xref: /linux/fs/btrfs/raid56.c (revision 64fc2a947a9873700929ec0ef02b4654a04e0476)
1 /*
2  * Copyright (C) 2012 Fusion-io  All rights reserved.
3  * Copyright (C) 2012 Intel Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46 
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT	1
49 
50 /*
51  * set when this rbio is sitting in the hash, but it is just a cache
52  * of past RMW
53  */
54 #define RBIO_CACHE_BIT		2
55 
56 /*
57  * set when it is safe to trust the stripe_pages for caching
58  */
59 #define RBIO_CACHE_READY_BIT	3
60 
61 #define RBIO_CACHE_SIZE 1024
62 
63 enum btrfs_rbio_ops {
64 	BTRFS_RBIO_WRITE,
65 	BTRFS_RBIO_READ_REBUILD,
66 	BTRFS_RBIO_PARITY_SCRUB,
67 	BTRFS_RBIO_REBUILD_MISSING,
68 };
69 
70 struct btrfs_raid_bio {
71 	struct btrfs_fs_info *fs_info;
72 	struct btrfs_bio *bbio;
73 
74 	/* while we're doing rmw on a stripe
75 	 * we put it into a hash table so we can
76 	 * lock the stripe and merge more rbios
77 	 * into it.
78 	 */
79 	struct list_head hash_list;
80 
81 	/*
82 	 * LRU list for the stripe cache
83 	 */
84 	struct list_head stripe_cache;
85 
86 	/*
87 	 * for scheduling work in the helper threads
88 	 */
89 	struct btrfs_work work;
90 
91 	/*
92 	 * bio list and bio_list_lock are used
93 	 * to add more bios into the stripe
94 	 * in hopes of avoiding the full rmw
95 	 */
96 	struct bio_list bio_list;
97 	spinlock_t bio_list_lock;
98 
99 	/* also protected by the bio_list_lock, the
100 	 * plug list is used by the plugging code
101 	 * to collect partial bios while plugged.  The
102 	 * stripe locking code also uses it to hand off
103 	 * the stripe lock to the next pending IO
104 	 */
105 	struct list_head plug_list;
106 
107 	/*
108 	 * flags that tell us if it is safe to
109 	 * merge with this bio
110 	 */
111 	unsigned long flags;
112 
113 	/* size of each individual stripe on disk */
114 	int stripe_len;
115 
116 	/* number of data stripes (no p/q) */
117 	int nr_data;
118 
119 	int real_stripes;
120 
121 	int stripe_npages;
122 	/*
123 	 * set if we're doing a parity rebuild
124 	 * for a read from higher up, which is handled
125 	 * differently from a parity rebuild as part of
126 	 * rmw
127 	 */
128 	enum btrfs_rbio_ops operation;
129 
130 	/* first bad stripe */
131 	int faila;
132 
133 	/* second bad stripe (for raid6 use) */
134 	int failb;
135 
136 	int scrubp;
137 	/*
138 	 * number of pages needed to represent the full
139 	 * stripe
140 	 */
141 	int nr_pages;
142 
143 	/*
144 	 * size of all the bios in the bio_list.  This
145 	 * helps us decide if the rbio maps to a full
146 	 * stripe or not
147 	 */
148 	int bio_list_bytes;
149 
150 	int generic_bio_cnt;
151 
152 	atomic_t refs;
153 
154 	atomic_t stripes_pending;
155 
156 	atomic_t error;
157 	/*
158 	 * these are two arrays of pointers.  We allocate the
159 	 * rbio big enough to hold them both and setup their
160 	 * locations when the rbio is allocated
161 	 */
162 
163 	/* pointers to pages that we allocated for
164 	 * reading/writing stripes directly from the disk (including P/Q)
165 	 */
166 	struct page **stripe_pages;
167 
168 	/*
169 	 * pointers to the pages in the bio_list.  Stored
170 	 * here for faster lookup
171 	 */
172 	struct page **bio_pages;
173 
174 	/*
175 	 * bitmap to record which horizontal stripe has data
176 	 */
177 	unsigned long *dbitmap;
178 };
179 
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191 
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 					 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195 
196 /*
197  * the stripe hash table is used for locking, and to collect
198  * bios in hopes of making a full stripe
199  */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 	struct btrfs_stripe_hash_table *table;
203 	struct btrfs_stripe_hash_table *x;
204 	struct btrfs_stripe_hash *cur;
205 	struct btrfs_stripe_hash *h;
206 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 	int i;
208 	int table_size;
209 
210 	if (info->stripe_hash_table)
211 		return 0;
212 
213 	/*
214 	 * The table is large, starting with order 4 and can go as high as
215 	 * order 7 in case lock debugging is turned on.
