xref: /linux/fs/btrfs/volumes.c (revision 48cc39c32b992be00236c4172b5e892de0219f93)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35 
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 	[BTRFS_RAID_RAID10] = {
38 		.sub_stripes	= 2,
39 		.dev_stripes	= 1,
40 		.devs_max	= 0,	/* 0 == as many as possible */
41 		.devs_min	= 2,
42 		.tolerated_failures = 1,
43 		.devs_increment	= 2,
44 		.ncopies	= 2,
45 		.nparity        = 0,
46 		.raid_name	= "raid10",
47 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 	},
50 	[BTRFS_RAID_RAID1] = {
51 		.sub_stripes	= 1,
52 		.dev_stripes	= 1,
53 		.devs_max	= 2,
54 		.devs_min	= 2,
55 		.tolerated_failures = 1,
56 		.devs_increment	= 2,
57 		.ncopies	= 2,
58 		.nparity        = 0,
59 		.raid_name	= "raid1",
60 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 	},
63 	[BTRFS_RAID_RAID1C3] = {
64 		.sub_stripes	= 1,
65 		.dev_stripes	= 1,
66 		.devs_max	= 3,
67 		.devs_min	= 3,
68 		.tolerated_failures = 2,
69 		.devs_increment	= 3,
70 		.ncopies	= 3,
71 		.nparity        = 0,
72 		.raid_name	= "raid1c3",
73 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 	},
76 	[BTRFS_RAID_RAID1C4] = {
77 		.sub_stripes	= 1,
78 		.dev_stripes	= 1,
79 		.devs_max	= 4,
80 		.devs_min	= 4,
81 		.tolerated_failures = 3,
82 		.devs_increment	= 4,
83 		.ncopies	= 4,
84 		.nparity        = 0,
85 		.raid_name	= "raid1c4",
86 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 	},
89 	[BTRFS_RAID_DUP] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 2,
92 		.devs_max	= 1,
93 		.devs_min	= 1,
94 		.tolerated_failures = 0,
95 		.devs_increment	= 1,
96 		.ncopies	= 2,
97 		.nparity        = 0,
98 		.raid_name	= "dup",
99 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100 		.mindev_error	= 0,
101 	},
102 	[BTRFS_RAID_RAID0] = {
103 		.sub_stripes	= 1,
104 		.dev_stripes	= 1,
105 		.devs_max	= 0,
106 		.devs_min	= 1,
107 		.tolerated_failures = 0,
108 		.devs_increment	= 1,
109 		.ncopies	= 1,
110 		.nparity        = 0,
111 		.raid_name	= "raid0",
112 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113 		.mindev_error	= 0,
114 	},
115 	[BTRFS_RAID_SINGLE] = {
116 		.sub_stripes	= 1,
117 		.dev_stripes	= 1,
118 		.devs_max	= 1,
119 		.devs_min	= 1,
120 		.tolerated_failures = 0,
121 		.devs_increment	= 1,
122 		.ncopies	= 1,
123 		.nparity        = 0,
124 		.raid_name	= "single",
125 		.bg_flag	= 0,
126 		.mindev_error	= 0,
127 	},
128 	[BTRFS_RAID_RAID5] = {
129 		.sub_stripes	= 1,
130 		.dev_stripes	= 1,
131 		.devs_max	= 0,
132 		.devs_min	= 2,
133 		.tolerated_failures = 1,
134 		.devs_increment	= 1,
135 		.ncopies	= 1,
136 		.nparity        = 1,
137 		.raid_name	= "raid5",
138 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 	},
141 	[BTRFS_RAID_RAID6] = {
142 		.sub_stripes	= 1,
143 		.dev_stripes	= 1,
144 		.devs_max	= 0,
145 		.devs_min	= 3,
146 		.tolerated_failures = 2,
147 		.devs_increment	= 1,
148 		.ncopies	= 1,
149 		.nparity        = 2,
150 		.raid_name	= "raid6",
151 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 	},
154 };
155 
156 /*
157  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158  * can be used as index to access btrfs_raid_array[].
159  */
160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 		return BTRFS_RAID_RAID10;
164 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 		return BTRFS_RAID_RAID1;
166 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 		return BTRFS_RAID_RAID1C3;
168 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 		return BTRFS_RAID_RAID1C4;
170 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 		return BTRFS_RAID_DUP;
172 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 		return BTRFS_RAID_RAID0;
174 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 		return BTRFS_RAID_RAID5;
176 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 		return BTRFS_RAID_RAID6;
178 
179 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181 
182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184 	const int index = btrfs_bg_flags_to_raid_index(flags);
185 
186 	if (index >= BTRFS_NR_RAID_TYPES)
187 		return NULL;
188 
189 	return btrfs_raid_array[index].raid_name;
190 }
191 
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198 	int i;
199 	int ret;
200 	char *bp = buf;
201 	u64 flags = bg_flags;
202 	u32 size_bp = size_buf;
203 
204 	if (!flags) {
205 		strcpy(bp, "NONE");
206 		return;
207 	}
208 
209 #define DESCRIBE_FLAG(flag, desc)						\
210 	do {								\
211 		if (flags & (flag)) {					\
212 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
213 			if (ret < 0 || ret >= size_bp)			\
214 				goto out_overflow;			\
215 			size_bp -= ret;					\
216 			bp += ret;					\
217 			flags &= ~(flag);				\
218 		}							\
219 	} while (0)
220 
221 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224 
225 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 			      btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230 
231 	if (flags) {
232 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 		size_bp -= ret;
234 	}
235 
236 	if (size_bp < size_buf)
237 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238 
239 	/*
240 	 * The text is trimmed, it's up to the caller to provide sufficiently
241 	 * large buffer
242 	 */
243 out_overflow:;
244 }
245 
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 			     enum btrfs_map_op op,
252 			     u64 logical, u64 *length,
253 			     struct btrfs_bio **bbio_ret,
254 			     int mirror_num, int need_raid_map);
255 
256 /*
257  * Device locking
258  * ==============
259  *
260  * There are several mutexes that protect manipulation of devices and low-level
261  * structures like chunks but not block groups, extents or files
262  *
263  * uuid_mutex (global lock)
264  * ------------------------
265  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267  * device) or requested by the device= mount option
268  *
269  * the mutex can be very coarse and can cover long-running operations
270  *
271  * protects: updates to fs_devices counters like missing devices, rw devices,
272  * seeding, structure cloning, opening/closing devices at mount/umount time
273  *
274  * global::fs_devs - add, remove, updates to the global list
275  *
276  * does not protect: manipulation of the fs_devices::devices list in general
277  * but in mount context it could be used to exclude list modifications by eg.
278  * scan ioctl
279  *
280  * btrfs_device::name - renames (write side), read is RCU
281  *
282  * fs_devices::device_list_mutex (per-fs, with RCU)
283  * ------------------------------------------------
284  * protects updates to fs_devices::devices, ie. adding and deleting
285  *
286  * simple list traversal with read-only actions can be done with RCU protection
287  *
288  * may be used to exclude some operations from running concurrently without any
289  * modifications to the list (see write_all_supers)
290  *
291  * Is not required at mount and close times, because our device list is
292  * protected by the uuid_mutex at that point.
293  *
294  * balance_mutex
295  * -------------
296  * protects balance structures (status, state) and context accessed from
297  * several places (internally, ioctl)
298  *
299  * chunk_mutex
300  * -----------
301  * protects chunks, adding or removing during allocation, trim or when a new
302  * device is added/removed. Additionally it also protects post_commit_list of
303  * individual devices, since they can be added to the transaction's
304  * post_commit_list only with chunk_mutex held.
305  *
306  * cleaner_mutex
307  * -------------
308  * a big lock that is held by the cleaner thread and prevents running subvolume
309  * cleaning together with relocation or delayed iputs
310  *
311  *
312  * Lock nesting
313  * ============
314  *
315  * uuid_mutex
316  *   device_list_mutex
317  *     chunk_mutex
318  *   balance_mutex
319  *
320  *
321  * Exclusive operations
322  * ====================
323  *
324  * Maintains the exclusivity of the following operations that apply to the
325  * whole filesystem and cannot run in parallel.
326  *
327  * - Balance (*)
328  * - Device add
329  * - Device remove
330  * - Device replace (*)
331  * - Resize
332  *
333  * The device operations (as above) can be in one of the following states:
334  *
335  * - Running state
336  * - Paused state
337  * - Completed state
338  *
339  * Only device operations marked with (*) can go into the Paused state for the
340  * following reasons:
341  *
342  * - ioctl (only Balance can be Paused through ioctl)
343  * - filesystem remounted as read-only
344  * - filesystem unmounted and mounted as read-only
345  * - system power-cycle and filesystem mounted as read-only
346  * - filesystem or device errors leading to forced read-only
347  *
348  * The status of exclusive operation is set and cleared atomically.
349  * During the course of Paused state, fs_info::exclusive_operation remains set.
350  * A device operation in Paused or Running state can be canceled or resumed
351  * either by ioctl (Balance only) or when remounted as read-write.
352  * The exclusive status is cleared when the device operation is canceled or
353  * completed.
354  */
355 
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360 	return &fs_uuids;
361 }
362 
363 /*
364  * alloc_fs_devices - allocate struct btrfs_fs_devices
365  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
366  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
367  *
368  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369  * The returned struct is not linked onto any lists and can be destroyed with
370  * kfree() right away.
371  */
372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 						 const u8 *metadata_fsid)
374 {
375 	struct btrfs_fs_devices *fs_devs;
376 
377 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378 	if (!fs_devs)
379 		return ERR_PTR(-ENOMEM);
380 
381 	mutex_init(&fs_devs->device_list_mutex);
382 
383 	INIT_LIST_HEAD(&fs_devs->devices);
384 	INIT_LIST_HEAD(&fs_devs->alloc_list);
385 	INIT_LIST_HEAD(&fs_devs->fs_list);
386 	INIT_LIST_HEAD(&fs_devs->seed_list);
387 	if (fsid)
388 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389 
390 	if (metadata_fsid)
391 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 	else if (fsid)
393 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394 
395 	return fs_devs;
396 }
397 
398 void btrfs_free_device(struct btrfs_device *device)
399 {
400 	WARN_ON(!list_empty(&device->post_commit_list));
401 	rcu_string_free(device->name);
402 	extent_io_tree_release(&device->alloc_state);
403 	bio_put(device->flush_bio);
404 	btrfs_destroy_dev_zone_info(device);
405 	kfree(device);
406 }
407 
408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 	struct btrfs_device *device;
411 	WARN_ON(fs_devices->opened);
412 	while (!list_empty(&fs_devices->devices)) {
413 		device = list_entry(fs_devices->devices.next,
414 				    struct btrfs_device, dev_list);
415 		list_del(&device->dev_list);
416 		btrfs_free_device(device);
417 	}
418 	kfree(fs_devices);
419 }
420 
421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 	struct btrfs_fs_devices *fs_devices;
424 
425 	while (!list_empty(&fs_uuids)) {
426 		fs_devices = list_entry(fs_uuids.next,
427 					struct btrfs_fs_devices, fs_list);
428 		list_del(&fs_devices->fs_list);
429 		free_fs_devices(fs_devices);
430 	}
431 }
432 
433 static noinline struct btrfs_fs_devices *find_fsid(
434 		const u8 *fsid, const u8 *metadata_fsid)
435 {
436 	struct btrfs_fs_devices *fs_devices;
437 
438 	ASSERT(fsid);
439 
440 	/* Handle non-split brain cases */
441 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 		if (metadata_fsid) {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 				      BTRFS_FSID_SIZE) == 0)
446 				return fs_devices;
447 		} else {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 				return fs_devices;
450 		}
451 	}
452 	return NULL;
453 }
454 
455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 				struct btrfs_super_block *disk_super)
457 {
458 
459 	struct btrfs_fs_devices *fs_devices;
460 
461 	/*
462 	 * Handle scanned device having completed its fsid change but
463 	 * belonging to a fs_devices that was created by first scanning
464 	 * a device which didn't have its fsid/metadata_uuid changed
465 	 * at all and the CHANGING_FSID_V2 flag set.
466 	 */
467 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 		if (fs_devices->fsid_change &&
469 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 			   BTRFS_FSID_SIZE) == 0 &&
471 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 			   BTRFS_FSID_SIZE) == 0) {
473 			return fs_devices;
474 		}
475 	}
476 	/*
477 	 * Handle scanned device having completed its fsid change but
478 	 * belonging to a fs_devices that was created by a device that
479 	 * has an outdated pair of fsid/metadata_uuid and
480 	 * CHANGING_FSID_V2 flag set.
481 	 */
482 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 		if (fs_devices->fsid_change &&
484 		    memcmp(fs_devices->metadata_uuid,
485 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 			   BTRFS_FSID_SIZE) == 0) {
488 			return fs_devices;
489 		}
490 	}
491 
492 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494 
495 
496 static int
497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 		      int flush, struct block_device **bdev,
499 		      struct btrfs_super_block **disk_super)
500 {
501 	int ret;
502 
503 	*bdev = blkdev_get_by_path(device_path, flags, holder);
504 
505 	if (IS_ERR(*bdev)) {
506 		ret = PTR_ERR(*bdev);
507 		goto error;
508 	}
509 
510 	if (flush)
511 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 	if (ret) {
514 		blkdev_put(*bdev, flags);
515 		goto error;
516 	}
517 	invalidate_bdev(*bdev);
518 	*disk_super = btrfs_read_dev_super(*bdev);
519 	if (IS_ERR(*disk_super)) {
520 		ret = PTR_ERR(*disk_super);
521 		blkdev_put(*bdev, flags);
522 		goto error;
523 	}
524 
525 	return 0;
526 
527 error:
528 	*bdev = NULL;
529 	return ret;
530 }
531 
532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534 	int found;
535 
536 	rcu_read_lock();
537 	found = strcmp(rcu_str_deref(device->name), path);
538 	rcu_read_unlock();
539 
540 	return found == 0;
541 }
542 
543 /*
544  *  Search and remove all stale (devices which are not mounted) devices.
545  *  When both inputs are NULL, it will search and release all stale devices.
546  *  path:	Optional. When provided will it release all unmounted devices
547  *		matching this path only.
548  *  skip_dev:	Optional. Will skip this device when searching for the stale
549  *		devices.
550  *  Return:	0 for success or if @path is NULL.
551  * 		-EBUSY if @path is a mounted device.
552  * 		-ENOENT if @path does not match any device in the list.
553  */
554 static int btrfs_free_stale_devices(const char *path,
555 				     struct btrfs_device *skip_device)
556 {
557 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 	struct btrfs_device *device, *tmp_device;
559 	int ret = 0;
560 
561 	lockdep_assert_held(&uuid_mutex);
562 
563 	if (path)
564 		ret = -ENOENT;
565 
566 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
567 
568 		mutex_lock(&fs_devices->device_list_mutex);
569 		list_for_each_entry_safe(device, tmp_device,
570 					 &fs_devices->devices, dev_list) {
571 			if (skip_device && skip_device == device)
572 				continue;
573 			if (path && !device->name)
574 				continue;
575 			if (path && !device_path_matched(path, device))
576 				continue;
577 			if (fs_devices->opened) {
578 				/* for an already deleted device return 0 */
579 				if (path && ret != 0)
580 					ret = -EBUSY;
581 				break;
582 			}
583 
584 			/* delete the stale device */
585 			fs_devices->num_devices--;
586 			list_del(&device->dev_list);
587 			btrfs_free_device(device);
588 
589 			ret = 0;
590 		}
591 		mutex_unlock(&fs_devices->device_list_mutex);
592 
593 		if (fs_devices->num_devices == 0) {
594 			btrfs_sysfs_remove_fsid(fs_devices);
595 			list_del(&fs_devices->fs_list);
596 			free_fs_devices(fs_devices);
597 		}
598 	}
599 
600 	return ret;
601 }
602 
603 /*
604  * This is only used on mount, and we are protected from competing things
605  * messing with our fs_devices by the uuid_mutex, thus we do not need the
606  * fs_devices->device_list_mutex here.
607  */
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 			struct btrfs_device *device, fmode_t flags,
610 			void *holder)
611 {
612 	struct request_queue *q;
613 	struct block_device *bdev;
614 	struct btrfs_super_block *disk_super;
615 	u64 devid;
616 	int ret;
617 
618 	if (device->bdev)
619 		return -EINVAL;
620 	if (!device->name)
621 		return -EINVAL;
622 
623 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
624 				    &bdev, &disk_super);
625 	if (ret)
626 		return ret;
627 
628 	devid = btrfs_stack_device_id(&disk_super->dev_item);
629 	if (devid != device->devid)
630 		goto error_free_page;
631 
632 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
633 		goto error_free_page;
634 
635 	device->generation = btrfs_super_generation(disk_super);
636 
637 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
638 		if (btrfs_super_incompat_flags(disk_super) &
639 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
640 			pr_err(
641 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
642 			goto error_free_page;
643 		}
644 
645 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
646 		fs_devices->seeding = true;
647 	} else {
648 		if (bdev_read_only(bdev))
649 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 		else
651 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 	}
653 
654 	q = bdev_get_queue(bdev);
655 	if (!blk_queue_nonrot(q))
656 		fs_devices->rotating = true;
657 
658 	device->bdev = bdev;
659 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
660 	device->mode = flags;
661 
662 	fs_devices->open_devices++;
663 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
665 		fs_devices->rw_devices++;
666 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
667 	}
668 	btrfs_release_disk_super(disk_super);
669 
670 	return 0;
671 
672 error_free_page:
673 	btrfs_release_disk_super(disk_super);
674 	blkdev_put(bdev, flags);
675 
676 	return -EINVAL;
677 }
678 
679 /*
680  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
681  * being created with a disk that has already completed its fsid change. Such
682  * disk can belong to an fs which has its FSID changed or to one which doesn't.
683  * Handle both cases here.
684  */
685 static struct btrfs_fs_devices *find_fsid_inprogress(
686 					struct btrfs_super_block *disk_super)
687 {
688 	struct btrfs_fs_devices *fs_devices;
689 
690 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692 			   BTRFS_FSID_SIZE) != 0 &&
693 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
695 			return fs_devices;
696 		}
697 	}
698 
699 	return find_fsid(disk_super->fsid, NULL);
700 }
701 
702 
703 static struct btrfs_fs_devices *find_fsid_changed(
704 					struct btrfs_super_block *disk_super)
705 {
706 	struct btrfs_fs_devices *fs_devices;
707 
708 	/*
709 	 * Handles the case where scanned device is part of an fs that had
710 	 * multiple successful changes of FSID but currently device didn't
711 	 * observe it. Meaning our fsid will be different than theirs. We need
712 	 * to handle two subcases :
713 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
714 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
715 	 *  are equal).
716 	 */
717 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
718 		/* Changed UUIDs */
719 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 			   BTRFS_FSID_SIZE) != 0 &&
721 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722 			   BTRFS_FSID_SIZE) == 0 &&
723 		    memcmp(fs_devices->fsid, disk_super->fsid,
724 			   BTRFS_FSID_SIZE) != 0)
725 			return fs_devices;
726 
727 		/* Unchanged UUIDs */
728 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 			   BTRFS_FSID_SIZE) == 0 &&
730 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 			   BTRFS_FSID_SIZE) == 0)
732 			return fs_devices;
733 	}
734 
735 	return NULL;
736 }
737 
738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 				struct btrfs_super_block *disk_super)
740 {
741 	struct btrfs_fs_devices *fs_devices;
742 
743 	/*
744 	 * Handle the case where the scanned device is part of an fs whose last
745 	 * metadata UUID change reverted it to the original FSID. At the same
746 	 * time * fs_devices was first created by another constitutent device
747 	 * which didn't fully observe the operation. This results in an
748 	 * btrfs_fs_devices created with metadata/fsid different AND
749 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 	 * fs_devices equal to the FSID of the disk.
751 	 */
752 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754 			   BTRFS_FSID_SIZE) != 0 &&
755 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756 			   BTRFS_FSID_SIZE) == 0 &&
757 		    fs_devices->fsid_change)
758 			return fs_devices;
759 	}
760 
761 	return NULL;
762 }
763 /*
764  * Add new device to list of registered devices
765  *
766  * Returns:
767  * device pointer which was just added or updated when successful
768  * error pointer when failed
769  */
770 static noinline struct btrfs_device *device_list_add(const char *path,
771 			   struct btrfs_super_block *disk_super,
772 			   bool *new_device_added)
773 {
774 	struct btrfs_device *device;
775 	struct btrfs_fs_devices *fs_devices = NULL;
776 	struct rcu_string *name;
777 	u64 found_transid = btrfs_super_generation(disk_super);
778 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
779 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
781 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
783 
784 	if (fsid_change_in_progress) {
785 		if (!has_metadata_uuid)
786 			fs_devices = find_fsid_inprogress(disk_super);
787 		else
788 			fs_devices = find_fsid_changed(disk_super);
789 	} else if (has_metadata_uuid) {
790 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
791 	} else {
792 		fs_devices = find_fsid_reverted_metadata(disk_super);
793 		if (!fs_devices)
794 			fs_devices = find_fsid(disk_super->fsid, NULL);
795 	}
796 
797 
798 	if (!fs_devices) {
799 		if (has_metadata_uuid)
800 			fs_devices = alloc_fs_devices(disk_super->fsid,
801 						      disk_super->metadata_uuid);
802 		else
803 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
804 
805 		if (IS_ERR(fs_devices))
806 			return ERR_CAST(fs_devices);
807 
808 		fs_devices->fsid_change = fsid_change_in_progress;
809 
810 		mutex_lock(&fs_devices->device_list_mutex);
811 		list_add(&fs_devices->fs_list, &fs_uuids);
812 
813 		device = NULL;
814 	} else {
815 		mutex_lock(&fs_devices->device_list_mutex);
816 		device = btrfs_find_device(fs_devices, devid,
817 				disk_super->dev_item.uuid, NULL);
818 
819 		/*
820 		 * If this disk has been pulled into an fs devices created by
821 		 * a device which had the CHANGING_FSID_V2 flag then replace the
822 		 * metadata_uuid/fsid values of the fs_devices.
823 		 */
824 		if (fs_devices->fsid_change &&
825 		    found_transid > fs_devices->latest_generation) {
826 			memcpy(fs_devices->fsid, disk_super->fsid,
827 					BTRFS_FSID_SIZE);
828 
829 			if (has_metadata_uuid)
830 				memcpy(fs_devices->metadata_uuid,
831 				       disk_super->metadata_uuid,
832 				       BTRFS_FSID_SIZE);
833 			else
834 				memcpy(fs_devices->metadata_uuid,
835 				       disk_super->fsid, BTRFS_FSID_SIZE);
836 
837 			fs_devices->fsid_change = false;
838 		}
839 	}
840 
841 	if (!device) {
842 		if (fs_devices->opened) {
843 			mutex_unlock(&fs_devices->device_list_mutex);
844 			return ERR_PTR(-EBUSY);
845 		}
846 
847 		device = btrfs_alloc_device(NULL, &devid,
848 					    disk_super->dev_item.uuid);
849 		if (IS_ERR(device)) {
850 			mutex_unlock(&fs_devices->device_list_mutex);
851 			/* we can safely leave the fs_devices entry around */
852 			return device;
853 		}
854 
855 		name = rcu_string_strdup(path, GFP_NOFS);
856 		if (!name) {
857 			btrfs_free_device(device);
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			return ERR_PTR(-ENOMEM);
860 		}
861 		rcu_assign_pointer(device->name, name);
862 
863 		list_add_rcu(&device->dev_list, &fs_devices->devices);
864 		fs_devices->num_devices++;
865 
866 		device->fs_devices = fs_devices;
867 		*new_device_added = true;
868 
869 		if (disk_super->label[0])
870 			pr_info(
871 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872 				disk_super->label, devid, found_transid, path,
873 				current->comm, task_pid_nr(current));
874 		else
875 			pr_info(
876 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877 				disk_super->fsid, devid, found_transid, path,
878 				current->comm, task_pid_nr(current));
879 
880 	} else if (!device->name || strcmp(device->name->str, path)) {
881 		/*
882 		 * When FS is already mounted.
883 		 * 1. If you are here and if the device->name is NULL that
884 		 *    means this device was missing at time of FS mount.
885 		 * 2. If you are here and if the device->name is different
886 		 *    from 'path' that means either
887 		 *      a. The same device disappeared and reappeared with
888 		 *         different name. or
889 		 *      b. The missing-disk-which-was-replaced, has
890 		 *         reappeared now.
891 		 *
892 		 * We must allow 1 and 2a above. But 2b would be a spurious
893 		 * and unintentional.
894 		 *
895 		 * Further in case of 1 and 2a above, the disk at 'path'
896 		 * would have missed some transaction when it was away and
897 		 * in case of 2a the stale bdev has to be updated as well.
898 		 * 2b must not be allowed at all time.
899 		 */
900 
901 		/*
902 		 * For now, we do allow update to btrfs_fs_device through the
903 		 * btrfs dev scan cli after FS has been mounted.  We're still
904 		 * tracking a problem where systems fail mount by subvolume id
905 		 * when we reject replacement on a mounted FS.
906 		 */
907 		if (!fs_devices->opened && found_transid < device->generation) {
908 			/*
909 			 * That is if the FS is _not_ mounted and if you
910 			 * are here, that means there is more than one
911 			 * disk with same uuid and devid.We keep the one
912 			 * with larger generation number or the last-in if
913 			 * generation are equal.
914 			 */
915 			mutex_unlock(&fs_devices->device_list_mutex);
916 			return ERR_PTR(-EEXIST);
917 		}
918 
919 		/*
920 		 * We are going to replace the device path for a given devid,
921 		 * make sure it's the same device if the device is mounted
922 		 */
923 		if (device->bdev) {
924 			int error;
925 			dev_t path_dev;
926 
927 			error = lookup_bdev(path, &path_dev);
928 			if (error) {
929 				mutex_unlock(&fs_devices->device_list_mutex);
930 				return ERR_PTR(error);
931 			}
932 
933 			if (device->bdev->bd_dev != path_dev) {
934 				mutex_unlock(&fs_devices->device_list_mutex);
935 				/*
936 				 * device->fs_info may not be reliable here, so
937 				 * pass in a NULL instead. This avoids a
938 				 * possible use-after-free when the fs_info and
939 				 * fs_info->sb are already torn down.
940 				 */
941 				btrfs_warn_in_rcu(NULL,
942 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943 						  path, devid, found_transid,
944 						  current->comm,
945 						  task_pid_nr(current));
946 				return ERR_PTR(-EEXIST);
947 			}
948 			btrfs_info_in_rcu(device->fs_info,
949 	"devid %llu device path %s changed to %s scanned by %s (%d)",
950 					  devid, rcu_str_deref(device->name),
951 					  path, current->comm,
952 					  task_pid_nr(current));
953 		}
954 
955 		name = rcu_string_strdup(path, GFP_NOFS);
956 		if (!name) {
957 			mutex_unlock(&fs_devices->device_list_mutex);
958 			return ERR_PTR(-ENOMEM);
959 		}
960 		rcu_string_free(device->name);
961 		rcu_assign_pointer(device->name, name);
962 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963 			fs_devices->missing_devices--;
964 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
965 		}
966 	}
967 
968 	/*
969 	 * Unmount does not free the btrfs_device struct but would zero
970 	 * generation along with most of the other members. So just update
971 	 * it back. We need it to pick the disk with largest generation
972 	 * (as above).
973 	 */
974 	if (!fs_devices->opened) {
975 		device->generation = found_transid;
976 		fs_devices->latest_generation = max_t(u64, found_transid,
977 						fs_devices->latest_generation);
978 	}
979 
980 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981 
982 	mutex_unlock(&fs_devices->device_list_mutex);
983 	return device;
984 }
985 
986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987 {
988 	struct btrfs_fs_devices *fs_devices;
989 	struct btrfs_device *device;
990 	struct btrfs_device *orig_dev;
991 	int ret = 0;
992 
993 	lockdep_assert_held(&uuid_mutex);
994 
995 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
996 	if (IS_ERR(fs_devices))
997 		return fs_devices;
998 
999 	fs_devices->total_devices = orig->total_devices;
1000 
1001 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 		struct rcu_string *name;
1003 
1004 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 					    orig_dev->uuid);
1006 		if (IS_ERR(device)) {
1007 			ret = PTR_ERR(device);
1008 			goto error;
1009 		}
1010 
1011 		/*
1012 		 * This is ok to do without rcu read locked because we hold the
1013 		 * uuid mutex so nothing we touch in here is going to disappear.
1014 		 */
1015 		if (orig_dev->name) {
1016 			name = rcu_string_strdup(orig_dev->name->str,
1017 					GFP_KERNEL);
1018 			if (!name) {
1019 				btrfs_free_device(device);
1020 				ret = -ENOMEM;
1021 				goto error;
1022 			}
1023 			rcu_assign_pointer(device->name, name);
1024 		}
1025 
1026 		list_add(&device->dev_list, &fs_devices->devices);
1027 		device->fs_devices = fs_devices;
1028 		fs_devices->num_devices++;
1029 	}
1030 	return fs_devices;
1031 error:
1032 	free_fs_devices(fs_devices);
1033 	return ERR_PTR(ret);
1034 }
1035 
1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 				      struct btrfs_device **latest_dev)
1038 {
1039 	struct btrfs_device *device, *next;
1040 
1041 	/* This is the initialized path, it is safe to release the devices. */
1042 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 				      &device->dev_state) &&
1046 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1047 				      &device->dev_state) &&
1048 			    (!*latest_dev ||
1049 			     device->generation > (*latest_dev)->generation)) {
1050 				*latest_dev = device;
1051 			}
1052 			continue;
1053 		}
1054 
1055 		/*
1056 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 		 * in btrfs_init_dev_replace() so just continue.
1058 		 */
1059 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 			continue;
1061 
1062 		if (device->bdev) {
1063 			blkdev_put(device->bdev, device->mode);
1064 			device->bdev = NULL;
1065 			fs_devices->open_devices--;
1066 		}
1067 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 			list_del_init(&device->dev_alloc_list);
1069 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 			fs_devices->rw_devices--;
1071 		}
1072 		list_del_init(&device->dev_list);
1073 		fs_devices->num_devices--;
1074 		btrfs_free_device(device);
1075 	}
1076 
1077 }
1078 
1079 /*
1080  * After we have read the system tree and know devids belonging to this
1081  * filesystem, remove the device which does not belong there.
