1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "locking.h" 25 #include "print-tree.h" 26 #include "compat.h" 27 #include "tree-log.h" 28 29 /* magic values for the inode_only field in btrfs_log_inode: 30 * 31 * LOG_INODE_ALL means to log everything 32 * LOG_INODE_EXISTS means to log just enough to recreate the inode 33 * during log replay 34 */ 35 #define LOG_INODE_ALL 0 36 #define LOG_INODE_EXISTS 1 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 #define LOG_WALK_PIN_ONLY 0 91 #define LOG_WALK_REPLAY_INODES 1 92 #define LOG_WALK_REPLAY_ALL 2 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct inode *inode, 96 int inode_only); 97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, 99 struct btrfs_path *path, u64 objectid); 100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_root *log, 103 struct btrfs_path *path, 104 u64 dirid, int del_all); 105 106 /* 107 * tree logging is a special write ahead log used to make sure that 108 * fsyncs and O_SYNCs can happen without doing full tree commits. 109 * 110 * Full tree commits are expensive because they require commonly 111 * modified blocks to be recowed, creating many dirty pages in the 112 * extent tree an 4x-6x higher write load than ext3. 113 * 114 * Instead of doing a tree commit on every fsync, we use the 115 * key ranges and transaction ids to find items for a given file or directory 116 * that have changed in this transaction. Those items are copied into 117 * a special tree (one per subvolume root), that tree is written to disk 118 * and then the fsync is considered complete. 119 * 120 * After a crash, items are copied out of the log-tree back into the 121 * subvolume tree. Any file data extents found are recorded in the extent 122 * allocation tree, and the log-tree freed. 123 * 124 * The log tree is read three times, once to pin down all the extents it is 125 * using in ram and once, once to create all the inodes logged in the tree 126 * and once to do all the other items. 127 */ 128 129 /* 130 * start a sub transaction and setup the log tree 131 * this increments the log tree writer count to make the people 132 * syncing the tree wait for us to finish 133 */ 134 static int start_log_trans(struct btrfs_trans_handle *trans, 135 struct btrfs_root *root) 136 { 137 int ret; 138 int err = 0; 139 140 mutex_lock(&root->log_mutex); 141 if (root->log_root) { 142 if (!root->log_start_pid) { 143 root->log_start_pid = current->pid; 144 root->log_multiple_pids = false; 145 } else if (root->log_start_pid != current->pid) { 146 root->log_multiple_pids = true; 147 } 148 149 root->log_batch++; 150 atomic_inc(&root->log_writers); 151 mutex_unlock(&root->log_mutex); 152 return 0; 153 } 154 root->log_multiple_pids = false; 155 root->log_start_pid = current->pid; 156 mutex_lock(&root->fs_info->tree_log_mutex); 157 if (!root->fs_info->log_root_tree) { 158 ret = btrfs_init_log_root_tree(trans, root->fs_info); 159 if (ret) 160 err = ret; 161 } 162 if (err == 0 && !root->log_root) { 163 ret = btrfs_add_log_tree(trans, root); 164 if (ret) 165 err = ret; 166 } 167 mutex_unlock(&root->fs_info->tree_log_mutex); 168 root->log_batch++; 169 atomic_inc(&root->log_writers); 170 mutex_unlock(&root->log_mutex); 171 return err; 172 } 173 174 /* 175 * returns 0 if there was a log transaction running and we were able 176 * to join, or returns -ENOENT if there were not transactions 177 * in progress 178 */ 179 static int join_running_log_trans(struct btrfs_root *root) 180 { 181 int ret = -ENOENT; 182 183 smp_mb(); 184 if (!root->log_root) 185 return -ENOENT; 186 187 mutex_lock(&root->log_mutex); 188 if (root->log_root) { 189 ret = 0; 190 atomic_inc(&root->log_writers); 191 } 192 mutex_unlock(&root->log_mutex); 193 return ret; 194 } 195 196 /* 197 * This either makes the current running log transaction wait 198 * until you call btrfs_end_log_trans() or it makes any future 199 * log transactions wait until you call btrfs_end_log_trans() 200 */ 201 int btrfs_pin_log_trans(struct btrfs_root *root) 202 { 203 int ret = -ENOENT; 204 205 mutex_lock(&root->log_mutex); 206 atomic_inc(&root->log_writers); 207 mutex_unlock(&root->log_mutex); 208 return ret; 209 } 210 211 /* 212 * indicate we're done making changes to the log tree 213 * and wake up anyone waiting to do a sync 214 */ 215 int btrfs_end_log_trans(struct btrfs_root *root) 216 { 217 if (atomic_dec_and_test(&root->log_writers)) { 218 smp_mb(); 219 if (waitqueue_active(&root->log_writer_wait)) 220 wake_up(&root->log_writer_wait); 221 } 222 return 0; 223 } 224 225 226 /* 227 * the walk control struct is used to pass state down the chain when 228 * processing the log tree. The stage field tells us which part 229 * of the log tree processing we are currently doing. The others 230 * are state fields used for that specific part 231 */ 232 struct walk_control { 233 /* should we free the extent on disk when done? This is used 234 * at transaction commit time while freeing a log tree 235 */ 236 int free; 237 238 /* should we write out the extent buffer? This is used 239 * while flushing the log tree to disk during a sync 240 */ 241 int write; 242 243 /* should we wait for the extent buffer io to finish? Also used 244 * while flushing the log tree to disk for a sync 245 */ 246 int wait; 247 248 /* pin only walk, we record which extents on disk belong to the 249 * log trees 250 */ 251 int pin; 252 253 /* what stage of the replay code we're currently in */ 254 int stage; 255 256 /* the root we are currently replaying */ 257 struct btrfs_root *replay_dest; 258 259 /* the trans handle for the current replay */ 260 struct btrfs_trans_handle *trans; 261 262 /* the function that gets used to process blocks we find in the 263 * tree. Note the extent_buffer might not be up to date when it is 264 * passed in, and it must be checked or read if you need the data 265 * inside it 266 */ 267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 268 struct walk_control *wc, u64 gen); 269 }; 270 271 /* 272 * process_func used to pin down extents, write them or wait on them 273 */ 274 static int process_one_buffer(struct btrfs_root *log, 275 struct extent_buffer *eb, 276 struct walk_control *wc, u64 gen) 277 { 278 if (wc->pin) 279 btrfs_pin_extent_for_log_replay(wc->trans, 280 log->fs_info->extent_root, 281 eb->start, eb->len); 282 283 if (btrfs_buffer_uptodate(eb, gen)) { 284 if (wc->write) 285 btrfs_write_tree_block(eb); 286 if (wc->wait) 287 btrfs_wait_tree_block_writeback(eb); 288 } 289 return 0; 290 } 291 292 /* 293 * Item overwrite used by replay and tree logging. eb, slot and key all refer 294 * to the src data we are copying out. 295 * 296 * root is the tree we are copying into, and path is a scratch 297 * path for use in this function (it should be released on entry and 298 * will be released on exit). 299 * 300 * If the key is already in the destination tree the existing item is 301 * overwritten. If the existing item isn't big enough, it is extended. 302 * If it is too large, it is truncated. 303 * 304 * If the key isn't in the destination yet, a new item is inserted. 305 */ 306 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 307 struct btrfs_root *root, 308 struct btrfs_path *path, 309 struct extent_buffer *eb, int slot, 310 struct btrfs_key *key) 311 { 312 int ret; 313 u32 item_size; 314 u64 saved_i_size = 0; 315 int save_old_i_size = 0; 316 unsigned long src_ptr; 317 unsigned long dst_ptr; 318 int overwrite_root = 0; 319 320 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 321 overwrite_root = 1; 322 323 item_size = btrfs_item_size_nr(eb, slot); 324 src_ptr = btrfs_item_ptr_offset(eb, slot); 325 326 /* look for the key in the destination tree */ 327 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 328 if (ret == 0) { 329 char *src_copy; 330 char *dst_copy; 331 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 332 path->slots[0]); 333 if (dst_size != item_size) 334 goto insert; 335 336 if (item_size == 0) { 337 btrfs_release_path(path); 338 return 0; 339 } 340 dst_copy = kmalloc(item_size, GFP_NOFS); 341 src_copy = kmalloc(item_size, GFP_NOFS); 342 if (!dst_copy || !src_copy) { 343 btrfs_release_path(path); 344 kfree(dst_copy); 345 kfree(src_copy); 346 return -ENOMEM; 347 } 348 349 read_extent_buffer(eb, src_copy, src_ptr, item_size); 350 351 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 352 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 353 item_size); 354 ret = memcmp(dst_copy, src_copy, item_size); 355 356 kfree(dst_copy); 357 kfree(src_copy); 358 /* 359 * they have the same contents, just return, this saves 360 * us from cowing blocks in the destination tree and doing 361 * extra writes that may not have been done by a previous 362 * sync 363 */ 364 if (ret == 0) { 365 btrfs_release_path(path); 366 return 0; 367 } 368 369 } 370 insert: 371 btrfs_release_path(path); 372 /* try to insert the key into the destination tree */ 373 ret = btrfs_insert_empty_item(trans, root, path, 374 key, item_size); 375 376 /* make sure any existing item is the correct size */ 377 if (ret == -EEXIST) { 378 u32 found_size; 379 found_size = btrfs_item_size_nr(path->nodes[0], 380 path->slots[0]); 381 if (found_size > item_size) { 382 btrfs_truncate_item(trans, root, path, item_size, 1); 383 } else if (found_size < item_size) { 384 ret = btrfs_extend_item(trans, root, path, 385 item_size - found_size); 386 } 387 } else if (ret) { 388 return ret; 389 } 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 391 path->slots[0]); 392 393 /* don't overwrite an existing inode if the generation number 394 * was logged as zero. This is done when the tree logging code 395 * is just logging an inode to make sure it exists after recovery. 396 * 397 * Also, don't overwrite i_size on directories during replay. 398 * log replay inserts and removes directory items based on the 399 * state of the tree found in the subvolume, and i_size is modified 400 * as it goes 401 */ 402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 403 struct btrfs_inode_item *src_item; 404 struct btrfs_inode_item *dst_item; 405 406 src_item = (struct btrfs_inode_item *)src_ptr; 407 dst_item = (struct btrfs_inode_item *)dst_ptr; 408 409 if (btrfs_inode_generation(eb, src_item) == 0) 410 goto no_copy; 411 412 if (overwrite_root && 413 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 415 save_old_i_size = 1; 416 saved_i_size = btrfs_inode_size(path->nodes[0], 417 dst_item); 418 } 419 } 420 421 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 422 src_ptr, item_size); 423 424 if (save_old_i_size) { 425 struct btrfs_inode_item *dst_item; 426 dst_item = (struct btrfs_inode_item *)dst_ptr; 427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 428 } 429 430 /* make sure the generation is filled in */ 431 if (key->type == BTRFS_INODE_ITEM_KEY) { 432 struct btrfs_inode_item *dst_item; 433 dst_item = (struct btrfs_inode_item *)dst_ptr; 434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 435 btrfs_set_inode_generation(path->nodes[0], dst_item, 436 trans->transid); 437 } 438 } 439 no_copy: 440 btrfs_mark_buffer_dirty(path->nodes[0]); 441 btrfs_release_path(path); 442 return 0; 443 } 444 445 /* 446 * simple helper to read an inode off the disk from a given root 447 * This can only be called for subvolume roots and not for the log 448 */ 449 static noinline struct inode *read_one_inode(struct btrfs_root *root, 450 u64 objectid) 451 { 452 struct btrfs_key key; 453 struct inode *inode; 454 455 key.objectid = objectid; 456 key.type = BTRFS_INODE_ITEM_KEY; 457 key.offset = 0; 458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 459 if (IS_ERR(inode)) { 460 inode = NULL; 461 } else if (is_bad_inode(inode)) { 462 iput(inode); 463 inode = NULL; 464 } 465 return inode; 466 } 467 468 /* replays a single extent in 'eb' at 'slot' with 'key' into the 469 * subvolume 'root'. path is released on entry and should be released 470 * on exit. 471 * 472 * extents in the log tree have not been allocated out of the extent 473 * tree yet. So, this completes the allocation, taking a reference 474 * as required if the extent already exists or creating a new extent 475 * if it isn't in the extent allocation tree yet. 476 * 477 * The extent is inserted into the file, dropping any existing extents 478 * from the file that overlap the new one. 479 */ 480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 481 struct btrfs_root *root, 482 struct btrfs_path *path, 483 struct extent_buffer *eb, int slot, 484 struct btrfs_key *key) 485 { 486 int found_type; 487 u64 mask = root->sectorsize - 1; 488 u64 extent_end; 489 u64 alloc_hint; 490 u64 start = key->offset; 491 u64 saved_nbytes; 492 struct btrfs_file_extent_item *item; 493 struct inode *inode = NULL; 494 unsigned long size; 495 int ret = 0; 496 497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 498 found_type = btrfs_file_extent_type(eb, item); 499 500 if (found_type == BTRFS_FILE_EXTENT_REG || 501 found_type == BTRFS_FILE_EXTENT_PREALLOC) 502 extent_end = start + btrfs_file_extent_num_bytes(eb, item); 503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 504 size = btrfs_file_extent_inline_len(eb, item); 505 extent_end = (start + size + mask) & ~mask; 506 } else { 507 ret = 0; 508 goto out; 509 } 510 511 inode = read_one_inode(root, key->objectid); 512 if (!inode) { 513 ret = -EIO; 514 goto out; 515 } 516 517 /* 518 * first check to see if we already have this extent in the 519 * file. This must be done before the btrfs_drop_extents run 520 * so we don't try to drop this extent. 521 */ 522 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 523 start, 0); 524 525 if (ret == 0 && 526 (found_type == BTRFS_FILE_EXTENT_REG || 527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 528 struct btrfs_file_extent_item cmp1; 529 struct btrfs_file_extent_item cmp2; 530 struct btrfs_file_extent_item *existing; 531 struct extent_buffer *leaf; 532 533 leaf = path->nodes[0]; 534 existing = btrfs_item_ptr(leaf, path->slots[0], 535 struct btrfs_file_extent_item); 536 537 read_extent_buffer(eb, &cmp1, (unsigned long)item, 538 sizeof(cmp1)); 539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 540 sizeof(cmp2)); 541 542 /* 543 * we already have a pointer to this exact extent, 544 * we don't have to do anything 545 */ 546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 547 btrfs_release_path(path); 548 goto out; 549 } 550 } 551 btrfs_release_path(path); 552 553 saved_nbytes = inode_get_bytes(inode); 554 /* drop any overlapping extents */ 555 ret = btrfs_drop_extents(trans, inode, start, extent_end, 556 &alloc_hint, 1); 557 BUG_ON(ret); 558 559 if (found_type == BTRFS_FILE_EXTENT_REG || 560 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 561 u64 offset; 562 unsigned long dest_offset; 563 struct btrfs_key ins; 564 565 ret = btrfs_insert_empty_item(trans, root, path, key, 566 sizeof(*item)); 567 BUG_ON(ret); 568 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 569 path->slots[0]); 570 copy_extent_buffer(path->nodes[0], eb, dest_offset, 571 (unsigned long)item, sizeof(*item)); 572 573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 575 ins.type = BTRFS_EXTENT_ITEM_KEY; 576 offset = key->offset - btrfs_file_extent_offset(eb, item); 577 578 if (ins.objectid > 0) { 579 u64 csum_start; 580 u64 csum_end; 581 LIST_HEAD(ordered_sums); 582 /* 583 * is this extent already allocated in the extent 584 * allocation tree? If so, just add a reference 585 */ 586 ret = btrfs_lookup_extent(root, ins.objectid, 587 ins.offset); 588 if (ret == 0) { 589 ret = btrfs_inc_extent_ref(trans, root, 590 ins.objectid, ins.offset, 591 0, root->root_key.objectid, 592 key->objectid, offset, 0); 593 BUG_ON(ret); 594 } else { 595 /* 596 * insert the extent pointer in the extent 597 * allocation tree 598 */ 599 ret = btrfs_alloc_logged_file_extent(trans, 600 root, root->root_key.objectid, 601 key->objectid, offset, &ins); 602 BUG_ON(ret); 603 } 604 btrfs_release_path(path); 605 606 if (btrfs_file_extent_compression(eb, item)) { 607 csum_start = ins.objectid; 608 csum_end = csum_start + ins.offset; 609 } else { 610 csum_start = ins.objectid + 611 btrfs_file_extent_offset(eb, item); 612 csum_end = csum_start + 613 btrfs_file_extent_num_bytes(eb, item); 614 } 615 616 ret = btrfs_lookup_csums_range(root->log_root, 617 csum_start, csum_end - 1, 618 &ordered_sums, 0); 619 BUG_ON(ret); 620 while (!list_empty(&ordered_sums)) { 621 struct btrfs_ordered_sum *sums; 622 sums = list_entry(ordered_sums.next, 623 struct btrfs_ordered_sum, 624 list); 625 ret = btrfs_csum_file_blocks(trans, 626 root->fs_info->csum_root, 627 sums); 628 BUG_ON(ret); 629 list_del(&sums->list); 630 kfree(sums); 631 } 632 } else { 633 btrfs_release_path(path); 634 } 635 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 636 /* inline extents are easy, we just overwrite them */ 637 ret = overwrite_item(trans, root, path, eb, slot, key); 638 BUG_ON(ret); 639 } 640 641 inode_set_bytes(inode, saved_nbytes); 642 btrfs_update_inode(trans, root, inode); 643 out: 644 if (inode) 645 iput(inode); 646 return ret; 647 } 648 649 /* 650 * when cleaning up conflicts between the directory names in the 651 * subvolume, directory names in the log and directory names in the 652 * inode back references, we may have to unlink inodes from directories. 653 * 654 * This is a helper function to do the unlink of a specific directory 655 * item 656 */ 657 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 658 struct btrfs_root *root, 659 struct btrfs_path *path, 660 struct inode *dir, 661 struct btrfs_dir_item *di) 662 { 663 struct inode *inode; 664 char *name; 665 int name_len; 666 struct extent_buffer *leaf; 667 struct btrfs_key location; 668 int ret; 669 670 leaf = path->nodes[0]; 671 672 btrfs_dir_item_key_to_cpu(leaf, di, &location); 673 name_len = btrfs_dir_name_len(leaf, di); 674 name = kmalloc(name_len, GFP_NOFS); 675 if (!name) 676 return -ENOMEM; 677 678 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 679 btrfs_release_path(path); 680 681 inode = read_one_inode(root, location.objectid); 682 if (!inode) { 683 kfree(name); 684 return -EIO; 685 } 686 687 ret = link_to_fixup_dir(trans, root, path, location.objectid); 688 BUG_ON(ret); 689 690 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 691 BUG_ON(ret); 692 kfree(name); 693 694 iput(inode); 695 return ret; 696 } 697 698 /* 699 * helper function to see if a given name and sequence number found 700 * in an inode back reference are already in a directory and correctly 701 * point to this inode 702 */ 703 static noinline int inode_in_dir(struct btrfs_root *root, 704 struct btrfs_path *path, 705 u64 dirid, u64 objectid, u64 index, 706 const char *name, int name_len) 707 { 708 struct btrfs_dir_item *di; 709 struct btrfs_key location; 710 int match = 0; 711 712 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 713 index, name, name_len, 0); 714 if (di && !IS_ERR(di)) { 715 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 716 if (location.objectid != objectid) 717 goto out; 718 } else 719 goto out; 720 btrfs_release_path(path); 721 722 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 723 if (di && !IS_ERR(di)) { 724 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 725 if (location.objectid != objectid) 726 goto out; 727 } else 728 goto out; 729 match = 1; 730 out: 731 btrfs_release_path(path); 732 return match; 733 } 734 735 /* 736 * helper function to check a log tree for a named back reference in 737 * an inode. This is used to decide if a back reference that is 738 * found in the subvolume conflicts with what we find in the log. 739 * 740 * inode backreferences may have multiple refs in a single item, 741 * during replay we process one reference at a time, and we don't 742 * want to delete valid links to a file from the subvolume if that 743 * link is also in the log. 744 */ 745 static noinline int backref_in_log(struct btrfs_root *log, 746 struct btrfs_key *key, 747 char *name, int namelen) 748 { 749 struct btrfs_path *path; 750 struct btrfs_inode_ref *ref; 751 unsigned long ptr; 752 unsigned long ptr_end; 753 unsigned long name_ptr; 754 int found_name_len; 755 int item_size; 756 int ret; 757 int match = 0; 758 759 path = btrfs_alloc_path(); 760 if (!path) 761 return -ENOMEM; 762 763 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 764 if (ret != 0) 765 goto out; 766 767 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 768 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 769 ptr_end = ptr + item_size; 770 while (ptr < ptr_end) { 771 ref = (struct btrfs_inode_ref *)ptr; 772 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 773 if (found_name_len == namelen) { 774 name_ptr = (unsigned long)(ref + 1); 775 ret = memcmp_extent_buffer(path->nodes[0], name, 776 name_ptr, namelen); 777 if (ret == 0) { 778 match = 1; 779 goto out; 780 } 781 } 782 ptr = (unsigned long)(ref + 1) + found_name_len; 783 } 784 out: 785 btrfs_free_path(path); 786 return match; 787 } 788 789 790 /* 791 * replay one inode back reference item found in the log tree. 792 * eb, slot and key refer to the buffer and key found in the log tree. 793 * root is the destination we are replaying into, and path is for temp 794 * use by this function. (it should be released on return). 795 */ 796 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 797 struct btrfs_root *root, 798 struct btrfs_root *log, 799 struct btrfs_path *path, 800 struct extent_buffer *eb, int slot, 801 struct btrfs_key *key) 802 { 803 struct btrfs_inode_ref *ref; 804 struct btrfs_dir_item *di; 805 struct inode *dir; 806 struct inode *inode; 807 unsigned long ref_ptr; 808 unsigned long ref_end; 809 char *name; 810 int namelen; 811 int ret; 812 int search_done = 0; 813 814 /* 815 * it is possible that we didn't log all the parent directories 816 * for a given inode. If we don't find the dir, just don't 817 * copy the back ref in. The link count fixup code will take 818 * care of the rest 819 */ 820 dir = read_one_inode(root, key->offset); 821 if (!dir) 822 return -ENOENT; 823 824 inode = read_one_inode(root, key->objectid); 825 if (!inode) { 826 iput(dir); 827 return -EIO; 828 } 829 830 ref_ptr = btrfs_item_ptr_offset(eb, slot); 831 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 832 833 again: 834 ref = (struct btrfs_inode_ref *)ref_ptr; 835 836 namelen = btrfs_inode_ref_name_len(eb, ref); 837 name = kmalloc(namelen, GFP_NOFS); 838 BUG_ON(!name); 839 840 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); 841 842 /* if we already have a perfect match, we're done */ 843 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 844 btrfs_inode_ref_index(eb, ref), 845 name, namelen)) { 846 goto out; 847 } 848 849 /* 850 * look for a conflicting back reference in the metadata. 851 * if we find one we have to unlink that name of the file 852 * before we add our new link. Later on, we overwrite any 853 * existing back reference, and we don't want to create 854 * dangling pointers in the directory. 