216 	 *
217 	 * Try harder to allocate and fallback to vmalloc to lower the chance
218 	 * of a failing mount.
219 	 */
220 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 	if (!table) {
223 		table = vzalloc(table_size);
224 		if (!table)
225 			return -ENOMEM;
226 	}
227 
228 	spin_lock_init(&table->cache_lock);
229 	INIT_LIST_HEAD(&table->stripe_cache);
230 
231 	h = table->table;
232 
233 	for (i = 0; i < num_entries; i++) {
234 		cur = h + i;
235 		INIT_LIST_HEAD(&cur->hash_list);
236 		spin_lock_init(&cur->lock);
237 		init_waitqueue_head(&cur->wait);
238 	}
239 
240 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 	if (x)
242 		kvfree(x);
243 	return 0;
244 }
245 
246 /*
247  * caching an rbio means to copy anything from the
248  * bio_pages array into the stripe_pages array.  We
249  * use the page uptodate bit in the stripe cache array
250  * to indicate if it has valid data
251  *
252  * once the caching is done, we set the cache ready
253  * bit.
254  */
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256 {
257 	int i;
258 	char *s;
259 	char *d;
260 	int ret;
261 
262 	ret = alloc_rbio_pages(rbio);
263 	if (ret)
264 		return;
265 
266 	for (i = 0; i < rbio->nr_pages; i++) {
267 		if (!rbio->bio_pages[i])
268 			continue;
269 
270 		s = kmap(rbio->bio_pages[i]);
271 		d = kmap(rbio->stripe_pages[i]);
272 
273 		memcpy(d, s, PAGE_SIZE);
274 
275 		kunmap(rbio->bio_pages[i]);
276 		kunmap(rbio->stripe_pages[i]);
277 		SetPageUptodate(rbio->stripe_pages[i]);
278 	}
279 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 }
281 
282 /*
283  * we hash on the first logical address of the stripe
284  */
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
286 {
287 	u64 num = rbio->bbio->raid_map[0];
288 
289 	/*
290 	 * we shift down quite a bit.  We're using byte
291 	 * addressing, and most of the lower bits are zeros.
292 	 * This tends to upset hash_64, and it consistently
293 	 * returns just one or two different values.
294 	 *
295 	 * shifting off the lower bits fixes things.
296 	 */
297 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 }
299 
300 /*
301  * stealing an rbio means taking all the uptodate pages from the stripe
302  * array in the source rbio and putting them into the destination rbio
303  */
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305 {
306 	int i;
307 	struct page *s;
308 	struct page *d;
309 
310 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 		return;
312 
313 	for (i = 0; i < dest->nr_pages; i++) {
314 		s = src->stripe_pages[i];
315 		if (!s || !PageUptodate(s)) {
316 			continue;
317 		}
318 
319 		d = dest->stripe_pages[i];
320 		if (d)
321 			__free_page(d);
322 
323 		dest->stripe_pages[i] = s;
324 		src->stripe_pages[i] = NULL;
325 	}
326 }
327 
328 /*
329  * merging means we take the bio_list from the victim and
330  * splice it into the destination.  The victim should
331  * be discarded afterwards.
332  *
333  * must be called with dest->rbio_list_lock held
334  */
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 		       struct btrfs_raid_bio *victim)
337 {
338 	bio_list_merge(&dest->bio_list, &victim->bio_list);
339 	dest->bio_list_bytes += victim->bio_list_bytes;
340 	dest->generic_bio_cnt += victim->generic_bio_cnt;
341 	bio_list_init(&victim->bio_list);
342 }
343 
344 /*
345  * used to prune items that are in the cache.  The caller
346  * must hold the hash table lock.
347  */
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 	int bucket = rbio_bucket(rbio);
351 	struct btrfs_stripe_hash_table *table;
352 	struct btrfs_stripe_hash *h;
353 	int freeit = 0;
354 
355 	/*
356 	 * check the bit again under the hash table lock.
