xref: /linux/fs/btrfs/volumes.c (revision 02b4e2756e01c623cc4dbceae4b07be75252db5b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58 	struct btrfs_fs_devices *fs_devs;
59 
60 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61 	if (!fs_devs)
62 		return ERR_PTR(-ENOMEM);
63 
64 	mutex_init(&fs_devs->device_list_mutex);
65 
66 	INIT_LIST_HEAD(&fs_devs->devices);
67 	INIT_LIST_HEAD(&fs_devs->resized_devices);
68 	INIT_LIST_HEAD(&fs_devs->alloc_list);
69 	INIT_LIST_HEAD(&fs_devs->list);
70 
71 	return fs_devs;
72 }
73 
74 /**
75  * alloc_fs_devices - allocate struct btrfs_fs_devices
76  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
77  *		generated.
78  *
79  * Return: a pointer to a new &struct btrfs_fs_devices on success;
80  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
81  * can be destroyed with kfree() right away.
82  */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85 	struct btrfs_fs_devices *fs_devs;
86 
87 	fs_devs = __alloc_fs_devices();
88 	if (IS_ERR(fs_devs))
89 		return fs_devs;
90 
91 	if (fsid)
92 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93 	else
94 		generate_random_uuid(fs_devs->fsid);
95 
96 	return fs_devs;
97 }
98 
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101 	struct btrfs_device *device;
102 	WARN_ON(fs_devices->opened);
103 	while (!list_empty(&fs_devices->devices)) {
104 		device = list_entry(fs_devices->devices.next,
105 				    struct btrfs_device, dev_list);
106 		list_del(&device->dev_list);
107 		rcu_string_free(device->name);
108 		kfree(device);
109 	}
110 	kfree(fs_devices);
111 }
112 
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114 				 enum kobject_action action)
115 {
116 	int ret;
117 
118 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119 	if (ret)
120 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121 			action,
122 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123 			&disk_to_dev(bdev->bd_disk)->kobj);
124 }
125 
126 void btrfs_cleanup_fs_uuids(void)
127 {
128 	struct btrfs_fs_devices *fs_devices;
129 
130 	while (!list_empty(&fs_uuids)) {
131 		fs_devices = list_entry(fs_uuids.next,
132 					struct btrfs_fs_devices, list);
133 		list_del(&fs_devices->list);
134 		free_fs_devices(fs_devices);
135 	}
136 }
137 
138 static struct btrfs_device *__alloc_device(void)
139 {
140 	struct btrfs_device *dev;
141 
142 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
143 	if (!dev)
144 		return ERR_PTR(-ENOMEM);
145 
146 	INIT_LIST_HEAD(&dev->dev_list);
147 	INIT_LIST_HEAD(&dev->dev_alloc_list);
148 	INIT_LIST_HEAD(&dev->resized_list);
149 
150 	spin_lock_init(&dev->io_lock);
151 
152 	spin_lock_init(&dev->reada_lock);
153 	atomic_set(&dev->reada_in_flight, 0);
154 	atomic_set(&dev->dev_stats_ccnt, 0);
155 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157 
158 	return dev;
159 }
160 
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162 						   u64 devid, u8 *uuid)
163 {
164 	struct btrfs_device *dev;
165 
166 	list_for_each_entry(dev, head, dev_list) {
167 		if (dev->devid == devid &&
168 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169 			return dev;
170 		}
171 	}
172 	return NULL;
173 }
174 
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177 	struct btrfs_fs_devices *fs_devices;
178 
179 	list_for_each_entry(fs_devices, &fs_uuids, list) {
180 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181 			return fs_devices;
182 	}
183 	return NULL;
184 }
185 
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188 		      int flush, struct block_device **bdev,
189 		      struct buffer_head **bh)
190 {
191 	int ret;
192 
193 	*bdev = blkdev_get_by_path(device_path, flags, holder);
194 
195 	if (IS_ERR(*bdev)) {
196 		ret = PTR_ERR(*bdev);
197 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198 		goto error;
199 	}
200 
201 	if (flush)
202 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203 	ret = set_blocksize(*bdev, 4096);
204 	if (ret) {
205 		blkdev_put(*bdev, flags);
206 		goto error;
207 	}
208 	invalidate_bdev(*bdev);
209 	*bh = btrfs_read_dev_super(*bdev);
210 	if (!*bh) {
211 		ret = -EINVAL;
212 		blkdev_put(*bdev, flags);
213 		goto error;
214 	}
215 
216 	return 0;
217 
218 error:
219 	*bdev = NULL;
220 	*bh = NULL;
221 	return ret;
222 }
223 
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225 			struct bio *head, struct bio *tail)
226 {
227 
228 	struct bio *old_head;
229 
230 	old_head = pending_bios->head;
231 	pending_bios->head = head;
232 	if (pending_bios->tail)
233 		tail->bi_next = old_head;
234 	else
235 		pending_bios->tail = tail;
236 }
237 
238 /*
239  * we try to collect pending bios for a device so we don't get a large
240  * number of procs sending bios down to the same device.  This greatly
241  * improves the schedulers ability to collect and merge the bios.
242  *
243  * But, it also turns into a long list of bios to process and that is sure
244  * to eventually make the worker thread block.  The solution here is to
245  * make some progress and then put this work struct back at the end of
246  * the list if the block device is congested.  This way, multiple devices
247  * can make progress from a single worker thread.
248  */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251 	struct bio *pending;
252 	struct backing_dev_info *bdi;
253 	struct btrfs_fs_info *fs_info;
254 	struct btrfs_pending_bios *pending_bios;
255 	struct bio *tail;
256 	struct bio *cur;
257 	int again = 0;
258 	unsigned long num_run;
259 	unsigned long batch_run = 0;
260 	unsigned long limit;
261 	unsigned long last_waited = 0;
262 	int force_reg = 0;
263 	int sync_pending = 0;
264 	struct blk_plug plug;
265 
266 	/*
267 	 * this function runs all the bios we've collected for
268 	 * a particular device.  We don't want to wander off to
269 	 * another device without first sending all of these down.
270 	 * So, setup a plug here and finish it off before we return
271 	 */
272 	blk_start_plug(&plug);
273 
274 	bdi = blk_get_backing_dev_info(device->bdev);
275 	fs_info = device->dev_root->fs_info;
276 	limit = btrfs_async_submit_limit(fs_info);
277 	limit = limit * 2 / 3;
278 
279 loop:
280 	spin_lock(&device->io_lock);
281 
282 loop_lock:
283 	num_run = 0;
284 
285 	/* take all the bios off the list at once and process them
286 	 * later on (without the lock held).  But, remember the
287 	 * tail and other pointers so the bios can be properly reinserted
288 	 * into the list if we hit congestion
289 	 */
290 	if (!force_reg && device->pending_sync_bios.head) {
291 		pending_bios = &device->pending_sync_bios;
292 		force_reg = 1;
293 	} else {
294 		pending_bios = &device->pending_bios;
295 		force_reg = 0;
296 	}
297 
298 	pending = pending_bios->head;
299 	tail = pending_bios->tail;
300 	WARN_ON(pending && !tail);
301 
302 	/*
303 	 * if pending was null this time around, no bios need processing
304 	 * at all and we can stop.  Otherwise it'll loop back up again
305 	 * and do an additional check so no bios are missed.
306 	 *
307 	 * device->running_pending is used to synchronize with the
308 	 * schedule_bio code.
309 	 */
310 	if (device->pending_sync_bios.head == NULL &&
311 	    device->pending_bios.head == NULL) {
312 		again = 0;
313 		device->running_pending = 0;
314 	} else {
315 		again = 1;
316 		device->running_pending = 1;
317 	}
318 
319 	pending_bios->head = NULL;
320 	pending_bios->tail = NULL;
321 
322 	spin_unlock(&device->io_lock);
323 
324 	while (pending) {
325 
326 		rmb();
327 		/* we want to work on both lists, but do more bios on the
328 		 * sync list than the regular list
329 		 */
330 		if ((num_run > 32 &&
331 		    pending_bios != &device->pending_sync_bios &&
332 		    device->pending_sync_bios.head) ||
333 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334 		    device->pending_bios.head)) {
335 			spin_lock(&device->io_lock);
336 			requeue_list(pending_bios, pending, tail);
337 			goto loop_lock;
338 		}
339 
340 		cur = pending;
341 		pending = pending->bi_next;
342 		cur->bi_next = NULL;
343 
344 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345 		    waitqueue_active(&fs_info->async_submit_wait))
346 			wake_up(&fs_info->async_submit_wait);
347 
348 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349 
350 		/*
351 		 * if we're doing the sync list, record that our
352 		 * plug has some sync requests on it
353 		 *
354 		 * If we're doing the regular list and there are
355 		 * sync requests sitting around, unplug before
356 		 * we add more
357 		 */
358 		if (pending_bios == &device->pending_sync_bios) {
359 			sync_pending = 1;
360 		} else if (sync_pending) {
361 			blk_finish_plug(&plug);
362 			blk_start_plug(&plug);
363 			sync_pending = 0;
364 		}
365 
366 		btrfsic_submit_bio(cur->bi_rw, cur);
367 		num_run++;
368 		batch_run++;
369 
370 		cond_resched();
371 
372 		/*
373 		 * we made progress, there is more work to do and the bdi
374 		 * is now congested.  Back off and let other work structs
375 		 * run instead
376 		 */
377 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378 		    fs_info->fs_devices->open_devices > 1) {
379 			struct io_context *ioc;
380 
381 			ioc = current->io_context;
382 
383 			/*
384 			 * the main goal here is that we don't want to
385 			 * block if we're going to be able to submit
386 			 * more requests without blocking.
387 			 *
388 			 * This code does two great things, it pokes into
389 			 * the elevator code from a filesystem _and_
390 			 * it makes assumptions about how batching works.
391 			 */
392 			if (ioc && ioc->nr_batch_requests > 0 &&
393 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394 			    (last_waited == 0 ||
395 			     ioc->last_waited == last_waited)) {
396 				/*
397 				 * we want to go through our batch of
398 				 * requests and stop.  So, we copy out
399 				 * the ioc->last_waited time and test
400 				 * against it before looping
401 				 */
402 				last_waited = ioc->last_waited;
403 				cond_resched();
404 				continue;
405 			}
406 			spin_lock(&device->io_lock);
407 			requeue_list(pending_bios, pending, tail);
408 			device->running_pending = 1;
409 
410 			spin_unlock(&device->io_lock);
411 			btrfs_queue_work(fs_info->submit_workers,
412 					 &device->work);
413 			goto done;
414 		}
415 		/* unplug every 64 requests just for good measure */
416 		if (batch_run % 64 == 0) {
417 			blk_finish_plug(&plug);
418 			blk_start_plug(&plug);
419 			sync_pending = 0;
420 		}
421 	}
422 
423 	cond_resched();
424 	if (again)
425 		goto loop;
426 
427 	spin_lock(&device->io_lock);
428 	if (device->pending_bios.head || device->pending_sync_bios.head)
429 		goto loop_lock;
430 	spin_unlock(&device->io_lock);
431 
432 done:
433 	blk_finish_plug(&plug);
434 }
435 
436 static void pending_bios_fn(struct btrfs_work *work)
437 {
438 	struct btrfs_device *device;
439 
440 	device = container_of(work, struct btrfs_device, work);
441 	run_scheduled_bios(device);
442 }
443 
444 /*
445  * Add new device to list of registered devices
446  *
447  * Returns:
448  * 1   - first time device is seen
449  * 0   - device already known
450  * < 0 - error
451  */
452 static noinline int device_list_add(const char *path,
453 			   struct btrfs_super_block *disk_super,
454 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
455 {
456 	struct btrfs_device *device;
457 	struct btrfs_fs_devices *fs_devices;
458 	struct rcu_string *name;
459 	int ret = 0;
460 	u64 found_transid = btrfs_super_generation(disk_super);
461 
462 	fs_devices = find_fsid(disk_super->fsid);
463 	if (!fs_devices) {
464 		fs_devices = alloc_fs_devices(disk_super->fsid);
465 		if (IS_ERR(fs_devices))
466 			return PTR_ERR(fs_devices);
467 
468 		list_add(&fs_devices->list, &fs_uuids);
469 
470 		device = NULL;
471 	} else {
472 		device = __find_device(&fs_devices->devices, devid,
473 				       disk_super->dev_item.uuid);
474 	}
475 
476 	if (!device) {
477 		if (fs_devices->opened)
478 			return -EBUSY;
479 
480 		device = btrfs_alloc_device(NULL, &devid,
481 					    disk_super->dev_item.uuid);
482 		if (IS_ERR(device)) {
483 			/* we can safely leave the fs_devices entry around */
484 			return PTR_ERR(device);
485 		}
486 
487 		name = rcu_string_strdup(path, GFP_NOFS);
488 		if (!name) {
489 			kfree(device);
490 			return -ENOMEM;
491 		}
492 		rcu_assign_pointer(device->name, name);
493 
494 		mutex_lock(&fs_devices->device_list_mutex);
495 		list_add_rcu(&device->dev_list, &fs_devices->devices);
496 		fs_devices->num_devices++;
497 		mutex_unlock(&fs_devices->device_list_mutex);
498 
499 		ret = 1;
500 		device->fs_devices = fs_devices;
501 	} else if (!device->name || strcmp(device->name->str, path)) {
502 		/*
503 		 * When FS is already mounted.
504 		 * 1. If you are here and if the device->name is NULL that
505 		 *    means this device was missing at time of FS mount.
506 		 * 2. If you are here and if the device->name is different
507 		 *    from 'path' that means either
508 		 *      a. The same device disappeared and reappeared with
509 		 *         different name. or
510 		 *      b. The missing-disk-which-was-replaced, has
511 		 *         reappeared now.
512 		 *
513 		 * We must allow 1 and 2a above. But 2b would be a spurious
514 		 * and unintentional.
515 		 *
516 		 * Further in case of 1 and 2a above, the disk at 'path'
517 		 * would have missed some transaction when it was away and
518 		 * in case of 2a the stale bdev has to be updated as well.
519 		 * 2b must not be allowed at all time.
520 		 */
521 
522 		/*
523 		 * For now, we do allow update to btrfs_fs_device through the
524 		 * btrfs dev scan cli after FS has been mounted.  We're still
525 		 * tracking a problem where systems fail mount by subvolume id
526 		 * when we reject replacement on a mounted FS.
527 		 */
528 		if (!fs_devices->opened && found_transid < device->generation) {
529 			/*
530 			 * That is if the FS is _not_ mounted and if you
531 			 * are here, that means there is more than one
532 			 * disk with same uuid and devid.We keep the one
533 			 * with larger generation number or the last-in if
534 			 * generation are equal.
535 			 */
536 			return -EEXIST;
537 		}
538 
539 		name = rcu_string_strdup(path, GFP_NOFS);
540 		if (!name)
541 			return -ENOMEM;
542 		rcu_string_free(device->name);
543 		rcu_assign_pointer(device->name, name);
544 		if (device->missing) {
545 			fs_devices->missing_devices--;
546 			device->missing = 0;
547 		}
548 	}
549 
550 	/*
551 	 * Unmount does not free the btrfs_device struct but would zero
552 	 * generation along with most of the other members. So just update
553 	 * it back. We need it to pick the disk with largest generation
554 	 * (as above).
555 	 */
556 	if (!fs_devices->opened)
557 		device->generation = found_transid;
558 
559 	*fs_devices_ret = fs_devices;
560 
561 	return ret;
562 }
563 
564 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
565 {
566 	struct btrfs_fs_devices *fs_devices;
567 	struct btrfs_device *device;
568 	struct btrfs_device *orig_dev;
569 
570 	fs_devices = alloc_fs_devices(orig->fsid);
571 	if (IS_ERR(fs_devices))
572 		return fs_devices;
573 
574 	mutex_lock(&orig->device_list_mutex);
575 	fs_devices->total_devices = orig->total_devices;
576 
577 	/* We have held the volume lock, it is safe to get the devices. */
578 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
579 		struct rcu_string *name;
580 
581 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
582 					    orig_dev->uuid);
583 		if (IS_ERR(device))
584 			goto error;
585 
586 		/*
587 		 * This is ok to do without rcu read locked because we hold the
588 		 * uuid mutex so nothing we touch in here is going to disappear.
589 		 */
590 		if (orig_dev->name) {
591 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
592 			if (!name) {
593 				kfree(device);
594 				goto error;
595 			}
596 			rcu_assign_pointer(device->name, name);
597 		}
598 
599 		list_add(&device->dev_list, &fs_devices->devices);
600 		device->fs_devices = fs_devices;
601 		fs_devices->num_devices++;
602 	}
603 	mutex_unlock(&orig->device_list_mutex);
604 	return fs_devices;
605 error:
606 	mutex_unlock(&orig->device_list_mutex);
607 	free_fs_devices(fs_devices);
608 	return ERR_PTR(-ENOMEM);
609 }
610 
611 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
612 {
613 	struct btrfs_device *device, *next;
614 	struct btrfs_device *latest_dev = NULL;
615 
616 	mutex_lock(&uuid_mutex);
617 again:
618 	/* This is the initialized path, it is safe to release the devices. */
619 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
620 		if (device->in_fs_metadata) {
621 			if (!device->is_tgtdev_for_dev_replace &&
622 			    (!latest_dev ||
623 			     device->generation > latest_dev->generation)) {
624 				latest_dev = device;
625 			}
626 			continue;
627 		}
628 
629 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
630 			/*
631 			 * In the first step, keep the device which has
632 			 * the correct fsid and the devid that is used
633 			 * for the dev_replace procedure.
634 			 * In the second step, the dev_replace state is
635 			 * read from the device tree and it is known
636 			 * whether the procedure is really active or
637 			 * not, which means whether this device is
638 			 * used or whether it should be removed.
639 			 */
640 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
641 				continue;
642 			}
643 		}
644 		if (device->bdev) {
645 			blkdev_put(device->bdev, device->mode);
646 			device->bdev = NULL;
647 			fs_devices->open_devices--;
648 		}
649 		if (device->writeable) {
650 			list_del_init(&device->dev_alloc_list);
651 			device->writeable = 0;
652 			if (!device->is_tgtdev_for_dev_replace)
653 				fs_devices->rw_devices--;
654 		}
655 		list_del_init(&device->dev_list);
656 		fs_devices->num_devices--;
657 		rcu_string_free(device->name);
658 		kfree(device);
659 	}
660 
661 	if (fs_devices->seed) {
662 		fs_devices = fs_devices->seed;
663 		goto again;
664 	}
665 
666 	fs_devices->latest_bdev = latest_dev->bdev;
667 
668 	mutex_unlock(&uuid_mutex);
669 }
670 
671 static void __free_device(struct work_struct *work)
672 {
673 	struct btrfs_device *device;
674 
675 	device = container_of(work, struct btrfs_device, rcu_work);
676 
677 	if (device->bdev)
678 		blkdev_put(device->bdev, device->mode);
679 
680 	rcu_string_free(device->name);
681 	kfree(device);
682 }
683 
684 static void free_device(struct rcu_head *head)
685 {
686 	struct btrfs_device *device;
687 
688 	device = container_of(head, struct btrfs_device, rcu);
689 
690 	INIT_WORK(&device->rcu_work, __free_device);
691 	schedule_work(&device->rcu_work);
692 }
693 
694 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
695 {
696 	struct btrfs_device *device;
697 
698 	if (--fs_devices->opened > 0)
699 		return 0;
700 
701 	mutex_lock(&fs_devices->device_list_mutex);
702 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
703 		struct btrfs_device *new_device;
704 		struct rcu_string *name;
705 
706 		if (device->bdev)
707 			fs_devices->open_devices--;
708 
709 		if (device->writeable &&
710 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
711 			list_del_init(&device->dev_alloc_list);
712 			fs_devices->rw_devices--;
713 		}
714 
715 		if (device->missing)
716 			fs_devices->missing_devices--;
717 
718 		new_device = btrfs_alloc_device(NULL, &device->devid,
719 						device->uuid);
720 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
721 
722 		/* Safe because we are under uuid_mutex */
723 		if (device->name) {
724 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
725 			BUG_ON(!name); /* -ENOMEM */
726 			rcu_assign_pointer(new_device->name, name);
727 		}
728 
729 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
730 		new_device->fs_devices = device->fs_devices;
731 
732 		call_rcu(&device->rcu, free_device);
733 	}
734 	mutex_unlock(&fs_devices->device_list_mutex);
735 
736 	WARN_ON(fs_devices->open_devices);
737 	WARN_ON(fs_devices->rw_devices);
738 	fs_devices->opened = 0;
739 	fs_devices->seeding = 0;
740 
741 	return 0;
742 }
743 
744 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
745 {
746 	struct btrfs_fs_devices *seed_devices = NULL;
747 	int ret;
748 
749 	mutex_lock(&uuid_mutex);
750 	ret = __btrfs_close_devices(fs_devices);
751 	if (!fs_devices->opened) {
752 		seed_devices = fs_devices->seed;
753 		fs_devices->seed = NULL;
754 	}
755 	mutex_unlock(&uuid_mutex);
756 
757 	while (seed_devices) {
758 		fs_devices = seed_devices;
759 		seed_devices = fs_devices->seed;
760 		__btrfs_close_devices(fs_devices);
761 		free_fs_devices(fs_devices);
762 	}
763 	/*
764 	 * Wait for rcu kworkers under __btrfs_close_devices
765 	 * to finish all blkdev_puts so device is really
766 	 * free when umount is done.
767 	 */
768 	rcu_barrier();
769 	return ret;
770 }
771 
772 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
773 				fmode_t flags, void *holder)
774 {
775 	struct request_queue *q;
776 	struct block_device *bdev;
777 	struct list_head *head = &fs_devices->devices;
778 	struct btrfs_device *device;
779 	struct btrfs_device *latest_dev = NULL;
780 	struct buffer_head *bh;
781 	struct btrfs_super_block *disk_super;
782 	u64 devid;
783 	int seeding = 1;
784 	int ret = 0;
785 
786 	flags |= FMODE_EXCL;
787 
788 	list_for_each_entry(device, head, dev_list) {
789 		if (device->bdev)
790 			continue;
791 		if (!device->name)
792 			continue;
793 
794 		/* Just open everything we can; ignore failures here */
795 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
796 					    &bdev, &bh))
797 			continue;
798 
799 		disk_super = (struct btrfs_super_block *)bh->b_data;
800 		devid = btrfs_stack_device_id(&disk_super->dev_item);
801 		if (devid != device->devid)
802 			goto error_brelse;
803 
804 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
805 			   BTRFS_UUID_SIZE))
806 			goto error_brelse;
807 
808 		device->generation = btrfs_super_generation(disk_super);
809 		if (!latest_dev ||
810 		    device->generation > latest_dev->generation)
811 			latest_dev = device;
812 
813 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
814 			device->writeable = 0;
815 		} else {
816 			device->writeable = !bdev_read_only(bdev);
817 			seeding = 0;
818 		}
819 
820 		q = bdev_get_queue(bdev);
821 		if (blk_queue_discard(q))
822 			device->can_discard = 1;
823 
824 		device->bdev = bdev;
825 		device->in_fs_metadata = 0;
826 		device->mode = flags;
827 
828 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
829 			fs_devices->rotating = 1;
830 
831 		fs_devices->open_devices++;
832 		if (device->writeable &&
833 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
834 			fs_devices->rw_devices++;
835 			list_add(&device->dev_alloc_list,
836 				 &fs_devices->alloc_list);
837 		}
838 		brelse(bh);
839 		continue;
840 
841 error_brelse:
842 		brelse(bh);
843 		blkdev_put(bdev, flags);
844 		continue;
845 	}
846 	if (fs_devices->open_devices == 0) {
847 		ret = -EINVAL;
848 		goto out;
849 	}
850 	fs_devices->seeding = seeding;
851 	fs_devices->opened = 1;
852 	fs_devices->latest_bdev = latest_dev->bdev;
853 	fs_devices->total_rw_bytes = 0;
854 out:
855 	return ret;
856 }
857 
858 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
859 		       fmode_t flags, void *holder)
860 {
861 	int ret;
862 
863 	mutex_lock(&uuid_mutex);
864 	if (fs_devices->opened) {
865 		fs_devices->opened++;
866 		ret = 0;
867 	} else {
868 		ret = __btrfs_open_devices(fs_devices, flags, holder);
869 	}
870 	mutex_unlock(&uuid_mutex);
871 	return ret;
872 }
873 
874 /*
875  * Look for a btrfs signature on a device. This may be called out of the mount path
876  * and we are not allowed to call set_blocksize during the scan. The superblock
877  * is read via pagecache
878  */
879 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
880 			  struct btrfs_fs_devices **fs_devices_ret)
881 {
882 	struct btrfs_super_block *disk_super;
883 	struct block_device *bdev;
884 	struct page *page;
885 	void *p;
886 	int ret = -EINVAL;
887 	u64 devid;
888 	u64 transid;
889 	u64 total_devices;
890 	u64 bytenr;
891 	pgoff_t index;
892 
893 	/*
894 	 * we would like to check all the supers, but that would make
895 	 * a btrfs mount succeed after a mkfs from a different FS.
