xref: /linux/fs/btrfs/super.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103 	struct super_block *sb = fs_info->sb;
104 
105 	if (sb->s_flags & MS_RDONLY)
106 		return;
107 
108 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109 		sb->s_flags |= MS_RDONLY;
110 		btrfs_info(fs_info, "forced readonly");
111 		/*
112 		 * Note that a running device replace operation is not
113 		 * canceled here although there is no way to update
114 		 * the progress. It would add the risk of a deadlock,
115 		 * therefore the canceling is omitted. The only penalty
116 		 * is that some I/O remains active until the procedure
117 		 * completes. The next time when the filesystem is
118 		 * mounted writeable again, the device replace
119 		 * operation continues.
120 		 */
121 	}
122 }
123 
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134 	const char *errstr;
135 #endif
136 
137 	/*
138 	 * Special case: if the error is EROFS, and we're already
139 	 * under MS_RDONLY, then it is safe here.
140 	 */
141 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142   		return;
143 
144 #ifdef CONFIG_PRINTK
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 			sb->s_id, function, line, errno, errstr, &vaf);
156 		va_end(args);
157 	} else {
158 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159 			sb->s_id, function, line, errno, errstr);
160 	}
161 #endif
162 
163 	/*
164 	 * Today we only save the error info to memory.  Long term we'll
165 	 * also send it down to the disk
166 	 */
167 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176 	"emergency",
177 	"alert",
178 	"critical",
179 	"error",
180 	"warning",
181 	"notice",
182 	"info",
183 	"debug",
184 };
185 
186 
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201 
202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204 	struct super_block *sb = fs_info->sb;
205 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1];
206 	struct va_format vaf;
207 	va_list args;
208 	const char *type = NULL;
209 	int kern_level;
210 	struct ratelimit_state *ratelimit;
211 
212 	va_start(args, fmt);
213 
214 	while ((kern_level = printk_get_level(fmt)) != 0) {
215 		size_t size = printk_skip_level(fmt) - fmt;
216 
217 		if (kern_level >= '0' && kern_level <= '7') {
218 			memcpy(lvl, fmt,  size);
219 			lvl[size] = '\0';
220 			type = logtypes[kern_level - '0'];
221 			ratelimit = &printk_limits[kern_level - '0'];
222 		}
223 		fmt += size;
224 	}
225 
226 	if (!type) {
227 		*lvl = '\0';
228 		type = logtypes[4];
229 		ratelimit = &printk_limits[4];
230 	}
231 
232 	vaf.fmt = fmt;
233 	vaf.va = &args;
234 
235 	if (__ratelimit(ratelimit))
236 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
237 
238 	va_end(args);
239 }
240 #endif
241 
242 /*
243  * We only mark the transaction aborted and then set the file system read-only.
244  * This will prevent new transactions from starting or trying to join this
245  * one.
246  *
247  * This means that error recovery at the call site is limited to freeing
248  * any local memory allocations and passing the error code up without
249  * further cleanup. The transaction should complete as it normally would
250  * in the call path but will return -EIO.
251  *
252  * We'll complete the cleanup in btrfs_end_transaction and
253  * btrfs_commit_transaction.
254  */
255 __cold
256 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
257 			       const char *function,
258 			       unsigned int line, int errno)
259 {
260 	struct btrfs_fs_info *fs_info = trans->fs_info;
261 
262 	trans->aborted = errno;
263 	/* Nothing used. The other threads that have joined this
264 	 * transaction may be able to continue. */
265 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
266 		const char *errstr;
267 
268 		errstr = btrfs_decode_error(errno);
269 		btrfs_warn(fs_info,
270 		           "%s:%d: Aborting unused transaction(%s).",
271 		           function, line, errstr);
272 		return;
273 	}
274 	ACCESS_ONCE(trans->transaction->aborted) = errno;
275 	/* Wake up anybody who may be waiting on this transaction */
276 	wake_up(&fs_info->transaction_wait);
277 	wake_up(&fs_info->transaction_blocked_wait);
278 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
279 }
280 /*
281  * __btrfs_panic decodes unexpected, fatal errors from the caller,
282  * issues an alert, and either panics or BUGs, depending on mount options.
283  */
284 __cold
285 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
286 		   unsigned int line, int errno, const char *fmt, ...)
287 {
288 	char *s_id = "<unknown>";
289 	const char *errstr;
290 	struct va_format vaf = { .fmt = fmt };
291 	va_list args;
292 
293 	if (fs_info)
294 		s_id = fs_info->sb->s_id;
295 
296 	va_start(args, fmt);
297 	vaf.va = &args;
298 
299 	errstr = btrfs_decode_error(errno);
300 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
301 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
302 			s_id, function, line, &vaf, errno, errstr);
303 
304 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
305 		   function, line, &vaf, errno, errstr);
306 	va_end(args);
307 	/* Caller calls BUG() */
308 }
309 
310 static void btrfs_put_super(struct super_block *sb)
311 {
312 	close_ctree(btrfs_sb(sb)->tree_root);
313 }
314 
315 enum {
316 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
317 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
318 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
319 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
320 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
321 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
322 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
323 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
324 	Opt_skip_balance, Opt_check_integrity,
325 	Opt_check_integrity_including_extent_data,
326 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
327 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
328 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
329 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
330 	Opt_nologreplay, Opt_norecovery,
331 #ifdef CONFIG_BTRFS_DEBUG
332 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
333 #endif
334 	Opt_err,
335 };
336 
337 static const match_table_t tokens = {
338 	{Opt_degraded, "degraded"},
339 	{Opt_subvol, "subvol=%s"},
340 	{Opt_subvolid, "subvolid=%s"},
341 	{Opt_device, "device=%s"},
342 	{Opt_nodatasum, "nodatasum"},
343 	{Opt_datasum, "datasum"},
344 	{Opt_nodatacow, "nodatacow"},
345 	{Opt_datacow, "datacow"},
346 	{Opt_nobarrier, "nobarrier"},
347 	{Opt_barrier, "barrier"},
348 	{Opt_max_inline, "max_inline=%s"},
349 	{Opt_alloc_start, "alloc_start=%s"},
350 	{Opt_thread_pool, "thread_pool=%d"},
351 	{Opt_compress, "compress"},
352 	{Opt_compress_type, "compress=%s"},
353 	{Opt_compress_force, "compress-force"},
354 	{Opt_compress_force_type, "compress-force=%s"},
355 	{Opt_ssd, "ssd"},
356 	{Opt_ssd_spread, "ssd_spread"},
357 	{Opt_nossd, "nossd"},
358 	{Opt_acl, "acl"},
359 	{Opt_noacl, "noacl"},
360 	{Opt_notreelog, "notreelog"},
361 	{Opt_treelog, "treelog"},
362 	{Opt_nologreplay, "nologreplay"},
363 	{Opt_norecovery, "norecovery"},
364 	{Opt_flushoncommit, "flushoncommit"},
365 	{Opt_noflushoncommit, "noflushoncommit"},
366 	{Opt_ratio, "metadata_ratio=%d"},
367 	{Opt_discard, "discard"},
368 	{Opt_nodiscard, "nodiscard"},
369 	{Opt_space_cache, "space_cache"},
370 	{Opt_space_cache_version, "space_cache=%s"},
371 	{Opt_clear_cache, "clear_cache"},
372 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
373 	{Opt_enospc_debug, "enospc_debug"},
374 	{Opt_noenospc_debug, "noenospc_debug"},
375 	{Opt_subvolrootid, "subvolrootid=%d"},
376 	{Opt_defrag, "autodefrag"},
377 	{Opt_nodefrag, "noautodefrag"},
378 	{Opt_inode_cache, "inode_cache"},
379 	{Opt_noinode_cache, "noinode_cache"},
380 	{Opt_no_space_cache, "nospace_cache"},
381 	{Opt_recovery, "recovery"}, /* deprecated */
382 	{Opt_usebackuproot, "usebackuproot"},
383 	{Opt_skip_balance, "skip_balance"},
384 	{Opt_check_integrity, "check_int"},
385 	{Opt_check_integrity_including_extent_data, "check_int_data"},
386 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
387 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
388 	{Opt_fatal_errors, "fatal_errors=%s"},
389 	{Opt_commit_interval, "commit=%d"},
390 #ifdef CONFIG_BTRFS_DEBUG
391 	{Opt_fragment_data, "fragment=data"},
392 	{Opt_fragment_metadata, "fragment=metadata"},
393 	{Opt_fragment_all, "fragment=all"},
394 #endif
395 	{Opt_err, NULL},
396 };
397 
398 /*
399  * Regular mount options parser.  Everything that is needed only when
400  * reading in a new superblock is parsed here.
401  * XXX JDM: This needs to be cleaned up for remount.
402  */
403 int btrfs_parse_options(struct btrfs_root *root, char *options,
404 			unsigned long new_flags)
405 {
406 	struct btrfs_fs_info *info = root->fs_info;
407 	substring_t args[MAX_OPT_ARGS];
408 	char *p, *num, *orig = NULL;
409 	u64 cache_gen;
410 	int intarg;
411 	int ret = 0;
412 	char *compress_type;
413 	bool compress_force = false;
414 	enum btrfs_compression_type saved_compress_type;
415 	bool saved_compress_force;
416 	int no_compress = 0;
417 
418 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
419 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE))
420 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
421 	else if (cache_gen)
422 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
423 
424 	/*
425 	 * Even the options are empty, we still need to do extra check
426 	 * against new flags
427 	 */
428 	if (!options)
429 		goto check;
430 
431 	/*
432 	 * strsep changes the string, duplicate it because parse_options
433 	 * gets called twice
434 	 */
435 	options = kstrdup(options, GFP_NOFS);
436 	if (!options)
437 		return -ENOMEM;
438 
439 	orig = options;
440 
441 	while ((p = strsep(&options, ",")) != NULL) {
442 		int token;
443 		if (!*p)
444 			continue;
445 
446 		token = match_token(p, tokens, args);
447 		switch (token) {
448 		case Opt_degraded:
449 			btrfs_info(root->fs_info, "allowing degraded mounts");
450 			btrfs_set_opt(info->mount_opt, DEGRADED);
451 			break;
452 		case Opt_subvol:
453 		case Opt_subvolid:
454 		case Opt_subvolrootid:
455 		case Opt_device:
456 			/*
457 			 * These are parsed by btrfs_parse_early_options
458 			 * and can be happily ignored here.