1082  */
1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085 	struct btrfs_device *latest_dev = NULL;
1086 	struct btrfs_fs_devices *seed_dev;
1087 
1088 	mutex_lock(&uuid_mutex);
1089 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1090 
1091 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1093 
1094 	fs_devices->latest_bdev = latest_dev->bdev;
1095 
1096 	mutex_unlock(&uuid_mutex);
1097 }
1098 
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 	if (!device->bdev)
1102 		return;
1103 
1104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 		sync_blockdev(device->bdev);
1106 		invalidate_bdev(device->bdev);
1107 	}
1108 
1109 	blkdev_put(device->bdev, device->mode);
1110 }
1111 
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115 
1116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 		list_del_init(&device->dev_alloc_list);
1119 		fs_devices->rw_devices--;
1120 	}
1121 
1122 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 		fs_devices->missing_devices--;
1127 
1128 	btrfs_close_bdev(device);
1129 	if (device->bdev) {
1130 		fs_devices->open_devices--;
1131 		device->bdev = NULL;
1132 	}
1133 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134 	btrfs_destroy_dev_zone_info(device);
1135 
1136 	device->fs_info = NULL;
1137 	atomic_set(&device->dev_stats_ccnt, 0);
1138 	extent_io_tree_release(&device->alloc_state);
1139 
1140 	/* Verify the device is back in a pristine state  */
1141 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1142 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1143 	ASSERT(list_empty(&device->dev_alloc_list));
1144 	ASSERT(list_empty(&device->post_commit_list));
1145 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1146 }
1147 
1148 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1149 {
1150 	struct btrfs_device *device, *tmp;
1151 
1152 	lockdep_assert_held(&uuid_mutex);
1153 
1154 	if (--fs_devices->opened > 0)
1155 		return;
1156 
1157 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1158 		btrfs_close_one_device(device);
1159 
1160 	WARN_ON(fs_devices->open_devices);
1161 	WARN_ON(fs_devices->rw_devices);
1162 	fs_devices->opened = 0;
1163 	fs_devices->seeding = false;
1164 	fs_devices->fs_info = NULL;
1165 }
1166 
1167 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1168 {
1169 	LIST_HEAD(list);
1170 	struct btrfs_fs_devices *tmp;
1171 
1172 	mutex_lock(&uuid_mutex);
1173 	close_fs_devices(fs_devices);
1174 	if (!fs_devices->opened)
1175 		list_splice_init(&fs_devices->seed_list, &list);
1176 
1177 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1178 		close_fs_devices(fs_devices);
1179 		list_del(&fs_devices->seed_list);
1180 		free_fs_devices(fs_devices);
1181 	}
1182 	mutex_unlock(&uuid_mutex);
1183 }
1184 
1185 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1186 				fmode_t flags, void *holder)
1187 {
1188 	struct btrfs_device *device;
1189 	struct btrfs_device *latest_dev = NULL;
1190 	struct btrfs_device *tmp_device;
1191 
1192 	flags |= FMODE_EXCL;
1193 
1194 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1195 				 dev_list) {
1196 		int ret;
1197 
1198 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1199 		if (ret == 0 &&
1200 		    (!latest_dev || device->generation > latest_dev->generation)) {
1201 			latest_dev = device;
1202 		} else if (ret == -ENODATA) {
1203 			fs_devices->num_devices--;
1204 			list_del(&device->dev_list);
1205 			btrfs_free_device(device);
1206 		}
1207 	}
1208 	if (fs_devices->open_devices == 0)
1209 		return -EINVAL;
1210 
1211 	fs_devices->opened = 1;
1212 	fs_devices->latest_bdev = latest_dev->bdev;
1213 	fs_devices->total_rw_bytes = 0;
1214 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1215 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1216 
1217 	return 0;
1218 }
1219 
1220 static int devid_cmp(void *priv, const struct list_head *a,
1221 		     const struct list_head *b)
1222 {
1223 	const struct btrfs_device *dev1, *dev2;
1224 
1225 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1226 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1227 
1228 	if (dev1->devid < dev2->devid)
1229 		return -1;
1230 	else if (dev1->devid > dev2->devid)
1231 		return 1;
1232 	return 0;
1233 }
1234 
1235 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1236 		       fmode_t flags, void *holder)
1237 {
1238 	int ret;
1239 
1240 	lockdep_assert_held(&uuid_mutex);
1241 	/*
1242 	 * The device_list_mutex cannot be taken here in case opening the
1243 	 * underlying device takes further locks like open_mutex.
1244 	 *
1245 	 * We also don't need the lock here as this is called during mount and
1246 	 * exclusion is provided by uuid_mutex
1247 	 */
1248 
1249 	if (fs_devices->opened) {
1250 		fs_devices->opened++;
1251 		ret = 0;
1252 	} else {
1253 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1254 		ret = open_fs_devices(fs_devices, flags, holder);
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 void btrfs_release_disk_super(struct btrfs_super_block *super)
1261 {
1262 	struct page *page = virt_to_page(super);
1263 
1264 	put_page(page);
1265 }
1266 
1267 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1268 						       u64 bytenr, u64 bytenr_orig)
1269 {
1270 	struct btrfs_super_block *disk_super;
1271 	struct page *page;
1272 	void *p;
1273 	pgoff_t index;
1274 
1275 	/* make sure our super fits in the device */
1276 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	/* make sure our super fits in the page */
1280 	if (sizeof(*disk_super) > PAGE_SIZE)
1281 		return ERR_PTR(-EINVAL);
1282 
1283 	/* make sure our super doesn't straddle pages on disk */
1284 	index = bytenr >> PAGE_SHIFT;
1285 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1286 		return ERR_PTR(-EINVAL);
1287 
1288 	/* pull in the page with our super */
1289 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1290 
1291 	if (IS_ERR(page))
1292 		return ERR_CAST(page);
1293 
1294 	p = page_address(page);
1295 
1296 	/* align our pointer to the offset of the super block */
1297 	disk_super = p + offset_in_page(bytenr);
1298 
1299 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1300 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1301 		btrfs_release_disk_super(p);
1302 		return ERR_PTR(-EINVAL);
1303 	}
1304 
1305 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1306 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1307 
1308 	return disk_super;
1309 }
1310 
1311 int btrfs_forget_devices(const char *path)
1312 {
1313 	int ret;
1314 
1315 	mutex_lock(&uuid_mutex);
1316 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1317 	mutex_unlock(&uuid_mutex);
1318 
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Look for a btrfs signature on a device. This may be called out of the mount path
1324  * and we are not allowed to call set_blocksize during the scan. The superblock
1325  * is read via pagecache
1326  */
1327 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1328 					   void *holder)
1329 {
1330 	struct btrfs_super_block *disk_super;
1331 	bool new_device_added = false;
1332 	struct btrfs_device *device = NULL;
1333 	struct block_device *bdev;
1334 	u64 bytenr, bytenr_orig;
1335 	int ret;
1336 
1337 	lockdep_assert_held(&uuid_mutex);
1338 
1339 	/*
1340 	 * we would like to check all the supers, but that would make
1341 	 * a btrfs mount succeed after a mkfs from a different FS.
1342 	 * So, we need to add a special mount option to scan for
1343 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1344 	 */
1345 	flags |= FMODE_EXCL;
1346 
1347 	bdev = blkdev_get_by_path(path, flags, holder);
1348 	if (IS_ERR(bdev))
1349 		return ERR_CAST(bdev);
1350 
1351 	bytenr_orig = btrfs_sb_offset(0);
1352 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1353 	if (ret)
1354 		return ERR_PTR(ret);
1355 
1356 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1357 	if (IS_ERR(disk_super)) {
1358 		device = ERR_CAST(disk_super);
1359 		goto error_bdev_put;
1360 	}
1361 
1362 	device = device_list_add(path, disk_super, &new_device_added);
1363 	if (!IS_ERR(device)) {
1364 		if (new_device_added)
1365 			btrfs_free_stale_devices(path, device);
1366 	}
1367 
1368 	btrfs_release_disk_super(disk_super);
1369 
1370 error_bdev_put:
1371 	blkdev_put(bdev, flags);
1372 
1373 	return device;
1374 }
1375 
1376 /*
1377  * Try to find a chunk that intersects [start, start + len] range and when one
1378  * such is found, record the end of it in *start
1379  */
1380 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1381 				    u64 len)
1382 {
1383 	u64 physical_start, physical_end;
1384 
1385 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1386 
1387 	if (!find_first_extent_bit(&device->alloc_state, *start,
1388 				   &physical_start, &physical_end,
1389 				   CHUNK_ALLOCATED, NULL)) {
1390 
1391 		if (in_range(physical_start, *start, len) ||
1392 		    in_range(*start, physical_start,
1393 			     physical_end - physical_start)) {
1394 			*start = physical_end + 1;
1395 			return true;
1396 		}
1397 	}
1398 	return false;
1399 }
1400 
1401 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1402 {
1403 	switch (device->fs_devices->chunk_alloc_policy) {
1404 	case BTRFS_CHUNK_ALLOC_REGULAR:
1405 		/*
1406 		 * We don't want to overwrite the superblock on the drive nor
1407 		 * any area used by the boot loader (grub for example), so we
1408 		 * make sure to start at an offset of at least 1MB.
1409 		 */
1410 		return max_t(u64, start, SZ_1M);
1411 	case BTRFS_CHUNK_ALLOC_ZONED:
1412 		/*
1413 		 * We don't care about the starting region like regular
1414 		 * allocator, because we anyway use/reserve the first two zones
1415 		 * for superblock logging.
1416 		 */
1417 		return ALIGN(start, device->zone_info->zone_size);
1418 	default:
1419 		BUG();
1420 	}
1421 }
1422 
1423 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1424 					u64 *hole_start, u64 *hole_size,
1425 					u64 num_bytes)
1426 {
1427 	u64 zone_size = device->zone_info->zone_size;
1428 	u64 pos;
1429 	int ret;
1430 	bool changed = false;
1431 
1432 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1433 
1434 	while (*hole_size > 0) {
1435 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1436 						   *hole_start + *hole_size,
1437 						   num_bytes);
1438 		if (pos != *hole_start) {
1439 			*hole_size = *hole_start + *hole_size - pos;
1440 			*hole_start = pos;
1441 			changed = true;
1442 			if (*hole_size < num_bytes)
1443 				break;
1444 		}
1445 
1446 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1447 
1448 		/* Range is ensured to be empty */
1449 		if (!ret)
1450 			return changed;
1451 
1452 		/* Given hole range was invalid (outside of device) */
1453 		if (ret == -ERANGE) {
1454 			*hole_start += *hole_size;
1455 			*hole_size = 0;
1456 			return true;
1457 		}
1458 
1459 		*hole_start += zone_size;
1460 		*hole_size -= zone_size;
1461 		changed = true;
1462 	}
1463 
1464 	return changed;
1465 }
1466 
1467 /**
1468  * dev_extent_hole_check - check if specified hole is suitable for allocation
1469  * @device:	the device which we have the hole
1470  * @hole_start: starting position of the hole
1471  * @hole_size:	the size of the hole
1472  * @num_bytes:	the size of the free space that we need
1473  *
1474  * This function may modify @hole_start and @hole_size to reflect the suitable
1475  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1476  */
1477 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1478 				  u64 *hole_size, u64 num_bytes)
1479 {
1480 	bool changed = false;
1481 	u64 hole_end = *hole_start + *hole_size;
1482 
1483 	for (;;) {
1484 		/*
1485 		 * Check before we set max_hole_start, otherwise we could end up
1486 		 * sending back this offset anyway.
1487 		 */
1488 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1489 			if (hole_end >= *hole_start)
1490 				*hole_size = hole_end - *hole_start;
1491 			else
1492 				*hole_size = 0;
1493 			changed = true;
1494 		}
1495 
1496 		switch (device->fs_devices->chunk_alloc_policy) {
1497 		case BTRFS_CHUNK_ALLOC_REGULAR:
1498 			/* No extra check */
1499 			break;
1500 		case BTRFS_CHUNK_ALLOC_ZONED:
1501 			if (dev_extent_hole_check_zoned(device, hole_start,
1502 							hole_size, num_bytes)) {
1503 				changed = true;
1504 				/*
1505 				 * The changed hole can contain pending extent.
1506 				 * Loop again to check that.
1507 				 */
1508 				continue;
1509 			}
1510 			break;
1511 		default:
1512 			BUG();
1513 		}
1514 
1515 		break;
1516 	}
1517 
1518 	return changed;
1519 }
1520 
1521 /*
1522  * find_free_dev_extent_start - find free space in the specified device
1523  * @device:	  the device which we search the free space in
1524  * @num_bytes:	  the size of the free space that we need
1525  * @search_start: the position from which to begin the search
1526  * @start:	  store the start of the free space.
1527  * @len:	  the size of the free space. that we find, or the size
1528  *		  of the max free space if we don't find suitable free space
1529  *
1530  * this uses a pretty simple search, the expectation is that it is
1531  * called very infrequently and that a given device has a small number
1532  * of extents
1533  *
1534  * @start is used to store the start of the free space if we find. But if we
1535  * don't find suitable free space, it will be used to store the start position
1536  * of the max free space.
1537  *
1538  * @len is used to store the size of the free space that we find.
1539  * But if we don't find suitable free space, it is used to store the size of
1540  * the max free space.
1541  *
1542  * NOTE: This function will search *commit* root of device tree, and does extra
1543  * check to ensure dev extents are not double allocated.
1544  * This makes the function safe to allocate dev extents but may not report
1545  * correct usable device space, as device extent freed in current transaction
1546  * is not reported as available.
1547  */
1548 static int find_free_dev_extent_start(struct btrfs_device *device,
1549 				u64 num_bytes, u64 search_start, u64 *start,
1550 				u64 *len)
1551 {
1552 	struct btrfs_fs_info *fs_info = device->fs_info;
1553 	struct btrfs_root *root = fs_info->dev_root;
1554 	struct btrfs_key key;
1555 	struct btrfs_dev_extent *dev_extent;
1556 	struct btrfs_path *path;
1557 	u64 hole_size;
1558 	u64 max_hole_start;
1559 	u64 max_hole_size;
1560 	u64 extent_end;
1561 	u64 search_end = device->total_bytes;
1562 	int ret;
1563 	int slot;
1564 	struct extent_buffer *l;
1565 
1566 	search_start = dev_extent_search_start(device, search_start);
1567 
1568 	WARN_ON(device->zone_info &&
1569 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1570 
1571 	path = btrfs_alloc_path();
1572 	if (!path)
1573 		return -ENOMEM;
1574 
1575 	max_hole_start = search_start;
1576 	max_hole_size = 0;
1577 
1578 again:
1579 	if (search_start >= search_end ||
1580 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1581 		ret = -ENOSPC;
1582 		goto out;
1583 	}
1584 
1585 	path->reada = READA_FORWARD;
1586 	path->search_commit_root = 1;
1587 	path->skip_locking = 1;
1588 
1589 	key.objectid = device->devid;
1590 	key.offset = search_start;
1591 	key.type = BTRFS_DEV_EXTENT_KEY;
1592 
1593 	ret = btrfs_search_backwards(root, &key, path);
1594 	if (ret < 0)
1595 		goto out;
1596 
1597 	while (1) {
1598 		l = path->nodes[0];
1599 		slot = path->slots[0];
1600 		if (slot >= btrfs_header_nritems(l)) {
1601 			ret = btrfs_next_leaf(root, path);
1602 			if (ret == 0)
1603 				continue;
1604 			if (ret < 0)
1605 				goto out;
1606 
1607 			break;
1608 		}
1609 		btrfs_item_key_to_cpu(l, &key, slot);
1610 
1611 		if (key.objectid < device->devid)
1612 			goto next;
1613 
1614 		if (key.objectid > device->devid)
1615 			break;
1616 
1617 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1618 			goto next;
1619 
1620 		if (key.offset > search_start) {
1621 			hole_size = key.offset - search_start;
1622 			dev_extent_hole_check(device, &search_start, &hole_size,
1623 					      num_bytes);
1624 
1625 			if (hole_size > max_hole_size) {
1626 				max_hole_start = search_start;
1627 				max_hole_size = hole_size;
1628 			}
1629 
1630 			/*
1631 			 * If this free space is greater than which we need,
1632 			 * it must be the max free space that we have found
1633 			 * until now, so max_hole_start must point to the start
1634 			 * of this free space and the length of this free space
1635 			 * is stored in max_hole_size. Thus, we return
1636 			 * max_hole_start and max_hole_size and go back to the
1637 			 * caller.
1638 			 */
1639 			if (hole_size >= num_bytes) {
1640 				ret = 0;
1641 				goto out;
1642 			}
1643 		}
1644 
1645 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1646 		extent_end = key.offset + btrfs_dev_extent_length(l,
1647 								  dev_extent);
1648 		if (extent_end > search_start)
1649 			search_start = extent_end;
1650 next:
1651 		path->slots[0]++;
1652 		cond_resched();
1653 	}
1654 
1655 	/*
1656 	 * At this point, search_start should be the end of
1657 	 * allocated dev extents, and when shrinking the device,
1658 	 * search_end may be smaller than search_start.
1659 	 */
1660 	if (search_end > search_start) {
1661 		hole_size = search_end - search_start;
1662 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1663 					  num_bytes)) {
1664 			btrfs_release_path(path);
1665 			goto again;
1666 		}
1667 
1668 		if (hole_size > max_hole_size) {
1669 			max_hole_start = search_start;
1670 			max_hole_size = hole_size;
1671 		}
1672 	}
1673 
1674 	/* See above. */
1675 	if (max_hole_size < num_bytes)
1676 		ret = -ENOSPC;
1677 	else
1678 		ret = 0;
1679 
1680 out:
1681 	btrfs_free_path(path);
1682 	*start = max_hole_start;
1683 	if (len)
1684 		*len = max_hole_size;
1685 	return ret;
1686 }
1687 
1688 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1689 			 u64 *start, u64 *len)
1690 {
1691 	/* FIXME use last free of some kind */
1692 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1693 }
1694 
1695 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1696 			  struct btrfs_device *device,
1697 			  u64 start, u64 *dev_extent_len)
1698 {
1699 	struct btrfs_fs_info *fs_info = device->fs_info;
1700 	struct btrfs_root *root = fs_info->dev_root;
1701 	int ret;
1702 	struct btrfs_path *path;
1703 	struct btrfs_key key;
1704 	struct btrfs_key found_key;
1705 	struct extent_buffer *leaf = NULL;
1706 	struct btrfs_dev_extent *extent = NULL;
1707 
1708 	path = btrfs_alloc_path();
1709 	if (!path)
1710 		return -ENOMEM;
1711 
1712 	key.objectid = device->devid;
1713 	key.offset = start;
1714 	key.type = BTRFS_DEV_EXTENT_KEY;
1715 again:
1716 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1717 	if (ret > 0) {
1718 		ret = btrfs_previous_item(root, path, key.objectid,
1719 					  BTRFS_DEV_EXTENT_KEY);
1720 		if (ret)
1721 			goto out;
1722 		leaf = path->nodes[0];
1723 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1724 		extent = btrfs_item_ptr(leaf, path->slots[0],
1725 					struct btrfs_dev_extent);
1726 		BUG_ON(found_key.offset > start || found_key.offset +
1727 		       btrfs_dev_extent_length(leaf, extent) < start);
1728 		key = found_key;
1729 		btrfs_release_path(path);
1730 		goto again;
1731 	} else if (ret == 0) {
1732 		leaf = path->nodes[0];
1733 		extent = btrfs_item_ptr(leaf, path->slots[0],
1734 					struct btrfs_dev_extent);
1735 	} else {
1736 		goto out;
1737 	}
1738 
1739 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1740 
1741 	ret = btrfs_del_item(trans, root, path);
1742 	if (ret == 0)
1743 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1744 out:
1745 	btrfs_free_path(path);
1746 	return ret;
1747 }
1748 
1749 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1750 {
1751 	struct extent_map_tree *em_tree;
1752 	struct extent_map *em;
1753 	struct rb_node *n;
1754 	u64 ret = 0;
1755 
1756 	em_tree = &fs_info->mapping_tree;
1757 	read_lock(&em_tree->lock);
1758 	n = rb_last(&em_tree->map.rb_root);
1759 	if (n) {
1760 		em = rb_entry(n, struct extent_map, rb_node);
1761 		ret = em->start + em->len;
1762 	}
1763 	read_unlock(&em_tree->lock);
1764 
1765 	return ret;
1766 }
1767 
1768 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1769 				    u64 *devid_ret)
1770 {
1771 	int ret;
1772 	struct btrfs_key key;
1773 	struct btrfs_key found_key;
1774 	struct btrfs_path *path;
1775 
1776 	path = btrfs_alloc_path();
1777 	if (!path)
1778 		return -ENOMEM;
1779 
1780 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1781 	key.type = BTRFS_DEV_ITEM_KEY;
1782 	key.offset = (u64)-1;
1783 
1784 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1785 	if (ret < 0)
1786 		goto error;
1787 
1788 	if (ret == 0) {
1789 		/* Corruption */
1790 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1791 		ret = -EUCLEAN;
1792 		goto error;
1793 	}
1794 
1795 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1796 				  BTRFS_DEV_ITEMS_OBJECTID,
1797 				  BTRFS_DEV_ITEM_KEY);
1798 	if (ret) {
1799 		*devid_ret = 1;
1800 	} else {
1801 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1802 				      path->slots[0]);
1803 		*devid_ret = found_key.offset + 1;
1804 	}
1805 	ret = 0;
1806 error:
1807 	btrfs_free_path(path);
1808 	return ret;
1809 }
1810 
1811 /*
1812  * the device information is stored in the chunk root
1813  * the btrfs_device struct should be fully filled in
1814  */
1815 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1816 			    struct btrfs_device *device)
1817 {
1818 	int ret;
1819 	struct btrfs_path *path;
1820 	struct btrfs_dev_item *dev_item;
1821 	struct extent_buffer *leaf;
1822 	struct btrfs_key key;
1823 	unsigned long ptr;
1824 
1825 	path = btrfs_alloc_path();
1826 	if (!path)
1827 		return -ENOMEM;
1828 
1829 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1830 	key.type = BTRFS_DEV_ITEM_KEY;
1831 	key.offset = device->devid;
1832 
1833 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1834 				      &key, sizeof(*dev_item));
1835 	if (ret)
1836 		goto out;
1837 
1838 	leaf = path->nodes[0];
1839 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1840 
1841 	btrfs_set_device_id(leaf, dev_item, device->devid);
1842 	btrfs_set_device_generation(leaf, dev_item, 0);
1843 	btrfs_set_device_type(leaf, dev_item, device->type);
1844 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1845 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1846 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1847 	btrfs_set_device_total_bytes(leaf, dev_item,
1848 				     btrfs_device_get_disk_total_bytes(device));
1849 	btrfs_set_device_bytes_used(leaf, dev_item,
1850 				    btrfs_device_get_bytes_used(device));
1851 	btrfs_set_device_group(leaf, dev_item, 0);
1852 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1853 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1854 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1855 
1856 	ptr = btrfs_device_uuid(dev_item);
1857 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1858 	ptr = btrfs_device_fsid(dev_item);
1859 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1860 			    ptr, BTRFS_FSID_SIZE);
1861 	btrfs_mark_buffer_dirty(leaf);
1862 
1863 	ret = 0;
1864 out:
1865 	btrfs_free_path(path);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * Function to update ctime/mtime for a given device path.
1871  * Mainly used for ctime/mtime based probe like libblkid.
1872  */
1873 static void update_dev_time(struct block_device *bdev)
1874 {
1875 	struct inode *inode = bdev->bd_inode;
1876 	struct timespec64 now;
1877 
1878 	/* Shouldn't happen but just in case. */
1879 	if (!inode)
1880 		return;
1881 
1882 	now = current_time(inode);
1883 	generic_update_time(inode, &now, S_MTIME | S_CTIME);
1884 }
1885 
1886 static int btrfs_rm_dev_item(struct btrfs_device *device)
1887 {
1888 	struct btrfs_root *root = device->fs_info->chunk_root;
1889 	int ret;
1890 	struct btrfs_path *path;
1891 	struct btrfs_key key;
1892 	struct btrfs_trans_handle *trans;
1893 
1894 	path = btrfs_alloc_path();
1895 	if (!path)
1896 		return -ENOMEM;
1897 
1898 	trans = btrfs_start_transaction(root, 0);
1899 	if (IS_ERR(trans)) {
1900 		btrfs_free_path(path);
1901 		return PTR_ERR(trans);
1902 	}
1903 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1904 	key.type = BTRFS_DEV_ITEM_KEY;
1905 	key.offset = device->devid;
1906 
1907 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1908 	if (ret) {
1909 		if (ret > 0)
1910 			ret = -ENOENT;
1911 		btrfs_abort_transaction(trans, ret);
1912 		btrfs_end_transaction(trans);
1913 		goto out;
1914 	}
1915 
1916 	ret = btrfs_del_item(trans, root, path);
1917 	if (ret) {
1918 		btrfs_abort_transaction(trans, ret);
1919 		btrfs_end_transaction(trans);
1920 	}
1921 
1922 out:
1923 	btrfs_free_path(path);
1924 	if (!ret)
1925 		ret = btrfs_commit_transaction(trans);
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1931  * filesystem. It's up to the caller to adjust that number regarding eg. device
1932  * replace.
1933  */
1934 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1935 		u64 num_devices)
1936 {
1937 	u64 all_avail;
1938 	unsigned seq;
1939 	int i;
1940 
1941 	do {
1942 		seq = read_seqbegin(&fs_info->profiles_lock);
1943 
1944 		all_avail = fs_info->avail_data_alloc_bits |
1945 			    fs_info->avail_system_alloc_bits |
1946 			    fs_info->avail_metadata_alloc_bits;
1947 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1948 
1949 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1950 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1951 			continue;
1952 
1953 		if (num_devices < btrfs_raid_array[i].devs_min)
1954 			return btrfs_raid_array[i].mindev_error;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static struct btrfs_device * btrfs_find_next_active_device(
1961 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1962 {
1963 	struct btrfs_device *next_device;
1964 
1965 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1966 		if (next_device != device &&
1967 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1968 		    && next_device->bdev)
1969 			return next_device;
1970 	}
1971 
1972 	return NULL;
1973 }
1974 
1975 /*
1976  * Helper function to check if the given device is part of s_bdev / latest_bdev
1977  * and replace it with the provided or the next active device, in the context
1978  * where this function called, there should be always be another device (or
1979  * this_dev) which is active.
1980  */
1981 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1982 					    struct btrfs_device *next_device)
1983 {
1984 	struct btrfs_fs_info *fs_info = device->fs_info;
1985 
1986 	if (!next_device)
1987 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1988 							    device);
1989 	ASSERT(next_device);
1990 
1991 	if (fs_info->sb->s_bdev &&
1992 			(fs_info->sb->s_bdev == device->bdev))
1993 		fs_info->sb->s_bdev = next_device->bdev;
1994 
1995 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1996 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1997 }
1998 
1999 /*
2000  * Return btrfs_fs_devices::num_devices excluding the device that's being
2001  * currently replaced.
2002  */
2003 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2004 {
2005 	u64 num_devices = fs_info->fs_devices->num_devices;
2006 
2007 	down_read(&fs_info->dev_replace.rwsem);
2008 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2009 		ASSERT(num_devices > 1);
2010 		num_devices--;
2011 	}
2012 	up_read(&fs_info->dev_replace.rwsem);
2013 
2014 	return num_devices;
2015 }
2016 
2017 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2018 			       struct block_device *bdev,
2019 			       const char *device_path)
2020 {
2021 	struct btrfs_super_block *disk_super;
2022 	int copy_num;
2023 
2024 	if (!bdev)
2025 		return;
2026 
2027 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2028 		struct page *page;
2029 		int ret;
2030 
2031 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2032 		if (IS_ERR(disk_super))
2033 			continue;
2034 
2035 		if (bdev_is_zoned(bdev)) {
2036 			btrfs_reset_sb_log_zones(bdev, copy_num);
2037 			continue;
2038 		}
2039 
2040 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2041 
2042 		page = virt_to_page(disk_super);
2043 		set_page_dirty(page);
2044 		lock_page(page);
2045 		/* write_on_page() unlocks the page */
2046 		ret = write_one_page(page);
2047 		if (ret)
2048 			btrfs_warn(fs_info,
2049 				"error clearing superblock number %d (%d)",
2050 				copy_num, ret);
2051 		btrfs_release_disk_super(disk_super);
2052 
2053 	}
2054 
2055 	/* Notify udev that device has changed */
2056 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2057 
2058 	/* Update ctime/mtime for device path for libblkid */
2059 	update_dev_time(bdev);
2060 }
2061 
2062 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2063 		    u64 devid, struct block_device **bdev, fmode_t *mode)
2064 {
2065 	struct btrfs_device *device;
2066 	struct btrfs_fs_devices *cur_devices;
2067 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2068 	u64 num_devices;
2069 	int ret = 0;
2070 
2071 	mutex_lock(&uuid_mutex);
2072 
2073 	num_devices = btrfs_num_devices(fs_info);
2074 
2075 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2076 	if (ret)
2077 		goto out;
2078 
2079 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2080 
2081 	if (IS_ERR(device)) {
2082 		if (PTR_ERR(device) == -ENOENT &&
2083 		    device_path && strcmp(device_path, "missing") == 0)
2084 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2085 		else
2086 			ret = PTR_ERR(device);
2087 		goto out;
2088 	}
2089 
2090 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2091 		btrfs_warn_in_rcu(fs_info,
2092 		  "cannot remove device %s (devid %llu) due to active swapfile",
2093 				  rcu_str_deref(device->name), device->devid);
2094 		ret = -ETXTBSY;
2095 		goto out;
2096 	}
2097 
2098 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2099 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2100 		goto out;
2101 	}
2102 
2103 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2104 	    fs_info->fs_devices->rw_devices == 1) {
2105 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2106 		goto out;
2107 	}
2108 
2109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2110 		mutex_lock(&fs_info->chunk_mutex);
2111 		list_del_init(&device->dev_alloc_list);
2112 		device->fs_devices->rw_devices--;
2113 		mutex_unlock(&fs_info->chunk_mutex);
2114 	}
2115 
2116 	mutex_unlock(&uuid_mutex);
2117 	ret = btrfs_shrink_device(device, 0);
2118 	if (!ret)
2119 		btrfs_reada_remove_dev(device);
2120 	mutex_lock(&uuid_mutex);
2121 	if (ret)
2122 		goto error_undo;
2123 
2124 	/*
2125 	 * TODO: the superblock still includes this device in its num_devices
2126 	 * counter although write_all_supers() is not locked out. This
2127 	 * could give a filesystem state which requires a degraded mount.
2128 	 */
2129 	ret = btrfs_rm_dev_item(device);
2130 	if (ret)
2131 		goto error_undo;
2132 
2133 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2134 	btrfs_scrub_cancel_dev(device);
2135 
2136 	/*
2137 	 * the device list mutex makes sure that we don't change
2138 	 * the device list while someone else is writing out all
2139 	 * the device supers. Whoever is writing all supers, should
2140 	 * lock the device list mutex before getting the number of
2141 	 * devices in the super block (super_copy). Conversely,
2142 	 * whoever updates the number of devices in the super block
2143 	 * (super_copy) should hold the device list mutex.
2144 	 */
2145 
2146 	/*
2147 	 * In normal cases the cur_devices == fs_devices. But in case
2148 	 * of deleting a seed device, the cur_devices should point to
2149 	 * its own fs_devices listed under the fs_devices->seed.