855 */ 856 857 if (search_done) 858 goto insert; 859 860 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 861 if (ret == 0) { 862 char *victim_name; 863 int victim_name_len; 864 struct btrfs_inode_ref *victim_ref; 865 unsigned long ptr; 866 unsigned long ptr_end; 867 struct extent_buffer *leaf = path->nodes[0]; 868 869 /* are we trying to overwrite a back ref for the root directory 870 * if so, just jump out, we're done 871 */ 872 if (key->objectid == key->offset) 873 goto out_nowrite; 874 875 /* check all the names in this back reference to see 876 * if they are in the log. if so, we allow them to stay 877 * otherwise they must be unlinked as a conflict 878 */ 879 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 880 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 881 while (ptr < ptr_end) { 882 victim_ref = (struct btrfs_inode_ref *)ptr; 883 victim_name_len = btrfs_inode_ref_name_len(leaf, 884 victim_ref); 885 victim_name = kmalloc(victim_name_len, GFP_NOFS); 886 BUG_ON(!victim_name); 887 888 read_extent_buffer(leaf, victim_name, 889 (unsigned long)(victim_ref + 1), 890 victim_name_len); 891 892 if (!backref_in_log(log, key, victim_name, 893 victim_name_len)) { 894 btrfs_inc_nlink(inode); 895 btrfs_release_path(path); 896 897 ret = btrfs_unlink_inode(trans, root, dir, 898 inode, victim_name, 899 victim_name_len); 900 } 901 kfree(victim_name); 902 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 903 } 904 BUG_ON(ret); 905 906 /* 907 * NOTE: we have searched root tree and checked the 908 * coresponding ref, it does not need to check again. 909 */ 910 search_done = 1; 911 } 912 btrfs_release_path(path); 913 914 /* look for a conflicting sequence number */ 915 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 916 btrfs_inode_ref_index(eb, ref), 917 name, namelen, 0); 918 if (di && !IS_ERR(di)) { 919 ret = drop_one_dir_item(trans, root, path, dir, di); 920 BUG_ON(ret); 921 } 922 btrfs_release_path(path); 923 924 /* look for a conflicing name */ 925 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 926 name, namelen, 0); 927 if (di && !IS_ERR(di)) { 928 ret = drop_one_dir_item(trans, root, path, dir, di); 929 BUG_ON(ret); 930 } 931 btrfs_release_path(path); 932 933 insert: 934 /* insert our name */ 935 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, 936 btrfs_inode_ref_index(eb, ref)); 937 BUG_ON(ret); 938 939 btrfs_update_inode(trans, root, inode); 940 941 out: 942 ref_ptr = (unsigned long)(ref + 1) + namelen; 943 kfree(name); 944 if (ref_ptr < ref_end) 945 goto again; 946 947 /* finally write the back reference in the inode */ 948 ret = overwrite_item(trans, root, path, eb, slot, key); 949 BUG_ON(ret); 950 951 out_nowrite: 952 btrfs_release_path(path); 953 iput(dir); 954 iput(inode); 955 return 0; 956 } 957 958 static int insert_orphan_item(struct btrfs_trans_handle *trans, 959 struct btrfs_root *root, u64 offset) 960 { 961 int ret; 962 ret = btrfs_find_orphan_item(root, offset); 963 if (ret > 0) 964 ret = btrfs_insert_orphan_item(trans, root, offset); 965 return ret; 966 } 967 968 969 /* 970 * There are a few corners where the link count of the file can't 971 * be properly maintained during replay. So, instead of adding 972 * lots of complexity to the log code, we just scan the backrefs 973 * for any file that has been through replay. 974 * 975 * The scan will update the link count on the inode to reflect the 976 * number of back refs found. If it goes down to zero, the iput 977 * will free the inode. 978 */ 979 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct inode *inode) 982 { 983 struct btrfs_path *path; 984 int ret; 985 struct btrfs_key key; 986 u64 nlink = 0; 987 unsigned long ptr; 988 unsigned long ptr_end; 989 int name_len; 990 u64 ino = btrfs_ino(inode); 991 992 key.objectid = ino; 993 key.type = BTRFS_INODE_REF_KEY; 994 key.offset = (u64)-1; 995 996 path = btrfs_alloc_path(); 997 if (!path) 998 return -ENOMEM; 999 1000 while (1) { 1001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1002 if (ret < 0) 1003 break; 1004 if (ret > 0) { 1005 if (path->slots[0] == 0) 1006 break; 1007 path->slots[0]--; 1008 } 1009 btrfs_item_key_to_cpu(path->nodes[0], &key, 1010 path->slots[0]); 1011 if (key.objectid != ino || 1012 key.type != BTRFS_INODE_REF_KEY) 1013 break; 1014 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1015 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1016 path->slots[0]); 1017 while (ptr < ptr_end) { 1018 struct btrfs_inode_ref *ref; 1019 1020 ref = (struct btrfs_inode_ref *)ptr; 1021 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1022 ref); 1023 ptr = (unsigned long)(ref + 1) + name_len; 1024 nlink++; 1025 } 1026 1027 if (key.offset == 0) 1028 break; 1029 key.offset--; 1030 btrfs_release_path(path); 1031 } 1032 btrfs_release_path(path); 1033 if (nlink != inode->i_nlink) { 1034 set_nlink(inode, nlink); 1035 btrfs_update_inode(trans, root, inode); 1036 } 1037 BTRFS_I(inode)->index_cnt = (u64)-1; 1038 1039 if (inode->i_nlink == 0) { 1040 if (S_ISDIR(inode->i_mode)) { 1041 ret = replay_dir_deletes(trans, root, NULL, path, 1042 ino, 1); 1043 BUG_ON(ret); 1044 } 1045 ret = insert_orphan_item(trans, root, ino); 1046 BUG_ON(ret); 1047 } 1048 btrfs_free_path(path); 1049 1050 return 0; 1051 } 1052 1053 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1054 struct btrfs_root *root, 1055 struct btrfs_path *path) 1056 { 1057 int ret; 1058 struct btrfs_key key; 1059 struct inode *inode; 1060 1061 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1062 key.type = BTRFS_ORPHAN_ITEM_KEY; 1063 key.offset = (u64)-1; 1064 while (1) { 1065 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1066 if (ret < 0) 1067 break; 1068 1069 if (ret == 1) { 1070 if (path->slots[0] == 0) 1071 break; 1072 path->slots[0]--; 1073 } 1074 1075 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1076 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1077 key.type != BTRFS_ORPHAN_ITEM_KEY) 1078 break; 1079 1080 ret = btrfs_del_item(trans, root, path); 1081 if (ret) 1082 goto out; 1083 1084 btrfs_release_path(path); 1085 inode = read_one_inode(root, key.offset); 1086 if (!inode) 1087 return -EIO; 1088 1089 ret = fixup_inode_link_count(trans, root, inode); 1090 BUG_ON(ret); 1091 1092 iput(inode); 1093 1094 /* 1095 * fixup on a directory may create new entries, 1096 * make sure we always look for the highset possible 1097 * offset 1098 */ 1099 key.offset = (u64)-1; 1100 } 1101 ret = 0; 1102 out: 1103 btrfs_release_path(path); 1104 return ret; 1105 } 1106 1107 1108 /* 1109 * record a given inode in the fixup dir so we can check its link 1110 * count when replay is done. The link count is incremented here 1111 * so the inode won't go away until we check it 1112 */ 1113 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1114 struct btrfs_root *root, 1115 struct btrfs_path *path, 1116 u64 objectid) 1117 { 1118 struct btrfs_key key; 1119 int ret = 0; 1120 struct inode *inode; 1121 1122 inode = read_one_inode(root, objectid); 1123 if (!inode) 1124 return -EIO; 1125 1126 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1127 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1128 key.offset = objectid; 1129 1130 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1131 1132 btrfs_release_path(path); 1133 if (ret == 0) { 1134 btrfs_inc_nlink(inode); 1135 btrfs_update_inode(trans, root, inode); 1136 } else if (ret == -EEXIST) { 1137 ret = 0; 1138 } else { 1139 BUG(); 1140 } 1141 iput(inode); 1142 1143 return ret; 1144 } 1145 1146 /* 1147 * when replaying the log for a directory, we only insert names 1148 * for inodes that actually exist. This means an fsync on a directory 1149 * does not implicitly fsync all the new files in it 1150 */ 1151 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1152 struct btrfs_root *root, 1153 struct btrfs_path *path, 1154 u64 dirid, u64 index, 1155 char *name, int name_len, u8 type, 1156 struct btrfs_key *location) 1157 { 1158 struct inode *inode; 1159 struct inode *dir; 1160 int ret; 1161 1162 inode = read_one_inode(root, location->objectid); 1163 if (!inode) 1164 return -ENOENT; 1165 1166 dir = read_one_inode(root, dirid); 1167 if (!dir) { 1168 iput(inode); 1169 return -EIO; 1170 } 1171 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1172 1173 /* FIXME, put inode into FIXUP list */ 1174 1175 iput(inode); 1176 iput(dir); 1177 return ret; 1178 } 1179 1180 /* 1181 * take a single entry in a log directory item and replay it into 1182 * the subvolume. 1183 * 1184 * if a conflicting item exists in the subdirectory already, 1185 * the inode it points to is unlinked and put into the link count 1186 * fix up tree. 1187 * 1188 * If a name from the log points to a file or directory that does 1189 * not exist in the FS, it is skipped. fsyncs on directories 1190 * do not force down inodes inside that directory, just changes to the 1191 * names or unlinks in a directory. 1192 */ 1193 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1194 struct btrfs_root *root, 1195 struct btrfs_path *path, 1196 struct extent_buffer *eb, 1197 struct btrfs_dir_item *di, 1198 struct btrfs_key *key) 1199 { 1200 char *name; 1201 int name_len; 1202 struct btrfs_dir_item *dst_di; 1203 struct btrfs_key found_key; 1204 struct btrfs_key log_key; 1205 struct inode *dir; 1206 u8 log_type; 1207 int exists; 1208 int ret; 1209 1210 dir = read_one_inode(root, key->objectid); 1211 if (!dir) 1212 return -EIO; 1213 1214 name_len = btrfs_dir_name_len(eb, di); 1215 name = kmalloc(name_len, GFP_NOFS); 1216 if (!name) 1217 return -ENOMEM; 1218 1219 log_type = btrfs_dir_type(eb, di); 1220 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1221 name_len); 1222 1223 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1224 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1225 if (exists == 0) 1226 exists = 1; 1227 else 1228 exists = 0; 1229 btrfs_release_path(path); 1230 1231 if (key->type == BTRFS_DIR_ITEM_KEY) { 1232 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1233 name, name_len, 1); 1234 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1235 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1236 key->objectid, 1237 key->offset, name, 1238 name_len, 1); 1239 } else { 1240 BUG(); 1241 } 1242 if (IS_ERR_OR_NULL(dst_di)) { 1243 /* we need a sequence number to insert, so we only 1244 * do inserts for the BTRFS_DIR_INDEX_KEY types 1245 */ 1246 if (key->type != BTRFS_DIR_INDEX_KEY) 1247 goto out; 1248 goto insert; 1249 } 1250 1251 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1252 /* the existing item matches the logged item */ 1253 if (found_key.objectid == log_key.objectid && 1254 found_key.type == log_key.type && 1255 found_key.offset == log_key.offset && 1256 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1257 goto out; 1258 } 1259 1260 /* 1261 * don't drop the conflicting directory entry if the inode 1262 * for the new entry doesn't exist 1263 */ 1264 if (!exists) 1265 goto out; 1266 1267 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1268 BUG_ON(ret); 1269 1270 if (key->type == BTRFS_DIR_INDEX_KEY) 1271 goto insert; 1272 out: 1273 btrfs_release_path(path); 1274 kfree(name); 1275 iput(dir); 1276 return 0; 1277 1278 insert: 1279 btrfs_release_path(path); 1280 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1281 name, name_len, log_type, &log_key); 1282 1283 BUG_ON(ret && ret != -ENOENT); 1284 goto out; 1285 } 1286 1287 /* 1288 * find all the names in a directory item and reconcile them into 1289 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1290 * one name in a directory item, but the same code gets used for 1291 * both directory index types 1292 */ 1293 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1294 struct btrfs_root *root, 1295 struct btrfs_path *path, 1296 struct extent_buffer *eb, int slot, 1297 struct btrfs_key *key) 1298 { 1299 int ret; 1300 u32 item_size = btrfs_item_size_nr(eb, slot); 1301 struct btrfs_dir_item *di; 1302 int name_len; 1303 unsigned long ptr; 1304 unsigned long ptr_end; 1305 1306 ptr = btrfs_item_ptr_offset(eb, slot); 1307 ptr_end = ptr + item_size; 1308 while (ptr < ptr_end) { 1309 di = (struct btrfs_dir_item *)ptr; 1310 if (verify_dir_item(root, eb, di)) 1311 return -EIO; 1312 name_len = btrfs_dir_name_len(eb, di); 1313 ret = replay_one_name(trans, root, path, eb, di, key); 1314 BUG_ON(ret); 1315 ptr = (unsigned long)(di + 1); 1316 ptr += name_len; 1317 } 1318 return 0; 1319 } 1320 1321 /* 1322 * directory replay has two parts. There are the standard directory 1323 * items in the log copied from the subvolume, and range items 1324 * created in the log while the subvolume was logged. 