357 	 */
358 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 		return;
360 
361 	table = rbio->fs_info->stripe_hash_table;
362 	h = table->table + bucket;
363 
364 	/* hold the lock for the bucket because we may be
365 	 * removing it from the hash table
366 	 */
367 	spin_lock(&h->lock);
368 
369 	/*
370 	 * hold the lock for the bio list because we need
371 	 * to make sure the bio list is empty
372 	 */
373 	spin_lock(&rbio->bio_list_lock);
374 
375 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 		list_del_init(&rbio->stripe_cache);
377 		table->cache_size -= 1;
378 		freeit = 1;
379 
380 		/* if the bio list isn't empty, this rbio is
381 		 * still involved in an IO.  We take it out
382 		 * of the cache list, and drop the ref that
383 		 * was held for the list.
384 		 *
385 		 * If the bio_list was empty, we also remove
386 		 * the rbio from the hash_table, and drop
387 		 * the corresponding ref
388 		 */
389 		if (bio_list_empty(&rbio->bio_list)) {
390 			if (!list_empty(&rbio->hash_list)) {
391 				list_del_init(&rbio->hash_list);
392 				atomic_dec(&rbio->refs);
393 				BUG_ON(!list_empty(&rbio->plug_list));
394 			}
395 		}
396 	}
397 
398 	spin_unlock(&rbio->bio_list_lock);
399 	spin_unlock(&h->lock);
400 
401 	if (freeit)
402 		__free_raid_bio(rbio);
403 }
404 
405 /*
406  * prune a given rbio from the cache
407  */
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 	struct btrfs_stripe_hash_table *table;
411 	unsigned long flags;
412 
413 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 		return;
415 
416 	table = rbio->fs_info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	__remove_rbio_from_cache(rbio);
420 	spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422 
423 /*
424  * remove everything in the cache
425  */
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 	struct btrfs_stripe_hash_table *table;
429 	unsigned long flags;
430 	struct btrfs_raid_bio *rbio;
431 
432 	table = info->stripe_hash_table;
433 
434 	spin_lock_irqsave(&table->cache_lock, flags);
435 	while (!list_empty(&table->stripe_cache)) {
436 		rbio = list_entry(table->stripe_cache.next,
437 				  struct btrfs_raid_bio,
438 				  stripe_cache);
439 		__remove_rbio_from_cache(rbio);
440 	}
441 	spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443 
444 /*
445  * remove all cached entries and free the hash table
446  * used by unmount
447  */
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 	if (!info->stripe_hash_table)
451 		return;
452 	btrfs_clear_rbio_cache(info);
453 	kvfree(info->stripe_hash_table);
454 	info->stripe_hash_table = NULL;
455 }
456 
457 /*
458  * insert an rbio into the stripe cache.  It
459  * must have already been prepared by calling
460  * cache_rbio_pages
461  *
462  * If this rbio was already cached, it gets
463  * moved to the front of the lru.
464  *
465  * If the size of the rbio cache is too big, we
466  * prune an item.
467  */
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 	struct btrfs_stripe_hash_table *table;
471 	unsigned long flags;
472 
473 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 		return;
475 
476 	table = rbio->fs_info->stripe_hash_table;
477 
478 	spin_lock_irqsave(&table->cache_lock, flags);
479 	spin_lock(&rbio->bio_list_lock);
480 
481 	/* bump our ref if we were not in the list before */
482 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 		atomic_inc(&rbio->refs);
484 
485 	if (!list_empty(&rbio->stripe_cache)){
486 		list_move(&rbio->stripe_cache, &table->stripe_cache);
487 	} else {
488 		list_add(&rbio->stripe_cache, &table->stripe_cache);
489 		table->cache_size += 1;
490 	}
491 
492 	spin_unlock(&rbio->bio_list_lock);
493 
494 	if (table->cache_size > RBIO_CACHE_SIZE) {
495 		struct btrfs_raid_bio *found;
496 
497 		found = list_entry(table->stripe_cache.prev,
498 				  struct btrfs_raid_bio,
499 				  stripe_cache);
500 
501 		if (found != rbio)
502 			__remove_rbio_from_cache(found);
503 	}
504 
505 	spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * returns true if the bio list inside this rbio
530  * covers an entire stripe (no rmw required).