459 			 */
460 			break;
461 		case Opt_nodatasum:
462 			btrfs_set_and_info(info, NODATASUM,
463 					   "setting nodatasum");
464 			break;
465 		case Opt_datasum:
466 			if (btrfs_test_opt(info, NODATASUM)) {
467 				if (btrfs_test_opt(info, NODATACOW))
468 					btrfs_info(root->fs_info,
469 						   "setting datasum, datacow enabled");
470 				else
471 					btrfs_info(root->fs_info,
472 						   "setting datasum");
473 			}
474 			btrfs_clear_opt(info->mount_opt, NODATACOW);
475 			btrfs_clear_opt(info->mount_opt, NODATASUM);
476 			break;
477 		case Opt_nodatacow:
478 			if (!btrfs_test_opt(info, NODATACOW)) {
479 				if (!btrfs_test_opt(info, COMPRESS) ||
480 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
481 					btrfs_info(root->fs_info,
482 						   "setting nodatacow, compression disabled");
483 				} else {
484 					btrfs_info(root->fs_info,
485 						   "setting nodatacow");
486 				}
487 			}
488 			btrfs_clear_opt(info->mount_opt, COMPRESS);
489 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
490 			btrfs_set_opt(info->mount_opt, NODATACOW);
491 			btrfs_set_opt(info->mount_opt, NODATASUM);
492 			break;
493 		case Opt_datacow:
494 			btrfs_clear_and_info(info, NODATACOW,
495 					     "setting datacow");
496 			break;
497 		case Opt_compress_force:
498 		case Opt_compress_force_type:
499 			compress_force = true;
500 			/* Fallthrough */
501 		case Opt_compress:
502 		case Opt_compress_type:
503 			saved_compress_type = btrfs_test_opt(info,
504 							     COMPRESS) ?
505 				info->compress_type : BTRFS_COMPRESS_NONE;
506 			saved_compress_force =
507 				btrfs_test_opt(info, FORCE_COMPRESS);
508 			if (token == Opt_compress ||
509 			    token == Opt_compress_force ||
510 			    strcmp(args[0].from, "zlib") == 0) {
511 				compress_type = "zlib";
512 				info->compress_type = BTRFS_COMPRESS_ZLIB;
513 				btrfs_set_opt(info->mount_opt, COMPRESS);
514 				btrfs_clear_opt(info->mount_opt, NODATACOW);
515 				btrfs_clear_opt(info->mount_opt, NODATASUM);
516 				no_compress = 0;
517 			} else if (strcmp(args[0].from, "lzo") == 0) {
518 				compress_type = "lzo";
519 				info->compress_type = BTRFS_COMPRESS_LZO;
520 				btrfs_set_opt(info->mount_opt, COMPRESS);
521 				btrfs_clear_opt(info->mount_opt, NODATACOW);
522 				btrfs_clear_opt(info->mount_opt, NODATASUM);
523 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
524 				no_compress = 0;
525 			} else if (strncmp(args[0].from, "no", 2) == 0) {
526 				compress_type = "no";
527 				btrfs_clear_opt(info->mount_opt, COMPRESS);
528 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
529 				compress_force = false;
530 				no_compress++;
531 			} else {
532 				ret = -EINVAL;
533 				goto out;
534 			}
535 
536 			if (compress_force) {
537 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
538 			} else {
539 				/*
540 				 * If we remount from compress-force=xxx to
541 				 * compress=xxx, we need clear FORCE_COMPRESS
542 				 * flag, otherwise, there is no way for users
543 				 * to disable forcible compression separately.
544 				 */
545 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
546 			}
547 			if ((btrfs_test_opt(info, COMPRESS) &&
548 			     (info->compress_type != saved_compress_type ||
549 			      compress_force != saved_compress_force)) ||
550 			    (!btrfs_test_opt(info, COMPRESS) &&
551 			     no_compress == 1)) {
552 				btrfs_info(root->fs_info,
553 					   "%s %s compression",
554 					   (compress_force) ? "force" : "use",
555 					   compress_type);
556 			}
557 			compress_force = false;
558 			break;
559 		case Opt_ssd:
560 			btrfs_set_and_info(info, SSD,
561 					   "use ssd allocation scheme");
562 			break;
563 		case Opt_ssd_spread:
564 			btrfs_set_and_info(info, SSD_SPREAD,
565 					   "use spread ssd allocation scheme");
566 			btrfs_set_opt(info->mount_opt, SSD);
567 			break;
568 		case Opt_nossd:
569 			btrfs_set_and_info(info, NOSSD,
570 					     "not using ssd allocation scheme");
571 			btrfs_clear_opt(info->mount_opt, SSD);
572 			break;
573 		case Opt_barrier:
574 			btrfs_clear_and_info(info, NOBARRIER,
575 					     "turning on barriers");
576 			break;
577 		case Opt_nobarrier:
578 			btrfs_set_and_info(info, NOBARRIER,
579 					   "turning off barriers");
580 			break;
581 		case Opt_thread_pool:
582 			ret = match_int(&args[0], &intarg);
583 			if (ret) {
584 				goto out;
585 			} else if (intarg > 0) {
586 				info->thread_pool_size = intarg;
587 			} else {
588 				ret = -EINVAL;
589 				goto out;
590 			}
591 			break;
592 		case Opt_max_inline:
593 			num = match_strdup(&args[0]);
594 			if (num) {
595 				info->max_inline = memparse(num, NULL);
596 				kfree(num);
597 
598 				if (info->max_inline) {
599 					info->max_inline = min_t(u64,
600 						info->max_inline,
601 						root->sectorsize);
602 				}
603 				btrfs_info(root->fs_info, "max_inline at %llu",
604 					info->max_inline);
605 			} else {
606 				ret = -ENOMEM;
607 				goto out;
608 			}
609 			break;
610 		case Opt_alloc_start:
611 			num = match_strdup(&args[0]);
612 			if (num) {
613 				mutex_lock(&info->chunk_mutex);
614 				info->alloc_start = memparse(num, NULL);
615 				mutex_unlock(&info->chunk_mutex);
616 				kfree(num);
617 				btrfs_info(root->fs_info,
618 					   "allocations start at %llu",
619 					   info->alloc_start);
620 			} else {
621 				ret = -ENOMEM;
622 				goto out;
623 			}
624 			break;
625 		case Opt_acl:
626 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
627 			root->fs_info->sb->s_flags |= MS_POSIXACL;
628 			break;
629 #else
630 			btrfs_err(root->fs_info,
631 				"support for ACL not compiled in!");
632 			ret = -EINVAL;
633 			goto out;
634 #endif
635 		case Opt_noacl:
636 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
637 			break;
638 		case Opt_notreelog:
639 			btrfs_set_and_info(info, NOTREELOG,
640 					   "disabling tree log");
641 			break;
642 		case Opt_treelog:
643 			btrfs_clear_and_info(info, NOTREELOG,
644 					     "enabling tree log");
645 			break;
646 		case Opt_norecovery:
647 		case Opt_nologreplay:
648 			btrfs_set_and_info(info, NOLOGREPLAY,
649 					   "disabling log replay at mount time");
650 			break;
651 		case Opt_flushoncommit:
652 			btrfs_set_and_info(info, FLUSHONCOMMIT,
653 					   "turning on flush-on-commit");
654 			break;
655 		case Opt_noflushoncommit:
656 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
657 					     "turning off flush-on-commit");
658 			break;
659 		case Opt_ratio:
660 			ret = match_int(&args[0], &intarg);
661 			if (ret) {
662 				goto out;
663 			} else if (intarg >= 0) {
664 				info->metadata_ratio = intarg;
665 				btrfs_info(root->fs_info, "metadata ratio %d",
666 				       info->metadata_ratio);
667 			} else {
668 				ret = -EINVAL;
669 				goto out;
670 			}
671 			break;
672 		case Opt_discard:
673 			btrfs_set_and_info(info, DISCARD,
674 					   "turning on discard");
675 			break;
676 		case Opt_nodiscard:
677 			btrfs_clear_and_info(info, DISCARD,
678 					     "turning off discard");
679 			break;
680 		case Opt_space_cache:
681 		case Opt_space_cache_version:
682 			if (token == Opt_space_cache ||
683 			    strcmp(args[0].from, "v1") == 0) {
684 				btrfs_clear_opt(root->fs_info->mount_opt,
685 						FREE_SPACE_TREE);
686 				btrfs_set_and_info(info, SPACE_CACHE,
687 						   "enabling disk space caching");
688 			} else if (strcmp(args[0].from, "v2") == 0) {
689 				btrfs_clear_opt(root->fs_info->mount_opt,
690 						SPACE_CACHE);
691 				btrfs_set_and_info(info,
692 						   FREE_SPACE_TREE,
693 						   "enabling free space tree");
694 			} else {
695 				ret = -EINVAL;
696 				goto out;
697 			}
698 			break;
699 		case Opt_rescan_uuid_tree:
700 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
701 			break;
702 		case Opt_no_space_cache:
703 			if (btrfs_test_opt(info, SPACE_CACHE)) {
704 				btrfs_clear_and_info(info,
705 						     SPACE_CACHE,
706 						     "disabling disk space caching");
707 			}
708 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
709 				btrfs_clear_and_info(info,
710 						     FREE_SPACE_TREE,
711 						     "disabling free space tree");
712 			}
713 			break;
714 		case Opt_inode_cache:
715 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
716 					   "enabling inode map caching");
717 			break;
718 		case Opt_noinode_cache:
719 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
720 					     "disabling inode map caching");
721 			break;
722 		case Opt_clear_cache:
723 			btrfs_set_and_info(info, CLEAR_CACHE,
724 					   "force clearing of disk cache");
725 			break;
726 		case Opt_user_subvol_rm_allowed:
727 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
728 			break;
729 		case Opt_enospc_debug:
730 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
731 			break;
732 		case Opt_noenospc_debug:
733 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
