xref: /linux/fs/btrfs/transaction.c (revision 7b7dfdd2b9927c1861bb6d03ca35261f1739aceb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 					 struct btrfs_fs_info *fs_info)
81 {
82 	struct btrfs_root *root, *tmp;
83 
84 	down_write(&fs_info->commit_root_sem);
85 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 				 dirty_list) {
87 		list_del_init(&root->dirty_list);
88 		free_extent_buffer(root->commit_root);
89 		root->commit_root = btrfs_root_node(root);
90 		if (is_fstree(root->objectid))
91 			btrfs_unpin_free_ino(root);
92 	}
93 	up_write(&fs_info->commit_root_sem);
94 }
95 
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 					 unsigned int type)
98 {
99 	if (type & TRANS_EXTWRITERS)
100 		atomic_inc(&trans->num_extwriters);
101 }
102 
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 					 unsigned int type)
105 {
106 	if (type & TRANS_EXTWRITERS)
107 		atomic_dec(&trans->num_extwriters);
108 }
109 
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 					  unsigned int type)
112 {
113 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115 
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 	return atomic_read(&trans->num_extwriters);
119 }
120 
121 /*
122  * either allocate a new transaction or hop into the existing one
123  */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 	struct btrfs_transaction *cur_trans;
127 	struct btrfs_fs_info *fs_info = root->fs_info;
128 
129 	spin_lock(&fs_info->trans_lock);
130 loop:
131 	/* The file system has been taken offline. No new transactions. */
132 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 		spin_unlock(&fs_info->trans_lock);
134 		return -EROFS;
135 	}
136 
137 	cur_trans = fs_info->running_transaction;
138 	if (cur_trans) {
139 		if (cur_trans->aborted) {
140 			spin_unlock(&fs_info->trans_lock);
141 			return cur_trans->aborted;
142 		}
143 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 			spin_unlock(&fs_info->trans_lock);
145 			return -EBUSY;
146 		}
147 		atomic_inc(&cur_trans->use_count);
148 		atomic_inc(&cur_trans->num_writers);
149 		extwriter_counter_inc(cur_trans, type);
150 		spin_unlock(&fs_info->trans_lock);
151 		return 0;
152 	}
153 	spin_unlock(&fs_info->trans_lock);
154 
155 	/*
156 	 * If we are ATTACH, we just want to catch the current transaction,
157 	 * and commit it. If there is no transaction, just return ENOENT.
158 	 */
159 	if (type == TRANS_ATTACH)
160 		return -ENOENT;
161 
162 	/*
163 	 * JOIN_NOLOCK only happens during the transaction commit, so
164 	 * it is impossible that ->running_transaction is NULL
165 	 */
166 	BUG_ON(type == TRANS_JOIN_NOLOCK);
167 
168 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 	if (!cur_trans)
170 		return -ENOMEM;
171 
172 	spin_lock(&fs_info->trans_lock);
173 	if (fs_info->running_transaction) {
174 		/*
175 		 * someone started a transaction after we unlocked.  Make sure
176 		 * to redo the checks above
177 		 */
178 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 		goto loop;
180 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 		spin_unlock(&fs_info->trans_lock);
182 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 		return -EROFS;
184 	}
185 
186 	atomic_set(&cur_trans->num_writers, 1);
187 	extwriter_counter_init(cur_trans, type);
188 	init_waitqueue_head(&cur_trans->writer_wait);
189 	init_waitqueue_head(&cur_trans->commit_wait);
190 	cur_trans->state = TRANS_STATE_RUNNING;
191 	/*
192 	 * One for this trans handle, one so it will live on until we
193 	 * commit the transaction.
194 	 */
195 	atomic_set(&cur_trans->use_count, 2);
196 	cur_trans->start_time = get_seconds();
197 
198 	cur_trans->delayed_refs.href_root = RB_ROOT;
199 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 	cur_trans->delayed_refs.num_heads_ready = 0;
201 	cur_trans->delayed_refs.num_heads = 0;
202 	cur_trans->delayed_refs.flushing = 0;
203 	cur_trans->delayed_refs.run_delayed_start = 0;
204 
205 	/*
206 	 * although the tree mod log is per file system and not per transaction,
207 	 * the log must never go across transaction boundaries.
208 	 */
209 	smp_mb();
210 	if (!list_empty(&fs_info->tree_mod_seq_list))
211 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 			"creating a fresh transaction\n");
213 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 			"creating a fresh transaction\n");
216 	atomic64_set(&fs_info->tree_mod_seq, 0);
217 
218 	spin_lock_init(&cur_trans->delayed_refs.lock);
219 
220 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
222 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
223 	INIT_LIST_HEAD(&cur_trans->switch_commits);
224 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 	extent_io_tree_init(&cur_trans->dirty_pages,
226 			     fs_info->btree_inode->i_mapping);
227 	fs_info->generation++;
228 	cur_trans->transid = fs_info->generation;
229 	fs_info->running_transaction = cur_trans;
230 	cur_trans->aborted = 0;
231 	spin_unlock(&fs_info->trans_lock);
232 
233 	return 0;
234 }
235 
236 /*
237  * this does all the record keeping required to make sure that a reference
238  * counted root is properly recorded in a given transaction.  This is required
239  * to make sure the old root from before we joined the transaction is deleted
240  * when the transaction commits
241  */
242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 			       struct btrfs_root *root)
244 {
245 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 	    root->last_trans < trans->transid) {
247 		WARN_ON(root == root->fs_info->extent_root);
248 		WARN_ON(root->commit_root != root->node);
249 
250 		/*
251 		 * see below for IN_TRANS_SETUP usage rules
252 		 * we have the reloc mutex held now, so there
253 		 * is only one writer in this function
254 		 */
255 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256 
257 		/* make sure readers find IN_TRANS_SETUP before
258 		 * they find our root->last_trans update
259 		 */
260 		smp_wmb();
261 
262 		spin_lock(&root->fs_info->fs_roots_radix_lock);
263 		if (root->last_trans == trans->transid) {
264 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 			return 0;
266 		}
267 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 			   (unsigned long)root->root_key.objectid,
269 			   BTRFS_ROOT_TRANS_TAG);
270 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 		root->last_trans = trans->transid;
272 
273 		/* this is pretty tricky.  We don't want to
274 		 * take the relocation lock in btrfs_record_root_in_trans
275 		 * unless we're really doing the first setup for this root in
276 		 * this transaction.
277 		 *
278 		 * Normally we'd use root->last_trans as a flag to decide
279 		 * if we want to take the expensive mutex.
280 		 *
281 		 * But, we have to set root->last_trans before we
282 		 * init the relocation root, otherwise, we trip over warnings
283 		 * in ctree.c.  The solution used here is to flag ourselves
284 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
285 		 * fixing up the reloc trees and everyone must wait.
286 		 *
287 		 * When this is zero, they can trust root->last_trans and fly
288 		 * through btrfs_record_root_in_trans without having to take the
289 		 * lock.  smp_wmb() makes sure that all the writes above are
290 		 * done before we pop in the zero below
291 		 */
292 		btrfs_init_reloc_root(trans, root);
293 		smp_mb__before_atomic();
294 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 	}
296 	return 0;
297 }
298 
299 
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 			       struct btrfs_root *root)
302 {
303 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 		return 0;
305 
306 	/*
307 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 	 * and barriers
309 	 */
310 	smp_rmb();
311 	if (root->last_trans == trans->transid &&
312 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 		return 0;
314 
315 	mutex_lock(&root->fs_info->reloc_mutex);
316 	record_root_in_trans(trans, root);
317 	mutex_unlock(&root->fs_info->reloc_mutex);
318 
319 	return 0;
320 }
321 
322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324 	return (trans->state >= TRANS_STATE_BLOCKED &&
325 		trans->state < TRANS_STATE_UNBLOCKED &&
326 		!trans->aborted);
327 }
328 
329 /* wait for commit against the current transaction to become unblocked
330  * when this is done, it is safe to start a new transaction, but the current
331  * transaction might not be fully on disk.