2150 	 */
2151 	cur_devices = device->fs_devices;
2152 	mutex_lock(&fs_devices->device_list_mutex);
2153 	list_del_rcu(&device->dev_list);
2154 
2155 	cur_devices->num_devices--;
2156 	cur_devices->total_devices--;
2157 	/* Update total_devices of the parent fs_devices if it's seed */
2158 	if (cur_devices != fs_devices)
2159 		fs_devices->total_devices--;
2160 
2161 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2162 		cur_devices->missing_devices--;
2163 
2164 	btrfs_assign_next_active_device(device, NULL);
2165 
2166 	if (device->bdev) {
2167 		cur_devices->open_devices--;
2168 		/* remove sysfs entry */
2169 		btrfs_sysfs_remove_device(device);
2170 	}
2171 
2172 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2173 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2174 	mutex_unlock(&fs_devices->device_list_mutex);
2175 
2176 	/*
2177 	 * At this point, the device is zero sized and detached from the
2178 	 * devices list.  All that's left is to zero out the old supers and
2179 	 * free the device.
2180 	 *
2181 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2182 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2183 	 * block device and it's dependencies.  Instead just flush the device
2184 	 * and let the caller do the final blkdev_put.
2185 	 */
2186 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2187 		btrfs_scratch_superblocks(fs_info, device->bdev,
2188 					  device->name->str);
2189 		if (device->bdev) {
2190 			sync_blockdev(device->bdev);
2191 			invalidate_bdev(device->bdev);
2192 		}
2193 	}
2194 
2195 	*bdev = device->bdev;
2196 	*mode = device->mode;
2197 	synchronize_rcu();
2198 	btrfs_free_device(device);
2199 
2200 	if (cur_devices->open_devices == 0) {
2201 		list_del_init(&cur_devices->seed_list);
2202 		close_fs_devices(cur_devices);
2203 		free_fs_devices(cur_devices);
2204 	}
2205 
2206 out:
2207 	mutex_unlock(&uuid_mutex);
2208 	return ret;
2209 
2210 error_undo:
2211 	btrfs_reada_undo_remove_dev(device);
2212 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2213 		mutex_lock(&fs_info->chunk_mutex);
2214 		list_add(&device->dev_alloc_list,
2215 			 &fs_devices->alloc_list);
2216 		device->fs_devices->rw_devices++;
2217 		mutex_unlock(&fs_info->chunk_mutex);
2218 	}
2219 	goto out;
2220 }
2221 
2222 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2223 {
2224 	struct btrfs_fs_devices *fs_devices;
2225 
2226 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2227 
2228 	/*
2229 	 * in case of fs with no seed, srcdev->fs_devices will point
2230 	 * to fs_devices of fs_info. However when the dev being replaced is
2231 	 * a seed dev it will point to the seed's local fs_devices. In short
2232 	 * srcdev will have its correct fs_devices in both the cases.
2233 	 */
2234 	fs_devices = srcdev->fs_devices;
2235 
2236 	list_del_rcu(&srcdev->dev_list);
2237 	list_del(&srcdev->dev_alloc_list);
2238 	fs_devices->num_devices--;
2239 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2240 		fs_devices->missing_devices--;
2241 
2242 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2243 		fs_devices->rw_devices--;
2244 
2245 	if (srcdev->bdev)
2246 		fs_devices->open_devices--;
2247 }
2248 
2249 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2250 {
2251 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2252 
2253 	mutex_lock(&uuid_mutex);
2254 
2255 	btrfs_close_bdev(srcdev);
2256 	synchronize_rcu();
2257 	btrfs_free_device(srcdev);
2258 
2259 	/* if this is no devs we rather delete the fs_devices */
2260 	if (!fs_devices->num_devices) {
2261 		/*
2262 		 * On a mounted FS, num_devices can't be zero unless it's a
2263 		 * seed. In case of a seed device being replaced, the replace
2264 		 * target added to the sprout FS, so there will be no more
2265 		 * device left under the seed FS.
2266 		 */
2267 		ASSERT(fs_devices->seeding);
2268 
2269 		list_del_init(&fs_devices->seed_list);
2270 		close_fs_devices(fs_devices);
2271 		free_fs_devices(fs_devices);
2272 	}
2273 	mutex_unlock(&uuid_mutex);
2274 }
2275 
2276 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2277 {
2278 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2279 
2280 	mutex_lock(&fs_devices->device_list_mutex);
2281 
2282 	btrfs_sysfs_remove_device(tgtdev);
2283 
2284 	if (tgtdev->bdev)
2285 		fs_devices->open_devices--;
2286 
2287 	fs_devices->num_devices--;
2288 
2289 	btrfs_assign_next_active_device(tgtdev, NULL);
2290 
2291 	list_del_rcu(&tgtdev->dev_list);
2292 
2293 	mutex_unlock(&fs_devices->device_list_mutex);
2294 
2295 	/*
2296 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2297 	 * may lead to a call to btrfs_show_devname() which will try
2298 	 * to hold device_list_mutex. And here this device
2299 	 * is already out of device list, so we don't have to hold
2300 	 * the device_list_mutex lock.
2301 	 */
2302 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2303 				  tgtdev->name->str);
2304 
2305 	btrfs_close_bdev(tgtdev);
2306 	synchronize_rcu();
2307 	btrfs_free_device(tgtdev);
2308 }
2309 
2310 static struct btrfs_device *btrfs_find_device_by_path(
2311 		struct btrfs_fs_info *fs_info, const char *device_path)
2312 {
2313 	int ret = 0;
2314 	struct btrfs_super_block *disk_super;
2315 	u64 devid;
2316 	u8 *dev_uuid;
2317 	struct block_device *bdev;
2318 	struct btrfs_device *device;
2319 
2320 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2321 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2322 	if (ret)
2323 		return ERR_PTR(ret);
2324 
2325 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2326 	dev_uuid = disk_super->dev_item.uuid;
2327 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2328 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2329 					   disk_super->metadata_uuid);
2330 	else
2331 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2332 					   disk_super->fsid);
2333 
2334 	btrfs_release_disk_super(disk_super);
2335 	if (!device)
2336 		device = ERR_PTR(-ENOENT);
2337 	blkdev_put(bdev, FMODE_READ);
2338 	return device;
2339 }
2340 
2341 /*
2342  * Lookup a device given by device id, or the path if the id is 0.
2343  */
2344 struct btrfs_device *btrfs_find_device_by_devspec(
2345 		struct btrfs_fs_info *fs_info, u64 devid,
2346 		const char *device_path)
2347 {
2348 	struct btrfs_device *device;
2349 
2350 	if (devid) {
2351 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2352 					   NULL);
2353 		if (!device)
2354 			return ERR_PTR(-ENOENT);
2355 		return device;
2356 	}
2357 
2358 	if (!device_path || !device_path[0])
2359 		return ERR_PTR(-EINVAL);
2360 
2361 	if (strcmp(device_path, "missing") == 0) {
2362 		/* Find first missing device */
2363 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2364 				    dev_list) {
2365 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2366 				     &device->dev_state) && !device->bdev)
2367 				return device;
2368 		}
2369 		return ERR_PTR(-ENOENT);
2370 	}
2371 
2372 	return btrfs_find_device_by_path(fs_info, device_path);
2373 }
2374 
2375 /*
2376  * does all the dirty work required for changing file system's UUID.
2377  */
2378 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2379 {
2380 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2381 	struct btrfs_fs_devices *old_devices;
2382 	struct btrfs_fs_devices *seed_devices;
2383 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2384 	struct btrfs_device *device;
2385 	u64 super_flags;
2386 
2387 	lockdep_assert_held(&uuid_mutex);
2388 	if (!fs_devices->seeding)
2389 		return -EINVAL;
2390 
2391 	/*
2392 	 * Private copy of the seed devices, anchored at
2393 	 * fs_info->fs_devices->seed_list
2394 	 */
2395 	seed_devices = alloc_fs_devices(NULL, NULL);
2396 	if (IS_ERR(seed_devices))
2397 		return PTR_ERR(seed_devices);
2398 
2399 	/*
2400 	 * It's necessary to retain a copy of the original seed fs_devices in
2401 	 * fs_uuids so that filesystems which have been seeded can successfully
2402 	 * reference the seed device from open_seed_devices. This also supports
2403 	 * multiple fs seed.
2404 	 */
2405 	old_devices = clone_fs_devices(fs_devices);
2406 	if (IS_ERR(old_devices)) {
2407 		kfree(seed_devices);
2408 		return PTR_ERR(old_devices);
2409 	}
2410 
2411 	list_add(&old_devices->fs_list, &fs_uuids);
2412 
2413 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2414 	seed_devices->opened = 1;
2415 	INIT_LIST_HEAD(&seed_devices->devices);
2416 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2417 	mutex_init(&seed_devices->device_list_mutex);
2418 
2419 	mutex_lock(&fs_devices->device_list_mutex);
2420 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2421 			      synchronize_rcu);
2422 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2423 		device->fs_devices = seed_devices;
2424 
2425 	fs_devices->seeding = false;
2426 	fs_devices->num_devices = 0;
2427 	fs_devices->open_devices = 0;
2428 	fs_devices->missing_devices = 0;
2429 	fs_devices->rotating = false;
2430 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2431 
2432 	generate_random_uuid(fs_devices->fsid);
2433 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2434 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2435 	mutex_unlock(&fs_devices->device_list_mutex);
2436 
2437 	super_flags = btrfs_super_flags(disk_super) &
2438 		      ~BTRFS_SUPER_FLAG_SEEDING;
2439 	btrfs_set_super_flags(disk_super, super_flags);
2440 
2441 	return 0;
2442 }
2443 
2444 /*
2445  * Store the expected generation for seed devices in device items.
2446  */
2447 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2448 {
2449 	struct btrfs_fs_info *fs_info = trans->fs_info;
2450 	struct btrfs_root *root = fs_info->chunk_root;
2451 	struct btrfs_path *path;
2452 	struct extent_buffer *leaf;
2453 	struct btrfs_dev_item *dev_item;
2454 	struct btrfs_device *device;
2455 	struct btrfs_key key;
2456 	u8 fs_uuid[BTRFS_FSID_SIZE];
2457 	u8 dev_uuid[BTRFS_UUID_SIZE];
2458 	u64 devid;
2459 	int ret;
2460 
2461 	path = btrfs_alloc_path();
2462 	if (!path)
2463 		return -ENOMEM;
2464 
2465 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2466 	key.offset = 0;
2467 	key.type = BTRFS_DEV_ITEM_KEY;
2468 
2469 	while (1) {
2470 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2471 		if (ret < 0)
2472 			goto error;
2473 
2474 		leaf = path->nodes[0];
2475 next_slot:
2476 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2477 			ret = btrfs_next_leaf(root, path);
2478 			if (ret > 0)
2479 				break;
2480 			if (ret < 0)
2481 				goto error;
2482 			leaf = path->nodes[0];
2483 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2484 			btrfs_release_path(path);
2485 			continue;
2486 		}
2487 
2488 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2489 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2490 		    key.type != BTRFS_DEV_ITEM_KEY)
2491 			break;
2492 
2493 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2494 					  struct btrfs_dev_item);
2495 		devid = btrfs_device_id(leaf, dev_item);
2496 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2497 				   BTRFS_UUID_SIZE);
2498 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2499 				   BTRFS_FSID_SIZE);
2500 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2501 					   fs_uuid);
2502 		BUG_ON(!device); /* Logic error */
2503 
2504 		if (device->fs_devices->seeding) {
2505 			btrfs_set_device_generation(leaf, dev_item,
2506 						    device->generation);
2507 			btrfs_mark_buffer_dirty(leaf);
2508 		}
2509 
2510 		path->slots[0]++;
2511 		goto next_slot;
2512 	}
2513 	ret = 0;
2514 error:
2515 	btrfs_free_path(path);
2516 	return ret;
2517 }
2518 
2519 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2520 {
2521 	struct btrfs_root *root = fs_info->dev_root;
2522 	struct request_queue *q;
2523 	struct btrfs_trans_handle *trans;
2524 	struct btrfs_device *device;
2525 	struct block_device *bdev;
2526 	struct super_block *sb = fs_info->sb;
2527 	struct rcu_string *name;
2528 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2529 	u64 orig_super_total_bytes;
2530 	u64 orig_super_num_devices;
2531 	int seeding_dev = 0;
2532 	int ret = 0;
2533 	bool locked = false;
2534 
2535 	if (sb_rdonly(sb) && !fs_devices->seeding)
2536 		return -EROFS;
2537 
2538 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2539 				  fs_info->bdev_holder);
2540 	if (IS_ERR(bdev))
2541 		return PTR_ERR(bdev);
2542 
2543 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2544 		ret = -EINVAL;
2545 		goto error;
2546 	}
2547 
2548 	if (fs_devices->seeding) {
2549 		seeding_dev = 1;
2550 		down_write(&sb->s_umount);
2551 		mutex_lock(&uuid_mutex);
2552 		locked = true;
2553 	}
2554 
2555 	sync_blockdev(bdev);
2556 
2557 	rcu_read_lock();
2558 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2559 		if (device->bdev == bdev) {
2560 			ret = -EEXIST;
2561 			rcu_read_unlock();
2562 			goto error;
2563 		}
2564 	}
2565 	rcu_read_unlock();
2566 
2567 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2568 	if (IS_ERR(device)) {
2569 		/* we can safely leave the fs_devices entry around */
2570 		ret = PTR_ERR(device);
2571 		goto error;
2572 	}
2573 
2574 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2575 	if (!name) {
2576 		ret = -ENOMEM;
2577 		goto error_free_device;
2578 	}
2579 	rcu_assign_pointer(device->name, name);
2580 
2581 	device->fs_info = fs_info;
2582 	device->bdev = bdev;
2583 
2584 	ret = btrfs_get_dev_zone_info(device);
2585 	if (ret)
2586 		goto error_free_device;
2587 
2588 	trans = btrfs_start_transaction(root, 0);
2589 	if (IS_ERR(trans)) {
2590 		ret = PTR_ERR(trans);
2591 		goto error_free_zone;
2592 	}
2593 
2594 	q = bdev_get_queue(bdev);
2595 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2596 	device->generation = trans->transid;
2597 	device->io_width = fs_info->sectorsize;
2598 	device->io_align = fs_info->sectorsize;
2599 	device->sector_size = fs_info->sectorsize;
2600 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2601 					 fs_info->sectorsize);
2602 	device->disk_total_bytes = device->total_bytes;
2603 	device->commit_total_bytes = device->total_bytes;
2604 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2605 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2606 	device->mode = FMODE_EXCL;
2607 	device->dev_stats_valid = 1;
2608 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2609 
2610 	if (seeding_dev) {
2611 		btrfs_clear_sb_rdonly(sb);
2612 		ret = btrfs_prepare_sprout(fs_info);
2613 		if (ret) {
2614 			btrfs_abort_transaction(trans, ret);
2615 			goto error_trans;
2616 		}
2617 	}
2618 
2619 	device->fs_devices = fs_devices;
2620 
2621 	mutex_lock(&fs_devices->device_list_mutex);
2622 	mutex_lock(&fs_info->chunk_mutex);
2623 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2624 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2625 	fs_devices->num_devices++;
2626 	fs_devices->open_devices++;
2627 	fs_devices->rw_devices++;
2628 	fs_devices->total_devices++;
2629 	fs_devices->total_rw_bytes += device->total_bytes;
2630 
2631 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2632 
2633 	if (!blk_queue_nonrot(q))
2634 		fs_devices->rotating = true;
2635 
2636 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2637 	btrfs_set_super_total_bytes(fs_info->super_copy,
2638 		round_down(orig_super_total_bytes + device->total_bytes,
2639 			   fs_info->sectorsize));
2640 
2641 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2642 	btrfs_set_super_num_devices(fs_info->super_copy,
2643 				    orig_super_num_devices + 1);
2644 
2645 	/*
2646 	 * we've got more storage, clear any full flags on the space
2647 	 * infos
2648 	 */
2649 	btrfs_clear_space_info_full(fs_info);
2650 
2651 	mutex_unlock(&fs_info->chunk_mutex);
2652 
2653 	/* Add sysfs device entry */
2654 	btrfs_sysfs_add_device(device);
2655 
2656 	mutex_unlock(&fs_devices->device_list_mutex);
2657 
2658 	if (seeding_dev) {
2659 		mutex_lock(&fs_info->chunk_mutex);
2660 		ret = init_first_rw_device(trans);
2661 		mutex_unlock(&fs_info->chunk_mutex);
2662 		if (ret) {
2663 			btrfs_abort_transaction(trans, ret);
2664 			goto error_sysfs;
2665 		}
2666 	}
2667 
2668 	ret = btrfs_add_dev_item(trans, device);
2669 	if (ret) {
2670 		btrfs_abort_transaction(trans, ret);
2671 		goto error_sysfs;
2672 	}
2673 
2674 	if (seeding_dev) {
2675 		ret = btrfs_finish_sprout(trans);
2676 		if (ret) {
2677 			btrfs_abort_transaction(trans, ret);
2678 			goto error_sysfs;
2679 		}
2680 
2681 		/*
2682 		 * fs_devices now represents the newly sprouted filesystem and
2683 		 * its fsid has been changed by btrfs_prepare_sprout
2684 		 */
2685 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2686 	}
2687 
2688 	ret = btrfs_commit_transaction(trans);
2689 
2690 	if (seeding_dev) {
2691 		mutex_unlock(&uuid_mutex);
2692 		up_write(&sb->s_umount);
2693 		locked = false;
2694 
2695 		if (ret) /* transaction commit */
2696 			return ret;
2697 
2698 		ret = btrfs_relocate_sys_chunks(fs_info);
2699 		if (ret < 0)
2700 			btrfs_handle_fs_error(fs_info, ret,
2701 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2702 		trans = btrfs_attach_transaction(root);
2703 		if (IS_ERR(trans)) {
2704 			if (PTR_ERR(trans) == -ENOENT)
2705 				return 0;
2706 			ret = PTR_ERR(trans);
2707 			trans = NULL;
2708 			goto error_sysfs;
2709 		}
2710 		ret = btrfs_commit_transaction(trans);
2711 	}
2712 
2713 	/*
2714 	 * Now that we have written a new super block to this device, check all
2715 	 * other fs_devices list if device_path alienates any other scanned
2716 	 * device.
2717 	 * We can ignore the return value as it typically returns -EINVAL and
2718 	 * only succeeds if the device was an alien.
2719 	 */
2720 	btrfs_forget_devices(device_path);
2721 
2722 	/* Update ctime/mtime for blkid or udev */
2723 	update_dev_time(bdev);
2724 
2725 	return ret;
2726 
2727 error_sysfs:
2728 	btrfs_sysfs_remove_device(device);
2729 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2730 	mutex_lock(&fs_info->chunk_mutex);
2731 	list_del_rcu(&device->dev_list);
2732 	list_del(&device->dev_alloc_list);
2733 	fs_info->fs_devices->num_devices--;
2734 	fs_info->fs_devices->open_devices--;
2735 	fs_info->fs_devices->rw_devices--;
2736 	fs_info->fs_devices->total_devices--;
2737 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2738 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2739 	btrfs_set_super_total_bytes(fs_info->super_copy,
2740 				    orig_super_total_bytes);
2741 	btrfs_set_super_num_devices(fs_info->super_copy,
2742 				    orig_super_num_devices);
2743 	mutex_unlock(&fs_info->chunk_mutex);
2744 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2745 error_trans:
2746 	if (seeding_dev)
2747 		btrfs_set_sb_rdonly(sb);
2748 	if (trans)
2749 		btrfs_end_transaction(trans);
2750 error_free_zone:
2751 	btrfs_destroy_dev_zone_info(device);
2752 error_free_device:
2753 	btrfs_free_device(device);
2754 error:
2755 	blkdev_put(bdev, FMODE_EXCL);
2756 	if (locked) {
2757 		mutex_unlock(&uuid_mutex);
2758 		up_write(&sb->s_umount);
2759 	}
2760 	return ret;
2761 }
2762 
2763 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2764 					struct btrfs_device *device)
2765 {
2766 	int ret;
2767 	struct btrfs_path *path;
2768 	struct btrfs_root *root = device->fs_info->chunk_root;
2769 	struct btrfs_dev_item *dev_item;
2770 	struct extent_buffer *leaf;
2771 	struct btrfs_key key;
2772 
2773 	path = btrfs_alloc_path();
2774 	if (!path)
2775 		return -ENOMEM;
2776 
2777 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2778 	key.type = BTRFS_DEV_ITEM_KEY;
2779 	key.offset = device->devid;
2780 
2781 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2782 	if (ret < 0)
2783 		goto out;
2784 
2785 	if (ret > 0) {
2786 		ret = -ENOENT;
2787 		goto out;
2788 	}
2789 
2790 	leaf = path->nodes[0];
2791 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2792 
2793 	btrfs_set_device_id(leaf, dev_item, device->devid);
2794 	btrfs_set_device_type(leaf, dev_item, device->type);
2795 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2796 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2797 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2798 	btrfs_set_device_total_bytes(leaf, dev_item,
2799 				     btrfs_device_get_disk_total_bytes(device));
2800 	btrfs_set_device_bytes_used(leaf, dev_item,
2801 				    btrfs_device_get_bytes_used(device));
2802 	btrfs_mark_buffer_dirty(leaf);
2803 
2804 out:
2805 	btrfs_free_path(path);
2806 	return ret;
2807 }
2808 
2809 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2810 		      struct btrfs_device *device, u64 new_size)
2811 {
2812 	struct btrfs_fs_info *fs_info = device->fs_info;
2813 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2814 	u64 old_total;
2815 	u64 diff;
2816 
2817 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2818 		return -EACCES;
2819 
2820 	new_size = round_down(new_size, fs_info->sectorsize);
2821 
2822 	mutex_lock(&fs_info->chunk_mutex);
2823 	old_total = btrfs_super_total_bytes(super_copy);
2824 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2825 
2826 	if (new_size <= device->total_bytes ||
2827 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2828 		mutex_unlock(&fs_info->chunk_mutex);
2829 		return -EINVAL;
2830 	}
2831 
2832 	btrfs_set_super_total_bytes(super_copy,
2833 			round_down(old_total + diff, fs_info->sectorsize));
2834 	device->fs_devices->total_rw_bytes += diff;
2835 
2836 	btrfs_device_set_total_bytes(device, new_size);
2837 	btrfs_device_set_disk_total_bytes(device, new_size);
2838 	btrfs_clear_space_info_full(device->fs_info);
2839 	if (list_empty(&device->post_commit_list))
2840 		list_add_tail(&device->post_commit_list,
2841 			      &trans->transaction->dev_update_list);
2842 	mutex_unlock(&fs_info->chunk_mutex);
2843 
2844 	return btrfs_update_device(trans, device);
2845 }
2846 
2847 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2848 {
2849 	struct btrfs_fs_info *fs_info = trans->fs_info;
2850 	struct btrfs_root *root = fs_info->chunk_root;
2851 	int ret;
2852 	struct btrfs_path *path;
2853 	struct btrfs_key key;
2854 
2855 	path = btrfs_alloc_path();
2856 	if (!path)
2857 		return -ENOMEM;
2858 
2859 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2860 	key.offset = chunk_offset;
2861 	key.type = BTRFS_CHUNK_ITEM_KEY;
2862 
2863 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2864 	if (ret < 0)
2865 		goto out;
2866 	else if (ret > 0) { /* Logic error or corruption */
2867 		btrfs_handle_fs_error(fs_info, -ENOENT,
2868 				      "Failed lookup while freeing chunk.");
2869 		ret = -ENOENT;
2870 		goto out;
2871 	}
2872 
2873 	ret = btrfs_del_item(trans, root, path);
2874 	if (ret < 0)
2875 		btrfs_handle_fs_error(fs_info, ret,
2876 				      "Failed to delete chunk item.");
2877 out:
2878 	btrfs_free_path(path);
2879 	return ret;
2880 }
2881 
2882 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2883 {
2884 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2885 	struct btrfs_disk_key *disk_key;
2886 	struct btrfs_chunk *chunk;
2887 	u8 *ptr;
2888 	int ret = 0;
2889 	u32 num_stripes;
2890 	u32 array_size;
2891 	u32 len = 0;
2892 	u32 cur;
2893 	struct btrfs_key key;
2894 
2895 	lockdep_assert_held(&fs_info->chunk_mutex);
2896 	array_size = btrfs_super_sys_array_size(super_copy);
2897 
2898 	ptr = super_copy->sys_chunk_array;
2899 	cur = 0;
2900 
2901 	while (cur < array_size) {
2902 		disk_key = (struct btrfs_disk_key *)ptr;
2903 		btrfs_disk_key_to_cpu(&key, disk_key);
2904 
2905 		len = sizeof(*disk_key);
2906 
2907 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2908 			chunk = (struct btrfs_chunk *)(ptr + len);
2909 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2910 			len += btrfs_chunk_item_size(num_stripes);
2911 		} else {
2912 			ret = -EIO;
2913 			break;
2914 		}
2915 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2916 		    key.offset == chunk_offset) {
2917 			memmove(ptr, ptr + len, array_size - (cur + len));
2918 			array_size -= len;
2919 			btrfs_set_super_sys_array_size(super_copy, array_size);
2920 		} else {
2921 			ptr += len;
2922 			cur += len;
2923 		}
2924 	}
2925 	return ret;
2926 }
2927 
2928 /*
2929  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2930  * @logical: Logical block offset in bytes.
2931  * @length: Length of extent in bytes.
2932  *
2933  * Return: Chunk mapping or ERR_PTR.
2934  */
2935 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2936 				       u64 logical, u64 length)
2937 {
2938 	struct extent_map_tree *em_tree;
2939 	struct extent_map *em;
2940 
2941 	em_tree = &fs_info->mapping_tree;
2942 	read_lock(&em_tree->lock);
2943 	em = lookup_extent_mapping(em_tree, logical, length);
2944 	read_unlock(&em_tree->lock);
2945 
2946 	if (!em) {
2947 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2948 			   logical, length);
2949 		return ERR_PTR(-EINVAL);
2950 	}
2951 
2952 	if (em->start > logical || em->start + em->len < logical) {
2953 		btrfs_crit(fs_info,
2954 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2955 			   logical, length, em->start, em->start + em->len);
2956 		free_extent_map(em);
2957 		return ERR_PTR(-EINVAL);
2958 	}
2959 
2960 	/* callers are responsible for dropping em's ref. */
2961 	return em;
2962 }
2963 
2964 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2965 			     struct map_lookup *map, u64 chunk_offset)
2966 {
2967 	int i;
2968 
2969 	/*
2970 	 * Removing chunk items and updating the device items in the chunks btree
2971 	 * requires holding the chunk_mutex.
2972 	 * See the comment at btrfs_chunk_alloc() for the details.
2973 	 */
2974 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
2975 
2976 	for (i = 0; i < map->num_stripes; i++) {
2977 		int ret;
2978 
2979 		ret = btrfs_update_device(trans, map->stripes[i].dev);
2980 		if (ret)
2981 			return ret;
2982 	}
2983 
2984 	return btrfs_free_chunk(trans, chunk_offset);
2985 }
2986 
2987 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2988 {
2989 	struct btrfs_fs_info *fs_info = trans->fs_info;
2990 	struct extent_map *em;
2991 	struct map_lookup *map;
2992 	u64 dev_extent_len = 0;
2993 	int i, ret = 0;
2994 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2995 
2996 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2997 	if (IS_ERR(em)) {
2998 		/*
2999 		 * This is a logic error, but we don't want to just rely on the
3000 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3001 		 * do anything we still error out.
3002 		 */
3003 		ASSERT(0);
3004 		return PTR_ERR(em);
3005 	}
3006 	map = em->map_lookup;
3007 
3008 	/*
3009 	 * First delete the device extent items from the devices btree.
3010 	 * We take the device_list_mutex to avoid racing with the finishing phase
3011 	 * of a device replace operation. See the comment below before acquiring
3012 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3013 	 * because that can result in a deadlock when deleting the device extent
3014 	 * items from the devices btree - COWing an extent buffer from the btree
3015 	 * may result in allocating a new metadata chunk, which would attempt to
3016 	 * lock again fs_info->chunk_mutex.
3017 	 */
3018 	mutex_lock(&fs_devices->device_list_mutex);
3019 	for (i = 0; i < map->num_stripes; i++) {
3020 		struct btrfs_device *device = map->stripes[i].dev;
3021 		ret = btrfs_free_dev_extent(trans, device,
3022 					    map->stripes[i].physical,
3023 					    &dev_extent_len);
3024 		if (ret) {
3025 			mutex_unlock(&fs_devices->device_list_mutex);
3026 			btrfs_abort_transaction(trans, ret);
3027 			goto out;
3028 		}
3029 
3030 		if (device->bytes_used > 0) {
3031 			mutex_lock(&fs_info->chunk_mutex);
3032 			btrfs_device_set_bytes_used(device,
3033 					device->bytes_used - dev_extent_len);
3034 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3035 			btrfs_clear_space_info_full(fs_info);
3036 			mutex_unlock(&fs_info->chunk_mutex);
3037 		}
3038 	}
3039 	mutex_unlock(&fs_devices->device_list_mutex);
3040 
3041 	/*
3042 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3043 	 *
3044 	 * 1) Just like with the first phase of the chunk allocation, we must
3045 	 *    reserve system space, do all chunk btree updates and deletions, and
3046 	 *    update the system chunk array in the superblock while holding this
3047 	 *    mutex. This is for similar reasons as explained on the comment at
3048 	 *    the top of btrfs_chunk_alloc();
3049 	 *
3050 	 * 2) Prevent races with the final phase of a device replace operation
3051 	 *    that replaces the device object associated with the map's stripes,
3052 	 *    because the device object's id can change at any time during that
3053 	 *    final phase of the device replace operation
3054 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3055 	 *    replaced device and then see it with an ID of
3056 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3057 	 *    the device item, which does not exists on the chunk btree.
3058 	 *    The finishing phase of device replace acquires both the
3059 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3060 	 *    safe by just acquiring the chunk_mutex.
3061 	 */
3062 	trans->removing_chunk = true;
3063 	mutex_lock(&fs_info->chunk_mutex);
3064 
3065 	check_system_chunk(trans, map->type);
3066 
3067 	ret = remove_chunk_item(trans, map, chunk_offset);
3068 	/*
3069 	 * Normally we should not get -ENOSPC since we reserved space before
3070 	 * through the call to check_system_chunk().
3071 	 *
3072 	 * Despite our system space_info having enough free space, we may not
3073 	 * be able to allocate extents from its block groups, because all have
3074 	 * an incompatible profile, which will force us to allocate a new system
3075 	 * block group with the right profile, or right after we called
3076 	 * check_system_space() above, a scrub turned the only system block group
3077 	 * with enough free space into RO mode.
3078 	 * This is explained with more detail at do_chunk_alloc().
3079 	 *
3080 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3081 	 */
3082 	if (ret == -ENOSPC) {
3083 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3084 		struct btrfs_block_group *sys_bg;
3085 
3086 		sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3087 		if (IS_ERR(sys_bg)) {
3088 			ret = PTR_ERR(sys_bg);
3089 			btrfs_abort_transaction(trans, ret);
3090 			goto out;
3091 		}
3092 
3093 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3094 		if (ret) {
3095 			btrfs_abort_transaction(trans, ret);
3096 			goto out;
3097 		}
3098 
3099 		ret = remove_chunk_item(trans, map, chunk_offset);
3100 		if (ret) {
3101 			btrfs_abort_transaction(trans, ret);
3102 			goto out;
3103 		}
3104 	} else if (ret) {
3105 		btrfs_abort_transaction(trans, ret);
3106 		goto out;
3107 	}
3108 
3109 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3110 
3111 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3112 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3113 		if (ret) {
3114 			btrfs_abort_transaction(trans, ret);
3115 			goto out;
3116 		}
3117 	}
3118 
3119 	mutex_unlock(&fs_info->chunk_mutex);
3120 	trans->removing_chunk = false;
3121 
3122 	/*
3123 	 * We are done with chunk btree updates and deletions, so release the
3124 	 * system space we previously reserved (with check_system_chunk()).