734 			break;
735 		case Opt_defrag:
736 			btrfs_set_and_info(info, AUTO_DEFRAG,
737 					   "enabling auto defrag");
738 			break;
739 		case Opt_nodefrag:
740 			btrfs_clear_and_info(info, AUTO_DEFRAG,
741 					     "disabling auto defrag");
742 			break;
743 		case Opt_recovery:
744 			btrfs_warn(root->fs_info,
745 				   "'recovery' is deprecated, use 'usebackuproot' instead");
746 		case Opt_usebackuproot:
747 			btrfs_info(root->fs_info,
748 				   "trying to use backup root at mount time");
749 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
750 			break;
751 		case Opt_skip_balance:
752 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
753 			break;
754 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
755 		case Opt_check_integrity_including_extent_data:
756 			btrfs_info(root->fs_info,
757 				   "enabling check integrity including extent data");
758 			btrfs_set_opt(info->mount_opt,
759 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
760 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
761 			break;
762 		case Opt_check_integrity:
763 			btrfs_info(root->fs_info, "enabling check integrity");
764 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
765 			break;
766 		case Opt_check_integrity_print_mask:
767 			ret = match_int(&args[0], &intarg);
768 			if (ret) {
769 				goto out;
770 			} else if (intarg >= 0) {
771 				info->check_integrity_print_mask = intarg;
772 				btrfs_info(root->fs_info,
773 					   "check_integrity_print_mask 0x%x",
774 					   info->check_integrity_print_mask);
775 			} else {
776 				ret = -EINVAL;
777 				goto out;
778 			}
779 			break;
780 #else
781 		case Opt_check_integrity_including_extent_data:
782 		case Opt_check_integrity:
783 		case Opt_check_integrity_print_mask:
784 			btrfs_err(root->fs_info,
785 				"support for check_integrity* not compiled in!");
786 			ret = -EINVAL;
787 			goto out;
788 #endif
789 		case Opt_fatal_errors:
790 			if (strcmp(args[0].from, "panic") == 0)
791 				btrfs_set_opt(info->mount_opt,
792 					      PANIC_ON_FATAL_ERROR);
793 			else if (strcmp(args[0].from, "bug") == 0)
794 				btrfs_clear_opt(info->mount_opt,
795 					      PANIC_ON_FATAL_ERROR);
796 			else {
797 				ret = -EINVAL;
798 				goto out;
799 			}
800 			break;
801 		case Opt_commit_interval:
802 			intarg = 0;
803 			ret = match_int(&args[0], &intarg);
804 			if (ret < 0) {
805 				btrfs_err(root->fs_info,
806 					  "invalid commit interval");
807 				ret = -EINVAL;
808 				goto out;
809 			}
810 			if (intarg > 0) {
811 				if (intarg > 300) {
812 					btrfs_warn(root->fs_info,
813 						"excessive commit interval %d",
814 						intarg);
815 				}
816 				info->commit_interval = intarg;
817 			} else {
818 				btrfs_info(root->fs_info,
819 					   "using default commit interval %ds",
820 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
821 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
822 			}
823 			break;
824 #ifdef CONFIG_BTRFS_DEBUG
825 		case Opt_fragment_all:
826 			btrfs_info(root->fs_info, "fragmenting all space");
827 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
828 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
829 			break;
830 		case Opt_fragment_metadata:
831 			btrfs_info(root->fs_info, "fragmenting metadata");
832 			btrfs_set_opt(info->mount_opt,
833 				      FRAGMENT_METADATA);
834 			break;
835 		case Opt_fragment_data:
836 			btrfs_info(root->fs_info, "fragmenting data");
837 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
838 			break;
839 #endif
840 		case Opt_err:
841 			btrfs_info(root->fs_info,
842 				   "unrecognized mount option '%s'", p);
843 			ret = -EINVAL;
844 			goto out;
845 		default:
846 			break;
847 		}
848 	}
849 check:
850 	/*
851 	 * Extra check for current option against current flag
852 	 */
853 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
854 		btrfs_err(root->fs_info,
855 			  "nologreplay must be used with ro mount option");
856 		ret = -EINVAL;
857 	}
858 out:
859 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) &&
860 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
861 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
862 		btrfs_err(root->fs_info, "cannot disable free space tree");
863 		ret = -EINVAL;
864 
865 	}
866 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
867 		btrfs_info(root->fs_info, "disk space caching is enabled");
868 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
869 		btrfs_info(root->fs_info, "using free space tree");
870 	kfree(orig);
871 	return ret;
872 }
873 
874 /*
875  * Parse mount options that are required early in the mount process.
876  *
877  * All other options will be parsed on much later in the mount process and
878  * only when we need to allocate a new super block.
879  */
880 static int btrfs_parse_early_options(const char *options, fmode_t flags,
881 		void *holder, char **subvol_name, u64 *subvol_objectid,
882 		struct btrfs_fs_devices **fs_devices)
883 {
884 	substring_t args[MAX_OPT_ARGS];
885 	char *device_name, *opts, *orig, *p;
886 	char *num = NULL;
887 	int error = 0;
888 
889 	if (!options)
890 		return 0;
891 
892 	/*
893 	 * strsep changes the string, duplicate it because parse_options
894 	 * gets called twice
895 	 */
896 	opts = kstrdup(options, GFP_KERNEL);
897 	if (!opts)
898 		return -ENOMEM;
899 	orig = opts;
900 
901 	while ((p = strsep(&opts, ",")) != NULL) {
902 		int token;
903 		if (!*p)
904 			continue;
905 
906 		token = match_token(p, tokens, args);
907 		switch (token) {
908 		case Opt_subvol:
909 			kfree(*subvol_name);
910 			*subvol_name = match_strdup(&args[0]);
911 			if (!*subvol_name) {
912 				error = -ENOMEM;
913 				goto out;
914 			}
915 			break;
916 		case Opt_subvolid:
917 			num = match_strdup(&args[0]);
918 			if (num) {
919 				*subvol_objectid = memparse(num, NULL);
920 				kfree(num);
921 				/* we want the original fs_tree */
922 				if (!*subvol_objectid)
923 					*subvol_objectid =
924 						BTRFS_FS_TREE_OBJECTID;
925 			} else {
926 				error = -EINVAL;
927 				goto out;
928 			}
929 			break;
930 		case Opt_subvolrootid:
931 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
932 			break;
933 		case Opt_device:
934 			device_name = match_strdup(&args[0]);
935 			if (!device_name) {
936 				error = -ENOMEM;
937 				goto out;
938 			}
939 			error = btrfs_scan_one_device(device_name,
940 					flags, holder, fs_devices);
941 			kfree(device_name);
942 			if (error)
943 				goto out;
944 			break;
945 		default:
946 			break;
947 		}
948 	}
949 
950 out:
951 	kfree(orig);
952 	return error;
953 }
954 
955 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
956 					   u64 subvol_objectid)
957 {
958 	struct btrfs_root *root = fs_info->tree_root;
959 	struct btrfs_root *fs_root;
960 	struct btrfs_root_ref *root_ref;
961 	struct btrfs_inode_ref *inode_ref;
962 	struct btrfs_key key;
963 	struct btrfs_path *path = NULL;
964 	char *name = NULL, *ptr;
965 	u64 dirid;
966 	int len;
967 	int ret;
968 
969 	path = btrfs_alloc_path();
970 	if (!path) {
971 		ret = -ENOMEM;
972 		goto err;
973 	}
974 	path->leave_spinning = 1;
975 
976 	name = kmalloc(PATH_MAX, GFP_NOFS);
977 	if (!name) {
978 		ret = -ENOMEM;
979 		goto err;
980 	}
981 	ptr = name + PATH_MAX - 1;
982 	ptr[0] = '\0';
983 
984 	/*
985 	 * Walk up the subvolume trees in the tree of tree roots by root
986 	 * backrefs until we hit the top-level subvolume.
987 	 */
988 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
989 		key.objectid = subvol_objectid;
990 		key.type = BTRFS_ROOT_BACKREF_KEY;
991 		key.offset = (u64)-1;
992 
993 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
994 		if (ret < 0) {
995 			goto err;
996 		} else if (ret > 0) {
997 			ret = btrfs_previous_item(root, path, subvol_objectid,
998 						  BTRFS_ROOT_BACKREF_KEY);
999 			if (ret < 0) {
1000 				goto err;
1001 			} else if (ret > 0) {
1002 				ret = -ENOENT;
1003 				goto err;
1004 			}
1005 		}
1006 
1007 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1008 		subvol_objectid = key.offset;
1009 
1010 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1011 					  struct btrfs_root_ref);
1012 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1013 		ptr -= len + 1;
1014 		if (ptr < name) {
1015 			ret = -ENAMETOOLONG;
1016 			goto err;
1017 		}
1018 		read_extent_buffer(path->nodes[0], ptr + 1,
1019 				   (unsigned long)(root_ref + 1), len);
1020 		ptr[0] = '/';
1021 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1022 		btrfs_release_path(path);
1023 
1024 		key.objectid = subvol_objectid;
1025 		key.type = BTRFS_ROOT_ITEM_KEY;
1026 		key.offset = (u64)-1;
1027 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1028 		if (IS_ERR(fs_root)) {
1029 			ret = PTR_ERR(fs_root);
1030 			goto err;
1031 		}
1032 
1033 		/*
1034 		 * Walk up the filesystem tree by inode refs until we hit the
1035 		 * root directory.