332  */
333 static void wait_current_trans(struct btrfs_root *root)
334 {
335 	struct btrfs_transaction *cur_trans;
336 
337 	spin_lock(&root->fs_info->trans_lock);
338 	cur_trans = root->fs_info->running_transaction;
339 	if (cur_trans && is_transaction_blocked(cur_trans)) {
340 		atomic_inc(&cur_trans->use_count);
341 		spin_unlock(&root->fs_info->trans_lock);
342 
343 		wait_event(root->fs_info->transaction_wait,
344 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 			   cur_trans->aborted);
346 		btrfs_put_transaction(cur_trans);
347 	} else {
348 		spin_unlock(&root->fs_info->trans_lock);
349 	}
350 }
351 
352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354 	if (root->fs_info->log_root_recovering)
355 		return 0;
356 
357 	if (type == TRANS_USERSPACE)
358 		return 1;
359 
360 	if (type == TRANS_START &&
361 	    !atomic_read(&root->fs_info->open_ioctl_trans))
362 		return 1;
363 
364 	return 0;
365 }
366 
367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369 	if (!root->fs_info->reloc_ctl ||
370 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 	    root->reloc_root)
373 		return false;
374 
375 	return true;
376 }
377 
378 static struct btrfs_trans_handle *
379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 		  enum btrfs_reserve_flush_enum flush)
381 {
382 	struct btrfs_trans_handle *h;
383 	struct btrfs_transaction *cur_trans;
384 	u64 num_bytes = 0;
385 	u64 qgroup_reserved = 0;
386 	bool reloc_reserved = false;
387 	int ret;
388 
389 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
390 		return ERR_PTR(-EROFS);
391 
392 	if (current->journal_info &&
393 	    current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
394 		WARN_ON(type & TRANS_EXTWRITERS);
395 		h = current->journal_info;
396 		h->use_count++;
397 		WARN_ON(h->use_count > 2);
398 		h->orig_rsv = h->block_rsv;
399 		h->block_rsv = NULL;
400 		goto got_it;
401 	}
402 
403 	/*
404 	 * Do the reservation before we join the transaction so we can do all
405 	 * the appropriate flushing if need be.
406 	 */
407 	if (num_items > 0 && root != root->fs_info->chunk_root) {
408 		if (root->fs_info->quota_enabled &&
409 		    is_fstree(root->root_key.objectid)) {
410 			qgroup_reserved = num_items * root->leafsize;
411 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
412 			if (ret)
413 				return ERR_PTR(ret);
414 		}
415 
416 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
417 		/*
418 		 * Do the reservation for the relocation root creation
419 		 */
420 		if (unlikely(need_reserve_reloc_root(root))) {
421 			num_bytes += root->nodesize;
422 			reloc_reserved = true;
423 		}
424 
425 		ret = btrfs_block_rsv_add(root,
426 					  &root->fs_info->trans_block_rsv,
427 					  num_bytes, flush);
428 		if (ret)
429 			goto reserve_fail;
430 	}
431 again:
432 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
433 	if (!h) {
434 		ret = -ENOMEM;
435 		goto alloc_fail;
436 	}
437 
438 	/*
439 	 * If we are JOIN_NOLOCK we're already committing a transaction and
440 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
441 	 * because we're already holding a ref.  We need this because we could
442 	 * have raced in and did an fsync() on a file which can kick a commit
443 	 * and then we deadlock with somebody doing a freeze.
444 	 *
445 	 * If we are ATTACH, it means we just want to catch the current
446 	 * transaction and commit it, so we needn't do sb_start_intwrite().
447 	 */
448 	if (type & __TRANS_FREEZABLE)
449 		sb_start_intwrite(root->fs_info->sb);
450 
451 	if (may_wait_transaction(root, type))
452 		wait_current_trans(root);
453 
454 	do {
455 		ret = join_transaction(root, type);
456 		if (ret == -EBUSY) {
457 			wait_current_trans(root);
458 			if (unlikely(type == TRANS_ATTACH))
459 				ret = -ENOENT;
460 		}
461 	} while (ret == -EBUSY);
462 
463 	if (ret < 0) {
464 		/* We must get the transaction if we are JOIN_NOLOCK. */
465 		BUG_ON(type == TRANS_JOIN_NOLOCK);
466 		goto join_fail;
467 	}
468 
469 	cur_trans = root->fs_info->running_transaction;
470 
471 	h->transid = cur_trans->transid;
472 	h->transaction = cur_trans;
473 	h->blocks_used = 0;
474 	h->bytes_reserved = 0;
475 	h->root = root;
476 	h->delayed_ref_updates = 0;
477 	h->use_count = 1;
478 	h->adding_csums = 0;
479 	h->block_rsv = NULL;
480 	h->orig_rsv = NULL;
481 	h->aborted = 0;
482 	h->qgroup_reserved = 0;
483 	h->delayed_ref_elem.seq = 0;
484 	h->type = type;
485 	h->allocating_chunk = false;
486 	h->reloc_reserved = false;
487 	h->sync = false;
488 	INIT_LIST_HEAD(&h->qgroup_ref_list);
489 	INIT_LIST_HEAD(&h->new_bgs);
490 
491 	smp_mb();
492 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
493 	    may_wait_transaction(root, type)) {
494 		btrfs_commit_transaction(h, root);
495 		goto again;
496 	}
497 
498 	if (num_bytes) {
499 		trace_btrfs_space_reservation(root->fs_info, "transaction",
500 					      h->transid, num_bytes, 1);
501 		h->block_rsv = &root->fs_info->trans_block_rsv;
502 		h->bytes_reserved = num_bytes;
503 		h->reloc_reserved = reloc_reserved;
504 	}
505 	h->qgroup_reserved = qgroup_reserved;
506 
507 got_it:
508 	btrfs_record_root_in_trans(h, root);
509 
510 	if (!current->journal_info && type != TRANS_USERSPACE)
511 		current->journal_info = h;
512 	return h;
513 
514 join_fail:
515 	if (type & __TRANS_FREEZABLE)
516 		sb_end_intwrite(root->fs_info->sb);
517 	kmem_cache_free(btrfs_trans_handle_cachep, h);
518 alloc_fail:
519 	if (num_bytes)
520 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
521 					num_bytes);
522 reserve_fail:
523 	if (qgroup_reserved)
524 		btrfs_qgroup_free(root, qgroup_reserved);
525 	return ERR_PTR(ret);
526 }
527 
528 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
529 						   int num_items)
530 {
531 	return start_transaction(root, num_items, TRANS_START,
532 				 BTRFS_RESERVE_FLUSH_ALL);
533 }
534 
535 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
536 					struct btrfs_root *root, int num_items)
537 {
538 	return start_transaction(root, num_items, TRANS_START,
539 				 BTRFS_RESERVE_FLUSH_LIMIT);
540 }
541 
542 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
543 {
544 	return start_transaction(root, 0, TRANS_JOIN, 0);
545 }
546 
547 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
548 {
549 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
550 }
551 
552 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
553 {
554 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
555 }
556 
557 /*
558  * btrfs_attach_transaction() - catch the running transaction
559  *
560  * It is used when we want to commit the current the transaction, but
561  * don't want to start a new one.
562  *
563  * Note: If this function return -ENOENT, it just means there is no
564  * running transaction. But it is possible that the inactive transaction
565  * is still in the memory, not fully on disk. If you hope there is no
566  * inactive transaction in the fs when -ENOENT is returned, you should
567  * invoke
568  *     btrfs_attach_transaction_barrier()
569  */
570 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
571 {
572 	return start_transaction(root, 0, TRANS_ATTACH, 0);
573 }
574 
575 /*
576  * btrfs_attach_transaction_barrier() - catch the running transaction
577  *
578  * It is similar to the above function, the differentia is this one
579  * will wait for all the inactive transactions until they fully
580  * complete.