896 	 * So, we need to add a special mount option to scan for
897 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
898 	 */
899 	bytenr = btrfs_sb_offset(0);
900 	flags |= FMODE_EXCL;
901 	mutex_lock(&uuid_mutex);
902 
903 	bdev = blkdev_get_by_path(path, flags, holder);
904 
905 	if (IS_ERR(bdev)) {
906 		ret = PTR_ERR(bdev);
907 		goto error;
908 	}
909 
910 	/* make sure our super fits in the device */
911 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
912 		goto error_bdev_put;
913 
914 	/* make sure our super fits in the page */
915 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
916 		goto error_bdev_put;
917 
918 	/* make sure our super doesn't straddle pages on disk */
919 	index = bytenr >> PAGE_CACHE_SHIFT;
920 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
921 		goto error_bdev_put;
922 
923 	/* pull in the page with our super */
924 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
925 				   index, GFP_NOFS);
926 
927 	if (IS_ERR_OR_NULL(page))
928 		goto error_bdev_put;
929 
930 	p = kmap(page);
931 
932 	/* align our pointer to the offset of the super block */
933 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
934 
935 	if (btrfs_super_bytenr(disk_super) != bytenr ||
936 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
937 		goto error_unmap;
938 
939 	devid = btrfs_stack_device_id(&disk_super->dev_item);
940 	transid = btrfs_super_generation(disk_super);
941 	total_devices = btrfs_super_num_devices(disk_super);
942 
943 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
944 	if (ret > 0) {
945 		if (disk_super->label[0]) {
946 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
947 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
948 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
949 		} else {
950 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
951 		}
952 
953 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
954 		ret = 0;
955 	}
956 	if (!ret && fs_devices_ret)
957 		(*fs_devices_ret)->total_devices = total_devices;
958 
959 error_unmap:
960 	kunmap(page);
961 	page_cache_release(page);
962 
963 error_bdev_put:
964 	blkdev_put(bdev, flags);
965 error:
966 	mutex_unlock(&uuid_mutex);
967 	return ret;
968 }
969 
970 /* helper to account the used device space in the range */
971 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
972 				   u64 end, u64 *length)
973 {
974 	struct btrfs_key key;
975 	struct btrfs_root *root = device->dev_root;
976 	struct btrfs_dev_extent *dev_extent;
977 	struct btrfs_path *path;
978 	u64 extent_end;
979 	int ret;
980 	int slot;
981 	struct extent_buffer *l;
982 
983 	*length = 0;
984 
985 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
986 		return 0;
987 
988 	path = btrfs_alloc_path();
989 	if (!path)
990 		return -ENOMEM;
991 	path->reada = 2;
992 
993 	key.objectid = device->devid;
994 	key.offset = start;
995 	key.type = BTRFS_DEV_EXTENT_KEY;
996 
997 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
998 	if (ret < 0)
999 		goto out;
1000 	if (ret > 0) {
1001 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1002 		if (ret < 0)
1003 			goto out;
1004 	}
1005 
1006 	while (1) {
1007 		l = path->nodes[0];
1008 		slot = path->slots[0];
1009 		if (slot >= btrfs_header_nritems(l)) {
1010 			ret = btrfs_next_leaf(root, path);
1011 			if (ret == 0)
1012 				continue;
1013 			if (ret < 0)
1014 				goto out;
1015 
1016 			break;
1017 		}
1018 		btrfs_item_key_to_cpu(l, &key, slot);
1019 
1020 		if (key.objectid < device->devid)
1021 			goto next;
1022 
1023 		if (key.objectid > device->devid)
1024 			break;
1025 
1026 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1027 			goto next;
1028 
1029 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1030 		extent_end = key.offset + btrfs_dev_extent_length(l,
1031 								  dev_extent);
1032 		if (key.offset <= start && extent_end > end) {
1033 			*length = end - start + 1;
1034 			break;
1035 		} else if (key.offset <= start && extent_end > start)
1036 			*length += extent_end - start;
1037 		else if (key.offset > start && extent_end <= end)
1038 			*length += extent_end - key.offset;
1039 		else if (key.offset > start && key.offset <= end) {
1040 			*length += end - key.offset + 1;
1041 			break;
1042 		} else if (key.offset > end)
1043 			break;
1044 
1045 next:
1046 		path->slots[0]++;
1047 	}
1048 	ret = 0;
1049 out:
1050 	btrfs_free_path(path);
1051 	return ret;
1052 }
1053 
1054 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1055 				   struct btrfs_device *device,
1056 				   u64 *start, u64 len)
1057 {
1058 	struct extent_map *em;
1059 	struct list_head *search_list = &trans->transaction->pending_chunks;
1060 	int ret = 0;
1061 
1062 again:
1063 	list_for_each_entry(em, search_list, list) {
1064 		struct map_lookup *map;
1065 		int i;
1066 
1067 		map = (struct map_lookup *)em->bdev;
1068 		for (i = 0; i < map->num_stripes; i++) {
1069 			if (map->stripes[i].dev != device)
1070 				continue;
1071 			if (map->stripes[i].physical >= *start + len ||
1072 			    map->stripes[i].physical + em->orig_block_len <=
1073 			    *start)
1074 				continue;
1075 			*start = map->stripes[i].physical +
1076 				em->orig_block_len;
1077 			ret = 1;
1078 		}
1079 	}
1080 	if (search_list == &trans->transaction->pending_chunks) {
1081 		search_list = &trans->root->fs_info->pinned_chunks;
1082 		goto again;
1083 	}
1084 
1085 	return ret;
1086 }
1087 
1088 
1089 /*
1090  * find_free_dev_extent - find free space in the specified device
1091  * @device:	the device which we search the free space in
1092  * @num_bytes:	the size of the free space that we need
1093  * @start:	store the start of the free space.
1094  * @len:	the size of the free space. that we find, or the size of the max
1095  * 		free space if we don't find suitable free space
1096  *
1097  * this uses a pretty simple search, the expectation is that it is
1098  * called very infrequently and that a given device has a small number
1099  * of extents
1100  *
1101  * @start is used to store the start of the free space if we find. But if we
1102  * don't find suitable free space, it will be used to store the start position
1103  * of the max free space.
1104  *
1105  * @len is used to store the size of the free space that we find.
1106  * But if we don't find suitable free space, it is used to store the size of
1107  * the max free space.
1108  */
1109 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1110 			 struct btrfs_device *device, u64 num_bytes,
1111 			 u64 *start, u64 *len)
1112 {
1113 	struct btrfs_key key;
1114 	struct btrfs_root *root = device->dev_root;
1115 	struct btrfs_dev_extent *dev_extent;
1116 	struct btrfs_path *path;
1117 	u64 hole_size;
1118 	u64 max_hole_start;
1119 	u64 max_hole_size;
1120 	u64 extent_end;
1121 	u64 search_start;
1122 	u64 search_end = device->total_bytes;
1123 	int ret;
1124 	int slot;
1125 	struct extent_buffer *l;
1126 
1127 	/* FIXME use last free of some kind */
1128 
1129 	/* we don't want to overwrite the superblock on the drive,
1130 	 * so we make sure to start at an offset of at least 1MB
1131 	 */
1132 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1133 
1134 	path = btrfs_alloc_path();
1135 	if (!path)
1136 		return -ENOMEM;
1137 
1138 	max_hole_start = search_start;
1139 	max_hole_size = 0;
1140 
1141 again:
1142 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1143 		ret = -ENOSPC;
1144 		goto out;
1145 	}
1146 
1147 	path->reada = 2;
1148 	path->search_commit_root = 1;
1149 	path->skip_locking = 1;
1150 
1151 	key.objectid = device->devid;
1152 	key.offset = search_start;
1153 	key.type = BTRFS_DEV_EXTENT_KEY;
1154 
1155 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1156 	if (ret < 0)
1157 		goto out;
1158 	if (ret > 0) {
1159 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1160 		if (ret < 0)
1161 			goto out;
1162 	}
1163 
1164 	while (1) {
1165 		l = path->nodes[0];
1166 		slot = path->slots[0];
1167 		if (slot >= btrfs_header_nritems(l)) {
1168 			ret = btrfs_next_leaf(root, path);
1169 			if (ret == 0)
1170 				continue;
1171 			if (ret < 0)
1172 				goto out;
1173 
1174 			break;
1175 		}
1176 		btrfs_item_key_to_cpu(l, &key, slot);
1177 
1178 		if (key.objectid < device->devid)
1179 			goto next;
1180 
1181 		if (key.objectid > device->devid)
1182 			break;
1183 
1184 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1185 			goto next;
1186 
1187 		if (key.offset > search_start) {
1188 			hole_size = key.offset - search_start;
1189 
1190 			/*
1191 			 * Have to check before we set max_hole_start, otherwise
1192 			 * we could end up sending back this offset anyway.
1193 			 */
1194 			if (contains_pending_extent(trans, device,
1195 						    &search_start,
1196 						    hole_size))
1197 				hole_size = 0;
1198 
1199 			if (hole_size > max_hole_size) {
1200 				max_hole_start = search_start;
1201 				max_hole_size = hole_size;
1202 			}
1203 
1204 			/*
1205 			 * If this free space is greater than which we need,
1206 			 * it must be the max free space that we have found
1207 			 * until now, so max_hole_start must point to the start
1208 			 * of this free space and the length of this free space
1209 			 * is stored in max_hole_size. Thus, we return
1210 			 * max_hole_start and max_hole_size and go back to the
1211 			 * caller.
1212 			 */
1213 			if (hole_size >= num_bytes) {
1214 				ret = 0;
1215 				goto out;
1216 			}
1217 		}
1218 
1219 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1220 		extent_end = key.offset + btrfs_dev_extent_length(l,
1221 								  dev_extent);
1222 		if (extent_end > search_start)
1223 			search_start = extent_end;
1224 next:
1225 		path->slots[0]++;
1226 		cond_resched();
1227 	}
1228 
1229 	/*
1230 	 * At this point, search_start should be the end of
1231 	 * allocated dev extents, and when shrinking the device,
1232 	 * search_end may be smaller than search_start.
1233 	 */
1234 	if (search_end > search_start) {
1235 		hole_size = search_end - search_start;
1236 
1237 		if (contains_pending_extent(trans, device, &search_start,
1238 					    hole_size)) {
1239 			btrfs_release_path(path);
1240 			goto again;
1241 		}
1242 
1243 		if (hole_size > max_hole_size) {
1244 			max_hole_start = search_start;
1245 			max_hole_size = hole_size;
1246 		}
1247 	}
1248 
1249 	/* See above. */
1250 	if (max_hole_size < num_bytes)
1251 		ret = -ENOSPC;
1252 	else
1253 		ret = 0;
1254 
1255 out:
1256 	btrfs_free_path(path);
1257 	*start = max_hole_start;
1258 	if (len)
1259 		*len = max_hole_size;
1260 	return ret;
1261 }
1262 
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1264 			  struct btrfs_device *device,
1265 			  u64 start, u64 *dev_extent_len)
1266 {
1267 	int ret;
1268 	struct btrfs_path *path;
1269 	struct btrfs_root *root = device->dev_root;
1270 	struct btrfs_key key;
1271 	struct btrfs_key found_key;
1272 	struct extent_buffer *leaf = NULL;
1273 	struct btrfs_dev_extent *extent = NULL;
1274 
1275 	path = btrfs_alloc_path();
1276 	if (!path)
1277 		return -ENOMEM;
1278 
1279 	key.objectid = device->devid;
1280 	key.offset = start;
1281 	key.type = BTRFS_DEV_EXTENT_KEY;
1282 again:
1283 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1284 	if (ret > 0) {
1285 		ret = btrfs_previous_item(root, path, key.objectid,
1286 					  BTRFS_DEV_EXTENT_KEY);
1287 		if (ret)
1288 			goto out;
1289 		leaf = path->nodes[0];
1290 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291 		extent = btrfs_item_ptr(leaf, path->slots[0],
1292 					struct btrfs_dev_extent);
1293 		BUG_ON(found_key.offset > start || found_key.offset +
1294 		       btrfs_dev_extent_length(leaf, extent) < start);
1295 		key = found_key;
1296 		btrfs_release_path(path);
1297 		goto again;
1298 	} else if (ret == 0) {
1299 		leaf = path->nodes[0];
1300 		extent = btrfs_item_ptr(leaf, path->slots[0],
1301 					struct btrfs_dev_extent);
1302 	} else {
1303 		btrfs_error(root->fs_info, ret, "Slot search failed");
1304 		goto out;
1305 	}
1306 
1307 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1308 
1309 	ret = btrfs_del_item(trans, root, path);
1310 	if (ret) {
1311 		btrfs_error(root->fs_info, ret,
1312 			    "Failed to remove dev extent item");
1313 	} else {
1314 		trans->transaction->have_free_bgs = 1;
1315 	}
1316 out:
1317 	btrfs_free_path(path);
1318 	return ret;
1319 }
1320 
1321 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1322 				  struct btrfs_device *device,
1323 				  u64 chunk_tree, u64 chunk_objectid,
1324 				  u64 chunk_offset, u64 start, u64 num_bytes)
1325 {
1326 	int ret;
1327 	struct btrfs_path *path;
1328 	struct btrfs_root *root = device->dev_root;
1329 	struct btrfs_dev_extent *extent;
1330 	struct extent_buffer *leaf;
1331 	struct btrfs_key key;
1332 
1333 	WARN_ON(!device->in_fs_metadata);
1334 	WARN_ON(device->is_tgtdev_for_dev_replace);
1335 	path = btrfs_alloc_path();
1336 	if (!path)
1337 		return -ENOMEM;
1338 
1339 	key.objectid = device->devid;
1340 	key.offset = start;
1341 	key.type = BTRFS_DEV_EXTENT_KEY;
1342 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1343 				      sizeof(*extent));
1344 	if (ret)
1345 		goto out;
1346 
1347 	leaf = path->nodes[0];
1348 	extent = btrfs_item_ptr(leaf, path->slots[0],
1349 				struct btrfs_dev_extent);
1350 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1351 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1352 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1353 
1354 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1355 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1356 
1357 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1358 	btrfs_mark_buffer_dirty(leaf);
1359 out:
1360 	btrfs_free_path(path);
1361 	return ret;
1362 }
1363 
1364 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1365 {
1366 	struct extent_map_tree *em_tree;
1367 	struct extent_map *em;
1368 	struct rb_node *n;
1369 	u64 ret = 0;
1370 
1371 	em_tree = &fs_info->mapping_tree.map_tree;
1372 	read_lock(&em_tree->lock);
1373 	n = rb_last(&em_tree->map);
1374 	if (n) {
1375 		em = rb_entry(n, struct extent_map, rb_node);
1376 		ret = em->start + em->len;
1377 	}
1378 	read_unlock(&em_tree->lock);
1379 
1380 	return ret;
1381 }
1382 
1383 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1384 				    u64 *devid_ret)
1385 {
1386 	int ret;
1387 	struct btrfs_key key;
1388 	struct btrfs_key found_key;
1389 	struct btrfs_path *path;
1390 
1391 	path = btrfs_alloc_path();
1392 	if (!path)
1393 		return -ENOMEM;
1394 
1395 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1396 	key.type = BTRFS_DEV_ITEM_KEY;
1397 	key.offset = (u64)-1;
1398 
1399 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1400 	if (ret < 0)
1401 		goto error;
1402 
1403 	BUG_ON(ret == 0); /* Corruption */
1404 
1405 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1406 				  BTRFS_DEV_ITEMS_OBJECTID,
1407 				  BTRFS_DEV_ITEM_KEY);
1408 	if (ret) {
1409 		*devid_ret = 1;
1410 	} else {
1411 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1412 				      path->slots[0]);
1413 		*devid_ret = found_key.offset + 1;
1414 	}
1415 	ret = 0;
1416 error:
1417 	btrfs_free_path(path);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * the device information is stored in the chunk root
1423  * the btrfs_device struct should be fully filled in
1424  */
1425 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1426 			    struct btrfs_root *root,
1427 			    struct btrfs_device *device)
1428 {
1429 	int ret;
1430 	struct btrfs_path *path;
1431 	struct btrfs_dev_item *dev_item;
1432 	struct extent_buffer *leaf;
1433 	struct btrfs_key key;
1434 	unsigned long ptr;
1435 
1436 	root = root->fs_info->chunk_root;
1437 
1438 	path = btrfs_alloc_path();
1439 	if (!path)
1440 		return -ENOMEM;
1441 
1442 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1443 	key.type = BTRFS_DEV_ITEM_KEY;
1444 	key.offset = device->devid;
1445 
1446 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1447 				      sizeof(*dev_item));
1448 	if (ret)
1449 		goto out;
1450 
1451 	leaf = path->nodes[0];
1452 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1453 
1454 	btrfs_set_device_id(leaf, dev_item, device->devid);
1455 	btrfs_set_device_generation(leaf, dev_item, 0);
1456 	btrfs_set_device_type(leaf, dev_item, device->type);
1457 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1458 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1459 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1460 	btrfs_set_device_total_bytes(leaf, dev_item,
1461 				     btrfs_device_get_disk_total_bytes(device));
1462 	btrfs_set_device_bytes_used(leaf, dev_item,
1463 				    btrfs_device_get_bytes_used(device));
1464 	btrfs_set_device_group(leaf, dev_item, 0);
1465 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1466 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1467 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1468 
1469 	ptr = btrfs_device_uuid(dev_item);
1470 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1471 	ptr = btrfs_device_fsid(dev_item);
1472 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1473 	btrfs_mark_buffer_dirty(leaf);
1474 
1475 	ret = 0;
1476 out:
1477 	btrfs_free_path(path);
1478 	return ret;
1479 }
1480 
1481 /*
1482  * Function to update ctime/mtime for a given device path.
1483  * Mainly used for ctime/mtime based probe like libblkid.
1484  */
1485 static void update_dev_time(char *path_name)
1486 {
1487 	struct file *filp;
1488 
1489 	filp = filp_open(path_name, O_RDWR, 0);
1490 	if (IS_ERR(filp))
1491 		return;
1492 	file_update_time(filp);
1493 	filp_close(filp, NULL);
1494 	return;
1495 }
1496 
1497 static int btrfs_rm_dev_item(struct btrfs_root *root,
1498 			     struct btrfs_device *device)
1499 {
1500 	int ret;
1501 	struct btrfs_path *path;
1502 	struct btrfs_key key;
1503 	struct btrfs_trans_handle *trans;
1504 
1505 	root = root->fs_info->chunk_root;
1506 
1507 	path = btrfs_alloc_path();
1508 	if (!path)
1509 		return -ENOMEM;
1510 
1511 	trans = btrfs_start_transaction(root, 0);
1512 	if (IS_ERR(trans)) {
1513 		btrfs_free_path(path);
1514 		return PTR_ERR(trans);
1515 	}
1516 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1517 	key.type = BTRFS_DEV_ITEM_KEY;
1518 	key.offset = device->devid;
1519 
1520 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1521 	if (ret < 0)
1522 		goto out;
1523 
1524 	if (ret > 0) {
1525 		ret = -ENOENT;
1526 		goto out;
1527 	}
1528 
1529 	ret = btrfs_del_item(trans, root, path);
1530 	if (ret)
1531 		goto out;
1532 out:
1533 	btrfs_free_path(path);
1534 	btrfs_commit_transaction(trans, root);
1535 	return ret;
1536 }
1537 
1538 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1539 {
1540 	struct btrfs_device *device;
1541 	struct btrfs_device *next_device;
1542 	struct block_device *bdev;
1543 	struct buffer_head *bh = NULL;
1544 	struct btrfs_super_block *disk_super;
1545 	struct btrfs_fs_devices *cur_devices;
1546 	u64 all_avail;
1547 	u64 devid;
1548 	u64 num_devices;
1549 	u8 *dev_uuid;
1550 	unsigned seq;
1551 	int ret = 0;
1552 	bool clear_super = false;
1553 
1554 	mutex_lock(&uuid_mutex);
1555 
1556 	do {
1557 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1558 
1559 		all_avail = root->fs_info->avail_data_alloc_bits |
1560 			    root->fs_info->avail_system_alloc_bits |
1561 			    root->fs_info->avail_metadata_alloc_bits;
1562 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1563 
1564 	num_devices = root->fs_info->fs_devices->num_devices;
1565 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1566 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1567 		WARN_ON(num_devices < 1);
1568 		num_devices--;
1569 	}
1570 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1571 
1572 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1573 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1574 		goto out;
1575 	}
1576 
1577 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1578 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1579 		goto out;
1580 	}
1581 
1582 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1583 	    root->fs_info->fs_devices->rw_devices <= 2) {
1584 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1585 		goto out;
1586 	}
1587 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1588 	    root->fs_info->fs_devices->rw_devices <= 3) {
1589 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1590 		goto out;
1591 	}
1592 
1593 	if (strcmp(device_path, "missing") == 0) {
1594 		struct list_head *devices;
1595 		struct btrfs_device *tmp;
1596 
1597 		device = NULL;
1598 		devices = &root->fs_info->fs_devices->devices;
1599 		/*
1600 		 * It is safe to read the devices since the volume_mutex
1601 		 * is held.
1602 		 */
1603 		list_for_each_entry(tmp, devices, dev_list) {
1604 			if (tmp->in_fs_metadata &&
1605 			    !tmp->is_tgtdev_for_dev_replace &&
1606 			    !tmp->bdev) {
1607 				device = tmp;
1608 				break;
1609 			}
1610 		}
1611 		bdev = NULL;
1612 		bh = NULL;
1613 		disk_super = NULL;
1614 		if (!device) {
1615 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1616 			goto out;
1617 		}
1618 	} else {
1619 		ret = btrfs_get_bdev_and_sb(device_path,
1620 					    FMODE_WRITE | FMODE_EXCL,
1621 					    root->fs_info->bdev_holder, 0,
1622 					    &bdev, &bh);
1623 		if (ret)
1624 			goto out;
1625 		disk_super = (struct btrfs_super_block *)bh->b_data;
1626 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1627 		dev_uuid = disk_super->dev_item.uuid;
1628 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1629 					   disk_super->fsid);
1630 		if (!device) {
1631 			ret = -ENOENT;
1632 			goto error_brelse;
1633 		}
1634 	}
1635 
1636 	if (device->is_tgtdev_for_dev_replace) {
1637 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1638 		goto error_brelse;
1639 	}
1640 
1641 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1642 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1643 		goto error_brelse;
1644 	}
1645 
1646 	if (device->writeable) {
1647 		lock_chunks(root);
1648 		list_del_init(&device->dev_alloc_list);
1649 		device->fs_devices->rw_devices--;
1650 		unlock_chunks(root);
1651 		clear_super = true;
1652 	}
1653 
1654 	mutex_unlock(&uuid_mutex);
1655 	ret = btrfs_shrink_device(device, 0);
1656 	mutex_lock(&uuid_mutex);
1657 	if (ret)
1658 		goto error_undo;
1659 
1660 	/*
1661 	 * TODO: the superblock still includes this device in its num_devices
1662 	 * counter although write_all_supers() is not locked out. This
1663 	 * could give a filesystem state which requires a degraded mount.
1664 	 */
1665 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1666 	if (ret)
1667 		goto error_undo;
1668 
1669 	device->in_fs_metadata = 0;
1670 	btrfs_scrub_cancel_dev(root->fs_info, device);
1671 
1672 	/*
1673 	 * the device list mutex makes sure that we don't change
1674 	 * the device list while someone else is writing out all
1675 	 * the device supers. Whoever is writing all supers, should
1676 	 * lock the device list mutex before getting the number of
1677 	 * devices in the super block (super_copy). Conversely,
1678 	 * whoever updates the number of devices in the super block
1679 	 * (super_copy) should hold the device list mutex.
1680 	 */
1681 
1682 	cur_devices = device->fs_devices;
1683 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1684 	list_del_rcu(&device->dev_list);
1685 
1686 	device->fs_devices->num_devices--;
1687 	device->fs_devices->total_devices--;
1688 
1689 	if (device->missing)
1690 		device->fs_devices->missing_devices--;
1691 
1692 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1693 				 struct btrfs_device, dev_list);
1694 	if (device->bdev == root->fs_info->sb->s_bdev)
1695 		root->fs_info->sb->s_bdev = next_device->bdev;
1696 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1697 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1698 
1699 	if (device->bdev) {
1700 		device->fs_devices->open_devices--;
1701 		/* remove sysfs entry */
1702 		btrfs_kobj_rm_device(root->fs_info, device);
1703 	}
1704 
1705 	call_rcu(&device->rcu, free_device);
1706 
1707 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1708 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1709 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1710 
1711 	if (cur_devices->open_devices == 0) {
1712 		struct btrfs_fs_devices *fs_devices;
1713 		fs_devices = root->fs_info->fs_devices;
1714 		while (fs_devices) {
1715 			if (fs_devices->seed == cur_devices) {
1716 				fs_devices->seed = cur_devices->seed;
1717 				break;
1718 			}
1719 			fs_devices = fs_devices->seed;
1720 		}
1721 		cur_devices->seed = NULL;
1722 		__btrfs_close_devices(cur_devices);
1723 		free_fs_devices(cur_devices);
1724 	}
1725 
1726 	root->fs_info->num_tolerated_disk_barrier_failures =
1727 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1728 
1729 	/*
1730 	 * at this point, the device is zero sized.  We want to
1731 	 * remove it from the devices list and zero out the old super
1732 	 */
1733 	if (clear_super && disk_super) {
1734 		u64 bytenr;
1735 		int i;
1736 
1737 		/* make sure this device isn't detected as part of
1738 		 * the FS anymore
1739 		 */
1740 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1741 		set_buffer_dirty(bh);
1742 		sync_dirty_buffer(bh);
1743 
1744 		/* clear the mirror copies of super block on the disk
1745 		 * being removed, 0th copy is been taken care above and
1746 		 * the below would take of the rest
1747 		 */
1748 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1749 			bytenr = btrfs_sb_offset(i);
1750 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1751 					i_size_read(bdev->bd_inode))
1752 				break;
1753 
1754 			brelse(bh);
1755 			bh = __bread(bdev, bytenr / 4096,
1756 					BTRFS_SUPER_INFO_SIZE);
1757 			if (!bh)
1758 				continue;
1759 
1760 			disk_super = (struct btrfs_super_block *)bh->b_data;
1761 
1762 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1763 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1764 				continue;
1765 			}
1766 			memset(&disk_super->magic, 0,
1767 						sizeof(disk_super->magic));
1768 			set_buffer_dirty(bh);
1769 			sync_dirty_buffer(bh);
1770 		}
1771 	}
1772 
1773 	ret = 0;
1774 
1775 	if (bdev) {
1776 		/* Notify udev that device has changed */
1777 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1778 
1779 		/* Update ctime/mtime for device path for libblkid */
1780 		update_dev_time(device_path);
1781 	}
1782 
1783 error_brelse:
1784 	brelse(bh);
1785 	if (bdev)
1786 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1787 out:
1788 	mutex_unlock(&uuid_mutex);
1789 	return ret;
1790 error_undo:
1791 	if (device->writeable) {
1792 		lock_chunks(root);
1793 		list_add(&device->dev_alloc_list,
1794 			 &root->fs_info->fs_devices->alloc_list);
1795 		device->fs_devices->rw_devices++;
1796 		unlock_chunks(root);
1797 	}
1798 	goto error_brelse;
1799 }
1800 
1801 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1802 					struct btrfs_device *srcdev)
1803 {
1804 	struct btrfs_fs_devices *fs_devices;
1805 
1806 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1807 
1808 	/*
1809 	 * in case of fs with no seed, srcdev->fs_devices will point
1810 	 * to fs_devices of fs_info. However when the dev being replaced is
1811 	 * a seed dev it will point to the seed's local fs_devices. In short
1812 	 * srcdev will have its correct fs_devices in both the cases.