3125 	 */
3126 	btrfs_trans_release_chunk_metadata(trans);
3127 
3128 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3129 	if (ret) {
3130 		btrfs_abort_transaction(trans, ret);
3131 		goto out;
3132 	}
3133 
3134 out:
3135 	if (trans->removing_chunk) {
3136 		mutex_unlock(&fs_info->chunk_mutex);
3137 		trans->removing_chunk = false;
3138 	}
3139 	/* once for us */
3140 	free_extent_map(em);
3141 	return ret;
3142 }
3143 
3144 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3145 {
3146 	struct btrfs_root *root = fs_info->chunk_root;
3147 	struct btrfs_trans_handle *trans;
3148 	struct btrfs_block_group *block_group;
3149 	u64 length;
3150 	int ret;
3151 
3152 	/*
3153 	 * Prevent races with automatic removal of unused block groups.
3154 	 * After we relocate and before we remove the chunk with offset
3155 	 * chunk_offset, automatic removal of the block group can kick in,
3156 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3157 	 *
3158 	 * Make sure to acquire this mutex before doing a tree search (dev
3159 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3160 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3161 	 * we release the path used to search the chunk/dev tree and before
3162 	 * the current task acquires this mutex and calls us.
3163 	 */
3164 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3165 
3166 	/* step one, relocate all the extents inside this chunk */
3167 	btrfs_scrub_pause(fs_info);
3168 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3169 	btrfs_scrub_continue(fs_info);
3170 	if (ret)
3171 		return ret;
3172 
3173 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3174 	if (!block_group)
3175 		return -ENOENT;
3176 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3177 	length = block_group->length;
3178 	btrfs_put_block_group(block_group);
3179 
3180 	/*
3181 	 * On a zoned file system, discard the whole block group, this will
3182 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3183 	 * resetting the zone fails, don't treat it as a fatal problem from the
3184 	 * filesystem's point of view.
3185 	 */
3186 	if (btrfs_is_zoned(fs_info)) {
3187 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3188 		if (ret)
3189 			btrfs_info(fs_info,
3190 				"failed to reset zone %llu after relocation",
3191 				chunk_offset);
3192 	}
3193 
3194 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3195 						     chunk_offset);
3196 	if (IS_ERR(trans)) {
3197 		ret = PTR_ERR(trans);
3198 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3199 		return ret;
3200 	}
3201 
3202 	/*
3203 	 * step two, delete the device extents and the
3204 	 * chunk tree entries
3205 	 */
3206 	ret = btrfs_remove_chunk(trans, chunk_offset);
3207 	btrfs_end_transaction(trans);
3208 	return ret;
3209 }
3210 
3211 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3212 {
3213 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3214 	struct btrfs_path *path;
3215 	struct extent_buffer *leaf;
3216 	struct btrfs_chunk *chunk;
3217 	struct btrfs_key key;
3218 	struct btrfs_key found_key;
3219 	u64 chunk_type;
3220 	bool retried = false;
3221 	int failed = 0;
3222 	int ret;
3223 
3224 	path = btrfs_alloc_path();
3225 	if (!path)
3226 		return -ENOMEM;
3227 
3228 again:
3229 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3230 	key.offset = (u64)-1;
3231 	key.type = BTRFS_CHUNK_ITEM_KEY;
3232 
3233 	while (1) {
3234 		mutex_lock(&fs_info->reclaim_bgs_lock);
3235 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3236 		if (ret < 0) {
3237 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3238 			goto error;
3239 		}
3240 		BUG_ON(ret == 0); /* Corruption */
3241 
3242 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3243 					  key.type);
3244 		if (ret)
3245 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3246 		if (ret < 0)
3247 			goto error;
3248 		if (ret > 0)
3249 			break;
3250 
3251 		leaf = path->nodes[0];
3252 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3253 
3254 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3255 				       struct btrfs_chunk);
3256 		chunk_type = btrfs_chunk_type(leaf, chunk);
3257 		btrfs_release_path(path);
3258 
3259 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3260 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3261 			if (ret == -ENOSPC)
3262 				failed++;
3263 			else
3264 				BUG_ON(ret);
3265 		}
3266 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3267 
3268 		if (found_key.offset == 0)
3269 			break;
3270 		key.offset = found_key.offset - 1;
3271 	}
3272 	ret = 0;
3273 	if (failed && !retried) {
3274 		failed = 0;
3275 		retried = true;
3276 		goto again;
3277 	} else if (WARN_ON(failed && retried)) {
3278 		ret = -ENOSPC;
3279 	}
3280 error:
3281 	btrfs_free_path(path);
3282 	return ret;
3283 }
3284 
3285 /*
3286  * return 1 : allocate a data chunk successfully,
3287  * return <0: errors during allocating a data chunk,
3288  * return 0 : no need to allocate a data chunk.
3289  */
3290 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3291 				      u64 chunk_offset)
3292 {
3293 	struct btrfs_block_group *cache;
3294 	u64 bytes_used;
3295 	u64 chunk_type;
3296 
3297 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3298 	ASSERT(cache);
3299 	chunk_type = cache->flags;
3300 	btrfs_put_block_group(cache);
3301 
3302 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3303 		return 0;
3304 
3305 	spin_lock(&fs_info->data_sinfo->lock);
3306 	bytes_used = fs_info->data_sinfo->bytes_used;
3307 	spin_unlock(&fs_info->data_sinfo->lock);
3308 
3309 	if (!bytes_used) {
3310 		struct btrfs_trans_handle *trans;
3311 		int ret;
3312 
3313 		trans =	btrfs_join_transaction(fs_info->tree_root);
3314 		if (IS_ERR(trans))
3315 			return PTR_ERR(trans);
3316 
3317 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3318 		btrfs_end_transaction(trans);
3319 		if (ret < 0)
3320 			return ret;
3321 		return 1;
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3328 			       struct btrfs_balance_control *bctl)
3329 {
3330 	struct btrfs_root *root = fs_info->tree_root;
3331 	struct btrfs_trans_handle *trans;
3332 	struct btrfs_balance_item *item;
3333 	struct btrfs_disk_balance_args disk_bargs;
3334 	struct btrfs_path *path;
3335 	struct extent_buffer *leaf;
3336 	struct btrfs_key key;
3337 	int ret, err;
3338 
3339 	path = btrfs_alloc_path();
3340 	if (!path)
3341 		return -ENOMEM;
3342 
3343 	trans = btrfs_start_transaction(root, 0);
3344 	if (IS_ERR(trans)) {
3345 		btrfs_free_path(path);
3346 		return PTR_ERR(trans);
3347 	}
3348 
3349 	key.objectid = BTRFS_BALANCE_OBJECTID;
3350 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3351 	key.offset = 0;
3352 
3353 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3354 				      sizeof(*item));
3355 	if (ret)
3356 		goto out;
3357 
3358 	leaf = path->nodes[0];
3359 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3360 
3361 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3362 
3363 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3364 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3365 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3366 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3367 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3368 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3369 
3370 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3371 
3372 	btrfs_mark_buffer_dirty(leaf);
3373 out:
3374 	btrfs_free_path(path);
3375 	err = btrfs_commit_transaction(trans);
3376 	if (err && !ret)
3377 		ret = err;
3378 	return ret;
3379 }
3380 
3381 static int del_balance_item(struct btrfs_fs_info *fs_info)
3382 {
3383 	struct btrfs_root *root = fs_info->tree_root;
3384 	struct btrfs_trans_handle *trans;
3385 	struct btrfs_path *path;
3386 	struct btrfs_key key;
3387 	int ret, err;
3388 
3389 	path = btrfs_alloc_path();
3390 	if (!path)
3391 		return -ENOMEM;
3392 
3393 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3394 	if (IS_ERR(trans)) {
3395 		btrfs_free_path(path);
3396 		return PTR_ERR(trans);
3397 	}
3398 
3399 	key.objectid = BTRFS_BALANCE_OBJECTID;
3400 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3401 	key.offset = 0;
3402 
3403 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3404 	if (ret < 0)
3405 		goto out;
3406 	if (ret > 0) {
3407 		ret = -ENOENT;
3408 		goto out;
3409 	}
3410 
3411 	ret = btrfs_del_item(trans, root, path);
3412 out:
3413 	btrfs_free_path(path);
3414 	err = btrfs_commit_transaction(trans);
3415 	if (err && !ret)
3416 		ret = err;
3417 	return ret;
3418 }
3419 
3420 /*
3421  * This is a heuristic used to reduce the number of chunks balanced on
3422  * resume after balance was interrupted.
3423  */
3424 static void update_balance_args(struct btrfs_balance_control *bctl)
3425 {
3426 	/*
3427 	 * Turn on soft mode for chunk types that were being converted.
3428 	 */
3429 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3430 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3431 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3432 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3433 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3434 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3435 
3436 	/*
3437 	 * Turn on usage filter if is not already used.  The idea is
3438 	 * that chunks that we have already balanced should be
3439 	 * reasonably full.  Don't do it for chunks that are being
3440 	 * converted - that will keep us from relocating unconverted
3441 	 * (albeit full) chunks.
3442 	 */
3443 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3444 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3445 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3446 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3447 		bctl->data.usage = 90;
3448 	}
3449 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3450 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3451 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3452 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3453 		bctl->sys.usage = 90;
3454 	}
3455 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3456 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3457 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3458 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3459 		bctl->meta.usage = 90;
3460 	}
3461 }
3462 
3463 /*
3464  * Clear the balance status in fs_info and delete the balance item from disk.
3465  */
3466 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3467 {
3468 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3469 	int ret;
3470 
3471 	BUG_ON(!fs_info->balance_ctl);
3472 
3473 	spin_lock(&fs_info->balance_lock);
3474 	fs_info->balance_ctl = NULL;
3475 	spin_unlock(&fs_info->balance_lock);
3476 
3477 	kfree(bctl);
3478 	ret = del_balance_item(fs_info);
3479 	if (ret)
3480 		btrfs_handle_fs_error(fs_info, ret, NULL);
3481 }
3482 
3483 /*
3484  * Balance filters.  Return 1 if chunk should be filtered out
3485  * (should not be balanced).
3486  */
3487 static int chunk_profiles_filter(u64 chunk_type,
3488 				 struct btrfs_balance_args *bargs)
3489 {
3490 	chunk_type = chunk_to_extended(chunk_type) &
3491 				BTRFS_EXTENDED_PROFILE_MASK;
3492 
3493 	if (bargs->profiles & chunk_type)
3494 		return 0;
3495 
3496 	return 1;
3497 }
3498 
3499 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3500 			      struct btrfs_balance_args *bargs)
3501 {
3502 	struct btrfs_block_group *cache;
3503 	u64 chunk_used;
3504 	u64 user_thresh_min;
3505 	u64 user_thresh_max;
3506 	int ret = 1;
3507 
3508 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3509 	chunk_used = cache->used;
3510 
3511 	if (bargs->usage_min == 0)
3512 		user_thresh_min = 0;
3513 	else
3514 		user_thresh_min = div_factor_fine(cache->length,
3515 						  bargs->usage_min);
3516 
3517 	if (bargs->usage_max == 0)
3518 		user_thresh_max = 1;
3519 	else if (bargs->usage_max > 100)
3520 		user_thresh_max = cache->length;
3521 	else
3522 		user_thresh_max = div_factor_fine(cache->length,
3523 						  bargs->usage_max);
3524 
3525 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3526 		ret = 0;
3527 
3528 	btrfs_put_block_group(cache);
3529 	return ret;
3530 }
3531 
3532 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3533 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3534 {
3535 	struct btrfs_block_group *cache;
3536 	u64 chunk_used, user_thresh;
3537 	int ret = 1;
3538 
3539 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3540 	chunk_used = cache->used;
3541 
3542 	if (bargs->usage_min == 0)
3543 		user_thresh = 1;
3544 	else if (bargs->usage > 100)
3545 		user_thresh = cache->length;
3546 	else
3547 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3548 
3549 	if (chunk_used < user_thresh)
3550 		ret = 0;
3551 
3552 	btrfs_put_block_group(cache);
3553 	return ret;
3554 }
3555 
3556 static int chunk_devid_filter(struct extent_buffer *leaf,
3557 			      struct btrfs_chunk *chunk,
3558 			      struct btrfs_balance_args *bargs)
3559 {
3560 	struct btrfs_stripe *stripe;
3561 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3562 	int i;
3563 
3564 	for (i = 0; i < num_stripes; i++) {
3565 		stripe = btrfs_stripe_nr(chunk, i);
3566 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3567 			return 0;
3568 	}
3569 
3570 	return 1;
3571 }
3572 
3573 static u64 calc_data_stripes(u64 type, int num_stripes)
3574 {
3575 	const int index = btrfs_bg_flags_to_raid_index(type);
3576 	const int ncopies = btrfs_raid_array[index].ncopies;
3577 	const int nparity = btrfs_raid_array[index].nparity;
3578 
3579 	return (num_stripes - nparity) / ncopies;
3580 }
3581 
3582 /* [pstart, pend) */
3583 static int chunk_drange_filter(struct extent_buffer *leaf,
3584 			       struct btrfs_chunk *chunk,
3585 			       struct btrfs_balance_args *bargs)
3586 {
3587 	struct btrfs_stripe *stripe;
3588 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3589 	u64 stripe_offset;
3590 	u64 stripe_length;
3591 	u64 type;
3592 	int factor;
3593 	int i;
3594 
3595 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3596 		return 0;
3597 
3598 	type = btrfs_chunk_type(leaf, chunk);
3599 	factor = calc_data_stripes(type, num_stripes);
3600 
3601 	for (i = 0; i < num_stripes; i++) {
3602 		stripe = btrfs_stripe_nr(chunk, i);
3603 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3604 			continue;
3605 
3606 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3607 		stripe_length = btrfs_chunk_length(leaf, chunk);
3608 		stripe_length = div_u64(stripe_length, factor);
3609 
3610 		if (stripe_offset < bargs->pend &&
3611 		    stripe_offset + stripe_length > bargs->pstart)
3612 			return 0;
3613 	}
3614 
3615 	return 1;
3616 }
3617 
3618 /* [vstart, vend) */
3619 static int chunk_vrange_filter(struct extent_buffer *leaf,
3620 			       struct btrfs_chunk *chunk,
3621 			       u64 chunk_offset,
3622 			       struct btrfs_balance_args *bargs)
3623 {
3624 	if (chunk_offset < bargs->vend &&
3625 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3626 		/* at least part of the chunk is inside this vrange */
3627 		return 0;
3628 
3629 	return 1;
3630 }
3631 
3632 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3633 			       struct btrfs_chunk *chunk,
3634 			       struct btrfs_balance_args *bargs)
3635 {
3636 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3637 
3638 	if (bargs->stripes_min <= num_stripes
3639 			&& num_stripes <= bargs->stripes_max)
3640 		return 0;
3641 
3642 	return 1;
3643 }
3644 
3645 static int chunk_soft_convert_filter(u64 chunk_type,
3646 				     struct btrfs_balance_args *bargs)
3647 {
3648 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3649 		return 0;
3650 
3651 	chunk_type = chunk_to_extended(chunk_type) &
3652 				BTRFS_EXTENDED_PROFILE_MASK;
3653 
3654 	if (bargs->target == chunk_type)
3655 		return 1;
3656 
3657 	return 0;
3658 }
3659 
3660 static int should_balance_chunk(struct extent_buffer *leaf,
3661 				struct btrfs_chunk *chunk, u64 chunk_offset)
3662 {
3663 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3664 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3665 	struct btrfs_balance_args *bargs = NULL;
3666 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3667 
3668 	/* type filter */
3669 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3670 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3671 		return 0;
3672 	}
3673 
3674 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3675 		bargs = &bctl->data;
3676 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3677 		bargs = &bctl->sys;
3678 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3679 		bargs = &bctl->meta;
3680 
3681 	/* profiles filter */
3682 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3683 	    chunk_profiles_filter(chunk_type, bargs)) {
3684 		return 0;
3685 	}
3686 
3687 	/* usage filter */
3688 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3689 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3690 		return 0;
3691 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3692 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3693 		return 0;
3694 	}
3695 
3696 	/* devid filter */
3697 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3698 	    chunk_devid_filter(leaf, chunk, bargs)) {
3699 		return 0;
3700 	}
3701 
3702 	/* drange filter, makes sense only with devid filter */
3703 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3704 	    chunk_drange_filter(leaf, chunk, bargs)) {
3705 		return 0;
3706 	}
3707 
3708 	/* vrange filter */
3709 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3710 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3711 		return 0;
3712 	}
3713 
3714 	/* stripes filter */
3715 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3716 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3717 		return 0;
3718 	}
3719 
3720 	/* soft profile changing mode */
3721 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3722 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3723 		return 0;
3724 	}
3725 
3726 	/*
3727 	 * limited by count, must be the last filter
3728 	 */
3729 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3730 		if (bargs->limit == 0)
3731 			return 0;
3732 		else
3733 			bargs->limit--;
3734 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3735 		/*
3736 		 * Same logic as the 'limit' filter; the minimum cannot be
3737 		 * determined here because we do not have the global information
3738 		 * about the count of all chunks that satisfy the filters.
3739 		 */
3740 		if (bargs->limit_max == 0)
3741 			return 0;
3742 		else
3743 			bargs->limit_max--;
3744 	}
3745 
3746 	return 1;
3747 }
3748 
3749 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3750 {
3751 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3752 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3753 	u64 chunk_type;
3754 	struct btrfs_chunk *chunk;
3755 	struct btrfs_path *path = NULL;
3756 	struct btrfs_key key;
3757 	struct btrfs_key found_key;
3758 	struct extent_buffer *leaf;
3759 	int slot;
3760 	int ret;
3761 	int enospc_errors = 0;
3762 	bool counting = true;
3763 	/* The single value limit and min/max limits use the same bytes in the */
3764 	u64 limit_data = bctl->data.limit;
3765 	u64 limit_meta = bctl->meta.limit;
3766 	u64 limit_sys = bctl->sys.limit;
3767 	u32 count_data = 0;
3768 	u32 count_meta = 0;
3769 	u32 count_sys = 0;
3770 	int chunk_reserved = 0;
3771 
3772 	path = btrfs_alloc_path();
3773 	if (!path) {
3774 		ret = -ENOMEM;
3775 		goto error;
3776 	}
3777 
3778 	/* zero out stat counters */
3779 	spin_lock(&fs_info->balance_lock);
3780 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3781 	spin_unlock(&fs_info->balance_lock);
3782 again:
3783 	if (!counting) {
3784 		/*
3785 		 * The single value limit and min/max limits use the same bytes
3786 		 * in the
3787 		 */
3788 		bctl->data.limit = limit_data;
3789 		bctl->meta.limit = limit_meta;
3790 		bctl->sys.limit = limit_sys;
3791 	}
3792 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3793 	key.offset = (u64)-1;
3794 	key.type = BTRFS_CHUNK_ITEM_KEY;
3795 
3796 	while (1) {
3797 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3798 		    atomic_read(&fs_info->balance_cancel_req)) {
3799 			ret = -ECANCELED;
3800 			goto error;
3801 		}
3802 
3803 		mutex_lock(&fs_info->reclaim_bgs_lock);
3804 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3805 		if (ret < 0) {
3806 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3807 			goto error;
3808 		}
3809 
3810 		/*
3811 		 * this shouldn't happen, it means the last relocate
3812 		 * failed
3813 		 */
3814 		if (ret == 0)
3815 			BUG(); /* FIXME break ? */
3816 
3817 		ret = btrfs_previous_item(chunk_root, path, 0,
3818 					  BTRFS_CHUNK_ITEM_KEY);
3819 		if (ret) {
3820 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3821 			ret = 0;
3822 			break;
3823 		}
3824 
3825 		leaf = path->nodes[0];
3826 		slot = path->slots[0];
3827 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3828 
3829 		if (found_key.objectid != key.objectid) {
3830 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3831 			break;
3832 		}
3833 
3834 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3835 		chunk_type = btrfs_chunk_type(leaf, chunk);
3836 
3837 		if (!counting) {
3838 			spin_lock(&fs_info->balance_lock);
3839 			bctl->stat.considered++;
3840 			spin_unlock(&fs_info->balance_lock);
3841 		}
3842 
3843 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3844 
3845 		btrfs_release_path(path);
3846 		if (!ret) {
3847 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3848 			goto loop;
3849 		}
3850 
3851 		if (counting) {
3852 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3853 			spin_lock(&fs_info->balance_lock);
3854 			bctl->stat.expected++;
3855 			spin_unlock(&fs_info->balance_lock);
3856 
3857 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3858 				count_data++;
3859 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3860 				count_sys++;
3861 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3862 				count_meta++;
3863 
3864 			goto loop;
3865 		}
3866 
3867 		/*
3868 		 * Apply limit_min filter, no need to check if the LIMITS
3869 		 * filter is used, limit_min is 0 by default
3870 		 */
3871 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3872 					count_data < bctl->data.limit_min)
3873 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3874 					count_meta < bctl->meta.limit_min)
3875 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3876 					count_sys < bctl->sys.limit_min)) {
3877 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3878 			goto loop;
3879 		}
3880 
3881 		if (!chunk_reserved) {
3882 			/*
3883 			 * We may be relocating the only data chunk we have,
3884 			 * which could potentially end up with losing data's
3885 			 * raid profile, so lets allocate an empty one in
3886 			 * advance.
3887 			 */
3888 			ret = btrfs_may_alloc_data_chunk(fs_info,
3889 							 found_key.offset);
3890 			if (ret < 0) {
3891 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3892 				goto error;
3893 			} else if (ret == 1) {
3894 				chunk_reserved = 1;
3895 			}
3896 		}
3897 
3898 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3899 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3900 		if (ret == -ENOSPC) {
3901 			enospc_errors++;
3902 		} else if (ret == -ETXTBSY) {
3903 			btrfs_info(fs_info,
3904 	   "skipping relocation of block group %llu due to active swapfile",
3905 				   found_key.offset);
3906 			ret = 0;
3907 		} else if (ret) {
3908 			goto error;
3909 		} else {
3910 			spin_lock(&fs_info->balance_lock);
3911 			bctl->stat.completed++;
3912 			spin_unlock(&fs_info->balance_lock);
3913 		}
3914 loop:
3915 		if (found_key.offset == 0)
3916 			break;
3917 		key.offset = found_key.offset - 1;
3918 	}
3919 
3920 	if (counting) {
3921 		btrfs_release_path(path);
3922 		counting = false;
3923 		goto again;
3924 	}
3925 error:
3926 	btrfs_free_path(path);
3927 	if (enospc_errors) {
3928 		btrfs_info(fs_info, "%d enospc errors during balance",
3929 			   enospc_errors);
3930 		if (!ret)
3931 			ret = -ENOSPC;
3932 	}
3933 
3934 	return ret;
3935 }
3936 
3937 /**
3938  * alloc_profile_is_valid - see if a given profile is valid and reduced
3939  * @flags: profile to validate
3940  * @extended: if true @flags is treated as an extended profile
3941  */
3942 static int alloc_profile_is_valid(u64 flags, int extended)
3943 {
3944 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3945 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3946 
3947 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3948 
3949 	/* 1) check that all other bits are zeroed */
3950 	if (flags & ~mask)
3951 		return 0;
3952 
3953 	/* 2) see if profile is reduced */
3954 	if (flags == 0)
3955 		return !extended; /* "0" is valid for usual profiles */
3956 
3957 	return has_single_bit_set(flags);
3958 }
3959 
3960 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3961 {
3962 	/* cancel requested || normal exit path */
3963 	return atomic_read(&fs_info->balance_cancel_req) ||
3964 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3965 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3966 }
3967 
3968 /*
3969  * Validate target profile against allowed profiles and return true if it's OK.
3970  * Otherwise print the error message and return false.
3971  */
3972 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3973 		const struct btrfs_balance_args *bargs,
3974 		u64 allowed, const char *type)
3975 {
3976 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3977 		return true;
3978 
3979 	if (fs_info->sectorsize < PAGE_SIZE &&
3980 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3981 		btrfs_err(fs_info,
3982 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
3983 			  fs_info->sectorsize, PAGE_SIZE);
3984 		return false;
3985 	}
3986 	/* Profile is valid and does not have bits outside of the allowed set */
3987 	if (alloc_profile_is_valid(bargs->target, 1) &&
3988 	    (bargs->target & ~allowed) == 0)
3989 		return true;
3990 
3991 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3992 			type, btrfs_bg_type_to_raid_name(bargs->target));
3993 	return false;
3994 }
3995 
3996 /*
3997  * Fill @buf with textual description of balance filter flags @bargs, up to
3998  * @size_buf including the terminating null. The output may be trimmed if it
3999  * does not fit into the provided buffer.
4000  */
4001 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4002 				 u32 size_buf)
4003 {
4004 	int ret;
4005 	u32 size_bp = size_buf;
4006 	char *bp = buf;
4007 	u64 flags = bargs->flags;
4008 	char tmp_buf[128] = {'\0'};
4009 
4010 	if (!flags)
4011 		return;
4012 
4013 #define CHECK_APPEND_NOARG(a)						\
4014 	do {								\
4015 		ret = snprintf(bp, size_bp, (a));			\
4016 		if (ret < 0 || ret >= size_bp)				\
4017 			goto out_overflow;				\
4018 		size_bp -= ret;						\
4019 		bp += ret;						\
4020 	} while (0)
4021 
4022 #define CHECK_APPEND_1ARG(a, v1)					\
4023 	do {								\
4024 		ret = snprintf(bp, size_bp, (a), (v1));			\
4025 		if (ret < 0 || ret >= size_bp)				\
4026 			goto out_overflow;				\
4027 		size_bp -= ret;						\
4028 		bp += ret;						\
4029 	} while (0)
4030 
4031 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4032 	do {								\
4033 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4034 		if (ret < 0 || ret >= size_bp)				\
4035 			goto out_overflow;				\
4036 		size_bp -= ret;						\
4037 		bp += ret;						\
4038 	} while (0)
4039 
4040 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4041 		CHECK_APPEND_1ARG("convert=%s,",
4042 				  btrfs_bg_type_to_raid_name(bargs->target));
4043 
4044 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4045 		CHECK_APPEND_NOARG("soft,");
4046 
4047 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4048 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4049 					    sizeof(tmp_buf));
4050 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4051 	}
4052 
4053 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4054 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4055 
4056 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4057 		CHECK_APPEND_2ARG("usage=%u..%u,",
4058 				  bargs->usage_min, bargs->usage_max);
4059 
4060 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4061 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4062 
4063 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4064 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4065 				  bargs->pstart, bargs->pend);
4066 
4067 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4068 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4069 				  bargs->vstart, bargs->vend);
4070 
4071 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4072 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4073 
4074 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4075 		CHECK_APPEND_2ARG("limit=%u..%u,",
4076 				bargs->limit_min, bargs->limit_max);
4077 
4078 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4079 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4080 				  bargs->stripes_min, bargs->stripes_max);
4081 
4082 #undef CHECK_APPEND_2ARG
4083 #undef CHECK_APPEND_1ARG
4084 #undef CHECK_APPEND_NOARG
4085 
4086 out_overflow:
4087 
4088 	if (size_bp < size_buf)
4089 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4090 	else
4091 		buf[0] = '\0';
4092 }
4093 
4094 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4095 {
4096 	u32 size_buf = 1024;
4097 	char tmp_buf[192] = {'\0'};
4098 	char *buf;
4099 	char *bp;
4100 	u32 size_bp = size_buf;
4101 	int ret;
4102 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4103 
4104 	buf = kzalloc(size_buf, GFP_KERNEL);
4105 	if (!buf)
4106 		return;
4107 
4108 	bp = buf;
4109 
4110 #define CHECK_APPEND_1ARG(a, v1)					\
4111 	do {								\
4112 		ret = snprintf(bp, size_bp, (a), (v1));			\
4113 		if (ret < 0 || ret >= size_bp)				\
4114 			goto out_overflow;				\
4115 		size_bp -= ret;						\
4116 		bp += ret;						\
4117 	} while (0)
4118 
4119 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4120 		CHECK_APPEND_1ARG("%s", "-f ");
4121 
4122 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4123 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4124 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4125 	}
4126 
4127 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4128 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4129 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4130 	}
4131 
4132 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4133 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4134 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4135 	}
4136 
4137 #undef CHECK_APPEND_1ARG
4138 
4139 out_overflow:
4140 
4141 	if (size_bp < size_buf)
4142 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4143 	btrfs_info(fs_info, "balance: %s %s",
4144 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4145 		   "resume" : "start", buf);
4146 
4147 	kfree(buf);
4148 }
4149 
4150 /*
4151  * Should be called with balance mutexe held
4152  */
4153 int btrfs_balance(struct btrfs_fs_info *fs_info,
4154 		  struct btrfs_balance_control *bctl,
4155 		  struct btrfs_ioctl_balance_args *bargs)
4156 {
4157 	u64 meta_target, data_target;
4158 	u64 allowed;
4159 	int mixed = 0;
4160 	int ret;
4161 	u64 num_devices;
4162 	unsigned seq;
4163 	bool reducing_redundancy;
4164 	int i;
4165 
4166 	if (btrfs_fs_closing(fs_info) ||
4167 	    atomic_read(&fs_info->balance_pause_req) ||
4168 	    btrfs_should_cancel_balance(fs_info)) {
4169 		ret = -EINVAL;
4170 		goto out;
4171 	}
4172 
4173 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4174 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4175 		mixed = 1;
4176 
4177 	/*
4178 	 * In case of mixed groups both data and meta should be picked,
4179 	 * and identical options should be given for both of them.
4180 	 */
4181 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4182 	if (mixed && (bctl->flags & allowed)) {
4183 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4184 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4185 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4186 			btrfs_err(fs_info,
4187 	  "balance: mixed groups data and metadata options must be the same");
4188 			ret = -EINVAL;
4189 			goto out;
4190 		}
4191 	}
4192 
4193 	/*
4194 	 * rw_devices will not change at the moment, device add/delete/replace
4195 	 * are exclusive
4196 	 */
4197 	num_devices = fs_info->fs_devices->rw_devices;
4198 
4199 	/*
4200 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4201 	 * special bit for it, to make it easier to distinguish.  Thus we need
4202 	 * to set it manually, or balance would refuse the profile.
