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3512 		ret = 0;
3513 
3514 	btrfs_put_block_group(cache);
3515 	return ret;
3516 }
3517 
3518 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3519 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3520 {
3521 	struct btrfs_block_group *cache;
3522 	u64 chunk_used, user_thresh;
3523 	int ret = 1;
3524 
3525 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3526 	chunk_used = cache->used;
3527 
3528 	if (bargs->usage_min == 0)
3529 		user_thresh = 1;
3530 	else if (bargs->usage > 100)
3531 		user_thresh = cache->length;
3532 	else
3533 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3534 
3535 	if (chunk_used < user_thresh)
3536 		ret = 0;
3537 
3538 	btrfs_put_block_group(cache);
3539 	return ret;
3540 }
3541 
3542 static int chunk_devid_filter(struct extent_buffer *leaf,
3543 			      struct btrfs_chunk *chunk,
3544 			      struct btrfs_balance_args *bargs)
3545 {
3546 	struct btrfs_stripe *stripe;
3547 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3548 	int i;
3549 
3550 	for (i = 0; i < num_stripes; i++) {
3551 		stripe = btrfs_stripe_nr(chunk, i);
3552 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3553 			return 0;
3554 	}
3555 
3556 	return 1;
3557 }
3558 
3559 static u64 calc_data_stripes(u64 type, int num_stripes)
3560 {
3561 	const int index = btrfs_bg_flags_to_raid_index(type);
3562 	const int ncopies = btrfs_raid_array[index].ncopies;
3563 	const int nparity = btrfs_raid_array[index].nparity;
3564 
3565 	return (num_stripes - nparity) / ncopies;
3566 }
3567 
3568 /* [pstart, pend) */
3569 static int chunk_drange_filter(struct extent_buffer *leaf,
3570 			       struct btrfs_chunk *chunk,
3571 			       struct btrfs_balance_args *bargs)
3572 {
3573 	struct btrfs_stripe *stripe;
3574 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3575 	u64 stripe_offset;
3576 	u64 stripe_length;
3577 	u64 type;
3578 	int factor;
3579 	int i;
3580 
3581 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3582 		return 0;
3583 
3584 	type = btrfs_chunk_type(leaf, chunk);
3585 	factor = calc_data_stripes(type, num_stripes);
3586 
3587 	for (i = 0; i < num_stripes; i++) {
3588 		stripe = btrfs_stripe_nr(chunk, i);
3589 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3590 			continue;
3591 
3592 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3593 		stripe_length = btrfs_chunk_length(leaf, chunk);
3594 		stripe_length = div_u64(stripe_length, factor);
3595 
3596 		if (stripe_offset < bargs->pend &&
3597 		    stripe_offset + stripe_length > bargs->pstart)
3598 			return 0;
3599 	}
3600 
3601 	return 1;
3602 }
3603 
3604 /* [vstart, vend) */
3605 static int chunk_vrange_filter(struct extent_buffer *leaf,
3606 			       struct btrfs_chunk *chunk,
3607 			       u64 chunk_offset,
3608 			       struct btrfs_balance_args *bargs)
3609 {
3610 	if (chunk_offset < bargs->vend &&
3611 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3612 		/* at least part of the chunk is inside this vrange */
3613 		return 0;
3614 
3615 	return 1;
3616 }
3617 
3618 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3619 			       struct btrfs_chunk *chunk,
3620 			       struct btrfs_balance_args *bargs)
3621 {
3622 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3623 
3624 	if (bargs->stripes_min <= num_stripes
3625 			&& num_stripes <= bargs->stripes_max)
3626 		return 0;
3627 
3628 	return 1;
3629 }
3630 
3631 static int chunk_soft_convert_filter(u64 chunk_type,
3632 				     struct btrfs_balance_args *bargs)
3633 {
3634 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3635 		return 0;
3636 
3637 	chunk_type = chunk_to_extended(chunk_type) &
3638 				BTRFS_EXTENDED_PROFILE_MASK;
3639 
3640 	if (bargs->target == chunk_type)
3641 		return 1;
3642 
3643 	return 0;
3644 }
3645 
3646 static int should_balance_chunk(struct extent_buffer *leaf,
3647 				struct btrfs_chunk *chunk, u64 chunk_offset)
3648 {
3649 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3650 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3651 	struct btrfs_balance_args *bargs = NULL;
3652 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3653 
3654 	/* type filter */
3655 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3656 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3657 		return 0;
3658 	}
3659 
3660 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3661 		bargs = &bctl->data;
3662 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3663 		bargs = &bctl->sys;
3664 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3665 		bargs = &bctl->meta;
3666 
3667 	/* profiles filter */
3668 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3669 	    chunk_profiles_filter(chunk_type, bargs)) {
3670 		return 0;
3671 	}
3672 
3673 	/* usage filter */
3674 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3675 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3676 		return 0;
3677 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3678 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3679 		return 0;
3680 	}
3681 
3682 	/* devid filter */
3683 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3684 	    chunk_devid_filter(leaf, chunk, bargs)) {
3685 		return 0;
3686 	}
3687 
3688 	/* drange filter, makes sense only with devid filter */
3689 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3690 	    chunk_drange_filter(leaf, chunk, bargs)) {
3691 		return 0;
3692 	}
3693 
3694 	/* vrange filter */
3695 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3696 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3697 		return 0;
3698 	}
3699 
3700 	/* stripes filter */
3701 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3702 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3703 		return 0;
3704 	}
3705 
3706 	/* soft profile changing mode */
3707 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3708 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3709 		return 0;
3710 	}
3711 
3712 	/*
3713 	 * limited by count, must be the last filter
3714 	 */
3715 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3716 		if (bargs->limit == 0)
3717 			return 0;
3718 		else
3719 			bargs->limit--;
3720 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3721 		/*
3722 		 * Same logic as the 'limit' filter; the minimum cannot be
3723 		 * determined here because we do not have the global information
3724 		 * about the count of all chunks that satisfy the filters.
3725 		 */
3726 		if (bargs->limit_max == 0)
3727 			return 0;
3728 		else
3729 			bargs->limit_max--;
3730 	}
3731 
3732 	return 1;
3733 }
3734 
3735 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3736 {
3737 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3738 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3739 	u64 chunk_type;
3740 	struct btrfs_chunk *chunk;
3741 	struct btrfs_path *path = NULL;
3742 	struct btrfs_key key;
3743 	struct btrfs_key found_key;
3744 	struct extent_buffer *leaf;
3745 	int slot;
3746 	int ret;
3747 	int enospc_errors = 0;
3748 	bool counting = true;
3749 	/* The single value limit and min/max limits use the same bytes in the */
3750 	u64 limit_data = bctl->data.limit;
3751 	u64 limit_meta = bctl->meta.limit;
3752 	u64 limit_sys = bctl->sys.limit;
3753 	u32 count_data = 0;
3754 	u32 count_meta = 0;
3755 	u32 count_sys = 0;
3756 	int chunk_reserved = 0;
3757 
3758 	path = btrfs_alloc_path();
3759 	if (!path) {
3760 		ret = -ENOMEM;
3761 		goto error;
3762 	}
3763 
3764 	/* zero out stat counters */
3765 	spin_lock(&fs_info->balance_lock);
3766 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3767 	spin_unlock(&fs_info->balance_lock);
3768 again:
3769 	if (!counting) {
3770 		/*
3771 		 * The single value limit and min/max limits use the same bytes
3772 		 * in the
3773 		 */
3774 		bctl->data.limit = limit_data;
3775 		bctl->meta.limit = limit_meta;
3776 		bctl->sys.limit = limit_sys;
3777 	}
3778 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3779 	key.offset = (u64)-1;
3780 	key.type = BTRFS_CHUNK_ITEM_KEY;
3781 
3782 	while (1) {
3783 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3784 		    atomic_read(&fs_info->balance_cancel_req)) {
3785 			ret = -ECANCELED;
3786 			goto error;
3787 		}
3788 
3789 		mutex_lock(&fs_info->reclaim_bgs_lock);
3790 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3791 		if (ret < 0) {
3792 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3793 			goto error;
3794 		}
3795 
3796 		/*
3797 		 * this shouldn't happen, it means the last relocate
3798 		 * failed
3799 		 */
3800 		if (ret == 0)
3801 			BUG(); /* FIXME break ? */
3802 
3803 		ret = btrfs_previous_item(chunk_root, path, 0,
3804 					  BTRFS_CHUNK_ITEM_KEY);
3805 		if (ret) {
3806 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3807 			ret = 0;
3808 			break;
3809 		}
3810 
3811 		leaf = path->nodes[0];
3812 		slot = path->slots[0];
3813 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3814 
3815 		if (found_key.objectid != key.objectid) {
3816 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3817 			break;
3818 		}
3819 
3820 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3821 		chunk_type = btrfs_chunk_type(leaf, chunk);
3822 
3823 		if (!counting) {
3824 			spin_lock(&fs_info->balance_lock);
3825 			bctl->stat.considered++;
3826 			spin_unlock(&fs_info->balance_lock);
3827 		}
3828 
3829 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3830 
3831 		btrfs_release_path(path);
3832 		if (!ret) {
3833 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3834 			goto loop;
3835 		}
3836 
3837 		if (counting) {
3838 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3839 			spin_lock(&fs_info->balance_lock);
3840 			bctl->stat.expected++;
3841 			spin_unlock(&fs_info->balance_lock);
3842 
3843 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3844 				count_data++;
3845 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3846 				count_sys++;
3847 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3848 				count_meta++;
3849 
3850 			goto loop;
3851 		}
3852 
3853 		/*
3854 		 * Apply limit_min filter, no need to check if the LIMITS
3855 		 * filter is used, limit_min is 0 by default
3856 		 */
3857 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3858 					count_data < bctl->data.limit_min)
3859 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3860 					count_meta < bctl->meta.limit_min)
3861 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3862 					count_sys < bctl->sys.limit_min)) {
3863 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3864 			goto loop;
3865 		}
3866 
3867 		if (!chunk_reserved) {
3868 			/*
3869 			 * We may be relocating the only data chunk we have,
3870 			 * which could potentially end up with losing data's
3871 			 * raid profile, so lets allocate an empty one in
3872 			 * advance.
3873 			 */
3874 			ret = btrfs_may_alloc_data_chunk(fs_info,
3875 							 found_key.offset);
3876 			if (ret < 0) {
3877 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3878 				goto error;
3879 			} else if (ret == 1) {
3880 				chunk_reserved = 1;
3881 			}
3882 		}
3883 
3884 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3885 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3886 		if (ret == -ENOSPC) {
3887 			enospc_errors++;
3888 		} else if (ret == -ETXTBSY) {
3889 			btrfs_info(fs_info,
3890 	   "skipping relocation of block group %llu due to active swapfile",
3891 				   found_key.offset);
3892 			ret = 0;
3893 		} else if (ret) {
3894 			goto error;
3895 		} else {
3896 			spin_lock(&fs_info->balance_lock);
3897 			bctl->stat.completed++;
3898 			spin_unlock(&fs_info->balance_lock);
3899 		}
3900 loop:
3901 		if (found_key.offset == 0)
3902 			break;
3903 		key.offset = found_key.offset - 1;
3904 	}
3905 
3906 	if (counting) {
3907 		btrfs_release_path(path);
3908 		counting = false;
3909 		goto again;
3910 	}
3911 error:
3912 	btrfs_free_path(path);
3913 	if (enospc_errors) {
3914 		btrfs_info(fs_info, "%d enospc errors during balance",
3915 			   enospc_errors);
3916 		if (!ret)
3917 			ret = -ENOSPC;
3918 	}
3919 
3920 	return ret;
3921 }
3922 
3923 /**
3924  * alloc_profile_is_valid - see if a given profile is valid and reduced
3925  * @flags: profile to validate
3926  * @extended: if true @flags is treated as an extended profile
3927  */
3928 static int alloc_profile_is_valid(u64 flags, int extended)
3929 {
3930 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3931 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3932 
3933 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3934 
3935 	/* 1) check that all other bits are zeroed */
3936 	if (flags & ~mask)
3937 		return 0;
3938 
3939 	/* 2) see if profile is reduced */
3940 	if (flags == 0)
3941 		return !extended; /* "0" is valid for usual profiles */
3942 
3943 	return has_single_bit_set(flags);
3944 }
3945 
3946 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3947 {
3948 	/* cancel requested || normal exit path */
3949 	return atomic_read(&fs_info->balance_cancel_req) ||
3950 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3951 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3952 }
3953 
3954 /*
3955  * Validate target profile against allowed profiles and return true if it's OK.
3956  * Otherwise print the error message and return false.
3957  */
3958 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3959 		const struct btrfs_balance_args *bargs,
3960 		u64 allowed, const char *type)
3961 {
3962 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3963 		return true;
3964 
3965 	if (fs_info->sectorsize < PAGE_SIZE &&
3966 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3967 		btrfs_err(fs_info,
3968 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
3969 			  fs_info->sectorsize, PAGE_SIZE);
3970 		return false;
3971 	}
3972 	/* Profile is valid and does not have bits outside of the allowed set */
3973 	if (alloc_profile_is_valid(bargs->target, 1) &&
3974 	    (bargs->target & ~allowed) == 0)
3975 		return true;
3976 
3977 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3978 			type, btrfs_bg_type_to_raid_name(bargs->target));
3979 	return false;
3980 }
3981 
3982 /*
3983  * Fill @buf with textual description of balance filter flags @bargs, up to
3984  * @size_buf including the terminating null. The output may be trimmed if it
3985  * does not fit into the provided buffer.
3986  */
3987 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3988 				 u32 size_buf)
3989 {
3990 	int ret;
3991 	u32 size_bp = size_buf;
3992 	char *bp = buf;
3993 	u64 flags = bargs->flags;
3994 	char tmp_buf[128] = {'\0'};
3995 
3996 	if (!flags)
3997 		return;
3998 
3999 #define CHECK_APPEND_NOARG(a)						\
4000 	do {								\
4001 		ret = snprintf(bp, size_bp, (a));			\
4002 		if (ret < 0 || ret >= size_bp)				\
4003 			goto out_overflow;				\
4004 		size_bp -= ret;						\
4005 		bp += ret;						\
4006 	} while (0)
4007 
4008 #define CHECK_APPEND_1ARG(a, v1)					\
4009 	do {								\
4010 		ret = snprintf(bp, size_bp, (a), (v1));			\
4011 		if (ret < 0 || ret >= size_bp)				\
4012 			goto out_overflow;				\
4013 		size_bp -= ret;						\
4014 		bp += ret;						\
4015 	} while (0)
4016 
4017 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4018 	do {								\
4019 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4020 		if (ret < 0 || ret >= size_bp)				\
4021 			goto out_overflow;				\
4022 		size_bp -= ret;						\
4023 		bp += ret;						\
4024 	} while (0)
4025 
4026 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4027 		CHECK_APPEND_1ARG("convert=%s,",
4028 				  btrfs_bg_type_to_raid_name(bargs->target));
4029 
4030 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4031 		CHECK_APPEND_NOARG("soft,");
4032 
4033 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4034 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4035 					    sizeof(tmp_buf));
4036 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4037 	}
4038 
4039 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4040 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4041 
4042 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4043 		CHECK_APPEND_2ARG("usage=%u..%u,",
4044 				  bargs->usage_min, bargs->usage_max);
4045 
4046 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4047 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4048 
4049 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4050 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4051 				  bargs->pstart, bargs->pend);
4052 
4053 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4054 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4055 				  bargs->vstart, bargs->vend);
4056 
4057 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4058 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4059 
4060 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4061 		CHECK_APPEND_2ARG("limit=%u..%u,",
4062 				bargs->limit_min, bargs->limit_max);
4063 
4064 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4065 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4066 				  bargs->stripes_min, bargs->stripes_max);
4067 
4068 #undef CHECK_APPEND_2ARG
4069 #undef CHECK_APPEND_1ARG
4070 #undef CHECK_APPEND_NOARG
4071 
4072 out_overflow:
4073 
4074 	if (size_bp < size_buf)
4075 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4076 	else
4077 		buf[0] = '\0';
4078 }
4079 
4080 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4081 {
4082 	u32 size_buf = 1024;
4083 	char tmp_buf[192] = {'\0'};
4084 	char *buf;
4085 	char *bp;
4086 	u32 size_bp = size_buf;
4087 	int ret;
4088 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4089 
4090 	buf = kzalloc(size_buf, GFP_KERNEL);
4091 	if (!buf)
4092 		return;
4093 
4094 	bp = buf;
4095 
4096 #define CHECK_APPEND_1ARG(a, v1)					\
4097 	do {								\
4098 		ret = snprintf(bp, size_bp, (a), (v1));			\
4099 		if (ret < 0 || ret >= size_bp)				\
4100 			goto out_overflow;				\
4101 		size_bp -= ret;						\
4102 		bp += ret;						\
4103 	} while (0)
4104 
4105 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4106 		CHECK_APPEND_1ARG("%s", "-f ");
4107 
4108 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4109 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4110 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4111 	}
4112 
4113 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4114 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4115 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4116 	}
4117 
4118 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4119 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4120 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4121 	}
4122 
4123 #undef CHECK_APPEND_1ARG
4124 
4125 out_overflow:
4126 
4127 	if (size_bp < size_buf)
4128 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4129 	btrfs_info(fs_info, "balance: %s %s",
4130 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4131 		   "resume" : "start", buf);
4132 
4133 	kfree(buf);
4134 }
4135 
4136 /*
4137  * Should be called with balance mutexe held
4138  */
4139 int btrfs_balance(struct btrfs_fs_info *fs_info,
4140 		  struct btrfs_balance_control *bctl,
4141 		  struct btrfs_ioctl_balance_args *bargs)
4142 {
4143 	u64 meta_target, data_target;
4144 	u64 allowed;
4145 	int mixed = 0;
4146 	int ret;
4147 	u64 num_devices;
4148 	unsigned seq;
4149 	bool reducing_redundancy;
4150 	int i;
4151 
4152 	if (btrfs_fs_closing(fs_info) ||
4153 	    atomic_read(&fs_info->balance_pause_req) ||
4154 	    btrfs_should_cancel_balance(fs_info)) {
4155 		ret = -EINVAL;
4156 		goto out;
4157 	}
4158 
4159 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4160 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4161 		mixed = 1;
4162 
4163 	/*
4164 	 * In case of mixed groups both data and meta should be picked,
4165 	 * and identical options should be given for both of them.