1036 		 */
1037 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1038 			key.objectid = dirid;
1039 			key.type = BTRFS_INODE_REF_KEY;
1040 			key.offset = (u64)-1;
1041 
1042 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1043 			if (ret < 0) {
1044 				goto err;
1045 			} else if (ret > 0) {
1046 				ret = btrfs_previous_item(fs_root, path, dirid,
1047 							  BTRFS_INODE_REF_KEY);
1048 				if (ret < 0) {
1049 					goto err;
1050 				} else if (ret > 0) {
1051 					ret = -ENOENT;
1052 					goto err;
1053 				}
1054 			}
1055 
1056 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1057 			dirid = key.offset;
1058 
1059 			inode_ref = btrfs_item_ptr(path->nodes[0],
1060 						   path->slots[0],
1061 						   struct btrfs_inode_ref);
1062 			len = btrfs_inode_ref_name_len(path->nodes[0],
1063 						       inode_ref);
1064 			ptr -= len + 1;
1065 			if (ptr < name) {
1066 				ret = -ENAMETOOLONG;
1067 				goto err;
1068 			}
1069 			read_extent_buffer(path->nodes[0], ptr + 1,
1070 					   (unsigned long)(inode_ref + 1), len);
1071 			ptr[0] = '/';
1072 			btrfs_release_path(path);
1073 		}
1074 	}
1075 
1076 	btrfs_free_path(path);
1077 	if (ptr == name + PATH_MAX - 1) {
1078 		name[0] = '/';
1079 		name[1] = '\0';
1080 	} else {
1081 		memmove(name, ptr, name + PATH_MAX - ptr);
1082 	}
1083 	return name;
1084 
1085 err:
1086 	btrfs_free_path(path);
1087 	kfree(name);
1088 	return ERR_PTR(ret);
1089 }
1090 
1091 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1092 {
1093 	struct btrfs_root *root = fs_info->tree_root;
1094 	struct btrfs_dir_item *di;
1095 	struct btrfs_path *path;
1096 	struct btrfs_key location;
1097 	u64 dir_id;
1098 
1099 	path = btrfs_alloc_path();
1100 	if (!path)
1101 		return -ENOMEM;
1102 	path->leave_spinning = 1;
1103 
1104 	/*
1105 	 * Find the "default" dir item which points to the root item that we
1106 	 * will mount by default if we haven't been given a specific subvolume
1107 	 * to mount.
1108 	 */
1109 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1110 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1111 	if (IS_ERR(di)) {
1112 		btrfs_free_path(path);
1113 		return PTR_ERR(di);
1114 	}
1115 	if (!di) {
1116 		/*
1117 		 * Ok the default dir item isn't there.  This is weird since
1118 		 * it's always been there, but don't freak out, just try and
1119 		 * mount the top-level subvolume.
1120 		 */
1121 		btrfs_free_path(path);
1122 		*objectid = BTRFS_FS_TREE_OBJECTID;
1123 		return 0;
1124 	}
1125 
1126 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1127 	btrfs_free_path(path);
1128 	*objectid = location.objectid;
1129 	return 0;
1130 }
1131 
1132 static int btrfs_fill_super(struct super_block *sb,
1133 			    struct btrfs_fs_devices *fs_devices,
1134 			    void *data, int silent)
1135 {
1136 	struct inode *inode;
1137 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1138 	struct btrfs_key key;
1139 	int err;
1140 
1141 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1142 	sb->s_magic = BTRFS_SUPER_MAGIC;
1143 	sb->s_op = &btrfs_super_ops;
1144 	sb->s_d_op = &btrfs_dentry_operations;
1145 	sb->s_export_op = &btrfs_export_ops;
1146 	sb->s_xattr = btrfs_xattr_handlers;
1147 	sb->s_time_gran = 1;
1148 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1149 	sb->s_flags |= MS_POSIXACL;
1150 #endif
1151 	sb->s_flags |= MS_I_VERSION;
1152 	sb->s_iflags |= SB_I_CGROUPWB;
1153 	err = open_ctree(sb, fs_devices, (char *)data);
1154 	if (err) {
1155 		btrfs_err(fs_info, "open_ctree failed");
1156 		return err;
1157 	}
1158 
1159 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1160 	key.type = BTRFS_INODE_ITEM_KEY;
1161 	key.offset = 0;
1162 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1163 	if (IS_ERR(inode)) {
1164 		err = PTR_ERR(inode);
1165 		goto fail_close;
1166 	}
1167 
1168 	sb->s_root = d_make_root(inode);
1169 	if (!sb->s_root) {
1170 		err = -ENOMEM;
1171 		goto fail_close;
1172 	}
1173 
1174 	save_mount_options(sb, data);
1175 	cleancache_init_fs(sb);
1176 	sb->s_flags |= MS_ACTIVE;
1177 	return 0;
1178 
1179 fail_close:
1180 	close_ctree(fs_info->tree_root);
1181 	return err;
1182 }
1183 
1184 int btrfs_sync_fs(struct super_block *sb, int wait)
1185 {
1186 	struct btrfs_trans_handle *trans;
1187 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1188 	struct btrfs_root *root = fs_info->tree_root;
1189 
1190 	trace_btrfs_sync_fs(fs_info, wait);
1191 
1192 	if (!wait) {
1193 		filemap_flush(fs_info->btree_inode->i_mapping);
1194 		return 0;
1195 	}
1196 
1197 	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1198 
1199 	trans = btrfs_attach_transaction_barrier(root);
1200 	if (IS_ERR(trans)) {
1201 		/* no transaction, don't bother */
1202 		if (PTR_ERR(trans) == -ENOENT) {
1203 			/*
1204 			 * Exit unless we have some pending changes
1205 			 * that need to go through commit
1206 			 */
1207 			if (fs_info->pending_changes == 0)
1208 				return 0;
1209 			/*
1210 			 * A non-blocking test if the fs is frozen. We must not
1211 			 * start a new transaction here otherwise a deadlock
1212 			 * happens. The pending operations are delayed to the
1213 			 * next commit after thawing.
1214 			 */
1215 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1216 				__sb_end_write(sb, SB_FREEZE_WRITE);
1217 			else
1218 				return 0;
1219 			trans = btrfs_start_transaction(root, 0);
1220 		}
1221 		if (IS_ERR(trans))
1222 			return PTR_ERR(trans);
1223 	}
1224 	return btrfs_commit_transaction(trans, root);
1225 }
1226 
1227 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1228 {
1229 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1230 	struct btrfs_root *root = info->tree_root;
1231 	char *compress_type;
1232 
1233 	if (btrfs_test_opt(info, DEGRADED))
1234 		seq_puts(seq, ",degraded");
1235 	if (btrfs_test_opt(info, NODATASUM))
1236 		seq_puts(seq, ",nodatasum");
1237 	if (btrfs_test_opt(info, NODATACOW))
1238 		seq_puts(seq, ",nodatacow");
1239 	if (btrfs_test_opt(info, NOBARRIER))
1240 		seq_puts(seq, ",nobarrier");
1241 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1242 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1243 	if (info->alloc_start != 0)
1244 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1245 	if (info->thread_pool_size !=  min_t(unsigned long,
1246 					     num_online_cpus() + 2, 8))
1247 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1248 	if (btrfs_test_opt(info, COMPRESS)) {
1249 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1250 			compress_type = "zlib";
1251 		else
1252 			compress_type = "lzo";
1253 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1254 			seq_printf(seq, ",compress-force=%s", compress_type);
1255 		else
1256 			seq_printf(seq, ",compress=%s", compress_type);
1257 	}
1258 	if (btrfs_test_opt(info, NOSSD))
1259 		seq_puts(seq, ",nossd");
1260 	if (btrfs_test_opt(info, SSD_SPREAD))
1261 		seq_puts(seq, ",ssd_spread");
1262 	else if (btrfs_test_opt(info, SSD))
1263 		seq_puts(seq, ",ssd");
1264 	if (btrfs_test_opt(info, NOTREELOG))
1265 		seq_puts(seq, ",notreelog");
1266 	if (btrfs_test_opt(info, NOLOGREPLAY))
1267 		seq_puts(seq, ",nologreplay");
1268 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1269 		seq_puts(seq, ",flushoncommit");
1270 	if (btrfs_test_opt(info, DISCARD))
1271 		seq_puts(seq, ",discard");
1272 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1273 		seq_puts(seq, ",noacl");
1274 	if (btrfs_test_opt(info, SPACE_CACHE))
1275 		seq_puts(seq, ",space_cache");
1276 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1277 		seq_puts(seq, ",space_cache=v2");
1278 	else
1279 		seq_puts(seq, ",nospace_cache");
1280 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1281 		seq_puts(seq, ",rescan_uuid_tree");
1282 	if (btrfs_test_opt(info, CLEAR_CACHE))
1283 		seq_puts(seq, ",clear_cache");
1284 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1285 		seq_puts(seq, ",user_subvol_rm_allowed");
1286 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1287 		seq_puts(seq, ",enospc_debug");
1288 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1289 		seq_puts(seq, ",autodefrag");
1290 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1291 		seq_puts(seq, ",inode_cache");
1292 	if (btrfs_test_opt(info, SKIP_BALANCE))
1293 		seq_puts(seq, ",skip_balance");
1294 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1295 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1296 		seq_puts(seq, ",check_int_data");
1297 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1298 		seq_puts(seq, ",check_int");
1299 	if (info->check_integrity_print_mask)
1300 		seq_printf(seq, ",check_int_print_mask=%d",
1301 				info->check_integrity_print_mask);
1302 #endif
1303 	if (info->metadata_ratio)
1304 		seq_printf(seq, ",metadata_ratio=%d",
1305 				info->metadata_ratio);
1306 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1307 		seq_puts(seq, ",fatal_errors=panic");
1308 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1309 		seq_printf(seq, ",commit=%d", info->commit_interval);
1310 #ifdef CONFIG_BTRFS_DEBUG
1311 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1312 		seq_puts(seq, ",fragment=data");
1313 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1314 		seq_puts(seq, ",fragment=metadata");
1315 #endif
1316 	seq_printf(seq, ",subvolid=%llu",
1317 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1318 	seq_puts(seq, ",subvol=");
1319 	seq_dentry(seq, dentry, " \t\n\\");
1320 	return 0;
1321 }
1322 
1323 static int btrfs_test_super(struct super_block *s, void *data)
1324 {
1325 	struct btrfs_fs_info *p = data;
1326 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1327 
1328 	return fs_info->fs_devices == p->fs_devices;
1329 }
1330 
1331 static int btrfs_set_super(struct super_block *s, void *data)
1332 {
1333 	int err = set_anon_super(s, data);
1334 	if (!err)
1335 		s->s_fs_info = data;
1336 	return err;
1337 }
1338 
1339 /*
1340  * subvolumes are identified by ino 256
1341  */
1342 static inline int is_subvolume_inode(struct inode *inode)
1343 {
1344 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1345 		return 1;
1346 	return 0;
1347 }
1348 
1349 /*
1350  * This will add subvolid=0 to the argument string while removing any subvol=
1351  * and subvolid= arguments to make sure we get the top-level root for path
1352  * walking to the subvol we want.