531  * Must be called with the bio list lock held, or
532  * at a time when you know it is impossible to add
533  * new bios into the list
534  */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 	unsigned long size = rbio->bio_list_bytes;
538 	int ret = 1;
539 
540 	if (size != rbio->nr_data * rbio->stripe_len)
541 		ret = 0;
542 
543 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 	return ret;
545 }
546 
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 	unsigned long flags;
550 	int ret;
551 
552 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 	ret = __rbio_is_full(rbio);
554 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 	return ret;
556 }
557 
558 /*
559  * returns 1 if it is safe to merge two rbios together.
560  * The merging is safe if the two rbios correspond to
561  * the same stripe and if they are both going in the same
562  * direction (read vs write), and if neither one is
563  * locked for final IO
564  *
565  * The caller is responsible for locking such that
566  * rmw_locked is safe to test
567  */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 			  struct btrfs_raid_bio *cur)
570 {
571 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 		return 0;
574 
575 	/*
576 	 * we can't merge with cached rbios, since the
577 	 * idea is that when we merge the destination
578 	 * rbio is going to run our IO for us.  We can
579 	 * steal from cached rbios though, other functions
580 	 * handle that.
581 	 */
582 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
584 		return 0;
585 
586 	if (last->bbio->raid_map[0] !=
587 	    cur->bbio->raid_map[0])
588 		return 0;
589 
590 	/* we can't merge with different operations */
591 	if (last->operation != cur->operation)
592 		return 0;
593 	/*
594 	 * We've need read the full stripe from the drive.
595 	 * check and repair the parity and write the new results.
596 	 *
597 	 * We're not allowed to add any new bios to the
598 	 * bio list here, anyone else that wants to
599 	 * change this stripe needs to do their own rmw.
600 	 */
601 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 		return 0;
604 
605 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 		return 0;
608 
609 	return 1;
610 }
611 
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 				  int index)
614 {
615 	return stripe * rbio->stripe_npages + index;
616 }
617 
618 /*
619  * these are just the pages from the rbio array, not from anything
620  * the FS sent down to us
621  */
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 				     int index)
624 {
625 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 }
627 
628 /*
629  * helper to index into the pstripe
630  */
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632 {
633 	return rbio_stripe_page(rbio, rbio->nr_data, index);
634 }
635 
636 /*
637  * helper to index into the qstripe, returns null
638  * if there is no qstripe
639  */
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641 {
642 	if (rbio->nr_data + 1 == rbio->real_stripes)
643 		return NULL;
644 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 }
646 
647 /*
648  * The first stripe in the table for a logical address
649  * has the lock.  rbios are added in one of three ways:
650  *
651  * 1) Nobody has the stripe locked yet.  The rbio is given
652  * the lock and 0 is returned.  The caller must start the IO
653  * themselves.
654  *
655  * 2) Someone has the stripe locked, but we're able to merge
656  * with the lock owner.  The rbio is freed and the IO will
657  * start automatically along with the existing rbio.  1 is returned.
658  *
659  * 3) Someone has the stripe locked, but we're not able to merge.
660  * The rbio is added to the lock owner's plug list, or merged into
661  * an rbio already on the plug list.  When the lock owner unlocks,
662  * the next rbio on the list is run and the IO is started automatically.
663  * 1 is returned
664  *
665  * If we return 0, the caller still owns the rbio and must continue with
666  * IO submission.  If we return 1, the caller must assume the rbio has
667  * already been freed.