581  */
582 struct btrfs_trans_handle *
583 btrfs_attach_transaction_barrier(struct btrfs_root *root)
584 {
585 	struct btrfs_trans_handle *trans;
586 
587 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
588 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
589 		btrfs_wait_for_commit(root, 0);
590 
591 	return trans;
592 }
593 
594 /* wait for a transaction commit to be fully complete */
595 static noinline void wait_for_commit(struct btrfs_root *root,
596 				    struct btrfs_transaction *commit)
597 {
598 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
599 }
600 
601 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
602 {
603 	struct btrfs_transaction *cur_trans = NULL, *t;
604 	int ret = 0;
605 
606 	if (transid) {
607 		if (transid <= root->fs_info->last_trans_committed)
608 			goto out;
609 
610 		ret = -EINVAL;
611 		/* find specified transaction */
612 		spin_lock(&root->fs_info->trans_lock);
613 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
614 			if (t->transid == transid) {
615 				cur_trans = t;
616 				atomic_inc(&cur_trans->use_count);
617 				ret = 0;
618 				break;
619 			}
620 			if (t->transid > transid) {
621 				ret = 0;
622 				break;
623 			}
624 		}
625 		spin_unlock(&root->fs_info->trans_lock);
626 		/* The specified transaction doesn't exist */
627 		if (!cur_trans)
628 			goto out;
629 	} else {
630 		/* find newest transaction that is committing | committed */
631 		spin_lock(&root->fs_info->trans_lock);
632 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
633 					    list) {
634 			if (t->state >= TRANS_STATE_COMMIT_START) {
635 				if (t->state == TRANS_STATE_COMPLETED)
636 					break;
637 				cur_trans = t;
638 				atomic_inc(&cur_trans->use_count);
639 				break;
640 			}
641 		}
642 		spin_unlock(&root->fs_info->trans_lock);
643 		if (!cur_trans)
644 			goto out;  /* nothing committing|committed */
645 	}
646 
647 	wait_for_commit(root, cur_trans);
648 	btrfs_put_transaction(cur_trans);
649 out:
650 	return ret;
651 }
652 
653 void btrfs_throttle(struct btrfs_root *root)
654 {
655 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
656 		wait_current_trans(root);
657 }
658 
659 static int should_end_transaction(struct btrfs_trans_handle *trans,
660 				  struct btrfs_root *root)
661 {
662 	if (root->fs_info->global_block_rsv.space_info->full &&
663 	    btrfs_check_space_for_delayed_refs(trans, root))
664 		return 1;
665 
666 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
667 }
668 
669 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
670 				 struct btrfs_root *root)
671 {
672 	struct btrfs_transaction *cur_trans = trans->transaction;
673 	int updates;
674 	int err;
675 
676 	smp_mb();
677 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
678 	    cur_trans->delayed_refs.flushing)
679 		return 1;
680 
681 	updates = trans->delayed_ref_updates;
682 	trans->delayed_ref_updates = 0;
683 	if (updates) {
684 		err = btrfs_run_delayed_refs(trans, root, updates);
685 		if (err) /* Error code will also eval true */
686 			return err;
687 	}
688 
689 	return should_end_transaction(trans, root);
690 }
691 
692 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
693 			  struct btrfs_root *root, int throttle)
694 {
695 	struct btrfs_transaction *cur_trans = trans->transaction;
696 	struct btrfs_fs_info *info = root->fs_info;
697 	unsigned long cur = trans->delayed_ref_updates;
698 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
699 	int err = 0;
700 	int must_run_delayed_refs = 0;
701 
702 	if (trans->use_count > 1) {
703 		trans->use_count--;
704 		trans->block_rsv = trans->orig_rsv;
705 		return 0;
706 	}
707 
708 	btrfs_trans_release_metadata(trans, root);
709 	trans->block_rsv = NULL;
710 
711 	if (!list_empty(&trans->new_bgs))
712 		btrfs_create_pending_block_groups(trans, root);
713 
714 	trans->delayed_ref_updates = 0;
715 	if (!trans->sync) {
716 		must_run_delayed_refs =
717 			btrfs_should_throttle_delayed_refs(trans, root);
718 		cur = max_t(unsigned long, cur, 32);
719 
720 		/*
721 		 * don't make the caller wait if they are from a NOLOCK
722 		 * or ATTACH transaction, it will deadlock with commit
723 		 */
724 		if (must_run_delayed_refs == 1 &&
725 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
726 			must_run_delayed_refs = 2;
727 	}
728 
729 	if (trans->qgroup_reserved) {
730 		/*
731 		 * the same root has to be passed here between start_transaction
732 		 * and end_transaction. Subvolume quota depends on this.
733 		 */
734 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
735 		trans->qgroup_reserved = 0;
736 	}
737 
738 	btrfs_trans_release_metadata(trans, root);
739 	trans->block_rsv = NULL;
740 
741 	if (!list_empty(&trans->new_bgs))
742 		btrfs_create_pending_block_groups(trans, root);
743 
744 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
745 	    should_end_transaction(trans, root) &&
746 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
747 		spin_lock(&info->trans_lock);
748 		if (cur_trans->state == TRANS_STATE_RUNNING)
749 			cur_trans->state = TRANS_STATE_BLOCKED;
750 		spin_unlock(&info->trans_lock);
751 	}
752 
753 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
754 		if (throttle)
755 			return btrfs_commit_transaction(trans, root);
756 		else
757 			wake_up_process(info->transaction_kthread);
758 	}
759 
760 	if (trans->type & __TRANS_FREEZABLE)
761 		sb_end_intwrite(root->fs_info->sb);
762 
763 	WARN_ON(cur_trans != info->running_transaction);
764 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
765 	atomic_dec(&cur_trans->num_writers);
766 	extwriter_counter_dec(cur_trans, trans->type);
767 
768 	smp_mb();
769 	if (waitqueue_active(&cur_trans->writer_wait))
770 		wake_up(&cur_trans->writer_wait);
771 	btrfs_put_transaction(cur_trans);
772 
773 	if (current->journal_info == trans)
774 		current->journal_info = NULL;
775 
776 	if (throttle)
777 		btrfs_run_delayed_iputs(root);
778 
779 	if (trans->aborted ||
780 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
781 		wake_up_process(info->transaction_kthread);
782 		err = -EIO;
783 	}
784 	assert_qgroups_uptodate(trans);
785 
786 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
787 	if (must_run_delayed_refs) {
788 		btrfs_async_run_delayed_refs(root, cur,
789 					     must_run_delayed_refs == 1);
790 	}
791 	return err;
792 }
793 
794 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
795 			  struct btrfs_root *root)
796 {
797 	return __btrfs_end_transaction(trans, root, 0);
798 }
799 
800 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
801 				   struct btrfs_root *root)
802 {
803 	return __btrfs_end_transaction(trans, root, 1);
804 }
805 
806 /*
807  * when btree blocks are allocated, they have some corresponding bits set for
808  * them in one of two extent_io trees.  This is used to make sure all of
809  * those extents are sent to disk but does not wait on them
810  */
811 int btrfs_write_marked_extents(struct btrfs_root *root,
812 			       struct extent_io_tree *dirty_pages, int mark)
813 {
814 	int err = 0;
815 	int werr = 0;
816 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
817 	struct extent_state *cached_state = NULL;
818 	u64 start = 0;
819 	u64 end;
820 
821 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
822 				      mark, &cached_state)) {
823 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
824 				   mark, &cached_state, GFP_NOFS);
825 		cached_state = NULL;
826 		err = filemap_fdatawrite_range(mapping, start, end);
827 		if (err)
828 			werr = err;
829 		cond_resched();
830 		start = end + 1;
831 	}
832 	if (err)
833 		werr = err;
834 	return werr;
835 }
836 
837 /*
838  * when btree blocks are allocated, they have some corresponding bits set for
839  * them in one of two extent_io trees.  This is used to make sure all of
840  * those extents are on disk for transaction or log commit.  We wait
841  * on all the pages and clear them from the dirty pages state tree
842  */
843 int btrfs_wait_marked_extents(struct btrfs_root *root,
844 			      struct extent_io_tree *dirty_pages, int mark)
845 {
846 	int err = 0;
847 	int werr = 0;
848 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
849 	struct extent_state *cached_state = NULL;
850 	u64 start = 0;
851 	u64 end;
852 
853 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
854 				      EXTENT_NEED_WAIT, &cached_state)) {
855 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
856 				 0, 0, &cached_state, GFP_NOFS);
857 		err = filemap_fdatawait_range(mapping, start, end);
858 		if (err)
859 			werr = err;
860 		cond_resched();
861 		start = end + 1;
862 	}
863 	if (err)
864 		werr = err;
865 	return werr;
866 }
867 
868 /*
869  * when btree blocks are allocated, they have some corresponding bits set for
870  * them in one of two extent_io trees.  This is used to make sure all of
871  * those extents are on disk for transaction or log commit
872  */
873 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
874 				struct extent_io_tree *dirty_pages, int mark)
875 {
876 	int ret;
877 	int ret2;
878 	struct blk_plug plug;
879 
880 	blk_start_plug(&plug);
881 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
882 	blk_finish_plug(&plug);
883 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
884 
885 	if (ret)
886 		return ret;
887 	if (ret2)
888 		return ret2;
889 	return 0;
890 }
891 
892 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
893 				     struct btrfs_root *root)
894 {
895 	if (!trans || !trans->transaction) {
896 		struct inode *btree_inode;
897 		btree_inode = root->fs_info->btree_inode;
898 		return filemap_write_and_wait(btree_inode->i_mapping);
899 	}
900 	return btrfs_write_and_wait_marked_extents(root,
901 					   &trans->transaction->dirty_pages,
902 					   EXTENT_DIRTY);
903 }
904 
905 /*
906  * this is used to update the root pointer in the tree of tree roots.