1325 * 1326 * The range items tell us which parts of the key space the log 1327 * is authoritative for. During replay, if a key in the subvolume 1328 * directory is in a logged range item, but not actually in the log 1329 * that means it was deleted from the directory before the fsync 1330 * and should be removed. 1331 */ 1332 static noinline int find_dir_range(struct btrfs_root *root, 1333 struct btrfs_path *path, 1334 u64 dirid, int key_type, 1335 u64 *start_ret, u64 *end_ret) 1336 { 1337 struct btrfs_key key; 1338 u64 found_end; 1339 struct btrfs_dir_log_item *item; 1340 int ret; 1341 int nritems; 1342 1343 if (*start_ret == (u64)-1) 1344 return 1; 1345 1346 key.objectid = dirid; 1347 key.type = key_type; 1348 key.offset = *start_ret; 1349 1350 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1351 if (ret < 0) 1352 goto out; 1353 if (ret > 0) { 1354 if (path->slots[0] == 0) 1355 goto out; 1356 path->slots[0]--; 1357 } 1358 if (ret != 0) 1359 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1360 1361 if (key.type != key_type || key.objectid != dirid) { 1362 ret = 1; 1363 goto next; 1364 } 1365 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1366 struct btrfs_dir_log_item); 1367 found_end = btrfs_dir_log_end(path->nodes[0], item); 1368 1369 if (*start_ret >= key.offset && *start_ret <= found_end) { 1370 ret = 0; 1371 *start_ret = key.offset; 1372 *end_ret = found_end; 1373 goto out; 1374 } 1375 ret = 1; 1376 next: 1377 /* check the next slot in the tree to see if it is a valid item */ 1378 nritems = btrfs_header_nritems(path->nodes[0]); 1379 if (path->slots[0] >= nritems) { 1380 ret = btrfs_next_leaf(root, path); 1381 if (ret) 1382 goto out; 1383 } else { 1384 path->slots[0]++; 1385 } 1386 1387 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1388 1389 if (key.type != key_type || key.objectid != dirid) { 1390 ret = 1; 1391 goto out; 1392 } 1393 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1394 struct btrfs_dir_log_item); 1395 found_end = btrfs_dir_log_end(path->nodes[0], item); 1396 *start_ret = key.offset; 1397 *end_ret = found_end; 1398 ret = 0; 1399 out: 1400 btrfs_release_path(path); 1401 return ret; 1402 } 1403 1404 /* 1405 * this looks for a given directory item in the log. If the directory 1406 * item is not in the log, the item is removed and the inode it points 1407 * to is unlinked 1408 */ 1409 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1410 struct btrfs_root *root, 1411 struct btrfs_root *log, 1412 struct btrfs_path *path, 1413 struct btrfs_path *log_path, 1414 struct inode *dir, 1415 struct btrfs_key *dir_key) 1416 { 1417 int ret; 1418 struct extent_buffer *eb; 1419 int slot; 1420 u32 item_size; 1421 struct btrfs_dir_item *di; 1422 struct btrfs_dir_item *log_di; 1423 int name_len; 1424 unsigned long ptr; 1425 unsigned long ptr_end; 1426 char *name; 1427 struct inode *inode; 1428 struct btrfs_key location; 1429 1430 again: 1431 eb = path->nodes[0]; 1432 slot = path->slots[0]; 1433 item_size = btrfs_item_size_nr(eb, slot); 1434 ptr = btrfs_item_ptr_offset(eb, slot); 1435 ptr_end = ptr + item_size; 1436 while (ptr < ptr_end) { 1437 di = (struct btrfs_dir_item *)ptr; 1438 if (verify_dir_item(root, eb, di)) { 1439 ret = -EIO; 1440 goto out; 1441 } 1442 1443 name_len = btrfs_dir_name_len(eb, di); 1444 name = kmalloc(name_len, GFP_NOFS); 1445 if (!name) { 1446 ret = -ENOMEM; 1447 goto out; 1448 } 1449 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1450 name_len); 1451 log_di = NULL; 1452 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1453 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1454 dir_key->objectid, 1455 name, name_len, 0); 1456 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1457 log_di = btrfs_lookup_dir_index_item(trans, log, 1458 log_path, 1459 dir_key->objectid, 1460 dir_key->offset, 1461 name, name_len, 0); 1462 } 1463 if (IS_ERR_OR_NULL(log_di)) { 1464 btrfs_dir_item_key_to_cpu(eb, di, &location); 1465 btrfs_release_path(path); 1466 btrfs_release_path(log_path); 1467 inode = read_one_inode(root, location.objectid); 1468 if (!inode) { 1469 kfree(name); 1470 return -EIO; 1471 } 1472 1473 ret = link_to_fixup_dir(trans, root, 1474 path, location.objectid); 1475 BUG_ON(ret); 1476 btrfs_inc_nlink(inode); 1477 ret = btrfs_unlink_inode(trans, root, dir, inode, 1478 name, name_len); 1479 BUG_ON(ret); 1480 kfree(name); 1481 iput(inode); 1482 1483 /* there might still be more names under this key 1484 * check and repeat if required 1485 */ 1486 ret = btrfs_search_slot(NULL, root, dir_key, path, 1487 0, 0); 1488 if (ret == 0) 1489 goto again; 1490 ret = 0; 1491 goto out; 1492 } 1493 btrfs_release_path(log_path); 1494 kfree(name); 1495 1496 ptr = (unsigned long)(di + 1); 1497 ptr += name_len; 1498 } 1499 ret = 0; 1500 out: 1501 btrfs_release_path(path); 1502 btrfs_release_path(log_path); 1503 return ret; 1504 } 1505 1506 /* 1507 * deletion replay happens before we copy any new directory items 1508 * out of the log or out of backreferences from inodes. It 1509 * scans the log to find ranges of keys that log is authoritative for, 1510 * and then scans the directory to find items in those ranges that are 1511 * not present in the log. 1512 * 1513 * Anything we don't find in the log is unlinked and removed from the 1514 * directory. 1515 */ 1516 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1517 struct btrfs_root *root, 1518 struct btrfs_root *log, 1519 struct btrfs_path *path, 1520 u64 dirid, int del_all) 1521 { 1522 u64 range_start; 1523 u64 range_end; 1524 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1525 int ret = 0; 1526 struct btrfs_key dir_key; 1527 struct btrfs_key found_key; 1528 struct btrfs_path *log_path; 1529 struct inode *dir; 1530 1531 dir_key.objectid = dirid; 1532 dir_key.type = BTRFS_DIR_ITEM_KEY; 1533 log_path = btrfs_alloc_path(); 1534 if (!log_path) 1535 return -ENOMEM; 1536 1537 dir = read_one_inode(root, dirid); 1538 /* it isn't an error if the inode isn't there, that can happen 1539 * because we replay the deletes before we copy in the inode item 1540 * from the log 1541 */ 1542 if (!dir) { 1543 btrfs_free_path(log_path); 1544 return 0; 1545 } 1546 again: 1547 range_start = 0; 1548 range_end = 0; 1549 while (1) { 1550 if (del_all) 1551 range_end = (u64)-1; 1552 else { 1553 ret = find_dir_range(log, path, dirid, key_type, 1554 &range_start, &range_end); 1555 if (ret != 0) 1556 break; 1557 } 1558 1559 dir_key.offset = range_start; 1560 while (1) { 1561 int nritems; 1562 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1563 0, 0); 1564 if (ret < 0) 1565 goto out; 1566 1567 nritems = btrfs_header_nritems(path->nodes[0]); 1568 if (path->slots[0] >= nritems) { 1569 ret = btrfs_next_leaf(root, path); 1570 if (ret) 1571 break; 1572 } 1573 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1574 path->slots[0]); 1575 if (found_key.objectid != dirid || 1576 found_key.type != dir_key.type) 1577 goto next_type; 1578 1579 if (found_key.offset > range_end) 1580 break; 1581 1582 ret = check_item_in_log(trans, root, log, path, 1583 log_path, dir, 1584 &found_key); 1585 BUG_ON(ret); 1586 if (found_key.offset == (u64)-1) 1587 break; 1588 dir_key.offset = found_key.offset + 1; 1589 } 1590 btrfs_release_path(path); 1591 if (range_end == (u64)-1) 1592 break; 1593 range_start = range_end + 1; 1594 } 1595 1596 next_type: 1597 ret = 0; 1598 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1599 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1600 dir_key.type = BTRFS_DIR_INDEX_KEY; 1601 btrfs_release_path(path); 1602 goto again; 1603 } 1604 out: 1605 btrfs_release_path(path); 1606 btrfs_free_path(log_path); 1607 iput(dir); 1608 return ret; 1609 } 1610 1611 /* 1612 * the process_func used to replay items from the log tree. This 1613 * gets called in two different stages. The first stage just looks 1614 * for inodes and makes sure they are all copied into the subvolume. 1615 * 1616 * The second stage copies all the other item types from the log into 1617 * the subvolume. The two stage approach is slower, but gets rid of 1618 * lots of complexity around inodes referencing other inodes that exist 1619 * only in the log (references come from either directory items or inode 1620 * back refs). 1621 */ 1622 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1623 struct walk_control *wc, u64 gen) 1624 { 1625 int nritems; 1626 struct btrfs_path *path; 1627 struct btrfs_root *root = wc->replay_dest; 1628 struct btrfs_key key; 1629 int level; 1630 int i; 1631 int ret; 1632 1633 btrfs_read_buffer(eb, gen); 1634 1635 level = btrfs_header_level(eb); 1636 1637 if (level != 0) 1638 return 0; 1639 1640 path = btrfs_alloc_path(); 1641 if (!path) 1642 return -ENOMEM; 1643 1644 nritems = btrfs_header_nritems(eb); 1645 for (i = 0; i < nritems; i++) { 1646 btrfs_item_key_to_cpu(eb, &key, i); 1647 1648 /* inode keys are done during the first stage */ 1649 if (key.type == BTRFS_INODE_ITEM_KEY && 1650 wc->stage == LOG_WALK_REPLAY_INODES) { 1651 struct btrfs_inode_item *inode_item; 1652 u32 mode; 1653 1654 inode_item = btrfs_item_ptr(eb, i, 1655 struct btrfs_inode_item); 1656 mode = btrfs_inode_mode(eb, inode_item); 1657 if (S_ISDIR(mode)) { 1658 ret = replay_dir_deletes(wc->trans, 1659 root, log, path, key.objectid, 0); 1660 BUG_ON(ret); 1661 } 1662 ret = overwrite_item(wc->trans, root, path, 1663 eb, i, &key); 1664 BUG_ON(ret); 1665 1666 /* for regular files, make sure corresponding 1667 * orhpan item exist. extents past the new EOF 1668 * will be truncated later by orphan cleanup. 