668  */
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670 {
671 	int bucket = rbio_bucket(rbio);
672 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 	struct btrfs_raid_bio *cur;
674 	struct btrfs_raid_bio *pending;
675 	unsigned long flags;
676 	DEFINE_WAIT(wait);
677 	struct btrfs_raid_bio *freeit = NULL;
678 	struct btrfs_raid_bio *cache_drop = NULL;
679 	int ret = 0;
680 	int walk = 0;
681 
682 	spin_lock_irqsave(&h->lock, flags);
683 	list_for_each_entry(cur, &h->hash_list, hash_list) {
684 		walk++;
685 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 			spin_lock(&cur->bio_list_lock);
687 
688 			/* can we steal this cached rbio's pages? */
689 			if (bio_list_empty(&cur->bio_list) &&
690 			    list_empty(&cur->plug_list) &&
691 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 				list_del_init(&cur->hash_list);
694 				atomic_dec(&cur->refs);
695 
696 				steal_rbio(cur, rbio);
697 				cache_drop = cur;
698 				spin_unlock(&cur->bio_list_lock);
699 
700 				goto lockit;
701 			}
702 
703 			/* can we merge into the lock owner? */
704 			if (rbio_can_merge(cur, rbio)) {
705 				merge_rbio(cur, rbio);
706 				spin_unlock(&cur->bio_list_lock);
707 				freeit = rbio;
708 				ret = 1;
709 				goto out;
710 			}
711 
712 
713 			/*
714 			 * we couldn't merge with the running
715 			 * rbio, see if we can merge with the
716 			 * pending ones.  We don't have to
717 			 * check for rmw_locked because there
718 			 * is no way they are inside finish_rmw
719 			 * right now
720 			 */
721 			list_for_each_entry(pending, &cur->plug_list,
722 					    plug_list) {
723 				if (rbio_can_merge(pending, rbio)) {
724 					merge_rbio(pending, rbio);
725 					spin_unlock(&cur->bio_list_lock);
726 					freeit = rbio;
727 					ret = 1;
728 					goto out;
729 				}
730 			}
731 
732 			/* no merging, put us on the tail of the plug list,
733 			 * our rbio will be started with the currently
734 			 * running rbio unlocks
735 			 */
736 			list_add_tail(&rbio->plug_list, &cur->plug_list);
737 			spin_unlock(&cur->bio_list_lock);
738 			ret = 1;
739 			goto out;
740 		}
741 	}
742 lockit:
743 	atomic_inc(&rbio->refs);
744 	list_add(&rbio->hash_list, &h->hash_list);
745 out:
746 	spin_unlock_irqrestore(&h->lock, flags);
747 	if (cache_drop)
748 		remove_rbio_from_cache(cache_drop);
749 	if (freeit)
750 		__free_raid_bio(freeit);
751 	return ret;
752 }
753 
754 /*
755  * called as rmw or parity rebuild is completed.  If the plug list has more
756  * rbios waiting for this stripe, the next one on the list will be started
757  */
758 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759 {
760 	int bucket;
761 	struct btrfs_stripe_hash *h;
762 	unsigned long flags;
763 	int keep_cache = 0;
764 
765 	bucket = rbio_bucket(rbio);
766 	h = rbio->fs_info->stripe_hash_table->table + bucket;
767 
768 	if (list_empty(&rbio->plug_list))
769 		cache_rbio(rbio);
770 
771 	spin_lock_irqsave(&h->lock, flags);
772 	spin_lock(&rbio->bio_list_lock);
773 
774 	if (!list_empty(&rbio->hash_list)) {
775 		/*
776 		 * if we're still cached and there is no other IO
777 		 * to perform, just leave this rbio here for others
778 		 * to steal from later
779 		 */
780 		if (list_empty(&rbio->plug_list) &&
781 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 			keep_cache = 1;
783 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 			BUG_ON(!bio_list_empty(&rbio->bio_list));
785 			goto done;
786 		}
787 
788 		list_del_init(&rbio->hash_list);
789 		atomic_dec(&rbio->refs);
790 
791 		/*
792 		 * we use the plug list to hold all the rbios
793 		 * waiting for the chance to lock this stripe.
794 		 * hand the lock over to one of them.
795 		 */
796 		if (!list_empty(&rbio->plug_list)) {
797 			struct btrfs_raid_bio *next;
798 			struct list_head *head = rbio->plug_list.next;
799 
800 			next = list_entry(head, struct btrfs_raid_bio,
801 					  plug_list);
802 
803 			list_del_init(&rbio->plug_list);
804 
805 			list_add(&next->hash_list, &h->hash_list);
806 			atomic_inc(&next->refs);
807 			spin_unlock(&rbio->bio_list_lock);
808 			spin_unlock_irqrestore(&h->lock, flags);
809 
810 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 				async_read_rebuild(next);
812 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 				steal_rbio(rbio, next);
814 				async_read_rebuild(next);
815 			} else if (next->operation == BTRFS_RBIO_WRITE) {
816 				steal_rbio(rbio, next);
817 				async_rmw_stripe(next);
818 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 				steal_rbio(rbio, next);
820 				async_scrub_parity(next);
821 			}
822 
823 			goto done_nolock;
824 			/*
825 			 * The barrier for this waitqueue_active is not needed,
826 			 * we're protected by h->lock and can't miss a wakeup.