4166 	 */
4167 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4168 	if (mixed && (bctl->flags & allowed)) {
4169 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4170 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4171 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4172 			btrfs_err(fs_info,
4173 	  "balance: mixed groups data and metadata options must be the same");
4174 			ret = -EINVAL;
4175 			goto out;
4176 		}
4177 	}
4178 
4179 	/*
4180 	 * rw_devices will not change at the moment, device add/delete/replace
4181 	 * are exclusive
4182 	 */
4183 	num_devices = fs_info->fs_devices->rw_devices;
4184 
4185 	/*
4186 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4187 	 * special bit for it, to make it easier to distinguish.  Thus we need
4188 	 * to set it manually, or balance would refuse the profile.
4189 	 */
4190 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4191 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4192 		if (num_devices >= btrfs_raid_array[i].devs_min)
4193 			allowed |= btrfs_raid_array[i].bg_flag;
4194 
4195 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4196 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4197 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4198 		ret = -EINVAL;
4199 		goto out;
4200 	}
4201 
4202 	/*
4203 	 * Allow to reduce metadata or system integrity only if force set for
4204 	 * profiles with redundancy (copies, parity)
4205 	 */
4206 	allowed = 0;
4207 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4208 		if (btrfs_raid_array[i].ncopies >= 2 ||
4209 		    btrfs_raid_array[i].tolerated_failures >= 1)
4210 			allowed |= btrfs_raid_array[i].bg_flag;
4211 	}
4212 	do {
4213 		seq = read_seqbegin(&fs_info->profiles_lock);
4214 
4215 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4216 		     (fs_info->avail_system_alloc_bits & allowed) &&
4217 		     !(bctl->sys.target & allowed)) ||
4218 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4219 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4220 		     !(bctl->meta.target & allowed)))
4221 			reducing_redundancy = true;
4222 		else
4223 			reducing_redundancy = false;
4224 
4225 		/* if we're not converting, the target field is uninitialized */
4226 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4227 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4228 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4229 			bctl->data.target : fs_info->avail_data_alloc_bits;
4230 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4231 
4232 	if (reducing_redundancy) {
4233 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4234 			btrfs_info(fs_info,
4235 			   "balance: force reducing metadata redundancy");
4236 		} else {
4237 			btrfs_err(fs_info,
4238 	"balance: reduces metadata redundancy, use --force if you want this");
4239 			ret = -EINVAL;
4240 			goto out;
4241 		}
4242 	}
4243 
4244 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4245 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4246 		btrfs_warn(fs_info,
4247 	"balance: metadata profile %s has lower redundancy than data profile %s",
4248 				btrfs_bg_type_to_raid_name(meta_target),
4249 				btrfs_bg_type_to_raid_name(data_target));
4250 	}
4251 
4252 	ret = insert_balance_item(fs_info, bctl);
4253 	if (ret && ret != -EEXIST)
4254 		goto out;
4255 
4256 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4257 		BUG_ON(ret == -EEXIST);
4258 		BUG_ON(fs_info->balance_ctl);
4259 		spin_lock(&fs_info->balance_lock);
4260 		fs_info->balance_ctl = bctl;
4261 		spin_unlock(&fs_info->balance_lock);
4262 	} else {
4263 		BUG_ON(ret != -EEXIST);
4264 		spin_lock(&fs_info->balance_lock);
4265 		update_balance_args(bctl);
4266 		spin_unlock(&fs_info->balance_lock);
4267 	}
4268 
4269 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4270 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4271 	describe_balance_start_or_resume(fs_info);
4272 	mutex_unlock(&fs_info->balance_mutex);
4273 
4274 	ret = __btrfs_balance(fs_info);
4275 
4276 	mutex_lock(&fs_info->balance_mutex);
4277 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4278 		btrfs_info(fs_info, "balance: paused");
4279 	/*
4280 	 * Balance can be canceled by:
4281 	 *
4282 	 * - Regular cancel request
4283 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4284 	 *
4285 	 * - Fatal signal to "btrfs" process
4286 	 *   Either the signal caught by wait_reserve_ticket() and callers
4287 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4288 	 *   got -ECANCELED.
4289 	 *   Either way, in this case balance_cancel_req = 0, and
4290 	 *   ret == -EINTR or ret == -ECANCELED.
4291 	 *
4292 	 * So here we only check the return value to catch canceled balance.
4293 	 */
4294 	else if (ret == -ECANCELED || ret == -EINTR)
4295 		btrfs_info(fs_info, "balance: canceled");
4296 	else
4297 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4298 
4299 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4300 
4301 	if (bargs) {
4302 		memset(bargs, 0, sizeof(*bargs));
4303 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4304 	}
4305 
4306 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4307 	    balance_need_close(fs_info)) {
4308 		reset_balance_state(fs_info);
4309 		btrfs_exclop_finish(fs_info);
4310 	}
4311 
4312 	wake_up(&fs_info->balance_wait_q);
4313 
4314 	return ret;
4315 out:
4316 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4317 		reset_balance_state(fs_info);
4318 	else
4319 		kfree(bctl);
4320 	btrfs_exclop_finish(fs_info);
4321 
4322 	return ret;
4323 }
4324 
4325 static int balance_kthread(void *data)
4326 {
4327 	struct btrfs_fs_info *fs_info = data;
4328 	int ret = 0;
4329 
4330 	mutex_lock(&fs_info->balance_mutex);
4331 	if (fs_info->balance_ctl)
4332 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4333 	mutex_unlock(&fs_info->balance_mutex);
4334 
4335 	return ret;
4336 }
4337 
4338 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4339 {
4340 	struct task_struct *tsk;
4341 
4342 	mutex_lock(&fs_info->balance_mutex);
4343 	if (!fs_info->balance_ctl) {
4344 		mutex_unlock(&fs_info->balance_mutex);
4345 		return 0;
4346 	}
4347 	mutex_unlock(&fs_info->balance_mutex);
4348 
4349 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4350 		btrfs_info(fs_info, "balance: resume skipped");
4351 		return 0;
4352 	}
4353 
4354 	/*
4355 	 * A ro->rw remount sequence should continue with the paused balance
4356 	 * regardless of who pauses it, system or the user as of now, so set
4357 	 * the resume flag.
4358 	 */
4359 	spin_lock(&fs_info->balance_lock);
4360 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4361 	spin_unlock(&fs_info->balance_lock);
4362 
4363 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4364 	return PTR_ERR_OR_ZERO(tsk);
4365 }
4366 
4367 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4368 {
4369 	struct btrfs_balance_control *bctl;
4370 	struct btrfs_balance_item *item;
4371 	struct btrfs_disk_balance_args disk_bargs;
4372 	struct btrfs_path *path;
4373 	struct extent_buffer *leaf;
4374 	struct btrfs_key key;
4375 	int ret;
4376 
4377 	path = btrfs_alloc_path();
4378 	if (!path)
4379 		return -ENOMEM;
4380 
4381 	key.objectid = BTRFS_BALANCE_OBJECTID;
4382 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4383 	key.offset = 0;
4384 
4385 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4386 	if (ret < 0)
4387 		goto out;
4388 	if (ret > 0) { /* ret = -ENOENT; */
4389 		ret = 0;
4390 		goto out;
4391 	}
4392 
4393 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4394 	if (!bctl) {
4395 		ret = -ENOMEM;
4396 		goto out;
4397 	}
4398 
4399 	leaf = path->nodes[0];
4400 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4401 
4402 	bctl->flags = btrfs_balance_flags(leaf, item);
4403 	bctl->flags |= BTRFS_BALANCE_RESUME;
4404 
4405 	btrfs_balance_data(leaf, item, &disk_bargs);
4406 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4407 	btrfs_balance_meta(leaf, item, &disk_bargs);
4408 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4409 	btrfs_balance_sys(leaf, item, &disk_bargs);
4410 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4411 
4412 	/*
4413 	 * This should never happen, as the paused balance state is recovered
4414 	 * during mount without any chance of other exclusive ops to collide.
4415 	 *
4416 	 * This gives the exclusive op status to balance and keeps in paused
4417 	 * state until user intervention (cancel or umount). If the ownership
4418 	 * cannot be assigned, show a message but do not fail. The balance
4419 	 * is in a paused state and must have fs_info::balance_ctl properly
4420 	 * set up.
4421 	 */
4422 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4423 		btrfs_warn(fs_info,
4424 	"balance: cannot set exclusive op status, resume manually");
4425 
4426 	btrfs_release_path(path);
4427 
4428 	mutex_lock(&fs_info->balance_mutex);
4429 	BUG_ON(fs_info->balance_ctl);
4430 	spin_lock(&fs_info->balance_lock);
4431 	fs_info->balance_ctl = bctl;
4432 	spin_unlock(&fs_info->balance_lock);
4433 	mutex_unlock(&fs_info->balance_mutex);
4434 out:
4435 	btrfs_free_path(path);
4436 	return ret;
4437 }
4438 
4439 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4440 {
4441 	int ret = 0;
4442 
4443 	mutex_lock(&fs_info->balance_mutex);
4444 	if (!fs_info->balance_ctl) {
4445 		mutex_unlock(&fs_info->balance_mutex);
4446 		return -ENOTCONN;
4447 	}
4448 
4449 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4450 		atomic_inc(&fs_info->balance_pause_req);
4451 		mutex_unlock(&fs_info->balance_mutex);
4452 
4453 		wait_event(fs_info->balance_wait_q,
4454 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4455 
4456 		mutex_lock(&fs_info->balance_mutex);
4457 		/* we are good with balance_ctl ripped off from under us */
4458 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4459 		atomic_dec(&fs_info->balance_pause_req);
4460 	} else {
4461 		ret = -ENOTCONN;
4462 	}
4463 
4464 	mutex_unlock(&fs_info->balance_mutex);
4465 	return ret;
4466 }
4467 
4468 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4469 {
4470 	mutex_lock(&fs_info->balance_mutex);
4471 	if (!fs_info->balance_ctl) {
4472 		mutex_unlock(&fs_info->balance_mutex);
4473 		return -ENOTCONN;
4474 	}
4475 
4476 	/*
4477 	 * A paused balance with the item stored on disk can be resumed at
4478 	 * mount time if the mount is read-write. Otherwise it's still paused
4479 	 * and we must not allow cancelling as it deletes the item.
4480 	 */
4481 	if (sb_rdonly(fs_info->sb)) {
4482 		mutex_unlock(&fs_info->balance_mutex);
4483 		return -EROFS;
4484 	}
4485 
4486 	atomic_inc(&fs_info->balance_cancel_req);
4487 	/*
4488 	 * if we are running just wait and return, balance item is
4489 	 * deleted in btrfs_balance in this case
4490 	 */
4491 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4492 		mutex_unlock(&fs_info->balance_mutex);
4493 		wait_event(fs_info->balance_wait_q,
4494 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4495 		mutex_lock(&fs_info->balance_mutex);
4496 	} else {
4497 		mutex_unlock(&fs_info->balance_mutex);
4498 		/*
4499 		 * Lock released to allow other waiters to continue, we'll
4500 		 * reexamine the status again.
4501 		 */
4502 		mutex_lock(&fs_info->balance_mutex);
4503 
4504 		if (fs_info->balance_ctl) {
4505 			reset_balance_state(fs_info);
4506 			btrfs_exclop_finish(fs_info);
4507 			btrfs_info(fs_info, "balance: canceled");
4508 		}
4509 	}
4510 
4511 	BUG_ON(fs_info->balance_ctl ||
4512 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4513 	atomic_dec(&fs_info->balance_cancel_req);
4514 	mutex_unlock(&fs_info->balance_mutex);
4515 	return 0;
4516 }
4517 
4518 int btrfs_uuid_scan_kthread(void *data)
4519 {
4520 	struct btrfs_fs_info *fs_info = data;
4521 	struct btrfs_root *root = fs_info->tree_root;
4522 	struct btrfs_key key;
4523 	struct btrfs_path *path = NULL;
4524 	int ret = 0;
4525 	struct extent_buffer *eb;
4526 	int slot;
4527 	struct btrfs_root_item root_item;
4528 	u32 item_size;
4529 	struct btrfs_trans_handle *trans = NULL;
4530 	bool closing = false;
4531 
4532 	path = btrfs_alloc_path();
4533 	if (!path) {
4534 		ret = -ENOMEM;
4535 		goto out;
4536 	}
4537 
4538 	key.objectid = 0;
4539 	key.type = BTRFS_ROOT_ITEM_KEY;
4540 	key.offset = 0;
4541 
4542 	while (1) {
4543 		if (btrfs_fs_closing(fs_info)) {
4544 			closing = true;
4545 			break;
4546 		}
4547 		ret = btrfs_search_forward(root, &key, path,
4548 				BTRFS_OLDEST_GENERATION);
4549 		if (ret) {
4550 			if (ret > 0)
4551 				ret = 0;
4552 			break;
4553 		}
4554 
4555 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4556 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4557 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4558 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4559 			goto skip;
4560 
4561 		eb = path->nodes[0];
4562 		slot = path->slots[0];
4563 		item_size = btrfs_item_size_nr(eb, slot);
4564 		if (item_size < sizeof(root_item))
4565 			goto skip;
4566 
4567 		read_extent_buffer(eb, &root_item,
4568 				   btrfs_item_ptr_offset(eb, slot),
4569 				   (int)sizeof(root_item));
4570 		if (btrfs_root_refs(&root_item) == 0)
4571 			goto skip;
4572 
4573 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4574 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4575 			if (trans)
4576 				goto update_tree;
4577 
4578 			btrfs_release_path(path);
4579 			/*
4580 			 * 1 - subvol uuid item
4581 			 * 1 - received_subvol uuid item
4582 			 */
4583 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4584 			if (IS_ERR(trans)) {
4585 				ret = PTR_ERR(trans);
4586 				break;
4587 			}
4588 			continue;
4589 		} else {
4590 			goto skip;
4591 		}
4592 update_tree:
4593 		btrfs_release_path(path);
4594 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4595 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4596 						  BTRFS_UUID_KEY_SUBVOL,
4597 						  key.objectid);
4598 			if (ret < 0) {
4599 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4600 					ret);
4601 				break;
4602 			}
4603 		}
4604 
4605 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4606 			ret = btrfs_uuid_tree_add(trans,
4607 						  root_item.received_uuid,
4608 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4609 						  key.objectid);
4610 			if (ret < 0) {
4611 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4612 					ret);
4613 				break;
4614 			}
4615 		}
4616 
4617 skip:
4618 		btrfs_release_path(path);
4619 		if (trans) {
4620 			ret = btrfs_end_transaction(trans);
4621 			trans = NULL;
4622 			if (ret)
4623 				break;
4624 		}
4625 
4626 		if (key.offset < (u64)-1) {
4627 			key.offset++;
4628 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4629 			key.offset = 0;
4630 			key.type = BTRFS_ROOT_ITEM_KEY;
4631 		} else if (key.objectid < (u64)-1) {
4632 			key.offset = 0;
4633 			key.type = BTRFS_ROOT_ITEM_KEY;
4634 			key.objectid++;
4635 		} else {
4636 			break;
4637 		}
4638 		cond_resched();
4639 	}
4640 
4641 out:
4642 	btrfs_free_path(path);
4643 	if (trans && !IS_ERR(trans))
4644 		btrfs_end_transaction(trans);
4645 	if (ret)
4646 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4647 	else if (!closing)
4648 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4649 	up(&fs_info->uuid_tree_rescan_sem);
4650 	return 0;
4651 }
4652 
4653 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4654 {
4655 	struct btrfs_trans_handle *trans;
4656 	struct btrfs_root *tree_root = fs_info->tree_root;
4657 	struct btrfs_root *uuid_root;
4658 	struct task_struct *task;
4659 	int ret;
4660 
4661 	/*
4662 	 * 1 - root node
4663 	 * 1 - root item
4664 	 */
4665 	trans = btrfs_start_transaction(tree_root, 2);
4666 	if (IS_ERR(trans))
4667 		return PTR_ERR(trans);
4668 
4669 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4670 	if (IS_ERR(uuid_root)) {
4671 		ret = PTR_ERR(uuid_root);
4672 		btrfs_abort_transaction(trans, ret);
4673 		btrfs_end_transaction(trans);
4674 		return ret;
4675 	}
4676 
4677 	fs_info->uuid_root = uuid_root;
4678 
4679 	ret = btrfs_commit_transaction(trans);
4680 	if (ret)
4681 		return ret;
4682 
4683 	down(&fs_info->uuid_tree_rescan_sem);
4684 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4685 	if (IS_ERR(task)) {
4686 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4687 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4688 		up(&fs_info->uuid_tree_rescan_sem);
4689 		return PTR_ERR(task);
4690 	}
4691 
4692 	return 0;
4693 }
4694 
4695 /*
4696  * shrinking a device means finding all of the device extents past
4697  * the new size, and then following the back refs to the chunks.
4698  * The chunk relocation code actually frees the device extent
4699  */
4700 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4701 {
4702 	struct btrfs_fs_info *fs_info = device->fs_info;
4703 	struct btrfs_root *root = fs_info->dev_root;
4704 	struct btrfs_trans_handle *trans;
4705 	struct btrfs_dev_extent *dev_extent = NULL;
4706 	struct btrfs_path *path;
4707 	u64 length;
4708 	u64 chunk_offset;
4709 	int ret;
4710 	int slot;
4711 	int failed = 0;
4712 	bool retried = false;
4713 	struct extent_buffer *l;
4714 	struct btrfs_key key;
4715 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4716 	u64 old_total = btrfs_super_total_bytes(super_copy);
4717 	u64 old_size = btrfs_device_get_total_bytes(device);
4718 	u64 diff;
4719 	u64 start;
4720 
4721 	new_size = round_down(new_size, fs_info->sectorsize);
4722 	start = new_size;
4723 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4724 
4725 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4726 		return -EINVAL;
4727 
4728 	path = btrfs_alloc_path();
4729 	if (!path)
4730 		return -ENOMEM;
4731 
4732 	path->reada = READA_BACK;
4733 
4734 	trans = btrfs_start_transaction(root, 0);
4735 	if (IS_ERR(trans)) {
4736 		btrfs_free_path(path);
4737 		return PTR_ERR(trans);
4738 	}
4739 
4740 	mutex_lock(&fs_info->chunk_mutex);
4741 
4742 	btrfs_device_set_total_bytes(device, new_size);
4743 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4744 		device->fs_devices->total_rw_bytes -= diff;
4745 		atomic64_sub(diff, &fs_info->free_chunk_space);
4746 	}
4747 
4748 	/*
4749 	 * Once the device's size has been set to the new size, ensure all
4750 	 * in-memory chunks are synced to disk so that the loop below sees them
4751 	 * and relocates them accordingly.