1669 */ 1670 if (S_ISREG(mode)) { 1671 ret = insert_orphan_item(wc->trans, root, 1672 key.objectid); 1673 BUG_ON(ret); 1674 } 1675 1676 ret = link_to_fixup_dir(wc->trans, root, 1677 path, key.objectid); 1678 BUG_ON(ret); 1679 } 1680 if (wc->stage < LOG_WALK_REPLAY_ALL) 1681 continue; 1682 1683 /* these keys are simply copied */ 1684 if (key.type == BTRFS_XATTR_ITEM_KEY) { 1685 ret = overwrite_item(wc->trans, root, path, 1686 eb, i, &key); 1687 BUG_ON(ret); 1688 } else if (key.type == BTRFS_INODE_REF_KEY) { 1689 ret = add_inode_ref(wc->trans, root, log, path, 1690 eb, i, &key); 1691 BUG_ON(ret && ret != -ENOENT); 1692 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 1693 ret = replay_one_extent(wc->trans, root, path, 1694 eb, i, &key); 1695 BUG_ON(ret); 1696 } else if (key.type == BTRFS_DIR_ITEM_KEY || 1697 key.type == BTRFS_DIR_INDEX_KEY) { 1698 ret = replay_one_dir_item(wc->trans, root, path, 1699 eb, i, &key); 1700 BUG_ON(ret); 1701 } 1702 } 1703 btrfs_free_path(path); 1704 return 0; 1705 } 1706 1707 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 1708 struct btrfs_root *root, 1709 struct btrfs_path *path, int *level, 1710 struct walk_control *wc) 1711 { 1712 u64 root_owner; 1713 u64 bytenr; 1714 u64 ptr_gen; 1715 struct extent_buffer *next; 1716 struct extent_buffer *cur; 1717 struct extent_buffer *parent; 1718 u32 blocksize; 1719 int ret = 0; 1720 1721 WARN_ON(*level < 0); 1722 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1723 1724 while (*level > 0) { 1725 WARN_ON(*level < 0); 1726 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1727 cur = path->nodes[*level]; 1728 1729 if (btrfs_header_level(cur) != *level) 1730 WARN_ON(1); 1731 1732 if (path->slots[*level] >= 1733 btrfs_header_nritems(cur)) 1734 break; 1735 1736 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 1737 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 1738 blocksize = btrfs_level_size(root, *level - 1); 1739 1740 parent = path->nodes[*level]; 1741 root_owner = btrfs_header_owner(parent); 1742 1743 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 1744 if (!next) 1745 return -ENOMEM; 1746 1747 if (*level == 1) { 1748 ret = wc->process_func(root, next, wc, ptr_gen); 1749 if (ret) 1750 return ret; 1751 1752 path->slots[*level]++; 1753 if (wc->free) { 1754 btrfs_read_buffer(next, ptr_gen); 1755 1756 btrfs_tree_lock(next); 1757 btrfs_set_lock_blocking(next); 1758 clean_tree_block(trans, root, next); 1759 btrfs_wait_tree_block_writeback(next); 1760 btrfs_tree_unlock(next); 1761 1762 WARN_ON(root_owner != 1763 BTRFS_TREE_LOG_OBJECTID); 1764 ret = btrfs_free_and_pin_reserved_extent(root, 1765 bytenr, blocksize); 1766 BUG_ON(ret); 1767 } 1768 free_extent_buffer(next); 1769 continue; 1770 } 1771 btrfs_read_buffer(next, ptr_gen); 1772 1773 WARN_ON(*level <= 0); 1774 if (path->nodes[*level-1]) 1775 free_extent_buffer(path->nodes[*level-1]); 1776 path->nodes[*level-1] = next; 1777 *level = btrfs_header_level(next); 1778 path->slots[*level] = 0; 1779 cond_resched(); 1780 } 1781 WARN_ON(*level < 0); 1782 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1783 1784 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 1785 1786 cond_resched(); 1787 return 0; 1788 } 1789 1790 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 1791 struct btrfs_root *root, 1792 struct btrfs_path *path, int *level, 1793 struct walk_control *wc) 1794 { 1795 u64 root_owner; 1796 int i; 1797 int slot; 1798 int ret; 1799 1800 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 1801 slot = path->slots[i]; 1802 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 1803 path->slots[i]++; 1804 *level = i; 1805 WARN_ON(*level == 0); 1806 return 0; 1807 } else { 1808 struct extent_buffer *parent; 1809 if (path->nodes[*level] == root->node) 1810 parent = path->nodes[*level]; 1811 else 1812 parent = path->nodes[*level + 1]; 1813 1814 root_owner = btrfs_header_owner(parent); 1815 ret = wc->process_func(root, path->nodes[*level], wc, 1816 btrfs_header_generation(path->nodes[*level])); 1817 if (ret) 1818 return ret; 1819 1820 if (wc->free) { 1821 struct extent_buffer *next; 1822 1823 next = path->nodes[*level]; 1824 1825 btrfs_tree_lock(next); 1826 btrfs_set_lock_blocking(next); 1827 clean_tree_block(trans, root, next); 1828 btrfs_wait_tree_block_writeback(next); 1829 btrfs_tree_unlock(next); 1830 1831 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1832 ret = btrfs_free_and_pin_reserved_extent(root, 1833 path->nodes[*level]->start, 1834 path->nodes[*level]->len); 1835 BUG_ON(ret); 1836 } 1837 free_extent_buffer(path->nodes[*level]); 1838 path->nodes[*level] = NULL; 1839 *level = i + 1; 1840 } 1841 } 1842 return 1; 1843 } 1844 1845 /* 1846 * drop the reference count on the tree rooted at 'snap'. This traverses 1847 * the tree freeing any blocks that have a ref count of zero after being 1848 * decremented. 1849 */ 1850 static int walk_log_tree(struct btrfs_trans_handle *trans, 1851 struct btrfs_root *log, struct walk_control *wc) 1852 { 1853 int ret = 0; 1854 int wret; 1855 int level; 1856 struct btrfs_path *path; 1857 int i; 1858 int orig_level; 1859 1860 path = btrfs_alloc_path(); 1861 if (!path) 1862 return -ENOMEM; 1863 1864 level = btrfs_header_level(log->node); 1865 orig_level = level; 1866 path->nodes[level] = log->node; 1867 extent_buffer_get(log->node); 1868 path->slots[level] = 0; 1869 1870 while (1) { 1871 wret = walk_down_log_tree(trans, log, path, &level, wc); 1872 if (wret > 0) 1873 break; 1874 if (wret < 0) 1875 ret = wret; 1876 1877 wret = walk_up_log_tree(trans, log, path, &level, wc); 1878 if (wret > 0) 1879 break; 1880 if (wret < 0) 1881 ret = wret; 1882 } 1883 1884 /* was the root node processed? if not, catch it here */ 1885 if (path->nodes[orig_level]) { 1886 wc->process_func(log, path->nodes[orig_level], wc, 1887 btrfs_header_generation(path->nodes[orig_level])); 1888 if (wc->free) { 1889 struct extent_buffer *next; 1890 1891 next = path->nodes[orig_level]; 1892 1893 btrfs_tree_lock(next); 1894 btrfs_set_lock_blocking(next); 1895 clean_tree_block(trans, log, next); 1896 btrfs_wait_tree_block_writeback(next); 1897 btrfs_tree_unlock(next); 1898 1899 WARN_ON(log->root_key.objectid != 1900 BTRFS_TREE_LOG_OBJECTID); 1901 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 1902 next->len); 1903 BUG_ON(ret); 1904 } 1905 } 1906 1907 for (i = 0; i <= orig_level; i++) { 1908 if (path->nodes[i]) { 1909 free_extent_buffer(path->nodes[i]); 1910 path->nodes[i] = NULL; 1911 } 1912 } 1913 btrfs_free_path(path); 1914 return ret; 1915 } 1916 1917 /* 1918 * helper function to update the item for a given subvolumes log root 1919 * in the tree of log roots 1920 */ 1921 static int update_log_root(struct btrfs_trans_handle *trans, 1922 struct btrfs_root *log) 1923 { 1924 int ret; 1925 1926 if (log->log_transid == 1) { 1927 /* insert root item on the first sync */ 1928 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 1929 &log->root_key, &log->root_item); 1930 } else { 1931 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 1932 &log->root_key, &log->root_item); 1933 } 1934 return ret; 1935 } 1936 1937 static int wait_log_commit(struct btrfs_trans_handle *trans, 1938 struct btrfs_root *root, unsigned long transid) 1939 { 1940 DEFINE_WAIT(wait); 1941 int index = transid % 2; 1942 1943 /* 1944 * we only allow two pending log transactions at a time, 1945 * so we know that if ours is more than 2 older than the 1946 * current transaction, we're done 1947 */ 1948 do { 1949 prepare_to_wait(&root->log_commit_wait[index], 1950 &wait, TASK_UNINTERRUPTIBLE); 1951 mutex_unlock(&root->log_mutex); 1952 1953 if (root->fs_info->last_trans_log_full_commit != 1954 trans->transid && root->log_transid < transid + 2 && 1955 atomic_read(&root->log_commit[index])) 1956 schedule(); 1957 1958 finish_wait(&root->log_commit_wait[index], &wait); 1959 mutex_lock(&root->log_mutex); 1960 } while (root->fs_info->last_trans_log_full_commit != 1961 trans->transid && root->log_transid < transid + 2 && 1962 atomic_read(&root->log_commit[index])); 1963 return 0; 1964 } 1965 1966 static int wait_for_writer(struct btrfs_trans_handle *trans, 1967 struct btrfs_root *root) 1968 { 1969 DEFINE_WAIT(wait); 1970 while (root->fs_info->last_trans_log_full_commit != 1971 trans->transid && atomic_read(&root->log_writers)) { 1972 prepare_to_wait(&root->log_writer_wait, 1973 &wait, TASK_UNINTERRUPTIBLE); 1974 mutex_unlock(&root->log_mutex); 1975 if (root->fs_info->last_trans_log_full_commit != 1976 trans->transid && atomic_read(&root->log_writers)) 1977 schedule(); 1978 mutex_lock(&root->log_mutex); 1979 finish_wait(&root->log_writer_wait, &wait); 1980 } 1981 return 0; 1982 } 1983 1984 /* 1985 * btrfs_sync_log does sends a given tree log down to the disk and 1986 * updates the super blocks to record it. When this call is done, 1987 * you know that any inodes previously logged are safely on disk only 1988 * if it returns 0. 1989 * 1990 * Any other return value means you need to call btrfs_commit_transaction. 1991 * Some of the edge cases for fsyncing directories that have had unlinks 1992 * or renames done in the past mean that sometimes the only safe 1993 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 1994 * that has happened. 1995 */ 1996 int btrfs_sync_log(struct btrfs_trans_handle *trans, 1997 struct btrfs_root *root) 1998 { 1999 int index1; 2000 int index2; 2001 int mark; 2002 int ret; 2003 struct btrfs_root *log = root->log_root; 2004 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2005 unsigned long log_transid = 0; 2006 2007 mutex_lock(&root->log_mutex); 2008 index1 = root->log_transid % 2; 2009 if (atomic_read(&root->log_commit[index1])) { 2010 wait_log_commit(trans, root, root->log_transid); 2011 mutex_unlock(&root->log_mutex); 2012 return 0; 2013 } 2014 atomic_set(&root->log_commit[index1], 1); 2015 2016 /* wait for previous tree log sync to complete */ 2017 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2018 wait_log_commit(trans, root, root->log_transid - 1); 2019 while (1) { 2020 unsigned long batch = root->log_batch; 2021 /* when we're on an ssd, just kick the log commit out */ 2022 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) { 2023 mutex_unlock(&root->log_mutex); 2024 schedule_timeout_uninterruptible(1); 2025 mutex_lock(&root->log_mutex); 2026 } 2027 wait_for_writer(trans, root); 2028 if (batch == root->log_batch) 2029 break; 2030 } 2031 2032 /* bail out if we need to do a full commit */ 2033 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2034 ret = -EAGAIN; 2035 mutex_unlock(&root->log_mutex); 2036 goto out; 2037 } 2038 2039 log_transid = root->log_transid; 2040 if (log_transid % 2 == 0) 2041 mark = EXTENT_DIRTY; 2042 else 2043 mark = EXTENT_NEW; 2044 2045 /* we start IO on all the marked extents here, but we don't actually 2046 * wait for them until later. 2047 */ 2048 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2049 BUG_ON(ret); 2050 2051 btrfs_set_root_node(&log->root_item, log->node); 2052 2053 root->log_batch = 0; 2054 root->log_transid++; 2055 log->log_transid = root->log_transid; 2056 root->log_start_pid = 0; 2057 smp_mb(); 2058 /* 2059 * IO has been started, blocks of the log tree have WRITTEN flag set 2060 * in their headers. new modifications of the log will be written to 2061 * new positions. so it's safe to allow log writers to go in. 2062 */ 2063 mutex_unlock(&root->log_mutex); 2064 2065 mutex_lock(&log_root_tree->log_mutex); 2066 log_root_tree->log_batch++; 2067 atomic_inc(&log_root_tree->log_writers); 2068 mutex_unlock(&log_root_tree->log_mutex); 2069 2070 ret = update_log_root(trans, log); 2071 2072 mutex_lock(&log_root_tree->log_mutex); 2073 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2074 smp_mb(); 2075 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2076 wake_up(&log_root_tree->log_writer_wait); 2077 } 2078 2079 if (ret) { 2080 BUG_ON(ret != -ENOSPC); 2081 root->fs_info->last_trans_log_full_commit = trans->transid; 2082 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2083 mutex_unlock(&log_root_tree->log_mutex); 2084 ret = -EAGAIN; 2085 goto out; 2086 } 2087 2088 index2 = log_root_tree->log_transid % 2; 2089 if (atomic_read(&log_root_tree->log_commit[index2])) { 2090 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2091 wait_log_commit(trans, log_root_tree, 2092 log_root_tree->log_transid); 2093 mutex_unlock(&log_root_tree->log_mutex); 2094 ret = 0; 2095 goto out; 2096 } 2097 atomic_set(&log_root_tree->log_commit[index2], 1); 2098 2099 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2100 wait_log_commit(trans, log_root_tree, 2101 log_root_tree->log_transid - 1); 2102 } 2103 2104 wait_for_writer(trans, log_root_tree); 2105 2106 /* 2107 * now that we've moved on to the tree of log tree roots, 2108 * check the full commit flag again 2109 */ 2110 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2111 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2112 mutex_unlock(&log_root_tree->log_mutex); 2113 ret = -EAGAIN; 2114 goto out_wake_log_root; 2115 } 2116 2117 ret = btrfs_write_and_wait_marked_extents(log_root_tree, 2118 &log_root_tree->dirty_log_pages, 2119 EXTENT_DIRTY | EXTENT_NEW); 2120 BUG_ON(ret); 2121 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2122 2123 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2124 log_root_tree->node->start); 2125 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2126 btrfs_header_level(log_root_tree->node)); 2127 2128 log_root_tree->log_batch = 0; 2129 log_root_tree->log_transid++; 2130 smp_mb(); 2131 2132 mutex_unlock(&log_root_tree->log_mutex); 2133 2134 /* 2135 * nobody else is going to jump in and write the the ctree 2136 * super here because the log_commit atomic below is protecting 2137 * us. We must be called with a transaction handle pinning 2138 * the running transaction open, so a full commit can't hop 2139 * in and cause problems either. 