1353  */
1354 static char *setup_root_args(char *args)
1355 {
1356 	char *buf, *dst, *sep;
1357 
1358 	if (!args)
1359 		return kstrdup("subvolid=0", GFP_NOFS);
1360 
1361 	/* The worst case is that we add ",subvolid=0" to the end. */
1362 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1363 	if (!buf)
1364 		return NULL;
1365 
1366 	while (1) {
1367 		sep = strchrnul(args, ',');
1368 		if (!strstarts(args, "subvol=") &&
1369 		    !strstarts(args, "subvolid=")) {
1370 			memcpy(dst, args, sep - args);
1371 			dst += sep - args;
1372 			*dst++ = ',';
1373 		}
1374 		if (*sep)
1375 			args = sep + 1;
1376 		else
1377 			break;
1378 	}
1379 	strcpy(dst, "subvolid=0");
1380 
1381 	return buf;
1382 }
1383 
1384 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1385 				   int flags, const char *device_name,
1386 				   char *data)
1387 {
1388 	struct dentry *root;
1389 	struct vfsmount *mnt = NULL;
1390 	char *newargs;
1391 	int ret;
1392 
1393 	newargs = setup_root_args(data);
1394 	if (!newargs) {
1395 		root = ERR_PTR(-ENOMEM);
1396 		goto out;
1397 	}
1398 
1399 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1400 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1401 		if (flags & MS_RDONLY) {
1402 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1403 					     device_name, newargs);
1404 		} else {
1405 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1406 					     device_name, newargs);
1407 			if (IS_ERR(mnt)) {
1408 				root = ERR_CAST(mnt);
1409 				mnt = NULL;
1410 				goto out;
1411 			}
1412 
1413 			down_write(&mnt->mnt_sb->s_umount);
1414 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1415 			up_write(&mnt->mnt_sb->s_umount);
1416 			if (ret < 0) {
1417 				root = ERR_PTR(ret);
1418 				goto out;
1419 			}
1420 		}
1421 	}
1422 	if (IS_ERR(mnt)) {
1423 		root = ERR_CAST(mnt);
1424 		mnt = NULL;
1425 		goto out;
1426 	}
1427 
1428 	if (!subvol_name) {
1429 		if (!subvol_objectid) {
1430 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1431 							  &subvol_objectid);
1432 			if (ret) {
1433 				root = ERR_PTR(ret);
1434 				goto out;
1435 			}
1436 		}
1437 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1438 							    subvol_objectid);
1439 		if (IS_ERR(subvol_name)) {
1440 			root = ERR_CAST(subvol_name);
1441 			subvol_name = NULL;
1442 			goto out;
1443 		}
1444 
1445 	}
1446 
1447 	root = mount_subtree(mnt, subvol_name);
1448 	/* mount_subtree() drops our reference on the vfsmount. */
1449 	mnt = NULL;
1450 
1451 	if (!IS_ERR(root)) {
1452 		struct super_block *s = root->d_sb;
1453 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1454 		struct inode *root_inode = d_inode(root);
1455 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1456 
1457 		ret = 0;
1458 		if (!is_subvolume_inode(root_inode)) {
1459 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1460 			       subvol_name);
1461 			ret = -EINVAL;
1462 		}
1463 		if (subvol_objectid && root_objectid != subvol_objectid) {
1464 			/*
1465 			 * This will also catch a race condition where a
1466 			 * subvolume which was passed by ID is renamed and
1467 			 * another subvolume is renamed over the old location.
1468 			 */
1469 			btrfs_err(fs_info,
1470 				  "subvol '%s' does not match subvolid %llu",
1471 				  subvol_name, subvol_objectid);
1472 			ret = -EINVAL;
1473 		}
1474 		if (ret) {
1475 			dput(root);
1476 			root = ERR_PTR(ret);
1477 			deactivate_locked_super(s);
1478 		}
1479 	}
1480 
1481 out:
1482 	mntput(mnt);
1483 	kfree(newargs);
1484 	kfree(subvol_name);
1485 	return root;
1486 }
1487 
1488 static int parse_security_options(char *orig_opts,
1489 				  struct security_mnt_opts *sec_opts)
1490 {
1491 	char *secdata = NULL;
1492 	int ret = 0;
1493 
1494 	secdata = alloc_secdata();
1495 	if (!secdata)
1496 		return -ENOMEM;
1497 	ret = security_sb_copy_data(orig_opts, secdata);
1498 	if (ret) {
1499 		free_secdata(secdata);
1500 		return ret;
1501 	}
1502 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1503 	free_secdata(secdata);
1504 	return ret;
1505 }
1506 
1507 static int setup_security_options(struct btrfs_fs_info *fs_info,
1508 				  struct super_block *sb,
1509 				  struct security_mnt_opts *sec_opts)
1510 {
1511 	int ret = 0;
1512 
1513 	/*
1514 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1515 	 * is valid.
1516 	 */
1517 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1518 	if (ret)
1519 		return ret;
1520 
1521 #ifdef CONFIG_SECURITY
1522 	if (!fs_info->security_opts.num_mnt_opts) {
1523 		/* first time security setup, copy sec_opts to fs_info */
1524 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1525 	} else {
1526 		/*
1527 		 * Since SELinux (the only one supporting security_mnt_opts)
1528 		 * does NOT support changing context during remount/mount of
1529 		 * the same sb, this must be the same or part of the same
1530 		 * security options, just free it.
1531 		 */
1532 		security_free_mnt_opts(sec_opts);
1533 	}
1534 #endif
1535 	return ret;
1536 }
1537 
1538 /*
1539  * Find a superblock for the given device / mount point.
1540  *
1541  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1542  *	  for multiple device setup.  Make sure to keep it in sync.
1543  */
1544 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1545 		const char *device_name, void *data)
1546 {
1547 	struct block_device *bdev = NULL;
1548 	struct super_block *s;
1549 	struct btrfs_fs_devices *fs_devices = NULL;
1550 	struct btrfs_fs_info *fs_info = NULL;
1551 	struct security_mnt_opts new_sec_opts;
1552 	fmode_t mode = FMODE_READ;
1553 	char *subvol_name = NULL;
1554 	u64 subvol_objectid = 0;
1555 	int error = 0;
1556 
1557 	if (!(flags & MS_RDONLY))
1558 		mode |= FMODE_WRITE;
1559 
1560 	error = btrfs_parse_early_options(data, mode, fs_type,
1561 					  &subvol_name, &subvol_objectid,
1562 					  &fs_devices);
1563 	if (error) {
1564 		kfree(subvol_name);
1565 		return ERR_PTR(error);
1566 	}
1567 
1568 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1569 		/* mount_subvol() will free subvol_name. */
1570 		return mount_subvol(subvol_name, subvol_objectid, flags,
1571 				    device_name, data);
1572 	}
1573 
1574 	security_init_mnt_opts(&new_sec_opts);
1575 	if (data) {
1576 		error = parse_security_options(data, &new_sec_opts);
1577 		if (error)
1578 			return ERR_PTR(error);
1579 	}
1580 
1581 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1582 	if (error)
1583 		goto error_sec_opts;
1584 
1585 	/*
1586 	 * Setup a dummy root and fs_info for test/set super.  This is because
1587 	 * we don't actually fill this stuff out until open_ctree, but we need
1588 	 * it for searching for existing supers, so this lets us do that and
1589 	 * then open_ctree will properly initialize everything later.