907  *
908  * But, in the case of the extent allocation tree, updating the root
909  * pointer may allocate blocks which may change the root of the extent
910  * allocation tree.
911  *
912  * So, this loops and repeats and makes sure the cowonly root didn't
913  * change while the root pointer was being updated in the metadata.
914  */
915 static int update_cowonly_root(struct btrfs_trans_handle *trans,
916 			       struct btrfs_root *root)
917 {
918 	int ret;
919 	u64 old_root_bytenr;
920 	u64 old_root_used;
921 	struct btrfs_root *tree_root = root->fs_info->tree_root;
922 
923 	old_root_used = btrfs_root_used(&root->root_item);
924 	btrfs_write_dirty_block_groups(trans, root);
925 
926 	while (1) {
927 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
928 		if (old_root_bytenr == root->node->start &&
929 		    old_root_used == btrfs_root_used(&root->root_item))
930 			break;
931 
932 		btrfs_set_root_node(&root->root_item, root->node);
933 		ret = btrfs_update_root(trans, tree_root,
934 					&root->root_key,
935 					&root->root_item);
936 		if (ret)
937 			return ret;
938 
939 		old_root_used = btrfs_root_used(&root->root_item);
940 		ret = btrfs_write_dirty_block_groups(trans, root);
941 		if (ret)
942 			return ret;
943 	}
944 
945 	return 0;
946 }
947 
948 /*
949  * update all the cowonly tree roots on disk
950  *
951  * The error handling in this function may not be obvious. Any of the
952  * failures will cause the file system to go offline. We still need
953  * to clean up the delayed refs.
954  */
955 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
956 					 struct btrfs_root *root)
957 {
958 	struct btrfs_fs_info *fs_info = root->fs_info;
959 	struct list_head *next;
960 	struct extent_buffer *eb;
961 	int ret;
962 
963 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
964 	if (ret)
965 		return ret;
966 
967 	eb = btrfs_lock_root_node(fs_info->tree_root);
968 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
969 			      0, &eb);
970 	btrfs_tree_unlock(eb);
971 	free_extent_buffer(eb);
972 
973 	if (ret)
974 		return ret;
975 
976 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
977 	if (ret)
978 		return ret;
979 
980 	ret = btrfs_run_dev_stats(trans, root->fs_info);
981 	if (ret)
982 		return ret;
983 	ret = btrfs_run_dev_replace(trans, root->fs_info);
984 	if (ret)
985 		return ret;
986 	ret = btrfs_run_qgroups(trans, root->fs_info);
987 	if (ret)
988 		return ret;
989 
990 	/* run_qgroups might have added some more refs */
991 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
992 	if (ret)
993 		return ret;
994 
995 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
996 		next = fs_info->dirty_cowonly_roots.next;
997 		list_del_init(next);
998 		root = list_entry(next, struct btrfs_root, dirty_list);
999 
1000 		if (root != fs_info->extent_root)
1001 			list_add_tail(&root->dirty_list,
1002 				      &trans->transaction->switch_commits);
1003 		ret = update_cowonly_root(trans, root);
1004 		if (ret)
1005 			return ret;
1006 	}
1007 
1008 	list_add_tail(&fs_info->extent_root->dirty_list,
1009 		      &trans->transaction->switch_commits);
1010 	btrfs_after_dev_replace_commit(fs_info);
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * dead roots are old snapshots that need to be deleted.  This allocates
1017  * a dirty root struct and adds it into the list of dead roots that need to
1018  * be deleted
1019  */
1020 void btrfs_add_dead_root(struct btrfs_root *root)
1021 {
1022 	spin_lock(&root->fs_info->trans_lock);
1023 	if (list_empty(&root->root_list))
1024 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1025 	spin_unlock(&root->fs_info->trans_lock);
1026 }
1027 
1028 /*
1029  * update all the cowonly tree roots on disk
1030  */
1031 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1032 				    struct btrfs_root *root)
1033 {
1034 	struct btrfs_root *gang[8];
1035 	struct btrfs_fs_info *fs_info = root->fs_info;
1036 	int i;
1037 	int ret;
1038 	int err = 0;
1039 
1040 	spin_lock(&fs_info->fs_roots_radix_lock);
1041 	while (1) {
1042 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1043 						 (void **)gang, 0,
1044 						 ARRAY_SIZE(gang),
1045 						 BTRFS_ROOT_TRANS_TAG);
1046 		if (ret == 0)
1047 			break;
1048 		for (i = 0; i < ret; i++) {
1049 			root = gang[i];
1050 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1051 					(unsigned long)root->root_key.objectid,
1052 					BTRFS_ROOT_TRANS_TAG);
1053 			spin_unlock(&fs_info->fs_roots_radix_lock);
1054 
1055 			btrfs_free_log(trans, root);
1056 			btrfs_update_reloc_root(trans, root);
1057 			btrfs_orphan_commit_root(trans, root);
1058 
1059 			btrfs_save_ino_cache(root, trans);
1060 
1061 			/* see comments in should_cow_block() */
1062 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1063 			smp_mb__after_atomic();
1064 
1065 			if (root->commit_root != root->node) {
1066 				list_add_tail(&root->dirty_list,
1067 					&trans->transaction->switch_commits);
1068 				btrfs_set_root_node(&root->root_item,
1069 						    root->node);
1070 			}
1071 
1072 			err = btrfs_update_root(trans, fs_info->tree_root,
1073 						&root->root_key,
1074 						&root->root_item);
1075 			spin_lock(&fs_info->fs_roots_radix_lock);
1076 			if (err)
1077 				break;
1078 		}
1079 	}
1080 	spin_unlock(&fs_info->fs_roots_radix_lock);
1081 	return err;
1082 }
1083 
1084 /*
1085  * defrag a given btree.
1086  * Every leaf in the btree is read and defragged.