4752 	 */
4753 	if (contains_pending_extent(device, &start, diff)) {
4754 		mutex_unlock(&fs_info->chunk_mutex);
4755 		ret = btrfs_commit_transaction(trans);
4756 		if (ret)
4757 			goto done;
4758 	} else {
4759 		mutex_unlock(&fs_info->chunk_mutex);
4760 		btrfs_end_transaction(trans);
4761 	}
4762 
4763 again:
4764 	key.objectid = device->devid;
4765 	key.offset = (u64)-1;
4766 	key.type = BTRFS_DEV_EXTENT_KEY;
4767 
4768 	do {
4769 		mutex_lock(&fs_info->reclaim_bgs_lock);
4770 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4771 		if (ret < 0) {
4772 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4773 			goto done;
4774 		}
4775 
4776 		ret = btrfs_previous_item(root, path, 0, key.type);
4777 		if (ret) {
4778 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4779 			if (ret < 0)
4780 				goto done;
4781 			ret = 0;
4782 			btrfs_release_path(path);
4783 			break;
4784 		}
4785 
4786 		l = path->nodes[0];
4787 		slot = path->slots[0];
4788 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4789 
4790 		if (key.objectid != device->devid) {
4791 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4792 			btrfs_release_path(path);
4793 			break;
4794 		}
4795 
4796 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4797 		length = btrfs_dev_extent_length(l, dev_extent);
4798 
4799 		if (key.offset + length <= new_size) {
4800 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4801 			btrfs_release_path(path);
4802 			break;
4803 		}
4804 
4805 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4806 		btrfs_release_path(path);
4807 
4808 		/*
4809 		 * We may be relocating the only data chunk we have,
4810 		 * which could potentially end up with losing data's
4811 		 * raid profile, so lets allocate an empty one in
4812 		 * advance.
4813 		 */
4814 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4815 		if (ret < 0) {
4816 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4817 			goto done;
4818 		}
4819 
4820 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4821 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4822 		if (ret == -ENOSPC) {
4823 			failed++;
4824 		} else if (ret) {
4825 			if (ret == -ETXTBSY) {
4826 				btrfs_warn(fs_info,
4827 		   "could not shrink block group %llu due to active swapfile",
4828 					   chunk_offset);
4829 			}
4830 			goto done;
4831 		}
4832 	} while (key.offset-- > 0);
4833 
4834 	if (failed && !retried) {
4835 		failed = 0;
4836 		retried = true;
4837 		goto again;
4838 	} else if (failed && retried) {
4839 		ret = -ENOSPC;
4840 		goto done;
4841 	}
4842 
4843 	/* Shrinking succeeded, else we would be at "done". */
4844 	trans = btrfs_start_transaction(root, 0);
4845 	if (IS_ERR(trans)) {
4846 		ret = PTR_ERR(trans);
4847 		goto done;
4848 	}
4849 
4850 	mutex_lock(&fs_info->chunk_mutex);
4851 	/* Clear all state bits beyond the shrunk device size */
4852 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4853 			  CHUNK_STATE_MASK);
4854 
4855 	btrfs_device_set_disk_total_bytes(device, new_size);
4856 	if (list_empty(&device->post_commit_list))
4857 		list_add_tail(&device->post_commit_list,
4858 			      &trans->transaction->dev_update_list);
4859 
4860 	WARN_ON(diff > old_total);
4861 	btrfs_set_super_total_bytes(super_copy,
4862 			round_down(old_total - diff, fs_info->sectorsize));
4863 	mutex_unlock(&fs_info->chunk_mutex);
4864 
4865 	/* Now btrfs_update_device() will change the on-disk size. */
4866 	ret = btrfs_update_device(trans, device);
4867 	if (ret < 0) {
4868 		btrfs_abort_transaction(trans, ret);
4869 		btrfs_end_transaction(trans);
4870 	} else {
4871 		ret = btrfs_commit_transaction(trans);
4872 	}
4873 done:
4874 	btrfs_free_path(path);
4875 	if (ret) {
4876 		mutex_lock(&fs_info->chunk_mutex);
4877 		btrfs_device_set_total_bytes(device, old_size);
4878 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4879 			device->fs_devices->total_rw_bytes += diff;
4880 		atomic64_add(diff, &fs_info->free_chunk_space);
4881 		mutex_unlock(&fs_info->chunk_mutex);
4882 	}
4883 	return ret;
4884 }
4885 
4886 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4887 			   struct btrfs_key *key,
4888 			   struct btrfs_chunk *chunk, int item_size)
4889 {
4890 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4891 	struct btrfs_disk_key disk_key;
4892 	u32 array_size;
4893 	u8 *ptr;
4894 
4895 	lockdep_assert_held(&fs_info->chunk_mutex);
4896 
4897 	array_size = btrfs_super_sys_array_size(super_copy);
4898 	if (array_size + item_size + sizeof(disk_key)
4899 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4900 		return -EFBIG;
4901 
4902 	ptr = super_copy->sys_chunk_array + array_size;
4903 	btrfs_cpu_key_to_disk(&disk_key, key);
4904 	memcpy(ptr, &disk_key, sizeof(disk_key));
4905 	ptr += sizeof(disk_key);
4906 	memcpy(ptr, chunk, item_size);
4907 	item_size += sizeof(disk_key);
4908 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4909 
4910 	return 0;
4911 }
4912 
4913 /*
4914  * sort the devices in descending order by max_avail, total_avail
4915  */
4916 static int btrfs_cmp_device_info(const void *a, const void *b)
4917 {
4918 	const struct btrfs_device_info *di_a = a;
4919 	const struct btrfs_device_info *di_b = b;
4920 
4921 	if (di_a->max_avail > di_b->max_avail)
4922 		return -1;
4923 	if (di_a->max_avail < di_b->max_avail)
4924 		return 1;
4925 	if (di_a->total_avail > di_b->total_avail)
4926 		return -1;
4927 	if (di_a->total_avail < di_b->total_avail)
4928 		return 1;
4929 	return 0;
4930 }
4931 
4932 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4933 {
4934 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4935 		return;
4936 
4937 	btrfs_set_fs_incompat(info, RAID56);
4938 }
4939 
4940 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4941 {
4942 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4943 		return;
4944 
4945 	btrfs_set_fs_incompat(info, RAID1C34);
4946 }
4947 
4948 /*
4949  * Structure used internally for __btrfs_alloc_chunk() function.
4950  * Wraps needed parameters.
4951  */
4952 struct alloc_chunk_ctl {
4953 	u64 start;
4954 	u64 type;
4955 	/* Total number of stripes to allocate */
4956 	int num_stripes;
4957 	/* sub_stripes info for map */
4958 	int sub_stripes;
4959 	/* Stripes per device */
4960 	int dev_stripes;
4961 	/* Maximum number of devices to use */
4962 	int devs_max;
4963 	/* Minimum number of devices to use */
4964 	int devs_min;
4965 	/* ndevs has to be a multiple of this */
4966 	int devs_increment;
4967 	/* Number of copies */
4968 	int ncopies;
4969 	/* Number of stripes worth of bytes to store parity information */
4970 	int nparity;
4971 	u64 max_stripe_size;
4972 	u64 max_chunk_size;
4973 	u64 dev_extent_min;
4974 	u64 stripe_size;
4975 	u64 chunk_size;
4976 	int ndevs;
4977 };
4978 
4979 static void init_alloc_chunk_ctl_policy_regular(
4980 				struct btrfs_fs_devices *fs_devices,
4981 				struct alloc_chunk_ctl *ctl)
4982 {
4983 	u64 type = ctl->type;
4984 
4985 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4986 		ctl->max_stripe_size = SZ_1G;
4987 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4988 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4989 		/* For larger filesystems, use larger metadata chunks */
4990 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4991 			ctl->max_stripe_size = SZ_1G;
4992 		else
4993 			ctl->max_stripe_size = SZ_256M;
4994 		ctl->max_chunk_size = ctl->max_stripe_size;
4995 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4996 		ctl->max_stripe_size = SZ_32M;
4997 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4998 		ctl->devs_max = min_t(int, ctl->devs_max,
4999 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5000 	} else {
5001 		BUG();
5002 	}
5003 
5004 	/* We don't want a chunk larger than 10% of writable space */
5005 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5006 				  ctl->max_chunk_size);
5007 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5008 }
5009 
5010 static void init_alloc_chunk_ctl_policy_zoned(
5011 				      struct btrfs_fs_devices *fs_devices,
5012 				      struct alloc_chunk_ctl *ctl)
5013 {
5014 	u64 zone_size = fs_devices->fs_info->zone_size;
5015 	u64 limit;
5016 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5017 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5018 	u64 min_chunk_size = min_data_stripes * zone_size;
5019 	u64 type = ctl->type;
5020 
5021 	ctl->max_stripe_size = zone_size;
5022 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5023 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5024 						 zone_size);
5025 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5026 		ctl->max_chunk_size = ctl->max_stripe_size;
5027 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5028 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5029 		ctl->devs_max = min_t(int, ctl->devs_max,
5030 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5031 	} else {
5032 		BUG();
5033 	}
5034 
5035 	/* We don't want a chunk larger than 10% of writable space */
5036 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5037 			       zone_size),
5038 		    min_chunk_size);
5039 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5040 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5041 }
5042 
5043 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5044 				 struct alloc_chunk_ctl *ctl)
5045 {
5046 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5047 
5048 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5049 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5050 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5051 	if (!ctl->devs_max)
5052 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5053 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5054 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5055 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5056 	ctl->nparity = btrfs_raid_array[index].nparity;
5057 	ctl->ndevs = 0;
5058 
5059 	switch (fs_devices->chunk_alloc_policy) {
5060 	case BTRFS_CHUNK_ALLOC_REGULAR:
5061 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5062 		break;
5063 	case BTRFS_CHUNK_ALLOC_ZONED:
5064 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5065 		break;
5066 	default:
5067 		BUG();
5068 	}
5069 }
5070 
5071 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5072 			      struct alloc_chunk_ctl *ctl,
5073 			      struct btrfs_device_info *devices_info)
5074 {
5075 	struct btrfs_fs_info *info = fs_devices->fs_info;
5076 	struct btrfs_device *device;
5077 	u64 total_avail;
5078 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5079 	int ret;
5080 	int ndevs = 0;
5081 	u64 max_avail;
5082 	u64 dev_offset;
5083 
5084 	/*
5085 	 * in the first pass through the devices list, we gather information
5086 	 * about the available holes on each device.
5087 	 */
5088 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5089 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5090 			WARN(1, KERN_ERR
5091 			       "BTRFS: read-only device in alloc_list\n");
5092 			continue;
5093 		}
5094 
5095 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5096 					&device->dev_state) ||
5097 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5098 			continue;
5099 
5100 		if (device->total_bytes > device->bytes_used)
5101 			total_avail = device->total_bytes - device->bytes_used;
5102 		else
5103 			total_avail = 0;
5104 
5105 		/* If there is no space on this device, skip it. */
5106 		if (total_avail < ctl->dev_extent_min)
5107 			continue;
5108 
5109 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5110 					   &max_avail);
5111 		if (ret && ret != -ENOSPC)
5112 			return ret;
5113 
5114 		if (ret == 0)
5115 			max_avail = dev_extent_want;
5116 
5117 		if (max_avail < ctl->dev_extent_min) {
5118 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5119 				btrfs_debug(info,
5120 			"%s: devid %llu has no free space, have=%llu want=%llu",
5121 					    __func__, device->devid, max_avail,
5122 					    ctl->dev_extent_min);
5123 			continue;
5124 		}
5125 
5126 		if (ndevs == fs_devices->rw_devices) {
5127 			WARN(1, "%s: found more than %llu devices\n",
5128 			     __func__, fs_devices->rw_devices);
5129 			break;
5130 		}
5131 		devices_info[ndevs].dev_offset = dev_offset;
5132 		devices_info[ndevs].max_avail = max_avail;
5133 		devices_info[ndevs].total_avail = total_avail;
5134 		devices_info[ndevs].dev = device;
5135 		++ndevs;
5136 	}
5137 	ctl->ndevs = ndevs;
5138 
5139 	/*
5140 	 * now sort the devices by hole size / available space
5141 	 */
5142 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5143 	     btrfs_cmp_device_info, NULL);
5144 
5145 	return 0;
5146 }
5147 
5148 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5149 				      struct btrfs_device_info *devices_info)
5150 {
5151 	/* Number of stripes that count for block group size */
5152 	int data_stripes;
5153 
5154 	/*
5155 	 * The primary goal is to maximize the number of stripes, so use as
5156 	 * many devices as possible, even if the stripes are not maximum sized.
5157 	 *
5158 	 * The DUP profile stores more than one stripe per device, the
5159 	 * max_avail is the total size so we have to adjust.
5160 	 */
5161 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5162 				   ctl->dev_stripes);
5163 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5164 
5165 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5166 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5167 
5168 	/*
5169 	 * Use the number of data stripes to figure out how big this chunk is
5170 	 * really going to be in terms of logical address space, and compare
5171 	 * that answer with the max chunk size. If it's higher, we try to
5172 	 * reduce stripe_size.
5173 	 */
5174 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5175 		/*
5176 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5177 		 * then use it, unless it ends up being even bigger than the
5178 		 * previous value we had already.
5179 		 */
5180 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5181 							data_stripes), SZ_16M),
5182 				       ctl->stripe_size);
5183 	}
5184 
5185 	/* Align to BTRFS_STRIPE_LEN */
5186 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5187 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5188 
5189 	return 0;
5190 }
5191 
5192 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5193 				    struct btrfs_device_info *devices_info)
5194 {
5195 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5196 	/* Number of stripes that count for block group size */
5197 	int data_stripes;
5198 
5199 	/*
5200 	 * It should hold because:
5201 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5202 	 */
5203 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5204 
5205 	ctl->stripe_size = zone_size;
5206 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5207 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5208 
5209 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5210 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5211 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5212 					     ctl->stripe_size) + ctl->nparity,
5213 				     ctl->dev_stripes);
5214 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5215 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5216 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5217 	}
5218 
5219 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5220 
5221 	return 0;
5222 }
5223 
5224 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5225 			      struct alloc_chunk_ctl *ctl,
5226 			      struct btrfs_device_info *devices_info)
5227 {
5228 	struct btrfs_fs_info *info = fs_devices->fs_info;
5229 
5230 	/*
5231 	 * Round down to number of usable stripes, devs_increment can be any
5232 	 * number so we can't use round_down() that requires power of 2, while
5233 	 * rounddown is safe.