1813 	 */
1814 	fs_devices = srcdev->fs_devices;
1815 
1816 	list_del_rcu(&srcdev->dev_list);
1817 	list_del_rcu(&srcdev->dev_alloc_list);
1818 	fs_devices->num_devices--;
1819 	if (srcdev->missing)
1820 		fs_devices->missing_devices--;
1821 
1822 	if (srcdev->writeable) {
1823 		fs_devices->rw_devices--;
1824 		/* zero out the old super if it is writable */
1825 		btrfs_scratch_superblock(srcdev);
1826 	}
1827 
1828 	if (srcdev->bdev)
1829 		fs_devices->open_devices--;
1830 }
1831 
1832 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1833 				      struct btrfs_device *srcdev)
1834 {
1835 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1836 
1837 	call_rcu(&srcdev->rcu, free_device);
1838 
1839 	/*
1840 	 * unless fs_devices is seed fs, num_devices shouldn't go
1841 	 * zero
1842 	 */
1843 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1844 
1845 	/* if this is no devs we rather delete the fs_devices */
1846 	if (!fs_devices->num_devices) {
1847 		struct btrfs_fs_devices *tmp_fs_devices;
1848 
1849 		tmp_fs_devices = fs_info->fs_devices;
1850 		while (tmp_fs_devices) {
1851 			if (tmp_fs_devices->seed == fs_devices) {
1852 				tmp_fs_devices->seed = fs_devices->seed;
1853 				break;
1854 			}
1855 			tmp_fs_devices = tmp_fs_devices->seed;
1856 		}
1857 		fs_devices->seed = NULL;
1858 		__btrfs_close_devices(fs_devices);
1859 		free_fs_devices(fs_devices);
1860 	}
1861 }
1862 
1863 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1864 				      struct btrfs_device *tgtdev)
1865 {
1866 	struct btrfs_device *next_device;
1867 
1868 	mutex_lock(&uuid_mutex);
1869 	WARN_ON(!tgtdev);
1870 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1871 	if (tgtdev->bdev) {
1872 		btrfs_scratch_superblock(tgtdev);
1873 		fs_info->fs_devices->open_devices--;
1874 	}
1875 	fs_info->fs_devices->num_devices--;
1876 
1877 	next_device = list_entry(fs_info->fs_devices->devices.next,
1878 				 struct btrfs_device, dev_list);
1879 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1880 		fs_info->sb->s_bdev = next_device->bdev;
1881 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1882 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1883 	list_del_rcu(&tgtdev->dev_list);
1884 
1885 	call_rcu(&tgtdev->rcu, free_device);
1886 
1887 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1888 	mutex_unlock(&uuid_mutex);
1889 }
1890 
1891 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1892 				     struct btrfs_device **device)
1893 {
1894 	int ret = 0;
1895 	struct btrfs_super_block *disk_super;
1896 	u64 devid;
1897 	u8 *dev_uuid;
1898 	struct block_device *bdev;
1899 	struct buffer_head *bh;
1900 
1901 	*device = NULL;
1902 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1903 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1904 	if (ret)
1905 		return ret;
1906 	disk_super = (struct btrfs_super_block *)bh->b_data;
1907 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1908 	dev_uuid = disk_super->dev_item.uuid;
1909 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1910 				    disk_super->fsid);
1911 	brelse(bh);
1912 	if (!*device)
1913 		ret = -ENOENT;
1914 	blkdev_put(bdev, FMODE_READ);
1915 	return ret;
1916 }
1917 
1918 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1919 					 char *device_path,
1920 					 struct btrfs_device **device)
1921 {
1922 	*device = NULL;
1923 	if (strcmp(device_path, "missing") == 0) {
1924 		struct list_head *devices;
1925 		struct btrfs_device *tmp;
1926 
1927 		devices = &root->fs_info->fs_devices->devices;
1928 		/*
1929 		 * It is safe to read the devices since the volume_mutex
1930 		 * is held by the caller.
1931 		 */
1932 		list_for_each_entry(tmp, devices, dev_list) {
1933 			if (tmp->in_fs_metadata && !tmp->bdev) {
1934 				*device = tmp;
1935 				break;
1936 			}
1937 		}
1938 
1939 		if (!*device) {
1940 			btrfs_err(root->fs_info, "no missing device found");
1941 			return -ENOENT;
1942 		}
1943 
1944 		return 0;
1945 	} else {
1946 		return btrfs_find_device_by_path(root, device_path, device);
1947 	}
1948 }
1949 
1950 /*
1951  * does all the dirty work required for changing file system's UUID.
1952  */
1953 static int btrfs_prepare_sprout(struct btrfs_root *root)
1954 {
1955 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1956 	struct btrfs_fs_devices *old_devices;
1957 	struct btrfs_fs_devices *seed_devices;
1958 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1959 	struct btrfs_device *device;
1960 	u64 super_flags;
1961 
1962 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1963 	if (!fs_devices->seeding)
1964 		return -EINVAL;
1965 
1966 	seed_devices = __alloc_fs_devices();
1967 	if (IS_ERR(seed_devices))
1968 		return PTR_ERR(seed_devices);
1969 
1970 	old_devices = clone_fs_devices(fs_devices);
1971 	if (IS_ERR(old_devices)) {
1972 		kfree(seed_devices);
1973 		return PTR_ERR(old_devices);
1974 	}
1975 
1976 	list_add(&old_devices->list, &fs_uuids);
1977 
1978 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1979 	seed_devices->opened = 1;
1980 	INIT_LIST_HEAD(&seed_devices->devices);
1981 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1982 	mutex_init(&seed_devices->device_list_mutex);
1983 
1984 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1985 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1986 			      synchronize_rcu);
1987 	list_for_each_entry(device, &seed_devices->devices, dev_list)
1988 		device->fs_devices = seed_devices;
1989 
1990 	lock_chunks(root);
1991 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1992 	unlock_chunks(root);
1993 
1994 	fs_devices->seeding = 0;
1995 	fs_devices->num_devices = 0;
1996 	fs_devices->open_devices = 0;
1997 	fs_devices->missing_devices = 0;
1998 	fs_devices->rotating = 0;
1999 	fs_devices->seed = seed_devices;
2000 
2001 	generate_random_uuid(fs_devices->fsid);
2002 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2003 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2004 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2005 
2006 	super_flags = btrfs_super_flags(disk_super) &
2007 		      ~BTRFS_SUPER_FLAG_SEEDING;
2008 	btrfs_set_super_flags(disk_super, super_flags);
2009 
2010 	return 0;
2011 }
2012 
2013 /*
2014  * strore the expected generation for seed devices in device items.
2015  */
2016 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2017 			       struct btrfs_root *root)
2018 {
2019 	struct btrfs_path *path;
2020 	struct extent_buffer *leaf;
2021 	struct btrfs_dev_item *dev_item;
2022 	struct btrfs_device *device;
2023 	struct btrfs_key key;
2024 	u8 fs_uuid[BTRFS_UUID_SIZE];
2025 	u8 dev_uuid[BTRFS_UUID_SIZE];
2026 	u64 devid;
2027 	int ret;
2028 
2029 	path = btrfs_alloc_path();
2030 	if (!path)
2031 		return -ENOMEM;
2032 
2033 	root = root->fs_info->chunk_root;
2034 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2035 	key.offset = 0;
2036 	key.type = BTRFS_DEV_ITEM_KEY;
2037 
2038 	while (1) {
2039 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2040 		if (ret < 0)
2041 			goto error;
2042 
2043 		leaf = path->nodes[0];
2044 next_slot:
2045 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2046 			ret = btrfs_next_leaf(root, path);
2047 			if (ret > 0)
2048 				break;
2049 			if (ret < 0)
2050 				goto error;
2051 			leaf = path->nodes[0];
2052 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2053 			btrfs_release_path(path);
2054 			continue;
2055 		}
2056 
2057 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2058 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2059 		    key.type != BTRFS_DEV_ITEM_KEY)
2060 			break;
2061 
2062 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2063 					  struct btrfs_dev_item);
2064 		devid = btrfs_device_id(leaf, dev_item);
2065 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2066 				   BTRFS_UUID_SIZE);
2067 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2068 				   BTRFS_UUID_SIZE);
2069 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2070 					   fs_uuid);
2071 		BUG_ON(!device); /* Logic error */
2072 
2073 		if (device->fs_devices->seeding) {
2074 			btrfs_set_device_generation(leaf, dev_item,
2075 						    device->generation);
2076 			btrfs_mark_buffer_dirty(leaf);
2077 		}
2078 
2079 		path->slots[0]++;
2080 		goto next_slot;
2081 	}
2082 	ret = 0;
2083 error:
2084 	btrfs_free_path(path);
2085 	return ret;
2086 }
2087 
2088 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2089 {
2090 	struct request_queue *q;
2091 	struct btrfs_trans_handle *trans;
2092 	struct btrfs_device *device;
2093 	struct block_device *bdev;
2094 	struct list_head *devices;
2095 	struct super_block *sb = root->fs_info->sb;
2096 	struct rcu_string *name;
2097 	u64 tmp;
2098 	int seeding_dev = 0;
2099 	int ret = 0;
2100 
2101 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2102 		return -EROFS;
2103 
2104 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2105 				  root->fs_info->bdev_holder);
2106 	if (IS_ERR(bdev))
2107 		return PTR_ERR(bdev);
2108 
2109 	if (root->fs_info->fs_devices->seeding) {
2110 		seeding_dev = 1;
2111 		down_write(&sb->s_umount);
2112 		mutex_lock(&uuid_mutex);
2113 	}
2114 
2115 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2116 
2117 	devices = &root->fs_info->fs_devices->devices;
2118 
2119 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2120 	list_for_each_entry(device, devices, dev_list) {
2121 		if (device->bdev == bdev) {
2122 			ret = -EEXIST;
2123 			mutex_unlock(
2124 				&root->fs_info->fs_devices->device_list_mutex);
2125 			goto error;
2126 		}
2127 	}
2128 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2129 
2130 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2131 	if (IS_ERR(device)) {
2132 		/* we can safely leave the fs_devices entry around */
2133 		ret = PTR_ERR(device);
2134 		goto error;
2135 	}
2136 
2137 	name = rcu_string_strdup(device_path, GFP_NOFS);
2138 	if (!name) {
2139 		kfree(device);
2140 		ret = -ENOMEM;
2141 		goto error;
2142 	}
2143 	rcu_assign_pointer(device->name, name);
2144 
2145 	trans = btrfs_start_transaction(root, 0);
2146 	if (IS_ERR(trans)) {
2147 		rcu_string_free(device->name);
2148 		kfree(device);
2149 		ret = PTR_ERR(trans);
2150 		goto error;
2151 	}
2152 
2153 	q = bdev_get_queue(bdev);
2154 	if (blk_queue_discard(q))
2155 		device->can_discard = 1;
2156 	device->writeable = 1;
2157 	device->generation = trans->transid;
2158 	device->io_width = root->sectorsize;
2159 	device->io_align = root->sectorsize;
2160 	device->sector_size = root->sectorsize;
2161 	device->total_bytes = i_size_read(bdev->bd_inode);
2162 	device->disk_total_bytes = device->total_bytes;
2163 	device->commit_total_bytes = device->total_bytes;
2164 	device->dev_root = root->fs_info->dev_root;
2165 	device->bdev = bdev;
2166 	device->in_fs_metadata = 1;
2167 	device->is_tgtdev_for_dev_replace = 0;
2168 	device->mode = FMODE_EXCL;
2169 	device->dev_stats_valid = 1;
2170 	set_blocksize(device->bdev, 4096);
2171 
2172 	if (seeding_dev) {
2173 		sb->s_flags &= ~MS_RDONLY;
2174 		ret = btrfs_prepare_sprout(root);
2175 		BUG_ON(ret); /* -ENOMEM */
2176 	}
2177 
2178 	device->fs_devices = root->fs_info->fs_devices;
2179 
2180 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2181 	lock_chunks(root);
2182 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2183 	list_add(&device->dev_alloc_list,
2184 		 &root->fs_info->fs_devices->alloc_list);
2185 	root->fs_info->fs_devices->num_devices++;
2186 	root->fs_info->fs_devices->open_devices++;
2187 	root->fs_info->fs_devices->rw_devices++;
2188 	root->fs_info->fs_devices->total_devices++;
2189 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2190 
2191 	spin_lock(&root->fs_info->free_chunk_lock);
2192 	root->fs_info->free_chunk_space += device->total_bytes;
2193 	spin_unlock(&root->fs_info->free_chunk_lock);
2194 
2195 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2196 		root->fs_info->fs_devices->rotating = 1;
2197 
2198 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2199 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2200 				    tmp + device->total_bytes);
2201 
2202 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2203 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2204 				    tmp + 1);
2205 
2206 	/* add sysfs device entry */
2207 	btrfs_kobj_add_device(root->fs_info, device);
2208 
2209 	/*
2210 	 * we've got more storage, clear any full flags on the space
2211 	 * infos
2212 	 */
2213 	btrfs_clear_space_info_full(root->fs_info);
2214 
2215 	unlock_chunks(root);
2216 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2217 
2218 	if (seeding_dev) {
2219 		lock_chunks(root);
2220 		ret = init_first_rw_device(trans, root, device);
2221 		unlock_chunks(root);
2222 		if (ret) {
2223 			btrfs_abort_transaction(trans, root, ret);
2224 			goto error_trans;
2225 		}
2226 	}
2227 
2228 	ret = btrfs_add_device(trans, root, device);
2229 	if (ret) {
2230 		btrfs_abort_transaction(trans, root, ret);
2231 		goto error_trans;
2232 	}
2233 
2234 	if (seeding_dev) {
2235 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2236 
2237 		ret = btrfs_finish_sprout(trans, root);
2238 		if (ret) {
2239 			btrfs_abort_transaction(trans, root, ret);
2240 			goto error_trans;
2241 		}
2242 
2243 		/* Sprouting would change fsid of the mounted root,
2244 		 * so rename the fsid on the sysfs
2245 		 */
2246 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2247 						root->fs_info->fsid);
2248 		if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2249 			goto error_trans;
2250 	}
2251 
2252 	root->fs_info->num_tolerated_disk_barrier_failures =
2253 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2254 	ret = btrfs_commit_transaction(trans, root);
2255 
2256 	if (seeding_dev) {
2257 		mutex_unlock(&uuid_mutex);
2258 		up_write(&sb->s_umount);
2259 
2260 		if (ret) /* transaction commit */
2261 			return ret;
2262 
2263 		ret = btrfs_relocate_sys_chunks(root);
2264 		if (ret < 0)
2265 			btrfs_error(root->fs_info, ret,
2266 				    "Failed to relocate sys chunks after "
2267 				    "device initialization. This can be fixed "
2268 				    "using the \"btrfs balance\" command.");
2269 		trans = btrfs_attach_transaction(root);
2270 		if (IS_ERR(trans)) {
2271 			if (PTR_ERR(trans) == -ENOENT)
2272 				return 0;
2273 			return PTR_ERR(trans);
2274 		}
2275 		ret = btrfs_commit_transaction(trans, root);
2276 	}
2277 
2278 	/* Update ctime/mtime for libblkid */
2279 	update_dev_time(device_path);
2280 	return ret;
2281 
2282 error_trans:
2283 	btrfs_end_transaction(trans, root);
2284 	rcu_string_free(device->name);
2285 	btrfs_kobj_rm_device(root->fs_info, device);
2286 	kfree(device);
2287 error:
2288 	blkdev_put(bdev, FMODE_EXCL);
2289 	if (seeding_dev) {
2290 		mutex_unlock(&uuid_mutex);
2291 		up_write(&sb->s_umount);
2292 	}
2293 	return ret;
2294 }
2295 
2296 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2297 				  struct btrfs_device *srcdev,
2298 				  struct btrfs_device **device_out)
2299 {
2300 	struct request_queue *q;
2301 	struct btrfs_device *device;
2302 	struct block_device *bdev;
2303 	struct btrfs_fs_info *fs_info = root->fs_info;
2304 	struct list_head *devices;
2305 	struct rcu_string *name;
2306 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2307 	int ret = 0;
2308 
2309 	*device_out = NULL;
2310 	if (fs_info->fs_devices->seeding) {
2311 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2312 		return -EINVAL;
2313 	}
2314 
2315 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2316 				  fs_info->bdev_holder);
2317 	if (IS_ERR(bdev)) {
2318 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2319 		return PTR_ERR(bdev);
2320 	}
2321 
2322 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2323 
2324 	devices = &fs_info->fs_devices->devices;
2325 	list_for_each_entry(device, devices, dev_list) {
2326 		if (device->bdev == bdev) {
2327 			btrfs_err(fs_info, "target device is in the filesystem!");
2328 			ret = -EEXIST;
2329 			goto error;
2330 		}
2331 	}
2332 
2333 
2334 	if (i_size_read(bdev->bd_inode) <
2335 	    btrfs_device_get_total_bytes(srcdev)) {
2336 		btrfs_err(fs_info, "target device is smaller than source device!");
2337 		ret = -EINVAL;
2338 		goto error;
2339 	}
2340 
2341 
2342 	device = btrfs_alloc_device(NULL, &devid, NULL);
2343 	if (IS_ERR(device)) {
2344 		ret = PTR_ERR(device);
2345 		goto error;
2346 	}
2347 
2348 	name = rcu_string_strdup(device_path, GFP_NOFS);
2349 	if (!name) {
2350 		kfree(device);
2351 		ret = -ENOMEM;
2352 		goto error;
2353 	}
2354 	rcu_assign_pointer(device->name, name);
2355 
2356 	q = bdev_get_queue(bdev);
2357 	if (blk_queue_discard(q))
2358 		device->can_discard = 1;
2359 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360 	device->writeable = 1;
2361 	device->generation = 0;
2362 	device->io_width = root->sectorsize;
2363 	device->io_align = root->sectorsize;
2364 	device->sector_size = root->sectorsize;
2365 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2366 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2367 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2368 	ASSERT(list_empty(&srcdev->resized_list));
2369 	device->commit_total_bytes = srcdev->commit_total_bytes;
2370 	device->commit_bytes_used = device->bytes_used;
2371 	device->dev_root = fs_info->dev_root;
2372 	device->bdev = bdev;
2373 	device->in_fs_metadata = 1;
2374 	device->is_tgtdev_for_dev_replace = 1;
2375 	device->mode = FMODE_EXCL;
2376 	device->dev_stats_valid = 1;
2377 	set_blocksize(device->bdev, 4096);
2378 	device->fs_devices = fs_info->fs_devices;
2379 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2380 	fs_info->fs_devices->num_devices++;
2381 	fs_info->fs_devices->open_devices++;
2382 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2383 
2384 	*device_out = device;
2385 	return ret;
2386 
2387 error:
2388 	blkdev_put(bdev, FMODE_EXCL);
2389 	return ret;
2390 }
2391 
2392 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2393 					      struct btrfs_device *tgtdev)
2394 {
2395 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2396 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2397 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2398 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2399 	tgtdev->dev_root = fs_info->dev_root;
2400 	tgtdev->in_fs_metadata = 1;
2401 }
2402 
2403 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2404 					struct btrfs_device *device)
2405 {
2406 	int ret;
2407 	struct btrfs_path *path;
2408 	struct btrfs_root *root;
2409 	struct btrfs_dev_item *dev_item;
2410 	struct extent_buffer *leaf;
2411 	struct btrfs_key key;
2412 
2413 	root = device->dev_root->fs_info->chunk_root;
2414 
2415 	path = btrfs_alloc_path();
2416 	if (!path)
2417 		return -ENOMEM;
2418 
2419 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2420 	key.type = BTRFS_DEV_ITEM_KEY;
2421 	key.offset = device->devid;
2422 
2423 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2424 	if (ret < 0)
2425 		goto out;
2426 
2427 	if (ret > 0) {
2428 		ret = -ENOENT;
2429 		goto out;
2430 	}
2431 
2432 	leaf = path->nodes[0];
2433 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2434 
2435 	btrfs_set_device_id(leaf, dev_item, device->devid);
2436 	btrfs_set_device_type(leaf, dev_item, device->type);
2437 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2438 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2439 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2440 	btrfs_set_device_total_bytes(leaf, dev_item,
2441 				     btrfs_device_get_disk_total_bytes(device));
2442 	btrfs_set_device_bytes_used(leaf, dev_item,
2443 				    btrfs_device_get_bytes_used(device));
2444 	btrfs_mark_buffer_dirty(leaf);
2445 
2446 out:
2447 	btrfs_free_path(path);
2448 	return ret;
2449 }
2450 
2451 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2452 		      struct btrfs_device *device, u64 new_size)
2453 {
2454 	struct btrfs_super_block *super_copy =
2455 		device->dev_root->fs_info->super_copy;
2456 	struct btrfs_fs_devices *fs_devices;
2457 	u64 old_total;
2458 	u64 diff;
2459 
2460 	if (!device->writeable)
2461 		return -EACCES;
2462 
2463 	lock_chunks(device->dev_root);
2464 	old_total = btrfs_super_total_bytes(super_copy);
2465 	diff = new_size - device->total_bytes;
2466 
2467 	if (new_size <= device->total_bytes ||
2468 	    device->is_tgtdev_for_dev_replace) {
2469 		unlock_chunks(device->dev_root);
2470 		return -EINVAL;
2471 	}
2472 
2473 	fs_devices = device->dev_root->fs_info->fs_devices;
2474 
2475 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2476 	device->fs_devices->total_rw_bytes += diff;
2477 
2478 	btrfs_device_set_total_bytes(device, new_size);
2479 	btrfs_device_set_disk_total_bytes(device, new_size);
2480 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2481 	if (list_empty(&device->resized_list))
2482 		list_add_tail(&device->resized_list,
2483 			      &fs_devices->resized_devices);
2484 	unlock_chunks(device->dev_root);
2485 
2486 	return btrfs_update_device(trans, device);
2487 }
2488 
2489 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2490 			    struct btrfs_root *root, u64 chunk_objectid,
2491 			    u64 chunk_offset)
2492 {
2493 	int ret;
2494 	struct btrfs_path *path;
2495 	struct btrfs_key key;
2496 
2497 	root = root->fs_info->chunk_root;
2498 	path = btrfs_alloc_path();
2499 	if (!path)
2500 		return -ENOMEM;
2501 
2502 	key.objectid = chunk_objectid;
2503 	key.offset = chunk_offset;
2504 	key.type = BTRFS_CHUNK_ITEM_KEY;
2505 
2506 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2507 	if (ret < 0)
2508 		goto out;
2509 	else if (ret > 0) { /* Logic error or corruption */
2510 		btrfs_error(root->fs_info, -ENOENT,
2511 			    "Failed lookup while freeing chunk.");
2512 		ret = -ENOENT;
2513 		goto out;
2514 	}
2515 
2516 	ret = btrfs_del_item(trans, root, path);
2517 	if (ret < 0)
2518 		btrfs_error(root->fs_info, ret,
2519 			    "Failed to delete chunk item.");
2520 out:
2521 	btrfs_free_path(path);
2522 	return ret;
2523 }
2524 
2525 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2526 			chunk_offset)
2527 {
2528 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2529 	struct btrfs_disk_key *disk_key;
2530 	struct btrfs_chunk *chunk;
2531 	u8 *ptr;
2532 	int ret = 0;
2533 	u32 num_stripes;
2534 	u32 array_size;
2535 	u32 len = 0;
2536 	u32 cur;
2537 	struct btrfs_key key;
2538 
2539 	lock_chunks(root);
2540 	array_size = btrfs_super_sys_array_size(super_copy);
2541 
2542 	ptr = super_copy->sys_chunk_array;
2543 	cur = 0;
2544 
2545 	while (cur < array_size) {
2546 		disk_key = (struct btrfs_disk_key *)ptr;
2547 		btrfs_disk_key_to_cpu(&key, disk_key);
2548 
2549 		len = sizeof(*disk_key);
2550 
2551 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2552 			chunk = (struct btrfs_chunk *)(ptr + len);
2553 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2554 			len += btrfs_chunk_item_size(num_stripes);
2555 		} else {
2556 			ret = -EIO;
2557 			break;
2558 		}
2559 		if (key.objectid == chunk_objectid &&
2560 		    key.offset == chunk_offset) {
2561 			memmove(ptr, ptr + len, array_size - (cur + len));
2562 			array_size -= len;
2563 			btrfs_set_super_sys_array_size(super_copy, array_size);
2564 		} else {
2565 			ptr += len;
2566 			cur += len;
2567 		}
2568 	}
2569 	unlock_chunks(root);
2570 	return ret;
2571 }
2572 
2573 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2574 		       struct btrfs_root *root, u64 chunk_offset)
2575 {
2576 	struct extent_map_tree *em_tree;
2577 	struct extent_map *em;
2578 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2579 	struct map_lookup *map;
2580 	u64 dev_extent_len = 0;
2581 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2582 	int i, ret = 0;
2583 
2584 	/* Just in case */
2585 	root = root->fs_info->chunk_root;
2586 	em_tree = &root->fs_info->mapping_tree.map_tree;
2587 
2588 	read_lock(&em_tree->lock);
2589 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2590 	read_unlock(&em_tree->lock);
2591 
2592 	if (!em || em->start > chunk_offset ||
2593 	    em->start + em->len < chunk_offset) {
2594 		/*
2595 		 * This is a logic error, but we don't want to just rely on the
2596 		 * user having built with ASSERT enabled, so if ASSERT doens't
2597 		 * do anything we still error out.