4203 	 */
4204 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4205 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4206 		if (num_devices >= btrfs_raid_array[i].devs_min)
4207 			allowed |= btrfs_raid_array[i].bg_flag;
4208 
4209 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4210 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4211 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4212 		ret = -EINVAL;
4213 		goto out;
4214 	}
4215 
4216 	/*
4217 	 * Allow to reduce metadata or system integrity only if force set for
4218 	 * profiles with redundancy (copies, parity)
4219 	 */
4220 	allowed = 0;
4221 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4222 		if (btrfs_raid_array[i].ncopies >= 2 ||
4223 		    btrfs_raid_array[i].tolerated_failures >= 1)
4224 			allowed |= btrfs_raid_array[i].bg_flag;
4225 	}
4226 	do {
4227 		seq = read_seqbegin(&fs_info->profiles_lock);
4228 
4229 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4230 		     (fs_info->avail_system_alloc_bits & allowed) &&
4231 		     !(bctl->sys.target & allowed)) ||
4232 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4233 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4234 		     !(bctl->meta.target & allowed)))
4235 			reducing_redundancy = true;
4236 		else
4237 			reducing_redundancy = false;
4238 
4239 		/* if we're not converting, the target field is uninitialized */
4240 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4241 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4242 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4243 			bctl->data.target : fs_info->avail_data_alloc_bits;
4244 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4245 
4246 	if (reducing_redundancy) {
4247 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4248 			btrfs_info(fs_info,
4249 			   "balance: force reducing metadata redundancy");
4250 		} else {
4251 			btrfs_err(fs_info,
4252 	"balance: reduces metadata redundancy, use --force if you want this");
4253 			ret = -EINVAL;
4254 			goto out;
4255 		}
4256 	}
4257 
4258 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4259 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4260 		btrfs_warn(fs_info,
4261 	"balance: metadata profile %s has lower redundancy than data profile %s",
4262 				btrfs_bg_type_to_raid_name(meta_target),
4263 				btrfs_bg_type_to_raid_name(data_target));
4264 	}
4265 
4266 	ret = insert_balance_item(fs_info, bctl);
4267 	if (ret && ret != -EEXIST)
4268 		goto out;
4269 
4270 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4271 		BUG_ON(ret == -EEXIST);
4272 		BUG_ON(fs_info->balance_ctl);
4273 		spin_lock(&fs_info->balance_lock);
4274 		fs_info->balance_ctl = bctl;
4275 		spin_unlock(&fs_info->balance_lock);
4276 	} else {
4277 		BUG_ON(ret != -EEXIST);
4278 		spin_lock(&fs_info->balance_lock);
4279 		update_balance_args(bctl);
4280 		spin_unlock(&fs_info->balance_lock);
4281 	}
4282 
4283 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4284 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4285 	describe_balance_start_or_resume(fs_info);
4286 	mutex_unlock(&fs_info->balance_mutex);
4287 
4288 	ret = __btrfs_balance(fs_info);
4289 
4290 	mutex_lock(&fs_info->balance_mutex);
4291 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4292 		btrfs_info(fs_info, "balance: paused");
4293 	/*
4294 	 * Balance can be canceled by:
4295 	 *
4296 	 * - Regular cancel request
4297 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4298 	 *
4299 	 * - Fatal signal to "btrfs" process
4300 	 *   Either the signal caught by wait_reserve_ticket() and callers
4301 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4302 	 *   got -ECANCELED.
4303 	 *   Either way, in this case balance_cancel_req = 0, and
4304 	 *   ret == -EINTR or ret == -ECANCELED.
4305 	 *
4306 	 * So here we only check the return value to catch canceled balance.
4307 	 */
4308 	else if (ret == -ECANCELED || ret == -EINTR)
4309 		btrfs_info(fs_info, "balance: canceled");
4310 	else
4311 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4312 
4313 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4314 
4315 	if (bargs) {
4316 		memset(bargs, 0, sizeof(*bargs));
4317 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4318 	}
4319 
4320 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4321 	    balance_need_close(fs_info)) {
4322 		reset_balance_state(fs_info);
4323 		btrfs_exclop_finish(fs_info);
4324 	}
4325 
4326 	wake_up(&fs_info->balance_wait_q);
4327 
4328 	return ret;
4329 out:
4330 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4331 		reset_balance_state(fs_info);
4332 	else
4333 		kfree(bctl);
4334 	btrfs_exclop_finish(fs_info);
4335 
4336 	return ret;
4337 }
4338 
4339 static int balance_kthread(void *data)
4340 {
4341 	struct btrfs_fs_info *fs_info = data;
4342 	int ret = 0;
4343 
4344 	mutex_lock(&fs_info->balance_mutex);
4345 	if (fs_info->balance_ctl)
4346 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4347 	mutex_unlock(&fs_info->balance_mutex);
4348 
4349 	return ret;
4350 }
4351 
4352 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4353 {
4354 	struct task_struct *tsk;
4355 
4356 	mutex_lock(&fs_info->balance_mutex);
4357 	if (!fs_info->balance_ctl) {
4358 		mutex_unlock(&fs_info->balance_mutex);
4359 		return 0;
4360 	}
4361 	mutex_unlock(&fs_info->balance_mutex);
4362 
4363 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4364 		btrfs_info(fs_info, "balance: resume skipped");
4365 		return 0;
4366 	}
4367 
4368 	/*
4369 	 * A ro->rw remount sequence should continue with the paused balance
4370 	 * regardless of who pauses it, system or the user as of now, so set
4371 	 * the resume flag.
4372 	 */
4373 	spin_lock(&fs_info->balance_lock);
4374 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4375 	spin_unlock(&fs_info->balance_lock);
4376 
4377 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4378 	return PTR_ERR_OR_ZERO(tsk);
4379 }
4380 
4381 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4382 {
4383 	struct btrfs_balance_control *bctl;
4384 	struct btrfs_balance_item *item;
4385 	struct btrfs_disk_balance_args disk_bargs;
4386 	struct btrfs_path *path;
4387 	struct extent_buffer *leaf;
4388 	struct btrfs_key key;
4389 	int ret;
4390 
4391 	path = btrfs_alloc_path();
4392 	if (!path)
4393 		return -ENOMEM;
4394 
4395 	key.objectid = BTRFS_BALANCE_OBJECTID;
4396 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4397 	key.offset = 0;
4398 
4399 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4400 	if (ret < 0)
4401 		goto out;
4402 	if (ret > 0) { /* ret = -ENOENT; */
4403 		ret = 0;
4404 		goto out;
4405 	}
4406 
4407 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4408 	if (!bctl) {
4409 		ret = -ENOMEM;
4410 		goto out;
4411 	}
4412 
4413 	leaf = path->nodes[0];
4414 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4415 
4416 	bctl->flags = btrfs_balance_flags(leaf, item);
4417 	bctl->flags |= BTRFS_BALANCE_RESUME;
4418 
4419 	btrfs_balance_data(leaf, item, &disk_bargs);
4420 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4421 	btrfs_balance_meta(leaf, item, &disk_bargs);
4422 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4423 	btrfs_balance_sys(leaf, item, &disk_bargs);
4424 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4425 
4426 	/*
4427 	 * This should never happen, as the paused balance state is recovered
4428 	 * during mount without any chance of other exclusive ops to collide.
4429 	 *
4430 	 * This gives the exclusive op status to balance and keeps in paused
4431 	 * state until user intervention (cancel or umount). If the ownership
4432 	 * cannot be assigned, show a message but do not fail. The balance
4433 	 * is in a paused state and must have fs_info::balance_ctl properly
4434 	 * set up.
4435 	 */
4436 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4437 		btrfs_warn(fs_info,
4438 	"balance: cannot set exclusive op status, resume manually");
4439 
4440 	btrfs_release_path(path);
4441 
4442 	mutex_lock(&fs_info->balance_mutex);
4443 	BUG_ON(fs_info->balance_ctl);
4444 	spin_lock(&fs_info->balance_lock);
4445 	fs_info->balance_ctl = bctl;
4446 	spin_unlock(&fs_info->balance_lock);
4447 	mutex_unlock(&fs_info->balance_mutex);
4448 out:
4449 	btrfs_free_path(path);
4450 	return ret;
4451 }
4452 
4453 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4454 {
4455 	int ret = 0;
4456 
4457 	mutex_lock(&fs_info->balance_mutex);
4458 	if (!fs_info->balance_ctl) {
4459 		mutex_unlock(&fs_info->balance_mutex);
4460 		return -ENOTCONN;
4461 	}
4462 
4463 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4464 		atomic_inc(&fs_info->balance_pause_req);
4465 		mutex_unlock(&fs_info->balance_mutex);
4466 
4467 		wait_event(fs_info->balance_wait_q,
4468 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4469 
4470 		mutex_lock(&fs_info->balance_mutex);
4471 		/* we are good with balance_ctl ripped off from under us */
4472 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4473 		atomic_dec(&fs_info->balance_pause_req);
4474 	} else {
4475 		ret = -ENOTCONN;
4476 	}
4477 
4478 	mutex_unlock(&fs_info->balance_mutex);
4479 	return ret;
4480 }
4481 
4482 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4483 {
4484 	mutex_lock(&fs_info->balance_mutex);
4485 	if (!fs_info->balance_ctl) {
4486 		mutex_unlock(&fs_info->balance_mutex);
4487 		return -ENOTCONN;
4488 	}
4489 
4490 	/*
4491 	 * A paused balance with the item stored on disk can be resumed at
4492 	 * mount time if the mount is read-write. Otherwise it's still paused
4493 	 * and we must not allow cancelling as it deletes the item.
4494 	 */
4495 	if (sb_rdonly(fs_info->sb)) {
4496 		mutex_unlock(&fs_info->balance_mutex);
4497 		return -EROFS;
4498 	}
4499 
4500 	atomic_inc(&fs_info->balance_cancel_req);
4501 	/*
4502 	 * if we are running just wait and return, balance item is
4503 	 * deleted in btrfs_balance in this case
4504 	 */
4505 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4506 		mutex_unlock(&fs_info->balance_mutex);
4507 		wait_event(fs_info->balance_wait_q,
4508 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4509 		mutex_lock(&fs_info->balance_mutex);
4510 	} else {
4511 		mutex_unlock(&fs_info->balance_mutex);
4512 		/*
4513 		 * Lock released to allow other waiters to continue, we'll
4514 		 * reexamine the status again.
4515 		 */
4516 		mutex_lock(&fs_info->balance_mutex);
4517 
4518 		if (fs_info->balance_ctl) {
4519 			reset_balance_state(fs_info);
4520 			btrfs_exclop_finish(fs_info);
4521 			btrfs_info(fs_info, "balance: canceled");
4522 		}
4523 	}
4524 
4525 	BUG_ON(fs_info->balance_ctl ||
4526 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527 	atomic_dec(&fs_info->balance_cancel_req);
4528 	mutex_unlock(&fs_info->balance_mutex);
4529 	return 0;
4530 }
4531 
4532 int btrfs_uuid_scan_kthread(void *data)
4533 {
4534 	struct btrfs_fs_info *fs_info = data;
4535 	struct btrfs_root *root = fs_info->tree_root;
4536 	struct btrfs_key key;
4537 	struct btrfs_path *path = NULL;
4538 	int ret = 0;
4539 	struct extent_buffer *eb;
4540 	int slot;
4541 	struct btrfs_root_item root_item;
4542 	u32 item_size;
4543 	struct btrfs_trans_handle *trans = NULL;
4544 	bool closing = false;
4545 
4546 	path = btrfs_alloc_path();
4547 	if (!path) {
4548 		ret = -ENOMEM;
4549 		goto out;
4550 	}
4551 
4552 	key.objectid = 0;
4553 	key.type = BTRFS_ROOT_ITEM_KEY;
4554 	key.offset = 0;
4555 
4556 	while (1) {
4557 		if (btrfs_fs_closing(fs_info)) {
4558 			closing = true;
4559 			break;
4560 		}
4561 		ret = btrfs_search_forward(root, &key, path,
4562 				BTRFS_OLDEST_GENERATION);
4563 		if (ret) {
4564 			if (ret > 0)
4565 				ret = 0;
4566 			break;
4567 		}
4568 
4569 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4570 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4571 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4572 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4573 			goto skip;
4574 
4575 		eb = path->nodes[0];
4576 		slot = path->slots[0];
4577 		item_size = btrfs_item_size_nr(eb, slot);
4578 		if (item_size < sizeof(root_item))
4579 			goto skip;
4580 
4581 		read_extent_buffer(eb, &root_item,
4582 				   btrfs_item_ptr_offset(eb, slot),
4583 				   (int)sizeof(root_item));
4584 		if (btrfs_root_refs(&root_item) == 0)
4585 			goto skip;
4586 
4587 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4588 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4589 			if (trans)
4590 				goto update_tree;
4591 
4592 			btrfs_release_path(path);
4593 			/*
4594 			 * 1 - subvol uuid item
4595 			 * 1 - received_subvol uuid item
4596 			 */
4597 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4598 			if (IS_ERR(trans)) {
4599 				ret = PTR_ERR(trans);
4600 				break;
4601 			}
4602 			continue;
4603 		} else {
4604 			goto skip;
4605 		}
4606 update_tree:
4607 		btrfs_release_path(path);
4608 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4609 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4610 						  BTRFS_UUID_KEY_SUBVOL,
4611 						  key.objectid);
4612 			if (ret < 0) {
4613 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4614 					ret);
4615 				break;
4616 			}
4617 		}
4618 
4619 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4620 			ret = btrfs_uuid_tree_add(trans,
4621 						  root_item.received_uuid,
4622 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4623 						  key.objectid);
4624 			if (ret < 0) {
4625 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4626 					ret);
4627 				break;
4628 			}
4629 		}
4630 
4631 skip:
4632 		btrfs_release_path(path);
4633 		if (trans) {
4634 			ret = btrfs_end_transaction(trans);
4635 			trans = NULL;
4636 			if (ret)
4637 				break;
4638 		}
4639 
4640 		if (key.offset < (u64)-1) {
4641 			key.offset++;
4642 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4643 			key.offset = 0;
4644 			key.type = BTRFS_ROOT_ITEM_KEY;
4645 		} else if (key.objectid < (u64)-1) {
4646 			key.offset = 0;
4647 			key.type = BTRFS_ROOT_ITEM_KEY;
4648 			key.objectid++;
4649 		} else {
4650 			break;
4651 		}
4652 		cond_resched();
4653 	}
4654 
4655 out:
4656 	btrfs_free_path(path);
4657 	if (trans && !IS_ERR(trans))
4658 		btrfs_end_transaction(trans);
4659 	if (ret)
4660 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4661 	else if (!closing)
4662 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4663 	up(&fs_info->uuid_tree_rescan_sem);
4664 	return 0;
4665 }
4666 
4667 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4668 {
4669 	struct btrfs_trans_handle *trans;
4670 	struct btrfs_root *tree_root = fs_info->tree_root;
4671 	struct btrfs_root *uuid_root;
4672 	struct task_struct *task;
4673 	int ret;
4674 
4675 	/*
4676 	 * 1 - root node
4677 	 * 1 - root item
4678 	 */
4679 	trans = btrfs_start_transaction(tree_root, 2);
4680 	if (IS_ERR(trans))
4681 		return PTR_ERR(trans);
4682 
4683 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4684 	if (IS_ERR(uuid_root)) {
4685 		ret = PTR_ERR(uuid_root);
4686 		btrfs_abort_transaction(trans, ret);
4687 		btrfs_end_transaction(trans);
4688 		return ret;
4689 	}
4690 
4691 	fs_info->uuid_root = uuid_root;
4692 
4693 	ret = btrfs_commit_transaction(trans);
4694 	if (ret)
4695 		return ret;
4696 
4697 	down(&fs_info->uuid_tree_rescan_sem);
4698 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4699 	if (IS_ERR(task)) {
4700 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4701 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4702 		up(&fs_info->uuid_tree_rescan_sem);
4703 		return PTR_ERR(task);
4704 	}
4705 
4706 	return 0;
4707 }
4708 
4709 /*
4710  * shrinking a device means finding all of the device extents past
4711  * the new size, and then following the back refs to the chunks.
4712  * The chunk relocation code actually frees the device extent
4713  */
4714 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4715 {
4716 	struct btrfs_fs_info *fs_info = device->fs_info;
4717 	struct btrfs_root *root = fs_info->dev_root;
4718 	struct btrfs_trans_handle *trans;
4719 	struct btrfs_dev_extent *dev_extent = NULL;
4720 	struct btrfs_path *path;
4721 	u64 length;
4722 	u64 chunk_offset;
4723 	int ret;
4724 	int slot;
4725 	int failed = 0;
4726 	bool retried = false;
4727 	struct extent_buffer *l;
4728 	struct btrfs_key key;
4729 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4730 	u64 old_total = btrfs_super_total_bytes(super_copy);
4731 	u64 old_size = btrfs_device_get_total_bytes(device);
4732 	u64 diff;
4733 	u64 start;
4734 
4735 	new_size = round_down(new_size, fs_info->sectorsize);
4736 	start = new_size;
4737 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4738 
4739 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4740 		return -EINVAL;
4741 
4742 	path = btrfs_alloc_path();
4743 	if (!path)
4744 		return -ENOMEM;
4745 
4746 	path->reada = READA_BACK;
4747 
4748 	trans = btrfs_start_transaction(root, 0);
4749 	if (IS_ERR(trans)) {
4750 		btrfs_free_path(path);
4751 		return PTR_ERR(trans);
4752 	}
4753 
4754 	mutex_lock(&fs_info->chunk_mutex);
4755 
4756 	btrfs_device_set_total_bytes(device, new_size);
4757 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4758 		device->fs_devices->total_rw_bytes -= diff;
4759 		atomic64_sub(diff, &fs_info->free_chunk_space);
4760 	}
4761 
4762 	/*
4763 	 * Once the device's size has been set to the new size, ensure all
4764 	 * in-memory chunks are synced to disk so that the loop below sees them
4765 	 * and relocates them accordingly.
4766 	 */
4767 	if (contains_pending_extent(device, &start, diff)) {
4768 		mutex_unlock(&fs_info->chunk_mutex);
4769 		ret = btrfs_commit_transaction(trans);
4770 		if (ret)
4771 			goto done;
4772 	} else {
4773 		mutex_unlock(&fs_info->chunk_mutex);
4774 		btrfs_end_transaction(trans);
4775 	}
4776 
4777 again:
4778 	key.objectid = device->devid;
4779 	key.offset = (u64)-1;
4780 	key.type = BTRFS_DEV_EXTENT_KEY;
4781 
4782 	do {
4783 		mutex_lock(&fs_info->reclaim_bgs_lock);
4784 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4785 		if (ret < 0) {
4786 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4787 			goto done;
4788 		}
4789 
4790 		ret = btrfs_previous_item(root, path, 0, key.type);
4791 		if (ret) {
4792 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4793 			if (ret < 0)
4794 				goto done;
4795 			ret = 0;
4796 			btrfs_release_path(path);
4797 			break;
4798 		}
4799 
4800 		l = path->nodes[0];
4801 		slot = path->slots[0];
4802 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4803 
4804 		if (key.objectid != device->devid) {
4805 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4806 			btrfs_release_path(path);
4807 			break;
4808 		}
4809 
4810 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4811 		length = btrfs_dev_extent_length(l, dev_extent);
4812 
4813 		if (key.offset + length <= new_size) {
4814 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4815 			btrfs_release_path(path);
4816 			break;
4817 		}
4818 
4819 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4820 		btrfs_release_path(path);
4821 
4822 		/*
4823 		 * We may be relocating the only data chunk we have,
4824 		 * which could potentially end up with losing data's
4825 		 * raid profile, so lets allocate an empty one in
4826 		 * advance.
4827 		 */
4828 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4829 		if (ret < 0) {
4830 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4831 			goto done;
4832 		}
4833 
4834 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4835 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4836 		if (ret == -ENOSPC) {
4837 			failed++;
4838 		} else if (ret) {
4839 			if (ret == -ETXTBSY) {
4840 				btrfs_warn(fs_info,
4841 		   "could not shrink block group %llu due to active swapfile",
4842 					   chunk_offset);
4843 			}
4844 			goto done;
4845 		}
4846 	} while (key.offset-- > 0);
4847 
4848 	if (failed && !retried) {
4849 		failed = 0;
4850 		retried = true;
4851 		goto again;
4852 	} else if (failed && retried) {
4853 		ret = -ENOSPC;
4854 		goto done;
4855 	}
4856 
4857 	/* Shrinking succeeded, else we would be at "done". */
4858 	trans = btrfs_start_transaction(root, 0);
4859 	if (IS_ERR(trans)) {
4860 		ret = PTR_ERR(trans);
4861 		goto done;
4862 	}
4863 
4864 	mutex_lock(&fs_info->chunk_mutex);
4865 	/* Clear all state bits beyond the shrunk device size */
4866 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4867 			  CHUNK_STATE_MASK);
4868 
4869 	btrfs_device_set_disk_total_bytes(device, new_size);
4870 	if (list_empty(&device->post_commit_list))
4871 		list_add_tail(&device->post_commit_list,
4872 			      &trans->transaction->dev_update_list);
4873 
4874 	WARN_ON(diff > old_total);
4875 	btrfs_set_super_total_bytes(super_copy,
4876 			round_down(old_total - diff, fs_info->sectorsize));
4877 	mutex_unlock(&fs_info->chunk_mutex);
4878 
4879 	/* Now btrfs_update_device() will change the on-disk size. */
4880 	ret = btrfs_update_device(trans, device);
4881 	if (ret < 0) {
4882 		btrfs_abort_transaction(trans, ret);
4883 		btrfs_end_transaction(trans);
4884 	} else {
4885 		ret = btrfs_commit_transaction(trans);
4886 	}
4887 done:
4888 	btrfs_free_path(path);
4889 	if (ret) {
4890 		mutex_lock(&fs_info->chunk_mutex);
4891 		btrfs_device_set_total_bytes(device, old_size);
4892 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4893 			device->fs_devices->total_rw_bytes += diff;
4894 		atomic64_add(diff, &fs_info->free_chunk_space);
4895 		mutex_unlock(&fs_info->chunk_mutex);
4896 	}
4897 	return ret;
4898 }
4899 
4900 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4901 			   struct btrfs_key *key,
4902 			   struct btrfs_chunk *chunk, int item_size)
4903 {
4904 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4905 	struct btrfs_disk_key disk_key;
4906 	u32 array_size;
4907 	u8 *ptr;
4908 
4909 	lockdep_assert_held(&fs_info->chunk_mutex);
4910 
4911 	array_size = btrfs_super_sys_array_size(super_copy);
4912 	if (array_size + item_size + sizeof(disk_key)
4913 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4914 		return -EFBIG;
4915 
4916 	ptr = super_copy->sys_chunk_array + array_size;
4917 	btrfs_cpu_key_to_disk(&disk_key, key);
4918 	memcpy(ptr, &disk_key, sizeof(disk_key));
4919 	ptr += sizeof(disk_key);
4920 	memcpy(ptr, chunk, item_size);
4921 	item_size += sizeof(disk_key);
4922 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4923 
4924 	return 0;
4925 }
4926 
4927 /*
4928  * sort the devices in descending order by max_avail, total_avail
4929  */
4930 static int btrfs_cmp_device_info(const void *a, const void *b)
4931 {
4932 	const struct btrfs_device_info *di_a = a;
4933 	const struct btrfs_device_info *di_b = b;
4934 
4935 	if (di_a->max_avail > di_b->max_avail)
4936 		return -1;
4937 	if (di_a->max_avail < di_b->max_avail)
4938 		return 1;
4939 	if (di_a->total_avail > di_b->total_avail)
4940 		return -1;
4941 	if (di_a->total_avail < di_b->total_avail)
4942 		return 1;
4943 	return 0;
4944 }
4945 
4946 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4947 {
4948 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4949 		return;
4950 
4951 	btrfs_set_fs_incompat(info, RAID56);
4952 }
4953 
4954 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4955 {
4956 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4957 		return;
4958 
4959 	btrfs_set_fs_incompat(info, RAID1C34);
4960 }
4961 
4962 /*
4963  * Structure used internally for __btrfs_alloc_chunk() function.
4964  * Wraps needed parameters.
4965  */
4966 struct alloc_chunk_ctl {
4967 	u64 start;
4968 	u64 type;
4969 	/* Total number of stripes to allocate */
4970 	int num_stripes;
4971 	/* sub_stripes info for map */
4972 	int sub_stripes;
4973 	/* Stripes per device */
4974 	int dev_stripes;
4975 	/* Maximum number of devices to use */
4976 	int devs_max;
4977 	/* Minimum number of devices to use */
4978 	int devs_min;
4979 	/* ndevs has to be a multiple of this */
4980 	int devs_increment;
4981 	/* Number of copies */
4982 	int ncopies;
4983 	/* Number of stripes worth of bytes to store parity information */
4984 	int nparity;
4985 	u64 max_stripe_size;
4986 	u64 max_chunk_size;
4987 	u64 dev_extent_min;
4988 	u64 stripe_size;
4989 	u64 chunk_size;
4990 	int ndevs;
4991 };
4992 
4993 static void init_alloc_chunk_ctl_policy_regular(
4994 				struct btrfs_fs_devices *fs_devices,
4995 				struct alloc_chunk_ctl *ctl)
4996 {
4997 	u64 type = ctl->type;
4998 
4999 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5000 		ctl->max_stripe_size = SZ_1G;
5001 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5002 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5003 		/* For larger filesystems, use larger metadata chunks */
5004 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5005 			ctl->max_stripe_size = SZ_1G;
5006 		else
5007 			ctl->max_stripe_size = SZ_256M;
5008 		ctl->max_chunk_size = ctl->max_stripe_size;
5009 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5010 		ctl->max_stripe_size = SZ_32M;
5011 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5012 		ctl->devs_max = min_t(int, ctl->devs_max,
5013 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5014 	} else {
5015 		BUG();
5016 	}
5017 
5018 	/* We don't want a chunk larger than 10% of writable space */
5019 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5020 				  ctl->max_chunk_size);
5021 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5022 }
5023 
5024 static void init_alloc_chunk_ctl_policy_zoned(
5025 				      struct btrfs_fs_devices *fs_devices,
5026 				      struct alloc_chunk_ctl *ctl)
5027 {
5028 	u64 zone_size = fs_devices->fs_info->zone_size;
5029 	u64 limit;
5030 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5031 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5032 	u64 min_chunk_size = min_data_stripes * zone_size;
5033 	u64 type = ctl->type;
5034 
5035 	ctl->max_stripe_size = zone_size;
5036 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5037 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5038 						 zone_size);
5039 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5040 		ctl->max_chunk_size = ctl->max_stripe_size;
5041 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5042 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5043 		ctl->devs_max = min_t(int, ctl->devs_max,
5044 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5045 	} else {
5046 		BUG();
5047 	}
5048 
5049 	/* We don't want a chunk larger than 10% of writable space */
5050 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5051 			       zone_size),
5052 		    min_chunk_size);
5053 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5054 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5055 }
5056 
5057 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5058 				 struct alloc_chunk_ctl *ctl)
5059 {
5060 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5061 
5062 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5063 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5064 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5065 	if (!ctl->devs_max)
5066 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5067 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5068 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5069 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5070 	ctl->nparity = btrfs_raid_array[index].nparity;
5071 	ctl->ndevs = 0;
5072 
5073 	switch (fs_devices->chunk_alloc_policy) {
5074 	case BTRFS_CHUNK_ALLOC_REGULAR:
5075 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5076 		break;
5077 	case BTRFS_CHUNK_ALLOC_ZONED:
5078 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5079 		break;
5080 	default:
5081 		BUG();
5082 	}
5083 }
5084 
5085 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5086 			      struct alloc_chunk_ctl *ctl,
5087 			      struct btrfs_device_info *devices_info)
5088 {
5089 	struct btrfs_fs_info *info = fs_devices->fs_info;
5090 	struct btrfs_device *device;
5091 	u64 total_avail;
5092 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5093 	int ret;
5094 	int ndevs = 0;
5095 	u64 max_avail;
5096 	u64 dev_offset;
5097 
5098 	/*
5099 	 * in the first pass through the devices list, we gather information
5100 	 * about the available holes on each device.
5101 	 */
5102 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5103 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5104 			WARN(1, KERN_ERR
5105 			       "BTRFS: read-only device in alloc_list\n");
5106 			continue;
5107 		}
5108 
5109 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5110 					&device->dev_state) ||
5111 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5112 			continue;
5113 
5114 		if (device->total_bytes > device->bytes_used)
5115 			total_avail = device->total_bytes - device->bytes_used;
5116 		else
5117 			total_avail = 0;
5118 
5119 		/* If there is no space on this device, skip it. */
5120 		if (total_avail < ctl->dev_extent_min)
5121 			continue;
5122 
5123 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5124 					   &max_avail);
5125 		if (ret && ret != -ENOSPC)
5126 			return ret;
5127 
5128 		if (ret == 0)
5129 			max_avail = dev_extent_want;
5130 
5131 		if (max_avail < ctl->dev_extent_min) {
5132 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5133 				btrfs_debug(info,
5134 			"%s: devid %llu has no free space, have=%llu want=%llu",
5135 					    __func__, device->devid, max_avail,
5136 					    ctl->dev_extent_min);
5137 			continue;
5138 		}
5139 
5140 		if (ndevs == fs_devices->rw_devices) {
5141 			WARN(1, "%s: found more than %llu devices\n",
5142 			     __func__, fs_devices->rw_devices);
5143 			break;
5144 		}
5145 		devices_info[ndevs].dev_offset = dev_offset;
5146 		devices_info[ndevs].max_avail = max_avail;
5147 		devices_info[ndevs].total_avail = total_avail;
5148 		devices_info[ndevs].dev = device;
5149 		++ndevs;
5150 	}
5151 	ctl->ndevs = ndevs;
5152 
5153 	/*
5154 	 * now sort the devices by hole size / available space
5155 	 */
5156 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5157 	     btrfs_cmp_device_info, NULL);
5158 
5159 	return 0;
5160 }
5161 
5162 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5163 				      struct btrfs_device_info *devices_info)
5164 {
5165 	/* Number of stripes that count for block group size */
5166 	int data_stripes;
5167 
5168 	/*
5169 	 * The primary goal is to maximize the number of stripes, so use as
5170 	 * many devices as possible, even if the stripes are not maximum sized.
5171 	 *
5172 	 * The DUP profile stores more than one stripe per device, the
5173 	 * max_avail is the total size so we have to adjust.
5174 	 */
5175 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5176 				   ctl->dev_stripes);
5177 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5178 
5179 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5180 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5181 
5182 	/*
5183 	 * Use the number of data stripes to figure out how big this chunk is
5184 	 * really going to be in terms of logical address space, and compare
5185 	 * that answer with the max chunk size. If it's higher, we try to
5186 	 * reduce stripe_size.
5187 	 */
5188 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5189 		/*
5190 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5191 		 * then use it, unless it ends up being even bigger than the
5192 		 * previous value we had already.