5234 	 */
5235 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5236 
5237 	if (ctl->ndevs < ctl->devs_min) {
5238 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5239 			btrfs_debug(info,
5240 	"%s: not enough devices with free space: have=%d minimum required=%d",
5241 				    __func__, ctl->ndevs, ctl->devs_min);
5242 		}
5243 		return -ENOSPC;
5244 	}
5245 
5246 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5247 
5248 	switch (fs_devices->chunk_alloc_policy) {
5249 	case BTRFS_CHUNK_ALLOC_REGULAR:
5250 		return decide_stripe_size_regular(ctl, devices_info);
5251 	case BTRFS_CHUNK_ALLOC_ZONED:
5252 		return decide_stripe_size_zoned(ctl, devices_info);
5253 	default:
5254 		BUG();
5255 	}
5256 }
5257 
5258 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5259 			struct alloc_chunk_ctl *ctl,
5260 			struct btrfs_device_info *devices_info)
5261 {
5262 	struct btrfs_fs_info *info = trans->fs_info;
5263 	struct map_lookup *map = NULL;
5264 	struct extent_map_tree *em_tree;
5265 	struct btrfs_block_group *block_group;
5266 	struct extent_map *em;
5267 	u64 start = ctl->start;
5268 	u64 type = ctl->type;
5269 	int ret;
5270 	int i;
5271 	int j;
5272 
5273 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5274 	if (!map)
5275 		return ERR_PTR(-ENOMEM);
5276 	map->num_stripes = ctl->num_stripes;
5277 
5278 	for (i = 0; i < ctl->ndevs; ++i) {
5279 		for (j = 0; j < ctl->dev_stripes; ++j) {
5280 			int s = i * ctl->dev_stripes + j;
5281 			map->stripes[s].dev = devices_info[i].dev;
5282 			map->stripes[s].physical = devices_info[i].dev_offset +
5283 						   j * ctl->stripe_size;
5284 		}
5285 	}
5286 	map->stripe_len = BTRFS_STRIPE_LEN;
5287 	map->io_align = BTRFS_STRIPE_LEN;
5288 	map->io_width = BTRFS_STRIPE_LEN;
5289 	map->type = type;
5290 	map->sub_stripes = ctl->sub_stripes;
5291 
5292 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5293 
5294 	em = alloc_extent_map();
5295 	if (!em) {
5296 		kfree(map);
5297 		return ERR_PTR(-ENOMEM);
5298 	}
5299 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5300 	em->map_lookup = map;
5301 	em->start = start;
5302 	em->len = ctl->chunk_size;
5303 	em->block_start = 0;
5304 	em->block_len = em->len;
5305 	em->orig_block_len = ctl->stripe_size;
5306 
5307 	em_tree = &info->mapping_tree;
5308 	write_lock(&em_tree->lock);
5309 	ret = add_extent_mapping(em_tree, em, 0);
5310 	if (ret) {
5311 		write_unlock(&em_tree->lock);
5312 		free_extent_map(em);
5313 		return ERR_PTR(ret);
5314 	}
5315 	write_unlock(&em_tree->lock);
5316 
5317 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5318 	if (IS_ERR(block_group))
5319 		goto error_del_extent;
5320 
5321 	for (i = 0; i < map->num_stripes; i++) {
5322 		struct btrfs_device *dev = map->stripes[i].dev;
5323 
5324 		btrfs_device_set_bytes_used(dev,
5325 					    dev->bytes_used + ctl->stripe_size);
5326 		if (list_empty(&dev->post_commit_list))
5327 			list_add_tail(&dev->post_commit_list,
5328 				      &trans->transaction->dev_update_list);
5329 	}
5330 
5331 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5332 		     &info->free_chunk_space);
5333 
5334 	free_extent_map(em);
5335 	check_raid56_incompat_flag(info, type);
5336 	check_raid1c34_incompat_flag(info, type);
5337 
5338 	return block_group;
5339 
5340 error_del_extent:
5341 	write_lock(&em_tree->lock);
5342 	remove_extent_mapping(em_tree, em);
5343 	write_unlock(&em_tree->lock);
5344 
5345 	/* One for our allocation */
5346 	free_extent_map(em);
5347 	/* One for the tree reference */
5348 	free_extent_map(em);
5349 
5350 	return block_group;
5351 }
5352 
5353 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5354 					    u64 type)
5355 {
5356 	struct btrfs_fs_info *info = trans->fs_info;
5357 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5358 	struct btrfs_device_info *devices_info = NULL;
5359 	struct alloc_chunk_ctl ctl;
5360 	struct btrfs_block_group *block_group;
5361 	int ret;
5362 
5363 	lockdep_assert_held(&info->chunk_mutex);
5364 
5365 	if (!alloc_profile_is_valid(type, 0)) {
5366 		ASSERT(0);
5367 		return ERR_PTR(-EINVAL);
5368 	}
5369 
5370 	if (list_empty(&fs_devices->alloc_list)) {
5371 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5372 			btrfs_debug(info, "%s: no writable device", __func__);
5373 		return ERR_PTR(-ENOSPC);
5374 	}
5375 
5376 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5377 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5378 		ASSERT(0);
5379 		return ERR_PTR(-EINVAL);
5380 	}
5381 
5382 	ctl.start = find_next_chunk(info);
5383 	ctl.type = type;
5384 	init_alloc_chunk_ctl(fs_devices, &ctl);
5385 
5386 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5387 			       GFP_NOFS);
5388 	if (!devices_info)
5389 		return ERR_PTR(-ENOMEM);
5390 
5391 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5392 	if (ret < 0) {
5393 		block_group = ERR_PTR(ret);
5394 		goto out;
5395 	}
5396 
5397 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5398 	if (ret < 0) {
5399 		block_group = ERR_PTR(ret);
5400 		goto out;
5401 	}
5402 
5403 	block_group = create_chunk(trans, &ctl, devices_info);
5404 
5405 out:
5406 	kfree(devices_info);
5407 	return block_group;
5408 }
5409 
5410 /*
5411  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5412  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5413  * chunks.
5414  *
5415  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5416  * phases.
5417  */
5418 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5419 				     struct btrfs_block_group *bg)
5420 {
5421 	struct btrfs_fs_info *fs_info = trans->fs_info;
5422 	struct btrfs_root *extent_root = fs_info->extent_root;
5423 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5424 	struct btrfs_key key;
5425 	struct btrfs_chunk *chunk;
5426 	struct btrfs_stripe *stripe;
5427 	struct extent_map *em;
5428 	struct map_lookup *map;
5429 	size_t item_size;
5430 	int i;
5431 	int ret;
5432 
5433 	/*
5434 	 * We take the chunk_mutex for 2 reasons:
5435 	 *
5436 	 * 1) Updates and insertions in the chunk btree must be done while holding
5437 	 *    the chunk_mutex, as well as updating the system chunk array in the
5438 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5439 	 *    details;
5440 	 *
5441 	 * 2) To prevent races with the final phase of a device replace operation
5442 	 *    that replaces the device object associated with the map's stripes,
5443 	 *    because the device object's id can change at any time during that
5444 	 *    final phase of the device replace operation
5445 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5446 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5447 	 *    which would cause a failure when updating the device item, which does
5448 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5449 	 *    Here we can't use the device_list_mutex because our caller already
5450 	 *    has locked the chunk_mutex, and the final phase of device replace
5451 	 *    acquires both mutexes - first the device_list_mutex and then the
5452 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5453 	 *    concurrent device replace.
5454 	 */
5455 	lockdep_assert_held(&fs_info->chunk_mutex);
5456 
5457 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5458 	if (IS_ERR(em)) {
5459 		ret = PTR_ERR(em);
5460 		btrfs_abort_transaction(trans, ret);
5461 		return ret;
5462 	}
5463 
5464 	map = em->map_lookup;
5465 	item_size = btrfs_chunk_item_size(map->num_stripes);
5466 
5467 	chunk = kzalloc(item_size, GFP_NOFS);
5468 	if (!chunk) {
5469 		ret = -ENOMEM;
5470 		btrfs_abort_transaction(trans, ret);
5471 		goto out;
5472 	}
5473 
5474 	for (i = 0; i < map->num_stripes; i++) {
5475 		struct btrfs_device *device = map->stripes[i].dev;
5476 
5477 		ret = btrfs_update_device(trans, device);
5478 		if (ret)
5479 			goto out;
5480 	}
5481 
5482 	stripe = &chunk->stripe;
5483 	for (i = 0; i < map->num_stripes; i++) {
5484 		struct btrfs_device *device = map->stripes[i].dev;
5485 		const u64 dev_offset = map->stripes[i].physical;
5486 
5487 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5488 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5489 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5490 		stripe++;
5491 	}
5492 
5493 	btrfs_set_stack_chunk_length(chunk, bg->length);
5494 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5495 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5496 	btrfs_set_stack_chunk_type(chunk, map->type);
5497 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5498 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5499 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5500 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5501 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5502 
5503 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5504 	key.type = BTRFS_CHUNK_ITEM_KEY;
5505 	key.offset = bg->start;
5506 
5507 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5508 	if (ret)
5509 		goto out;
5510 
5511 	bg->chunk_item_inserted = 1;
5512 
5513 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5514 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5515 		if (ret)
5516 			goto out;
5517 	}
5518 
5519 out:
5520 	kfree(chunk);
5521 	free_extent_map(em);
5522 	return ret;
5523 }
5524 
5525 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5526 {
5527 	struct btrfs_fs_info *fs_info = trans->fs_info;
5528 	u64 alloc_profile;
5529 	struct btrfs_block_group *meta_bg;
5530 	struct btrfs_block_group *sys_bg;
5531 
5532 	/*
5533 	 * When adding a new device for sprouting, the seed device is read-only
5534 	 * so we must first allocate a metadata and a system chunk. But before
5535 	 * adding the block group items to the extent, device and chunk btrees,
5536 	 * we must first:
5537 	 *
5538 	 * 1) Create both chunks without doing any changes to the btrees, as
5539 	 *    otherwise we would get -ENOSPC since the block groups from the
5540 	 *    seed device are read-only;
5541 	 *
5542 	 * 2) Add the device item for the new sprout device - finishing the setup
5543 	 *    of a new block group requires updating the device item in the chunk
5544 	 *    btree, so it must exist when we attempt to do it. The previous step
5545 	 *    ensures this does not fail with -ENOSPC.
5546 	 *
5547 	 * After that we can add the block group items to their btrees:
5548 	 * update existing device item in the chunk btree, add a new block group
5549 	 * item to the extent btree, add a new chunk item to the chunk btree and
5550 	 * finally add the new device extent items to the devices btree.
5551 	 */
5552 
5553 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5554 	meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5555 	if (IS_ERR(meta_bg))
5556 		return PTR_ERR(meta_bg);
5557 
5558 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5559 	sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5560 	if (IS_ERR(sys_bg))
5561 		return PTR_ERR(sys_bg);
5562 
5563 	return 0;
5564 }
5565 
5566 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5567 {
5568 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5569 
5570 	return btrfs_raid_array[index].tolerated_failures;
5571 }
5572 
5573 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5574 {
5575 	struct extent_map *em;
5576 	struct map_lookup *map;
5577 	int readonly = 0;
5578 	int miss_ndevs = 0;
5579 	int i;
5580 
5581 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5582 	if (IS_ERR(em))
5583 		return 1;
5584 
5585 	map = em->map_lookup;
5586 	for (i = 0; i < map->num_stripes; i++) {
5587 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5588 					&map->stripes[i].dev->dev_state)) {
5589 			miss_ndevs++;
5590 			continue;
5591 		}
5592 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5593 					&map->stripes[i].dev->dev_state)) {
5594 			readonly = 1;
5595 			goto end;
5596 		}
5597 	}
5598 
5599 	/*
5600 	 * If the number of missing devices is larger than max errors,
5601 	 * we can not write the data into that chunk successfully, so
5602 	 * set it readonly.
5603 	 */
5604 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5605 		readonly = 1;
5606 end:
5607 	free_extent_map(em);
5608 	return readonly;
5609 }
5610 
5611 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5612 {
5613 	struct extent_map *em;
5614 
5615 	while (1) {
5616 		write_lock(&tree->lock);
5617 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5618 		if (em)
5619 			remove_extent_mapping(tree, em);
5620 		write_unlock(&tree->lock);
5621 		if (!em)
5622 			break;
5623 		/* once for us */
5624 		free_extent_map(em);
5625 		/* once for the tree */
5626 		free_extent_map(em);
5627 	}
5628 }
5629 
5630 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5631 {
5632 	struct extent_map *em;
5633 	struct map_lookup *map;
5634 	int ret;
5635 
5636 	em = btrfs_get_chunk_map(fs_info, logical, len);
5637 	if (IS_ERR(em))
5638 		/*
5639 		 * We could return errors for these cases, but that could get
5640 		 * ugly and we'd probably do the same thing which is just not do
5641 		 * anything else and exit, so return 1 so the callers don't try
5642 		 * to use other copies.
5643 		 */
5644 		return 1;
5645 
5646 	map = em->map_lookup;
5647 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5648 		ret = map->num_stripes;
5649 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5650 		ret = map->sub_stripes;
5651 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5652 		ret = 2;
5653 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5654 		/*
5655 		 * There could be two corrupted data stripes, we need
5656 		 * to loop retry in order to rebuild the correct data.
5657 		 *
5658 		 * Fail a stripe at a time on every retry except the
5659 		 * stripe under reconstruction.
5660 		 */
5661 		ret = map->num_stripes;
5662 	else
5663 		ret = 1;
5664 	free_extent_map(em);
5665 
5666 	down_read(&fs_info->dev_replace.rwsem);
5667 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5668 	    fs_info->dev_replace.tgtdev)
5669 		ret++;
5670 	up_read(&fs_info->dev_replace.rwsem);
5671 
5672 	return ret;
5673 }
5674 
5675 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5676 				    u64 logical)
5677 {
5678 	struct extent_map *em;
5679 	struct map_lookup *map;
5680 	unsigned long len = fs_info->sectorsize;
5681 
5682 	em = btrfs_get_chunk_map(fs_info, logical, len);
5683 
5684 	if (!WARN_ON(IS_ERR(em))) {
5685 		map = em->map_lookup;
5686 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5687 			len = map->stripe_len * nr_data_stripes(map);
5688 		free_extent_map(em);
5689 	}
5690 	return len;
5691 }
5692 
5693 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5694 {
5695 	struct extent_map *em;
5696 	struct map_lookup *map;
5697 	int ret = 0;
5698 
5699 	em = btrfs_get_chunk_map(fs_info, logical, len);
5700 
5701 	if(!WARN_ON(IS_ERR(em))) {
5702 		map = em->map_lookup;
5703 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5704 			ret = 1;
5705 		free_extent_map(em);
5706 	}
5707 	return ret;
5708 }
5709 
5710 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5711 			    struct map_lookup *map, int first,
5712 			    int dev_replace_is_ongoing)
5713 {
5714 	int i;
5715 	int num_stripes;
5716 	int preferred_mirror;
5717 	int tolerance;
5718 	struct btrfs_device *srcdev;
5719 
5720 	ASSERT((map->type &
5721 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5722 
5723 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5724 		num_stripes = map->sub_stripes;
5725 	else
5726 		num_stripes = map->num_stripes;
5727 
5728 	switch (fs_info->fs_devices->read_policy) {
5729 	default:
5730 		/* Shouldn't happen, just warn and use pid instead of failing */
5731 		btrfs_warn_rl(fs_info,
5732 			      "unknown read_policy type %u, reset to pid",
5733 			      fs_info->fs_devices->read_policy);
5734 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5735 		fallthrough;
5736 	case BTRFS_READ_POLICY_PID:
5737 		preferred_mirror = first + (current->pid % num_stripes);
5738 		break;
5739 	}
5740 
5741 	if (dev_replace_is_ongoing &&
5742 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5743 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5744 		srcdev = fs_info->dev_replace.srcdev;
5745 	else
5746 		srcdev = NULL;
5747 
5748 	/*
5749 	 * try to avoid the drive that is the source drive for a
5750 	 * dev-replace procedure, only choose it if no other non-missing
5751 	 * mirror is available
5752 	 */
5753 	for (tolerance = 0; tolerance < 2; tolerance++) {
5754 		if (map->stripes[preferred_mirror].dev->bdev &&
5755 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5756 			return preferred_mirror;
5757 		for (i = first; i < first + num_stripes; i++) {
5758 			if (map->stripes[i].dev->bdev &&
5759 			    (tolerance || map->stripes[i].dev != srcdev))
5760 				return i;
5761 		}
5762 	}
5763 
5764 	/* we couldn't find one that doesn't fail.  Just return something
5765 	 * and the io error handling code will clean up eventually
5766 	 */
5767 	return preferred_mirror;
5768 }
5769 
5770 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5771 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5772 {
5773 	int i;
5774 	int again = 1;
5775 
5776 	while (again) {
5777 		again = 0;
5778 		for (i = 0; i < num_stripes - 1; i++) {
5779 			/* Swap if parity is on a smaller index */
5780 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5781 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5782 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5783 				again = 1;
5784 			}
5785 		}
5786 	}
5787 }
5788 
5789 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5790 {
5791 	struct btrfs_bio *bbio = kzalloc(
5792 		 /* the size of the btrfs_bio */
5793 		sizeof(struct btrfs_bio) +
5794 		/* plus the variable array for the stripes */
5795 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5796 		/* plus the variable array for the tgt dev */
5797 		sizeof(int) * (real_stripes) +
5798 		/*
5799 		 * plus the raid_map, which includes both the tgt dev
5800 		 * and the stripes
5801 		 */
5802 		sizeof(u64) * (total_stripes),
5803 		GFP_NOFS|__GFP_NOFAIL);
5804 
5805 	atomic_set(&bbio->error, 0);
5806 	refcount_set(&bbio->refs, 1);
5807 
5808 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5809 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5810 
5811 	return bbio;
5812 }
5813 
5814 void btrfs_get_bbio(struct btrfs_bio *bbio)
5815 {
5816 	WARN_ON(!refcount_read(&bbio->refs));
5817 	refcount_inc(&bbio->refs);
5818 }
5819 
5820 void btrfs_put_bbio(struct btrfs_bio *bbio)
5821 {
5822 	if (!bbio)
5823 		return;
5824 	if (refcount_dec_and_test(&bbio->refs))
5825 		kfree(bbio);
5826 }
5827 
5828 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5829 /*
5830  * Please note that, discard won't be sent to target device of device
5831  * replace.