827 			 */
828 		} else if (waitqueue_active(&h->wait)) {
829 			spin_unlock(&rbio->bio_list_lock);
830 			spin_unlock_irqrestore(&h->lock, flags);
831 			wake_up(&h->wait);
832 			goto done_nolock;
833 		}
834 	}
835 done:
836 	spin_unlock(&rbio->bio_list_lock);
837 	spin_unlock_irqrestore(&h->lock, flags);
838 
839 done_nolock:
840 	if (!keep_cache)
841 		remove_rbio_from_cache(rbio);
842 }
843 
844 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
845 {
846 	int i;
847 
848 	WARN_ON(atomic_read(&rbio->refs) < 0);
849 	if (!atomic_dec_and_test(&rbio->refs))
850 		return;
851 
852 	WARN_ON(!list_empty(&rbio->stripe_cache));
853 	WARN_ON(!list_empty(&rbio->hash_list));
854 	WARN_ON(!bio_list_empty(&rbio->bio_list));
855 
856 	for (i = 0; i < rbio->nr_pages; i++) {
857 		if (rbio->stripe_pages[i]) {
858 			__free_page(rbio->stripe_pages[i]);
859 			rbio->stripe_pages[i] = NULL;
860 		}
861 	}
862 
863 	btrfs_put_bbio(rbio->bbio);
864 	kfree(rbio);
865 }
866 
867 static void free_raid_bio(struct btrfs_raid_bio *rbio)
868 {
869 	unlock_stripe(rbio);
870 	__free_raid_bio(rbio);
871 }
872 
873 /*
874  * this frees the rbio and runs through all the bios in the
875  * bio_list and calls end_io on them
876  */
877 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
878 {
879 	struct bio *cur = bio_list_get(&rbio->bio_list);
880 	struct bio *next;
881 
882 	if (rbio->generic_bio_cnt)
883 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884 
885 	free_raid_bio(rbio);
886 
887 	while (cur) {
888 		next = cur->bi_next;
889 		cur->bi_next = NULL;
890 		cur->bi_error = err;
891 		bio_endio(cur);
892 		cur = next;
893 	}
894 }
895 
896 /*
897  * end io function used by finish_rmw.  When we finally
898  * get here, we've written a full stripe
899  */
900 static void raid_write_end_io(struct bio *bio)
901 {
902 	struct btrfs_raid_bio *rbio = bio->bi_private;
903 	int err = bio->bi_error;
904 	int max_errors;
905 
906 	if (err)
907 		fail_bio_stripe(rbio, bio);
908 
909 	bio_put(bio);
910 
911 	if (!atomic_dec_and_test(&rbio->stripes_pending))
912 		return;
913 
914 	err = 0;
915 
916 	/* OK, we have read all the stripes we need to. */
917 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
918 		     0 : rbio->bbio->max_errors;
919 	if (atomic_read(&rbio->error) > max_errors)
920 		err = -EIO;
921 
922 	rbio_orig_end_io(rbio, err);
923 }
924 
925 /*
926  * the read/modify/write code wants to use the original bio for
927  * any pages it included, and then use the rbio for everything
928  * else.  This function decides if a given index (stripe number)
929  * and page number in that stripe fall inside the original bio
930  * or the rbio.
931  *
932  * if you set bio_list_only, you'll get a NULL back for any ranges
933  * that are outside the bio_list
934  *
935  * This doesn't take any refs on anything, you get a bare page pointer
936  * and the caller must bump refs as required.
937  *
938  * You must call index_rbio_pages once before you can trust
939  * the answers from this function.