1087  */
1088 int btrfs_defrag_root(struct btrfs_root *root)
1089 {
1090 	struct btrfs_fs_info *info = root->fs_info;
1091 	struct btrfs_trans_handle *trans;
1092 	int ret;
1093 
1094 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1095 		return 0;
1096 
1097 	while (1) {
1098 		trans = btrfs_start_transaction(root, 0);
1099 		if (IS_ERR(trans))
1100 			return PTR_ERR(trans);
1101 
1102 		ret = btrfs_defrag_leaves(trans, root);
1103 
1104 		btrfs_end_transaction(trans, root);
1105 		btrfs_btree_balance_dirty(info->tree_root);
1106 		cond_resched();
1107 
1108 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1109 			break;
1110 
1111 		if (btrfs_defrag_cancelled(root->fs_info)) {
1112 			pr_debug("BTRFS: defrag_root cancelled\n");
1113 			ret = -EAGAIN;
1114 			break;
1115 		}
1116 	}
1117 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1118 	return ret;
1119 }
1120 
1121 /*
1122  * new snapshots need to be created at a very specific time in the
1123  * transaction commit.  This does the actual creation.
1124  *
1125  * Note:
1126  * If the error which may affect the commitment of the current transaction
1127  * happens, we should return the error number. If the error which just affect
1128  * the creation of the pending snapshots, just return 0.
1129  */
1130 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1131 				   struct btrfs_fs_info *fs_info,
1132 				   struct btrfs_pending_snapshot *pending)
1133 {
1134 	struct btrfs_key key;
1135 	struct btrfs_root_item *new_root_item;
1136 	struct btrfs_root *tree_root = fs_info->tree_root;
1137 	struct btrfs_root *root = pending->root;
1138 	struct btrfs_root *parent_root;
1139 	struct btrfs_block_rsv *rsv;
1140 	struct inode *parent_inode;
1141 	struct btrfs_path *path;
1142 	struct btrfs_dir_item *dir_item;
1143 	struct dentry *dentry;
1144 	struct extent_buffer *tmp;
1145 	struct extent_buffer *old;
1146 	struct timespec cur_time = CURRENT_TIME;
1147 	int ret = 0;
1148 	u64 to_reserve = 0;
1149 	u64 index = 0;
1150 	u64 objectid;
1151 	u64 root_flags;
1152 	uuid_le new_uuid;
1153 
1154 	path = btrfs_alloc_path();
1155 	if (!path) {
1156 		pending->error = -ENOMEM;
1157 		return 0;
1158 	}
1159 
1160 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1161 	if (!new_root_item) {
1162 		pending->error = -ENOMEM;
1163 		goto root_item_alloc_fail;
1164 	}
1165 
1166 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1167 	if (pending->error)
1168 		goto no_free_objectid;
1169 
1170 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1171 
1172 	if (to_reserve > 0) {
1173 		pending->error = btrfs_block_rsv_add(root,
1174 						     &pending->block_rsv,
1175 						     to_reserve,
1176 						     BTRFS_RESERVE_NO_FLUSH);
1177 		if (pending->error)
1178 			goto no_free_objectid;
1179 	}
1180 
1181 	key.objectid = objectid;
1182 	key.offset = (u64)-1;
1183 	key.type = BTRFS_ROOT_ITEM_KEY;
1184 
1185 	rsv = trans->block_rsv;
1186 	trans->block_rsv = &pending->block_rsv;
1187 	trans->bytes_reserved = trans->block_rsv->reserved;
1188 
1189 	dentry = pending->dentry;
1190 	parent_inode = pending->dir;
1191 	parent_root = BTRFS_I(parent_inode)->root;
1192 	record_root_in_trans(trans, parent_root);
1193 
1194 	/*
1195 	 * insert the directory item
1196 	 */
1197 	ret = btrfs_set_inode_index(parent_inode, &index);
1198 	BUG_ON(ret); /* -ENOMEM */
1199 
1200 	/* check if there is a file/dir which has the same name. */
1201 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1202 					 btrfs_ino(parent_inode),
1203 					 dentry->d_name.name,
1204 					 dentry->d_name.len, 0);
1205 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1206 		pending->error = -EEXIST;
1207 		goto dir_item_existed;
1208 	} else if (IS_ERR(dir_item)) {
1209 		ret = PTR_ERR(dir_item);
1210 		btrfs_abort_transaction(trans, root, ret);
1211 		goto fail;
1212 	}
1213 	btrfs_release_path(path);
1214 
1215 	/*
1216 	 * pull in the delayed directory update
1217 	 * and the delayed inode item
1218 	 * otherwise we corrupt the FS during
1219 	 * snapshot
1220 	 */
1221 	ret = btrfs_run_delayed_items(trans, root);
1222 	if (ret) {	/* Transaction aborted */
1223 		btrfs_abort_transaction(trans, root, ret);
1224 		goto fail;
1225 	}
1226 
1227 	record_root_in_trans(trans, root);
1228 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1229 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1230 	btrfs_check_and_init_root_item(new_root_item);
1231 
1232 	root_flags = btrfs_root_flags(new_root_item);
1233 	if (pending->readonly)
1234 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1235 	else
1236 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1237 	btrfs_set_root_flags(new_root_item, root_flags);
1238 
1239 	btrfs_set_root_generation_v2(new_root_item,
1240 			trans->transid);
1241 	uuid_le_gen(&new_uuid);
1242 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1243 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1244 			BTRFS_UUID_SIZE);
1245 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1246 		memset(new_root_item->received_uuid, 0,
1247 		       sizeof(new_root_item->received_uuid));
1248 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1249 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1250 		btrfs_set_root_stransid(new_root_item, 0);
1251 		btrfs_set_root_rtransid(new_root_item, 0);
1252 	}
1253 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1254 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1255 	btrfs_set_root_otransid(new_root_item, trans->transid);
1256 
1257 	old = btrfs_lock_root_node(root);
1258 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1259 	if (ret) {
1260 		btrfs_tree_unlock(old);
1261 		free_extent_buffer(old);
1262 		btrfs_abort_transaction(trans, root, ret);
1263 		goto fail;
1264 	}
1265 
1266 	btrfs_set_lock_blocking(old);
1267 
1268 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1269 	/* clean up in any case */
1270 	btrfs_tree_unlock(old);
1271 	free_extent_buffer(old);
1272 	if (ret) {
1273 		btrfs_abort_transaction(trans, root, ret);
1274 		goto fail;
1275 	}
1276 
1277 	/*
1278 	 * We need to flush delayed refs in order to make sure all of our quota
1279 	 * operations have been done before we call btrfs_qgroup_inherit.