2598 		 */
2599 		ASSERT(0);
2600 		if (em)
2601 			free_extent_map(em);
2602 		return -EINVAL;
2603 	}
2604 	map = (struct map_lookup *)em->bdev;
2605 
2606 	for (i = 0; i < map->num_stripes; i++) {
2607 		struct btrfs_device *device = map->stripes[i].dev;
2608 		ret = btrfs_free_dev_extent(trans, device,
2609 					    map->stripes[i].physical,
2610 					    &dev_extent_len);
2611 		if (ret) {
2612 			btrfs_abort_transaction(trans, root, ret);
2613 			goto out;
2614 		}
2615 
2616 		if (device->bytes_used > 0) {
2617 			lock_chunks(root);
2618 			btrfs_device_set_bytes_used(device,
2619 					device->bytes_used - dev_extent_len);
2620 			spin_lock(&root->fs_info->free_chunk_lock);
2621 			root->fs_info->free_chunk_space += dev_extent_len;
2622 			spin_unlock(&root->fs_info->free_chunk_lock);
2623 			btrfs_clear_space_info_full(root->fs_info);
2624 			unlock_chunks(root);
2625 		}
2626 
2627 		if (map->stripes[i].dev) {
2628 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2629 			if (ret) {
2630 				btrfs_abort_transaction(trans, root, ret);
2631 				goto out;
2632 			}
2633 		}
2634 	}
2635 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2636 	if (ret) {
2637 		btrfs_abort_transaction(trans, root, ret);
2638 		goto out;
2639 	}
2640 
2641 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2642 
2643 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2644 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2645 		if (ret) {
2646 			btrfs_abort_transaction(trans, root, ret);
2647 			goto out;
2648 		}
2649 	}
2650 
2651 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2652 	if (ret) {
2653 		btrfs_abort_transaction(trans, extent_root, ret);
2654 		goto out;
2655 	}
2656 
2657 out:
2658 	/* once for us */
2659 	free_extent_map(em);
2660 	return ret;
2661 }
2662 
2663 static int btrfs_relocate_chunk(struct btrfs_root *root,
2664 				u64 chunk_objectid,
2665 				u64 chunk_offset)
2666 {
2667 	struct btrfs_root *extent_root;
2668 	struct btrfs_trans_handle *trans;
2669 	int ret;
2670 
2671 	root = root->fs_info->chunk_root;
2672 	extent_root = root->fs_info->extent_root;
2673 
2674 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2675 	if (ret)
2676 		return -ENOSPC;
2677 
2678 	/* step one, relocate all the extents inside this chunk */
2679 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2680 	if (ret)
2681 		return ret;
2682 
2683 	trans = btrfs_start_transaction(root, 0);
2684 	if (IS_ERR(trans)) {
2685 		ret = PTR_ERR(trans);
2686 		btrfs_std_error(root->fs_info, ret);
2687 		return ret;
2688 	}
2689 
2690 	/*
2691 	 * step two, delete the device extents and the
2692 	 * chunk tree entries
2693 	 */
2694 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2695 	btrfs_end_transaction(trans, root);
2696 	return ret;
2697 }
2698 
2699 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2700 {
2701 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2702 	struct btrfs_path *path;
2703 	struct extent_buffer *leaf;
2704 	struct btrfs_chunk *chunk;
2705 	struct btrfs_key key;
2706 	struct btrfs_key found_key;
2707 	u64 chunk_type;
2708 	bool retried = false;
2709 	int failed = 0;
2710 	int ret;
2711 
2712 	path = btrfs_alloc_path();
2713 	if (!path)
2714 		return -ENOMEM;
2715 
2716 again:
2717 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2718 	key.offset = (u64)-1;
2719 	key.type = BTRFS_CHUNK_ITEM_KEY;
2720 
2721 	while (1) {
2722 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2723 		if (ret < 0)
2724 			goto error;
2725 		BUG_ON(ret == 0); /* Corruption */
2726 
2727 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2728 					  key.type);
2729 		if (ret < 0)
2730 			goto error;
2731 		if (ret > 0)
2732 			break;
2733 
2734 		leaf = path->nodes[0];
2735 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2736 
2737 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2738 				       struct btrfs_chunk);
2739 		chunk_type = btrfs_chunk_type(leaf, chunk);
2740 		btrfs_release_path(path);
2741 
2742 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2743 			ret = btrfs_relocate_chunk(chunk_root,
2744 						   found_key.objectid,
2745 						   found_key.offset);
2746 			if (ret == -ENOSPC)
2747 				failed++;
2748 			else
2749 				BUG_ON(ret);
2750 		}
2751 
2752 		if (found_key.offset == 0)
2753 			break;
2754 		key.offset = found_key.offset - 1;
2755 	}
2756 	ret = 0;
2757 	if (failed && !retried) {
2758 		failed = 0;
2759 		retried = true;
2760 		goto again;
2761 	} else if (WARN_ON(failed && retried)) {
2762 		ret = -ENOSPC;
2763 	}
2764 error:
2765 	btrfs_free_path(path);
2766 	return ret;
2767 }
2768 
2769 static int insert_balance_item(struct btrfs_root *root,
2770 			       struct btrfs_balance_control *bctl)
2771 {
2772 	struct btrfs_trans_handle *trans;
2773 	struct btrfs_balance_item *item;
2774 	struct btrfs_disk_balance_args disk_bargs;
2775 	struct btrfs_path *path;
2776 	struct extent_buffer *leaf;
2777 	struct btrfs_key key;
2778 	int ret, err;
2779 
2780 	path = btrfs_alloc_path();
2781 	if (!path)
2782 		return -ENOMEM;
2783 
2784 	trans = btrfs_start_transaction(root, 0);
2785 	if (IS_ERR(trans)) {
2786 		btrfs_free_path(path);
2787 		return PTR_ERR(trans);
2788 	}
2789 
2790 	key.objectid = BTRFS_BALANCE_OBJECTID;
2791 	key.type = BTRFS_BALANCE_ITEM_KEY;
2792 	key.offset = 0;
2793 
2794 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2795 				      sizeof(*item));
2796 	if (ret)
2797 		goto out;
2798 
2799 	leaf = path->nodes[0];
2800 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2801 
2802 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2803 
2804 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2805 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2806 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2807 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2808 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2809 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2810 
2811 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2812 
2813 	btrfs_mark_buffer_dirty(leaf);
2814 out:
2815 	btrfs_free_path(path);
2816 	err = btrfs_commit_transaction(trans, root);
2817 	if (err && !ret)
2818 		ret = err;
2819 	return ret;
2820 }
2821 
2822 static int del_balance_item(struct btrfs_root *root)
2823 {
2824 	struct btrfs_trans_handle *trans;
2825 	struct btrfs_path *path;
2826 	struct btrfs_key key;
2827 	int ret, err;
2828 
2829 	path = btrfs_alloc_path();
2830 	if (!path)
2831 		return -ENOMEM;
2832 
2833 	trans = btrfs_start_transaction(root, 0);
2834 	if (IS_ERR(trans)) {
2835 		btrfs_free_path(path);
2836 		return PTR_ERR(trans);
2837 	}
2838 
2839 	key.objectid = BTRFS_BALANCE_OBJECTID;
2840 	key.type = BTRFS_BALANCE_ITEM_KEY;
2841 	key.offset = 0;
2842 
2843 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2844 	if (ret < 0)
2845 		goto out;
2846 	if (ret > 0) {
2847 		ret = -ENOENT;
2848 		goto out;
2849 	}
2850 
2851 	ret = btrfs_del_item(trans, root, path);
2852 out:
2853 	btrfs_free_path(path);
2854 	err = btrfs_commit_transaction(trans, root);
2855 	if (err && !ret)
2856 		ret = err;
2857 	return ret;
2858 }
2859 
2860 /*
2861  * This is a heuristic used to reduce the number of chunks balanced on
2862  * resume after balance was interrupted.
2863  */
2864 static void update_balance_args(struct btrfs_balance_control *bctl)
2865 {
2866 	/*
2867 	 * Turn on soft mode for chunk types that were being converted.
2868 	 */
2869 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2870 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2871 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2872 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2873 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2874 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2875 
2876 	/*
2877 	 * Turn on usage filter if is not already used.  The idea is
2878 	 * that chunks that we have already balanced should be
2879 	 * reasonably full.  Don't do it for chunks that are being
2880 	 * converted - that will keep us from relocating unconverted
2881 	 * (albeit full) chunks.
2882 	 */
2883 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2884 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2885 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2886 		bctl->data.usage = 90;
2887 	}
2888 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2889 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2890 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2891 		bctl->sys.usage = 90;
2892 	}
2893 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2894 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2895 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2896 		bctl->meta.usage = 90;
2897 	}
2898 }
2899 
2900 /*
2901  * Should be called with both balance and volume mutexes held to
2902  * serialize other volume operations (add_dev/rm_dev/resize) with
2903  * restriper.  Same goes for unset_balance_control.
2904  */
2905 static void set_balance_control(struct btrfs_balance_control *bctl)
2906 {
2907 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2908 
2909 	BUG_ON(fs_info->balance_ctl);
2910 
2911 	spin_lock(&fs_info->balance_lock);
2912 	fs_info->balance_ctl = bctl;
2913 	spin_unlock(&fs_info->balance_lock);
2914 }
2915 
2916 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2917 {
2918 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2919 
2920 	BUG_ON(!fs_info->balance_ctl);
2921 
2922 	spin_lock(&fs_info->balance_lock);
2923 	fs_info->balance_ctl = NULL;
2924 	spin_unlock(&fs_info->balance_lock);
2925 
2926 	kfree(bctl);
2927 }
2928 
2929 /*
2930  * Balance filters.  Return 1 if chunk should be filtered out
2931  * (should not be balanced).
2932  */
2933 static int chunk_profiles_filter(u64 chunk_type,
2934 				 struct btrfs_balance_args *bargs)
2935 {
2936 	chunk_type = chunk_to_extended(chunk_type) &
2937 				BTRFS_EXTENDED_PROFILE_MASK;
2938 
2939 	if (bargs->profiles & chunk_type)
2940 		return 0;
2941 
2942 	return 1;
2943 }
2944 
2945 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2946 			      struct btrfs_balance_args *bargs)
2947 {
2948 	struct btrfs_block_group_cache *cache;
2949 	u64 chunk_used, user_thresh;
2950 	int ret = 1;
2951 
2952 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2953 	chunk_used = btrfs_block_group_used(&cache->item);
2954 
2955 	if (bargs->usage == 0)
2956 		user_thresh = 1;
2957 	else if (bargs->usage > 100)
2958 		user_thresh = cache->key.offset;
2959 	else
2960 		user_thresh = div_factor_fine(cache->key.offset,
2961 					      bargs->usage);
2962 
2963 	if (chunk_used < user_thresh)
2964 		ret = 0;
2965 
2966 	btrfs_put_block_group(cache);
2967 	return ret;
2968 }
2969 
2970 static int chunk_devid_filter(struct extent_buffer *leaf,
2971 			      struct btrfs_chunk *chunk,
2972 			      struct btrfs_balance_args *bargs)
2973 {
2974 	struct btrfs_stripe *stripe;
2975 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2976 	int i;
2977 
2978 	for (i = 0; i < num_stripes; i++) {
2979 		stripe = btrfs_stripe_nr(chunk, i);
2980 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2981 			return 0;
2982 	}
2983 
2984 	return 1;
2985 }
2986 
2987 /* [pstart, pend) */
2988 static int chunk_drange_filter(struct extent_buffer *leaf,
2989 			       struct btrfs_chunk *chunk,
2990 			       u64 chunk_offset,
2991 			       struct btrfs_balance_args *bargs)
2992 {
2993 	struct btrfs_stripe *stripe;
2994 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2995 	u64 stripe_offset;
2996 	u64 stripe_length;
2997 	int factor;
2998 	int i;
2999 
3000 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3001 		return 0;
3002 
3003 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3004 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3005 		factor = num_stripes / 2;
3006 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3007 		factor = num_stripes - 1;
3008 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3009 		factor = num_stripes - 2;
3010 	} else {
3011 		factor = num_stripes;
3012 	}
3013 
3014 	for (i = 0; i < num_stripes; i++) {
3015 		stripe = btrfs_stripe_nr(chunk, i);
3016 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3017 			continue;
3018 
3019 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3020 		stripe_length = btrfs_chunk_length(leaf, chunk);
3021 		stripe_length = div_u64(stripe_length, factor);
3022 
3023 		if (stripe_offset < bargs->pend &&
3024 		    stripe_offset + stripe_length > bargs->pstart)
3025 			return 0;
3026 	}
3027 
3028 	return 1;
3029 }
3030 
3031 /* [vstart, vend) */
3032 static int chunk_vrange_filter(struct extent_buffer *leaf,
3033 			       struct btrfs_chunk *chunk,
3034 			       u64 chunk_offset,
3035 			       struct btrfs_balance_args *bargs)
3036 {
3037 	if (chunk_offset < bargs->vend &&
3038 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3039 		/* at least part of the chunk is inside this vrange */
3040 		return 0;
3041 
3042 	return 1;
3043 }
3044 
3045 static int chunk_soft_convert_filter(u64 chunk_type,
3046 				     struct btrfs_balance_args *bargs)
3047 {
3048 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3049 		return 0;
3050 
3051 	chunk_type = chunk_to_extended(chunk_type) &
3052 				BTRFS_EXTENDED_PROFILE_MASK;
3053 
3054 	if (bargs->target == chunk_type)
3055 		return 1;
3056 
3057 	return 0;
3058 }
3059 
3060 static int should_balance_chunk(struct btrfs_root *root,
3061 				struct extent_buffer *leaf,
3062 				struct btrfs_chunk *chunk, u64 chunk_offset)
3063 {
3064 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3065 	struct btrfs_balance_args *bargs = NULL;
3066 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3067 
3068 	/* type filter */
3069 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3070 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3071 		return 0;
3072 	}
3073 
3074 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3075 		bargs = &bctl->data;
3076 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3077 		bargs = &bctl->sys;
3078 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3079 		bargs = &bctl->meta;
3080 
3081 	/* profiles filter */
3082 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3083 	    chunk_profiles_filter(chunk_type, bargs)) {
3084 		return 0;
3085 	}
3086 
3087 	/* usage filter */
3088 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3089 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3090 		return 0;
3091 	}
3092 
3093 	/* devid filter */
3094 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3095 	    chunk_devid_filter(leaf, chunk, bargs)) {
3096 		return 0;
3097 	}
3098 
3099 	/* drange filter, makes sense only with devid filter */
3100 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3101 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3102 		return 0;
3103 	}
3104 
3105 	/* vrange filter */
3106 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3107 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3108 		return 0;
3109 	}
3110 
3111 	/* soft profile changing mode */
3112 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3113 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3114 		return 0;
3115 	}
3116 
3117 	/*
3118 	 * limited by count, must be the last filter
3119 	 */
3120 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3121 		if (bargs->limit == 0)
3122 			return 0;
3123 		else
3124 			bargs->limit--;
3125 	}
3126 
3127 	return 1;
3128 }
3129 
3130 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3131 {
3132 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3133 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3134 	struct btrfs_root *dev_root = fs_info->dev_root;
3135 	struct list_head *devices;
3136 	struct btrfs_device *device;
3137 	u64 old_size;
3138 	u64 size_to_free;
3139 	struct btrfs_chunk *chunk;
3140 	struct btrfs_path *path;
3141 	struct btrfs_key key;
3142 	struct btrfs_key found_key;
3143 	struct btrfs_trans_handle *trans;
3144 	struct extent_buffer *leaf;
3145 	int slot;
3146 	int ret;
3147 	int enospc_errors = 0;
3148 	bool counting = true;
3149 	u64 limit_data = bctl->data.limit;
3150 	u64 limit_meta = bctl->meta.limit;
3151 	u64 limit_sys = bctl->sys.limit;
3152 
3153 	/* step one make some room on all the devices */
3154 	devices = &fs_info->fs_devices->devices;
3155 	list_for_each_entry(device, devices, dev_list) {
3156 		old_size = btrfs_device_get_total_bytes(device);
3157 		size_to_free = div_factor(old_size, 1);
3158 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3159 		if (!device->writeable ||
3160 		    btrfs_device_get_total_bytes(device) -
3161 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3162 		    device->is_tgtdev_for_dev_replace)
3163 			continue;
3164 
3165 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3166 		if (ret == -ENOSPC)
3167 			break;
3168 		BUG_ON(ret);
3169 
3170 		trans = btrfs_start_transaction(dev_root, 0);
3171 		BUG_ON(IS_ERR(trans));
3172 
3173 		ret = btrfs_grow_device(trans, device, old_size);
3174 		BUG_ON(ret);
3175 
3176 		btrfs_end_transaction(trans, dev_root);
3177 	}
3178 
3179 	/* step two, relocate all the chunks */
3180 	path = btrfs_alloc_path();
3181 	if (!path) {
3182 		ret = -ENOMEM;
3183 		goto error;
3184 	}
3185 
3186 	/* zero out stat counters */
3187 	spin_lock(&fs_info->balance_lock);
3188 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3189 	spin_unlock(&fs_info->balance_lock);
3190 again:
3191 	if (!counting) {
3192 		bctl->data.limit = limit_data;
3193 		bctl->meta.limit = limit_meta;
3194 		bctl->sys.limit = limit_sys;
3195 	}
3196 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3197 	key.offset = (u64)-1;
3198 	key.type = BTRFS_CHUNK_ITEM_KEY;
3199 
3200 	while (1) {
3201 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3202 		    atomic_read(&fs_info->balance_cancel_req)) {
3203 			ret = -ECANCELED;
3204 			goto error;
3205 		}
3206 
3207 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3208 		if (ret < 0)
3209 			goto error;
3210 
3211 		/*
3212 		 * this shouldn't happen, it means the last relocate
3213 		 * failed
3214 		 */
3215 		if (ret == 0)
3216 			BUG(); /* FIXME break ? */
3217 
3218 		ret = btrfs_previous_item(chunk_root, path, 0,
3219 					  BTRFS_CHUNK_ITEM_KEY);
3220 		if (ret) {
3221 			ret = 0;
3222 			break;
3223 		}
3224 
3225 		leaf = path->nodes[0];
3226 		slot = path->slots[0];
3227 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3228 
3229 		if (found_key.objectid != key.objectid)
3230 			break;
3231 
3232 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3233 
3234 		if (!counting) {
3235 			spin_lock(&fs_info->balance_lock);
3236 			bctl->stat.considered++;
3237 			spin_unlock(&fs_info->balance_lock);
3238 		}
3239 
3240 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3241 					   found_key.offset);
3242 		btrfs_release_path(path);
3243 		if (!ret)
3244 			goto loop;
3245 
3246 		if (counting) {
3247 			spin_lock(&fs_info->balance_lock);
3248 			bctl->stat.expected++;
3249 			spin_unlock(&fs_info->balance_lock);
3250 			goto loop;
3251 		}
3252 
3253 		ret = btrfs_relocate_chunk(chunk_root,
3254 					   found_key.objectid,
3255 					   found_key.offset);
3256 		if (ret && ret != -ENOSPC)
3257 			goto error;
3258 		if (ret == -ENOSPC) {
3259 			enospc_errors++;
3260 		} else {
3261 			spin_lock(&fs_info->balance_lock);
3262 			bctl->stat.completed++;
3263 			spin_unlock(&fs_info->balance_lock);
3264 		}
3265 loop:
3266 		if (found_key.offset == 0)
3267 			break;
3268 		key.offset = found_key.offset - 1;
3269 	}
3270 
3271 	if (counting) {
3272 		btrfs_release_path(path);
3273 		counting = false;
3274 		goto again;
3275 	}
3276 error:
3277 	btrfs_free_path(path);
3278 	if (enospc_errors) {
3279 		btrfs_info(fs_info, "%d enospc errors during balance",
3280 		       enospc_errors);
3281 		if (!ret)
3282 			ret = -ENOSPC;
3283 	}
3284 
3285 	return ret;
3286 }
3287 
3288 /**
3289  * alloc_profile_is_valid - see if a given profile is valid and reduced
3290  * @flags: profile to validate
3291  * @extended: if true @flags is treated as an extended profile
3292  */
3293 static int alloc_profile_is_valid(u64 flags, int extended)
3294 {
3295 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3296 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3297 
3298 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3299 
3300 	/* 1) check that all other bits are zeroed */
3301 	if (flags & ~mask)
3302 		return 0;
3303 
3304 	/* 2) see if profile is reduced */
3305 	if (flags == 0)
3306 		return !extended; /* "0" is valid for usual profiles */
3307 
3308 	/* true if exactly one bit set */
3309 	return (flags & (flags - 1)) == 0;
3310 }
3311 
3312 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3313 {
3314 	/* cancel requested || normal exit path */
3315 	return atomic_read(&fs_info->balance_cancel_req) ||
3316 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3317 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3318 }
3319 
3320 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3321 {
3322 	int ret;
3323 
3324 	unset_balance_control(fs_info);
3325 	ret = del_balance_item(fs_info->tree_root);
3326 	if (ret)
3327 		btrfs_std_error(fs_info, ret);
3328 
3329 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3330 }
3331 
3332 /*
3333  * Should be called with both balance and volume mutexes held
3334  */
3335 int btrfs_balance(struct btrfs_balance_control *bctl,
3336 		  struct btrfs_ioctl_balance_args *bargs)
3337 {
3338 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3339 	u64 allowed;
3340 	int mixed = 0;
3341 	int ret;
3342 	u64 num_devices;
3343 	unsigned seq;
3344 
3345 	if (btrfs_fs_closing(fs_info) ||
3346 	    atomic_read(&fs_info->balance_pause_req) ||
3347 	    atomic_read(&fs_info->balance_cancel_req)) {
3348 		ret = -EINVAL;
3349 		goto out;
3350 	}
3351 
3352 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3353 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3354 		mixed = 1;
3355 
3356 	/*
3357 	 * In case of mixed groups both data and meta should be picked,
3358 	 * and identical options should be given for both of them.