2140 */ 2141 btrfs_scrub_pause_super(root); 2142 write_ctree_super(trans, root->fs_info->tree_root, 1); 2143 btrfs_scrub_continue_super(root); 2144 ret = 0; 2145 2146 mutex_lock(&root->log_mutex); 2147 if (root->last_log_commit < log_transid) 2148 root->last_log_commit = log_transid; 2149 mutex_unlock(&root->log_mutex); 2150 2151 out_wake_log_root: 2152 atomic_set(&log_root_tree->log_commit[index2], 0); 2153 smp_mb(); 2154 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2155 wake_up(&log_root_tree->log_commit_wait[index2]); 2156 out: 2157 atomic_set(&root->log_commit[index1], 0); 2158 smp_mb(); 2159 if (waitqueue_active(&root->log_commit_wait[index1])) 2160 wake_up(&root->log_commit_wait[index1]); 2161 return ret; 2162 } 2163 2164 static void free_log_tree(struct btrfs_trans_handle *trans, 2165 struct btrfs_root *log) 2166 { 2167 int ret; 2168 u64 start; 2169 u64 end; 2170 struct walk_control wc = { 2171 .free = 1, 2172 .process_func = process_one_buffer 2173 }; 2174 2175 ret = walk_log_tree(trans, log, &wc); 2176 BUG_ON(ret); 2177 2178 while (1) { 2179 ret = find_first_extent_bit(&log->dirty_log_pages, 2180 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); 2181 if (ret) 2182 break; 2183 2184 clear_extent_bits(&log->dirty_log_pages, start, end, 2185 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2186 } 2187 2188 free_extent_buffer(log->node); 2189 kfree(log); 2190 } 2191 2192 /* 2193 * free all the extents used by the tree log. This should be called 2194 * at commit time of the full transaction 2195 */ 2196 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2197 { 2198 if (root->log_root) { 2199 free_log_tree(trans, root->log_root); 2200 root->log_root = NULL; 2201 } 2202 return 0; 2203 } 2204 2205 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2206 struct btrfs_fs_info *fs_info) 2207 { 2208 if (fs_info->log_root_tree) { 2209 free_log_tree(trans, fs_info->log_root_tree); 2210 fs_info->log_root_tree = NULL; 2211 } 2212 return 0; 2213 } 2214 2215 /* 2216 * If both a file and directory are logged, and unlinks or renames are 2217 * mixed in, we have a few interesting corners: 2218 * 2219 * create file X in dir Y 2220 * link file X to X.link in dir Y 2221 * fsync file X 2222 * unlink file X but leave X.link 2223 * fsync dir Y 2224 * 2225 * After a crash we would expect only X.link to exist. But file X 2226 * didn't get fsync'd again so the log has back refs for X and X.link. 2227 * 2228 * We solve this by removing directory entries and inode backrefs from the 2229 * log when a file that was logged in the current transaction is 2230 * unlinked. Any later fsync will include the updated log entries, and 2231 * we'll be able to reconstruct the proper directory items from backrefs. 2232 * 2233 * This optimizations allows us to avoid relogging the entire inode 2234 * or the entire directory. 2235 */ 2236 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2237 struct btrfs_root *root, 2238 const char *name, int name_len, 2239 struct inode *dir, u64 index) 2240 { 2241 struct btrfs_root *log; 2242 struct btrfs_dir_item *di; 2243 struct btrfs_path *path; 2244 int ret; 2245 int err = 0; 2246 int bytes_del = 0; 2247 u64 dir_ino = btrfs_ino(dir); 2248 2249 if (BTRFS_I(dir)->logged_trans < trans->transid) 2250 return 0; 2251 2252 ret = join_running_log_trans(root); 2253 if (ret) 2254 return 0; 2255 2256 mutex_lock(&BTRFS_I(dir)->log_mutex); 2257 2258 log = root->log_root; 2259 path = btrfs_alloc_path(); 2260 if (!path) { 2261 err = -ENOMEM; 2262 goto out_unlock; 2263 } 2264 2265 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2266 name, name_len, -1); 2267 if (IS_ERR(di)) { 2268 err = PTR_ERR(di); 2269 goto fail; 2270 } 2271 if (di) { 2272 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2273 bytes_del += name_len; 2274 BUG_ON(ret); 2275 } 2276 btrfs_release_path(path); 2277 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2278 index, name, name_len, -1); 2279 if (IS_ERR(di)) { 2280 err = PTR_ERR(di); 2281 goto fail; 2282 } 2283 if (di) { 2284 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2285 bytes_del += name_len; 2286 BUG_ON(ret); 2287 } 2288 2289 /* update the directory size in the log to reflect the names 2290 * we have removed 2291 */ 2292 if (bytes_del) { 2293 struct btrfs_key key; 2294 2295 key.objectid = dir_ino; 2296 key.offset = 0; 2297 key.type = BTRFS_INODE_ITEM_KEY; 2298 btrfs_release_path(path); 2299 2300 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2301 if (ret < 0) { 2302 err = ret; 2303 goto fail; 2304 } 2305 if (ret == 0) { 2306 struct btrfs_inode_item *item; 2307 u64 i_size; 2308 2309 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2310 struct btrfs_inode_item); 2311 i_size = btrfs_inode_size(path->nodes[0], item); 2312 if (i_size > bytes_del) 2313 i_size -= bytes_del; 2314 else 2315 i_size = 0; 2316 btrfs_set_inode_size(path->nodes[0], item, i_size); 2317 btrfs_mark_buffer_dirty(path->nodes[0]); 2318 } else 2319 ret = 0; 2320 btrfs_release_path(path); 2321 } 2322 fail: 2323 btrfs_free_path(path); 2324 out_unlock: 2325 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2326 if (ret == -ENOSPC) { 2327 root->fs_info->last_trans_log_full_commit = trans->transid; 2328 ret = 0; 2329 } 2330 btrfs_end_log_trans(root); 2331 2332 return err; 2333 } 2334 2335 /* see comments for btrfs_del_dir_entries_in_log */ 2336 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2337 struct btrfs_root *root, 2338 const char *name, int name_len, 2339 struct inode *inode, u64 dirid) 2340 { 2341 struct btrfs_root *log; 2342 u64 index; 2343 int ret; 2344 2345 if (BTRFS_I(inode)->logged_trans < trans->transid) 2346 return 0; 2347 2348 ret = join_running_log_trans(root); 2349 if (ret) 2350 return 0; 2351 log = root->log_root; 2352 mutex_lock(&BTRFS_I(inode)->log_mutex); 2353 2354 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2355 dirid, &index); 2356 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2357 if (ret == -ENOSPC) { 2358 root->fs_info->last_trans_log_full_commit = trans->transid; 2359 ret = 0; 2360 } 2361 btrfs_end_log_trans(root); 2362 2363 return ret; 2364 } 2365 2366 /* 2367 * creates a range item in the log for 'dirid'. first_offset and 2368 * last_offset tell us which parts of the key space the log should 2369 * be considered authoritative for. 2370 */ 2371 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2372 struct btrfs_root *log, 2373 struct btrfs_path *path, 2374 int key_type, u64 dirid, 2375 u64 first_offset, u64 last_offset) 2376 { 2377 int ret; 2378 struct btrfs_key key; 2379 struct btrfs_dir_log_item *item; 2380 2381 key.objectid = dirid; 2382 key.offset = first_offset; 2383 if (key_type == BTRFS_DIR_ITEM_KEY) 2384 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2385 else 2386 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2387 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2388 if (ret) 2389 return ret; 2390 2391 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2392 struct btrfs_dir_log_item); 2393 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2394 btrfs_mark_buffer_dirty(path->nodes[0]); 2395 btrfs_release_path(path); 2396 return 0; 2397 } 2398 2399 /* 2400 * log all the items included in the current transaction for a given 2401 * directory. This also creates the range items in the log tree required 2402 * to replay anything deleted before the fsync 2403 */ 2404 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2405 struct btrfs_root *root, struct inode *inode, 2406 struct btrfs_path *path, 2407 struct btrfs_path *dst_path, int key_type, 2408 u64 min_offset, u64 *last_offset_ret) 2409 { 2410 struct btrfs_key min_key; 2411 struct btrfs_key max_key; 2412 struct btrfs_root *log = root->log_root; 2413 struct extent_buffer *src; 2414 int err = 0; 2415 int ret; 2416 int i; 2417 int nritems; 2418 u64 first_offset = min_offset; 2419 u64 last_offset = (u64)-1; 2420 u64 ino = btrfs_ino(inode); 2421 2422 log = root->log_root; 2423 max_key.objectid = ino; 2424 max_key.offset = (u64)-1; 2425 max_key.type = key_type; 2426 2427 min_key.objectid = ino; 2428 min_key.type = key_type; 2429 min_key.offset = min_offset; 2430 2431 path->keep_locks = 1; 2432 2433 ret = btrfs_search_forward(root, &min_key, &max_key, 2434 path, 0, trans->transid); 2435 2436 /* 2437 * we didn't find anything from this transaction, see if there 2438 * is anything at all 2439 */ 2440 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 2441 min_key.objectid = ino; 2442 min_key.type = key_type; 2443 min_key.offset = (u64)-1; 2444 btrfs_release_path(path); 2445 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2446 if (ret < 0) { 2447 btrfs_release_path(path); 2448 return ret; 2449 } 2450 ret = btrfs_previous_item(root, path, ino, key_type); 2451 2452 /* if ret == 0 there are items for this type, 2453 * create a range to tell us the last key of this type. 2454 * otherwise, there are no items in this directory after 2455 * *min_offset, and we create a range to indicate that. 2456 */ 2457 if (ret == 0) { 2458 struct btrfs_key tmp; 2459 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2460 path->slots[0]); 2461 if (key_type == tmp.type) 2462 first_offset = max(min_offset, tmp.offset) + 1; 2463 } 2464 goto done; 2465 } 2466 2467 /* go backward to find any previous key */ 2468 ret = btrfs_previous_item(root, path, ino, key_type); 2469 if (ret == 0) { 2470 struct btrfs_key tmp; 2471 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2472 if (key_type == tmp.type) { 2473 first_offset = tmp.offset; 2474 ret = overwrite_item(trans, log, dst_path, 2475 path->nodes[0], path->slots[0], 2476 &tmp); 2477 if (ret) { 2478 err = ret; 2479 goto done; 2480 } 2481 } 2482 } 2483 btrfs_release_path(path); 2484 2485 /* find the first key from this transaction again */ 2486 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2487 if (ret != 0) { 2488 WARN_ON(1); 2489 goto done; 2490 } 2491 2492 /* 2493 * we have a block from this transaction, log every item in it 2494 * from our directory 2495 */ 2496 while (1) { 2497 struct btrfs_key tmp; 2498 src = path->nodes[0]; 2499 nritems = btrfs_header_nritems(src); 2500 for (i = path->slots[0]; i < nritems; i++) { 2501 btrfs_item_key_to_cpu(src, &min_key, i); 2502 2503 if (min_key.objectid != ino || min_key.type != key_type) 2504 goto done; 2505 ret = overwrite_item(trans, log, dst_path, src, i, 2506 &min_key); 2507 if (ret) { 2508 err = ret; 2509 goto done; 2510 } 2511 } 2512 path->slots[0] = nritems; 2513 2514 /* 2515 * look ahead to the next item and see if it is also 2516 * from this directory and from this transaction 2517 */ 2518 ret = btrfs_next_leaf(root, path); 2519 if (ret == 1) { 2520 last_offset = (u64)-1; 2521 goto done; 2522 } 2523 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2524 if (tmp.objectid != ino || tmp.type != key_type) { 2525 last_offset = (u64)-1; 2526 goto done; 2527 } 2528 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2529 ret = overwrite_item(trans, log, dst_path, 2530 path->nodes[0], path->slots[0], 2531 &tmp); 2532 if (ret) 2533 err = ret; 2534 else 2535 last_offset = tmp.offset; 2536 goto done; 2537 } 2538 } 2539 done: 2540 btrfs_release_path(path); 2541 btrfs_release_path(dst_path); 2542 2543 if (err == 0) { 2544 *last_offset_ret = last_offset; 2545 /* 2546 * insert the log range keys to indicate where the log 2547 * is valid 2548 */ 2549 ret = insert_dir_log_key(trans, log, path, key_type, 2550 ino, first_offset, last_offset); 2551 if (ret) 2552 err = ret; 2553 } 2554 return err; 2555 } 2556 2557 /* 2558 * logging directories is very similar to logging inodes, We find all the items 2559 * from the current transaction and write them to the log. 2560 * 2561 * The recovery code scans the directory in the subvolume, and if it finds a 2562 * key in the range logged that is not present in the log tree, then it means 2563 * that dir entry was unlinked during the transaction. 