1280 	 */
1281 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1282 	if (ret) {
1283 		btrfs_abort_transaction(trans, root, ret);
1284 		goto fail;
1285 	}
1286 
1287 	ret = btrfs_qgroup_inherit(trans, fs_info,
1288 				   root->root_key.objectid,
1289 				   objectid, pending->inherit);
1290 	if (ret) {
1291 		btrfs_abort_transaction(trans, root, ret);
1292 		goto fail;
1293 	}
1294 
1295 	/* see comments in should_cow_block() */
1296 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1297 	smp_wmb();
1298 
1299 	btrfs_set_root_node(new_root_item, tmp);
1300 	/* record when the snapshot was created in key.offset */
1301 	key.offset = trans->transid;
1302 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1303 	btrfs_tree_unlock(tmp);
1304 	free_extent_buffer(tmp);
1305 	if (ret) {
1306 		btrfs_abort_transaction(trans, root, ret);
1307 		goto fail;
1308 	}
1309 
1310 	/*
1311 	 * insert root back/forward references
1312 	 */
1313 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1314 				 parent_root->root_key.objectid,
1315 				 btrfs_ino(parent_inode), index,
1316 				 dentry->d_name.name, dentry->d_name.len);
1317 	if (ret) {
1318 		btrfs_abort_transaction(trans, root, ret);
1319 		goto fail;
1320 	}
1321 
1322 	key.offset = (u64)-1;
1323 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1324 	if (IS_ERR(pending->snap)) {
1325 		ret = PTR_ERR(pending->snap);
1326 		btrfs_abort_transaction(trans, root, ret);
1327 		goto fail;
1328 	}
1329 
1330 	ret = btrfs_reloc_post_snapshot(trans, pending);
1331 	if (ret) {
1332 		btrfs_abort_transaction(trans, root, ret);
1333 		goto fail;
1334 	}
1335 
1336 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1337 	if (ret) {
1338 		btrfs_abort_transaction(trans, root, ret);
1339 		goto fail;
1340 	}
1341 
1342 	ret = btrfs_insert_dir_item(trans, parent_root,
1343 				    dentry->d_name.name, dentry->d_name.len,
1344 				    parent_inode, &key,
1345 				    BTRFS_FT_DIR, index);
1346 	/* We have check then name at the beginning, so it is impossible. */
1347 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1348 	if (ret) {
1349 		btrfs_abort_transaction(trans, root, ret);
1350 		goto fail;
1351 	}
1352 
1353 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1354 					 dentry->d_name.len * 2);
1355 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1356 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1357 	if (ret) {
1358 		btrfs_abort_transaction(trans, root, ret);
1359 		goto fail;
1360 	}
1361 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1362 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1363 	if (ret) {
1364 		btrfs_abort_transaction(trans, root, ret);
1365 		goto fail;
1366 	}
1367 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1368 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1369 					  new_root_item->received_uuid,
1370 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1371 					  objectid);
1372 		if (ret && ret != -EEXIST) {
1373 			btrfs_abort_transaction(trans, root, ret);
1374 			goto fail;
1375 		}
1376 	}
1377 fail:
1378 	pending->error = ret;
1379 dir_item_existed:
1380 	trans->block_rsv = rsv;
1381 	trans->bytes_reserved = 0;
1382 no_free_objectid:
1383 	kfree(new_root_item);
1384 root_item_alloc_fail:
1385 	btrfs_free_path(path);
1386 	return ret;
1387 }
1388 
1389 /*
1390  * create all the snapshots we've scheduled for creation
1391  */
1392 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1393 					     struct btrfs_fs_info *fs_info)
1394 {
1395 	struct btrfs_pending_snapshot *pending, *next;
1396 	struct list_head *head = &trans->transaction->pending_snapshots;
1397 	int ret = 0;
1398 
1399 	list_for_each_entry_safe(pending, next, head, list) {
1400 		list_del(&pending->list);
1401 		ret = create_pending_snapshot(trans, fs_info, pending);
1402 		if (ret)
1403 			break;
1404 	}
1405 	return ret;
1406 }
1407 
1408 static void update_super_roots(struct btrfs_root *root)
1409 {
1410 	struct btrfs_root_item *root_item;
1411 	struct btrfs_super_block *super;
1412 
1413 	super = root->fs_info->super_copy;
1414 
1415 	root_item = &root->fs_info->chunk_root->root_item;
1416 	super->chunk_root = root_item->bytenr;
1417 	super->chunk_root_generation = root_item->generation;
1418 	super->chunk_root_level = root_item->level;
1419 
1420 	root_item = &root->fs_info->tree_root->root_item;
1421 	super->root = root_item->bytenr;
1422 	super->generation = root_item->generation;
1423 	super->root_level = root_item->level;
1424 	if (btrfs_test_opt(root, SPACE_CACHE))
1425 		super->cache_generation = root_item->generation;
1426 	if (root->fs_info->update_uuid_tree_gen)
1427 		super->uuid_tree_generation = root_item->generation;
1428 }
1429 
1430 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1431 {
1432 	struct btrfs_transaction *trans;
1433 	int ret = 0;
1434 
1435 	spin_lock(&info->trans_lock);
1436 	trans = info->running_transaction;
1437 	if (trans)
1438 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1439 	spin_unlock(&info->trans_lock);
1440 	return ret;
1441 }
1442 
1443 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1444 {
1445 	struct btrfs_transaction *trans;
1446 	int ret = 0;
1447 
1448 	spin_lock(&info->trans_lock);
1449 	trans = info->running_transaction;
1450 	if (trans)
1451 		ret = is_transaction_blocked(trans);
1452 	spin_unlock(&info->trans_lock);
1453 	return ret;
1454 }
1455 
1456 /*
1457  * wait for the current transaction commit to start and block subsequent
1458  * transaction joins
1459  */
1460 static void wait_current_trans_commit_start(struct btrfs_root *root,
1461 					    struct btrfs_transaction *trans)
1462 {
1463 	wait_event(root->fs_info->transaction_blocked_wait,
1464 		   trans->state >= TRANS_STATE_COMMIT_START ||
1465 		   trans->aborted);
1466 }
1467 
1468 /*
1469  * wait for the current transaction to start and then become unblocked.
1470  * caller holds ref.
1471  */
1472 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1473 					 struct btrfs_transaction *trans)
1474 {
1475 	wait_event(root->fs_info->transaction_wait,
1476 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1477 		   trans->aborted);
1478 }
1479 
1480 /*
1481  * commit transactions asynchronously. once btrfs_commit_transaction_async
1482  * returns, any subsequent transaction will not be allowed to join.
1483  */
1484 struct btrfs_async_commit {
1485 	struct btrfs_trans_handle *newtrans;
1486 	struct btrfs_root *root;
1487 	struct work_struct work;
1488 };
1489 
1490 static void do_async_commit(struct work_struct *work)
1491 {
1492 	struct btrfs_async_commit *ac =
1493 		container_of(work, struct btrfs_async_commit, work);
1494 
1495 	/*
1496 	 * We've got freeze protection passed with the transaction.
1497 	 * Tell lockdep about it.
1498 	 */
1499 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1500 		rwsem_acquire_read(
1501 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1502 		     0, 1, _THIS_IP_);
1503 
1504 	current->journal_info = ac->newtrans;
1505 
1506 	btrfs_commit_transaction(ac->newtrans, ac->root);
1507 	kfree(ac);
1508 }
1509 
1510 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1511 				   struct btrfs_root *root,
1512 				   int wait_for_unblock)
1513 {
1514 	struct btrfs_async_commit *ac;
1515 	struct btrfs_transaction *cur_trans;
1516 
1517 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1518 	if (!ac)
1519 		return -ENOMEM;
1520 
1521 	INIT_WORK(&ac->work, do_async_commit);
1522 	ac->root = root;
1523 	ac->newtrans = btrfs_join_transaction(root);
1524 	if (IS_ERR(ac->newtrans)) {
1525 		int err = PTR_ERR(ac->newtrans);
1526 		kfree(ac);
1527 		return err;
1528 	}
1529 
1530 	/* take transaction reference */
1531 	cur_trans = trans->transaction;
1532 	atomic_inc(&cur_trans->use_count);
1533 
1534 	btrfs_end_transaction(trans, root);
1535 
1536 	/*
1537 	 * Tell lockdep we've released the freeze rwsem, since the
1538 	 * async commit thread will be the one to unlock it.
1539 	 */
1540 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1541 		rwsem_release(
1542 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1543 			1, _THIS_IP_);
1544 
1545 	schedule_work(&ac->work);
1546 
1547 	/* wait for transaction to start and unblock */
1548 	if (wait_for_unblock)
1549 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1550 	else
1551 		wait_current_trans_commit_start(root, cur_trans);
1552 
1553 	if (current->journal_info == trans)
1554 		current->journal_info = NULL;
1555 
1556 	btrfs_put_transaction(cur_trans);
1557 	return 0;
1558 }
1559 
1560 
1561 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1562 				struct btrfs_root *root, int err)
1563 {
1564 	struct btrfs_transaction *cur_trans = trans->transaction;
1565 	DEFINE_WAIT(wait);
1566 
1567 	WARN_ON(trans->use_count > 1);
1568 
1569 	btrfs_abort_transaction(trans, root, err);
1570 
1571 	spin_lock(&root->fs_info->trans_lock);
1572 
1573 	/*
1574 	 * If the transaction is removed from the list, it means this
1575 	 * transaction has been committed successfully, so it is impossible
1576 	 * to call the cleanup function.