3359 	 */
3360 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3361 	if (mixed && (bctl->flags & allowed)) {
3362 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3363 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3364 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3365 			btrfs_err(fs_info, "with mixed groups data and "
3366 				   "metadata balance options must be the same");
3367 			ret = -EINVAL;
3368 			goto out;
3369 		}
3370 	}
3371 
3372 	num_devices = fs_info->fs_devices->num_devices;
3373 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3374 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3375 		BUG_ON(num_devices < 1);
3376 		num_devices--;
3377 	}
3378 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3379 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3380 	if (num_devices == 1)
3381 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3382 	else if (num_devices > 1)
3383 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3384 	if (num_devices > 2)
3385 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3386 	if (num_devices > 3)
3387 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3388 			    BTRFS_BLOCK_GROUP_RAID6);
3389 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3390 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3391 	     (bctl->data.target & ~allowed))) {
3392 		btrfs_err(fs_info, "unable to start balance with target "
3393 			   "data profile %llu",
3394 		       bctl->data.target);
3395 		ret = -EINVAL;
3396 		goto out;
3397 	}
3398 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3399 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3400 	     (bctl->meta.target & ~allowed))) {
3401 		btrfs_err(fs_info,
3402 			   "unable to start balance with target metadata profile %llu",
3403 		       bctl->meta.target);
3404 		ret = -EINVAL;
3405 		goto out;
3406 	}
3407 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3408 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3409 	     (bctl->sys.target & ~allowed))) {
3410 		btrfs_err(fs_info,
3411 			   "unable to start balance with target system profile %llu",
3412 		       bctl->sys.target);
3413 		ret = -EINVAL;
3414 		goto out;
3415 	}
3416 
3417 	/* allow dup'ed data chunks only in mixed mode */
3418 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3419 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3420 		btrfs_err(fs_info, "dup for data is not allowed");
3421 		ret = -EINVAL;
3422 		goto out;
3423 	}
3424 
3425 	/* allow to reduce meta or sys integrity only if force set */
3426 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3427 			BTRFS_BLOCK_GROUP_RAID10 |
3428 			BTRFS_BLOCK_GROUP_RAID5 |
3429 			BTRFS_BLOCK_GROUP_RAID6;
3430 	do {
3431 		seq = read_seqbegin(&fs_info->profiles_lock);
3432 
3433 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3434 		     (fs_info->avail_system_alloc_bits & allowed) &&
3435 		     !(bctl->sys.target & allowed)) ||
3436 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3437 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3438 		     !(bctl->meta.target & allowed))) {
3439 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3440 				btrfs_info(fs_info, "force reducing metadata integrity");
3441 			} else {
3442 				btrfs_err(fs_info, "balance will reduce metadata "
3443 					   "integrity, use force if you want this");
3444 				ret = -EINVAL;
3445 				goto out;
3446 			}
3447 		}
3448 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3449 
3450 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3451 		int num_tolerated_disk_barrier_failures;
3452 		u64 target = bctl->sys.target;
3453 
3454 		num_tolerated_disk_barrier_failures =
3455 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3456 		if (num_tolerated_disk_barrier_failures > 0 &&
3457 		    (target &
3458 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3459 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3460 			num_tolerated_disk_barrier_failures = 0;
3461 		else if (num_tolerated_disk_barrier_failures > 1 &&
3462 			 (target &
3463 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3464 			num_tolerated_disk_barrier_failures = 1;
3465 
3466 		fs_info->num_tolerated_disk_barrier_failures =
3467 			num_tolerated_disk_barrier_failures;
3468 	}
3469 
3470 	ret = insert_balance_item(fs_info->tree_root, bctl);
3471 	if (ret && ret != -EEXIST)
3472 		goto out;
3473 
3474 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3475 		BUG_ON(ret == -EEXIST);
3476 		set_balance_control(bctl);
3477 	} else {
3478 		BUG_ON(ret != -EEXIST);
3479 		spin_lock(&fs_info->balance_lock);
3480 		update_balance_args(bctl);
3481 		spin_unlock(&fs_info->balance_lock);
3482 	}
3483 
3484 	atomic_inc(&fs_info->balance_running);
3485 	mutex_unlock(&fs_info->balance_mutex);
3486 
3487 	ret = __btrfs_balance(fs_info);
3488 
3489 	mutex_lock(&fs_info->balance_mutex);
3490 	atomic_dec(&fs_info->balance_running);
3491 
3492 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3493 		fs_info->num_tolerated_disk_barrier_failures =
3494 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3495 	}
3496 
3497 	if (bargs) {
3498 		memset(bargs, 0, sizeof(*bargs));
3499 		update_ioctl_balance_args(fs_info, 0, bargs);
3500 	}
3501 
3502 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3503 	    balance_need_close(fs_info)) {
3504 		__cancel_balance(fs_info);
3505 	}
3506 
3507 	wake_up(&fs_info->balance_wait_q);
3508 
3509 	return ret;
3510 out:
3511 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3512 		__cancel_balance(fs_info);
3513 	else {
3514 		kfree(bctl);
3515 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3516 	}
3517 	return ret;
3518 }
3519 
3520 static int balance_kthread(void *data)
3521 {
3522 	struct btrfs_fs_info *fs_info = data;
3523 	int ret = 0;
3524 
3525 	mutex_lock(&fs_info->volume_mutex);
3526 	mutex_lock(&fs_info->balance_mutex);
3527 
3528 	if (fs_info->balance_ctl) {
3529 		btrfs_info(fs_info, "continuing balance");
3530 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3531 	}
3532 
3533 	mutex_unlock(&fs_info->balance_mutex);
3534 	mutex_unlock(&fs_info->volume_mutex);
3535 
3536 	return ret;
3537 }
3538 
3539 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3540 {
3541 	struct task_struct *tsk;
3542 
3543 	spin_lock(&fs_info->balance_lock);
3544 	if (!fs_info->balance_ctl) {
3545 		spin_unlock(&fs_info->balance_lock);
3546 		return 0;
3547 	}
3548 	spin_unlock(&fs_info->balance_lock);
3549 
3550 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3551 		btrfs_info(fs_info, "force skipping balance");
3552 		return 0;
3553 	}
3554 
3555 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3556 	return PTR_ERR_OR_ZERO(tsk);
3557 }
3558 
3559 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3560 {
3561 	struct btrfs_balance_control *bctl;
3562 	struct btrfs_balance_item *item;
3563 	struct btrfs_disk_balance_args disk_bargs;
3564 	struct btrfs_path *path;
3565 	struct extent_buffer *leaf;
3566 	struct btrfs_key key;
3567 	int ret;
3568 
3569 	path = btrfs_alloc_path();
3570 	if (!path)
3571 		return -ENOMEM;
3572 
3573 	key.objectid = BTRFS_BALANCE_OBJECTID;
3574 	key.type = BTRFS_BALANCE_ITEM_KEY;
3575 	key.offset = 0;
3576 
3577 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3578 	if (ret < 0)
3579 		goto out;
3580 	if (ret > 0) { /* ret = -ENOENT; */
3581 		ret = 0;
3582 		goto out;
3583 	}
3584 
3585 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3586 	if (!bctl) {
3587 		ret = -ENOMEM;
3588 		goto out;
3589 	}
3590 
3591 	leaf = path->nodes[0];
3592 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3593 
3594 	bctl->fs_info = fs_info;
3595 	bctl->flags = btrfs_balance_flags(leaf, item);
3596 	bctl->flags |= BTRFS_BALANCE_RESUME;
3597 
3598 	btrfs_balance_data(leaf, item, &disk_bargs);
3599 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3600 	btrfs_balance_meta(leaf, item, &disk_bargs);
3601 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3602 	btrfs_balance_sys(leaf, item, &disk_bargs);
3603 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3604 
3605 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3606 
3607 	mutex_lock(&fs_info->volume_mutex);
3608 	mutex_lock(&fs_info->balance_mutex);
3609 
3610 	set_balance_control(bctl);
3611 
3612 	mutex_unlock(&fs_info->balance_mutex);
3613 	mutex_unlock(&fs_info->volume_mutex);
3614 out:
3615 	btrfs_free_path(path);
3616 	return ret;
3617 }
3618 
3619 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3620 {
3621 	int ret = 0;
3622 
3623 	mutex_lock(&fs_info->balance_mutex);
3624 	if (!fs_info->balance_ctl) {
3625 		mutex_unlock(&fs_info->balance_mutex);
3626 		return -ENOTCONN;
3627 	}
3628 
3629 	if (atomic_read(&fs_info->balance_running)) {
3630 		atomic_inc(&fs_info->balance_pause_req);
3631 		mutex_unlock(&fs_info->balance_mutex);
3632 
3633 		wait_event(fs_info->balance_wait_q,
3634 			   atomic_read(&fs_info->balance_running) == 0);
3635 
3636 		mutex_lock(&fs_info->balance_mutex);
3637 		/* we are good with balance_ctl ripped off from under us */
3638 		BUG_ON(atomic_read(&fs_info->balance_running));
3639 		atomic_dec(&fs_info->balance_pause_req);
3640 	} else {
3641 		ret = -ENOTCONN;
3642 	}
3643 
3644 	mutex_unlock(&fs_info->balance_mutex);
3645 	return ret;
3646 }
3647 
3648 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3649 {
3650 	if (fs_info->sb->s_flags & MS_RDONLY)
3651 		return -EROFS;
3652 
3653 	mutex_lock(&fs_info->balance_mutex);
3654 	if (!fs_info->balance_ctl) {
3655 		mutex_unlock(&fs_info->balance_mutex);
3656 		return -ENOTCONN;
3657 	}
3658 
3659 	atomic_inc(&fs_info->balance_cancel_req);
3660 	/*
3661 	 * if we are running just wait and return, balance item is
3662 	 * deleted in btrfs_balance in this case
3663 	 */
3664 	if (atomic_read(&fs_info->balance_running)) {
3665 		mutex_unlock(&fs_info->balance_mutex);
3666 		wait_event(fs_info->balance_wait_q,
3667 			   atomic_read(&fs_info->balance_running) == 0);
3668 		mutex_lock(&fs_info->balance_mutex);
3669 	} else {
3670 		/* __cancel_balance needs volume_mutex */
3671 		mutex_unlock(&fs_info->balance_mutex);
3672 		mutex_lock(&fs_info->volume_mutex);
3673 		mutex_lock(&fs_info->balance_mutex);
3674 
3675 		if (fs_info->balance_ctl)
3676 			__cancel_balance(fs_info);
3677 
3678 		mutex_unlock(&fs_info->volume_mutex);
3679 	}
3680 
3681 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3682 	atomic_dec(&fs_info->balance_cancel_req);
3683 	mutex_unlock(&fs_info->balance_mutex);
3684 	return 0;
3685 }
3686 
3687 static int btrfs_uuid_scan_kthread(void *data)
3688 {
3689 	struct btrfs_fs_info *fs_info = data;
3690 	struct btrfs_root *root = fs_info->tree_root;
3691 	struct btrfs_key key;
3692 	struct btrfs_key max_key;
3693 	struct btrfs_path *path = NULL;
3694 	int ret = 0;
3695 	struct extent_buffer *eb;
3696 	int slot;
3697 	struct btrfs_root_item root_item;
3698 	u32 item_size;
3699 	struct btrfs_trans_handle *trans = NULL;
3700 
3701 	path = btrfs_alloc_path();
3702 	if (!path) {
3703 		ret = -ENOMEM;
3704 		goto out;
3705 	}
3706 
3707 	key.objectid = 0;
3708 	key.type = BTRFS_ROOT_ITEM_KEY;
3709 	key.offset = 0;
3710 
3711 	max_key.objectid = (u64)-1;
3712 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3713 	max_key.offset = (u64)-1;
3714 
3715 	while (1) {
3716 		ret = btrfs_search_forward(root, &key, path, 0);
3717 		if (ret) {
3718 			if (ret > 0)
3719 				ret = 0;
3720 			break;
3721 		}
3722 
3723 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3724 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3725 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3726 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3727 			goto skip;
3728 
3729 		eb = path->nodes[0];
3730 		slot = path->slots[0];
3731 		item_size = btrfs_item_size_nr(eb, slot);
3732 		if (item_size < sizeof(root_item))
3733 			goto skip;
3734 
3735 		read_extent_buffer(eb, &root_item,
3736 				   btrfs_item_ptr_offset(eb, slot),
3737 				   (int)sizeof(root_item));
3738 		if (btrfs_root_refs(&root_item) == 0)
3739 			goto skip;
3740 
3741 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3742 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3743 			if (trans)
3744 				goto update_tree;
3745 
3746 			btrfs_release_path(path);
3747 			/*
3748 			 * 1 - subvol uuid item
3749 			 * 1 - received_subvol uuid item
3750 			 */
3751 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3752 			if (IS_ERR(trans)) {
3753 				ret = PTR_ERR(trans);
3754 				break;
3755 			}
3756 			continue;
3757 		} else {
3758 			goto skip;
3759 		}
3760 update_tree:
3761 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3762 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3763 						  root_item.uuid,
3764 						  BTRFS_UUID_KEY_SUBVOL,
3765 						  key.objectid);
3766 			if (ret < 0) {
3767 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3768 					ret);
3769 				break;
3770 			}
3771 		}
3772 
3773 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3774 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3775 						  root_item.received_uuid,
3776 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3777 						  key.objectid);
3778 			if (ret < 0) {
3779 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3780 					ret);
3781 				break;
3782 			}
3783 		}
3784 
3785 skip:
3786 		if (trans) {
3787 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3788 			trans = NULL;
3789 			if (ret)
3790 				break;
3791 		}
3792 
3793 		btrfs_release_path(path);
3794 		if (key.offset < (u64)-1) {
3795 			key.offset++;
3796 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3797 			key.offset = 0;
3798 			key.type = BTRFS_ROOT_ITEM_KEY;
3799 		} else if (key.objectid < (u64)-1) {
3800 			key.offset = 0;
3801 			key.type = BTRFS_ROOT_ITEM_KEY;
3802 			key.objectid++;
3803 		} else {
3804 			break;
3805 		}
3806 		cond_resched();
3807 	}
3808 
3809 out:
3810 	btrfs_free_path(path);
3811 	if (trans && !IS_ERR(trans))
3812 		btrfs_end_transaction(trans, fs_info->uuid_root);
3813 	if (ret)
3814 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3815 	else
3816 		fs_info->update_uuid_tree_gen = 1;
3817 	up(&fs_info->uuid_tree_rescan_sem);
3818 	return 0;
3819 }
3820 
3821 /*
3822  * Callback for btrfs_uuid_tree_iterate().
3823  * returns:
3824  * 0	check succeeded, the entry is not outdated.
3825  * < 0	if an error occured.
3826  * > 0	if the check failed, which means the caller shall remove the entry.
3827  */
3828 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3829 				       u8 *uuid, u8 type, u64 subid)
3830 {
3831 	struct btrfs_key key;
3832 	int ret = 0;
3833 	struct btrfs_root *subvol_root;
3834 
3835 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3836 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3837 		goto out;
3838 
3839 	key.objectid = subid;
3840 	key.type = BTRFS_ROOT_ITEM_KEY;
3841 	key.offset = (u64)-1;
3842 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3843 	if (IS_ERR(subvol_root)) {
3844 		ret = PTR_ERR(subvol_root);
3845 		if (ret == -ENOENT)
3846 			ret = 1;
3847 		goto out;
3848 	}
3849 
3850 	switch (type) {
3851 	case BTRFS_UUID_KEY_SUBVOL:
3852 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3853 			ret = 1;
3854 		break;
3855 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3856 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3857 			   BTRFS_UUID_SIZE))
3858 			ret = 1;
3859 		break;
3860 	}
3861 
3862 out:
3863 	return ret;
3864 }
3865 
3866 static int btrfs_uuid_rescan_kthread(void *data)
3867 {
3868 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3869 	int ret;
3870 
3871 	/*
3872 	 * 1st step is to iterate through the existing UUID tree and
3873 	 * to delete all entries that contain outdated data.
3874 	 * 2nd step is to add all missing entries to the UUID tree.
3875 	 */
3876 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3877 	if (ret < 0) {
3878 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3879 		up(&fs_info->uuid_tree_rescan_sem);
3880 		return ret;
3881 	}
3882 	return btrfs_uuid_scan_kthread(data);
3883 }
3884 
3885 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3886 {
3887 	struct btrfs_trans_handle *trans;
3888 	struct btrfs_root *tree_root = fs_info->tree_root;
3889 	struct btrfs_root *uuid_root;
3890 	struct task_struct *task;
3891 	int ret;
3892 
3893 	/*
3894 	 * 1 - root node
3895 	 * 1 - root item
3896 	 */
3897 	trans = btrfs_start_transaction(tree_root, 2);
3898 	if (IS_ERR(trans))
3899 		return PTR_ERR(trans);
3900 
3901 	uuid_root = btrfs_create_tree(trans, fs_info,
3902 				      BTRFS_UUID_TREE_OBJECTID);
3903 	if (IS_ERR(uuid_root)) {
3904 		btrfs_abort_transaction(trans, tree_root,
3905 					PTR_ERR(uuid_root));
3906 		return PTR_ERR(uuid_root);
3907 	}
3908 
3909 	fs_info->uuid_root = uuid_root;
3910 
3911 	ret = btrfs_commit_transaction(trans, tree_root);
3912 	if (ret)
3913 		return ret;
3914 
3915 	down(&fs_info->uuid_tree_rescan_sem);
3916 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3917 	if (IS_ERR(task)) {
3918 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3919 		btrfs_warn(fs_info, "failed to start uuid_scan task");
3920 		up(&fs_info->uuid_tree_rescan_sem);
3921 		return PTR_ERR(task);
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3928 {
3929 	struct task_struct *task;
3930 
3931 	down(&fs_info->uuid_tree_rescan_sem);
3932 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3933 	if (IS_ERR(task)) {
3934 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3935 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3936 		up(&fs_info->uuid_tree_rescan_sem);
3937 		return PTR_ERR(task);
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 /*
3944  * shrinking a device means finding all of the device extents past
3945  * the new size, and then following the back refs to the chunks.
3946  * The chunk relocation code actually frees the device extent
3947  */
3948 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3949 {
3950 	struct btrfs_trans_handle *trans;
3951 	struct btrfs_root *root = device->dev_root;
3952 	struct btrfs_dev_extent *dev_extent = NULL;
3953 	struct btrfs_path *path;
3954 	u64 length;
3955 	u64 chunk_objectid;
3956 	u64 chunk_offset;
3957 	int ret;
3958 	int slot;
3959 	int failed = 0;
3960 	bool retried = false;
3961 	struct extent_buffer *l;
3962 	struct btrfs_key key;
3963 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3964 	u64 old_total = btrfs_super_total_bytes(super_copy);
3965 	u64 old_size = btrfs_device_get_total_bytes(device);
3966 	u64 diff = old_size - new_size;
3967 
3968 	if (device->is_tgtdev_for_dev_replace)
3969 		return -EINVAL;
3970 
3971 	path = btrfs_alloc_path();
3972 	if (!path)
3973 		return -ENOMEM;
3974 
3975 	path->reada = 2;
3976 
3977 	lock_chunks(root);
3978 
3979 	btrfs_device_set_total_bytes(device, new_size);
3980 	if (device->writeable) {
3981 		device->fs_devices->total_rw_bytes -= diff;
3982 		spin_lock(&root->fs_info->free_chunk_lock);
3983 		root->fs_info->free_chunk_space -= diff;
3984 		spin_unlock(&root->fs_info->free_chunk_lock);
3985 	}
3986 	unlock_chunks(root);
3987 
3988 again:
3989 	key.objectid = device->devid;
3990 	key.offset = (u64)-1;
3991 	key.type = BTRFS_DEV_EXTENT_KEY;
3992 
3993 	do {
3994 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3995 		if (ret < 0)
3996 			goto done;
3997 
3998 		ret = btrfs_previous_item(root, path, 0, key.type);
3999 		if (ret < 0)
4000 			goto done;
4001 		if (ret) {
4002 			ret = 0;
4003 			btrfs_release_path(path);
4004 			break;
4005 		}
4006 
4007 		l = path->nodes[0];
4008 		slot = path->slots[0];
4009 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4010 
4011 		if (key.objectid != device->devid) {
4012 			btrfs_release_path(path);
4013 			break;
4014 		}
4015 
4016 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4017 		length = btrfs_dev_extent_length(l, dev_extent);
4018 
4019 		if (key.offset + length <= new_size) {
4020 			btrfs_release_path(path);
4021 			break;
4022 		}
4023 
4024 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4025 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4026 		btrfs_release_path(path);
4027 
4028 		ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4029 		if (ret && ret != -ENOSPC)
4030 			goto done;
4031 		if (ret == -ENOSPC)
4032 			failed++;
4033 	} while (key.offset-- > 0);
4034 
4035 	if (failed && !retried) {
4036 		failed = 0;
4037 		retried = true;
4038 		goto again;
4039 	} else if (failed && retried) {
4040 		ret = -ENOSPC;
4041 		lock_chunks(root);
4042 
4043 		btrfs_device_set_total_bytes(device, old_size);
4044 		if (device->writeable)
4045 			device->fs_devices->total_rw_bytes += diff;
4046 		spin_lock(&root->fs_info->free_chunk_lock);
4047 		root->fs_info->free_chunk_space += diff;
4048 		spin_unlock(&root->fs_info->free_chunk_lock);
4049 		unlock_chunks(root);
4050 		goto done;
4051 	}
4052 
4053 	/* Shrinking succeeded, else we would be at "done". */
4054 	trans = btrfs_start_transaction(root, 0);
4055 	if (IS_ERR(trans)) {
4056 		ret = PTR_ERR(trans);
4057 		goto done;
4058 	}
4059 
4060 	lock_chunks(root);
4061 	btrfs_device_set_disk_total_bytes(device, new_size);
4062 	if (list_empty(&device->resized_list))
4063 		list_add_tail(&device->resized_list,
4064 			      &root->fs_info->fs_devices->resized_devices);
4065 
4066 	WARN_ON(diff > old_total);
4067 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4068 	unlock_chunks(root);
4069 
4070 	/* Now btrfs_update_device() will change the on-disk size. */
4071 	ret = btrfs_update_device(trans, device);
4072 	btrfs_end_transaction(trans, root);
4073 done:
4074 	btrfs_free_path(path);
4075 	return ret;
4076 }
4077 
4078 static int btrfs_add_system_chunk(struct btrfs_root *root,
4079 			   struct btrfs_key *key,
4080 			   struct btrfs_chunk *chunk, int item_size)
4081 {
4082 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4083 	struct btrfs_disk_key disk_key;
4084 	u32 array_size;
4085 	u8 *ptr;
4086 
4087 	lock_chunks(root);
4088 	array_size = btrfs_super_sys_array_size(super_copy);
4089 	if (array_size + item_size + sizeof(disk_key)
4090 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4091 		unlock_chunks(root);
4092 		return -EFBIG;
4093 	}
4094 
4095 	ptr = super_copy->sys_chunk_array + array_size;
4096 	btrfs_cpu_key_to_disk(&disk_key, key);
4097 	memcpy(ptr, &disk_key, sizeof(disk_key));
4098 	ptr += sizeof(disk_key);
4099 	memcpy(ptr, chunk, item_size);
4100 	item_size += sizeof(disk_key);
4101 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4102 	unlock_chunks(root);
4103 
4104 	return 0;
4105 }
4106 
4107 /*
4108  * sort the devices in descending order by max_avail, total_avail
4109  */
4110 static int btrfs_cmp_device_info(const void *a, const void *b)
4111 {
4112 	const struct btrfs_device_info *di_a = a;
4113 	const struct btrfs_device_info *di_b = b;
4114 
4115 	if (di_a->max_avail > di_b->max_avail)
4116 		return -1;
4117 	if (di_a->max_avail < di_b->max_avail)
4118 		return 1;
4119 	if (di_a->total_avail > di_b->total_avail)
4120 		return -1;
4121 	if (di_a->total_avail < di_b->total_avail)
4122 		return 1;
4123 	return 0;
4124 }
4125 
4126 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4127 	[BTRFS_RAID_RAID10] = {
4128 		.sub_stripes	= 2,
4129 		.dev_stripes	= 1,
4130 		.devs_max	= 0,	/* 0 == as many as possible */
4131 		.devs_min	= 4,
4132 		.devs_increment	= 2,
4133 		.ncopies	= 2,
4134 	},
4135 	[BTRFS_RAID_RAID1] = {
4136 		.sub_stripes	= 1,
4137 		.dev_stripes	= 1,
4138 		.devs_max	= 2,
4139 		.devs_min	= 2,
4140 		.devs_increment	= 2,
4141 		.ncopies	= 2,
4142 	},
4143 	[BTRFS_RAID_DUP] = {
4144 		.sub_stripes	= 1,
4145 		.dev_stripes	= 2,
4146 		.devs_max	= 1,
4147 		.devs_min	= 1,
4148 		.devs_increment	= 1,
4149 		.ncopies	= 2,
4150 	},
4151 	[BTRFS_RAID_RAID0] = {
4152 		.sub_stripes	= 1,
4153 		.dev_stripes	= 1,
4154 		.devs_max	= 0,
4155 		.devs_min	= 2,
4156 		.devs_increment	= 1,
4157 		.ncopies	= 1,
4158 	},
4159 	[BTRFS_RAID_SINGLE] = {
4160 		.sub_stripes	= 1,
4161 		.dev_stripes	= 1,
4162 		.devs_max	= 1,
4163 		.devs_min	= 1,
4164 		.devs_increment	= 1,
4165 		.ncopies	= 1,
4166 	},
4167 	[BTRFS_RAID_RAID5] = {
4168 		.sub_stripes	= 1,
4169 		.dev_stripes	= 1,
4170 		.devs_max	= 0,
4171 		.devs_min	= 2,
4172 		.devs_increment	= 1,
4173 		.ncopies	= 2,
4174 	},
4175 	[BTRFS_RAID_RAID6] = {
4176 		.sub_stripes	= 1,
4177 		.dev_stripes	= 1,
4178 		.devs_max	= 0,
4179 		.devs_min	= 3,
4180 		.devs_increment	= 1,
4181 		.ncopies	= 3,
4182 	},
4183 };
4184 
4185 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4186 {
4187 	/* TODO allow them to set a preferred stripe size */
4188 	return 64 * 1024;
4189 }
4190 
4191 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4192 {
4193 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4194 		return;
4195 
4196 	btrfs_set_fs_incompat(info, RAID56);
4197 }
4198 
4199 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4200 			- sizeof(struct btrfs_item)		\
4201 			- sizeof(struct btrfs_chunk))		\
4202 			/ sizeof(struct btrfs_stripe) + 1)
4203 
4204 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4205 				- 2 * sizeof(struct btrfs_disk_key)	\
4206 				- 2 * sizeof(struct btrfs_chunk))	\
4207 				/ sizeof(struct btrfs_stripe) + 1)
4208 
4209 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4210 			       struct btrfs_root *extent_root, u64 start,
4211 			       u64 type)
4212 {
4213 	struct btrfs_fs_info *info = extent_root->fs_info;
4214 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4215 	struct list_head *cur;
4216 	struct map_lookup *map = NULL;
4217 	struct extent_map_tree *em_tree;
4218 	struct extent_map *em;
4219 	struct btrfs_device_info *devices_info = NULL;
4220 	u64 total_avail;
4221 	int num_stripes;	/* total number of stripes to allocate */
4222 	int data_stripes;	/* number of stripes that count for
4223 				   block group size */
4224 	int sub_stripes;	/* sub_stripes info for map */
4225 	int dev_stripes;	/* stripes per dev */
4226 	int devs_max;		/* max devs to use */
4227 	int devs_min;		/* min devs needed */
4228 	int devs_increment;	/* ndevs has to be a multiple of this */
4229 	int ncopies;		/* how many copies to data has */
4230 	int ret;
4231 	u64 max_stripe_size;
4232 	u64 max_chunk_size;
4233 	u64 stripe_size;
4234 	u64 num_bytes;
4235 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4236 	int ndevs;
4237 	int i;
4238 	int j;
4239 	int index;
4240 
4241 	BUG_ON(!alloc_profile_is_valid(type, 0));
4242 
4243 	if (list_empty(&fs_devices->alloc_list))
4244 		return -ENOSPC;
4245 
4246 	index = __get_raid_index(type);
4247 
4248 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4249 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4250 	devs_max = btrfs_raid_array[index].devs_max;
4251 	devs_min = btrfs_raid_array[index].devs_min;
4252 	devs_increment = btrfs_raid_array[index].devs_increment;
4253 	ncopies = btrfs_raid_array[index].ncopies;
4254 
4255 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4256 		max_stripe_size = 1024 * 1024 * 1024;
4257 		max_chunk_size = 10 * max_stripe_size;
4258 		if (!devs_max)
4259 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4260 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4261 		/* for larger filesystems, use larger metadata chunks */
4262 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4263 			max_stripe_size = 1024 * 1024 * 1024;
4264 		else
4265 			max_stripe_size = 256 * 1024 * 1024;
4266 		max_chunk_size = max_stripe_size;
4267 		if (!devs_max)
4268 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4269 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4270 		max_stripe_size = 32 * 1024 * 1024;
4271 		max_chunk_size = 2 * max_stripe_size;
4272 		if (!devs_max)
4273 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4274 	} else {
4275 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4276 		       type);
4277 		BUG_ON(1);
4278 	}
4279 
4280 	/* we don't want a chunk larger than 10% of writeable space */
4281 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4282 			     max_chunk_size);
4283 
4284 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4285 			       GFP_NOFS);
4286 	if (!devices_info)
4287 		return -ENOMEM;
4288 
4289 	cur = fs_devices->alloc_list.next;
4290 
4291 	/*
4292 	 * in the first pass through the devices list, we gather information
4293 	 * about the available holes on each device.