5193 		 */
5194 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5195 							data_stripes), SZ_16M),
5196 				       ctl->stripe_size);
5197 	}
5198 
5199 	/* Align to BTRFS_STRIPE_LEN */
5200 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5201 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5202 
5203 	return 0;
5204 }
5205 
5206 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5207 				    struct btrfs_device_info *devices_info)
5208 {
5209 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5210 	/* Number of stripes that count for block group size */
5211 	int data_stripes;
5212 
5213 	/*
5214 	 * It should hold because:
5215 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5216 	 */
5217 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5218 
5219 	ctl->stripe_size = zone_size;
5220 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5221 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5222 
5223 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5224 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5225 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5226 					     ctl->stripe_size) + ctl->nparity,
5227 				     ctl->dev_stripes);
5228 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5229 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5230 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5231 	}
5232 
5233 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5234 
5235 	return 0;
5236 }
5237 
5238 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5239 			      struct alloc_chunk_ctl *ctl,
5240 			      struct btrfs_device_info *devices_info)
5241 {
5242 	struct btrfs_fs_info *info = fs_devices->fs_info;
5243 
5244 	/*
5245 	 * Round down to number of usable stripes, devs_increment can be any
5246 	 * number so we can't use round_down() that requires power of 2, while
5247 	 * rounddown is safe.
5248 	 */
5249 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5250 
5251 	if (ctl->ndevs < ctl->devs_min) {
5252 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5253 			btrfs_debug(info,
5254 	"%s: not enough devices with free space: have=%d minimum required=%d",
5255 				    __func__, ctl->ndevs, ctl->devs_min);
5256 		}
5257 		return -ENOSPC;
5258 	}
5259 
5260 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5261 
5262 	switch (fs_devices->chunk_alloc_policy) {
5263 	case BTRFS_CHUNK_ALLOC_REGULAR:
5264 		return decide_stripe_size_regular(ctl, devices_info);
5265 	case BTRFS_CHUNK_ALLOC_ZONED:
5266 		return decide_stripe_size_zoned(ctl, devices_info);
5267 	default:
5268 		BUG();
5269 	}
5270 }
5271 
5272 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5273 			struct alloc_chunk_ctl *ctl,
5274 			struct btrfs_device_info *devices_info)
5275 {
5276 	struct btrfs_fs_info *info = trans->fs_info;
5277 	struct map_lookup *map = NULL;
5278 	struct extent_map_tree *em_tree;
5279 	struct btrfs_block_group *block_group;
5280 	struct extent_map *em;
5281 	u64 start = ctl->start;
5282 	u64 type = ctl->type;
5283 	int ret;
5284 	int i;
5285 	int j;
5286 
5287 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5288 	if (!map)
5289 		return ERR_PTR(-ENOMEM);
5290 	map->num_stripes = ctl->num_stripes;
5291 
5292 	for (i = 0; i < ctl->ndevs; ++i) {
5293 		for (j = 0; j < ctl->dev_stripes; ++j) {
5294 			int s = i * ctl->dev_stripes + j;
5295 			map->stripes[s].dev = devices_info[i].dev;
5296 			map->stripes[s].physical = devices_info[i].dev_offset +
5297 						   j * ctl->stripe_size;
5298 		}
5299 	}
5300 	map->stripe_len = BTRFS_STRIPE_LEN;
5301 	map->io_align = BTRFS_STRIPE_LEN;
5302 	map->io_width = BTRFS_STRIPE_LEN;
5303 	map->type = type;
5304 	map->sub_stripes = ctl->sub_stripes;
5305 
5306 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5307 
5308 	em = alloc_extent_map();
5309 	if (!em) {
5310 		kfree(map);
5311 		return ERR_PTR(-ENOMEM);
5312 	}
5313 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5314 	em->map_lookup = map;
5315 	em->start = start;
5316 	em->len = ctl->chunk_size;
5317 	em->block_start = 0;
5318 	em->block_len = em->len;
5319 	em->orig_block_len = ctl->stripe_size;
5320 
5321 	em_tree = &info->mapping_tree;
5322 	write_lock(&em_tree->lock);
5323 	ret = add_extent_mapping(em_tree, em, 0);
5324 	if (ret) {
5325 		write_unlock(&em_tree->lock);
5326 		free_extent_map(em);
5327 		return ERR_PTR(ret);
5328 	}
5329 	write_unlock(&em_tree->lock);
5330 
5331 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5332 	if (IS_ERR(block_group))
5333 		goto error_del_extent;
5334 
5335 	for (i = 0; i < map->num_stripes; i++) {
5336 		struct btrfs_device *dev = map->stripes[i].dev;
5337 
5338 		btrfs_device_set_bytes_used(dev,
5339 					    dev->bytes_used + ctl->stripe_size);
5340 		if (list_empty(&dev->post_commit_list))
5341 			list_add_tail(&dev->post_commit_list,
5342 				      &trans->transaction->dev_update_list);
5343 	}
5344 
5345 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5346 		     &info->free_chunk_space);
5347 
5348 	free_extent_map(em);
5349 	check_raid56_incompat_flag(info, type);
5350 	check_raid1c34_incompat_flag(info, type);
5351 
5352 	return block_group;
5353 
5354 error_del_extent:
5355 	write_lock(&em_tree->lock);
5356 	remove_extent_mapping(em_tree, em);
5357 	write_unlock(&em_tree->lock);
5358 
5359 	/* One for our allocation */
5360 	free_extent_map(em);
5361 	/* One for the tree reference */
5362 	free_extent_map(em);
5363 
5364 	return block_group;
5365 }
5366 
5367 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5368 					    u64 type)
5369 {
5370 	struct btrfs_fs_info *info = trans->fs_info;
5371 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5372 	struct btrfs_device_info *devices_info = NULL;
5373 	struct alloc_chunk_ctl ctl;
5374 	struct btrfs_block_group *block_group;
5375 	int ret;
5376 
5377 	lockdep_assert_held(&info->chunk_mutex);
5378 
5379 	if (!alloc_profile_is_valid(type, 0)) {
5380 		ASSERT(0);
5381 		return ERR_PTR(-EINVAL);
5382 	}
5383 
5384 	if (list_empty(&fs_devices->alloc_list)) {
5385 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5386 			btrfs_debug(info, "%s: no writable device", __func__);
5387 		return ERR_PTR(-ENOSPC);
5388 	}
5389 
5390 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5391 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5392 		ASSERT(0);
5393 		return ERR_PTR(-EINVAL);
5394 	}
5395 
5396 	ctl.start = find_next_chunk(info);
5397 	ctl.type = type;
5398 	init_alloc_chunk_ctl(fs_devices, &ctl);
5399 
5400 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5401 			       GFP_NOFS);
5402 	if (!devices_info)
5403 		return ERR_PTR(-ENOMEM);
5404 
5405 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5406 	if (ret < 0) {
5407 		block_group = ERR_PTR(ret);
5408 		goto out;
5409 	}
5410 
5411 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5412 	if (ret < 0) {
5413 		block_group = ERR_PTR(ret);
5414 		goto out;
5415 	}
5416 
5417 	block_group = create_chunk(trans, &ctl, devices_info);
5418 
5419 out:
5420 	kfree(devices_info);
5421 	return block_group;
5422 }
5423 
5424 /*
5425  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5426  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5427  * chunks.
5428  *
5429  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5430  * phases.
5431  */
5432 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5433 				     struct btrfs_block_group *bg)
5434 {
5435 	struct btrfs_fs_info *fs_info = trans->fs_info;
5436 	struct btrfs_root *extent_root = fs_info->extent_root;
5437 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5438 	struct btrfs_key key;
5439 	struct btrfs_chunk *chunk;
5440 	struct btrfs_stripe *stripe;
5441 	struct extent_map *em;
5442 	struct map_lookup *map;
5443 	size_t item_size;
5444 	int i;
5445 	int ret;
5446 
5447 	/*
5448 	 * We take the chunk_mutex for 2 reasons:
5449 	 *
5450 	 * 1) Updates and insertions in the chunk btree must be done while holding
5451 	 *    the chunk_mutex, as well as updating the system chunk array in the
5452 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5453 	 *    details;
5454 	 *
5455 	 * 2) To prevent races with the final phase of a device replace operation
5456 	 *    that replaces the device object associated with the map's stripes,
5457 	 *    because the device object's id can change at any time during that
5458 	 *    final phase of the device replace operation
5459 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5460 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5461 	 *    which would cause a failure when updating the device item, which does
5462 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5463 	 *    Here we can't use the device_list_mutex because our caller already
5464 	 *    has locked the chunk_mutex, and the final phase of device replace
5465 	 *    acquires both mutexes - first the device_list_mutex and then the
5466 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5467 	 *    concurrent device replace.
5468 	 */
5469 	lockdep_assert_held(&fs_info->chunk_mutex);
5470 
5471 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5472 	if (IS_ERR(em)) {
5473 		ret = PTR_ERR(em);
5474 		btrfs_abort_transaction(trans, ret);
5475 		return ret;
5476 	}
5477 
5478 	map = em->map_lookup;
5479 	item_size = btrfs_chunk_item_size(map->num_stripes);
5480 
5481 	chunk = kzalloc(item_size, GFP_NOFS);
5482 	if (!chunk) {
5483 		ret = -ENOMEM;
5484 		btrfs_abort_transaction(trans, ret);
5485 		goto out;
5486 	}
5487 
5488 	for (i = 0; i < map->num_stripes; i++) {
5489 		struct btrfs_device *device = map->stripes[i].dev;
5490 
5491 		ret = btrfs_update_device(trans, device);
5492 		if (ret)
5493 			goto out;
5494 	}
5495 
5496 	stripe = &chunk->stripe;
5497 	for (i = 0; i < map->num_stripes; i++) {
5498 		struct btrfs_device *device = map->stripes[i].dev;
5499 		const u64 dev_offset = map->stripes[i].physical;
5500 
5501 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5502 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5503 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5504 		stripe++;
5505 	}
5506 
5507 	btrfs_set_stack_chunk_length(chunk, bg->length);
5508 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5509 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5510 	btrfs_set_stack_chunk_type(chunk, map->type);
5511 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5512 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5513 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5514 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5515 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5516 
5517 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5518 	key.type = BTRFS_CHUNK_ITEM_KEY;
5519 	key.offset = bg->start;
5520 
5521 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5522 	if (ret)
5523 		goto out;
5524 
5525 	bg->chunk_item_inserted = 1;
5526 
5527 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5528 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5529 		if (ret)
5530 			goto out;
5531 	}
5532 
5533 out:
5534 	kfree(chunk);
5535 	free_extent_map(em);
5536 	return ret;
5537 }
5538 
5539 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5540 {
5541 	struct btrfs_fs_info *fs_info = trans->fs_info;
5542 	u64 alloc_profile;
5543 	struct btrfs_block_group *meta_bg;
5544 	struct btrfs_block_group *sys_bg;
5545 
5546 	/*
5547 	 * When adding a new device for sprouting, the seed device is read-only
5548 	 * so we must first allocate a metadata and a system chunk. But before
5549 	 * adding the block group items to the extent, device and chunk btrees,
5550 	 * we must first:
5551 	 *
5552 	 * 1) Create both chunks without doing any changes to the btrees, as
5553 	 *    otherwise we would get -ENOSPC since the block groups from the
5554 	 *    seed device are read-only;
5555 	 *
5556 	 * 2) Add the device item for the new sprout device - finishing the setup
5557 	 *    of a new block group requires updating the device item in the chunk
5558 	 *    btree, so it must exist when we attempt to do it. The previous step
5559 	 *    ensures this does not fail with -ENOSPC.
5560 	 *
5561 	 * After that we can add the block group items to their btrees:
5562 	 * update existing device item in the chunk btree, add a new block group
5563 	 * item to the extent btree, add a new chunk item to the chunk btree and
5564 	 * finally add the new device extent items to the devices btree.
5565 	 */
5566 
5567 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5568 	meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5569 	if (IS_ERR(meta_bg))
5570 		return PTR_ERR(meta_bg);
5571 
5572 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5573 	sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5574 	if (IS_ERR(sys_bg))
5575 		return PTR_ERR(sys_bg);
5576 
5577 	return 0;
5578 }
5579 
5580 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5581 {
5582 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5583 
5584 	return btrfs_raid_array[index].tolerated_failures;
5585 }
5586 
5587 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5588 {
5589 	struct extent_map *em;
5590 	struct map_lookup *map;
5591 	int readonly = 0;
5592 	int miss_ndevs = 0;
5593 	int i;
5594 
5595 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5596 	if (IS_ERR(em))
5597 		return 1;
5598 
5599 	map = em->map_lookup;
5600 	for (i = 0; i < map->num_stripes; i++) {
5601 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5602 					&map->stripes[i].dev->dev_state)) {
5603 			miss_ndevs++;
5604 			continue;
5605 		}
5606 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5607 					&map->stripes[i].dev->dev_state)) {
5608 			readonly = 1;
5609 			goto end;
5610 		}
5611 	}
5612 
5613 	/*
5614 	 * If the number of missing devices is larger than max errors,
5615 	 * we can not write the data into that chunk successfully, so
5616 	 * set it readonly.
5617 	 */
5618 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5619 		readonly = 1;
5620 end:
5621 	free_extent_map(em);
5622 	return readonly;
5623 }
5624 
5625 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5626 {
5627 	struct extent_map *em;
5628 
5629 	while (1) {
5630 		write_lock(&tree->lock);
5631 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5632 		if (em)
5633 			remove_extent_mapping(tree, em);
5634 		write_unlock(&tree->lock);
5635 		if (!em)
5636 			break;
5637 		/* once for us */
5638 		free_extent_map(em);
5639 		/* once for the tree */
5640 		free_extent_map(em);
5641 	}
5642 }
5643 
5644 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5645 {
5646 	struct extent_map *em;
5647 	struct map_lookup *map;
5648 	int ret;
5649 
5650 	em = btrfs_get_chunk_map(fs_info, logical, len);
5651 	if (IS_ERR(em))
5652 		/*
5653 		 * We could return errors for these cases, but that could get
5654 		 * ugly and we'd probably do the same thing which is just not do
5655 		 * anything else and exit, so return 1 so the callers don't try
5656 		 * to use other copies.
5657 		 */
5658 		return 1;
5659 
5660 	map = em->map_lookup;
5661 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5662 		ret = map->num_stripes;
5663 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5664 		ret = map->sub_stripes;
5665 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5666 		ret = 2;
5667 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5668 		/*
5669 		 * There could be two corrupted data stripes, we need
5670 		 * to loop retry in order to rebuild the correct data.
5671 		 *
5672 		 * Fail a stripe at a time on every retry except the
5673 		 * stripe under reconstruction.
5674 		 */
5675 		ret = map->num_stripes;
5676 	else
5677 		ret = 1;
5678 	free_extent_map(em);
5679 
5680 	down_read(&fs_info->dev_replace.rwsem);
5681 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5682 	    fs_info->dev_replace.tgtdev)
5683 		ret++;
5684 	up_read(&fs_info->dev_replace.rwsem);
5685 
5686 	return ret;
5687 }
5688 
5689 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5690 				    u64 logical)
5691 {
5692 	struct extent_map *em;
5693 	struct map_lookup *map;
5694 	unsigned long len = fs_info->sectorsize;
5695 
5696 	em = btrfs_get_chunk_map(fs_info, logical, len);
5697 
5698 	if (!WARN_ON(IS_ERR(em))) {
5699 		map = em->map_lookup;
5700 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5701 			len = map->stripe_len * nr_data_stripes(map);
5702 		free_extent_map(em);
5703 	}
5704 	return len;
5705 }
5706 
5707 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5708 {
5709 	struct extent_map *em;
5710 	struct map_lookup *map;
5711 	int ret = 0;
5712 
5713 	em = btrfs_get_chunk_map(fs_info, logical, len);
5714 
5715 	if(!WARN_ON(IS_ERR(em))) {
5716 		map = em->map_lookup;
5717 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5718 			ret = 1;
5719 		free_extent_map(em);
5720 	}
5721 	return ret;
5722 }
5723 
5724 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5725 			    struct map_lookup *map, int first,
5726 			    int dev_replace_is_ongoing)
5727 {
5728 	int i;
5729 	int num_stripes;
5730 	int preferred_mirror;
5731 	int tolerance;
5732 	struct btrfs_device *srcdev;
5733 
5734 	ASSERT((map->type &
5735 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5736 
5737 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5738 		num_stripes = map->sub_stripes;
5739 	else
5740 		num_stripes = map->num_stripes;
5741 
5742 	switch (fs_info->fs_devices->read_policy) {
5743 	default:
5744 		/* Shouldn't happen, just warn and use pid instead of failing */
5745 		btrfs_warn_rl(fs_info,
5746 			      "unknown read_policy type %u, reset to pid",
5747 			      fs_info->fs_devices->read_policy);
5748 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5749 		fallthrough;
5750 	case BTRFS_READ_POLICY_PID:
5751 		preferred_mirror = first + (current->pid % num_stripes);
5752 		break;
5753 	}
5754 
5755 	if (dev_replace_is_ongoing &&
5756 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5757 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5758 		srcdev = fs_info->dev_replace.srcdev;
5759 	else
5760 		srcdev = NULL;
5761 
5762 	/*
5763 	 * try to avoid the drive that is the source drive for a
5764 	 * dev-replace procedure, only choose it if no other non-missing
5765 	 * mirror is available
5766 	 */
5767 	for (tolerance = 0; tolerance < 2; tolerance++) {
5768 		if (map->stripes[preferred_mirror].dev->bdev &&
5769 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5770 			return preferred_mirror;
5771 		for (i = first; i < first + num_stripes; i++) {
5772 			if (map->stripes[i].dev->bdev &&
5773 			    (tolerance || map->stripes[i].dev != srcdev))
5774 				return i;
5775 		}
5776 	}
5777 
5778 	/* we couldn't find one that doesn't fail.  Just return something
5779 	 * and the io error handling code will clean up eventually
5780 	 */
5781 	return preferred_mirror;
5782 }
5783 
5784 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5785 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5786 {
5787 	int i;
5788 	int again = 1;
5789 
5790 	while (again) {
5791 		again = 0;
5792 		for (i = 0; i < num_stripes - 1; i++) {
5793 			/* Swap if parity is on a smaller index */
5794 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5795 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5796 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5797 				again = 1;
5798 			}
5799 		}
5800 	}
5801 }
5802 
5803 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5804 {
5805 	struct btrfs_bio *bbio = kzalloc(
5806 		 /* the size of the btrfs_bio */
5807 		sizeof(struct btrfs_bio) +
5808 		/* plus the variable array for the stripes */
5809 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5810 		/* plus the variable array for the tgt dev */
5811 		sizeof(int) * (real_stripes) +
5812 		/*
5813 		 * plus the raid_map, which includes both the tgt dev
5814 		 * and the stripes
5815 		 */
5816 		sizeof(u64) * (total_stripes),
5817 		GFP_NOFS|__GFP_NOFAIL);
5818 
5819 	atomic_set(&bbio->error, 0);
5820 	refcount_set(&bbio->refs, 1);
5821 
5822 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5823 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5824 
5825 	return bbio;
5826 }
5827 
5828 void btrfs_get_bbio(struct btrfs_bio *bbio)
5829 {
5830 	WARN_ON(!refcount_read(&bbio->refs));
5831 	refcount_inc(&bbio->refs);
5832 }
5833 
5834 void btrfs_put_bbio(struct btrfs_bio *bbio)
5835 {
5836 	if (!bbio)
5837 		return;
5838 	if (refcount_dec_and_test(&bbio->refs))
5839 		kfree(bbio);
5840 }
5841 
5842 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5843 /*
5844  * Please note that, discard won't be sent to target device of device
5845  * replace.
5846  */
5847 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5848 					 u64 logical, u64 *length_ret,
5849 					 struct btrfs_bio **bbio_ret)
5850 {
5851 	struct extent_map *em;
5852 	struct map_lookup *map;
5853 	struct btrfs_bio *bbio;
5854 	u64 length = *length_ret;
5855 	u64 offset;
5856 	u64 stripe_nr;
5857 	u64 stripe_nr_end;
5858 	u64 stripe_end_offset;
5859 	u64 stripe_cnt;
5860 	u64 stripe_len;
5861 	u64 stripe_offset;
5862 	u64 num_stripes;
5863 	u32 stripe_index;
5864 	u32 factor = 0;
5865 	u32 sub_stripes = 0;
5866 	u64 stripes_per_dev = 0;
5867 	u32 remaining_stripes = 0;
5868 	u32 last_stripe = 0;
5869 	int ret = 0;
5870 	int i;
5871 
5872 	/* discard always return a bbio */
5873 	ASSERT(bbio_ret);
5874 
5875 	em = btrfs_get_chunk_map(fs_info, logical, length);
5876 	if (IS_ERR(em))
5877 		return PTR_ERR(em);
5878 
5879 	map = em->map_lookup;
5880 	/* we don't discard raid56 yet */
5881 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5882 		ret = -EOPNOTSUPP;
5883 		goto out;
5884 	}
5885 
5886 	offset = logical - em->start;
5887 	length = min_t(u64, em->start + em->len - logical, length);
5888 	*length_ret = length;
5889 
5890 	stripe_len = map->stripe_len;
5891 	/*
5892 	 * stripe_nr counts the total number of stripes we have to stride
5893 	 * to get to this block
5894 	 */
5895 	stripe_nr = div64_u64(offset, stripe_len);
5896 
5897 	/* stripe_offset is the offset of this block in its stripe */
5898 	stripe_offset = offset - stripe_nr * stripe_len;
5899 
5900 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5901 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5902 	stripe_cnt = stripe_nr_end - stripe_nr;
5903 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5904 			    (offset + length);
5905 	/*
5906 	 * after this, stripe_nr is the number of stripes on this
5907 	 * device we have to walk to find the data, and stripe_index is
5908 	 * the number of our device in the stripe array
5909 	 */
5910 	num_stripes = 1;
5911 	stripe_index = 0;
5912 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5913 			 BTRFS_BLOCK_GROUP_RAID10)) {
5914 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5915 			sub_stripes = 1;
5916 		else
5917 			sub_stripes = map->sub_stripes;
5918 
5919 		factor = map->num_stripes / sub_stripes;
5920 		num_stripes = min_t(u64, map->num_stripes,
5921 				    sub_stripes * stripe_cnt);
5922 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5923 		stripe_index *= sub_stripes;
5924 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5925 					      &remaining_stripes);
5926 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5927 		last_stripe *= sub_stripes;
5928 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5929 				BTRFS_BLOCK_GROUP_DUP)) {
5930 		num_stripes = map->num_stripes;
5931 	} else {
5932 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5933 					&stripe_index);
5934 	}
5935 
5936 	bbio = alloc_btrfs_bio(num_stripes, 0);
5937 	if (!bbio) {
5938 		ret = -ENOMEM;
5939 		goto out;
5940 	}
5941 
5942 	for (i = 0; i < num_stripes; i++) {
5943 		bbio->stripes[i].physical =
5944 			map->stripes[stripe_index].physical +
5945 			stripe_offset + stripe_nr * map->stripe_len;
5946 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5947 
5948 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5949 				 BTRFS_BLOCK_GROUP_RAID10)) {
5950 			bbio->stripes[i].length = stripes_per_dev *
5951 				map->stripe_len;
5952 
5953 			if (i / sub_stripes < remaining_stripes)
5954 				bbio->stripes[i].length +=
5955 					map->stripe_len;
5956 
5957 			/*
5958 			 * Special for the first stripe and
5959 			 * the last stripe:
5960 			 *
5961 			 * |-------|...|-------|
5962 			 *     |----------|
5963 			 *    off     end_off
5964 			 */
5965 			if (i < sub_stripes)
5966 				bbio->stripes[i].length -=
5967 					stripe_offset;
5968 
5969 			if (stripe_index >= last_stripe &&
5970 			    stripe_index <= (last_stripe +
5971 					     sub_stripes - 1))
5972 				bbio->stripes[i].length -=
5973 					stripe_end_offset;
5974 
5975 			if (i == sub_stripes - 1)
5976 				stripe_offset = 0;
5977 		} else {
5978 			bbio->stripes[i].length = length;
5979 		}
5980 
5981 		stripe_index++;
5982 		if (stripe_index == map->num_stripes) {
5983 			stripe_index = 0;
5984 			stripe_nr++;
5985 		}
5986 	}
5987 
5988 	*bbio_ret = bbio;
5989 	bbio->map_type = map->type;
5990 	bbio->num_stripes = num_stripes;
5991 out:
5992 	free_extent_map(em);
5993 	return ret;
5994 }
5995 
5996 /*
5997  * In dev-replace case, for repair case (that's the only case where the mirror
5998  * is selected explicitly when calling btrfs_map_block), blocks left of the
5999  * left cursor can also be read from the target drive.
6000  *
6001  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6002  * array of stripes.
6003  * For READ, it also needs to be supported using the same mirror number.
6004  *
6005  * If the requested block is not left of the left cursor, EIO is returned. This
6006  * can happen because btrfs_num_copies() returns one more in the dev-replace
6007  * case.
6008  */
6009 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6010 					 u64 logical, u64 length,
6011 					 u64 srcdev_devid, int *mirror_num,
6012 					 u64 *physical)
6013 {
6014 	struct btrfs_bio *bbio = NULL;
6015 	int num_stripes;
6016 	int index_srcdev = 0;
6017 	int found = 0;
6018 	u64 physical_of_found = 0;
6019 	int i;
6020 	int ret = 0;
6021 
6022 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6023 				logical, &length, &bbio, 0, 0);
6024 	if (ret) {
6025 		ASSERT(bbio == NULL);
6026 		return ret;
6027 	}
6028 
6029 	num_stripes = bbio->num_stripes;
6030 	if (*mirror_num > num_stripes) {
6031 		/*
6032 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6033 		 * that means that the requested area is not left of the left
6034 		 * cursor
6035 		 */
6036 		btrfs_put_bbio(bbio);
6037 		return -EIO;
6038 	}
6039 
6040 	/*
6041 	 * process the rest of the function using the mirror_num of the source
6042 	 * drive. Therefore look it up first.  At the end, patch the device
6043 	 * pointer to the one of the target drive.
6044 	 */
6045 	for (i = 0; i < num_stripes; i++) {
6046 		if (bbio->stripes[i].dev->devid != srcdev_devid)
6047 			continue;
6048 
6049 		/*
6050 		 * In case of DUP, in order to keep it simple, only add the
6051 		 * mirror with the lowest physical address
6052 		 */
6053 		if (found &&
6054 		    physical_of_found <= bbio->stripes[i].physical)
6055 			continue;
6056 
6057 		index_srcdev = i;
6058 		found = 1;
6059 		physical_of_found = bbio->stripes[i].physical;
6060 	}
6061 
6062 	btrfs_put_bbio(bbio);
6063 
6064 	ASSERT(found);
6065 	if (!found)
6066 		return -EIO;
6067 
6068 	*mirror_num = index_srcdev + 1;
6069 	*physical = physical_of_found;
6070 	return ret;
6071 }
6072 
6073 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6074 {
6075 	struct btrfs_block_group *cache;
6076 	bool ret;
6077 
6078 	/* Non zoned filesystem does not use "to_copy" flag */
6079 	if (!btrfs_is_zoned(fs_info))
6080 		return false;
6081 
6082 	cache = btrfs_lookup_block_group(fs_info, logical);
6083 
6084 	spin_lock(&cache->lock);
6085 	ret = cache->to_copy;
6086 	spin_unlock(&cache->lock);
6087 
6088 	btrfs_put_block_group(cache);
6089 	return ret;
6090 }
6091 
6092 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6093 				      struct btrfs_bio **bbio_ret,
6094 				      struct btrfs_dev_replace *dev_replace,
6095 				      u64 logical,
6096 				      int *num_stripes_ret, int *max_errors_ret)
6097 {
6098 	struct btrfs_bio *bbio = *bbio_ret;
6099 	u64 srcdev_devid = dev_replace->srcdev->devid;
6100 	int tgtdev_indexes = 0;
6101 	int num_stripes = *num_stripes_ret;
6102 	int max_errors = *max_errors_ret;
6103 	int i;
6104 
6105 	if (op == BTRFS_MAP_WRITE) {
6106 		int index_where_to_add;
6107 
6108 		/*
6109 		 * A block group which have "to_copy" set will eventually
6110 		 * copied by dev-replace process. We can avoid cloning IO here.
6111 		 */
6112 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6113 			return;
6114 
6115 		/*
6116 		 * duplicate the write operations while the dev replace
6117 		 * procedure is running. Since the copying of the old disk to
6118 		 * the new disk takes place at run time while the filesystem is
6119 		 * mounted writable, the regular write operations to the old
6120 		 * disk have to be duplicated to go to the new disk as well.
6121 		 *
6122 		 * Note that device->missing is handled by the caller, and that
6123 		 * the write to the old disk is already set up in the stripes
6124 		 * array.
6125 		 */
6126 		index_where_to_add = num_stripes;
6127 		for (i = 0; i < num_stripes; i++) {
6128 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6129 				/* write to new disk, too */
6130 				struct btrfs_bio_stripe *new =
6131 					bbio->stripes + index_where_to_add;
6132 				struct btrfs_bio_stripe *old =
6133 					bbio->stripes + i;
6134 
6135 				new->physical = old->physical;
6136 				new->length = old->length;
6137 				new->dev = dev_replace->tgtdev;
6138 				bbio->tgtdev_map[i] = index_where_to_add;
6139 				index_where_to_add++;
6140 				max_errors++;
6141 				tgtdev_indexes++;
6142 			}
6143 		}
6144 		num_stripes = index_where_to_add;
6145 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6146 		int index_srcdev = 0;
6147 		int found = 0;
6148 		u64 physical_of_found = 0;
6149 
6150 		/*
6151 		 * During the dev-replace procedure, the target drive can also
6152 		 * be used to read data in case it is needed to repair a corrupt
6153 		 * block elsewhere. This is possible if the requested area is
6154 		 * left of the left cursor. In this area, the target drive is a
6155 		 * full copy of the source drive.
6156 		 */
6157 		for (i = 0; i < num_stripes; i++) {
6158 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6159 				/*
6160 				 * In case of DUP, in order to keep it simple,
6161 				 * only add the mirror with the lowest physical
6162 				 * address
6163 				 */
6164 				if (found &&
6165 				    physical_of_found <=
6166 				     bbio->stripes[i].physical)
6167 					continue;
6168 				index_srcdev = i;
6169 				found = 1;
6170 				physical_of_found = bbio->stripes[i].physical;
6171 			}
6172 		}
6173 		if (found) {
6174 			struct btrfs_bio_stripe *tgtdev_stripe =
6175 				bbio->stripes + num_stripes;
6176 
6177 			tgtdev_stripe->physical = physical_of_found;
6178 			tgtdev_stripe->length =
6179 				bbio->stripes[index_srcdev].length;
6180 			tgtdev_stripe->dev = dev_replace->tgtdev;
6181 			bbio->tgtdev_map[index_srcdev] = num_stripes;
6182 
6183 			tgtdev_indexes++;
6184 			num_stripes++;
6185 		}
6186 	}
6187 
6188 	*num_stripes_ret = num_stripes;
6189 	*max_errors_ret = max_errors;
6190 	bbio->num_tgtdevs = tgtdev_indexes;
6191 	*bbio_ret = bbio;
6192 }
6193 
6194 static bool need_full_stripe(enum btrfs_map_op op)
6195 {
6196 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6197 }
6198 
6199 /*
6200  * Calculate the geometry of a particular (address, len) tuple. This
6201  * information is used to calculate how big a particular bio can get before it
6202  * straddles a stripe.