1577 	 */
1578 	BUG_ON(list_empty(&cur_trans->list));
1579 
1580 	list_del_init(&cur_trans->list);
1581 	if (cur_trans == root->fs_info->running_transaction) {
1582 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1583 		spin_unlock(&root->fs_info->trans_lock);
1584 		wait_event(cur_trans->writer_wait,
1585 			   atomic_read(&cur_trans->num_writers) == 1);
1586 
1587 		spin_lock(&root->fs_info->trans_lock);
1588 	}
1589 	spin_unlock(&root->fs_info->trans_lock);
1590 
1591 	btrfs_cleanup_one_transaction(trans->transaction, root);
1592 
1593 	spin_lock(&root->fs_info->trans_lock);
1594 	if (cur_trans == root->fs_info->running_transaction)
1595 		root->fs_info->running_transaction = NULL;
1596 	spin_unlock(&root->fs_info->trans_lock);
1597 
1598 	if (trans->type & __TRANS_FREEZABLE)
1599 		sb_end_intwrite(root->fs_info->sb);
1600 	btrfs_put_transaction(cur_trans);
1601 	btrfs_put_transaction(cur_trans);
1602 
1603 	trace_btrfs_transaction_commit(root);
1604 
1605 	if (current->journal_info == trans)
1606 		current->journal_info = NULL;
1607 	btrfs_scrub_cancel(root->fs_info);
1608 
1609 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1610 }
1611 
1612 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1613 					  struct btrfs_root *root)
1614 {
1615 	int ret;
1616 
1617 	ret = btrfs_run_delayed_items(trans, root);
1618 	/*
1619 	 * running the delayed items may have added new refs. account
1620 	 * them now so that they hinder processing of more delayed refs
1621 	 * as little as possible.
1622 	 */
1623 	if (ret)
1624 		return ret;
1625 
1626 	/*
1627 	 * rename don't use btrfs_join_transaction, so, once we
1628 	 * set the transaction to blocked above, we aren't going
1629 	 * to get any new ordered operations.  We can safely run
1630 	 * it here and no for sure that nothing new will be added
1631 	 * to the list
1632 	 */
1633 	ret = btrfs_run_ordered_operations(trans, root, 1);
1634 
1635 	return ret;
1636 }
1637 
1638 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1639 {
1640 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1641 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1642 	return 0;
1643 }
1644 
1645 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1646 {
1647 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1648 		btrfs_wait_ordered_roots(fs_info, -1);
1649 }
1650 
1651 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1652 			     struct btrfs_root *root)
1653 {
1654 	struct btrfs_transaction *cur_trans = trans->transaction;
1655 	struct btrfs_transaction *prev_trans = NULL;
1656 	int ret;
1657 
1658 	ret = btrfs_run_ordered_operations(trans, root, 0);
1659 	if (ret) {
1660 		btrfs_abort_transaction(trans, root, ret);
1661 		btrfs_end_transaction(trans, root);
1662 		return ret;
1663 	}
1664 
1665 	/* Stop the commit early if ->aborted is set */
1666 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1667 		ret = cur_trans->aborted;
1668 		btrfs_end_transaction(trans, root);
1669 		return ret;
1670 	}
1671 
1672 	/* make a pass through all the delayed refs we have so far
1673 	 * any runnings procs may add more while we are here
1674 	 */
1675 	ret = btrfs_run_delayed_refs(trans, root, 0);
1676 	if (ret) {
1677 		btrfs_end_transaction(trans, root);
1678 		return ret;
1679 	}
1680 
1681 	btrfs_trans_release_metadata(trans, root);
1682 	trans->block_rsv = NULL;
1683 	if (trans->qgroup_reserved) {
1684 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1685 		trans->qgroup_reserved = 0;
1686 	}
1687 
1688 	cur_trans = trans->transaction;
1689 
1690 	/*
1691 	 * set the flushing flag so procs in this transaction have to
1692 	 * start sending their work down.
1693 	 */
1694 	cur_trans->delayed_refs.flushing = 1;
1695 	smp_wmb();
1696 
1697 	if (!list_empty(&trans->new_bgs))
1698 		btrfs_create_pending_block_groups(trans, root);
1699 
1700 	ret = btrfs_run_delayed_refs(trans, root, 0);
1701 	if (ret) {
1702 		btrfs_end_transaction(trans, root);
1703 		return ret;
1704 	}
1705 
1706 	spin_lock(&root->fs_info->trans_lock);
1707 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1708 		spin_unlock(&root->fs_info->trans_lock);
1709 		atomic_inc(&cur_trans->use_count);
1710 		ret = btrfs_end_transaction(trans, root);
1711 
1712 		wait_for_commit(root, cur_trans);
1713 
1714 		btrfs_put_transaction(cur_trans);
1715 
1716 		return ret;
1717 	}
1718 
1719 	cur_trans->state = TRANS_STATE_COMMIT_START;
1720 	wake_up(&root->fs_info->transaction_blocked_wait);
1721 
1722 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1723 		prev_trans = list_entry(cur_trans->list.prev,
1724 					struct btrfs_transaction, list);
1725 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1726 			atomic_inc(&prev_trans->use_count);
1727 			spin_unlock(&root->fs_info->trans_lock);
1728 
1729 			wait_for_commit(root, prev_trans);
1730 
1731 			btrfs_put_transaction(prev_trans);
1732 		} else {
1733 			spin_unlock(&root->fs_info->trans_lock);
1734 		}
1735 	} else {
1736 		spin_unlock(&root->fs_info->trans_lock);
1737 	}
1738 
1739 	extwriter_counter_dec(cur_trans, trans->type);
1740 
1741 	ret = btrfs_start_delalloc_flush(root->fs_info);
1742 	if (ret)
1743 		goto cleanup_transaction;
1744 
1745 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1746 	if (ret)
1747 		goto cleanup_transaction;
1748 
1749 	wait_event(cur_trans->writer_wait,
1750 		   extwriter_counter_read(cur_trans) == 0);
1751 
1752 	/* some pending stuffs might be added after the previous flush. */
1753 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1754 	if (ret)
1755 		goto cleanup_transaction;
1756 
1757 	btrfs_wait_delalloc_flush(root->fs_info);
1758 
1759 	btrfs_scrub_pause(root);
1760 	/*
1761 	 * Ok now we need to make sure to block out any other joins while we
1762 	 * commit the transaction.  We could have started a join before setting
1763 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1764 	 */
1765 	spin_lock(&root->fs_info->trans_lock);
1766 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1767 	spin_unlock(&root->fs_info->trans_lock);
1768 	wait_event(cur_trans->writer_wait,
1769 		   atomic_read(&cur_trans->num_writers) == 1);
1770 
1771 	/* ->aborted might be set after the previous check, so check it */
1772 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1773 		ret = cur_trans->aborted;
1774 		goto scrub_continue;
1775 	}
1776 	/*
1777 	 * the reloc mutex makes sure that we stop
1778 	 * the balancing code from coming in and moving
1779 	 * extents around in the middle of the commit
1780 	 */
1781 	mutex_lock(&root->fs_info->reloc_mutex);
1782 
1783 	/*
1784 	 * We needn't worry about the delayed items because we will
1785 	 * deal with them in create_pending_snapshot(), which is the
1786 	 * core function of the snapshot creation.
1787 	 */
1788 	ret = create_pending_snapshots(trans, root->fs_info);
1789 	if (ret) {
1790 		mutex_unlock(&root->fs_info->reloc_mutex);
1791 		goto scrub_continue;
1792 	}
1793 
1794 	/*
1795 	 * We insert the dir indexes of the snapshots and update the inode
1796 	 * of the snapshots' parents after the snapshot creation, so there
1797 	 * are some delayed items which are not dealt with. Now deal with
1798 	 * them.