4294 	 */
4295 	ndevs = 0;
4296 	while (cur != &fs_devices->alloc_list) {
4297 		struct btrfs_device *device;
4298 		u64 max_avail;
4299 		u64 dev_offset;
4300 
4301 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4302 
4303 		cur = cur->next;
4304 
4305 		if (!device->writeable) {
4306 			WARN(1, KERN_ERR
4307 			       "BTRFS: read-only device in alloc_list\n");
4308 			continue;
4309 		}
4310 
4311 		if (!device->in_fs_metadata ||
4312 		    device->is_tgtdev_for_dev_replace)
4313 			continue;
4314 
4315 		if (device->total_bytes > device->bytes_used)
4316 			total_avail = device->total_bytes - device->bytes_used;
4317 		else
4318 			total_avail = 0;
4319 
4320 		/* If there is no space on this device, skip it. */
4321 		if (total_avail == 0)
4322 			continue;
4323 
4324 		ret = find_free_dev_extent(trans, device,
4325 					   max_stripe_size * dev_stripes,
4326 					   &dev_offset, &max_avail);
4327 		if (ret && ret != -ENOSPC)
4328 			goto error;
4329 
4330 		if (ret == 0)
4331 			max_avail = max_stripe_size * dev_stripes;
4332 
4333 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4334 			continue;
4335 
4336 		if (ndevs == fs_devices->rw_devices) {
4337 			WARN(1, "%s: found more than %llu devices\n",
4338 			     __func__, fs_devices->rw_devices);
4339 			break;
4340 		}
4341 		devices_info[ndevs].dev_offset = dev_offset;
4342 		devices_info[ndevs].max_avail = max_avail;
4343 		devices_info[ndevs].total_avail = total_avail;
4344 		devices_info[ndevs].dev = device;
4345 		++ndevs;
4346 	}
4347 
4348 	/*
4349 	 * now sort the devices by hole size / available space
4350 	 */
4351 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4352 	     btrfs_cmp_device_info, NULL);
4353 
4354 	/* round down to number of usable stripes */
4355 	ndevs -= ndevs % devs_increment;
4356 
4357 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4358 		ret = -ENOSPC;
4359 		goto error;
4360 	}
4361 
4362 	if (devs_max && ndevs > devs_max)
4363 		ndevs = devs_max;
4364 	/*
4365 	 * the primary goal is to maximize the number of stripes, so use as many
4366 	 * devices as possible, even if the stripes are not maximum sized.
4367 	 */
4368 	stripe_size = devices_info[ndevs-1].max_avail;
4369 	num_stripes = ndevs * dev_stripes;
4370 
4371 	/*
4372 	 * this will have to be fixed for RAID1 and RAID10 over
4373 	 * more drives
4374 	 */
4375 	data_stripes = num_stripes / ncopies;
4376 
4377 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4378 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4379 				 btrfs_super_stripesize(info->super_copy));
4380 		data_stripes = num_stripes - 1;
4381 	}
4382 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4383 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4384 				 btrfs_super_stripesize(info->super_copy));
4385 		data_stripes = num_stripes - 2;
4386 	}
4387 
4388 	/*
4389 	 * Use the number of data stripes to figure out how big this chunk
4390 	 * is really going to be in terms of logical address space,
4391 	 * and compare that answer with the max chunk size
4392 	 */
4393 	if (stripe_size * data_stripes > max_chunk_size) {
4394 		u64 mask = (1ULL << 24) - 1;
4395 
4396 		stripe_size = div_u64(max_chunk_size, data_stripes);
4397 
4398 		/* bump the answer up to a 16MB boundary */
4399 		stripe_size = (stripe_size + mask) & ~mask;
4400 
4401 		/* but don't go higher than the limits we found
4402 		 * while searching for free extents
4403 		 */
4404 		if (stripe_size > devices_info[ndevs-1].max_avail)
4405 			stripe_size = devices_info[ndevs-1].max_avail;
4406 	}
4407 
4408 	stripe_size = div_u64(stripe_size, dev_stripes);
4409 
4410 	/* align to BTRFS_STRIPE_LEN */
4411 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4412 	stripe_size *= raid_stripe_len;
4413 
4414 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4415 	if (!map) {
4416 		ret = -ENOMEM;
4417 		goto error;
4418 	}
4419 	map->num_stripes = num_stripes;
4420 
4421 	for (i = 0; i < ndevs; ++i) {
4422 		for (j = 0; j < dev_stripes; ++j) {
4423 			int s = i * dev_stripes + j;
4424 			map->stripes[s].dev = devices_info[i].dev;
4425 			map->stripes[s].physical = devices_info[i].dev_offset +
4426 						   j * stripe_size;
4427 		}
4428 	}
4429 	map->sector_size = extent_root->sectorsize;
4430 	map->stripe_len = raid_stripe_len;
4431 	map->io_align = raid_stripe_len;
4432 	map->io_width = raid_stripe_len;
4433 	map->type = type;
4434 	map->sub_stripes = sub_stripes;
4435 
4436 	num_bytes = stripe_size * data_stripes;
4437 
4438 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4439 
4440 	em = alloc_extent_map();
4441 	if (!em) {
4442 		kfree(map);
4443 		ret = -ENOMEM;
4444 		goto error;
4445 	}
4446 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4447 	em->bdev = (struct block_device *)map;
4448 	em->start = start;
4449 	em->len = num_bytes;
4450 	em->block_start = 0;
4451 	em->block_len = em->len;
4452 	em->orig_block_len = stripe_size;
4453 
4454 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4455 	write_lock(&em_tree->lock);
4456 	ret = add_extent_mapping(em_tree, em, 0);
4457 	if (!ret) {
4458 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4459 		atomic_inc(&em->refs);
4460 	}
4461 	write_unlock(&em_tree->lock);
4462 	if (ret) {
4463 		free_extent_map(em);
4464 		goto error;
4465 	}
4466 
4467 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4468 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4469 				     start, num_bytes);
4470 	if (ret)
4471 		goto error_del_extent;
4472 
4473 	for (i = 0; i < map->num_stripes; i++) {
4474 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4475 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4476 	}
4477 
4478 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4479 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4480 						   map->num_stripes);
4481 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4482 
4483 	free_extent_map(em);
4484 	check_raid56_incompat_flag(extent_root->fs_info, type);
4485 
4486 	kfree(devices_info);
4487 	return 0;
4488 
4489 error_del_extent:
4490 	write_lock(&em_tree->lock);
4491 	remove_extent_mapping(em_tree, em);
4492 	write_unlock(&em_tree->lock);
4493 
4494 	/* One for our allocation */
4495 	free_extent_map(em);
4496 	/* One for the tree reference */
4497 	free_extent_map(em);
4498 	/* One for the pending_chunks list reference */
4499 	free_extent_map(em);
4500 error:
4501 	kfree(devices_info);
4502 	return ret;
4503 }
4504 
4505 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4506 				struct btrfs_root *extent_root,
4507 				u64 chunk_offset, u64 chunk_size)
4508 {
4509 	struct btrfs_key key;
4510 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4511 	struct btrfs_device *device;
4512 	struct btrfs_chunk *chunk;
4513 	struct btrfs_stripe *stripe;
4514 	struct extent_map_tree *em_tree;
4515 	struct extent_map *em;
4516 	struct map_lookup *map;
4517 	size_t item_size;
4518 	u64 dev_offset;
4519 	u64 stripe_size;
4520 	int i = 0;
4521 	int ret;
4522 
4523 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4524 	read_lock(&em_tree->lock);
4525 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4526 	read_unlock(&em_tree->lock);
4527 
4528 	if (!em) {
4529 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4530 			   "%Lu len %Lu", chunk_offset, chunk_size);
4531 		return -EINVAL;
4532 	}
4533 
4534 	if (em->start != chunk_offset || em->len != chunk_size) {
4535 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4536 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4537 			  chunk_size, em->start, em->len);
4538 		free_extent_map(em);
4539 		return -EINVAL;
4540 	}
4541 
4542 	map = (struct map_lookup *)em->bdev;
4543 	item_size = btrfs_chunk_item_size(map->num_stripes);
4544 	stripe_size = em->orig_block_len;
4545 
4546 	chunk = kzalloc(item_size, GFP_NOFS);
4547 	if (!chunk) {
4548 		ret = -ENOMEM;
4549 		goto out;
4550 	}
4551 
4552 	for (i = 0; i < map->num_stripes; i++) {
4553 		device = map->stripes[i].dev;
4554 		dev_offset = map->stripes[i].physical;
4555 
4556 		ret = btrfs_update_device(trans, device);
4557 		if (ret)
4558 			goto out;
4559 		ret = btrfs_alloc_dev_extent(trans, device,
4560 					     chunk_root->root_key.objectid,
4561 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4562 					     chunk_offset, dev_offset,
4563 					     stripe_size);
4564 		if (ret)
4565 			goto out;
4566 	}
4567 
4568 	stripe = &chunk->stripe;
4569 	for (i = 0; i < map->num_stripes; i++) {
4570 		device = map->stripes[i].dev;
4571 		dev_offset = map->stripes[i].physical;
4572 
4573 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4574 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4575 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4576 		stripe++;
4577 	}
4578 
4579 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4580 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4581 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4582 	btrfs_set_stack_chunk_type(chunk, map->type);
4583 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4584 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4585 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4586 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4587 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4588 
4589 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4590 	key.type = BTRFS_CHUNK_ITEM_KEY;
4591 	key.offset = chunk_offset;
4592 
4593 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4594 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4595 		/*
4596 		 * TODO: Cleanup of inserted chunk root in case of
4597 		 * failure.
4598 		 */
4599 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4600 					     item_size);
4601 	}
4602 
4603 out:
4604 	kfree(chunk);
4605 	free_extent_map(em);
4606 	return ret;
4607 }
4608 
4609 /*
4610  * Chunk allocation falls into two parts. The first part does works
4611  * that make the new allocated chunk useable, but not do any operation
4612  * that modifies the chunk tree. The second part does the works that
4613  * require modifying the chunk tree. This division is important for the
4614  * bootstrap process of adding storage to a seed btrfs.
4615  */
4616 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4617 		      struct btrfs_root *extent_root, u64 type)
4618 {
4619 	u64 chunk_offset;
4620 
4621 	chunk_offset = find_next_chunk(extent_root->fs_info);
4622 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4623 }
4624 
4625 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4626 					 struct btrfs_root *root,
4627 					 struct btrfs_device *device)
4628 {
4629 	u64 chunk_offset;
4630 	u64 sys_chunk_offset;
4631 	u64 alloc_profile;
4632 	struct btrfs_fs_info *fs_info = root->fs_info;
4633 	struct btrfs_root *extent_root = fs_info->extent_root;
4634 	int ret;
4635 
4636 	chunk_offset = find_next_chunk(fs_info);
4637 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4638 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4639 				  alloc_profile);
4640 	if (ret)
4641 		return ret;
4642 
4643 	sys_chunk_offset = find_next_chunk(root->fs_info);
4644 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4645 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4646 				  alloc_profile);
4647 	return ret;
4648 }
4649 
4650 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4651 {
4652 	int max_errors;
4653 
4654 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4655 			 BTRFS_BLOCK_GROUP_RAID10 |
4656 			 BTRFS_BLOCK_GROUP_RAID5 |
4657 			 BTRFS_BLOCK_GROUP_DUP)) {
4658 		max_errors = 1;
4659 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4660 		max_errors = 2;
4661 	} else {
4662 		max_errors = 0;
4663 	}
4664 
4665 	return max_errors;
4666 }
4667 
4668 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4669 {
4670 	struct extent_map *em;
4671 	struct map_lookup *map;
4672 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4673 	int readonly = 0;
4674 	int miss_ndevs = 0;
4675 	int i;
4676 
4677 	read_lock(&map_tree->map_tree.lock);
4678 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4679 	read_unlock(&map_tree->map_tree.lock);
4680 	if (!em)
4681 		return 1;
4682 
4683 	map = (struct map_lookup *)em->bdev;
4684 	for (i = 0; i < map->num_stripes; i++) {
4685 		if (map->stripes[i].dev->missing) {
4686 			miss_ndevs++;
4687 			continue;
4688 		}
4689 
4690 		if (!map->stripes[i].dev->writeable) {
4691 			readonly = 1;
4692 			goto end;
4693 		}
4694 	}
4695 
4696 	/*
4697 	 * If the number of missing devices is larger than max errors,
4698 	 * we can not write the data into that chunk successfully, so
4699 	 * set it readonly.
4700 	 */
4701 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4702 		readonly = 1;
4703 end:
4704 	free_extent_map(em);
4705 	return readonly;
4706 }
4707 
4708 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4709 {
4710 	extent_map_tree_init(&tree->map_tree);
4711 }
4712 
4713 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4714 {
4715 	struct extent_map *em;
4716 
4717 	while (1) {
4718 		write_lock(&tree->map_tree.lock);
4719 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4720 		if (em)
4721 			remove_extent_mapping(&tree->map_tree, em);
4722 		write_unlock(&tree->map_tree.lock);
4723 		if (!em)
4724 			break;
4725 		/* once for us */
4726 		free_extent_map(em);
4727 		/* once for the tree */
4728 		free_extent_map(em);
4729 	}
4730 }
4731 
4732 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4733 {
4734 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4735 	struct extent_map *em;
4736 	struct map_lookup *map;
4737 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4738 	int ret;
4739 
4740 	read_lock(&em_tree->lock);
4741 	em = lookup_extent_mapping(em_tree, logical, len);
4742 	read_unlock(&em_tree->lock);
4743 
4744 	/*
4745 	 * We could return errors for these cases, but that could get ugly and
4746 	 * we'd probably do the same thing which is just not do anything else
4747 	 * and exit, so return 1 so the callers don't try to use other copies.
4748 	 */
4749 	if (!em) {
4750 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4751 			    logical+len);
4752 		return 1;
4753 	}
4754 
4755 	if (em->start > logical || em->start + em->len < logical) {
4756 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4757 			    "%Lu-%Lu", logical, logical+len, em->start,
4758 			    em->start + em->len);
4759 		free_extent_map(em);
4760 		return 1;
4761 	}
4762 
4763 	map = (struct map_lookup *)em->bdev;
4764 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4765 		ret = map->num_stripes;
4766 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4767 		ret = map->sub_stripes;
4768 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4769 		ret = 2;
4770 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4771 		ret = 3;
4772 	else
4773 		ret = 1;
4774 	free_extent_map(em);
4775 
4776 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4777 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4778 		ret++;
4779 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4780 
4781 	return ret;
4782 }
4783 
4784 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4785 				    struct btrfs_mapping_tree *map_tree,
4786 				    u64 logical)
4787 {
4788 	struct extent_map *em;
4789 	struct map_lookup *map;
4790 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4791 	unsigned long len = root->sectorsize;
4792 
4793 	read_lock(&em_tree->lock);
4794 	em = lookup_extent_mapping(em_tree, logical, len);
4795 	read_unlock(&em_tree->lock);
4796 	BUG_ON(!em);
4797 
4798 	BUG_ON(em->start > logical || em->start + em->len < logical);
4799 	map = (struct map_lookup *)em->bdev;
4800 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4801 		len = map->stripe_len * nr_data_stripes(map);
4802 	free_extent_map(em);
4803 	return len;
4804 }
4805 
4806 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4807 			   u64 logical, u64 len, int mirror_num)
4808 {
4809 	struct extent_map *em;
4810 	struct map_lookup *map;
4811 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4812 	int ret = 0;
4813 
4814 	read_lock(&em_tree->lock);
4815 	em = lookup_extent_mapping(em_tree, logical, len);
4816 	read_unlock(&em_tree->lock);
4817 	BUG_ON(!em);
4818 
4819 	BUG_ON(em->start > logical || em->start + em->len < logical);
4820 	map = (struct map_lookup *)em->bdev;
4821 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4822 		ret = 1;
4823 	free_extent_map(em);
4824 	return ret;
4825 }
4826 
4827 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4828 			    struct map_lookup *map, int first, int num,
4829 			    int optimal, int dev_replace_is_ongoing)
4830 {
4831 	int i;
4832 	int tolerance;
4833 	struct btrfs_device *srcdev;
4834 
4835 	if (dev_replace_is_ongoing &&
4836 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4837 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4838 		srcdev = fs_info->dev_replace.srcdev;
4839 	else
4840 		srcdev = NULL;
4841 
4842 	/*
4843 	 * try to avoid the drive that is the source drive for a
4844 	 * dev-replace procedure, only choose it if no other non-missing
4845 	 * mirror is available
4846 	 */
4847 	for (tolerance = 0; tolerance < 2; tolerance++) {
4848 		if (map->stripes[optimal].dev->bdev &&
4849 		    (tolerance || map->stripes[optimal].dev != srcdev))
4850 			return optimal;
4851 		for (i = first; i < first + num; i++) {
4852 			if (map->stripes[i].dev->bdev &&
4853 			    (tolerance || map->stripes[i].dev != srcdev))
4854 				return i;
4855 		}
4856 	}
4857 
4858 	/* we couldn't find one that doesn't fail.  Just return something
4859 	 * and the io error handling code will clean up eventually
4860 	 */
4861 	return optimal;
4862 }
4863 
4864 static inline int parity_smaller(u64 a, u64 b)
4865 {
4866 	return a > b;
4867 }
4868 
4869 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4870 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4871 {
4872 	struct btrfs_bio_stripe s;
4873 	int i;
4874 	u64 l;
4875 	int again = 1;
4876 
4877 	while (again) {
4878 		again = 0;
4879 		for (i = 0; i < num_stripes - 1; i++) {
4880 			if (parity_smaller(bbio->raid_map[i],
4881 					   bbio->raid_map[i+1])) {
4882 				s = bbio->stripes[i];
4883 				l = bbio->raid_map[i];
4884 				bbio->stripes[i] = bbio->stripes[i+1];
4885 				bbio->raid_map[i] = bbio->raid_map[i+1];
4886 				bbio->stripes[i+1] = s;
4887 				bbio->raid_map[i+1] = l;
4888 
4889 				again = 1;
4890 			}
4891 		}
4892 	}
4893 }
4894 
4895 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4896 {
4897 	struct btrfs_bio *bbio = kzalloc(
4898 		 /* the size of the btrfs_bio */
4899 		sizeof(struct btrfs_bio) +
4900 		/* plus the variable array for the stripes */
4901 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4902 		/* plus the variable array for the tgt dev */
4903 		sizeof(int) * (real_stripes) +
4904 		/*
4905 		 * plus the raid_map, which includes both the tgt dev
4906 		 * and the stripes
4907 		 */
4908 		sizeof(u64) * (total_stripes),
4909 		GFP_NOFS);
4910 	if (!bbio)
4911 		return NULL;
4912 
4913 	atomic_set(&bbio->error, 0);
4914 	atomic_set(&bbio->refs, 1);
4915 
4916 	return bbio;
4917 }
4918 
4919 void btrfs_get_bbio(struct btrfs_bio *bbio)
4920 {
4921 	WARN_ON(!atomic_read(&bbio->refs));
4922 	atomic_inc(&bbio->refs);
4923 }
4924 
4925 void btrfs_put_bbio(struct btrfs_bio *bbio)
4926 {
4927 	if (!bbio)
4928 		return;
4929 	if (atomic_dec_and_test(&bbio->refs))
4930 		kfree(bbio);
4931 }
4932 
4933 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4934 			     u64 logical, u64 *length,
4935 			     struct btrfs_bio **bbio_ret,
4936 			     int mirror_num, int need_raid_map)
4937 {
4938 	struct extent_map *em;
4939 	struct map_lookup *map;
4940 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4941 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4942 	u64 offset;
4943 	u64 stripe_offset;
4944 	u64 stripe_end_offset;
4945 	u64 stripe_nr;
4946 	u64 stripe_nr_orig;
4947 	u64 stripe_nr_end;
4948 	u64 stripe_len;
4949 	u32 stripe_index;
4950 	int i;
4951 	int ret = 0;
4952 	int num_stripes;
4953 	int max_errors = 0;
4954 	int tgtdev_indexes = 0;
4955 	struct btrfs_bio *bbio = NULL;
4956 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4957 	int dev_replace_is_ongoing = 0;
4958 	int num_alloc_stripes;
4959 	int patch_the_first_stripe_for_dev_replace = 0;
4960 	u64 physical_to_patch_in_first_stripe = 0;
4961 	u64 raid56_full_stripe_start = (u64)-1;
4962 
4963 	read_lock(&em_tree->lock);
4964 	em = lookup_extent_mapping(em_tree, logical, *length);
4965 	read_unlock(&em_tree->lock);
4966 
4967 	if (!em) {
4968 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4969 			logical, *length);
4970 		return -EINVAL;
4971 	}
4972 
4973 	if (em->start > logical || em->start + em->len < logical) {
4974 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4975 			   "found %Lu-%Lu", logical, em->start,
4976 			   em->start + em->len);
4977 		free_extent_map(em);
4978 		return -EINVAL;
4979 	}
4980 
4981 	map = (struct map_lookup *)em->bdev;
4982 	offset = logical - em->start;
4983 
4984 	stripe_len = map->stripe_len;
4985 	stripe_nr = offset;
4986 	/*
4987 	 * stripe_nr counts the total number of stripes we have to stride
4988 	 * to get to this block
4989 	 */
4990 	stripe_nr = div64_u64(stripe_nr, stripe_len);
4991 
4992 	stripe_offset = stripe_nr * stripe_len;
4993 	BUG_ON(offset < stripe_offset);
4994 
4995 	/* stripe_offset is the offset of this block in its stripe*/
4996 	stripe_offset = offset - stripe_offset;
4997 
4998 	/* if we're here for raid56, we need to know the stripe aligned start */
4999 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5000 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5001 		raid56_full_stripe_start = offset;
5002 
5003 		/* allow a write of a full stripe, but make sure we don't
5004 		 * allow straddling of stripes
5005 		 */
5006 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5007 				full_stripe_len);
5008 		raid56_full_stripe_start *= full_stripe_len;
5009 	}
5010 
5011 	if (rw & REQ_DISCARD) {
5012 		/* we don't discard raid56 yet */
5013 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5014 			ret = -EOPNOTSUPP;
5015 			goto out;
5016 		}
5017 		*length = min_t(u64, em->len - offset, *length);
5018 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5019 		u64 max_len;
5020 		/* For writes to RAID[56], allow a full stripeset across all disks.
5021 		   For other RAID types and for RAID[56] reads, just allow a single
5022 		   stripe (on a single disk). */
5023 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5024 		    (rw & REQ_WRITE)) {
5025 			max_len = stripe_len * nr_data_stripes(map) -
5026 				(offset - raid56_full_stripe_start);
5027 		} else {
5028 			/* we limit the length of each bio to what fits in a stripe */
5029 			max_len = stripe_len - stripe_offset;
5030 		}
5031 		*length = min_t(u64, em->len - offset, max_len);
5032 	} else {
5033 		*length = em->len - offset;
5034 	}
5035 
5036 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5037 	   it cares about is the length */
5038 	if (!bbio_ret)
5039 		goto out;
5040 
5041 	btrfs_dev_replace_lock(dev_replace);
5042 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5043 	if (!dev_replace_is_ongoing)
5044 		btrfs_dev_replace_unlock(dev_replace);
5045 
5046 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5047 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5048 	    dev_replace->tgtdev != NULL) {
5049 		/*
5050 		 * in dev-replace case, for repair case (that's the only
5051 		 * case where the mirror is selected explicitly when
5052 		 * calling btrfs_map_block), blocks left of the left cursor
5053 		 * can also be read from the target drive.
5054 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5055 		 * the last one to the array of stripes. For READ, it also
5056 		 * needs to be supported using the same mirror number.
5057 		 * If the requested block is not left of the left cursor,
5058 		 * EIO is returned. This can happen because btrfs_num_copies()
5059 		 * returns one more in the dev-replace case.
5060 		 */
5061 		u64 tmp_length = *length;
5062 		struct btrfs_bio *tmp_bbio = NULL;
5063 		int tmp_num_stripes;
5064 		u64 srcdev_devid = dev_replace->srcdev->devid;
5065 		int index_srcdev = 0;
5066 		int found = 0;
5067 		u64 physical_of_found = 0;
5068 
5069 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5070 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5071 		if (ret) {
5072 			WARN_ON(tmp_bbio != NULL);
5073 			goto out;
5074 		}
5075 
5076 		tmp_num_stripes = tmp_bbio->num_stripes;
5077 		if (mirror_num > tmp_num_stripes) {
5078 			/*
5079 			 * REQ_GET_READ_MIRRORS does not contain this
5080 			 * mirror, that means that the requested area
5081 			 * is not left of the left cursor
5082 			 */
5083 			ret = -EIO;
5084 			btrfs_put_bbio(tmp_bbio);
5085 			goto out;
5086 		}
5087 
5088 		/*
5089 		 * process the rest of the function using the mirror_num
5090 		 * of the source drive. Therefore look it up first.