6203  *
6204  * @fs_info: the filesystem
6205  * @em:      mapping containing the logical extent
6206  * @op:      type of operation - write or read
6207  * @logical: address that we want to figure out the geometry of
6208  * @io_geom: pointer used to return values
6209  *
6210  * Returns < 0 in case a chunk for the given logical address cannot be found,
6211  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6212  */
6213 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6214 			  enum btrfs_map_op op, u64 logical,
6215 			  struct btrfs_io_geometry *io_geom)
6216 {
6217 	struct map_lookup *map;
6218 	u64 len;
6219 	u64 offset;
6220 	u64 stripe_offset;
6221 	u64 stripe_nr;
6222 	u64 stripe_len;
6223 	u64 raid56_full_stripe_start = (u64)-1;
6224 	int data_stripes;
6225 
6226 	ASSERT(op != BTRFS_MAP_DISCARD);
6227 
6228 	map = em->map_lookup;
6229 	/* Offset of this logical address in the chunk */
6230 	offset = logical - em->start;
6231 	/* Len of a stripe in a chunk */
6232 	stripe_len = map->stripe_len;
6233 	/* Stripe where this block falls in */
6234 	stripe_nr = div64_u64(offset, stripe_len);
6235 	/* Offset of stripe in the chunk */
6236 	stripe_offset = stripe_nr * stripe_len;
6237 	if (offset < stripe_offset) {
6238 		btrfs_crit(fs_info,
6239 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6240 			stripe_offset, offset, em->start, logical, stripe_len);
6241 		return -EINVAL;
6242 	}
6243 
6244 	/* stripe_offset is the offset of this block in its stripe */
6245 	stripe_offset = offset - stripe_offset;
6246 	data_stripes = nr_data_stripes(map);
6247 
6248 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6249 		u64 max_len = stripe_len - stripe_offset;
6250 
6251 		/*
6252 		 * In case of raid56, we need to know the stripe aligned start
6253 		 */
6254 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6255 			unsigned long full_stripe_len = stripe_len * data_stripes;
6256 			raid56_full_stripe_start = offset;
6257 
6258 			/*
6259 			 * Allow a write of a full stripe, but make sure we
6260 			 * don't allow straddling of stripes
6261 			 */
6262 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6263 					full_stripe_len);
6264 			raid56_full_stripe_start *= full_stripe_len;
6265 
6266 			/*
6267 			 * For writes to RAID[56], allow a full stripeset across
6268 			 * all disks. For other RAID types and for RAID[56]
6269 			 * reads, just allow a single stripe (on a single disk).
6270 			 */
6271 			if (op == BTRFS_MAP_WRITE) {
6272 				max_len = stripe_len * data_stripes -
6273 					  (offset - raid56_full_stripe_start);
6274 			}
6275 		}
6276 		len = min_t(u64, em->len - offset, max_len);
6277 	} else {
6278 		len = em->len - offset;
6279 	}
6280 
6281 	io_geom->len = len;
6282 	io_geom->offset = offset;
6283 	io_geom->stripe_len = stripe_len;
6284 	io_geom->stripe_nr = stripe_nr;
6285 	io_geom->stripe_offset = stripe_offset;
6286 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6287 
6288 	return 0;
6289 }
6290 
6291 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6292 			     enum btrfs_map_op op,
6293 			     u64 logical, u64 *length,
6294 			     struct btrfs_bio **bbio_ret,
6295 			     int mirror_num, int need_raid_map)
6296 {
6297 	struct extent_map *em;
6298 	struct map_lookup *map;
6299 	u64 stripe_offset;
6300 	u64 stripe_nr;
6301 	u64 stripe_len;
6302 	u32 stripe_index;
6303 	int data_stripes;
6304 	int i;
6305 	int ret = 0;
6306 	int num_stripes;
6307 	int max_errors = 0;
6308 	int tgtdev_indexes = 0;
6309 	struct btrfs_bio *bbio = NULL;
6310 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6311 	int dev_replace_is_ongoing = 0;
6312 	int num_alloc_stripes;
6313 	int patch_the_first_stripe_for_dev_replace = 0;
6314 	u64 physical_to_patch_in_first_stripe = 0;
6315 	u64 raid56_full_stripe_start = (u64)-1;
6316 	struct btrfs_io_geometry geom;
6317 
6318 	ASSERT(bbio_ret);
6319 	ASSERT(op != BTRFS_MAP_DISCARD);
6320 
6321 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6322 	ASSERT(!IS_ERR(em));
6323 
6324 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6325 	if (ret < 0)
6326 		return ret;
6327 
6328 	map = em->map_lookup;
6329 
6330 	*length = geom.len;
6331 	stripe_len = geom.stripe_len;
6332 	stripe_nr = geom.stripe_nr;
6333 	stripe_offset = geom.stripe_offset;
6334 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6335 	data_stripes = nr_data_stripes(map);
6336 
6337 	down_read(&dev_replace->rwsem);
6338 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6339 	/*
6340 	 * Hold the semaphore for read during the whole operation, write is
6341 	 * requested at commit time but must wait.
6342 	 */
6343 	if (!dev_replace_is_ongoing)
6344 		up_read(&dev_replace->rwsem);
6345 
6346 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6347 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6348 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6349 						    dev_replace->srcdev->devid,
6350 						    &mirror_num,
6351 					    &physical_to_patch_in_first_stripe);
6352 		if (ret)
6353 			goto out;
6354 		else
6355 			patch_the_first_stripe_for_dev_replace = 1;
6356 	} else if (mirror_num > map->num_stripes) {
6357 		mirror_num = 0;
6358 	}
6359 
6360 	num_stripes = 1;
6361 	stripe_index = 0;
6362 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6363 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6364 				&stripe_index);
6365 		if (!need_full_stripe(op))
6366 			mirror_num = 1;
6367 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6368 		if (need_full_stripe(op))
6369 			num_stripes = map->num_stripes;
6370 		else if (mirror_num)
6371 			stripe_index = mirror_num - 1;
6372 		else {
6373 			stripe_index = find_live_mirror(fs_info, map, 0,
6374 					    dev_replace_is_ongoing);
6375 			mirror_num = stripe_index + 1;
6376 		}
6377 
6378 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6379 		if (need_full_stripe(op)) {
6380 			num_stripes = map->num_stripes;
6381 		} else if (mirror_num) {
6382 			stripe_index = mirror_num - 1;
6383 		} else {
6384 			mirror_num = 1;
6385 		}
6386 
6387 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6388 		u32 factor = map->num_stripes / map->sub_stripes;
6389 
6390 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6391 		stripe_index *= map->sub_stripes;
6392 
6393 		if (need_full_stripe(op))
6394 			num_stripes = map->sub_stripes;
6395 		else if (mirror_num)
6396 			stripe_index += mirror_num - 1;
6397 		else {
6398 			int old_stripe_index = stripe_index;
6399 			stripe_index = find_live_mirror(fs_info, map,
6400 					      stripe_index,
6401 					      dev_replace_is_ongoing);
6402 			mirror_num = stripe_index - old_stripe_index + 1;
6403 		}
6404 
6405 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6406 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6407 			/* push stripe_nr back to the start of the full stripe */
6408 			stripe_nr = div64_u64(raid56_full_stripe_start,
6409 					stripe_len * data_stripes);
6410 
6411 			/* RAID[56] write or recovery. Return all stripes */
6412 			num_stripes = map->num_stripes;
6413 			max_errors = nr_parity_stripes(map);
6414 
6415 			*length = map->stripe_len;
6416 			stripe_index = 0;
6417 			stripe_offset = 0;
6418 		} else {
6419 			/*
6420 			 * Mirror #0 or #1 means the original data block.
6421 			 * Mirror #2 is RAID5 parity block.
6422 			 * Mirror #3 is RAID6 Q block.
6423 			 */
6424 			stripe_nr = div_u64_rem(stripe_nr,
6425 					data_stripes, &stripe_index);
6426 			if (mirror_num > 1)
6427 				stripe_index = data_stripes + mirror_num - 2;
6428 
6429 			/* We distribute the parity blocks across stripes */
6430 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6431 					&stripe_index);
6432 			if (!need_full_stripe(op) && mirror_num <= 1)
6433 				mirror_num = 1;
6434 		}
6435 	} else {
6436 		/*
6437 		 * after this, stripe_nr is the number of stripes on this
6438 		 * device we have to walk to find the data, and stripe_index is
6439 		 * the number of our device in the stripe array
6440 		 */
6441 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6442 				&stripe_index);
6443 		mirror_num = stripe_index + 1;
6444 	}
6445 	if (stripe_index >= map->num_stripes) {
6446 		btrfs_crit(fs_info,
6447 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6448 			   stripe_index, map->num_stripes);
6449 		ret = -EINVAL;
6450 		goto out;
6451 	}
6452 
6453 	num_alloc_stripes = num_stripes;
6454 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6455 		if (op == BTRFS_MAP_WRITE)
6456 			num_alloc_stripes <<= 1;
6457 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6458 			num_alloc_stripes++;
6459 		tgtdev_indexes = num_stripes;
6460 	}
6461 
6462 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6463 	if (!bbio) {
6464 		ret = -ENOMEM;
6465 		goto out;
6466 	}
6467 
6468 	for (i = 0; i < num_stripes; i++) {
6469 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6470 			stripe_offset + stripe_nr * map->stripe_len;
6471 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6472 		stripe_index++;
6473 	}
6474 
6475 	/* build raid_map */
6476 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6477 	    (need_full_stripe(op) || mirror_num > 1)) {
6478 		u64 tmp;
6479 		unsigned rot;
6480 
6481 		/* Work out the disk rotation on this stripe-set */
6482 		div_u64_rem(stripe_nr, num_stripes, &rot);
6483 
6484 		/* Fill in the logical address of each stripe */
6485 		tmp = stripe_nr * data_stripes;
6486 		for (i = 0; i < data_stripes; i++)
6487 			bbio->raid_map[(i+rot) % num_stripes] =
6488 				em->start + (tmp + i) * map->stripe_len;
6489 
6490 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6491 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6492 			bbio->raid_map[(i+rot+1) % num_stripes] =
6493 				RAID6_Q_STRIPE;
6494 
6495 		sort_parity_stripes(bbio, num_stripes);
6496 	}
6497 
6498 	if (need_full_stripe(op))
6499 		max_errors = btrfs_chunk_max_errors(map);
6500 
6501 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6502 	    need_full_stripe(op)) {
6503 		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6504 					  &num_stripes, &max_errors);
6505 	}
6506 
6507 	*bbio_ret = bbio;
6508 	bbio->map_type = map->type;
6509 	bbio->num_stripes = num_stripes;
6510 	bbio->max_errors = max_errors;
6511 	bbio->mirror_num = mirror_num;
6512 
6513 	/*
6514 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6515 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6516 	 * available as a mirror
6517 	 */
6518 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6519 		WARN_ON(num_stripes > 1);
6520 		bbio->stripes[0].dev = dev_replace->tgtdev;
6521 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6522 		bbio->mirror_num = map->num_stripes + 1;
6523 	}
6524 out:
6525 	if (dev_replace_is_ongoing) {
6526 		lockdep_assert_held(&dev_replace->rwsem);
6527 		/* Unlock and let waiting writers proceed */
6528 		up_read(&dev_replace->rwsem);
6529 	}
6530 	free_extent_map(em);
6531 	return ret;
6532 }
6533 
6534 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6535 		      u64 logical, u64 *length,
6536 		      struct btrfs_bio **bbio_ret, int mirror_num)
6537 {
6538 	if (op == BTRFS_MAP_DISCARD)
6539 		return __btrfs_map_block_for_discard(fs_info, logical,
6540 						     length, bbio_ret);
6541 
6542 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6543 				 mirror_num, 0);
6544 }
6545 
6546 /* For Scrub/replace */
6547 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6548 		     u64 logical, u64 *length,
6549 		     struct btrfs_bio **bbio_ret)
6550 {
6551 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6552 }
6553 
6554 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6555 {
6556 	bio->bi_private = bbio->private;
6557 	bio->bi_end_io = bbio->end_io;
6558 	bio_endio(bio);
6559 
6560 	btrfs_put_bbio(bbio);
6561 }
6562 
6563 static void btrfs_end_bio(struct bio *bio)
6564 {
6565 	struct btrfs_bio *bbio = bio->bi_private;
6566 	int is_orig_bio = 0;
6567 
6568 	if (bio->bi_status) {
6569 		atomic_inc(&bbio->error);
6570 		if (bio->bi_status == BLK_STS_IOERR ||
6571 		    bio->bi_status == BLK_STS_TARGET) {
6572 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6573 
6574 			ASSERT(dev->bdev);
6575 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6576 				btrfs_dev_stat_inc_and_print(dev,
6577 						BTRFS_DEV_STAT_WRITE_ERRS);
6578 			else if (!(bio->bi_opf & REQ_RAHEAD))
6579 				btrfs_dev_stat_inc_and_print(dev,
6580 						BTRFS_DEV_STAT_READ_ERRS);
6581 			if (bio->bi_opf & REQ_PREFLUSH)
6582 				btrfs_dev_stat_inc_and_print(dev,
6583 						BTRFS_DEV_STAT_FLUSH_ERRS);
6584 		}
6585 	}
6586 
6587 	if (bio == bbio->orig_bio)
6588 		is_orig_bio = 1;
6589 
6590 	btrfs_bio_counter_dec(bbio->fs_info);
6591 
6592 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6593 		if (!is_orig_bio) {
6594 			bio_put(bio);
6595 			bio = bbio->orig_bio;
6596 		}
6597 
6598 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6599 		/* only send an error to the higher layers if it is
6600 		 * beyond the tolerance of the btrfs bio
6601 		 */
6602 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6603 			bio->bi_status = BLK_STS_IOERR;
6604 		} else {
6605 			/*
6606 			 * this bio is actually up to date, we didn't
6607 			 * go over the max number of errors
6608 			 */
6609 			bio->bi_status = BLK_STS_OK;
6610 		}
6611 
6612 		btrfs_end_bbio(bbio, bio);
6613 	} else if (!is_orig_bio) {
6614 		bio_put(bio);
6615 	}
6616 }
6617 
6618 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6619 			      u64 physical, struct btrfs_device *dev)
6620 {
6621 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6622 
6623 	bio->bi_private = bbio;
6624 	btrfs_io_bio(bio)->device = dev;
6625 	bio->bi_end_io = btrfs_end_bio;
6626 	bio->bi_iter.bi_sector = physical >> 9;
6627 	/*
6628 	 * For zone append writing, bi_sector must point the beginning of the
6629 	 * zone
6630 	 */
6631 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6632 		if (btrfs_dev_is_sequential(dev, physical)) {
6633 			u64 zone_start = round_down(physical, fs_info->zone_size);
6634 
6635 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6636 		} else {
6637 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6638 			bio->bi_opf |= REQ_OP_WRITE;
6639 		}
6640 	}
6641 	btrfs_debug_in_rcu(fs_info,
6642 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6643 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6644 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6645 		dev->devid, bio->bi_iter.bi_size);
6646 	bio_set_dev(bio, dev->bdev);
6647 
6648 	btrfs_bio_counter_inc_noblocked(fs_info);
6649 
6650 	btrfsic_submit_bio(bio);
6651 }
6652 
6653 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6654 {
6655 	atomic_inc(&bbio->error);
6656 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6657 		/* Should be the original bio. */
6658 		WARN_ON(bio != bbio->orig_bio);
6659 
6660 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6661 		bio->bi_iter.bi_sector = logical >> 9;
6662 		if (atomic_read(&bbio->error) > bbio->max_errors)
6663 			bio->bi_status = BLK_STS_IOERR;
6664 		else
6665 			bio->bi_status = BLK_STS_OK;
6666 		btrfs_end_bbio(bbio, bio);
6667 	}
6668 }
6669 
6670 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6671 			   int mirror_num)
6672 {
6673 	struct btrfs_device *dev;
6674 	struct bio *first_bio = bio;
6675 	u64 logical = bio->bi_iter.bi_sector << 9;
6676 	u64 length = 0;
6677 	u64 map_length;
6678 	int ret;
6679 	int dev_nr;
6680 	int total_devs;
6681 	struct btrfs_bio *bbio = NULL;
6682 
6683 	length = bio->bi_iter.bi_size;
6684 	map_length = length;
6685 
6686 	btrfs_bio_counter_inc_blocked(fs_info);
6687 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6688 				&map_length, &bbio, mirror_num, 1);
6689 	if (ret) {
6690 		btrfs_bio_counter_dec(fs_info);
6691 		return errno_to_blk_status(ret);
6692 	}
6693 
6694 	total_devs = bbio->num_stripes;
6695 	bbio->orig_bio = first_bio;
6696 	bbio->private = first_bio->bi_private;
6697 	bbio->end_io = first_bio->bi_end_io;
6698 	bbio->fs_info = fs_info;
6699 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6700 
6701 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6702 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6703 		/* In this case, map_length has been set to the length of
6704 		   a single stripe; not the whole write */
6705 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6706 			ret = raid56_parity_write(fs_info, bio, bbio,
6707 						  map_length);
6708 		} else {
6709 			ret = raid56_parity_recover(fs_info, bio, bbio,
6710 						    map_length, mirror_num, 1);
6711 		}
6712 
6713 		btrfs_bio_counter_dec(fs_info);
6714 		return errno_to_blk_status(ret);
6715 	}
6716 
6717 	if (map_length < length) {
6718 		btrfs_crit(fs_info,
6719 			   "mapping failed logical %llu bio len %llu len %llu",
6720 			   logical, length, map_length);
6721 		BUG();
6722 	}
6723 
6724 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6725 		dev = bbio->stripes[dev_nr].dev;
6726 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6727 						   &dev->dev_state) ||
6728 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6729 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6730 			bbio_error(bbio, first_bio, logical);
6731 			continue;
6732 		}
6733 
6734 		if (dev_nr < total_devs - 1)
6735 			bio = btrfs_bio_clone(first_bio);
6736 		else
6737 			bio = first_bio;
6738 
6739 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6740 	}
6741 	btrfs_bio_counter_dec(fs_info);
6742 	return BLK_STS_OK;
6743 }
6744 
6745 /*
6746  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6747  * return NULL.
6748  *
6749  * If devid and uuid are both specified, the match must be exact, otherwise
6750  * only devid is used.
6751  */
6752 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6753 				       u64 devid, u8 *uuid, u8 *fsid)
6754 {
6755 	struct btrfs_device *device;
6756 	struct btrfs_fs_devices *seed_devs;
6757 
6758 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6759 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6760 			if (device->devid == devid &&
6761 			    (!uuid || memcmp(device->uuid, uuid,
6762 					     BTRFS_UUID_SIZE) == 0))
6763 				return device;
6764 		}
6765 	}
6766 
6767 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6768 		if (!fsid ||
6769 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6770 			list_for_each_entry(device, &seed_devs->devices,
6771 					    dev_list) {
6772 				if (device->devid == devid &&
6773 				    (!uuid || memcmp(device->uuid, uuid,
6774 						     BTRFS_UUID_SIZE) == 0))
6775 					return device;
6776 			}
6777 		}
6778 	}
6779 
6780 	return NULL;
6781 }
6782 
6783 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6784 					    u64 devid, u8 *dev_uuid)
6785 {
6786 	struct btrfs_device *device;
6787 	unsigned int nofs_flag;
6788 
6789 	/*
6790 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6791 	 * allocation, however we don't want to change btrfs_alloc_device() to
6792 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6793 	 * places.
6794 	 */
6795 	nofs_flag = memalloc_nofs_save();
6796 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6797 	memalloc_nofs_restore(nofs_flag);
6798 	if (IS_ERR(device))
6799 		return device;
6800 
6801 	list_add(&device->dev_list, &fs_devices->devices);
6802 	device->fs_devices = fs_devices;
6803 	fs_devices->num_devices++;
6804 
6805 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6806 	fs_devices->missing_devices++;
6807 
6808 	return device;
6809 }
6810 
6811 /**
6812  * btrfs_alloc_device - allocate struct btrfs_device
6813  * @fs_info:	used only for generating a new devid, can be NULL if
6814  *		devid is provided (i.e. @devid != NULL).
6815  * @devid:	a pointer to devid for this device.  If NULL a new devid
6816  *		is generated.
6817  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6818  *		is generated.
6819  *
6820  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6821  * on error.  Returned struct is not linked onto any lists and must be
6822  * destroyed with btrfs_free_device.
6823  */
6824 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6825 					const u64 *devid,
6826 					const u8 *uuid)
6827 {
6828 	struct btrfs_device *dev;
6829 	u64 tmp;
6830 
6831 	if (WARN_ON(!devid && !fs_info))
6832 		return ERR_PTR(-EINVAL);
6833 
6834 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6835 	if (!dev)
6836 		return ERR_PTR(-ENOMEM);
6837 
6838 	/*
6839 	 * Preallocate a bio that's always going to be used for flushing device
6840 	 * barriers and matches the device lifespan
6841 	 */
6842 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6843 	if (!dev->flush_bio) {
6844 		kfree(dev);
6845 		return ERR_PTR(-ENOMEM);
6846 	}
6847 
6848 	INIT_LIST_HEAD(&dev->dev_list);
6849 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6850 	INIT_LIST_HEAD(&dev->post_commit_list);
6851 
6852 	atomic_set(&dev->reada_in_flight, 0);
6853 	atomic_set(&dev->dev_stats_ccnt, 0);
6854 	btrfs_device_data_ordered_init(dev);
6855 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6856 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6857 	extent_io_tree_init(fs_info, &dev->alloc_state,
6858 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6859 
6860 	if (devid)
6861 		tmp = *devid;
6862 	else {
6863 		int ret;
6864 
6865 		ret = find_next_devid(fs_info, &tmp);
6866 		if (ret) {
6867 			btrfs_free_device(dev);
6868 			return ERR_PTR(ret);
6869 		}
6870 	}
6871 	dev->devid = tmp;
6872 
6873 	if (uuid)
6874 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6875 	else
6876 		generate_random_uuid(dev->uuid);
6877 
6878 	return dev;
6879 }
6880 
6881 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6882 					u64 devid, u8 *uuid, bool error)
6883 {
6884 	if (error)
6885 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6886 			      devid, uuid);
6887 	else
6888 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6889 			      devid, uuid);
6890 }
6891 
6892 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6893 {
6894 	const int data_stripes = calc_data_stripes(type, num_stripes);
6895 
6896 	return div_u64(chunk_len, data_stripes);
6897 }
6898 
6899 #if BITS_PER_LONG == 32
6900 /*
6901  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6902  * can't be accessed on 32bit systems.
6903  *
6904  * This function do mount time check to reject the fs if it already has
6905  * metadata chunk beyond that limit.
6906  */
6907 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6908 				  u64 logical, u64 length, u64 type)
6909 {
6910 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6911 		return 0;
6912 
6913 	if (logical + length < MAX_LFS_FILESIZE)
6914 		return 0;
6915 
6916 	btrfs_err_32bit_limit(fs_info);
6917 	return -EOVERFLOW;
6918 }
6919 
6920 /*
6921  * This is to give early warning for any metadata chunk reaching
6922  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6923  * Although we can still access the metadata, it's not going to be possible
6924  * once the limit is reached.
6925  */
6926 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6927 				  u64 logical, u64 length, u64 type)
6928 {
6929 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6930 		return;
6931 
6932 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6933 		return;
6934 
6935 	btrfs_warn_32bit_limit(fs_info);
6936 }
6937 #endif
6938 
6939 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6940 			  struct btrfs_chunk *chunk)
6941 {
6942 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6943 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6944 	struct map_lookup *map;
6945 	struct extent_map *em;
6946 	u64 logical;
6947 	u64 length;
6948 	u64 devid;
6949 	u64 type;
6950 	u8 uuid[BTRFS_UUID_SIZE];
6951 	int num_stripes;
6952 	int ret;
6953 	int i;
6954 
6955 	logical = key->offset;
6956 	length = btrfs_chunk_length(leaf, chunk);
6957 	type = btrfs_chunk_type(leaf, chunk);
6958 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6959 
6960 #if BITS_PER_LONG == 32
6961 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6962 	if (ret < 0)
6963 		return ret;
6964 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6965 #endif
6966 
6967 	/*
6968 	 * Only need to verify chunk item if we're reading from sys chunk array,
6969 	 * as chunk item in tree block is already verified by tree-checker.
6970 	 */
6971 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6972 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6973 		if (ret)
6974 			return ret;
6975 	}
6976 
6977 	read_lock(&map_tree->lock);
6978 	em = lookup_extent_mapping(map_tree, logical, 1);
6979 	read_unlock(&map_tree->lock);
6980 
6981 	/* already mapped? */
6982 	if (em && em->start <= logical && em->start + em->len > logical) {
6983 		free_extent_map(em);
6984 		return 0;
6985 	} else if (em) {
6986 		free_extent_map(em);
6987 	}
6988 
6989 	em = alloc_extent_map();
6990 	if (!em)
6991 		return -ENOMEM;
6992 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6993 	if (!map) {
6994 		free_extent_map(em);
6995 		return -ENOMEM;
6996 	}
6997 
6998 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6999 	em->map_lookup = map;
7000 	em->start = logical;
7001 	em->len = length;
7002 	em->orig_start = 0;
7003 	em->block_start = 0;
7004 	em->block_len = em->len;
7005 
7006 	map->num_stripes = num_stripes;
7007 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7008 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7009 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7010 	map->type = type;
7011 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7012 	map->verified_stripes = 0;
7013 	em->orig_block_len = calc_stripe_length(type, em->len,
7014 						map->num_stripes);
7015 	for (i = 0; i < num_stripes; i++) {
7016 		map->stripes[i].physical =
7017 			btrfs_stripe_offset_nr(leaf, chunk, i);
7018 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7019 		read_extent_buffer(leaf, uuid, (unsigned long)
7020 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7021 				   BTRFS_UUID_SIZE);
7022 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7023 							devid, uuid, NULL);
7024 		if (!map->stripes[i].dev &&
7025 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7026 			free_extent_map(em);
7027 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7028 			return -ENOENT;
7029 		}
7030 		if (!map->stripes[i].dev) {
7031 			map->stripes[i].dev =
7032 				add_missing_dev(fs_info->fs_devices, devid,
7033 						uuid);
7034 			if (IS_ERR(map->stripes[i].dev)) {
7035 				free_extent_map(em);
7036 				btrfs_err(fs_info,
7037 					"failed to init missing dev %llu: %ld",
7038 					devid, PTR_ERR(map->stripes[i].dev));
7039 				return PTR_ERR(map->stripes[i].dev);
7040 			}
7041 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7042 		}
7043 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7044 				&(map->stripes[i].dev->dev_state));
7045 
7046 	}
7047 
7048 	write_lock(&map_tree->lock);
7049 	ret = add_extent_mapping(map_tree, em, 0);
7050 	write_unlock(&map_tree->lock);
7051 	if (ret < 0) {
7052 		btrfs_err(fs_info,
7053 			  "failed to add chunk map, start=%llu len=%llu: %d",
7054 			  em->start, em->len, ret);
7055 	}
7056 	free_extent_map(em);
7057 
7058 	return ret;
7059 }
7060 
7061 static void fill_device_from_item(struct extent_buffer *leaf,
7062 				 struct btrfs_dev_item *dev_item,
7063 				 struct btrfs_device *device)
7064 {
7065 	unsigned long ptr;
7066 
7067 	device->devid = btrfs_device_id(leaf, dev_item);
7068 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7069 	device->total_bytes = device->disk_total_bytes;
7070 	device->commit_total_bytes = device->disk_total_bytes;
7071 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7072 	device->commit_bytes_used = device->bytes_used;
7073 	device->type = btrfs_device_type(leaf, dev_item);
7074 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7075 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7076 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7077 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7078 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7079 
7080 	ptr = btrfs_device_uuid(dev_item);
7081 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7082 }
7083 
7084 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7085 						  u8 *fsid)
7086 {
7087 	struct btrfs_fs_devices *fs_devices;
7088 	int ret;
7089 
7090 	lockdep_assert_held(&uuid_mutex);
7091 	ASSERT(fsid);
7092 
7093 	/* This will match only for multi-device seed fs */
7094 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7095 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7096 			return fs_devices;
7097 
7098 
7099 	fs_devices = find_fsid(fsid, NULL);
7100 	if (!fs_devices) {
7101 		if (!btrfs_test_opt(fs_info, DEGRADED))
7102 			return ERR_PTR(-ENOENT);
7103 
7104 		fs_devices = alloc_fs_devices(fsid, NULL);
7105 		if (IS_ERR(fs_devices))
7106 			return fs_devices;
7107 
7108 		fs_devices->seeding = true;
7109 		fs_devices->opened = 1;
7110 		return fs_devices;
7111 	}
7112 
7113 	/*
7114 	 * Upon first call for a seed fs fsid, just create a private copy of the
7115 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7116 	 */
7117 	fs_devices = clone_fs_devices(fs_devices);
7118 	if (IS_ERR(fs_devices))
7119 		return fs_devices;
7120 
7121 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7122 	if (ret) {
7123 		free_fs_devices(fs_devices);
7124 		return ERR_PTR(ret);
7125 	}
7126 
7127 	if (!fs_devices->seeding) {
7128 		close_fs_devices(fs_devices);
7129 		free_fs_devices(fs_devices);
7130 		return ERR_PTR(-EINVAL);
7131 	}
7132 
7133 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7134 
7135 	return fs_devices;
7136 }
7137 
7138 static int read_one_dev(struct extent_buffer *leaf,
7139 			struct btrfs_dev_item *dev_item)
7140 {
7141 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7142 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7143 	struct btrfs_device *device;
7144 	u64 devid;
7145 	int ret;
7146 	u8 fs_uuid[BTRFS_FSID_SIZE];
7147 	u8 dev_uuid[BTRFS_UUID_SIZE];
7148 
7149 	devid = btrfs_device_id(leaf, dev_item);
7150 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7151 			   BTRFS_UUID_SIZE);
7152 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7153 			   BTRFS_FSID_SIZE);
7154 
7155 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7156 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7157 		if (IS_ERR(fs_devices))
7158 			return PTR_ERR(fs_devices);
7159 	}
7160 
7161 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7162 				   fs_uuid);
7163 	if (!device) {
7164 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7165 			btrfs_report_missing_device(fs_info, devid,
7166 							dev_uuid, true);
7167 			return -ENOENT;
7168 		}
7169 
7170 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7171 		if (IS_ERR(device)) {
7172 			btrfs_err(fs_info,
7173 				"failed to add missing dev %llu: %ld",
7174 				devid, PTR_ERR(device));
7175 			return PTR_ERR(device);
7176 		}
7177 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7178 	} else {
7179 		if (!device->bdev) {
7180 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7181 				btrfs_report_missing_device(fs_info,
7182 						devid, dev_uuid, true);
7183 				return -ENOENT;
7184 			}
7185 			btrfs_report_missing_device(fs_info, devid,
7186 							dev_uuid, false);
7187 		}
7188 
7189 		if (!device->bdev &&
7190 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7191 			/*
7192 			 * this happens when a device that was properly setup
7193 			 * in the device info lists suddenly goes bad.