1590 	 */
1591 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1592 	if (!fs_info) {
1593 		error = -ENOMEM;
1594 		goto error_sec_opts;
1595 	}
1596 
1597 	fs_info->fs_devices = fs_devices;
1598 
1599 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1600 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1601 	security_init_mnt_opts(&fs_info->security_opts);
1602 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1603 		error = -ENOMEM;
1604 		goto error_fs_info;
1605 	}
1606 
1607 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1608 	if (error)
1609 		goto error_fs_info;
1610 
1611 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1612 		error = -EACCES;
1613 		goto error_close_devices;
1614 	}
1615 
1616 	bdev = fs_devices->latest_bdev;
1617 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1618 		 fs_info);
1619 	if (IS_ERR(s)) {
1620 		error = PTR_ERR(s);
1621 		goto error_close_devices;
1622 	}
1623 
1624 	if (s->s_root) {
1625 		btrfs_close_devices(fs_devices);
1626 		free_fs_info(fs_info);
1627 		if ((flags ^ s->s_flags) & MS_RDONLY)
1628 			error = -EBUSY;
1629 	} else {
1630 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1631 		btrfs_sb(s)->bdev_holder = fs_type;
1632 		error = btrfs_fill_super(s, fs_devices, data,
1633 					 flags & MS_SILENT ? 1 : 0);
1634 	}
1635 	if (error) {
1636 		deactivate_locked_super(s);
1637 		goto error_sec_opts;
1638 	}
1639 
1640 	fs_info = btrfs_sb(s);
1641 	error = setup_security_options(fs_info, s, &new_sec_opts);
1642 	if (error) {
1643 		deactivate_locked_super(s);
1644 		goto error_sec_opts;
1645 	}
1646 
1647 	return dget(s->s_root);
1648 
1649 error_close_devices:
1650 	btrfs_close_devices(fs_devices);
1651 error_fs_info:
1652 	free_fs_info(fs_info);
1653 error_sec_opts:
1654 	security_free_mnt_opts(&new_sec_opts);
1655 	return ERR_PTR(error);
1656 }
1657 
1658 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1659 				     int new_pool_size, int old_pool_size)
1660 {
1661 	if (new_pool_size == old_pool_size)
1662 		return;
1663 
1664 	fs_info->thread_pool_size = new_pool_size;
1665 
1666 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1667 	       old_pool_size, new_pool_size);
1668 
1669 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1670 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1672 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1673 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1674 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1675 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1676 				new_pool_size);
1677 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1678 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1679 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1680 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1681 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1682 				new_pool_size);
1683 }
1684 
1685 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1686 {
1687 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1688 }
1689 
1690 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1691 				       unsigned long old_opts, int flags)
1692 {
1693 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1694 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1695 	     (flags & MS_RDONLY))) {
1696 		/* wait for any defraggers to finish */
1697 		wait_event(fs_info->transaction_wait,
1698 			   (atomic_read(&fs_info->defrag_running) == 0));
1699 		if (flags & MS_RDONLY)
1700 			sync_filesystem(fs_info->sb);
1701 	}
1702 }
1703 
1704 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1705 					 unsigned long old_opts)
1706 {
1707 	/*
1708 	 * We need to cleanup all defragable inodes if the autodefragment is
1709 	 * close or the filesystem is read only.
1710 	 */
1711 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1712 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1713 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1714 		btrfs_cleanup_defrag_inodes(fs_info);
1715 	}
1716 
1717 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1718 }
1719 
1720 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1721 {
1722 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1723 	struct btrfs_root *root = fs_info->tree_root;
1724 	unsigned old_flags = sb->s_flags;
1725 	unsigned long old_opts = fs_info->mount_opt;
1726 	unsigned long old_compress_type = fs_info->compress_type;
1727 	u64 old_max_inline = fs_info->max_inline;
1728 	u64 old_alloc_start = fs_info->alloc_start;
1729 	int old_thread_pool_size = fs_info->thread_pool_size;
1730 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1731 	int ret;
1732 
1733 	sync_filesystem(sb);
1734 	btrfs_remount_prepare(fs_info);
1735 
1736 	if (data) {
1737 		struct security_mnt_opts new_sec_opts;
1738 
1739 		security_init_mnt_opts(&new_sec_opts);
1740 		ret = parse_security_options(data, &new_sec_opts);
1741 		if (ret)
1742 			goto restore;
1743 		ret = setup_security_options(fs_info, sb,
1744 					     &new_sec_opts);
1745 		if (ret) {
1746 			security_free_mnt_opts(&new_sec_opts);
1747 			goto restore;
1748 		}
1749 	}
1750 
1751 	ret = btrfs_parse_options(root, data, *flags);
1752 	if (ret) {
1753 		ret = -EINVAL;
1754 		goto restore;
1755 	}
1756 
1757 	btrfs_remount_begin(fs_info, old_opts, *flags);
1758 	btrfs_resize_thread_pool(fs_info,
1759 		fs_info->thread_pool_size, old_thread_pool_size);
1760 
1761 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1762 		goto out;
1763 
1764 	if (*flags & MS_RDONLY) {
1765 		/*
1766 		 * this also happens on 'umount -rf' or on shutdown, when
1767 		 * the filesystem is busy.
1768 		 */
1769 		cancel_work_sync(&fs_info->async_reclaim_work);
1770 
1771 		/* wait for the uuid_scan task to finish */
1772 		down(&fs_info->uuid_tree_rescan_sem);
1773 		/* avoid complains from lockdep et al. */
1774 		up(&fs_info->uuid_tree_rescan_sem);
1775 
1776 		sb->s_flags |= MS_RDONLY;
1777 
1778 		/*
1779 		 * Setting MS_RDONLY will put the cleaner thread to
1780 		 * sleep at the next loop if it's already active.
1781 		 * If it's already asleep, we'll leave unused block
1782 		 * groups on disk until we're mounted read-write again
1783 		 * unless we clean them up here.
1784 		 */
1785 		btrfs_delete_unused_bgs(fs_info);
1786 
1787 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1788 		btrfs_scrub_cancel(fs_info);
1789 		btrfs_pause_balance(fs_info);
1790 
1791 		ret = btrfs_commit_super(root);
1792 		if (ret)
1793 			goto restore;
1794 	} else {
1795 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1796 			btrfs_err(fs_info,
1797 				"Remounting read-write after error is not allowed");
1798 			ret = -EINVAL;
1799 			goto restore;
1800 		}
1801 		if (fs_info->fs_devices->rw_devices == 0) {
1802 			ret = -EACCES;
1803 			goto restore;
1804 		}
1805 
1806 		if (fs_info->fs_devices->missing_devices >
1807 		     fs_info->num_tolerated_disk_barrier_failures &&
1808 		    !(*flags & MS_RDONLY)) {
1809 			btrfs_warn(fs_info,
1810 				"too many missing devices, writeable remount is not allowed");
1811 			ret = -EACCES;
1812 			goto restore;
1813 		}
1814 
1815 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1816 			ret = -EINVAL;
1817 			goto restore;
1818 		}
1819 
1820 		ret = btrfs_cleanup_fs_roots(fs_info);
1821 		if (ret)
1822 			goto restore;
1823 
1824 		/* recover relocation */
1825 		mutex_lock(&fs_info->cleaner_mutex);
1826 		ret = btrfs_recover_relocation(root);
1827 		mutex_unlock(&fs_info->cleaner_mutex);
1828 		if (ret)
1829 			goto restore;
1830 
1831 		ret = btrfs_resume_balance_async(fs_info);
1832 		if (ret)
1833 			goto restore;
1834 
1835 		ret = btrfs_resume_dev_replace_async(fs_info);
1836 		if (ret) {
1837 			btrfs_warn(fs_info, "failed to resume dev_replace");
1838 			goto restore;
1839 		}
1840 
1841 		if (!fs_info->uuid_root) {
1842 			btrfs_info(fs_info, "creating UUID tree");
1843 			ret = btrfs_create_uuid_tree(fs_info);
1844 			if (ret) {
1845 				btrfs_warn(fs_info,
1846 					   "failed to create the UUID tree %d",
1847 					   ret);
1848 				goto restore;
1849 			}
1850 		}
1851 		sb->s_flags &= ~MS_RDONLY;
1852 
1853 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1854 	}
1855 out:
1856 	wake_up_process(fs_info->transaction_kthread);
1857 	btrfs_remount_cleanup(fs_info, old_opts);
1858 	return 0;
1859 
1860 restore:
1861 	/* We've hit an error - don't reset MS_RDONLY */
1862 	if (sb->s_flags & MS_RDONLY)
1863 		old_flags |= MS_RDONLY;
1864 	sb->s_flags = old_flags;
1865 	fs_info->mount_opt = old_opts;
1866 	fs_info->compress_type = old_compress_type;
1867 	fs_info->max_inline = old_max_inline;
1868 	mutex_lock(&fs_info->chunk_mutex);
1869 	fs_info->alloc_start = old_alloc_start;
1870 	mutex_unlock(&fs_info->chunk_mutex);
1871 	btrfs_resize_thread_pool(fs_info,
1872 		old_thread_pool_size, fs_info->thread_pool_size);
1873 	fs_info->metadata_ratio = old_metadata_ratio;
1874 	btrfs_remount_cleanup(fs_info, old_opts);
1875 	return ret;
1876 }
1877 
1878 /* Used to sort the devices by max_avail(descending sort) */
1879 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1880 				       const void *dev_info2)
1881 {
1882 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1883 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1884 		return -1;
1885 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1886 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1887 		return 1;
1888 	else
1889 	return 0;
1890 }
1891 
1892 /*
1893  * sort the devices by max_avail, in which max free extent size of each device
1894  * is stored.(Descending Sort)
1895  */
1896 static inline void btrfs_descending_sort_devices(
1897 					struct btrfs_device_info *devices,
1898 					size_t nr_devices)
1899 {
1900 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1901 	     btrfs_cmp_device_free_bytes, NULL);
1902 }
1903 
1904 /*
1905  * The helper to calc the free space on the devices that can be used to store
1906  * file data.