5091 		 * At the end, patch the device pointer to the one of the
5092 		 * target drive.
5093 		 */
5094 		for (i = 0; i < tmp_num_stripes; i++) {
5095 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5096 				/*
5097 				 * In case of DUP, in order to keep it
5098 				 * simple, only add the mirror with the
5099 				 * lowest physical address
5100 				 */
5101 				if (found &&
5102 				    physical_of_found <=
5103 				     tmp_bbio->stripes[i].physical)
5104 					continue;
5105 				index_srcdev = i;
5106 				found = 1;
5107 				physical_of_found =
5108 					tmp_bbio->stripes[i].physical;
5109 			}
5110 		}
5111 
5112 		if (found) {
5113 			mirror_num = index_srcdev + 1;
5114 			patch_the_first_stripe_for_dev_replace = 1;
5115 			physical_to_patch_in_first_stripe = physical_of_found;
5116 		} else {
5117 			WARN_ON(1);
5118 			ret = -EIO;
5119 			btrfs_put_bbio(tmp_bbio);
5120 			goto out;
5121 		}
5122 
5123 		btrfs_put_bbio(tmp_bbio);
5124 	} else if (mirror_num > map->num_stripes) {
5125 		mirror_num = 0;
5126 	}
5127 
5128 	num_stripes = 1;
5129 	stripe_index = 0;
5130 	stripe_nr_orig = stripe_nr;
5131 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5132 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5133 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5134 			    (offset + *length);
5135 
5136 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5137 		if (rw & REQ_DISCARD)
5138 			num_stripes = min_t(u64, map->num_stripes,
5139 					    stripe_nr_end - stripe_nr_orig);
5140 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5141 				&stripe_index);
5142 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5143 			mirror_num = 1;
5144 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5145 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5146 			num_stripes = map->num_stripes;
5147 		else if (mirror_num)
5148 			stripe_index = mirror_num - 1;
5149 		else {
5150 			stripe_index = find_live_mirror(fs_info, map, 0,
5151 					    map->num_stripes,
5152 					    current->pid % map->num_stripes,
5153 					    dev_replace_is_ongoing);
5154 			mirror_num = stripe_index + 1;
5155 		}
5156 
5157 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5158 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5159 			num_stripes = map->num_stripes;
5160 		} else if (mirror_num) {
5161 			stripe_index = mirror_num - 1;
5162 		} else {
5163 			mirror_num = 1;
5164 		}
5165 
5166 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5167 		u32 factor = map->num_stripes / map->sub_stripes;
5168 
5169 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5170 		stripe_index *= map->sub_stripes;
5171 
5172 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5173 			num_stripes = map->sub_stripes;
5174 		else if (rw & REQ_DISCARD)
5175 			num_stripes = min_t(u64, map->sub_stripes *
5176 					    (stripe_nr_end - stripe_nr_orig),
5177 					    map->num_stripes);
5178 		else if (mirror_num)
5179 			stripe_index += mirror_num - 1;
5180 		else {
5181 			int old_stripe_index = stripe_index;
5182 			stripe_index = find_live_mirror(fs_info, map,
5183 					      stripe_index,
5184 					      map->sub_stripes, stripe_index +
5185 					      current->pid % map->sub_stripes,
5186 					      dev_replace_is_ongoing);
5187 			mirror_num = stripe_index - old_stripe_index + 1;
5188 		}
5189 
5190 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5191 		if (need_raid_map &&
5192 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5193 		     mirror_num > 1)) {
5194 			/* push stripe_nr back to the start of the full stripe */
5195 			stripe_nr = div_u64(raid56_full_stripe_start,
5196 					stripe_len * nr_data_stripes(map));
5197 
5198 			/* RAID[56] write or recovery. Return all stripes */
5199 			num_stripes = map->num_stripes;
5200 			max_errors = nr_parity_stripes(map);
5201 
5202 			*length = map->stripe_len;
5203 			stripe_index = 0;
5204 			stripe_offset = 0;
5205 		} else {
5206 			/*
5207 			 * Mirror #0 or #1 means the original data block.
5208 			 * Mirror #2 is RAID5 parity block.
5209 			 * Mirror #3 is RAID6 Q block.
5210 			 */
5211 			stripe_nr = div_u64_rem(stripe_nr,
5212 					nr_data_stripes(map), &stripe_index);
5213 			if (mirror_num > 1)
5214 				stripe_index = nr_data_stripes(map) +
5215 						mirror_num - 2;
5216 
5217 			/* We distribute the parity blocks across stripes */
5218 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5219 					&stripe_index);
5220 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5221 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5222 				mirror_num = 1;
5223 		}
5224 	} else {
5225 		/*
5226 		 * after this, stripe_nr is the number of stripes on this
5227 		 * device we have to walk to find the data, and stripe_index is
5228 		 * the number of our device in the stripe array
5229 		 */
5230 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5231 				&stripe_index);
5232 		mirror_num = stripe_index + 1;
5233 	}
5234 	BUG_ON(stripe_index >= map->num_stripes);
5235 
5236 	num_alloc_stripes = num_stripes;
5237 	if (dev_replace_is_ongoing) {
5238 		if (rw & (REQ_WRITE | REQ_DISCARD))
5239 			num_alloc_stripes <<= 1;
5240 		if (rw & REQ_GET_READ_MIRRORS)
5241 			num_alloc_stripes++;
5242 		tgtdev_indexes = num_stripes;
5243 	}
5244 
5245 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5246 	if (!bbio) {
5247 		ret = -ENOMEM;
5248 		goto out;
5249 	}
5250 	if (dev_replace_is_ongoing)
5251 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5252 
5253 	/* build raid_map */
5254 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5255 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5256 	    mirror_num > 1)) {
5257 		u64 tmp;
5258 		unsigned rot;
5259 
5260 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5261 				 sizeof(struct btrfs_bio_stripe) *
5262 				 num_alloc_stripes +
5263 				 sizeof(int) * tgtdev_indexes);
5264 
5265 		/* Work out the disk rotation on this stripe-set */
5266 		div_u64_rem(stripe_nr, num_stripes, &rot);
5267 
5268 		/* Fill in the logical address of each stripe */
5269 		tmp = stripe_nr * nr_data_stripes(map);
5270 		for (i = 0; i < nr_data_stripes(map); i++)
5271 			bbio->raid_map[(i+rot) % num_stripes] =
5272 				em->start + (tmp + i) * map->stripe_len;
5273 
5274 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5275 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5276 			bbio->raid_map[(i+rot+1) % num_stripes] =
5277 				RAID6_Q_STRIPE;
5278 	}
5279 
5280 	if (rw & REQ_DISCARD) {
5281 		u32 factor = 0;
5282 		u32 sub_stripes = 0;
5283 		u64 stripes_per_dev = 0;
5284 		u32 remaining_stripes = 0;
5285 		u32 last_stripe = 0;
5286 
5287 		if (map->type &
5288 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5289 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5290 				sub_stripes = 1;
5291 			else
5292 				sub_stripes = map->sub_stripes;
5293 
5294 			factor = map->num_stripes / sub_stripes;
5295 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5296 						      stripe_nr_orig,
5297 						      factor,
5298 						      &remaining_stripes);
5299 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5300 			last_stripe *= sub_stripes;
5301 		}
5302 
5303 		for (i = 0; i < num_stripes; i++) {
5304 			bbio->stripes[i].physical =
5305 				map->stripes[stripe_index].physical +
5306 				stripe_offset + stripe_nr * map->stripe_len;
5307 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5308 
5309 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5310 					 BTRFS_BLOCK_GROUP_RAID10)) {
5311 				bbio->stripes[i].length = stripes_per_dev *
5312 							  map->stripe_len;
5313 
5314 				if (i / sub_stripes < remaining_stripes)
5315 					bbio->stripes[i].length +=
5316 						map->stripe_len;
5317 
5318 				/*
5319 				 * Special for the first stripe and
5320 				 * the last stripe:
5321 				 *
5322 				 * |-------|...|-------|
5323 				 *     |----------|
5324 				 *    off     end_off
5325 				 */
5326 				if (i < sub_stripes)
5327 					bbio->stripes[i].length -=
5328 						stripe_offset;
5329 
5330 				if (stripe_index >= last_stripe &&
5331 				    stripe_index <= (last_stripe +
5332 						     sub_stripes - 1))
5333 					bbio->stripes[i].length -=
5334 						stripe_end_offset;
5335 
5336 				if (i == sub_stripes - 1)
5337 					stripe_offset = 0;
5338 			} else
5339 				bbio->stripes[i].length = *length;
5340 
5341 			stripe_index++;
5342 			if (stripe_index == map->num_stripes) {
5343 				/* This could only happen for RAID0/10 */
5344 				stripe_index = 0;
5345 				stripe_nr++;
5346 			}
5347 		}
5348 	} else {
5349 		for (i = 0; i < num_stripes; i++) {
5350 			bbio->stripes[i].physical =
5351 				map->stripes[stripe_index].physical +
5352 				stripe_offset +
5353 				stripe_nr * map->stripe_len;
5354 			bbio->stripes[i].dev =
5355 				map->stripes[stripe_index].dev;
5356 			stripe_index++;
5357 		}
5358 	}
5359 
5360 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5361 		max_errors = btrfs_chunk_max_errors(map);
5362 
5363 	if (bbio->raid_map)
5364 		sort_parity_stripes(bbio, num_stripes);
5365 
5366 	tgtdev_indexes = 0;
5367 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5368 	    dev_replace->tgtdev != NULL) {
5369 		int index_where_to_add;
5370 		u64 srcdev_devid = dev_replace->srcdev->devid;
5371 
5372 		/*
5373 		 * duplicate the write operations while the dev replace
5374 		 * procedure is running. Since the copying of the old disk
5375 		 * to the new disk takes place at run time while the
5376 		 * filesystem is mounted writable, the regular write
5377 		 * operations to the old disk have to be duplicated to go
5378 		 * to the new disk as well.
5379 		 * Note that device->missing is handled by the caller, and
5380 		 * that the write to the old disk is already set up in the
5381 		 * stripes array.
5382 		 */
5383 		index_where_to_add = num_stripes;
5384 		for (i = 0; i < num_stripes; i++) {
5385 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5386 				/* write to new disk, too */
5387 				struct btrfs_bio_stripe *new =
5388 					bbio->stripes + index_where_to_add;
5389 				struct btrfs_bio_stripe *old =
5390 					bbio->stripes + i;
5391 
5392 				new->physical = old->physical;
5393 				new->length = old->length;
5394 				new->dev = dev_replace->tgtdev;
5395 				bbio->tgtdev_map[i] = index_where_to_add;
5396 				index_where_to_add++;
5397 				max_errors++;
5398 				tgtdev_indexes++;
5399 			}
5400 		}
5401 		num_stripes = index_where_to_add;
5402 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5403 		   dev_replace->tgtdev != NULL) {
5404 		u64 srcdev_devid = dev_replace->srcdev->devid;
5405 		int index_srcdev = 0;
5406 		int found = 0;
5407 		u64 physical_of_found = 0;
5408 
5409 		/*
5410 		 * During the dev-replace procedure, the target drive can
5411 		 * also be used to read data in case it is needed to repair
5412 		 * a corrupt block elsewhere. This is possible if the
5413 		 * requested area is left of the left cursor. In this area,
5414 		 * the target drive is a full copy of the source drive.
5415 		 */
5416 		for (i = 0; i < num_stripes; i++) {
5417 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5418 				/*
5419 				 * In case of DUP, in order to keep it
5420 				 * simple, only add the mirror with the
5421 				 * lowest physical address
5422 				 */
5423 				if (found &&
5424 				    physical_of_found <=
5425 				     bbio->stripes[i].physical)
5426 					continue;
5427 				index_srcdev = i;
5428 				found = 1;
5429 				physical_of_found = bbio->stripes[i].physical;
5430 			}
5431 		}
5432 		if (found) {
5433 			if (physical_of_found + map->stripe_len <=
5434 			    dev_replace->cursor_left) {
5435 				struct btrfs_bio_stripe *tgtdev_stripe =
5436 					bbio->stripes + num_stripes;
5437 
5438 				tgtdev_stripe->physical = physical_of_found;
5439 				tgtdev_stripe->length =
5440 					bbio->stripes[index_srcdev].length;
5441 				tgtdev_stripe->dev = dev_replace->tgtdev;
5442 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5443 
5444 				tgtdev_indexes++;
5445 				num_stripes++;
5446 			}
5447 		}
5448 	}
5449 
5450 	*bbio_ret = bbio;
5451 	bbio->map_type = map->type;
5452 	bbio->num_stripes = num_stripes;
5453 	bbio->max_errors = max_errors;
5454 	bbio->mirror_num = mirror_num;
5455 	bbio->num_tgtdevs = tgtdev_indexes;
5456 
5457 	/*
5458 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5459 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5460 	 * available as a mirror
5461 	 */
5462 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5463 		WARN_ON(num_stripes > 1);
5464 		bbio->stripes[0].dev = dev_replace->tgtdev;
5465 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5466 		bbio->mirror_num = map->num_stripes + 1;
5467 	}
5468 out:
5469 	if (dev_replace_is_ongoing)
5470 		btrfs_dev_replace_unlock(dev_replace);
5471 	free_extent_map(em);
5472 	return ret;
5473 }
5474 
5475 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5476 		      u64 logical, u64 *length,
5477 		      struct btrfs_bio **bbio_ret, int mirror_num)
5478 {
5479 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5480 				 mirror_num, 0);
5481 }
5482 
5483 /* For Scrub/replace */
5484 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5485 		     u64 logical, u64 *length,
5486 		     struct btrfs_bio **bbio_ret, int mirror_num,
5487 		     int need_raid_map)
5488 {
5489 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5490 				 mirror_num, need_raid_map);
5491 }
5492 
5493 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5494 		     u64 chunk_start, u64 physical, u64 devid,
5495 		     u64 **logical, int *naddrs, int *stripe_len)
5496 {
5497 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5498 	struct extent_map *em;
5499 	struct map_lookup *map;
5500 	u64 *buf;
5501 	u64 bytenr;
5502 	u64 length;
5503 	u64 stripe_nr;
5504 	u64 rmap_len;
5505 	int i, j, nr = 0;
5506 
5507 	read_lock(&em_tree->lock);
5508 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5509 	read_unlock(&em_tree->lock);
5510 
5511 	if (!em) {
5512 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5513 		       chunk_start);
5514 		return -EIO;
5515 	}
5516 
5517 	if (em->start != chunk_start) {
5518 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5519 		       em->start, chunk_start);
5520 		free_extent_map(em);
5521 		return -EIO;
5522 	}
5523 	map = (struct map_lookup *)em->bdev;
5524 
5525 	length = em->len;
5526 	rmap_len = map->stripe_len;
5527 
5528 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5529 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5530 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5531 		length = div_u64(length, map->num_stripes);
5532 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5533 		length = div_u64(length, nr_data_stripes(map));
5534 		rmap_len = map->stripe_len * nr_data_stripes(map);
5535 	}
5536 
5537 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5538 	BUG_ON(!buf); /* -ENOMEM */
5539 
5540 	for (i = 0; i < map->num_stripes; i++) {
5541 		if (devid && map->stripes[i].dev->devid != devid)
5542 			continue;
5543 		if (map->stripes[i].physical > physical ||
5544 		    map->stripes[i].physical + length <= physical)
5545 			continue;
5546 
5547 		stripe_nr = physical - map->stripes[i].physical;
5548 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5549 
5550 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5551 			stripe_nr = stripe_nr * map->num_stripes + i;
5552 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5553 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5554 			stripe_nr = stripe_nr * map->num_stripes + i;
5555 		} /* else if RAID[56], multiply by nr_data_stripes().
5556 		   * Alternatively, just use rmap_len below instead of
5557 		   * map->stripe_len */
5558 
5559 		bytenr = chunk_start + stripe_nr * rmap_len;
5560 		WARN_ON(nr >= map->num_stripes);
5561 		for (j = 0; j < nr; j++) {
5562 			if (buf[j] == bytenr)
5563 				break;
5564 		}
5565 		if (j == nr) {
5566 			WARN_ON(nr >= map->num_stripes);
5567 			buf[nr++] = bytenr;
5568 		}
5569 	}
5570 
5571 	*logical = buf;
5572 	*naddrs = nr;
5573 	*stripe_len = rmap_len;
5574 
5575 	free_extent_map(em);
5576 	return 0;
5577 }
5578 
5579 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5580 {
5581 	if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5582 		bio_endio_nodec(bio, err);
5583 	else
5584 		bio_endio(bio, err);
5585 	btrfs_put_bbio(bbio);
5586 }
5587 
5588 static void btrfs_end_bio(struct bio *bio, int err)
5589 {
5590 	struct btrfs_bio *bbio = bio->bi_private;
5591 	struct btrfs_device *dev = bbio->stripes[0].dev;
5592 	int is_orig_bio = 0;
5593 
5594 	if (err) {
5595 		atomic_inc(&bbio->error);
5596 		if (err == -EIO || err == -EREMOTEIO) {
5597 			unsigned int stripe_index =
5598 				btrfs_io_bio(bio)->stripe_index;
5599 
5600 			BUG_ON(stripe_index >= bbio->num_stripes);
5601 			dev = bbio->stripes[stripe_index].dev;
5602 			if (dev->bdev) {
5603 				if (bio->bi_rw & WRITE)
5604 					btrfs_dev_stat_inc(dev,
5605 						BTRFS_DEV_STAT_WRITE_ERRS);
5606 				else
5607 					btrfs_dev_stat_inc(dev,
5608 						BTRFS_DEV_STAT_READ_ERRS);
5609 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5610 					btrfs_dev_stat_inc(dev,
5611 						BTRFS_DEV_STAT_FLUSH_ERRS);
5612 				btrfs_dev_stat_print_on_error(dev);
5613 			}
5614 		}
5615 	}
5616 
5617 	if (bio == bbio->orig_bio)
5618 		is_orig_bio = 1;
5619 
5620 	btrfs_bio_counter_dec(bbio->fs_info);
5621 
5622 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5623 		if (!is_orig_bio) {
5624 			bio_put(bio);
5625 			bio = bbio->orig_bio;
5626 		}
5627 
5628 		bio->bi_private = bbio->private;
5629 		bio->bi_end_io = bbio->end_io;
5630 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5631 		/* only send an error to the higher layers if it is
5632 		 * beyond the tolerance of the btrfs bio
5633 		 */
5634 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5635 			err = -EIO;
5636 		} else {
5637 			/*
5638 			 * this bio is actually up to date, we didn't
5639 			 * go over the max number of errors
5640 			 */
5641 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5642 			err = 0;
5643 		}
5644 
5645 		btrfs_end_bbio(bbio, bio, err);
5646 	} else if (!is_orig_bio) {
5647 		bio_put(bio);
5648 	}
5649 }
5650 
5651 /*
5652  * see run_scheduled_bios for a description of why bios are collected for
5653  * async submit.
5654  *
5655  * This will add one bio to the pending list for a device and make sure
5656  * the work struct is scheduled.
5657  */
5658 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5659 					struct btrfs_device *device,
5660 					int rw, struct bio *bio)
5661 {
5662 	int should_queue = 1;
5663 	struct btrfs_pending_bios *pending_bios;
5664 
5665 	if (device->missing || !device->bdev) {
5666 		bio_endio(bio, -EIO);
5667 		return;
5668 	}
5669 
5670 	/* don't bother with additional async steps for reads, right now */
5671 	if (!(rw & REQ_WRITE)) {
5672 		bio_get(bio);
5673 		btrfsic_submit_bio(rw, bio);
5674 		bio_put(bio);
5675 		return;
5676 	}
5677 
5678 	/*
5679 	 * nr_async_bios allows us to reliably return congestion to the
5680 	 * higher layers.  Otherwise, the async bio makes it appear we have
5681 	 * made progress against dirty pages when we've really just put it
5682 	 * on a queue for later
5683 	 */
5684 	atomic_inc(&root->fs_info->nr_async_bios);
5685 	WARN_ON(bio->bi_next);
5686 	bio->bi_next = NULL;
5687 	bio->bi_rw |= rw;
5688 
5689 	spin_lock(&device->io_lock);
5690 	if (bio->bi_rw & REQ_SYNC)
5691 		pending_bios = &device->pending_sync_bios;
5692 	else
5693 		pending_bios = &device->pending_bios;
5694 
5695 	if (pending_bios->tail)
5696 		pending_bios->tail->bi_next = bio;
5697 
5698 	pending_bios->tail = bio;
5699 	if (!pending_bios->head)
5700 		pending_bios->head = bio;
5701 	if (device->running_pending)
5702 		should_queue = 0;
5703 
5704 	spin_unlock(&device->io_lock);
5705 
5706 	if (should_queue)
5707 		btrfs_queue_work(root->fs_info->submit_workers,
5708 				 &device->work);
5709 }
5710 
5711 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5712 		       sector_t sector)
5713 {
5714 	struct bio_vec *prev;
5715 	struct request_queue *q = bdev_get_queue(bdev);
5716 	unsigned int max_sectors = queue_max_sectors(q);
5717 	struct bvec_merge_data bvm = {
5718 		.bi_bdev = bdev,
5719 		.bi_sector = sector,
5720 		.bi_rw = bio->bi_rw,
5721 	};
5722 
5723 	if (WARN_ON(bio->bi_vcnt == 0))
5724 		return 1;
5725 
5726 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5727 	if (bio_sectors(bio) > max_sectors)
5728 		return 0;
5729 
5730 	if (!q->merge_bvec_fn)
5731 		return 1;
5732 
5733 	bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5734 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5735 		return 0;
5736 	return 1;
5737 }
5738 
5739 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5740 			      struct bio *bio, u64 physical, int dev_nr,
5741 			      int rw, int async)
5742 {
5743 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5744 
5745 	bio->bi_private = bbio;
5746 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5747 	bio->bi_end_io = btrfs_end_bio;
5748 	bio->bi_iter.bi_sector = physical >> 9;
5749 #ifdef DEBUG
5750 	{
5751 		struct rcu_string *name;
5752 
5753 		rcu_read_lock();
5754 		name = rcu_dereference(dev->name);
5755 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5756 			 "(%s id %llu), size=%u\n", rw,
5757 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5758 			 name->str, dev->devid, bio->bi_iter.bi_size);
5759 		rcu_read_unlock();
5760 	}
5761 #endif
5762 	bio->bi_bdev = dev->bdev;
5763 
5764 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5765 
5766 	if (async)
5767 		btrfs_schedule_bio(root, dev, rw, bio);
5768 	else
5769 		btrfsic_submit_bio(rw, bio);
5770 }
5771 
5772 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5773 			      struct bio *first_bio, struct btrfs_device *dev,
5774 			      int dev_nr, int rw, int async)
5775 {
5776 	struct bio_vec *bvec = first_bio->bi_io_vec;
5777 	struct bio *bio;
5778 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5779 	u64 physical = bbio->stripes[dev_nr].physical;
5780 
5781 again:
5782 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5783 	if (!bio)
5784 		return -ENOMEM;
5785 
5786 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5787 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5788 				 bvec->bv_offset) < bvec->bv_len) {
5789 			u64 len = bio->bi_iter.bi_size;
5790 
5791 			atomic_inc(&bbio->stripes_pending);
5792 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5793 					  rw, async);
5794 			physical += len;
5795 			goto again;
5796 		}
5797 		bvec++;
5798 	}
5799 
5800 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5801 	return 0;
5802 }
5803 
5804 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5805 {
5806 	atomic_inc(&bbio->error);
5807 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5808 		/* Shoud be the original bio. */
5809 		WARN_ON(bio != bbio->orig_bio);
5810 
5811 		bio->bi_private = bbio->private;
5812 		bio->bi_end_io = bbio->end_io;
5813 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5814 		bio->bi_iter.bi_sector = logical >> 9;
5815 
5816 		btrfs_end_bbio(bbio, bio, -EIO);
5817 	}
5818 }
5819 
5820 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5821 		  int mirror_num, int async_submit)
5822 {
5823 	struct btrfs_device *dev;
5824 	struct bio *first_bio = bio;
5825 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5826 	u64 length = 0;
5827 	u64 map_length;
5828 	int ret;
5829 	int dev_nr;
5830 	int total_devs;
5831 	struct btrfs_bio *bbio = NULL;
5832 
5833 	length = bio->bi_iter.bi_size;
5834 	map_length = length;
5835 
5836 	btrfs_bio_counter_inc_blocked(root->fs_info);
5837 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5838 			      mirror_num, 1);
5839 	if (ret) {
5840 		btrfs_bio_counter_dec(root->fs_info);
5841 		return ret;
5842 	}
5843 
5844 	total_devs = bbio->num_stripes;
5845 	bbio->orig_bio = first_bio;
5846 	bbio->private = first_bio->bi_private;
5847 	bbio->end_io = first_bio->bi_end_io;
5848 	bbio->fs_info = root->fs_info;
5849 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5850 
5851 	if (bbio->raid_map) {
5852 		/* In this case, map_length has been set to the length of
5853 		   a single stripe; not the whole write */
5854 		if (rw & WRITE) {
5855 			ret = raid56_parity_write(root, bio, bbio, map_length);
5856 		} else {
5857 			ret = raid56_parity_recover(root, bio, bbio, map_length,
5858 						    mirror_num, 1);
5859 		}
5860 
5861 		btrfs_bio_counter_dec(root->fs_info);
5862 		return ret;
5863 	}
5864 
5865 	if (map_length < length) {
5866 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5867 			logical, length, map_length);
5868 		BUG();
5869 	}
5870 
5871 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5872 		dev = bbio->stripes[dev_nr].dev;
5873 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5874 			bbio_error(bbio, first_bio, logical);
5875 			continue;
5876 		}
5877 
5878 		/*
5879 		 * Check and see if we're ok with this bio based on it's size
5880 		 * and offset with the given device.