7194 			 * device->bdev is NULL, and so we have to set
7195 			 * device->missing to one here
7196 			 */
7197 			device->fs_devices->missing_devices++;
7198 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7199 		}
7200 
7201 		/* Move the device to its own fs_devices */
7202 		if (device->fs_devices != fs_devices) {
7203 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7204 							&device->dev_state));
7205 
7206 			list_move(&device->dev_list, &fs_devices->devices);
7207 			device->fs_devices->num_devices--;
7208 			fs_devices->num_devices++;
7209 
7210 			device->fs_devices->missing_devices--;
7211 			fs_devices->missing_devices++;
7212 
7213 			device->fs_devices = fs_devices;
7214 		}
7215 	}
7216 
7217 	if (device->fs_devices != fs_info->fs_devices) {
7218 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7219 		if (device->generation !=
7220 		    btrfs_device_generation(leaf, dev_item))
7221 			return -EINVAL;
7222 	}
7223 
7224 	fill_device_from_item(leaf, dev_item, device);
7225 	if (device->bdev) {
7226 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7227 
7228 		if (device->total_bytes > max_total_bytes) {
7229 			btrfs_err(fs_info,
7230 			"device total_bytes should be at most %llu but found %llu",
7231 				  max_total_bytes, device->total_bytes);
7232 			return -EINVAL;
7233 		}
7234 	}
7235 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7236 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7237 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7238 		device->fs_devices->total_rw_bytes += device->total_bytes;
7239 		atomic64_add(device->total_bytes - device->bytes_used,
7240 				&fs_info->free_chunk_space);
7241 	}
7242 	ret = 0;
7243 	return ret;
7244 }
7245 
7246 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7247 {
7248 	struct btrfs_root *root = fs_info->tree_root;
7249 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7250 	struct extent_buffer *sb;
7251 	struct btrfs_disk_key *disk_key;
7252 	struct btrfs_chunk *chunk;
7253 	u8 *array_ptr;
7254 	unsigned long sb_array_offset;
7255 	int ret = 0;
7256 	u32 num_stripes;
7257 	u32 array_size;
7258 	u32 len = 0;
7259 	u32 cur_offset;
7260 	u64 type;
7261 	struct btrfs_key key;
7262 
7263 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7264 	/*
7265 	 * This will create extent buffer of nodesize, superblock size is
7266 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7267 	 * overallocate but we can keep it as-is, only the first page is used.
7268 	 */
7269 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7270 					  root->root_key.objectid, 0);
7271 	if (IS_ERR(sb))
7272 		return PTR_ERR(sb);
7273 	set_extent_buffer_uptodate(sb);
7274 	/*
7275 	 * The sb extent buffer is artificial and just used to read the system array.
7276 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7277 	 * pages up-to-date when the page is larger: extent does not cover the
7278 	 * whole page and consequently check_page_uptodate does not find all
7279 	 * the page's extents up-to-date (the hole beyond sb),
7280 	 * write_extent_buffer then triggers a WARN_ON.
7281 	 *
7282 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7283 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7284 	 * to silence the warning eg. on PowerPC 64.
7285 	 */
7286 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7287 		SetPageUptodate(sb->pages[0]);
7288 
7289 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7290 	array_size = btrfs_super_sys_array_size(super_copy);
7291 
7292 	array_ptr = super_copy->sys_chunk_array;
7293 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7294 	cur_offset = 0;
7295 
7296 	while (cur_offset < array_size) {
7297 		disk_key = (struct btrfs_disk_key *)array_ptr;
7298 		len = sizeof(*disk_key);
7299 		if (cur_offset + len > array_size)
7300 			goto out_short_read;
7301 
7302 		btrfs_disk_key_to_cpu(&key, disk_key);
7303 
7304 		array_ptr += len;
7305 		sb_array_offset += len;
7306 		cur_offset += len;
7307 
7308 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7309 			btrfs_err(fs_info,
7310 			    "unexpected item type %u in sys_array at offset %u",
7311 				  (u32)key.type, cur_offset);
7312 			ret = -EIO;
7313 			break;
7314 		}
7315 
7316 		chunk = (struct btrfs_chunk *)sb_array_offset;
7317 		/*
7318 		 * At least one btrfs_chunk with one stripe must be present,
7319 		 * exact stripe count check comes afterwards
7320 		 */
7321 		len = btrfs_chunk_item_size(1);
7322 		if (cur_offset + len > array_size)
7323 			goto out_short_read;
7324 
7325 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7326 		if (!num_stripes) {
7327 			btrfs_err(fs_info,
7328 			"invalid number of stripes %u in sys_array at offset %u",
7329 				  num_stripes, cur_offset);
7330 			ret = -EIO;
7331 			break;
7332 		}
7333 
7334 		type = btrfs_chunk_type(sb, chunk);
7335 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7336 			btrfs_err(fs_info,
7337 			"invalid chunk type %llu in sys_array at offset %u",
7338 				  type, cur_offset);
7339 			ret = -EIO;
7340 			break;
7341 		}
7342 
7343 		len = btrfs_chunk_item_size(num_stripes);
7344 		if (cur_offset + len > array_size)
7345 			goto out_short_read;
7346 
7347 		ret = read_one_chunk(&key, sb, chunk);
7348 		if (ret)
7349 			break;
7350 
7351 		array_ptr += len;
7352 		sb_array_offset += len;
7353 		cur_offset += len;
7354 	}
7355 	clear_extent_buffer_uptodate(sb);
7356 	free_extent_buffer_stale(sb);
7357 	return ret;
7358 
7359 out_short_read:
7360 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7361 			len, cur_offset);
7362 	clear_extent_buffer_uptodate(sb);
7363 	free_extent_buffer_stale(sb);
7364 	return -EIO;
7365 }
7366 
7367 /*
7368  * Check if all chunks in the fs are OK for read-write degraded mount
7369  *
7370  * If the @failing_dev is specified, it's accounted as missing.
7371  *
7372  * Return true if all chunks meet the minimal RW mount requirements.
7373  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7374  */
7375 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7376 					struct btrfs_device *failing_dev)
7377 {
7378 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7379 	struct extent_map *em;
7380 	u64 next_start = 0;
7381 	bool ret = true;
7382 
7383 	read_lock(&map_tree->lock);
7384 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7385 	read_unlock(&map_tree->lock);
7386 	/* No chunk at all? Return false anyway */
7387 	if (!em) {
7388 		ret = false;
7389 		goto out;
7390 	}
7391 	while (em) {
7392 		struct map_lookup *map;
7393 		int missing = 0;
7394 		int max_tolerated;
7395 		int i;
7396 
7397 		map = em->map_lookup;
7398 		max_tolerated =
7399 			btrfs_get_num_tolerated_disk_barrier_failures(
7400 					map->type);
7401 		for (i = 0; i < map->num_stripes; i++) {
7402 			struct btrfs_device *dev = map->stripes[i].dev;
7403 
7404 			if (!dev || !dev->bdev ||
7405 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7406 			    dev->last_flush_error)
7407 				missing++;
7408 			else if (failing_dev && failing_dev == dev)
7409 				missing++;
7410 		}
7411 		if (missing > max_tolerated) {
7412 			if (!failing_dev)
7413 				btrfs_warn(fs_info,
7414 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7415 				   em->start, missing, max_tolerated);
7416 			free_extent_map(em);
7417 			ret = false;
7418 			goto out;
7419 		}
7420 		next_start = extent_map_end(em);
7421 		free_extent_map(em);
7422 
7423 		read_lock(&map_tree->lock);
7424 		em = lookup_extent_mapping(map_tree, next_start,
7425 					   (u64)(-1) - next_start);
7426 		read_unlock(&map_tree->lock);
7427 	}
7428 out:
7429 	return ret;
7430 }
7431 
7432 static void readahead_tree_node_children(struct extent_buffer *node)
7433 {
7434 	int i;
7435 	const int nr_items = btrfs_header_nritems(node);
7436 
7437 	for (i = 0; i < nr_items; i++)
7438 		btrfs_readahead_node_child(node, i);
7439 }
7440 
7441 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7442 {
7443 	struct btrfs_root *root = fs_info->chunk_root;
7444 	struct btrfs_path *path;
7445 	struct extent_buffer *leaf;
7446 	struct btrfs_key key;
7447 	struct btrfs_key found_key;
7448 	int ret;
7449 	int slot;
7450 	u64 total_dev = 0;
7451 	u64 last_ra_node = 0;
7452 
7453 	path = btrfs_alloc_path();
7454 	if (!path)
7455 		return -ENOMEM;
7456 
7457 	/*
7458 	 * uuid_mutex is needed only if we are mounting a sprout FS
7459 	 * otherwise we don't need it.
7460 	 */
7461 	mutex_lock(&uuid_mutex);
7462 
7463 	/*
7464 	 * It is possible for mount and umount to race in such a way that
7465 	 * we execute this code path, but open_fs_devices failed to clear
7466 	 * total_rw_bytes. We certainly want it cleared before reading the
7467 	 * device items, so clear it here.
7468 	 */
7469 	fs_info->fs_devices->total_rw_bytes = 0;
7470 
7471 	/*
7472 	 * Read all device items, and then all the chunk items. All
7473 	 * device items are found before any chunk item (their object id
7474 	 * is smaller than the lowest possible object id for a chunk
7475 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7476 	 */
7477 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7478 	key.offset = 0;
7479 	key.type = 0;
7480 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7481 	if (ret < 0)
7482 		goto error;
7483 	while (1) {
7484 		struct extent_buffer *node;
7485 
7486 		leaf = path->nodes[0];
7487 		slot = path->slots[0];
7488 		if (slot >= btrfs_header_nritems(leaf)) {
7489 			ret = btrfs_next_leaf(root, path);
7490 			if (ret == 0)
7491 				continue;
7492 			if (ret < 0)
7493 				goto error;
7494 			break;
7495 		}
7496 		/*
7497 		 * The nodes on level 1 are not locked but we don't need to do
7498 		 * that during mount time as nothing else can access the tree
7499 		 */
7500 		node = path->nodes[1];
7501 		if (node) {
7502 			if (last_ra_node != node->start) {
7503 				readahead_tree_node_children(node);
7504 				last_ra_node = node->start;
7505 			}
7506 		}
7507 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7508 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7509 			struct btrfs_dev_item *dev_item;
7510 			dev_item = btrfs_item_ptr(leaf, slot,
7511 						  struct btrfs_dev_item);
7512 			ret = read_one_dev(leaf, dev_item);
7513 			if (ret)
7514 				goto error;
7515 			total_dev++;
7516 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7517 			struct btrfs_chunk *chunk;
7518 
7519 			/*
7520 			 * We are only called at mount time, so no need to take
7521 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7522 			 * we always lock first fs_info->chunk_mutex before
7523 			 * acquiring any locks on the chunk tree. This is a
7524 			 * requirement for chunk allocation, see the comment on
7525 			 * top of btrfs_chunk_alloc() for details.
7526 			 */
7527 			ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7528 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7529 			ret = read_one_chunk(&found_key, leaf, chunk);
7530 			if (ret)
7531 				goto error;
7532 		}
7533 		path->slots[0]++;
7534 	}
7535 
7536 	/*
7537 	 * After loading chunk tree, we've got all device information,
7538 	 * do another round of validation checks.
7539 	 */
7540 	if (total_dev != fs_info->fs_devices->total_devices) {
7541 		btrfs_err(fs_info,
7542 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7543 			  btrfs_super_num_devices(fs_info->super_copy),
7544 			  total_dev);
7545 		ret = -EINVAL;
7546 		goto error;
7547 	}
7548 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7549 	    fs_info->fs_devices->total_rw_bytes) {
7550 		btrfs_err(fs_info,
7551 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7552 			  btrfs_super_total_bytes(fs_info->super_copy),
7553 			  fs_info->fs_devices->total_rw_bytes);
7554 		ret = -EINVAL;
7555 		goto error;
7556 	}
7557 	ret = 0;
7558 error:
7559 	mutex_unlock(&uuid_mutex);
7560 
7561 	btrfs_free_path(path);
7562 	return ret;
7563 }
7564 
7565 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7566 {
7567 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7568 	struct btrfs_device *device;
7569 
7570 	fs_devices->fs_info = fs_info;
7571 
7572 	mutex_lock(&fs_devices->device_list_mutex);
7573 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7574 		device->fs_info = fs_info;
7575 
7576 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7577 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7578 			device->fs_info = fs_info;
7579 
7580 		seed_devs->fs_info = fs_info;
7581 	}
7582 	mutex_unlock(&fs_devices->device_list_mutex);
7583 }
7584 
7585 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7586 				 const struct btrfs_dev_stats_item *ptr,
7587 				 int index)
7588 {
7589 	u64 val;
7590 
7591 	read_extent_buffer(eb, &val,
7592 			   offsetof(struct btrfs_dev_stats_item, values) +
7593 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7594 			   sizeof(val));
7595 	return val;
7596 }
7597 
7598 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7599 				      struct btrfs_dev_stats_item *ptr,
7600 				      int index, u64 val)
7601 {
7602 	write_extent_buffer(eb, &val,
7603 			    offsetof(struct btrfs_dev_stats_item, values) +
7604 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7605 			    sizeof(val));
7606 }
7607 
7608 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7609 				       struct btrfs_path *path)
7610 {
7611 	struct btrfs_dev_stats_item *ptr;
7612 	struct extent_buffer *eb;
7613 	struct btrfs_key key;
7614 	int item_size;
7615 	int i, ret, slot;
7616 
7617 	if (!device->fs_info->dev_root)
7618 		return 0;
7619 
7620 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7621 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7622 	key.offset = device->devid;
7623 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7624 	if (ret) {
7625 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7626 			btrfs_dev_stat_set(device, i, 0);
7627 		device->dev_stats_valid = 1;
7628 		btrfs_release_path(path);
7629 		return ret < 0 ? ret : 0;
7630 	}
7631 	slot = path->slots[0];
7632 	eb = path->nodes[0];
7633 	item_size = btrfs_item_size_nr(eb, slot);
7634 
7635 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7636 
7637 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7638 		if (item_size >= (1 + i) * sizeof(__le64))
7639 			btrfs_dev_stat_set(device, i,
7640 					   btrfs_dev_stats_value(eb, ptr, i));
7641 		else
7642 			btrfs_dev_stat_set(device, i, 0);
7643 	}
7644 
7645 	device->dev_stats_valid = 1;
7646 	btrfs_dev_stat_print_on_load(device);
7647 	btrfs_release_path(path);
7648 
7649 	return 0;
7650 }
7651 
7652 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7653 {
7654 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7655 	struct btrfs_device *device;
7656 	struct btrfs_path *path = NULL;
7657 	int ret = 0;
7658 
7659 	path = btrfs_alloc_path();
7660 	if (!path)
7661 		return -ENOMEM;
7662 
7663 	mutex_lock(&fs_devices->device_list_mutex);
7664 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7665 		ret = btrfs_device_init_dev_stats(device, path);
7666 		if (ret)
7667 			goto out;
7668 	}
7669 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7670 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7671 			ret = btrfs_device_init_dev_stats(device, path);
7672 			if (ret)
7673 				goto out;
7674 		}
7675 	}
7676 out:
7677 	mutex_unlock(&fs_devices->device_list_mutex);
7678 
7679 	btrfs_free_path(path);
7680 	return ret;
7681 }
7682 
7683 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7684 				struct btrfs_device *device)
7685 {
7686 	struct btrfs_fs_info *fs_info = trans->fs_info;
7687 	struct btrfs_root *dev_root = fs_info->dev_root;
7688 	struct btrfs_path *path;
7689 	struct btrfs_key key;
7690 	struct extent_buffer *eb;
7691 	struct btrfs_dev_stats_item *ptr;
7692 	int ret;
7693 	int i;
7694 
7695 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7696 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7697 	key.offset = device->devid;
7698 
7699 	path = btrfs_alloc_path();
7700 	if (!path)
7701 		return -ENOMEM;
7702 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7703 	if (ret < 0) {
7704 		btrfs_warn_in_rcu(fs_info,
7705 			"error %d while searching for dev_stats item for device %s",
7706 			      ret, rcu_str_deref(device->name));
7707 		goto out;
7708 	}
7709 
7710 	if (ret == 0 &&
7711 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7712 		/* need to delete old one and insert a new one */
7713 		ret = btrfs_del_item(trans, dev_root, path);
7714 		if (ret != 0) {
7715 			btrfs_warn_in_rcu(fs_info,
7716 				"delete too small dev_stats item for device %s failed %d",
7717 				      rcu_str_deref(device->name), ret);
7718 			goto out;
7719 		}
7720 		ret = 1;
7721 	}
7722 
7723 	if (ret == 1) {
7724 		/* need to insert a new item */
7725 		btrfs_release_path(path);
7726 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7727 					      &key, sizeof(*ptr));
7728 		if (ret < 0) {
7729 			btrfs_warn_in_rcu(fs_info,
7730 				"insert dev_stats item for device %s failed %d",
7731 				rcu_str_deref(device->name), ret);
7732 			goto out;
7733 		}
7734 	}
7735 
7736 	eb = path->nodes[0];
7737 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7738 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7739 		btrfs_set_dev_stats_value(eb, ptr, i,
7740 					  btrfs_dev_stat_read(device, i));
7741 	btrfs_mark_buffer_dirty(eb);
7742 
7743 out:
7744 	btrfs_free_path(path);
7745 	return ret;
7746 }
7747 
7748 /*
7749  * called from commit_transaction. Writes all changed device stats to disk.
7750  */
7751 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7752 {
7753 	struct btrfs_fs_info *fs_info = trans->fs_info;
7754 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7755 	struct btrfs_device *device;
7756 	int stats_cnt;
7757 	int ret = 0;
7758 
7759 	mutex_lock(&fs_devices->device_list_mutex);
7760 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7761 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7762 		if (!device->dev_stats_valid || stats_cnt == 0)
7763 			continue;
7764 
7765 
7766 		/*
7767 		 * There is a LOAD-LOAD control dependency between the value of
7768 		 * dev_stats_ccnt and updating the on-disk values which requires
7769 		 * reading the in-memory counters. Such control dependencies
7770 		 * require explicit read memory barriers.
7771 		 *
7772 		 * This memory barriers pairs with smp_mb__before_atomic in
7773 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7774 		 * barrier implied by atomic_xchg in
7775 		 * btrfs_dev_stats_read_and_reset
7776 		 */
7777 		smp_rmb();
7778 
7779 		ret = update_dev_stat_item(trans, device);
7780 		if (!ret)
7781 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7782 	}
7783 	mutex_unlock(&fs_devices->device_list_mutex);
7784 
7785 	return ret;
7786 }
7787 
7788 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7789 {
7790 	btrfs_dev_stat_inc(dev, index);
7791 	btrfs_dev_stat_print_on_error(dev);
7792 }
7793 
7794 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7795 {
7796 	if (!dev->dev_stats_valid)
7797 		return;
7798 	btrfs_err_rl_in_rcu(dev->fs_info,
7799 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7800 			   rcu_str_deref(dev->name),
7801 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7802 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7803 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7804 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7805 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7806 }
7807 
7808 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7809 {
7810 	int i;
7811 
7812 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7813 		if (btrfs_dev_stat_read(dev, i) != 0)
7814 			break;
7815 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7816 		return; /* all values == 0, suppress message */
7817 
7818 	btrfs_info_in_rcu(dev->fs_info,
7819 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7820 	       rcu_str_deref(dev->name),
7821 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7822 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7823 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7824 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7825 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7826 }
7827 
7828 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7829 			struct btrfs_ioctl_get_dev_stats *stats)
7830 {
7831 	struct btrfs_device *dev;
7832 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7833 	int i;
7834 
7835 	mutex_lock(&fs_devices->device_list_mutex);
7836 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7837 	mutex_unlock(&fs_devices->device_list_mutex);
7838 
7839 	if (!dev) {
7840 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7841 		return -ENODEV;
7842 	} else if (!dev->dev_stats_valid) {
7843 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7844 		return -ENODEV;
7845 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7846 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7847 			if (stats->nr_items > i)
7848 				stats->values[i] =
7849 					btrfs_dev_stat_read_and_reset(dev, i);
7850 			else
7851 				btrfs_dev_stat_set(dev, i, 0);
7852 		}
7853 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7854 			   current->comm, task_pid_nr(current));
7855 	} else {
7856 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7857 			if (stats->nr_items > i)
7858 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7859 	}
7860 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7861 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7862 	return 0;
7863 }
7864 
7865 /*
7866  * Update the size and bytes used for each device where it changed.  This is
7867  * delayed since we would otherwise get errors while writing out the
7868  * superblocks.
7869  *
7870  * Must be invoked during transaction commit.
7871  */
7872 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7873 {
7874 	struct btrfs_device *curr, *next;
7875 
7876 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7877 
7878 	if (list_empty(&trans->dev_update_list))
7879 		return;
7880 
7881 	/*
7882 	 * We don't need the device_list_mutex here.  This list is owned by the
7883 	 * transaction and the transaction must complete before the device is
7884 	 * released.
7885 	 */
7886 	mutex_lock(&trans->fs_info->chunk_mutex);
7887 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7888 				 post_commit_list) {
7889 		list_del_init(&curr->post_commit_list);
7890 		curr->commit_total_bytes = curr->disk_total_bytes;
7891 		curr->commit_bytes_used = curr->bytes_used;
7892 	}
7893 	mutex_unlock(&trans->fs_info->chunk_mutex);
7894 }
7895 
7896 /*
7897  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7898  */
7899 int btrfs_bg_type_to_factor(u64 flags)
7900 {
7901 	const int index = btrfs_bg_flags_to_raid_index(flags);
7902 
7903 	return btrfs_raid_array[index].ncopies;
7904 }
7905 
7906 
7907 
7908 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7909 				 u64 chunk_offset, u64 devid,
7910 				 u64 physical_offset, u64 physical_len)
7911 {
7912 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7913 	struct extent_map *em;
7914 	struct map_lookup *map;
7915 	struct btrfs_device *dev;
7916 	u64 stripe_len;
7917 	bool found = false;
7918 	int ret = 0;
7919 	int i;
7920 
7921 	read_lock(&em_tree->lock);
7922 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7923 	read_unlock(&em_tree->lock);
7924 
7925 	if (!em) {
7926 		btrfs_err(fs_info,
7927 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7928 			  physical_offset, devid);
7929 		ret = -EUCLEAN;
7930 		goto out;
7931 	}
7932 
7933 	map = em->map_lookup;
7934 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7935 	if (physical_len != stripe_len) {
7936 		btrfs_err(fs_info,
7937 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7938 			  physical_offset, devid, em->start, physical_len,
7939 			  stripe_len);
7940 		ret = -EUCLEAN;
7941 		goto out;
7942 	}
7943 
7944 	for (i = 0; i < map->num_stripes; i++) {
7945 		if (map->stripes[i].dev->devid == devid &&
7946 		    map->stripes[i].physical == physical_offset) {
7947 			found = true;
7948 			if (map->verified_stripes >= map->num_stripes) {
7949 				btrfs_err(fs_info,
7950 				"too many dev extents for chunk %llu found",
7951 					  em->start);
7952 				ret = -EUCLEAN;
7953 				goto out;
7954 			}
7955 			map->verified_stripes++;
7956 			break;
7957 		}
7958 	}
7959 	if (!found) {
7960 		btrfs_err(fs_info,
7961 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7962 			physical_offset, devid);
7963 		ret = -EUCLEAN;
7964 	}
7965 
7966 	/* Make sure no dev extent is beyond device boundary */
7967 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7968 	if (!dev) {
7969 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7970 		ret = -EUCLEAN;
7971 		goto out;
7972 	}
7973 
7974 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7975 		btrfs_err(fs_info,
7976 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7977 			  devid, physical_offset, physical_len,
7978 			  dev->disk_total_bytes);
7979 		ret = -EUCLEAN;
7980 		goto out;
7981 	}
7982 
7983 	if (dev->zone_info) {
7984 		u64 zone_size = dev->zone_info->zone_size;
7985 
7986 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7987 		    !IS_ALIGNED(physical_len, zone_size)) {
7988 			btrfs_err(fs_info,
7989 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7990 				  devid, physical_offset, physical_len);
7991 			ret = -EUCLEAN;
7992 			goto out;
7993 		}
7994 	}
7995 
7996 out:
7997 	free_extent_map(em);
7998 	return ret;
7999 }
8000 
8001 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8002 {
8003 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8004 	struct extent_map *em;
8005 	struct rb_node *node;
8006 	int ret = 0;
8007 
8008 	read_lock(&em_tree->lock);
8009 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8010 		em = rb_entry(node, struct extent_map, rb_node);
8011 		if (em->map_lookup->num_stripes !=
8012 		    em->map_lookup->verified_stripes) {
8013 			btrfs_err(fs_info,
8014 			"chunk %llu has missing dev extent, have %d expect %d",
8015 				  em->start, em->map_lookup->verified_stripes,
8016 				  em->map_lookup->num_stripes);
8017 			ret = -EUCLEAN;
8018 			goto out;
8019 		}
8020 	}
8021 out:
8022 	read_unlock(&em_tree->lock);
8023 	return ret;
8024 }
8025 
8026 /*
8027  * Ensure that all dev extents are mapped to correct chunk, otherwise
8028  * later chunk allocation/free would cause unexpected behavior.
8029  *
8030  * NOTE: This will iterate through the whole device tree, which should be of
8031  * the same size level as the chunk tree.  This slightly increases mount time.
8032  */
8033 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8034 {
8035 	struct btrfs_path *path;
8036 	struct btrfs_root *root = fs_info->dev_root;
8037 	struct btrfs_key key;
8038 	u64 prev_devid = 0;
8039 	u64 prev_dev_ext_end = 0;
8040 	int ret = 0;
8041 
8042 	/*
8043 	 * We don't have a dev_root because we mounted with ignorebadroots and
8044 	 * failed to load the root, so we want to skip the verification in this
8045 	 * case for sure.
8046 	 *
8047 	 * However if the dev root is fine, but the tree itself is corrupted
8048 	 * we'd still fail to mount.  This verification is only to make sure
8049 	 * writes can happen safely, so instead just bypass this check
8050 	 * completely in the case of IGNOREBADROOTS.
8051 	 */
8052 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8053 		return 0;
8054 
8055 	key.objectid = 1;
8056 	key.type = BTRFS_DEV_EXTENT_KEY;
8057 	key.offset = 0;
8058 
8059 	path = btrfs_alloc_path();
8060 	if (!path)
8061 		return -ENOMEM;
8062 
8063 	path->reada = READA_FORWARD;
8064 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8065 	if (ret < 0)
8066 		goto out;
8067 
8068 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8069 		ret = btrfs_next_leaf(root, path);
8070 		if (ret < 0)
8071 			goto out;
8072 		/* No dev extents at all? Not good */
8073 		if (ret > 0) {
8074 			ret = -EUCLEAN;
8075 			goto out;
8076 		}
8077 	}
8078 	while (1) {
8079 		struct extent_buffer *leaf = path->nodes[0];
8080 		struct btrfs_dev_extent *dext;
8081 		int slot = path->slots[0];
8082 		u64 chunk_offset;
8083 		u64 physical_offset;
8084 		u64 physical_len;
8085 		u64 devid;
8086 
8087 		btrfs_item_key_to_cpu(leaf, &key, slot);
8088 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8089 			break;
8090 		devid = key.objectid;
8091 		physical_offset = key.offset;
8092 
8093 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8094 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8095 		physical_len = btrfs_dev_extent_length(leaf, dext);
8096 
8097 		/* Check if this dev extent overlaps with the previous one */
8098 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8099 			btrfs_err(fs_info,
8100 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8101 				  devid, physical_offset, prev_dev_ext_end);
8102 			ret = -EUCLEAN;
8103 			goto out;
8104 		}
8105 
8106 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8107 					    physical_offset, physical_len);
8108 		if (ret < 0)
8109 			goto out;
8110 		prev_devid = devid;
8111 		prev_dev_ext_end = physical_offset + physical_len;
8112 
8113 		ret = btrfs_next_item(root, path);
8114 		if (ret < 0)
8115 			goto out;
8116 		if (ret > 0) {
8117 			ret = 0;
8118 			break;
8119 		}
8120 	}
8121 
8122 	/* Ensure all chunks have corresponding dev extents */
8123 	ret = verify_chunk_dev_extent_mapping(fs_info);
8124 out:
8125 	btrfs_free_path(path);
8126 	return ret;
8127 }
8128 
8129 /*
8130  * Check whether the given block group or device is pinned by any inode being
8131  * used as a swapfile.
8132  */
8133 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8134 {
8135 	struct btrfs_swapfile_pin *sp;
8136 	struct rb_node *node;
8137 
8138 	spin_lock(&fs_info->swapfile_pins_lock);
8139 	node = fs_info->swapfile_pins.rb_node;
8140 	while (node) {
8141 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8142 		if (ptr < sp->ptr)
8143 			node = node->rb_left;
8144 		else if (ptr > sp->ptr)
8145 			node = node->rb_right;
8146 		else
8147 			break;
8148 	}
8149 	spin_unlock(&fs_info->swapfile_pins_lock);
8150 	return node != NULL;
8151 }
8152 
8153 static int relocating_repair_kthread(void *data)
8154 {
8155 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8156 	struct btrfs_fs_info *fs_info = cache->fs_info;
8157 	u64 target;
8158 	int ret = 0;
8159 
8160 	target = cache->start;
8161 	btrfs_put_block_group(cache);
8162 
8163 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8164 		btrfs_info(fs_info,
8165 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8166 			   target);
8167 		return -EBUSY;
8168 	}
8169 
8170 	mutex_lock(&fs_info->reclaim_bgs_lock);
8171 
8172 	/* Ensure block group still exists */
8173 	cache = btrfs_lookup_block_group(fs_info, target);
8174 	if (!cache)
8175 		goto out;
8176 
8177 	if (!cache->relocating_repair)
8178 		goto out;
8179 
8180 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8181 	if (ret < 0)
8182 		goto out;
8183 
8184 	btrfs_info(fs_info,
8185 		   "zoned: relocating block group %llu to repair IO failure",
8186 		   target);
8187 	ret = btrfs_relocate_chunk(fs_info, target);
8188 
8189 out:
8190 	if (cache)
8191 		btrfs_put_block_group(cache);
8192 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8193 	btrfs_exclop_finish(fs_info);
8194 
8195 	return ret;
8196 }
8197 
8198 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8199 {
8200 	struct btrfs_block_group *cache;
8201 
8202 	/* Do not attempt to repair in degraded state */
8203 	if (btrfs_test_opt(fs_info, DEGRADED))
8204 		return 0;
8205 
8206 	cache = btrfs_lookup_block_group(fs_info, logical);
8207 	if (!cache)
8208 		return 0;
8209 
8210 	spin_lock(&cache->lock);
8211 	if (cache->relocating_repair) {
8212 		spin_unlock(&cache->lock);
8213 		btrfs_put_block_group(cache);
8214 		return 0;
8215 	}
8216 	cache->relocating_repair = 1;
8217 	spin_unlock(&cache->lock);
8218 
8219 	kthread_run(relocating_repair_kthread, cache,
8220 		    "btrfs-relocating-repair");
8221 
8222 	return 0;
8223 }
8224