2564 * 2565 * In order for that scan to work, we must include one key smaller than 2566 * the smallest logged by this transaction and one key larger than the largest 2567 * key logged by this transaction. 2568 */ 2569 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2570 struct btrfs_root *root, struct inode *inode, 2571 struct btrfs_path *path, 2572 struct btrfs_path *dst_path) 2573 { 2574 u64 min_key; 2575 u64 max_key; 2576 int ret; 2577 int key_type = BTRFS_DIR_ITEM_KEY; 2578 2579 again: 2580 min_key = 0; 2581 max_key = 0; 2582 while (1) { 2583 ret = log_dir_items(trans, root, inode, path, 2584 dst_path, key_type, min_key, 2585 &max_key); 2586 if (ret) 2587 return ret; 2588 if (max_key == (u64)-1) 2589 break; 2590 min_key = max_key + 1; 2591 } 2592 2593 if (key_type == BTRFS_DIR_ITEM_KEY) { 2594 key_type = BTRFS_DIR_INDEX_KEY; 2595 goto again; 2596 } 2597 return 0; 2598 } 2599 2600 /* 2601 * a helper function to drop items from the log before we relog an 2602 * inode. max_key_type indicates the highest item type to remove. 2603 * This cannot be run for file data extents because it does not 2604 * free the extents they point to. 2605 */ 2606 static int drop_objectid_items(struct btrfs_trans_handle *trans, 2607 struct btrfs_root *log, 2608 struct btrfs_path *path, 2609 u64 objectid, int max_key_type) 2610 { 2611 int ret; 2612 struct btrfs_key key; 2613 struct btrfs_key found_key; 2614 2615 key.objectid = objectid; 2616 key.type = max_key_type; 2617 key.offset = (u64)-1; 2618 2619 while (1) { 2620 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 2621 BUG_ON(ret == 0); 2622 if (ret < 0) 2623 break; 2624 2625 if (path->slots[0] == 0) 2626 break; 2627 2628 path->slots[0]--; 2629 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2630 path->slots[0]); 2631 2632 if (found_key.objectid != objectid) 2633 break; 2634 2635 ret = btrfs_del_item(trans, log, path); 2636 if (ret) 2637 break; 2638 btrfs_release_path(path); 2639 } 2640 btrfs_release_path(path); 2641 return ret; 2642 } 2643 2644 static noinline int copy_items(struct btrfs_trans_handle *trans, 2645 struct btrfs_root *log, 2646 struct btrfs_path *dst_path, 2647 struct extent_buffer *src, 2648 int start_slot, int nr, int inode_only) 2649 { 2650 unsigned long src_offset; 2651 unsigned long dst_offset; 2652 struct btrfs_file_extent_item *extent; 2653 struct btrfs_inode_item *inode_item; 2654 int ret; 2655 struct btrfs_key *ins_keys; 2656 u32 *ins_sizes; 2657 char *ins_data; 2658 int i; 2659 struct list_head ordered_sums; 2660 2661 INIT_LIST_HEAD(&ordered_sums); 2662 2663 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 2664 nr * sizeof(u32), GFP_NOFS); 2665 if (!ins_data) 2666 return -ENOMEM; 2667 2668 ins_sizes = (u32 *)ins_data; 2669 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 2670 2671 for (i = 0; i < nr; i++) { 2672 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 2673 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 2674 } 2675 ret = btrfs_insert_empty_items(trans, log, dst_path, 2676 ins_keys, ins_sizes, nr); 2677 if (ret) { 2678 kfree(ins_data); 2679 return ret; 2680 } 2681 2682 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 2683 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 2684 dst_path->slots[0]); 2685 2686 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 2687 2688 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 2689 src_offset, ins_sizes[i]); 2690 2691 if (inode_only == LOG_INODE_EXISTS && 2692 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 2693 inode_item = btrfs_item_ptr(dst_path->nodes[0], 2694 dst_path->slots[0], 2695 struct btrfs_inode_item); 2696 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); 2697 2698 /* set the generation to zero so the recover code 2699 * can tell the difference between an logging 2700 * just to say 'this inode exists' and a logging 2701 * to say 'update this inode with these values' 2702 */ 2703 btrfs_set_inode_generation(dst_path->nodes[0], 2704 inode_item, 0); 2705 } 2706 /* take a reference on file data extents so that truncates 2707 * or deletes of this inode don't have to relog the inode 2708 * again 2709 */ 2710 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { 2711 int found_type; 2712 extent = btrfs_item_ptr(src, start_slot + i, 2713 struct btrfs_file_extent_item); 2714 2715 if (btrfs_file_extent_generation(src, extent) < trans->transid) 2716 continue; 2717 2718 found_type = btrfs_file_extent_type(src, extent); 2719 if (found_type == BTRFS_FILE_EXTENT_REG || 2720 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 2721 u64 ds, dl, cs, cl; 2722 ds = btrfs_file_extent_disk_bytenr(src, 2723 extent); 2724 /* ds == 0 is a hole */ 2725 if (ds == 0) 2726 continue; 2727 2728 dl = btrfs_file_extent_disk_num_bytes(src, 2729 extent); 2730 cs = btrfs_file_extent_offset(src, extent); 2731 cl = btrfs_file_extent_num_bytes(src, 2732 extent); 2733 if (btrfs_file_extent_compression(src, 2734 extent)) { 2735 cs = 0; 2736 cl = dl; 2737 } 2738 2739 ret = btrfs_lookup_csums_range( 2740 log->fs_info->csum_root, 2741 ds + cs, ds + cs + cl - 1, 2742 &ordered_sums, 0); 2743 BUG_ON(ret); 2744 } 2745 } 2746 } 2747 2748 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 2749 btrfs_release_path(dst_path); 2750 kfree(ins_data); 2751 2752 /* 2753 * we have to do this after the loop above to avoid changing the 2754 * log tree while trying to change the log tree. 2755 */ 2756 ret = 0; 2757 while (!list_empty(&ordered_sums)) { 2758 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 2759 struct btrfs_ordered_sum, 2760 list); 2761 if (!ret) 2762 ret = btrfs_csum_file_blocks(trans, log, sums); 2763 list_del(&sums->list); 2764 kfree(sums); 2765 } 2766 return ret; 2767 } 2768 2769 /* log a single inode in the tree log. 2770 * At least one parent directory for this inode must exist in the tree 2771 * or be logged already. 2772 * 2773 * Any items from this inode changed by the current transaction are copied 2774 * to the log tree. An extra reference is taken on any extents in this 2775 * file, allowing us to avoid a whole pile of corner cases around logging 2776 * blocks that have been removed from the tree. 2777 * 2778 * See LOG_INODE_ALL and related defines for a description of what inode_only 2779 * does. 2780 * 2781 * This handles both files and directories. 2782 */ 2783 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 2784 struct btrfs_root *root, struct inode *inode, 2785 int inode_only) 2786 { 2787 struct btrfs_path *path; 2788 struct btrfs_path *dst_path; 2789 struct btrfs_key min_key; 2790 struct btrfs_key max_key; 2791 struct btrfs_root *log = root->log_root; 2792 struct extent_buffer *src = NULL; 2793 int err = 0; 2794 int ret; 2795 int nritems; 2796 int ins_start_slot = 0; 2797 int ins_nr; 2798 u64 ino = btrfs_ino(inode); 2799 2800 log = root->log_root; 2801 2802 path = btrfs_alloc_path(); 2803 if (!path) 2804 return -ENOMEM; 2805 dst_path = btrfs_alloc_path(); 2806 if (!dst_path) { 2807 btrfs_free_path(path); 2808 return -ENOMEM; 2809 } 2810 2811 min_key.objectid = ino; 2812 min_key.type = BTRFS_INODE_ITEM_KEY; 2813 min_key.offset = 0; 2814 2815 max_key.objectid = ino; 2816 2817 /* today the code can only do partial logging of directories */ 2818 if (!S_ISDIR(inode->i_mode)) 2819 inode_only = LOG_INODE_ALL; 2820 2821 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) 2822 max_key.type = BTRFS_XATTR_ITEM_KEY; 2823 else 2824 max_key.type = (u8)-1; 2825 max_key.offset = (u64)-1; 2826 2827 ret = btrfs_commit_inode_delayed_items(trans, inode); 2828 if (ret) { 2829 btrfs_free_path(path); 2830 btrfs_free_path(dst_path); 2831 return ret; 2832 } 2833 2834 mutex_lock(&BTRFS_I(inode)->log_mutex); 2835 2836 /* 2837 * a brute force approach to making sure we get the most uptodate 2838 * copies of everything. 2839 */ 2840 if (S_ISDIR(inode->i_mode)) { 2841 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 2842 2843 if (inode_only == LOG_INODE_EXISTS) 2844 max_key_type = BTRFS_XATTR_ITEM_KEY; 2845 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 2846 } else { 2847 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); 2848 } 2849 if (ret) { 2850 err = ret; 2851 goto out_unlock; 2852 } 2853 path->keep_locks = 1; 2854 2855 while (1) { 2856 ins_nr = 0; 2857 ret = btrfs_search_forward(root, &min_key, &max_key, 2858 path, 0, trans->transid); 2859 if (ret != 0) 2860 break; 2861 again: 2862 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 2863 if (min_key.objectid != ino) 2864 break; 2865 if (min_key.type > max_key.type) 2866 break; 2867 2868 src = path->nodes[0]; 2869 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 2870 ins_nr++; 2871 goto next_slot; 2872 } else if (!ins_nr) { 2873 ins_start_slot = path->slots[0]; 2874 ins_nr = 1; 2875 goto next_slot; 2876 } 2877 2878 ret = copy_items(trans, log, dst_path, src, ins_start_slot, 2879 ins_nr, inode_only); 2880 if (ret) { 2881 err = ret; 2882 goto out_unlock; 2883 } 2884 ins_nr = 1; 2885 ins_start_slot = path->slots[0]; 2886 next_slot: 2887 2888 nritems = btrfs_header_nritems(path->nodes[0]); 2889 path->slots[0]++; 2890 if (path->slots[0] < nritems) { 2891 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 2892 path->slots[0]); 2893 goto again; 2894 } 2895 if (ins_nr) { 2896 ret = copy_items(trans, log, dst_path, src, 2897 ins_start_slot, 2898 ins_nr, inode_only); 2899 if (ret) { 2900 err = ret; 2901 goto out_unlock; 2902 } 2903 ins_nr = 0; 2904 } 2905 btrfs_release_path(path); 2906 2907 if (min_key.offset < (u64)-1) 2908 min_key.offset++; 2909 else if (min_key.type < (u8)-1) 2910 min_key.type++; 2911 else if (min_key.objectid < (u64)-1) 2912 min_key.objectid++; 2913 else 2914 break; 2915 } 2916 if (ins_nr) { 2917 ret = copy_items(trans, log, dst_path, src, 2918 ins_start_slot, 2919 ins_nr, inode_only); 2920 if (ret) { 2921 err = ret; 2922 goto out_unlock; 2923 } 2924 ins_nr = 0; 2925 } 2926 WARN_ON(ins_nr); 2927 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 2928 btrfs_release_path(path); 2929 btrfs_release_path(dst_path); 2930 ret = log_directory_changes(trans, root, inode, path, dst_path); 2931 if (ret) { 2932 err = ret; 2933 goto out_unlock; 2934 } 2935 } 2936 BTRFS_I(inode)->logged_trans = trans->transid; 2937 out_unlock: 2938 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2939 2940 btrfs_free_path(path); 2941 btrfs_free_path(dst_path); 2942 return err; 2943 } 2944 2945 /* 2946 * follow the dentry parent pointers up the chain and see if any 2947 * of the directories in it require a full commit before they can 2948 * be logged. Returns zero if nothing special needs to be done or 1 if 2949 * a full commit is required. 