5832  */
5833 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5834 					 u64 logical, u64 *length_ret,
5835 					 struct btrfs_bio **bbio_ret)
5836 {
5837 	struct extent_map *em;
5838 	struct map_lookup *map;
5839 	struct btrfs_bio *bbio;
5840 	u64 length = *length_ret;
5841 	u64 offset;
5842 	u64 stripe_nr;
5843 	u64 stripe_nr_end;
5844 	u64 stripe_end_offset;
5845 	u64 stripe_cnt;
5846 	u64 stripe_len;
5847 	u64 stripe_offset;
5848 	u64 num_stripes;
5849 	u32 stripe_index;
5850 	u32 factor = 0;
5851 	u32 sub_stripes = 0;
5852 	u64 stripes_per_dev = 0;
5853 	u32 remaining_stripes = 0;
5854 	u32 last_stripe = 0;
5855 	int ret = 0;
5856 	int i;
5857 
5858 	/* discard always return a bbio */
5859 	ASSERT(bbio_ret);
5860 
5861 	em = btrfs_get_chunk_map(fs_info, logical, length);
5862 	if (IS_ERR(em))
5863 		return PTR_ERR(em);
5864 
5865 	map = em->map_lookup;
5866 	/* we don't discard raid56 yet */
5867 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5868 		ret = -EOPNOTSUPP;
5869 		goto out;
5870 	}
5871 
5872 	offset = logical - em->start;
5873 	length = min_t(u64, em->start + em->len - logical, length);
5874 	*length_ret = length;
5875 
5876 	stripe_len = map->stripe_len;
5877 	/*
5878 	 * stripe_nr counts the total number of stripes we have to stride
5879 	 * to get to this block
5880 	 */
5881 	stripe_nr = div64_u64(offset, stripe_len);
5882 
5883 	/* stripe_offset is the offset of this block in its stripe */
5884 	stripe_offset = offset - stripe_nr * stripe_len;
5885 
5886 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5887 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5888 	stripe_cnt = stripe_nr_end - stripe_nr;
5889 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5890 			    (offset + length);
5891 	/*
5892 	 * after this, stripe_nr is the number of stripes on this
5893 	 * device we have to walk to find the data, and stripe_index is
5894 	 * the number of our device in the stripe array
5895 	 */
5896 	num_stripes = 1;
5897 	stripe_index = 0;
5898 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5899 			 BTRFS_BLOCK_GROUP_RAID10)) {
5900 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5901 			sub_stripes = 1;
5902 		else
5903 			sub_stripes = map->sub_stripes;
5904 
5905 		factor = map->num_stripes / sub_stripes;
5906 		num_stripes = min_t(u64, map->num_stripes,
5907 				    sub_stripes * stripe_cnt);
5908 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5909 		stripe_index *= sub_stripes;
5910 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5911 					      &remaining_stripes);
5912 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5913 		last_stripe *= sub_stripes;
5914 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5915 				BTRFS_BLOCK_GROUP_DUP)) {
5916 		num_stripes = map->num_stripes;
5917 	} else {
5918 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5919 					&stripe_index);
5920 	}
5921 
5922 	bbio = alloc_btrfs_bio(num_stripes, 0);
5923 	if (!bbio) {
5924 		ret = -ENOMEM;
5925 		goto out;
5926 	}
5927 
5928 	for (i = 0; i < num_stripes; i++) {
5929 		bbio->stripes[i].physical =
5930 			map->stripes[stripe_index].physical +
5931 			stripe_offset + stripe_nr * map->stripe_len;
5932 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5933 
5934 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5935 				 BTRFS_BLOCK_GROUP_RAID10)) {
5936 			bbio->stripes[i].length = stripes_per_dev *
5937 				map->stripe_len;
5938 
5939 			if (i / sub_stripes < remaining_stripes)
5940 				bbio->stripes[i].length +=
5941 					map->stripe_len;
5942 
5943 			/*
5944 			 * Special for the first stripe and
5945 			 * the last stripe:
5946 			 *
5947 			 * |-------|...|-------|
5948 			 *     |----------|
5949 			 *    off     end_off
5950 			 */
5951 			if (i < sub_stripes)
5952 				bbio->stripes[i].length -=
5953 					stripe_offset;
5954 
5955 			if (stripe_index >= last_stripe &&
5956 			    stripe_index <= (last_stripe +
5957 					     sub_stripes - 1))
5958 				bbio->stripes[i].length -=
5959 					stripe_end_offset;
5960 
5961 			if (i == sub_stripes - 1)
5962 				stripe_offset = 0;
5963 		} else {
5964 			bbio->stripes[i].length = length;
5965 		}
5966 
5967 		stripe_index++;
5968 		if (stripe_index == map->num_stripes) {
5969 			stripe_index = 0;
5970 			stripe_nr++;
5971 		}
5972 	}
5973 
5974 	*bbio_ret = bbio;
5975 	bbio->map_type = map->type;
5976 	bbio->num_stripes = num_stripes;
5977 out:
5978 	free_extent_map(em);
5979 	return ret;
5980 }
5981 
5982 /*
5983  * In dev-replace case, for repair case (that's the only case where the mirror
5984  * is selected explicitly when calling btrfs_map_block), blocks left of the
5985  * left cursor can also be read from the target drive.
5986  *
5987  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5988  * array of stripes.
5989  * For READ, it also needs to be supported using the same mirror number.
5990  *
5991  * If the requested block is not left of the left cursor, EIO is returned. This
5992  * can happen because btrfs_num_copies() returns one more in the dev-replace
5993  * case.
5994  */
5995 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5996 					 u64 logical, u64 length,
5997 					 u64 srcdev_devid, int *mirror_num,
5998 					 u64 *physical)
5999 {
6000 	struct btrfs_bio *bbio = NULL;
6001 	int num_stripes;
6002 	int index_srcdev = 0;
6003 	int found = 0;
6004 	u64 physical_of_found = 0;
6005 	int i;
6006 	int ret = 0;
6007 
6008 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6009 				logical, &length, &bbio, 0, 0);
6010 	if (ret) {
6011 		ASSERT(bbio == NULL);
6012 		return ret;
6013 	}
6014 
6015 	num_stripes = bbio->num_stripes;
6016 	if (*mirror_num > num_stripes) {
6017 		/*
6018 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6019 		 * that means that the requested area is not left of the left
6020 		 * cursor
6021 		 */
6022 		btrfs_put_bbio(bbio);
6023 		return -EIO;
6024 	}
6025 
6026 	/*
6027 	 * process the rest of the function using the mirror_num of the source
6028 	 * drive. Therefore look it up first.  At the end, patch the device
6029 	 * pointer to the one of the target drive.
6030 	 */
6031 	for (i = 0; i < num_stripes; i++) {
6032 		if (bbio->stripes[i].dev->devid != srcdev_devid)
6033 			continue;
6034 
6035 		/*
6036 		 * In case of DUP, in order to keep it simple, only add the
6037 		 * mirror with the lowest physical address
6038 		 */
6039 		if (found &&
6040 		    physical_of_found <= bbio->stripes[i].physical)
6041 			continue;
6042 
6043 		index_srcdev = i;
6044 		found = 1;
6045 		physical_of_found = bbio->stripes[i].physical;
6046 	}
6047 
6048 	btrfs_put_bbio(bbio);
6049 
6050 	ASSERT(found);
6051 	if (!found)
6052 		return -EIO;
6053 
6054 	*mirror_num = index_srcdev + 1;
6055 	*physical = physical_of_found;
6056 	return ret;
6057 }
6058 
6059 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6060 {
6061 	struct btrfs_block_group *cache;
6062 	bool ret;
6063 
6064 	/* Non zoned filesystem does not use "to_copy" flag */
6065 	if (!btrfs_is_zoned(fs_info))
6066 		return false;
6067 
6068 	cache = btrfs_lookup_block_group(fs_info, logical);
6069 
6070 	spin_lock(&cache->lock);
6071 	ret = cache->to_copy;
6072 	spin_unlock(&cache->lock);
6073 
6074 	btrfs_put_block_group(cache);
6075 	return ret;
6076 }
6077 
6078 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6079 				      struct btrfs_bio **bbio_ret,
6080 				      struct btrfs_dev_replace *dev_replace,
6081 				      u64 logical,
6082 				      int *num_stripes_ret, int *max_errors_ret)
6083 {
6084 	struct btrfs_bio *bbio = *bbio_ret;
6085 	u64 srcdev_devid = dev_replace->srcdev->devid;
6086 	int tgtdev_indexes = 0;
6087 	int num_stripes = *num_stripes_ret;
6088 	int max_errors = *max_errors_ret;
6089 	int i;
6090 
6091 	if (op == BTRFS_MAP_WRITE) {
6092 		int index_where_to_add;
6093 
6094 		/*
6095 		 * A block group which have "to_copy" set will eventually
6096 		 * copied by dev-replace process. We can avoid cloning IO here.
6097 		 */
6098 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6099 			return;
6100 
6101 		/*
6102 		 * duplicate the write operations while the dev replace
6103 		 * procedure is running. Since the copying of the old disk to
6104 		 * the new disk takes place at run time while the filesystem is
6105 		 * mounted writable, the regular write operations to the old
6106 		 * disk have to be duplicated to go to the new disk as well.
6107 		 *
6108 		 * Note that device->missing is handled by the caller, and that
6109 		 * the write to the old disk is already set up in the stripes
6110 		 * array.
6111 		 */
6112 		index_where_to_add = num_stripes;
6113 		for (i = 0; i < num_stripes; i++) {
6114 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6115 				/* write to new disk, too */
6116 				struct btrfs_bio_stripe *new =
6117 					bbio->stripes + index_where_to_add;
6118 				struct btrfs_bio_stripe *old =
6119 					bbio->stripes + i;
6120 
6121 				new->physical = old->physical;
6122 				new->length = old->length;
6123 				new->dev = dev_replace->tgtdev;
6124 				bbio->tgtdev_map[i] = index_where_to_add;
6125 				index_where_to_add++;
6126 				max_errors++;
6127 				tgtdev_indexes++;
6128 			}
6129 		}
6130 		num_stripes = index_where_to_add;
6131 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6132 		int index_srcdev = 0;
6133 		int found = 0;
6134 		u64 physical_of_found = 0;
6135 
6136 		/*
6137 		 * During the dev-replace procedure, the target drive can also
6138 		 * be used to read data in case it is needed to repair a corrupt
6139 		 * block elsewhere. This is possible if the requested area is
6140 		 * left of the left cursor. In this area, the target drive is a
6141 		 * full copy of the source drive.
6142 		 */
6143 		for (i = 0; i < num_stripes; i++) {
6144 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6145 				/*
6146 				 * In case of DUP, in order to keep it simple,
6147 				 * only add the mirror with the lowest physical
6148 				 * address
6149 				 */
6150 				if (found &&
6151 				    physical_of_found <=
6152 				     bbio->stripes[i].physical)
6153 					continue;
6154 				index_srcdev = i;
6155 				found = 1;
6156 				physical_of_found = bbio->stripes[i].physical;
6157 			}
6158 		}
6159 		if (found) {
6160 			struct btrfs_bio_stripe *tgtdev_stripe =
6161 				bbio->stripes + num_stripes;
6162 
6163 			tgtdev_stripe->physical = physical_of_found;
6164 			tgtdev_stripe->length =
6165 				bbio->stripes[index_srcdev].length;
6166 			tgtdev_stripe->dev = dev_replace->tgtdev;
6167 			bbio->tgtdev_map[index_srcdev] = num_stripes;
6168 
6169 			tgtdev_indexes++;
6170 			num_stripes++;
6171 		}
6172 	}
6173 
6174 	*num_stripes_ret = num_stripes;
6175 	*max_errors_ret = max_errors;
6176 	bbio->num_tgtdevs = tgtdev_indexes;
6177 	*bbio_ret = bbio;
6178 }
6179 
6180 static bool need_full_stripe(enum btrfs_map_op op)
6181 {
6182 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6183 }
6184 
6185 /*
6186  * Calculate the geometry of a particular (address, len) tuple. This
6187  * information is used to calculate how big a particular bio can get before it
6188  * straddles a stripe.
6189  *
6190  * @fs_info: the filesystem
6191  * @em:      mapping containing the logical extent
6192  * @op:      type of operation - write or read
6193  * @logical: address that we want to figure out the geometry of
6194  * @io_geom: pointer used to return values
6195  *
6196  * Returns < 0 in case a chunk for the given logical address cannot be found,
6197  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6198  */
6199 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6200 			  enum btrfs_map_op op, u64 logical,
6201 			  struct btrfs_io_geometry *io_geom)
6202 {
6203 	struct map_lookup *map;
6204 	u64 len;
6205 	u64 offset;
6206 	u64 stripe_offset;
6207 	u64 stripe_nr;
6208 	u64 stripe_len;
6209 	u64 raid56_full_stripe_start = (u64)-1;
6210 	int data_stripes;
6211 
6212 	ASSERT(op != BTRFS_MAP_DISCARD);
6213 
6214 	map = em->map_lookup;
6215 	/* Offset of this logical address in the chunk */
6216 	offset = logical - em->start;
6217 	/* Len of a stripe in a chunk */
6218 	stripe_len = map->stripe_len;
6219 	/* Stripe where this block falls in */
6220 	stripe_nr = div64_u64(offset, stripe_len);
6221 	/* Offset of stripe in the chunk */
6222 	stripe_offset = stripe_nr * stripe_len;
6223 	if (offset < stripe_offset) {
6224 		btrfs_crit(fs_info,
6225 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6226 			stripe_offset, offset, em->start, logical, stripe_len);
6227 		return -EINVAL;
6228 	}
6229 
6230 	/* stripe_offset is the offset of this block in its stripe */
6231 	stripe_offset = offset - stripe_offset;
6232 	data_stripes = nr_data_stripes(map);
6233 
6234 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6235 		u64 max_len = stripe_len - stripe_offset;
6236 
6237 		/*
6238 		 * In case of raid56, we need to know the stripe aligned start
6239 		 */
6240 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6241 			unsigned long full_stripe_len = stripe_len * data_stripes;
6242 			raid56_full_stripe_start = offset;
6243 
6244 			/*
6245 			 * Allow a write of a full stripe, but make sure we
6246 			 * don't allow straddling of stripes
6247 			 */
6248 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6249 					full_stripe_len);
6250 			raid56_full_stripe_start *= full_stripe_len;
6251 
6252 			/*
6253 			 * For writes to RAID[56], allow a full stripeset across
6254 			 * all disks. For other RAID types and for RAID[56]
6255 			 * reads, just allow a single stripe (on a single disk).
6256 			 */
6257 			if (op == BTRFS_MAP_WRITE) {
6258 				max_len = stripe_len * data_stripes -
6259 					  (offset - raid56_full_stripe_start);
6260 			}
6261 		}
6262 		len = min_t(u64, em->len - offset, max_len);
6263 	} else {
6264 		len = em->len - offset;
6265 	}
6266 
6267 	io_geom->len = len;
6268 	io_geom->offset = offset;
6269 	io_geom->stripe_len = stripe_len;
6270 	io_geom->stripe_nr = stripe_nr;
6271 	io_geom->stripe_offset = stripe_offset;
6272 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6273 
6274 	return 0;
6275 }
6276 
6277 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6278 			     enum btrfs_map_op op,
6279 			     u64 logical, u64 *length,
6280 			     struct btrfs_bio **bbio_ret,
6281 			     int mirror_num, int need_raid_map)
6282 {
6283 	struct extent_map *em;
6284 	struct map_lookup *map;
6285 	u64 stripe_offset;
6286 	u64 stripe_nr;
6287 	u64 stripe_len;
6288 	u32 stripe_index;
6289 	int data_stripes;
6290 	int i;
6291 	int ret = 0;
6292 	int num_stripes;
6293 	int max_errors = 0;
6294 	int tgtdev_indexes = 0;
6295 	struct btrfs_bio *bbio = NULL;
6296 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6297 	int dev_replace_is_ongoing = 0;
6298 	int num_alloc_stripes;
6299 	int patch_the_first_stripe_for_dev_replace = 0;
6300 	u64 physical_to_patch_in_first_stripe = 0;
6301 	u64 raid56_full_stripe_start = (u64)-1;
6302 	struct btrfs_io_geometry geom;
6303 
6304 	ASSERT(bbio_ret);
6305 	ASSERT(op != BTRFS_MAP_DISCARD);
6306 
6307 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6308 	ASSERT(!IS_ERR(em));
6309 
6310 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6311 	if (ret < 0)
6312 		return ret;
6313 
6314 	map = em->map_lookup;
6315 
6316 	*length = geom.len;
6317 	stripe_len = geom.stripe_len;
6318 	stripe_nr = geom.stripe_nr;
6319 	stripe_offset = geom.stripe_offset;
6320 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6321 	data_stripes = nr_data_stripes(map);
6322 
6323 	down_read(&dev_replace->rwsem);
6324 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6325 	/*
6326 	 * Hold the semaphore for read during the whole operation, write is
6327 	 * requested at commit time but must wait.
6328 	 */
6329 	if (!dev_replace_is_ongoing)
6330 		up_read(&dev_replace->rwsem);
6331 
6332 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6333 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6334 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6335 						    dev_replace->srcdev->devid,
6336 						    &mirror_num,
6337 					    &physical_to_patch_in_first_stripe);
6338 		if (ret)
6339 			goto out;
6340 		else
6341 			patch_the_first_stripe_for_dev_replace = 1;
6342 	} else if (mirror_num > map->num_stripes) {
6343 		mirror_num = 0;
6344 	}
6345 
6346 	num_stripes = 1;
6347 	stripe_index = 0;
6348 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6349 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6350 				&stripe_index);
6351 		if (!need_full_stripe(op))
6352 			mirror_num = 1;
6353 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6354 		if (need_full_stripe(op))
6355 			num_stripes = map->num_stripes;
6356 		else if (mirror_num)
6357 			stripe_index = mirror_num - 1;
6358 		else {
6359 			stripe_index = find_live_mirror(fs_info, map, 0,
6360 					    dev_replace_is_ongoing);
6361 			mirror_num = stripe_index + 1;
6362 		}
6363 
6364 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6365 		if (need_full_stripe(op)) {
6366 			num_stripes = map->num_stripes;
6367 		} else if (mirror_num) {
6368 			stripe_index = mirror_num - 1;
6369 		} else {
6370 			mirror_num = 1;
6371 		}
6372 
6373 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6374 		u32 factor = map->num_stripes / map->sub_stripes;
6375 
6376 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6377 		stripe_index *= map->sub_stripes;
6378 
6379 		if (need_full_stripe(op))
6380 			num_stripes = map->sub_stripes;
6381 		else if (mirror_num)
6382 			stripe_index += mirror_num - 1;
6383 		else {
6384 			int old_stripe_index = stripe_index;
6385 			stripe_index = find_live_mirror(fs_info, map,
6386 					      stripe_index,
6387 					      dev_replace_is_ongoing);
6388 			mirror_num = stripe_index - old_stripe_index + 1;
6389 		}
6390 
6391 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6392 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6393 			/* push stripe_nr back to the start of the full stripe */
6394 			stripe_nr = div64_u64(raid56_full_stripe_start,
6395 					stripe_len * data_stripes);
6396 
6397 			/* RAID[56] write or recovery. Return all stripes */
6398 			num_stripes = map->num_stripes;
6399 			max_errors = nr_parity_stripes(map);
6400 
6401 			*length = map->stripe_len;
6402 			stripe_index = 0;
6403 			stripe_offset = 0;
6404 		} else {
6405 			/*
6406 			 * Mirror #0 or #1 means the original data block.
6407 			 * Mirror #2 is RAID5 parity block.
6408 			 * Mirror #3 is RAID6 Q block.