5881 		 */
5882 		if (!bio_size_ok(dev->bdev, first_bio,
5883 				 bbio->stripes[dev_nr].physical >> 9)) {
5884 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5885 						 dev_nr, rw, async_submit);
5886 			BUG_ON(ret);
5887 			continue;
5888 		}
5889 
5890 		if (dev_nr < total_devs - 1) {
5891 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5892 			BUG_ON(!bio); /* -ENOMEM */
5893 		} else {
5894 			bio = first_bio;
5895 			bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5896 		}
5897 
5898 		submit_stripe_bio(root, bbio, bio,
5899 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5900 				  async_submit);
5901 	}
5902 	btrfs_bio_counter_dec(root->fs_info);
5903 	return 0;
5904 }
5905 
5906 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5907 				       u8 *uuid, u8 *fsid)
5908 {
5909 	struct btrfs_device *device;
5910 	struct btrfs_fs_devices *cur_devices;
5911 
5912 	cur_devices = fs_info->fs_devices;
5913 	while (cur_devices) {
5914 		if (!fsid ||
5915 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5916 			device = __find_device(&cur_devices->devices,
5917 					       devid, uuid);
5918 			if (device)
5919 				return device;
5920 		}
5921 		cur_devices = cur_devices->seed;
5922 	}
5923 	return NULL;
5924 }
5925 
5926 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5927 					    struct btrfs_fs_devices *fs_devices,
5928 					    u64 devid, u8 *dev_uuid)
5929 {
5930 	struct btrfs_device *device;
5931 
5932 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5933 	if (IS_ERR(device))
5934 		return NULL;
5935 
5936 	list_add(&device->dev_list, &fs_devices->devices);
5937 	device->fs_devices = fs_devices;
5938 	fs_devices->num_devices++;
5939 
5940 	device->missing = 1;
5941 	fs_devices->missing_devices++;
5942 
5943 	return device;
5944 }
5945 
5946 /**
5947  * btrfs_alloc_device - allocate struct btrfs_device
5948  * @fs_info:	used only for generating a new devid, can be NULL if
5949  *		devid is provided (i.e. @devid != NULL).
5950  * @devid:	a pointer to devid for this device.  If NULL a new devid
5951  *		is generated.
5952  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5953  *		is generated.
5954  *
5955  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5956  * on error.  Returned struct is not linked onto any lists and can be
5957  * destroyed with kfree() right away.
5958  */
5959 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5960 					const u64 *devid,
5961 					const u8 *uuid)
5962 {
5963 	struct btrfs_device *dev;
5964 	u64 tmp;
5965 
5966 	if (WARN_ON(!devid && !fs_info))
5967 		return ERR_PTR(-EINVAL);
5968 
5969 	dev = __alloc_device();
5970 	if (IS_ERR(dev))
5971 		return dev;
5972 
5973 	if (devid)
5974 		tmp = *devid;
5975 	else {
5976 		int ret;
5977 
5978 		ret = find_next_devid(fs_info, &tmp);
5979 		if (ret) {
5980 			kfree(dev);
5981 			return ERR_PTR(ret);
5982 		}
5983 	}
5984 	dev->devid = tmp;
5985 
5986 	if (uuid)
5987 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5988 	else
5989 		generate_random_uuid(dev->uuid);
5990 
5991 	btrfs_init_work(&dev->work, btrfs_submit_helper,
5992 			pending_bios_fn, NULL, NULL);
5993 
5994 	return dev;
5995 }
5996 
5997 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5998 			  struct extent_buffer *leaf,
5999 			  struct btrfs_chunk *chunk)
6000 {
6001 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6002 	struct map_lookup *map;
6003 	struct extent_map *em;
6004 	u64 logical;
6005 	u64 length;
6006 	u64 devid;
6007 	u8 uuid[BTRFS_UUID_SIZE];
6008 	int num_stripes;
6009 	int ret;
6010 	int i;
6011 
6012 	logical = key->offset;
6013 	length = btrfs_chunk_length(leaf, chunk);
6014 
6015 	read_lock(&map_tree->map_tree.lock);
6016 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6017 	read_unlock(&map_tree->map_tree.lock);
6018 
6019 	/* already mapped? */
6020 	if (em && em->start <= logical && em->start + em->len > logical) {
6021 		free_extent_map(em);
6022 		return 0;
6023 	} else if (em) {
6024 		free_extent_map(em);
6025 	}
6026 
6027 	em = alloc_extent_map();
6028 	if (!em)
6029 		return -ENOMEM;
6030 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6031 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6032 	if (!map) {
6033 		free_extent_map(em);
6034 		return -ENOMEM;
6035 	}
6036 
6037 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6038 	em->bdev = (struct block_device *)map;
6039 	em->start = logical;
6040 	em->len = length;
6041 	em->orig_start = 0;
6042 	em->block_start = 0;
6043 	em->block_len = em->len;
6044 
6045 	map->num_stripes = num_stripes;
6046 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6047 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6048 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6049 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6050 	map->type = btrfs_chunk_type(leaf, chunk);
6051 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6052 	for (i = 0; i < num_stripes; i++) {
6053 		map->stripes[i].physical =
6054 			btrfs_stripe_offset_nr(leaf, chunk, i);
6055 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6056 		read_extent_buffer(leaf, uuid, (unsigned long)
6057 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6058 				   BTRFS_UUID_SIZE);
6059 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6060 							uuid, NULL);
6061 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6062 			free_extent_map(em);
6063 			return -EIO;
6064 		}
6065 		if (!map->stripes[i].dev) {
6066 			map->stripes[i].dev =
6067 				add_missing_dev(root, root->fs_info->fs_devices,
6068 						devid, uuid);
6069 			if (!map->stripes[i].dev) {
6070 				free_extent_map(em);
6071 				return -EIO;
6072 			}
6073 		}
6074 		map->stripes[i].dev->in_fs_metadata = 1;
6075 	}
6076 
6077 	write_lock(&map_tree->map_tree.lock);
6078 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6079 	write_unlock(&map_tree->map_tree.lock);
6080 	BUG_ON(ret); /* Tree corruption */
6081 	free_extent_map(em);
6082 
6083 	return 0;
6084 }
6085 
6086 static void fill_device_from_item(struct extent_buffer *leaf,
6087 				 struct btrfs_dev_item *dev_item,
6088 				 struct btrfs_device *device)
6089 {
6090 	unsigned long ptr;
6091 
6092 	device->devid = btrfs_device_id(leaf, dev_item);
6093 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6094 	device->total_bytes = device->disk_total_bytes;
6095 	device->commit_total_bytes = device->disk_total_bytes;
6096 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6097 	device->commit_bytes_used = device->bytes_used;
6098 	device->type = btrfs_device_type(leaf, dev_item);
6099 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6100 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6101 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6102 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6103 	device->is_tgtdev_for_dev_replace = 0;
6104 
6105 	ptr = btrfs_device_uuid(dev_item);
6106 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6107 }
6108 
6109 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6110 						  u8 *fsid)
6111 {
6112 	struct btrfs_fs_devices *fs_devices;
6113 	int ret;
6114 
6115 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6116 
6117 	fs_devices = root->fs_info->fs_devices->seed;
6118 	while (fs_devices) {
6119 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6120 			return fs_devices;
6121 
6122 		fs_devices = fs_devices->seed;
6123 	}
6124 
6125 	fs_devices = find_fsid(fsid);
6126 	if (!fs_devices) {
6127 		if (!btrfs_test_opt(root, DEGRADED))
6128 			return ERR_PTR(-ENOENT);
6129 
6130 		fs_devices = alloc_fs_devices(fsid);
6131 		if (IS_ERR(fs_devices))
6132 			return fs_devices;
6133 
6134 		fs_devices->seeding = 1;
6135 		fs_devices->opened = 1;
6136 		return fs_devices;
6137 	}
6138 
6139 	fs_devices = clone_fs_devices(fs_devices);
6140 	if (IS_ERR(fs_devices))
6141 		return fs_devices;
6142 
6143 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6144 				   root->fs_info->bdev_holder);
6145 	if (ret) {
6146 		free_fs_devices(fs_devices);
6147 		fs_devices = ERR_PTR(ret);
6148 		goto out;
6149 	}
6150 
6151 	if (!fs_devices->seeding) {
6152 		__btrfs_close_devices(fs_devices);
6153 		free_fs_devices(fs_devices);
6154 		fs_devices = ERR_PTR(-EINVAL);
6155 		goto out;
6156 	}
6157 
6158 	fs_devices->seed = root->fs_info->fs_devices->seed;
6159 	root->fs_info->fs_devices->seed = fs_devices;
6160 out:
6161 	return fs_devices;
6162 }
6163 
6164 static int read_one_dev(struct btrfs_root *root,
6165 			struct extent_buffer *leaf,
6166 			struct btrfs_dev_item *dev_item)
6167 {
6168 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6169 	struct btrfs_device *device;
6170 	u64 devid;
6171 	int ret;
6172 	u8 fs_uuid[BTRFS_UUID_SIZE];
6173 	u8 dev_uuid[BTRFS_UUID_SIZE];
6174 
6175 	devid = btrfs_device_id(leaf, dev_item);
6176 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6177 			   BTRFS_UUID_SIZE);
6178 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6179 			   BTRFS_UUID_SIZE);
6180 
6181 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6182 		fs_devices = open_seed_devices(root, fs_uuid);
6183 		if (IS_ERR(fs_devices))
6184 			return PTR_ERR(fs_devices);
6185 	}
6186 
6187 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6188 	if (!device) {
6189 		if (!btrfs_test_opt(root, DEGRADED))
6190 			return -EIO;
6191 
6192 		btrfs_warn(root->fs_info, "devid %llu missing", devid);
6193 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6194 		if (!device)
6195 			return -ENOMEM;
6196 	} else {
6197 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6198 			return -EIO;
6199 
6200 		if(!device->bdev && !device->missing) {
6201 			/*
6202 			 * this happens when a device that was properly setup
6203 			 * in the device info lists suddenly goes bad.
6204 			 * device->bdev is NULL, and so we have to set
6205 			 * device->missing to one here
6206 			 */
6207 			device->fs_devices->missing_devices++;
6208 			device->missing = 1;
6209 		}
6210 
6211 		/* Move the device to its own fs_devices */
6212 		if (device->fs_devices != fs_devices) {
6213 			ASSERT(device->missing);
6214 
6215 			list_move(&device->dev_list, &fs_devices->devices);
6216 			device->fs_devices->num_devices--;
6217 			fs_devices->num_devices++;
6218 
6219 			device->fs_devices->missing_devices--;
6220 			fs_devices->missing_devices++;
6221 
6222 			device->fs_devices = fs_devices;
6223 		}
6224 	}
6225 
6226 	if (device->fs_devices != root->fs_info->fs_devices) {
6227 		BUG_ON(device->writeable);
6228 		if (device->generation !=
6229 		    btrfs_device_generation(leaf, dev_item))
6230 			return -EINVAL;
6231 	}
6232 
6233 	fill_device_from_item(leaf, dev_item, device);
6234 	device->in_fs_metadata = 1;
6235 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6236 		device->fs_devices->total_rw_bytes += device->total_bytes;
6237 		spin_lock(&root->fs_info->free_chunk_lock);
6238 		root->fs_info->free_chunk_space += device->total_bytes -
6239 			device->bytes_used;
6240 		spin_unlock(&root->fs_info->free_chunk_lock);
6241 	}
6242 	ret = 0;
6243 	return ret;
6244 }
6245 
6246 int btrfs_read_sys_array(struct btrfs_root *root)
6247 {
6248 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6249 	struct extent_buffer *sb;
6250 	struct btrfs_disk_key *disk_key;
6251 	struct btrfs_chunk *chunk;
6252 	u8 *array_ptr;
6253 	unsigned long sb_array_offset;
6254 	int ret = 0;
6255 	u32 num_stripes;
6256 	u32 array_size;
6257 	u32 len = 0;
6258 	u32 cur_offset;
6259 	struct btrfs_key key;
6260 
6261 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6262 	/*
6263 	 * This will create extent buffer of nodesize, superblock size is
6264 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6265 	 * overallocate but we can keep it as-is, only the first page is used.
6266 	 */
6267 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6268 	if (!sb)
6269 		return -ENOMEM;
6270 	btrfs_set_buffer_uptodate(sb);
6271 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6272 	/*
6273 	 * The sb extent buffer is artifical and just used to read the system array.
6274 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6275 	 * pages up-to-date when the page is larger: extent does not cover the
6276 	 * whole page and consequently check_page_uptodate does not find all
6277 	 * the page's extents up-to-date (the hole beyond sb),
6278 	 * write_extent_buffer then triggers a WARN_ON.
6279 	 *
6280 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6281 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6282 	 * to silence the warning eg. on PowerPC 64.
6283 	 */
6284 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6285 		SetPageUptodate(sb->pages[0]);
6286 
6287 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6288 	array_size = btrfs_super_sys_array_size(super_copy);
6289 
6290 	array_ptr = super_copy->sys_chunk_array;
6291 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6292 	cur_offset = 0;
6293 
6294 	while (cur_offset < array_size) {
6295 		disk_key = (struct btrfs_disk_key *)array_ptr;
6296 		len = sizeof(*disk_key);
6297 		if (cur_offset + len > array_size)
6298 			goto out_short_read;
6299 
6300 		btrfs_disk_key_to_cpu(&key, disk_key);
6301 
6302 		array_ptr += len;
6303 		sb_array_offset += len;
6304 		cur_offset += len;
6305 
6306 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6307 			chunk = (struct btrfs_chunk *)sb_array_offset;
6308 			/*
6309 			 * At least one btrfs_chunk with one stripe must be
6310 			 * present, exact stripe count check comes afterwards
6311 			 */
6312 			len = btrfs_chunk_item_size(1);
6313 			if (cur_offset + len > array_size)
6314 				goto out_short_read;
6315 
6316 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6317 			len = btrfs_chunk_item_size(num_stripes);
6318 			if (cur_offset + len > array_size)
6319 				goto out_short_read;
6320 
6321 			ret = read_one_chunk(root, &key, sb, chunk);
6322 			if (ret)
6323 				break;
6324 		} else {
6325 			ret = -EIO;
6326 			break;
6327 		}
6328 		array_ptr += len;
6329 		sb_array_offset += len;
6330 		cur_offset += len;
6331 	}
6332 	free_extent_buffer(sb);
6333 	return ret;
6334 
6335 out_short_read:
6336 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6337 			len, cur_offset);
6338 	free_extent_buffer(sb);
6339 	return -EIO;
6340 }
6341 
6342 int btrfs_read_chunk_tree(struct btrfs_root *root)
6343 {
6344 	struct btrfs_path *path;
6345 	struct extent_buffer *leaf;
6346 	struct btrfs_key key;
6347 	struct btrfs_key found_key;
6348 	int ret;
6349 	int slot;
6350 
6351 	root = root->fs_info->chunk_root;
6352 
6353 	path = btrfs_alloc_path();
6354 	if (!path)
6355 		return -ENOMEM;
6356 
6357 	mutex_lock(&uuid_mutex);
6358 	lock_chunks(root);
6359 
6360 	/*
6361 	 * Read all device items, and then all the chunk items. All
6362 	 * device items are found before any chunk item (their object id
6363 	 * is smaller than the lowest possible object id for a chunk
6364 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6365 	 */
6366 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6367 	key.offset = 0;
6368 	key.type = 0;
6369 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6370 	if (ret < 0)
6371 		goto error;
6372 	while (1) {
6373 		leaf = path->nodes[0];
6374 		slot = path->slots[0];
6375 		if (slot >= btrfs_header_nritems(leaf)) {
6376 			ret = btrfs_next_leaf(root, path);
6377 			if (ret == 0)
6378 				continue;
6379 			if (ret < 0)
6380 				goto error;
6381 			break;
6382 		}
6383 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6384 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6385 			struct btrfs_dev_item *dev_item;
6386 			dev_item = btrfs_item_ptr(leaf, slot,
6387 						  struct btrfs_dev_item);
6388 			ret = read_one_dev(root, leaf, dev_item);
6389 			if (ret)
6390 				goto error;
6391 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6392 			struct btrfs_chunk *chunk;
6393 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6394 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6395 			if (ret)
6396 				goto error;
6397 		}
6398 		path->slots[0]++;
6399 	}
6400 	ret = 0;
6401 error:
6402 	unlock_chunks(root);
6403 	mutex_unlock(&uuid_mutex);
6404 
6405 	btrfs_free_path(path);
6406 	return ret;
6407 }
6408 
6409 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6410 {
6411 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6412 	struct btrfs_device *device;
6413 
6414 	while (fs_devices) {
6415 		mutex_lock(&fs_devices->device_list_mutex);
6416 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6417 			device->dev_root = fs_info->dev_root;
6418 		mutex_unlock(&fs_devices->device_list_mutex);
6419 
6420 		fs_devices = fs_devices->seed;
6421 	}
6422 }
6423 
6424 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6425 {
6426 	int i;
6427 
6428 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6429 		btrfs_dev_stat_reset(dev, i);
6430 }
6431 
6432 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6433 {
6434 	struct btrfs_key key;
6435 	struct btrfs_key found_key;
6436 	struct btrfs_root *dev_root = fs_info->dev_root;
6437 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6438 	struct extent_buffer *eb;
6439 	int slot;
6440 	int ret = 0;
6441 	struct btrfs_device *device;
6442 	struct btrfs_path *path = NULL;
6443 	int i;
6444 
6445 	path = btrfs_alloc_path();
6446 	if (!path) {
6447 		ret = -ENOMEM;
6448 		goto out;
6449 	}
6450 
6451 	mutex_lock(&fs_devices->device_list_mutex);
6452 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6453 		int item_size;
6454 		struct btrfs_dev_stats_item *ptr;
6455 
6456 		key.objectid = 0;
6457 		key.type = BTRFS_DEV_STATS_KEY;
6458 		key.offset = device->devid;
6459 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6460 		if (ret) {
6461 			__btrfs_reset_dev_stats(device);
6462 			device->dev_stats_valid = 1;
6463 			btrfs_release_path(path);
6464 			continue;
6465 		}
6466 		slot = path->slots[0];
6467 		eb = path->nodes[0];
6468 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6469 		item_size = btrfs_item_size_nr(eb, slot);
6470 
6471 		ptr = btrfs_item_ptr(eb, slot,
6472 				     struct btrfs_dev_stats_item);
6473 
6474 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6475 			if (item_size >= (1 + i) * sizeof(__le64))
6476 				btrfs_dev_stat_set(device, i,
6477 					btrfs_dev_stats_value(eb, ptr, i));
6478 			else
6479 				btrfs_dev_stat_reset(device, i);
6480 		}
6481 
6482 		device->dev_stats_valid = 1;
6483 		btrfs_dev_stat_print_on_load(device);
6484 		btrfs_release_path(path);
6485 	}
6486 	mutex_unlock(&fs_devices->device_list_mutex);
6487 
6488 out:
6489 	btrfs_free_path(path);
6490 	return ret < 0 ? ret : 0;
6491 }
6492 
6493 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6494 				struct btrfs_root *dev_root,
6495 				struct btrfs_device *device)
6496 {
6497 	struct btrfs_path *path;
6498 	struct btrfs_key key;
6499 	struct extent_buffer *eb;
6500 	struct btrfs_dev_stats_item *ptr;
6501 	int ret;
6502 	int i;
6503 
6504 	key.objectid = 0;
6505 	key.type = BTRFS_DEV_STATS_KEY;
6506 	key.offset = device->devid;
6507 
6508 	path = btrfs_alloc_path();
6509 	BUG_ON(!path);
6510 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6511 	if (ret < 0) {
6512 		printk_in_rcu(KERN_WARNING "BTRFS: "
6513 			"error %d while searching for dev_stats item for device %s!\n",
6514 			      ret, rcu_str_deref(device->name));
6515 		goto out;
6516 	}
6517 
6518 	if (ret == 0 &&
6519 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6520 		/* need to delete old one and insert a new one */
6521 		ret = btrfs_del_item(trans, dev_root, path);
6522 		if (ret != 0) {
6523 			printk_in_rcu(KERN_WARNING "BTRFS: "
6524 				"delete too small dev_stats item for device %s failed %d!\n",
6525 				      rcu_str_deref(device->name), ret);
6526 			goto out;
6527 		}
6528 		ret = 1;
6529 	}
6530 
6531 	if (ret == 1) {
6532 		/* need to insert a new item */
6533 		btrfs_release_path(path);
6534 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6535 					      &key, sizeof(*ptr));
6536 		if (ret < 0) {
6537 			printk_in_rcu(KERN_WARNING "BTRFS: "
6538 					  "insert dev_stats item for device %s failed %d!\n",
6539 				      rcu_str_deref(device->name), ret);
6540 			goto out;
6541 		}
6542 	}
6543 
6544 	eb = path->nodes[0];
6545 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6546 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6547 		btrfs_set_dev_stats_value(eb, ptr, i,
6548 					  btrfs_dev_stat_read(device, i));
6549 	btrfs_mark_buffer_dirty(eb);
6550 
6551 out:
6552 	btrfs_free_path(path);
6553 	return ret;
6554 }
6555 
6556 /*
6557  * called from commit_transaction. Writes all changed device stats to disk.
6558  */
6559 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6560 			struct btrfs_fs_info *fs_info)
6561 {
6562 	struct btrfs_root *dev_root = fs_info->dev_root;
6563 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6564 	struct btrfs_device *device;
6565 	int stats_cnt;
6566 	int ret = 0;
6567 
6568 	mutex_lock(&fs_devices->device_list_mutex);
6569 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6570 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6571 			continue;
6572 
6573 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6574 		ret = update_dev_stat_item(trans, dev_root, device);
6575 		if (!ret)
6576 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6577 	}
6578 	mutex_unlock(&fs_devices->device_list_mutex);
6579 
6580 	return ret;
6581 }
6582 
6583 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6584 {
6585 	btrfs_dev_stat_inc(dev, index);
6586 	btrfs_dev_stat_print_on_error(dev);
6587 }
6588 
6589 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6590 {
6591 	if (!dev->dev_stats_valid)
6592 		return;
6593 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6594 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6595 			   rcu_str_deref(dev->name),
6596 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6597 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6598 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6599 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6600 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6601 }
6602 
6603 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6604 {
6605 	int i;
6606 
6607 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6608 		if (btrfs_dev_stat_read(dev, i) != 0)
6609 			break;
6610 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6611 		return; /* all values == 0, suppress message */
6612 
6613 	printk_in_rcu(KERN_INFO "BTRFS: "
6614 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6615 	       rcu_str_deref(dev->name),
6616 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6617 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6618 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6619 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6620 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6621 }
6622 
6623 int btrfs_get_dev_stats(struct btrfs_root *root,
6624 			struct btrfs_ioctl_get_dev_stats *stats)
6625 {
6626 	struct btrfs_device *dev;
6627 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6628 	int i;
6629 
6630 	mutex_lock(&fs_devices->device_list_mutex);
6631 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6632 	mutex_unlock(&fs_devices->device_list_mutex);
6633 
6634 	if (!dev) {
6635 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6636 		return -ENODEV;
6637 	} else if (!dev->dev_stats_valid) {
6638 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6639 		return -ENODEV;
6640 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6641 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6642 			if (stats->nr_items > i)
6643 				stats->values[i] =
6644 					btrfs_dev_stat_read_and_reset(dev, i);
6645 			else
6646 				btrfs_dev_stat_reset(dev, i);
6647 		}
6648 	} else {
6649 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6650 			if (stats->nr_items > i)
6651 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6652 	}
6653 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6654 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6655 	return 0;
6656 }
6657 
6658 int btrfs_scratch_superblock(struct btrfs_device *device)
6659 {
6660 	struct buffer_head *bh;
6661 	struct btrfs_super_block *disk_super;
6662 
6663 	bh = btrfs_read_dev_super(device->bdev);
6664 	if (!bh)
6665 		return -EINVAL;
6666 	disk_super = (struct btrfs_super_block *)bh->b_data;
6667 
6668 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6669 	set_buffer_dirty(bh);
6670 	sync_dirty_buffer(bh);
6671 	brelse(bh);
6672 
6673 	return 0;
6674 }
6675 
6676 /*
6677  * Update the size of all devices, which is used for writing out the
6678  * super blocks.
6679  */
6680 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6681 {
6682 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6683 	struct btrfs_device *curr, *next;
6684 
6685 	if (list_empty(&fs_devices->resized_devices))
6686 		return;
6687 
6688 	mutex_lock(&fs_devices->device_list_mutex);
6689 	lock_chunks(fs_info->dev_root);
6690 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6691 				 resized_list) {
6692 		list_del_init(&curr->resized_list);
6693 		curr->commit_total_bytes = curr->disk_total_bytes;
6694 	}
6695 	unlock_chunks(fs_info->dev_root);
6696 	mutex_unlock(&fs_devices->device_list_mutex);
6697 }
6698 
6699 /* Must be invoked during the transaction commit */
6700 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6701 					struct btrfs_transaction *transaction)
6702 {
6703 	struct extent_map *em;
6704 	struct map_lookup *map;
6705 	struct btrfs_device *dev;
6706 	int i;
6707 
6708 	if (list_empty(&transaction->pending_chunks))
6709 		return;
6710 
6711 	/* In order to kick the device replace finish process */
6712 	lock_chunks(root);
6713 	list_for_each_entry(em, &transaction->pending_chunks, list) {
6714 		map = (struct map_lookup *)em->bdev;
6715 
6716 		for (i = 0; i < map->num_stripes; i++) {
6717 			dev = map->stripes[i].dev;
6718 			dev->commit_bytes_used = dev->bytes_used;
6719 		}
6720 	}
6721 	unlock_chunks(root);
6722 }
6723