2950 */ 2951 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 2952 struct inode *inode, 2953 struct dentry *parent, 2954 struct super_block *sb, 2955 u64 last_committed) 2956 { 2957 int ret = 0; 2958 struct btrfs_root *root; 2959 struct dentry *old_parent = NULL; 2960 2961 /* 2962 * for regular files, if its inode is already on disk, we don't 2963 * have to worry about the parents at all. This is because 2964 * we can use the last_unlink_trans field to record renames 2965 * and other fun in this file. 2966 */ 2967 if (S_ISREG(inode->i_mode) && 2968 BTRFS_I(inode)->generation <= last_committed && 2969 BTRFS_I(inode)->last_unlink_trans <= last_committed) 2970 goto out; 2971 2972 if (!S_ISDIR(inode->i_mode)) { 2973 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2974 goto out; 2975 inode = parent->d_inode; 2976 } 2977 2978 while (1) { 2979 BTRFS_I(inode)->logged_trans = trans->transid; 2980 smp_mb(); 2981 2982 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 2983 root = BTRFS_I(inode)->root; 2984 2985 /* 2986 * make sure any commits to the log are forced 2987 * to be full commits 2988 */ 2989 root->fs_info->last_trans_log_full_commit = 2990 trans->transid; 2991 ret = 1; 2992 break; 2993 } 2994 2995 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2996 break; 2997 2998 if (IS_ROOT(parent)) 2999 break; 3000 3001 parent = dget_parent(parent); 3002 dput(old_parent); 3003 old_parent = parent; 3004 inode = parent->d_inode; 3005 3006 } 3007 dput(old_parent); 3008 out: 3009 return ret; 3010 } 3011 3012 static int inode_in_log(struct btrfs_trans_handle *trans, 3013 struct inode *inode) 3014 { 3015 struct btrfs_root *root = BTRFS_I(inode)->root; 3016 int ret = 0; 3017 3018 mutex_lock(&root->log_mutex); 3019 if (BTRFS_I(inode)->logged_trans == trans->transid && 3020 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit) 3021 ret = 1; 3022 mutex_unlock(&root->log_mutex); 3023 return ret; 3024 } 3025 3026 3027 /* 3028 * helper function around btrfs_log_inode to make sure newly created 3029 * parent directories also end up in the log. A minimal inode and backref 3030 * only logging is done of any parent directories that are older than 3031 * the last committed transaction 3032 */ 3033 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 3034 struct btrfs_root *root, struct inode *inode, 3035 struct dentry *parent, int exists_only) 3036 { 3037 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 3038 struct super_block *sb; 3039 struct dentry *old_parent = NULL; 3040 int ret = 0; 3041 u64 last_committed = root->fs_info->last_trans_committed; 3042 3043 sb = inode->i_sb; 3044 3045 if (btrfs_test_opt(root, NOTREELOG)) { 3046 ret = 1; 3047 goto end_no_trans; 3048 } 3049 3050 if (root->fs_info->last_trans_log_full_commit > 3051 root->fs_info->last_trans_committed) { 3052 ret = 1; 3053 goto end_no_trans; 3054 } 3055 3056 if (root != BTRFS_I(inode)->root || 3057 btrfs_root_refs(&root->root_item) == 0) { 3058 ret = 1; 3059 goto end_no_trans; 3060 } 3061 3062 ret = check_parent_dirs_for_sync(trans, inode, parent, 3063 sb, last_committed); 3064 if (ret) 3065 goto end_no_trans; 3066 3067 if (inode_in_log(trans, inode)) { 3068 ret = BTRFS_NO_LOG_SYNC; 3069 goto end_no_trans; 3070 } 3071 3072 ret = start_log_trans(trans, root); 3073 if (ret) 3074 goto end_trans; 3075 3076 ret = btrfs_log_inode(trans, root, inode, inode_only); 3077 if (ret) 3078 goto end_trans; 3079 3080 /* 3081 * for regular files, if its inode is already on disk, we don't 3082 * have to worry about the parents at all. This is because 3083 * we can use the last_unlink_trans field to record renames 3084 * and other fun in this file. 3085 */ 3086 if (S_ISREG(inode->i_mode) && 3087 BTRFS_I(inode)->generation <= last_committed && 3088 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 3089 ret = 0; 3090 goto end_trans; 3091 } 3092 3093 inode_only = LOG_INODE_EXISTS; 3094 while (1) { 3095 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3096 break; 3097 3098 inode = parent->d_inode; 3099 if (root != BTRFS_I(inode)->root) 3100 break; 3101 3102 if (BTRFS_I(inode)->generation > 3103 root->fs_info->last_trans_committed) { 3104 ret = btrfs_log_inode(trans, root, inode, inode_only); 3105 if (ret) 3106 goto end_trans; 3107 } 3108 if (IS_ROOT(parent)) 3109 break; 3110 3111 parent = dget_parent(parent); 3112 dput(old_parent); 3113 old_parent = parent; 3114 } 3115 ret = 0; 3116 end_trans: 3117 dput(old_parent); 3118 if (ret < 0) { 3119 BUG_ON(ret != -ENOSPC); 3120 root->fs_info->last_trans_log_full_commit = trans->transid; 3121 ret = 1; 3122 } 3123 btrfs_end_log_trans(root); 3124 end_no_trans: 3125 return ret; 3126 } 3127 3128 /* 3129 * it is not safe to log dentry if the chunk root has added new 3130 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 3131 * If this returns 1, you must commit the transaction to safely get your 3132 * data on disk. 3133 */ 3134 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root, struct dentry *dentry) 3136 { 3137 struct dentry *parent = dget_parent(dentry); 3138 int ret; 3139 3140 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); 3141 dput(parent); 3142 3143 return ret; 3144 } 3145 3146 /* 3147 * should be called during mount to recover any replay any log trees 3148 * from the FS 3149 */ 3150 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 3151 { 3152 int ret; 3153 struct btrfs_path *path; 3154 struct btrfs_trans_handle *trans; 3155 struct btrfs_key key; 3156 struct btrfs_key found_key; 3157 struct btrfs_key tmp_key; 3158 struct btrfs_root *log; 3159 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 3160 struct walk_control wc = { 3161 .process_func = process_one_buffer, 3162 .stage = 0, 3163 }; 3164 3165 path = btrfs_alloc_path(); 3166 if (!path) 3167 return -ENOMEM; 3168 3169 fs_info->log_root_recovering = 1; 3170 3171 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3172 BUG_ON(IS_ERR(trans)); 3173 3174 wc.trans = trans; 3175 wc.pin = 1; 3176 3177 ret = walk_log_tree(trans, log_root_tree, &wc); 3178 BUG_ON(ret); 3179 3180 again: 3181 key.objectid = BTRFS_TREE_LOG_OBJECTID; 3182 key.offset = (u64)-1; 3183 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 3184 3185 while (1) { 3186 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 3187 if (ret < 0) 3188 break; 3189 if (ret > 0) { 3190 if (path->slots[0] == 0) 3191 break; 3192 path->slots[0]--; 3193 } 3194 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3195 path->slots[0]); 3196 btrfs_release_path(path); 3197 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 3198 break; 3199 3200 log = btrfs_read_fs_root_no_radix(log_root_tree, 3201 &found_key); 3202 BUG_ON(IS_ERR(log)); 3203 3204 tmp_key.objectid = found_key.offset; 3205 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 3206 tmp_key.offset = (u64)-1; 3207 3208 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 3209 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest)); 3210 3211 wc.replay_dest->log_root = log; 3212 btrfs_record_root_in_trans(trans, wc.replay_dest); 3213 ret = walk_log_tree(trans, log, &wc); 3214 BUG_ON(ret); 3215 3216 if (wc.stage == LOG_WALK_REPLAY_ALL) { 3217 ret = fixup_inode_link_counts(trans, wc.replay_dest, 3218 path); 3219 BUG_ON(ret); 3220 } 3221 3222 key.offset = found_key.offset - 1; 3223 wc.replay_dest->log_root = NULL; 3224 free_extent_buffer(log->node); 3225 free_extent_buffer(log->commit_root); 3226 kfree(log); 3227 3228 if (found_key.offset == 0) 3229 break; 3230 } 3231 btrfs_release_path(path); 3232 3233 /* step one is to pin it all, step two is to replay just inodes */ 3234 if (wc.pin) { 3235 wc.pin = 0; 3236 wc.process_func = replay_one_buffer; 3237 wc.stage = LOG_WALK_REPLAY_INODES; 3238 goto again; 3239 } 3240 /* step three is to replay everything */ 3241 if (wc.stage < LOG_WALK_REPLAY_ALL) { 3242 wc.stage++; 3243 goto again; 3244 } 3245 3246 btrfs_free_path(path); 3247 3248 free_extent_buffer(log_root_tree->node); 3249 log_root_tree->log_root = NULL; 3250 fs_info->log_root_recovering = 0; 3251 3252 /* step 4: commit the transaction, which also unpins the blocks */ 3253 btrfs_commit_transaction(trans, fs_info->tree_root); 3254 3255 kfree(log_root_tree); 3256 return 0; 3257 } 3258 3259 /* 3260 * there are some corner cases where we want to force a full 3261 * commit instead of allowing a directory to be logged. 3262 * 3263 * They revolve around files there were unlinked from the directory, and 3264 * this function updates the parent directory so that a full commit is 3265 * properly done if it is fsync'd later after the unlinks are done. 3266 */ 3267 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 3268 struct inode *dir, struct inode *inode, 3269 int for_rename) 3270 { 3271 /* 3272 * when we're logging a file, if it hasn't been renamed 3273 * or unlinked, and its inode is fully committed on disk, 3274 * we don't have to worry about walking up the directory chain 3275 * to log its parents. 3276 * 3277 * So, we use the last_unlink_trans field to put this transid 3278 * into the file. When the file is logged we check it and 3279 * don't log the parents if the file is fully on disk. 3280 */ 3281 if (S_ISREG(inode->i_mode)) 3282 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3283 3284 /* 3285 * if this directory was already logged any new 3286 * names for this file/dir will get recorded 3287 */ 3288 smp_mb(); 3289 if (BTRFS_I(dir)->logged_trans == trans->transid) 3290 return; 3291 3292 /* 3293 * if the inode we're about to unlink was logged, 3294 * the log will be properly updated for any new names 3295 */ 3296 if (BTRFS_I(inode)->logged_trans == trans->transid) 3297 return; 3298 3299 /* 3300 * when renaming files across directories, if the directory 3301 * there we're unlinking from gets fsync'd later on, there's 3302 * no way to find the destination directory later and fsync it 3303 * properly. So, we have to be conservative and force commits 3304 * so the new name gets discovered. 3305 */ 3306 if (for_rename) 3307 goto record; 3308 3309 /* we can safely do the unlink without any special recording */ 3310 return; 3311 3312 record: 3313 BTRFS_I(dir)->last_unlink_trans = trans->transid; 3314 } 3315 3316 /* 3317 * Call this after adding a new name for a file and it will properly 3318 * update the log to reflect the new name. 3319 * 3320 * It will return zero if all goes well, and it will return 1 if a 3321 * full transaction commit is required. 3322 */ 3323 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 3324 struct inode *inode, struct inode *old_dir, 3325 struct dentry *parent) 3326 { 3327 struct btrfs_root * root = BTRFS_I(inode)->root; 3328 3329 /* 3330 * this will force the logging code to walk the dentry chain 3331 * up for the file 3332 */ 3333 if (S_ISREG(inode->i_mode)) 3334 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3335 3336 /* 3337 * if this inode hasn't been logged and directory we're renaming it 3338 * from hasn't been logged, we don't need to log it 3339 */ 3340 if (BTRFS_I(inode)->logged_trans <= 3341 root->fs_info->last_trans_committed && 3342 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 3343 root->fs_info->last_trans_committed)) 3344 return 0; 3345 3346 return btrfs_log_inode_parent(trans, root, inode, parent, 1); 3347 } 3348 3349