1907  */
1908 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1909 {
1910 	struct btrfs_fs_info *fs_info = root->fs_info;
1911 	struct btrfs_device_info *devices_info;
1912 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1913 	struct btrfs_device *device;
1914 	u64 skip_space;
1915 	u64 type;
1916 	u64 avail_space;
1917 	u64 used_space;
1918 	u64 min_stripe_size;
1919 	int min_stripes = 1, num_stripes = 1;
1920 	int i = 0, nr_devices;
1921 	int ret;
1922 
1923 	/*
1924 	 * We aren't under the device list lock, so this is racy-ish, but good
1925 	 * enough for our purposes.
1926 	 */
1927 	nr_devices = fs_info->fs_devices->open_devices;
1928 	if (!nr_devices) {
1929 		smp_mb();
1930 		nr_devices = fs_info->fs_devices->open_devices;
1931 		ASSERT(nr_devices);
1932 		if (!nr_devices) {
1933 			*free_bytes = 0;
1934 			return 0;
1935 		}
1936 	}
1937 
1938 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1939 			       GFP_NOFS);
1940 	if (!devices_info)
1941 		return -ENOMEM;
1942 
1943 	/* calc min stripe number for data space allocation */
1944 	type = btrfs_get_alloc_profile(root, 1);
1945 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1946 		min_stripes = 2;
1947 		num_stripes = nr_devices;
1948 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1949 		min_stripes = 2;
1950 		num_stripes = 2;
1951 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1952 		min_stripes = 4;
1953 		num_stripes = 4;
1954 	}
1955 
1956 	if (type & BTRFS_BLOCK_GROUP_DUP)
1957 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1958 	else
1959 		min_stripe_size = BTRFS_STRIPE_LEN;
1960 
1961 	if (fs_info->alloc_start)
1962 		mutex_lock(&fs_devices->device_list_mutex);
1963 	rcu_read_lock();
1964 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1965 		if (!device->in_fs_metadata || !device->bdev ||
1966 		    device->is_tgtdev_for_dev_replace)
1967 			continue;
1968 
1969 		if (i >= nr_devices)
1970 			break;
1971 
1972 		avail_space = device->total_bytes - device->bytes_used;
1973 
1974 		/* align with stripe_len */
1975 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1976 		avail_space *= BTRFS_STRIPE_LEN;
1977 
1978 		/*
1979 		 * In order to avoid overwriting the superblock on the drive,
1980 		 * btrfs starts at an offset of at least 1MB when doing chunk
1981 		 * allocation.
1982 		 */
1983 		skip_space = SZ_1M;
1984 
1985 		/* user can set the offset in fs_info->alloc_start. */
1986 		if (fs_info->alloc_start &&
1987 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1988 		    device->total_bytes) {
1989 			rcu_read_unlock();
1990 			skip_space = max(fs_info->alloc_start, skip_space);
1991 
1992 			/*
1993 			 * btrfs can not use the free space in
1994 			 * [0, skip_space - 1], we must subtract it from the
1995 			 * total. In order to implement it, we account the used
1996 			 * space in this range first.
1997 			 */
1998 			ret = btrfs_account_dev_extents_size(device, 0,
1999 							     skip_space - 1,
2000 							     &used_space);
2001 			if (ret) {
2002 				kfree(devices_info);
2003 				mutex_unlock(&fs_devices->device_list_mutex);
2004 				return ret;
2005 			}
2006 
2007 			rcu_read_lock();
2008 
2009 			/* calc the free space in [0, skip_space - 1] */
2010 			skip_space -= used_space;
2011 		}
2012 
2013 		/*
2014 		 * we can use the free space in [0, skip_space - 1], subtract
2015 		 * it from the total.
2016 		 */
2017 		if (avail_space && avail_space >= skip_space)
2018 			avail_space -= skip_space;
2019 		else
2020 			avail_space = 0;
2021 
2022 		if (avail_space < min_stripe_size)
2023 			continue;
2024 
2025 		devices_info[i].dev = device;
2026 		devices_info[i].max_avail = avail_space;
2027 
2028 		i++;
2029 	}
2030 	rcu_read_unlock();
2031 	if (fs_info->alloc_start)
2032 		mutex_unlock(&fs_devices->device_list_mutex);
2033 
2034 	nr_devices = i;
2035 
2036 	btrfs_descending_sort_devices(devices_info, nr_devices);
2037 
2038 	i = nr_devices - 1;
2039 	avail_space = 0;
2040 	while (nr_devices >= min_stripes) {
2041 		if (num_stripes > nr_devices)
2042 			num_stripes = nr_devices;
2043 
2044 		if (devices_info[i].max_avail >= min_stripe_size) {
2045 			int j;
2046 			u64 alloc_size;
2047 
2048 			avail_space += devices_info[i].max_avail * num_stripes;
2049 			alloc_size = devices_info[i].max_avail;
2050 			for (j = i + 1 - num_stripes; j <= i; j++)
2051 				devices_info[j].max_avail -= alloc_size;
2052 		}
2053 		i--;
2054 		nr_devices--;
2055 	}
2056 
2057 	kfree(devices_info);
2058 	*free_bytes = avail_space;
2059 	return 0;
2060 }
2061 
2062 /*
2063  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2064  *
2065  * If there's a redundant raid level at DATA block groups, use the respective
2066  * multiplier to scale the sizes.
2067  *
2068  * Unused device space usage is based on simulating the chunk allocator
2069  * algorithm that respects the device sizes, order of allocations and the
2070  * 'alloc_start' value, this is a close approximation of the actual use but
2071  * there are other factors that may change the result (like a new metadata
2072  * chunk).
2073  *
2074  * If metadata is exhausted, f_bavail will be 0.
2075  */
2076 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2077 {
2078 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2079 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2080 	struct list_head *head = &fs_info->space_info;
2081 	struct btrfs_space_info *found;
2082 	u64 total_used = 0;
2083 	u64 total_free_data = 0;
2084 	u64 total_free_meta = 0;
2085 	int bits = dentry->d_sb->s_blocksize_bits;
2086 	__be32 *fsid = (__be32 *)fs_info->fsid;
2087 	unsigned factor = 1;
2088 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2089 	int ret;
2090 	u64 thresh = 0;
2091 	int mixed = 0;
2092 
2093 	/*
2094 	 * holding chunk_mutex to avoid allocating new chunks, holding
2095 	 * device_list_mutex to avoid the device being removed
2096 	 */
2097 	rcu_read_lock();
2098 	list_for_each_entry_rcu(found, head, list) {
2099 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2100 			int i;
2101 
2102 			total_free_data += found->disk_total - found->disk_used;
2103 			total_free_data -=
2104 				btrfs_account_ro_block_groups_free_space(found);
2105 
2106 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2107 				if (!list_empty(&found->block_groups[i])) {
2108 					switch (i) {
2109 					case BTRFS_RAID_DUP:
2110 					case BTRFS_RAID_RAID1:
2111 					case BTRFS_RAID_RAID10:
2112 						factor = 2;
2113 					}
2114 				}
2115 			}
2116 		}
2117 
2118 		/*
2119 		 * Metadata in mixed block goup profiles are accounted in data
2120 		 */
2121 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2122 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2123 				mixed = 1;
2124 			else
2125 				total_free_meta += found->disk_total -
2126 					found->disk_used;
2127 		}
2128 
2129 		total_used += found->disk_used;
2130 	}
2131 
2132 	rcu_read_unlock();
2133 
2134 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2135 	buf->f_blocks >>= bits;
2136 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2137 
2138 	/* Account global block reserve as used, it's in logical size already */
2139 	spin_lock(&block_rsv->lock);
2140 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2141 	if (buf->f_bfree >= block_rsv->size >> bits)
2142 		buf->f_bfree -= block_rsv->size >> bits;
2143 	else
2144 		buf->f_bfree = 0;
2145 	spin_unlock(&block_rsv->lock);
2146 
2147 	buf->f_bavail = div_u64(total_free_data, factor);
2148 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2149 	if (ret)
2150 		return ret;
2151 	buf->f_bavail += div_u64(total_free_data, factor);
2152 	buf->f_bavail = buf->f_bavail >> bits;
2153 
2154 	/*
2155 	 * We calculate the remaining metadata space minus global reserve. If
2156 	 * this is (supposedly) smaller than zero, there's no space. But this
2157 	 * does not hold in practice, the exhausted state happens where's still
2158 	 * some positive delta. So we apply some guesswork and compare the
2159 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2160 	 *
2161 	 * We probably cannot calculate the exact threshold value because this
2162 	 * depends on the internal reservations requested by various
2163 	 * operations, so some operations that consume a few metadata will
2164 	 * succeed even if the Avail is zero. But this is better than the other
2165 	 * way around.
2166 	 */
2167 	thresh = 4 * 1024 * 1024;
2168 
2169 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2170 		buf->f_bavail = 0;
2171 
2172 	buf->f_type = BTRFS_SUPER_MAGIC;
2173 	buf->f_bsize = dentry->d_sb->s_blocksize;
2174 	buf->f_namelen = BTRFS_NAME_LEN;
2175 
2176 	/* We treat it as constant endianness (it doesn't matter _which_)
2177 	   because we want the fsid to come out the same whether mounted
2178 	   on a big-endian or little-endian host */
2179 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2180 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2181 	/* Mask in the root object ID too, to disambiguate subvols */
2182 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2183 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2184 
2185 	return 0;
2186 }
2187 
2188 static void btrfs_kill_super(struct super_block *sb)
2189 {
2190 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2191 	kill_anon_super(sb);
2192 	free_fs_info(fs_info);
2193 }
2194 
2195 static struct file_system_type btrfs_fs_type = {
2196 	.owner		= THIS_MODULE,
2197 	.name		= "btrfs",
2198 	.mount		= btrfs_mount,
2199 	.kill_sb	= btrfs_kill_super,
2200 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2201 };
2202 MODULE_ALIAS_FS("btrfs");
2203 
2204 static int btrfs_control_open(struct inode *inode, struct file *file)
2205 {
2206 	/*
2207 	 * The control file's private_data is used to hold the
2208 	 * transaction when it is started and is used to keep
2209 	 * track of whether a transaction is already in progress.