6409 			 */
6410 			stripe_nr = div_u64_rem(stripe_nr,
6411 					data_stripes, &stripe_index);
6412 			if (mirror_num > 1)
6413 				stripe_index = data_stripes + mirror_num - 2;
6414 
6415 			/* We distribute the parity blocks across stripes */
6416 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6417 					&stripe_index);
6418 			if (!need_full_stripe(op) && mirror_num <= 1)
6419 				mirror_num = 1;
6420 		}
6421 	} else {
6422 		/*
6423 		 * after this, stripe_nr is the number of stripes on this
6424 		 * device we have to walk to find the data, and stripe_index is
6425 		 * the number of our device in the stripe array
6426 		 */
6427 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6428 				&stripe_index);
6429 		mirror_num = stripe_index + 1;
6430 	}
6431 	if (stripe_index >= map->num_stripes) {
6432 		btrfs_crit(fs_info,
6433 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6434 			   stripe_index, map->num_stripes);
6435 		ret = -EINVAL;
6436 		goto out;
6437 	}
6438 
6439 	num_alloc_stripes = num_stripes;
6440 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6441 		if (op == BTRFS_MAP_WRITE)
6442 			num_alloc_stripes <<= 1;
6443 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6444 			num_alloc_stripes++;
6445 		tgtdev_indexes = num_stripes;
6446 	}
6447 
6448 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6449 	if (!bbio) {
6450 		ret = -ENOMEM;
6451 		goto out;
6452 	}
6453 
6454 	for (i = 0; i < num_stripes; i++) {
6455 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6456 			stripe_offset + stripe_nr * map->stripe_len;
6457 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6458 		stripe_index++;
6459 	}
6460 
6461 	/* build raid_map */
6462 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6463 	    (need_full_stripe(op) || mirror_num > 1)) {
6464 		u64 tmp;
6465 		unsigned rot;
6466 
6467 		/* Work out the disk rotation on this stripe-set */
6468 		div_u64_rem(stripe_nr, num_stripes, &rot);
6469 
6470 		/* Fill in the logical address of each stripe */
6471 		tmp = stripe_nr * data_stripes;
6472 		for (i = 0; i < data_stripes; i++)
6473 			bbio->raid_map[(i+rot) % num_stripes] =
6474 				em->start + (tmp + i) * map->stripe_len;
6475 
6476 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6477 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6478 			bbio->raid_map[(i+rot+1) % num_stripes] =
6479 				RAID6_Q_STRIPE;
6480 
6481 		sort_parity_stripes(bbio, num_stripes);
6482 	}
6483 
6484 	if (need_full_stripe(op))
6485 		max_errors = btrfs_chunk_max_errors(map);
6486 
6487 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6488 	    need_full_stripe(op)) {
6489 		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6490 					  &num_stripes, &max_errors);
6491 	}
6492 
6493 	*bbio_ret = bbio;
6494 	bbio->map_type = map->type;
6495 	bbio->num_stripes = num_stripes;
6496 	bbio->max_errors = max_errors;
6497 	bbio->mirror_num = mirror_num;
6498 
6499 	/*
6500 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6501 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6502 	 * available as a mirror
6503 	 */
6504 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6505 		WARN_ON(num_stripes > 1);
6506 		bbio->stripes[0].dev = dev_replace->tgtdev;
6507 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6508 		bbio->mirror_num = map->num_stripes + 1;
6509 	}
6510 out:
6511 	if (dev_replace_is_ongoing) {
6512 		lockdep_assert_held(&dev_replace->rwsem);
6513 		/* Unlock and let waiting writers proceed */
6514 		up_read(&dev_replace->rwsem);
6515 	}
6516 	free_extent_map(em);
6517 	return ret;
6518 }
6519 
6520 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6521 		      u64 logical, u64 *length,
6522 		      struct btrfs_bio **bbio_ret, int mirror_num)
6523 {
6524 	if (op == BTRFS_MAP_DISCARD)
6525 		return __btrfs_map_block_for_discard(fs_info, logical,
6526 						     length, bbio_ret);
6527 
6528 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6529 				 mirror_num, 0);
6530 }
6531 
6532 /* For Scrub/replace */
6533 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6534 		     u64 logical, u64 *length,
6535 		     struct btrfs_bio **bbio_ret)
6536 {
6537 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6538 }
6539 
6540 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6541 {
6542 	bio->bi_private = bbio->private;
6543 	bio->bi_end_io = bbio->end_io;
6544 	bio_endio(bio);
6545 
6546 	btrfs_put_bbio(bbio);
6547 }
6548 
6549 static void btrfs_end_bio(struct bio *bio)
6550 {
6551 	struct btrfs_bio *bbio = bio->bi_private;
6552 	int is_orig_bio = 0;
6553 
6554 	if (bio->bi_status) {
6555 		atomic_inc(&bbio->error);
6556 		if (bio->bi_status == BLK_STS_IOERR ||
6557 		    bio->bi_status == BLK_STS_TARGET) {
6558 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6559 
6560 			ASSERT(dev->bdev);
6561 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6562 				btrfs_dev_stat_inc_and_print(dev,
6563 						BTRFS_DEV_STAT_WRITE_ERRS);
6564 			else if (!(bio->bi_opf & REQ_RAHEAD))
6565 				btrfs_dev_stat_inc_and_print(dev,
6566 						BTRFS_DEV_STAT_READ_ERRS);
6567 			if (bio->bi_opf & REQ_PREFLUSH)
6568 				btrfs_dev_stat_inc_and_print(dev,
6569 						BTRFS_DEV_STAT_FLUSH_ERRS);
6570 		}
6571 	}
6572 
6573 	if (bio == bbio->orig_bio)
6574 		is_orig_bio = 1;
6575 
6576 	btrfs_bio_counter_dec(bbio->fs_info);
6577 
6578 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6579 		if (!is_orig_bio) {
6580 			bio_put(bio);
6581 			bio = bbio->orig_bio;
6582 		}
6583 
6584 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6585 		/* only send an error to the higher layers if it is
6586 		 * beyond the tolerance of the btrfs bio
6587 		 */
6588 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6589 			bio->bi_status = BLK_STS_IOERR;
6590 		} else {
6591 			/*
6592 			 * this bio is actually up to date, we didn't
6593 			 * go over the max number of errors
6594 			 */
6595 			bio->bi_status = BLK_STS_OK;
6596 		}
6597 
6598 		btrfs_end_bbio(bbio, bio);
6599 	} else if (!is_orig_bio) {
6600 		bio_put(bio);
6601 	}
6602 }
6603 
6604 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6605 			      u64 physical, struct btrfs_device *dev)
6606 {
6607 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6608 
6609 	bio->bi_private = bbio;
6610 	btrfs_io_bio(bio)->device = dev;
6611 	bio->bi_end_io = btrfs_end_bio;
6612 	bio->bi_iter.bi_sector = physical >> 9;
6613 	/*
6614 	 * For zone append writing, bi_sector must point the beginning of the
6615 	 * zone
6616 	 */
6617 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6618 		if (btrfs_dev_is_sequential(dev, physical)) {
6619 			u64 zone_start = round_down(physical, fs_info->zone_size);
6620 
6621 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6622 		} else {
6623 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6624 			bio->bi_opf |= REQ_OP_WRITE;
6625 		}
6626 	}
6627 	btrfs_debug_in_rcu(fs_info,
6628 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6629 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6630 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6631 		dev->devid, bio->bi_iter.bi_size);
6632 	bio_set_dev(bio, dev->bdev);
6633 
6634 	btrfs_bio_counter_inc_noblocked(fs_info);
6635 
6636 	btrfsic_submit_bio(bio);
6637 }
6638 
6639 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6640 {
6641 	atomic_inc(&bbio->error);
6642 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6643 		/* Should be the original bio. */
6644 		WARN_ON(bio != bbio->orig_bio);
6645 
6646 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6647 		bio->bi_iter.bi_sector = logical >> 9;
6648 		if (atomic_read(&bbio->error) > bbio->max_errors)
6649 			bio->bi_status = BLK_STS_IOERR;
6650 		else
6651 			bio->bi_status = BLK_STS_OK;
6652 		btrfs_end_bbio(bbio, bio);
6653 	}
6654 }
6655 
6656 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6657 			   int mirror_num)
6658 {
6659 	struct btrfs_device *dev;
6660 	struct bio *first_bio = bio;
6661 	u64 logical = bio->bi_iter.bi_sector << 9;
6662 	u64 length = 0;
6663 	u64 map_length;
6664 	int ret;
6665 	int dev_nr;
6666 	int total_devs;
6667 	struct btrfs_bio *bbio = NULL;
6668 
6669 	length = bio->bi_iter.bi_size;
6670 	map_length = length;
6671 
6672 	btrfs_bio_counter_inc_blocked(fs_info);
6673 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6674 				&map_length, &bbio, mirror_num, 1);
6675 	if (ret) {
6676 		btrfs_bio_counter_dec(fs_info);
6677 		return errno_to_blk_status(ret);
6678 	}
6679 
6680 	total_devs = bbio->num_stripes;
6681 	bbio->orig_bio = first_bio;
6682 	bbio->private = first_bio->bi_private;
6683 	bbio->end_io = first_bio->bi_end_io;
6684 	bbio->fs_info = fs_info;
6685 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6686 
6687 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6688 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6689 		/* In this case, map_length has been set to the length of
6690 		   a single stripe; not the whole write */
6691 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6692 			ret = raid56_parity_write(fs_info, bio, bbio,
6693 						  map_length);
6694 		} else {
6695 			ret = raid56_parity_recover(fs_info, bio, bbio,
6696 						    map_length, mirror_num, 1);
6697 		}
6698 
6699 		btrfs_bio_counter_dec(fs_info);
6700 		return errno_to_blk_status(ret);
6701 	}
6702 
6703 	if (map_length < length) {
6704 		btrfs_crit(fs_info,
6705 			   "mapping failed logical %llu bio len %llu len %llu",
6706 			   logical, length, map_length);
6707 		BUG();
6708 	}
6709 
6710 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6711 		dev = bbio->stripes[dev_nr].dev;
6712 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6713 						   &dev->dev_state) ||
6714 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6715 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6716 			bbio_error(bbio, first_bio, logical);
6717 			continue;
6718 		}
6719 
6720 		if (dev_nr < total_devs - 1)
6721 			bio = btrfs_bio_clone(first_bio);
6722 		else
6723 			bio = first_bio;
6724 
6725 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6726 	}
6727 	btrfs_bio_counter_dec(fs_info);
6728 	return BLK_STS_OK;
6729 }
6730 
6731 /*
6732  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6733  * return NULL.
6734  *
6735  * If devid and uuid are both specified, the match must be exact, otherwise
6736  * only devid is used.
6737  */
6738 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6739 				       u64 devid, u8 *uuid, u8 *fsid)
6740 {
6741 	struct btrfs_device *device;
6742 	struct btrfs_fs_devices *seed_devs;
6743 
6744 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6745 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6746 			if (device->devid == devid &&
6747 			    (!uuid || memcmp(device->uuid, uuid,
6748 					     BTRFS_UUID_SIZE) == 0))
6749 				return device;
6750 		}
6751 	}
6752 
6753 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6754 		if (!fsid ||
6755 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6756 			list_for_each_entry(device, &seed_devs->devices,
6757 					    dev_list) {
6758 				if (device->devid == devid &&
6759 				    (!uuid || memcmp(device->uuid, uuid,
6760 						     BTRFS_UUID_SIZE) == 0))
6761 					return device;
6762 			}
6763 		}
6764 	}
6765 
6766 	return NULL;
6767 }
6768 
6769 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6770 					    u64 devid, u8 *dev_uuid)
6771 {
6772 	struct btrfs_device *device;
6773 	unsigned int nofs_flag;
6774 
6775 	/*
6776 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6777 	 * allocation, however we don't want to change btrfs_alloc_device() to
6778 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6779 	 * places.
6780 	 */
6781 	nofs_flag = memalloc_nofs_save();
6782 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6783 	memalloc_nofs_restore(nofs_flag);
6784 	if (IS_ERR(device))
6785 		return device;
6786 
6787 	list_add(&device->dev_list, &fs_devices->devices);
6788 	device->fs_devices = fs_devices;
6789 	fs_devices->num_devices++;
6790 
6791 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6792 	fs_devices->missing_devices++;
6793 
6794 	return device;
6795 }
6796 
6797 /**
6798  * btrfs_alloc_device - allocate struct btrfs_device
6799  * @fs_info:	used only for generating a new devid, can be NULL if
6800  *		devid is provided (i.e. @devid != NULL).
6801  * @devid:	a pointer to devid for this device.  If NULL a new devid
6802  *		is generated.
6803  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6804  *		is generated.
6805  *
6806  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6807  * on error.  Returned struct is not linked onto any lists and must be
6808  * destroyed with btrfs_free_device.
6809  */
6810 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6811 					const u64 *devid,
6812 					const u8 *uuid)
6813 {
6814 	struct btrfs_device *dev;
6815 	u64 tmp;
6816 
6817 	if (WARN_ON(!devid && !fs_info))
6818 		return ERR_PTR(-EINVAL);
6819 
6820 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6821 	if (!dev)
6822 		return ERR_PTR(-ENOMEM);
6823 
6824 	/*
6825 	 * Preallocate a bio that's always going to be used for flushing device
6826 	 * barriers and matches the device lifespan
6827 	 */
6828 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6829 	if (!dev->flush_bio) {
6830 		kfree(dev);
6831 		return ERR_PTR(-ENOMEM);
6832 	}
6833 
6834 	INIT_LIST_HEAD(&dev->dev_list);
6835 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6836 	INIT_LIST_HEAD(&dev->post_commit_list);
6837 
6838 	atomic_set(&dev->reada_in_flight, 0);
6839 	atomic_set(&dev->dev_stats_ccnt, 0);
6840 	btrfs_device_data_ordered_init(dev);
6841 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6842 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6843 	extent_io_tree_init(fs_info, &dev->alloc_state,
6844 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6845 
6846 	if (devid)
6847 		tmp = *devid;
6848 	else {
6849 		int ret;
6850 
6851 		ret = find_next_devid(fs_info, &tmp);
6852 		if (ret) {
6853 			btrfs_free_device(dev);
6854 			return ERR_PTR(ret);
6855 		}
6856 	}
6857 	dev->devid = tmp;
6858 
6859 	if (uuid)
6860 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6861 	else
6862 		generate_random_uuid(dev->uuid);
6863 
6864 	return dev;
6865 }
6866 
6867 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6868 					u64 devid, u8 *uuid, bool error)
6869 {
6870 	if (error)
6871 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6872 			      devid, uuid);
6873 	else
6874 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6875 			      devid, uuid);
6876 }
6877 
6878 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6879 {
6880 	const int data_stripes = calc_data_stripes(type, num_stripes);
6881 
6882 	return div_u64(chunk_len, data_stripes);
6883 }
6884 
6885 #if BITS_PER_LONG == 32
6886 /*
6887  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6888  * can't be accessed on 32bit systems.
6889  *
6890  * This function do mount time check to reject the fs if it already has
6891  * metadata chunk beyond that limit.
6892  */
6893 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6894 				  u64 logical, u64 length, u64 type)
6895 {
6896 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6897 		return 0;
6898 
6899 	if (logical + length < MAX_LFS_FILESIZE)
6900 		return 0;
6901 
6902 	btrfs_err_32bit_limit(fs_info);
6903 	return -EOVERFLOW;
6904 }
6905 
6906 /*
6907  * This is to give early warning for any metadata chunk reaching
6908  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6909  * Although we can still access the metadata, it's not going to be possible
6910  * once the limit is reached.
6911  */
6912 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6913 				  u64 logical, u64 length, u64 type)
6914 {
6915 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6916 		return;
6917 
6918 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6919 		return;
6920 
6921 	btrfs_warn_32bit_limit(fs_info);
6922 }
6923 #endif
6924 
6925 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6926 			  struct btrfs_chunk *chunk)
6927 {
6928 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6929 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6930 	struct map_lookup *map;
6931 	struct extent_map *em;
6932 	u64 logical;
6933 	u64 length;
6934 	u64 devid;
6935 	u64 type;
6936 	u8 uuid[BTRFS_UUID_SIZE];
6937 	int num_stripes;
6938 	int ret;
6939 	int i;
6940 
6941 	logical = key->offset;
6942 	length = btrfs_chunk_length(leaf, chunk);
6943 	type = btrfs_chunk_type(leaf, chunk);
6944 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6945 
6946 #if BITS_PER_LONG == 32
6947 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6948 	if (ret < 0)
6949 		return ret;
6950 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6951 #endif
6952 
6953 	/*
6954 	 * Only need to verify chunk item if we're reading from sys chunk array,
6955 	 * as chunk item in tree block is already verified by tree-checker.