1799 	 *
1800 	 * We needn't worry that this operation will corrupt the snapshots,
1801 	 * because all the tree which are snapshoted will be forced to COW
1802 	 * the nodes and leaves.
1803 	 */
1804 	ret = btrfs_run_delayed_items(trans, root);
1805 	if (ret) {
1806 		mutex_unlock(&root->fs_info->reloc_mutex);
1807 		goto scrub_continue;
1808 	}
1809 
1810 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1811 	if (ret) {
1812 		mutex_unlock(&root->fs_info->reloc_mutex);
1813 		goto scrub_continue;
1814 	}
1815 
1816 	/*
1817 	 * make sure none of the code above managed to slip in a
1818 	 * delayed item
1819 	 */
1820 	btrfs_assert_delayed_root_empty(root);
1821 
1822 	WARN_ON(cur_trans != trans->transaction);
1823 
1824 	/* btrfs_commit_tree_roots is responsible for getting the
1825 	 * various roots consistent with each other.  Every pointer
1826 	 * in the tree of tree roots has to point to the most up to date
1827 	 * root for every subvolume and other tree.  So, we have to keep
1828 	 * the tree logging code from jumping in and changing any
1829 	 * of the trees.
1830 	 *
1831 	 * At this point in the commit, there can't be any tree-log
1832 	 * writers, but a little lower down we drop the trans mutex
1833 	 * and let new people in.  By holding the tree_log_mutex
1834 	 * from now until after the super is written, we avoid races
1835 	 * with the tree-log code.
1836 	 */
1837 	mutex_lock(&root->fs_info->tree_log_mutex);
1838 
1839 	ret = commit_fs_roots(trans, root);
1840 	if (ret) {
1841 		mutex_unlock(&root->fs_info->tree_log_mutex);
1842 		mutex_unlock(&root->fs_info->reloc_mutex);
1843 		goto scrub_continue;
1844 	}
1845 
1846 	/*
1847 	 * Since the transaction is done, we should set the inode map cache flag
1848 	 * before any other comming transaction.
1849 	 */
1850 	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1851 		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1852 	else
1853 		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1854 
1855 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1856 	 * safe to free the root of tree log roots
1857 	 */
1858 	btrfs_free_log_root_tree(trans, root->fs_info);
1859 
1860 	ret = commit_cowonly_roots(trans, root);
1861 	if (ret) {
1862 		mutex_unlock(&root->fs_info->tree_log_mutex);
1863 		mutex_unlock(&root->fs_info->reloc_mutex);
1864 		goto scrub_continue;
1865 	}
1866 
1867 	/*
1868 	 * The tasks which save the space cache and inode cache may also
1869 	 * update ->aborted, check it.
1870 	 */
1871 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1872 		ret = cur_trans->aborted;
1873 		mutex_unlock(&root->fs_info->tree_log_mutex);
1874 		mutex_unlock(&root->fs_info->reloc_mutex);
1875 		goto scrub_continue;
1876 	}
1877 
1878 	btrfs_prepare_extent_commit(trans, root);
1879 
1880 	cur_trans = root->fs_info->running_transaction;
1881 
1882 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1883 			    root->fs_info->tree_root->node);
1884 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1885 		      &cur_trans->switch_commits);
1886 
1887 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1888 			    root->fs_info->chunk_root->node);
1889 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1890 		      &cur_trans->switch_commits);
1891 
1892 	switch_commit_roots(cur_trans, root->fs_info);
1893 
1894 	assert_qgroups_uptodate(trans);
1895 	update_super_roots(root);
1896 
1897 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1898 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1899 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1900 	       sizeof(*root->fs_info->super_copy));
1901 
1902 	spin_lock(&root->fs_info->trans_lock);
1903 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1904 	root->fs_info->running_transaction = NULL;
1905 	spin_unlock(&root->fs_info->trans_lock);
1906 	mutex_unlock(&root->fs_info->reloc_mutex);
1907 
1908 	wake_up(&root->fs_info->transaction_wait);
1909 
1910 	ret = btrfs_write_and_wait_transaction(trans, root);
1911 	if (ret) {
1912 		btrfs_error(root->fs_info, ret,
1913 			    "Error while writing out transaction");
1914 		mutex_unlock(&root->fs_info->tree_log_mutex);
1915 		goto scrub_continue;
1916 	}
1917 
1918 	ret = write_ctree_super(trans, root, 0);
1919 	if (ret) {
1920 		mutex_unlock(&root->fs_info->tree_log_mutex);
1921 		goto scrub_continue;
1922 	}
1923 
1924 	/*
1925 	 * the super is written, we can safely allow the tree-loggers
1926 	 * to go about their business
1927 	 */
1928 	mutex_unlock(&root->fs_info->tree_log_mutex);
1929 
1930 	btrfs_finish_extent_commit(trans, root);
1931 
1932 	root->fs_info->last_trans_committed = cur_trans->transid;
1933 	/*
1934 	 * We needn't acquire the lock here because there is no other task
1935 	 * which can change it.
1936 	 */
1937 	cur_trans->state = TRANS_STATE_COMPLETED;
1938 	wake_up(&cur_trans->commit_wait);
1939 
1940 	spin_lock(&root->fs_info->trans_lock);
1941 	list_del_init(&cur_trans->list);
1942 	spin_unlock(&root->fs_info->trans_lock);
1943 
1944 	btrfs_put_transaction(cur_trans);
1945 	btrfs_put_transaction(cur_trans);
1946 
1947 	if (trans->type & __TRANS_FREEZABLE)
1948 		sb_end_intwrite(root->fs_info->sb);
1949 
1950 	trace_btrfs_transaction_commit(root);
1951 
1952 	btrfs_scrub_continue(root);
1953 
1954 	if (current->journal_info == trans)
1955 		current->journal_info = NULL;
1956 
1957 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1958 
1959 	if (current != root->fs_info->transaction_kthread)
1960 		btrfs_run_delayed_iputs(root);
1961 
1962 	return ret;
1963 
1964 scrub_continue:
1965 	btrfs_scrub_continue(root);
1966 cleanup_transaction:
1967 	btrfs_trans_release_metadata(trans, root);
1968 	trans->block_rsv = NULL;
1969 	if (trans->qgroup_reserved) {
1970 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1971 		trans->qgroup_reserved = 0;
1972 	}
1973 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1974 	if (current->journal_info == trans)
1975 		current->journal_info = NULL;
1976 	cleanup_transaction(trans, root, ret);
1977 
1978 	return ret;
1979 }
1980 
1981 /*
1982  * return < 0 if error
1983  * 0 if there are no more dead_roots at the time of call
1984  * 1 there are more to be processed, call me again
1985  *
1986  * The return value indicates there are certainly more snapshots to delete, but
1987  * if there comes a new one during processing, it may return 0. We don't mind,
1988  * because btrfs_commit_super will poke cleaner thread and it will process it a
1989  * few seconds later.
1990  */
1991 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1992 {
1993 	int ret;
1994 	struct btrfs_fs_info *fs_info = root->fs_info;
1995 
1996 	spin_lock(&fs_info->trans_lock);
1997 	if (list_empty(&fs_info->dead_roots)) {
1998 		spin_unlock(&fs_info->trans_lock);
1999 		return 0;
2000 	}
2001 	root = list_first_entry(&fs_info->dead_roots,
2002 			struct btrfs_root, root_list);
2003 	list_del_init(&root->root_list);
2004 	spin_unlock(&fs_info->trans_lock);
2005 
2006 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2007 
2008 	btrfs_kill_all_delayed_nodes(root);
2009 
2010 	if (btrfs_header_backref_rev(root->node) <
2011 			BTRFS_MIXED_BACKREF_REV)
2012 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2013 	else
2014 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2015 	/*
2016 	 * If we encounter a transaction abort during snapshot cleaning, we
2017 	 * don't want to crash here
2018 	 */
2019 	return (ret < 0) ? 0 : 1;
2020 }
2021