2210 	 */
2211 	file->private_data = NULL;
2212 	return 0;
2213 }
2214 
2215 /*
2216  * used by btrfsctl to scan devices when no FS is mounted
2217  */
2218 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2219 				unsigned long arg)
2220 {
2221 	struct btrfs_ioctl_vol_args *vol;
2222 	struct btrfs_fs_devices *fs_devices;
2223 	int ret = -ENOTTY;
2224 
2225 	if (!capable(CAP_SYS_ADMIN))
2226 		return -EPERM;
2227 
2228 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2229 	if (IS_ERR(vol))
2230 		return PTR_ERR(vol);
2231 
2232 	switch (cmd) {
2233 	case BTRFS_IOC_SCAN_DEV:
2234 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2235 					    &btrfs_fs_type, &fs_devices);
2236 		break;
2237 	case BTRFS_IOC_DEVICES_READY:
2238 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2239 					    &btrfs_fs_type, &fs_devices);
2240 		if (ret)
2241 			break;
2242 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2243 		break;
2244 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2245 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2246 		break;
2247 	}
2248 
2249 	kfree(vol);
2250 	return ret;
2251 }
2252 
2253 static int btrfs_freeze(struct super_block *sb)
2254 {
2255 	struct btrfs_trans_handle *trans;
2256 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2257 
2258 	root->fs_info->fs_frozen = 1;
2259 	/*
2260 	 * We don't need a barrier here, we'll wait for any transaction that
2261 	 * could be in progress on other threads (and do delayed iputs that
2262 	 * we want to avoid on a frozen filesystem), or do the commit
2263 	 * ourselves.
2264 	 */
2265 	trans = btrfs_attach_transaction_barrier(root);
2266 	if (IS_ERR(trans)) {
2267 		/* no transaction, don't bother */
2268 		if (PTR_ERR(trans) == -ENOENT)
2269 			return 0;
2270 		return PTR_ERR(trans);
2271 	}
2272 	return btrfs_commit_transaction(trans, root);
2273 }
2274 
2275 static int btrfs_unfreeze(struct super_block *sb)
2276 {
2277 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2278 
2279 	root->fs_info->fs_frozen = 0;
2280 	return 0;
2281 }
2282 
2283 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2284 {
2285 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2286 	struct btrfs_fs_devices *cur_devices;
2287 	struct btrfs_device *dev, *first_dev = NULL;
2288 	struct list_head *head;
2289 	struct rcu_string *name;
2290 
2291 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2292 	cur_devices = fs_info->fs_devices;
2293 	while (cur_devices) {
2294 		head = &cur_devices->devices;
2295 		list_for_each_entry(dev, head, dev_list) {
2296 			if (dev->missing)
2297 				continue;
2298 			if (!dev->name)
2299 				continue;
2300 			if (!first_dev || dev->devid < first_dev->devid)
2301 				first_dev = dev;
2302 		}
2303 		cur_devices = cur_devices->seed;
2304 	}
2305 
2306 	if (first_dev) {
2307 		rcu_read_lock();
2308 		name = rcu_dereference(first_dev->name);
2309 		seq_escape(m, name->str, " \t\n\\");
2310 		rcu_read_unlock();
2311 	} else {
2312 		WARN_ON(1);
2313 	}
2314 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2315 	return 0;
2316 }
2317 
2318 static const struct super_operations btrfs_super_ops = {
2319 	.drop_inode	= btrfs_drop_inode,
2320 	.evict_inode	= btrfs_evict_inode,
2321 	.put_super	= btrfs_put_super,
2322 	.sync_fs	= btrfs_sync_fs,
2323 	.show_options	= btrfs_show_options,
2324 	.show_devname	= btrfs_show_devname,
2325 	.write_inode	= btrfs_write_inode,
2326 	.alloc_inode	= btrfs_alloc_inode,
2327 	.destroy_inode	= btrfs_destroy_inode,
2328 	.statfs		= btrfs_statfs,
2329 	.remount_fs	= btrfs_remount,
2330 	.freeze_fs	= btrfs_freeze,
2331 	.unfreeze_fs	= btrfs_unfreeze,
2332 };
2333 
2334 static const struct file_operations btrfs_ctl_fops = {
2335 	.open = btrfs_control_open,
2336 	.unlocked_ioctl	 = btrfs_control_ioctl,
2337 	.compat_ioctl = btrfs_control_ioctl,
2338 	.owner	 = THIS_MODULE,
2339 	.llseek = noop_llseek,
2340 };
2341 
2342 static struct miscdevice btrfs_misc = {
2343 	.minor		= BTRFS_MINOR,
2344 	.name		= "btrfs-control",
2345 	.fops		= &btrfs_ctl_fops
2346 };
2347 
2348 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2349 MODULE_ALIAS("devname:btrfs-control");
2350 
2351 static int btrfs_interface_init(void)
2352 {
2353 	return misc_register(&btrfs_misc);
2354 }
2355 
2356 static void btrfs_interface_exit(void)
2357 {
2358 	misc_deregister(&btrfs_misc);
2359 }
2360 
2361 static void btrfs_print_mod_info(void)
2362 {
2363 	pr_info("Btrfs loaded, crc32c=%s"
2364 #ifdef CONFIG_BTRFS_DEBUG
2365 			", debug=on"
2366 #endif
2367 #ifdef CONFIG_BTRFS_ASSERT
2368 			", assert=on"
2369 #endif
2370 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2371 			", integrity-checker=on"
2372 #endif
2373 			"\n",
2374 			btrfs_crc32c_impl());
2375 }
2376 
2377 static int __init init_btrfs_fs(void)
2378 {
2379 	int err;
2380 
2381 	err = btrfs_hash_init();
2382 	if (err)
2383 		return err;
2384 
2385 	btrfs_props_init();
2386 
2387 	err = btrfs_init_sysfs();
2388 	if (err)
2389 		goto free_hash;
2390 
2391 	btrfs_init_compress();
2392 
2393 	err = btrfs_init_cachep();
2394 	if (err)
2395 		goto free_compress;
2396 
2397 	err = extent_io_init();
2398 	if (err)
2399 		goto free_cachep;
2400 
2401 	err = extent_map_init();
2402 	if (err)
2403 		goto free_extent_io;
2404 
2405 	err = ordered_data_init();
2406 	if (err)
2407 		goto free_extent_map;
2408 
2409 	err = btrfs_delayed_inode_init();
2410 	if (err)
2411 		goto free_ordered_data;
2412 
2413 	err = btrfs_auto_defrag_init();
2414 	if (err)
2415 		goto free_delayed_inode;
2416 
2417 	err = btrfs_delayed_ref_init();
2418 	if (err)
2419 		goto free_auto_defrag;
2420 
2421 	err = btrfs_prelim_ref_init();
2422 	if (err)
2423 		goto free_delayed_ref;
2424 
2425 	err = btrfs_end_io_wq_init();
2426 	if (err)
2427 		goto free_prelim_ref;
2428 
2429 	err = btrfs_interface_init();
2430 	if (err)
2431 		goto free_end_io_wq;
2432 
2433 	btrfs_init_lockdep();
2434 
2435 	btrfs_print_mod_info();
2436 
2437 	err = btrfs_run_sanity_tests();
2438 	if (err)
2439 		goto unregister_ioctl;
2440 
2441 	err = register_filesystem(&btrfs_fs_type);
2442 	if (err)
2443 		goto unregister_ioctl;
2444 
2445 	return 0;
2446 
2447 unregister_ioctl:
2448 	btrfs_interface_exit();
2449 free_end_io_wq:
2450 	btrfs_end_io_wq_exit();
2451 free_prelim_ref:
2452 	btrfs_prelim_ref_exit();
2453 free_delayed_ref:
2454 	btrfs_delayed_ref_exit();
2455 free_auto_defrag:
2456 	btrfs_auto_defrag_exit();
2457 free_delayed_inode:
2458 	btrfs_delayed_inode_exit();
2459 free_ordered_data:
2460 	ordered_data_exit();
2461 free_extent_map:
2462 	extent_map_exit();
2463 free_extent_io:
2464 	extent_io_exit();
2465 free_cachep:
2466 	btrfs_destroy_cachep();
2467 free_compress:
2468 	btrfs_exit_compress();
2469 	btrfs_exit_sysfs();
2470 free_hash:
2471 	btrfs_hash_exit();
2472 	return err;
2473 }
2474 
2475 static void __exit exit_btrfs_fs(void)
2476 {
2477 	btrfs_destroy_cachep();
2478 	btrfs_delayed_ref_exit();
2479 	btrfs_auto_defrag_exit();
2480 	btrfs_delayed_inode_exit();
2481 	btrfs_prelim_ref_exit();
2482 	ordered_data_exit();
2483 	extent_map_exit();
2484 	extent_io_exit();
2485 	btrfs_interface_exit();
2486 	btrfs_end_io_wq_exit();
2487 	unregister_filesystem(&btrfs_fs_type);
2488 	btrfs_exit_sysfs();
2489 	btrfs_cleanup_fs_uuids();
2490 	btrfs_exit_compress();
2491 	btrfs_hash_exit();
2492 }
2493 
2494 late_initcall(init_btrfs_fs);
2495 module_exit(exit_btrfs_fs)
2496 
2497 MODULE_LICENSE("GPL");
2498