6956 	 */
6957 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6958 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6959 		if (ret)
6960 			return ret;
6961 	}
6962 
6963 	read_lock(&map_tree->lock);
6964 	em = lookup_extent_mapping(map_tree, logical, 1);
6965 	read_unlock(&map_tree->lock);
6966 
6967 	/* already mapped? */
6968 	if (em && em->start <= logical && em->start + em->len > logical) {
6969 		free_extent_map(em);
6970 		return 0;
6971 	} else if (em) {
6972 		free_extent_map(em);
6973 	}
6974 
6975 	em = alloc_extent_map();
6976 	if (!em)
6977 		return -ENOMEM;
6978 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6979 	if (!map) {
6980 		free_extent_map(em);
6981 		return -ENOMEM;
6982 	}
6983 
6984 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6985 	em->map_lookup = map;
6986 	em->start = logical;
6987 	em->len = length;
6988 	em->orig_start = 0;
6989 	em->block_start = 0;
6990 	em->block_len = em->len;
6991 
6992 	map->num_stripes = num_stripes;
6993 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6994 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6995 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6996 	map->type = type;
6997 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6998 	map->verified_stripes = 0;
6999 	em->orig_block_len = calc_stripe_length(type, em->len,
7000 						map->num_stripes);
7001 	for (i = 0; i < num_stripes; i++) {
7002 		map->stripes[i].physical =
7003 			btrfs_stripe_offset_nr(leaf, chunk, i);
7004 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7005 		read_extent_buffer(leaf, uuid, (unsigned long)
7006 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7007 				   BTRFS_UUID_SIZE);
7008 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7009 							devid, uuid, NULL);
7010 		if (!map->stripes[i].dev &&
7011 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7012 			free_extent_map(em);
7013 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7014 			return -ENOENT;
7015 		}
7016 		if (!map->stripes[i].dev) {
7017 			map->stripes[i].dev =
7018 				add_missing_dev(fs_info->fs_devices, devid,
7019 						uuid);
7020 			if (IS_ERR(map->stripes[i].dev)) {
7021 				free_extent_map(em);
7022 				btrfs_err(fs_info,
7023 					"failed to init missing dev %llu: %ld",
7024 					devid, PTR_ERR(map->stripes[i].dev));
7025 				return PTR_ERR(map->stripes[i].dev);
7026 			}
7027 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7028 		}
7029 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7030 				&(map->stripes[i].dev->dev_state));
7031 
7032 	}
7033 
7034 	write_lock(&map_tree->lock);
7035 	ret = add_extent_mapping(map_tree, em, 0);
7036 	write_unlock(&map_tree->lock);
7037 	if (ret < 0) {
7038 		btrfs_err(fs_info,
7039 			  "failed to add chunk map, start=%llu len=%llu: %d",
7040 			  em->start, em->len, ret);
7041 	}
7042 	free_extent_map(em);
7043 
7044 	return ret;
7045 }
7046 
7047 static void fill_device_from_item(struct extent_buffer *leaf,
7048 				 struct btrfs_dev_item *dev_item,
7049 				 struct btrfs_device *device)
7050 {
7051 	unsigned long ptr;
7052 
7053 	device->devid = btrfs_device_id(leaf, dev_item);
7054 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7055 	device->total_bytes = device->disk_total_bytes;
7056 	device->commit_total_bytes = device->disk_total_bytes;
7057 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7058 	device->commit_bytes_used = device->bytes_used;
7059 	device->type = btrfs_device_type(leaf, dev_item);
7060 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7061 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7062 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7063 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7064 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7065 
7066 	ptr = btrfs_device_uuid(dev_item);
7067 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7068 }
7069 
7070 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7071 						  u8 *fsid)
7072 {
7073 	struct btrfs_fs_devices *fs_devices;
7074 	int ret;
7075 
7076 	lockdep_assert_held(&uuid_mutex);
7077 	ASSERT(fsid);
7078 
7079 	/* This will match only for multi-device seed fs */
7080 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7081 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7082 			return fs_devices;
7083 
7084 
7085 	fs_devices = find_fsid(fsid, NULL);
7086 	if (!fs_devices) {
7087 		if (!btrfs_test_opt(fs_info, DEGRADED))
7088 			return ERR_PTR(-ENOENT);
7089 
7090 		fs_devices = alloc_fs_devices(fsid, NULL);
7091 		if (IS_ERR(fs_devices))
7092 			return fs_devices;
7093 
7094 		fs_devices->seeding = true;
7095 		fs_devices->opened = 1;
7096 		return fs_devices;
7097 	}
7098 
7099 	/*
7100 	 * Upon first call for a seed fs fsid, just create a private copy of the
7101 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7102 	 */
7103 	fs_devices = clone_fs_devices(fs_devices);
7104 	if (IS_ERR(fs_devices))
7105 		return fs_devices;
7106 
7107 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7108 	if (ret) {
7109 		free_fs_devices(fs_devices);
7110 		return ERR_PTR(ret);
7111 	}
7112 
7113 	if (!fs_devices->seeding) {
7114 		close_fs_devices(fs_devices);
7115 		free_fs_devices(fs_devices);
7116 		return ERR_PTR(-EINVAL);
7117 	}
7118 
7119 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7120 
7121 	return fs_devices;
7122 }
7123 
7124 static int read_one_dev(struct extent_buffer *leaf,
7125 			struct btrfs_dev_item *dev_item)
7126 {
7127 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7128 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7129 	struct btrfs_device *device;
7130 	u64 devid;
7131 	int ret;
7132 	u8 fs_uuid[BTRFS_FSID_SIZE];
7133 	u8 dev_uuid[BTRFS_UUID_SIZE];
7134 
7135 	devid = btrfs_device_id(leaf, dev_item);
7136 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7137 			   BTRFS_UUID_SIZE);
7138 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7139 			   BTRFS_FSID_SIZE);
7140 
7141 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7142 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7143 		if (IS_ERR(fs_devices))
7144 			return PTR_ERR(fs_devices);
7145 	}
7146 
7147 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7148 				   fs_uuid);
7149 	if (!device) {
7150 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7151 			btrfs_report_missing_device(fs_info, devid,
7152 							dev_uuid, true);
7153 			return -ENOENT;
7154 		}
7155 
7156 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7157 		if (IS_ERR(device)) {
7158 			btrfs_err(fs_info,
7159 				"failed to add missing dev %llu: %ld",
7160 				devid, PTR_ERR(device));
7161 			return PTR_ERR(device);
7162 		}
7163 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7164 	} else {
7165 		if (!device->bdev) {
7166 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7167 				btrfs_report_missing_device(fs_info,
7168 						devid, dev_uuid, true);
7169 				return -ENOENT;
7170 			}
7171 			btrfs_report_missing_device(fs_info, devid,
7172 							dev_uuid, false);
7173 		}
7174 
7175 		if (!device->bdev &&
7176 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7177 			/*
7178 			 * this happens when a device that was properly setup
7179 			 * in the device info lists suddenly goes bad.
7180 			 * device->bdev is NULL, and so we have to set
7181 			 * device->missing to one here
7182 			 */
7183 			device->fs_devices->missing_devices++;
7184 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7185 		}
7186 
7187 		/* Move the device to its own fs_devices */
7188 		if (device->fs_devices != fs_devices) {
7189 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7190 							&device->dev_state));
7191 
7192 			list_move(&device->dev_list, &fs_devices->devices);
7193 			device->fs_devices->num_devices--;
7194 			fs_devices->num_devices++;
7195 
7196 			device->fs_devices->missing_devices--;
7197 			fs_devices->missing_devices++;
7198 
7199 			device->fs_devices = fs_devices;
7200 		}
7201 	}
7202 
7203 	if (device->fs_devices != fs_info->fs_devices) {
7204 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7205 		if (device->generation !=
7206 		    btrfs_device_generation(leaf, dev_item))
7207 			return -EINVAL;
7208 	}
7209 
7210 	fill_device_from_item(leaf, dev_item, device);
7211 	if (device->bdev) {
7212 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7213 
7214 		if (device->total_bytes > max_total_bytes) {
7215 			btrfs_err(fs_info,
7216 			"device total_bytes should be at most %llu but found %llu",
7217 				  max_total_bytes, device->total_bytes);
7218 			return -EINVAL;
7219 		}
7220 	}
7221 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7222 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7223 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7224 		device->fs_devices->total_rw_bytes += device->total_bytes;
7225 		atomic64_add(device->total_bytes - device->bytes_used,
7226 				&fs_info->free_chunk_space);
7227 	}
7228 	ret = 0;
7229 	return ret;
7230 }
7231 
7232 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7233 {
7234 	struct btrfs_root *root = fs_info->tree_root;
7235 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7236 	struct extent_buffer *sb;
7237 	struct btrfs_disk_key *disk_key;
7238 	struct btrfs_chunk *chunk;
7239 	u8 *array_ptr;
7240 	unsigned long sb_array_offset;
7241 	int ret = 0;
7242 	u32 num_stripes;
7243 	u32 array_size;
7244 	u32 len = 0;
7245 	u32 cur_offset;
7246 	u64 type;
7247 	struct btrfs_key key;
7248 
7249 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7250 	/*
7251 	 * This will create extent buffer of nodesize, superblock size is
7252 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7253 	 * overallocate but we can keep it as-is, only the first page is used.
7254 	 */
7255 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7256 					  root->root_key.objectid, 0);
7257 	if (IS_ERR(sb))
7258 		return PTR_ERR(sb);
7259 	set_extent_buffer_uptodate(sb);
7260 	/*
7261 	 * The sb extent buffer is artificial and just used to read the system array.
7262 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7263 	 * pages up-to-date when the page is larger: extent does not cover the
7264 	 * whole page and consequently check_page_uptodate does not find all
7265 	 * the page's extents up-to-date (the hole beyond sb),
7266 	 * write_extent_buffer then triggers a WARN_ON.
7267 	 *
7268 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7269 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7270 	 * to silence the warning eg. on PowerPC 64.
7271 	 */
7272 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7273 		SetPageUptodate(sb->pages[0]);
7274 
7275 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7276 	array_size = btrfs_super_sys_array_size(super_copy);
7277 
7278 	array_ptr = super_copy->sys_chunk_array;
7279 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7280 	cur_offset = 0;
7281 
7282 	while (cur_offset < array_size) {
7283 		disk_key = (struct btrfs_disk_key *)array_ptr;
7284 		len = sizeof(*disk_key);
7285 		if (cur_offset + len > array_size)
7286 			goto out_short_read;
7287 
7288 		btrfs_disk_key_to_cpu(&key, disk_key);
7289 
7290 		array_ptr += len;
7291 		sb_array_offset += len;
7292 		cur_offset += len;
7293 
7294 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7295 			btrfs_err(fs_info,
7296 			    "unexpected item type %u in sys_array at offset %u",
7297 				  (u32)key.type, cur_offset);
7298 			ret = -EIO;
7299 			break;
7300 		}
7301 
7302 		chunk = (struct btrfs_chunk *)sb_array_offset;
7303 		/*
7304 		 * At least one btrfs_chunk with one stripe must be present,
7305 		 * exact stripe count check comes afterwards
7306 		 */
7307 		len = btrfs_chunk_item_size(1);
7308 		if (cur_offset + len > array_size)
7309 			goto out_short_read;
7310 
7311 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7312 		if (!num_stripes) {
7313 			btrfs_err(fs_info,
7314 			"invalid number of stripes %u in sys_array at offset %u",
7315 				  num_stripes, cur_offset);
7316 			ret = -EIO;
7317 			break;
7318 		}
7319 
7320 		type = btrfs_chunk_type(sb, chunk);
7321 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7322 			btrfs_err(fs_info,
7323 			"invalid chunk type %llu in sys_array at offset %u",
7324 				  type, cur_offset);
7325 			ret = -EIO;
7326 			break;
7327 		}
7328 
7329 		len = btrfs_chunk_item_size(num_stripes);
7330 		if (cur_offset + len > array_size)
7331 			goto out_short_read;
7332 
7333 		ret = read_one_chunk(&key, sb, chunk);
7334 		if (ret)
7335 			break;
7336 
7337 		array_ptr += len;
7338 		sb_array_offset += len;
7339 		cur_offset += len;
7340 	}
7341 	clear_extent_buffer_uptodate(sb);
7342 	free_extent_buffer_stale(sb);
7343 	return ret;
7344 
7345 out_short_read:
7346 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7347 			len, cur_offset);
7348 	clear_extent_buffer_uptodate(sb);
7349 	free_extent_buffer_stale(sb);
7350 	return -EIO;
7351 }
7352 
7353 /*
7354  * Check if all chunks in the fs are OK for read-write degraded mount
7355  *
7356  * If the @failing_dev is specified, it's accounted as missing.
7357  *
7358  * Return true if all chunks meet the minimal RW mount requirements.
7359  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7360  */
7361 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7362 					struct btrfs_device *failing_dev)
7363 {
7364 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7365 	struct extent_map *em;
7366 	u64 next_start = 0;
7367 	bool ret = true;
7368 
7369 	read_lock(&map_tree->lock);
7370 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7371 	read_unlock(&map_tree->lock);
7372 	/* No chunk at all? Return false anyway */
7373 	if (!em) {
7374 		ret = false;
7375 		goto out;
7376 	}
7377 	while (em) {
7378 		struct map_lookup *map;
7379 		int missing = 0;
7380 		int max_tolerated;
7381 		int i;
7382 
7383 		map = em->map_lookup;
7384 		max_tolerated =
7385 			btrfs_get_num_tolerated_disk_barrier_failures(
7386 					map->type);
7387 		for (i = 0; i < map->num_stripes; i++) {
7388 			struct btrfs_device *dev = map->stripes[i].dev;
7389 
7390 			if (!dev || !dev->bdev ||
7391 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7392 			    dev->last_flush_error)
7393 				missing++;
7394 			else if (failing_dev && failing_dev == dev)
7395 				missing++;
7396 		}
7397 		if (missing > max_tolerated) {
7398 			if (!failing_dev)
7399 				btrfs_warn(fs_info,
7400 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7401 				   em->start, missing, max_tolerated);
7402 			free_extent_map(em);
7403 			ret = false;
7404 			goto out;
7405 		}
7406 		next_start = extent_map_end(em);
7407 		free_extent_map(em);
7408 
7409 		read_lock(&map_tree->lock);
7410 		em = lookup_extent_mapping(map_tree, next_start,
7411 					   (u64)(-1) - next_start);
7412 		read_unlock(&map_tree->lock);
7413 	}
7414 out:
7415 	return ret;
7416 }
7417 
7418 static void readahead_tree_node_children(struct extent_buffer *node)
7419 {
7420 	int i;
7421 	const int nr_items = btrfs_header_nritems(node);
7422 
7423 	for (i = 0; i < nr_items; i++)
7424 		btrfs_readahead_node_child(node, i);
7425 }
7426 
7427 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7428 {
7429 	struct btrfs_root *root = fs_info->chunk_root;
7430 	struct btrfs_path *path;
7431 	struct extent_buffer *leaf;
7432 	struct btrfs_key key;
7433 	struct btrfs_key found_key;
7434 	int ret;
7435 	int slot;
7436 	u64 total_dev = 0;
7437 	u64 last_ra_node = 0;
7438 
7439 	path = btrfs_alloc_path();
7440 	if (!path)
7441 		return -ENOMEM;
7442 
7443 	/*
7444 	 * uuid_mutex is needed only if we are mounting a sprout FS
7445 	 * otherwise we don't need it.
7446 	 */
7447 	mutex_lock(&uuid_mutex);
7448 
7449 	/*
7450 	 * It is possible for mount and umount to race in such a way that
7451 	 * we execute this code path, but open_fs_devices failed to clear
7452 	 * total_rw_bytes. We certainly want it cleared before reading the
7453 	 * device items, so clear it here.
7454 	 */
7455 	fs_info->fs_devices->total_rw_bytes = 0;
7456 
7457 	/*
7458 	 * Read all device items, and then all the chunk items. All
7459 	 * device items are found before any chunk item (their object id
7460 	 * is smaller than the lowest possible object id for a chunk
7461 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7462 	 */
7463 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7464 	key.offset = 0;
7465 	key.type = 0;
7466 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7467 	if (ret < 0)
7468 		goto error;
7469 	while (1) {
7470 		struct extent_buffer *node;
7471 
7472 		leaf = path->nodes[0];
7473 		slot = path->slots[0];
7474 		if (slot >= btrfs_header_nritems(leaf)) {
7475 			ret = btrfs_next_leaf(root, path);
7476 			if (ret == 0)
7477 				continue;
7478 			if (ret < 0)
7479 				goto error;
7480 			break;
7481 		}
7482 		/*
7483 		 * The nodes on level 1 are not locked but we don't need to do
7484 		 * that during mount time as nothing else can access the tree
7485 		 */
7486 		node = path->nodes[1];
7487 		if (node) {
7488 			if (last_ra_node != node->start) {
7489 				readahead_tree_node_children(node);
7490 				last_ra_node = node->start;
7491 			}
7492 		}
7493 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7494 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7495 			struct btrfs_dev_item *dev_item;
7496 			dev_item = btrfs_item_ptr(leaf, slot,
7497 						  struct btrfs_dev_item);
7498 			ret = read_one_dev(leaf, dev_item);
7499 			if (ret)
7500 				goto error;
7501 			total_dev++;
7502 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7503 			struct btrfs_chunk *chunk;
7504 
7505 			/*
7506 			 * We are only called at mount time, so no need to take
7507 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7508 			 * we always lock first fs_info->chunk_mutex before
7509 			 * acquiring any locks on the chunk tree. This is a
7510 			 * requirement for chunk allocation, see the comment on
7511 			 * top of btrfs_chunk_alloc() for details.
7512 			 */
7513 			ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7514 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7515 			ret = read_one_chunk(&found_key, leaf, chunk);
7516 			if (ret)
7517 				goto error;
7518 		}
7519 		path->slots[0]++;
7520 	}
7521 
7522 	/*
7523 	 * After loading chunk tree, we've got all device information,
7524 	 * do another round of validation checks.
7525 	 */
7526 	if (total_dev != fs_info->fs_devices->total_devices) {
7527 		btrfs_err(fs_info,
7528 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7529 			  btrfs_super_num_devices(fs_info->super_copy),
7530 			  total_dev);
7531 		ret = -EINVAL;
7532 		goto error;
7533 	}
7534 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7535 	    fs_info->fs_devices->total_rw_bytes) {
7536 		btrfs_err(fs_info,
7537 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7538 			  btrfs_super_total_bytes(fs_info->super_copy),
7539 			  fs_info->fs_devices->total_rw_bytes);
7540 		ret = -EINVAL;
7541 		goto error;
7542 	}
7543 	ret = 0;
7544 error:
7545 	mutex_unlock(&uuid_mutex);
7546 
7547 	btrfs_free_path(path);
7548 	return ret;
7549 }
7550 
7551 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7552 {
7553 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7554 	struct btrfs_device *device;
7555 
7556 	fs_devices->fs_info = fs_info;
7557 
7558 	mutex_lock(&fs_devices->device_list_mutex);
7559 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7560 		device->fs_info = fs_info;
7561 
7562 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7563 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7564 			device->fs_info = fs_info;
7565 
7566 		seed_devs->fs_info = fs_info;
7567 	}
7568 	mutex_unlock(&fs_devices->device_list_mutex);
7569 }
7570 
7571 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7572 				 const struct btrfs_dev_stats_item *ptr,
7573 				 int index)
7574 {
7575 	u64 val;
7576 
7577 	read_extent_buffer(eb, &val,
7578 			   offsetof(struct btrfs_dev_stats_item, values) +
7579 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7580 			   sizeof(val));
7581 	return val;
7582 }
7583 
7584 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7585 				      struct btrfs_dev_stats_item *ptr,
7586 				      int index, u64 val)
7587 {
7588 	write_extent_buffer(eb, &val,
7589 			    offsetof(struct btrfs_dev_stats_item, values) +
7590 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7591 			    sizeof(val));
7592 }
7593 
7594 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7595 				       struct btrfs_path *path)
7596 {
7597 	struct btrfs_dev_stats_item *ptr;
7598 	struct extent_buffer *eb;
7599 	struct btrfs_key key;
7600 	int item_size;
7601 	int i, ret, slot;
7602 
7603 	if (!device->fs_info->dev_root)
7604 		return 0;
7605 
7606 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7607 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7608 	key.offset = device->devid;
7609 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7610 	if (ret) {
7611 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7612 			btrfs_dev_stat_set(device, i, 0);
7613 		device->dev_stats_valid = 1;
7614 		btrfs_release_path(path);
7615 		return ret < 0 ? ret : 0;
7616 	}
7617 	slot = path->slots[0];
7618 	eb = path->nodes[0];
7619 	item_size = btrfs_item_size_nr(eb, slot);
7620 
7621 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7622 
7623 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7624 		if (item_size >= (1 + i) * sizeof(__le64))
7625 			btrfs_dev_stat_set(device, i,
7626 					   btrfs_dev_stats_value(eb, ptr, i));
7627 		else
7628 			btrfs_dev_stat_set(device, i, 0);
7629 	}
7630 
7631 	device->dev_stats_valid = 1;
7632 	btrfs_dev_stat_print_on_load(device);
7633 	btrfs_release_path(path);
7634 
7635 	return 0;
7636 }
7637 
7638 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7639 {
7640 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7641 	struct btrfs_device *device;
7642 	struct btrfs_path *path = NULL;
7643 	int ret = 0;
7644 
7645 	path = btrfs_alloc_path();
7646 	if (!path)
7647 		return -ENOMEM;
7648 
7649 	mutex_lock(&fs_devices->device_list_mutex);
7650 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7651 		ret = btrfs_device_init_dev_stats(device, path);
7652 		if (ret)
7653 			goto out;
7654 	}
7655 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7656 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7657 			ret = btrfs_device_init_dev_stats(device, path);
7658 			if (ret)
7659 				goto out;
7660 		}
7661 	}
7662 out:
7663 	mutex_unlock(&fs_devices->device_list_mutex);
7664 
7665 	btrfs_free_path(path);
7666 	return ret;
7667 }
7668 
7669 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7670 				struct btrfs_device *device)
7671 {
7672 	struct btrfs_fs_info *fs_info = trans->fs_info;
7673 	struct btrfs_root *dev_root = fs_info->dev_root;
7674 	struct btrfs_path *path;
7675 	struct btrfs_key key;
7676 	struct extent_buffer *eb;
7677 	struct btrfs_dev_stats_item *ptr;
7678 	int ret;
7679 	int i;
7680 
7681 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7682 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7683 	key.offset = device->devid;
7684 
7685 	path = btrfs_alloc_path();
7686 	if (!path)
7687 		return -ENOMEM;
7688 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7689 	if (ret < 0) {
7690 		btrfs_warn_in_rcu(fs_info,
7691 			"error %d while searching for dev_stats item for device %s",
7692 			      ret, rcu_str_deref(device->name));
7693 		goto out;
7694 	}
7695 
7696 	if (ret == 0 &&
7697 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7698 		/* need to delete old one and insert a new one */
7699 		ret = btrfs_del_item(trans, dev_root, path);
7700 		if (ret != 0) {
7701 			btrfs_warn_in_rcu(fs_info,
7702 				"delete too small dev_stats item for device %s failed %d",
7703 				      rcu_str_deref(device->name), ret);
7704 			goto out;
7705 		}
7706 		ret = 1;
7707 	}
7708 
7709 	if (ret == 1) {
7710 		/* need to insert a new item */
7711 		btrfs_release_path(path);
7712 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7713 					      &key, sizeof(*ptr));
7714 		if (ret < 0) {
7715 			btrfs_warn_in_rcu(fs_info,
7716 				"insert dev_stats item for device %s failed %d",
7717 				rcu_str_deref(device->name), ret);
7718 			goto out;
7719 		}
7720 	}
7721 
7722 	eb = path->nodes[0];
7723 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7724 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7725 		btrfs_set_dev_stats_value(eb, ptr, i,
7726 					  btrfs_dev_stat_read(device, i));
7727 	btrfs_mark_buffer_dirty(eb);
7728 
7729 out:
7730 	btrfs_free_path(path);
7731 	return ret;
7732 }
7733 
7734 /*
7735  * called from commit_transaction. Writes all changed device stats to disk.
7736  */
7737 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7738 {
7739 	struct btrfs_fs_info *fs_info = trans->fs_info;
7740 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7741 	struct btrfs_device *device;
7742 	int stats_cnt;
7743 	int ret = 0;
7744 
7745 	mutex_lock(&fs_devices->device_list_mutex);
7746 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7747 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7748 		if (!device->dev_stats_valid || stats_cnt == 0)
7749 			continue;
7750 
7751 
7752 		/*
7753 		 * There is a LOAD-LOAD control dependency between the value of
7754 		 * dev_stats_ccnt and updating the on-disk values which requires
7755 		 * reading the in-memory counters. Such control dependencies
7756 		 * require explicit read memory barriers.
7757 		 *
7758 		 * This memory barriers pairs with smp_mb__before_atomic in
7759 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7760 		 * barrier implied by atomic_xchg in
7761 		 * btrfs_dev_stats_read_and_reset
7762 		 */
7763 		smp_rmb();
7764 
7765 		ret = update_dev_stat_item(trans, device);
7766 		if (!ret)
7767 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7768 	}
7769 	mutex_unlock(&fs_devices->device_list_mutex);
7770 
7771 	return ret;
7772 }
7773 
7774 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7775 {
7776 	btrfs_dev_stat_inc(dev, index);
7777 	btrfs_dev_stat_print_on_error(dev);
7778 }
7779 
7780 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7781 {
7782 	if (!dev->dev_stats_valid)
7783 		return;
7784 	btrfs_err_rl_in_rcu(dev->fs_info,
7785 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7786 			   rcu_str_deref(dev->name),
7787 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7788 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7789 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7790 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7791 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7792 }
7793 
7794 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7795 {
7796 	int i;
7797 
7798 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7799 		if (btrfs_dev_stat_read(dev, i) != 0)
7800 			break;
7801 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7802 		return; /* all values == 0, suppress message */
7803 
7804 	btrfs_info_in_rcu(dev->fs_info,
7805 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7806 	       rcu_str_deref(dev->name),
7807 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7808 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7809 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7810 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7811 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7812 }
7813 
7814 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7815 			struct btrfs_ioctl_get_dev_stats *stats)
7816 {
7817 	struct btrfs_device *dev;
7818 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819 	int i;
7820 
7821 	mutex_lock(&fs_devices->device_list_mutex);
7822 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7823 	mutex_unlock(&fs_devices->device_list_mutex);
7824 
7825 	if (!dev) {
7826 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7827 		return -ENODEV;
7828 	} else if (!dev->dev_stats_valid) {
7829 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7830 		return -ENODEV;
7831 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7832 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7833 			if (stats->nr_items > i)
7834 				stats->values[i] =
7835 					btrfs_dev_stat_read_and_reset(dev, i);
7836 			else
7837 				btrfs_dev_stat_set(dev, i, 0);
7838 		}
7839 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7840 			   current->comm, task_pid_nr(current));
7841 	} else {
7842 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7843 			if (stats->nr_items > i)
7844 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7845 	}
7846 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7847 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7848 	return 0;
7849 }
7850 
7851 /*
7852  * Update the size and bytes used for each device where it changed.  This is
7853  * delayed since we would otherwise get errors while writing out the
7854  * superblocks.
7855  *
7856  * Must be invoked during transaction commit.
7857  */
7858 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7859 {
7860 	struct btrfs_device *curr, *next;
7861 
7862 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7863 
7864 	if (list_empty(&trans->dev_update_list))
7865 		return;
7866 
7867 	/*
7868 	 * We don't need the device_list_mutex here.  This list is owned by the
7869 	 * transaction and the transaction must complete before the device is
7870 	 * released.
7871 	 */
7872 	mutex_lock(&trans->fs_info->chunk_mutex);
7873 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7874 				 post_commit_list) {
7875 		list_del_init(&curr->post_commit_list);
7876 		curr->commit_total_bytes = curr->disk_total_bytes;
7877 		curr->commit_bytes_used = curr->bytes_used;
7878 	}
7879 	mutex_unlock(&trans->fs_info->chunk_mutex);
7880 }
7881 
7882 /*
7883  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7884  */
7885 int btrfs_bg_type_to_factor(u64 flags)
7886 {
7887 	const int index = btrfs_bg_flags_to_raid_index(flags);
7888 
7889 	return btrfs_raid_array[index].ncopies;
7890 }
7891 
7892 
7893 
7894 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7895 				 u64 chunk_offset, u64 devid,
7896 				 u64 physical_offset, u64 physical_len)
7897 {
7898 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7899 	struct extent_map *em;
7900 	struct map_lookup *map;
7901 	struct btrfs_device *dev;
7902 	u64 stripe_len;
7903 	bool found = false;
7904 	int ret = 0;
7905 	int i;
7906 
7907 	read_lock(&em_tree->lock);
7908 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7909 	read_unlock(&em_tree->lock);
7910 
7911 	if (!em) {
7912 		btrfs_err(fs_info,
7913 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7914 			  physical_offset, devid);
7915 		ret = -EUCLEAN;
7916 		goto out;
7917 	}
7918 
7919 	map = em->map_lookup;
7920 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7921 	if (physical_len != stripe_len) {
7922 		btrfs_err(fs_info,
7923 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7924 			  physical_offset, devid, em->start, physical_len,
7925 			  stripe_len);
7926 		ret = -EUCLEAN;
7927 		goto out;
7928 	}
7929 
7930 	for (i = 0; i < map->num_stripes; i++) {
7931 		if (map->stripes[i].dev->devid == devid &&
7932 		    map->stripes[i].physical == physical_offset) {
7933 			found = true;
7934 			if (map->verified_stripes >= map->num_stripes) {
7935 				btrfs_err(fs_info,
7936 				"too many dev extents for chunk %llu found",
7937 					  em->start);
7938 				ret = -EUCLEAN;
7939 				goto out;
7940 			}
7941 			map->verified_stripes++;
7942 			break;
7943 		}
7944 	}
7945 	if (!found) {
7946 		btrfs_err(fs_info,
7947 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7948 			physical_offset, devid);
7949 		ret = -EUCLEAN;
7950 	}
7951 
7952 	/* Make sure no dev extent is beyond device boundary */
7953 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7954 	if (!dev) {
7955 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7956 		ret = -EUCLEAN;
7957 		goto out;
7958 	}
7959 
7960 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7961 		btrfs_err(fs_info,
7962 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7963 			  devid, physical_offset, physical_len,
7964 			  dev->disk_total_bytes);
7965 		ret = -EUCLEAN;
7966 		goto out;
7967 	}
7968 
7969 	if (dev->zone_info) {
7970 		u64 zone_size = dev->zone_info->zone_size;
7971 
7972 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7973 		    !IS_ALIGNED(physical_len, zone_size)) {
7974 			btrfs_err(fs_info,
7975 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7976 				  devid, physical_offset, physical_len);
7977 			ret = -EUCLEAN;
7978 			goto out;
7979 		}
7980 	}
7981 
7982 out:
7983 	free_extent_map(em);
7984 	return ret;
7985 }
7986 
7987 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7988 {
7989 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7990 	struct extent_map *em;
7991 	struct rb_node *node;
7992 	int ret = 0;
7993 
7994 	read_lock(&em_tree->lock);
7995 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7996 		em = rb_entry(node, struct extent_map, rb_node);
7997 		if (em->map_lookup->num_stripes !=
7998 		    em->map_lookup->verified_stripes) {
7999 			btrfs_err(fs_info,
8000 			"chunk %llu has missing dev extent, have %d expect %d",
8001 				  em->start, em->map_lookup->verified_stripes,
8002 				  em->map_lookup->num_stripes);
8003 			ret = -EUCLEAN;
8004 			goto out;
8005 		}
8006 	}
8007 out:
8008 	read_unlock(&em_tree->lock);
8009 	return ret;
8010 }
8011 
8012 /*
8013  * Ensure that all dev extents are mapped to correct chunk, otherwise
8014  * later chunk allocation/free would cause unexpected behavior.
8015  *
8016  * NOTE: This will iterate through the whole device tree, which should be of
8017  * the same size level as the chunk tree.  This slightly increases mount time.
8018  */
8019 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8020 {
8021 	struct btrfs_path *path;
8022 	struct btrfs_root *root = fs_info->dev_root;
8023 	struct btrfs_key key;
8024 	u64 prev_devid = 0;
8025 	u64 prev_dev_ext_end = 0;
8026 	int ret = 0;
8027 
8028 	/*
8029 	 * We don't have a dev_root because we mounted with ignorebadroots and
8030 	 * failed to load the root, so we want to skip the verification in this
8031 	 * case for sure.
8032 	 *
8033 	 * However if the dev root is fine, but the tree itself is corrupted
8034 	 * we'd still fail to mount.  This verification is only to make sure
8035 	 * writes can happen safely, so instead just bypass this check
8036 	 * completely in the case of IGNOREBADROOTS.
8037 	 */
8038 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8039 		return 0;
8040 
8041 	key.objectid = 1;
8042 	key.type = BTRFS_DEV_EXTENT_KEY;
8043 	key.offset = 0;
8044 
8045 	path = btrfs_alloc_path();
8046 	if (!path)
8047 		return -ENOMEM;
8048 
8049 	path->reada = READA_FORWARD;
8050 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8051 	if (ret < 0)
8052 		goto out;
8053 
8054 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8055 		ret = btrfs_next_leaf(root, path);
8056 		if (ret < 0)
8057 			goto out;
8058 		/* No dev extents at all? Not good */
8059 		if (ret > 0) {
8060 			ret = -EUCLEAN;
8061 			goto out;
8062 		}
8063 	}
8064 	while (1) {
8065 		struct extent_buffer *leaf = path->nodes[0];
8066 		struct btrfs_dev_extent *dext;
8067 		int slot = path->slots[0];
8068 		u64 chunk_offset;
8069 		u64 physical_offset;
8070 		u64 physical_len;
8071 		u64 devid;
8072 
8073 		btrfs_item_key_to_cpu(leaf, &key, slot);
8074 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8075 			break;
8076 		devid = key.objectid;
8077 		physical_offset = key.offset;
8078 
8079 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8080 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8081 		physical_len = btrfs_dev_extent_length(leaf, dext);
8082 
8083 		/* Check if this dev extent overlaps with the previous one */
8084 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8085 			btrfs_err(fs_info,
8086 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8087 				  devid, physical_offset, prev_dev_ext_end);
8088 			ret = -EUCLEAN;
8089 			goto out;
8090 		}
8091 
8092 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8093 					    physical_offset, physical_len);
8094 		if (ret < 0)
8095 			goto out;
8096 		prev_devid = devid;
8097 		prev_dev_ext_end = physical_offset + physical_len;
8098 
8099 		ret = btrfs_next_item(root, path);
8100 		if (ret < 0)
8101 			goto out;
8102 		if (ret > 0) {
8103 			ret = 0;
8104 			break;
8105 		}
8106 	}
8107 
8108 	/* Ensure all chunks have corresponding dev extents */
8109 	ret = verify_chunk_dev_extent_mapping(fs_info);
8110 out:
8111 	btrfs_free_path(path);
8112 	return ret;
8113 }
8114 
8115 /*
8116  * Check whether the given block group or device is pinned by any inode being
8117  * used as a swapfile.
8118  */
8119 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8120 {
8121 	struct btrfs_swapfile_pin *sp;
8122 	struct rb_node *node;
8123 
8124 	spin_lock(&fs_info->swapfile_pins_lock);
8125 	node = fs_info->swapfile_pins.rb_node;
8126 	while (node) {
8127 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8128 		if (ptr < sp->ptr)
8129 			node = node->rb_left;
8130 		else if (ptr > sp->ptr)
8131 			node = node->rb_right;
8132 		else
8133 			break;
8134 	}
8135 	spin_unlock(&fs_info->swapfile_pins_lock);
8136 	return node != NULL;
8137 }
8138 
8139 static int relocating_repair_kthread(void *data)
8140 {
8141 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8142 	struct btrfs_fs_info *fs_info = cache->fs_info;
8143 	u64 target;
8144 	int ret = 0;
8145 
8146 	target = cache->start;
8147 	btrfs_put_block_group(cache);
8148 
8149 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8150 		btrfs_info(fs_info,
8151 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8152 			   target);
8153 		return -EBUSY;
8154 	}
8155 
8156 	mutex_lock(&fs_info->reclaim_bgs_lock);
8157 
8158 	/* Ensure block group still exists */
8159 	cache = btrfs_lookup_block_group(fs_info, target);
8160 	if (!cache)
8161 		goto out;
8162 
8163 	if (!cache->relocating_repair)
8164 		goto out;
8165 
8166 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8167 	if (ret < 0)
8168 		goto out;
8169 
8170 	btrfs_info(fs_info,
8171 		   "zoned: relocating block group %llu to repair IO failure",
8172 		   target);
8173 	ret = btrfs_relocate_chunk(fs_info, target);
8174 
8175 out:
8176 	if (cache)
8177 		btrfs_put_block_group(cache);
8178 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8179 	btrfs_exclop_finish(fs_info);
8180 
8181 	return ret;
8182 }
8183 
8184 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8185 {
8186 	struct btrfs_block_group *cache;
8187 
8188 	/* Do not attempt to repair in degraded state */
8189 	if (btrfs_test_opt(fs_info, DEGRADED))
8190 		return 0;
8191 
8192 	cache = btrfs_lookup_block_group(fs_info, logical);
8193 	if (!cache)
8194 		return 0;
8195 
8196 	spin_lock(&cache->lock);
8197 	if (cache->relocating_repair) {
8198 		spin_unlock(&cache->lock);
8199 		btrfs_put_block_group(cache);
8200 		return 0;
8201 	}
8202 	cache->relocating_repair = 1;
8203 	spin_unlock(&cache->lock);
8204 
8205 	kthread_run(relocating_repair_kthread, cache,
8206 		    "btrfs-relocating-repair");
8207 
8208 	return 0;
8209 }
8210