940  */
941 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
942 				 int index, int pagenr, int bio_list_only)
943 {
944 	int chunk_page;
945 	struct page *p = NULL;
946 
947 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948 
949 	spin_lock_irq(&rbio->bio_list_lock);
950 	p = rbio->bio_pages[chunk_page];
951 	spin_unlock_irq(&rbio->bio_list_lock);
952 
953 	if (p || bio_list_only)
954 		return p;
955 
956 	return rbio->stripe_pages[chunk_page];
957 }
958 
959 /*
960  * number of pages we need for the entire stripe across all the
961  * drives
962  */
963 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964 {
965 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
966 }
967 
968 /*
969  * allocation and initial setup for the btrfs_raid_bio.  Not
970  * this does not allocate any pages for rbio->pages.
971  */
972 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
973 					 struct btrfs_bio *bbio,
974 					 u64 stripe_len)
975 {
976 	struct btrfs_raid_bio *rbio;
977 	int nr_data = 0;
978 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
979 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
980 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
981 	void *p;
982 
983 	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
984 		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
985 		       sizeof(long), GFP_NOFS);
986 	if (!rbio)
987 		return ERR_PTR(-ENOMEM);
988 
989 	bio_list_init(&rbio->bio_list);
990 	INIT_LIST_HEAD(&rbio->plug_list);
991 	spin_lock_init(&rbio->bio_list_lock);
992 	INIT_LIST_HEAD(&rbio->stripe_cache);
993 	INIT_LIST_HEAD(&rbio->hash_list);
994 	rbio->bbio = bbio;
995 	rbio->fs_info = fs_info;
996 	rbio->stripe_len = stripe_len;
997 	rbio->nr_pages = num_pages;
998 	rbio->real_stripes = real_stripes;
999 	rbio->stripe_npages = stripe_npages;
1000 	rbio->faila = -1;
1001 	rbio->failb = -1;
1002 	atomic_set(&rbio->refs, 1);
1003 	atomic_set(&rbio->error, 0);
1004 	atomic_set(&rbio->stripes_pending, 0);
1005 
1006 	/*
1007 	 * the stripe_pages and bio_pages array point to the extra
1008 	 * memory we allocated past the end of the rbio
1009 	 */
1010 	p = rbio + 1;
1011 	rbio->stripe_pages = p;
1012 	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1013 	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1014 
1015 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1016 		nr_data = real_stripes - 1;
1017 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1018 		nr_data = real_stripes - 2;
1019 	else
1020 		BUG();
1021 
1022 	rbio->nr_data = nr_data;
1023 	return rbio;
1024 }
1025 
1026 /* allocate pages for all the stripes in the bio, including parity */
1027 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1028 {
1029 	int i;
1030 	struct page *page;
1031 
1032 	for (i = 0; i < rbio->nr_pages; i++) {
1033 		if (rbio->stripe_pages[i])
1034 			continue;
1035 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1036 		if (!page)
1037 			return -ENOMEM;
1038 		rbio->stripe_pages[i] = page;
1039 	}
1040 	return 0;
1041 }
1042 
1043 /* only allocate pages for p/q stripes */
1044 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1045 {
1046 	int i;
1047 	struct page *page;
1048 
1049 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1050 
1051 	for (; i < rbio->nr_pages; i++) {
1052 		if (rbio->stripe_pages[i])
1053 			continue;
1054 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1055 		if (!page)
1056 			return -ENOMEM;
1057 		rbio->stripe_pages[i] = page;
1058 	}
1059 	return 0;
1060 }
1061 
1062 /*
1063  * add a single page from a specific stripe into our list of bios for IO
1064  * this will try to merge into existing bios if possible, and returns
1065  * zero if all went well.
1066  */
1067 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1068 			    struct bio_list *bio_list,
1069 			    struct page *page,
1070 			    int stripe_nr,
1071 			    unsigned long page_index,
1072 			    unsigned long bio_max_len)
1073 {
1074 	struct bio *last = bio_list->tail;
1075 	u64 last_end = 0;
1076 	int ret;
1077 	struct bio *bio;
1078 	struct btrfs_bio_stripe *stripe;
1079 	u64 disk_start;
1080 
1081 	stripe = &rbio->bbio->stripes[stripe_nr];
1082 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1083 
1084 	/* if the device is missing, just fail this stripe */
1085 	if (!stripe->dev->bdev)
1086 		return fail_rbio_index(rbio, stripe_nr);
1087 
1088 	/* see if we can add this page onto our existing bio */
1089 	if (last) {
1090 		last_end = (u64)last->bi_iter.bi_sector << 9;
1091 		last_end += last->bi_iter.bi_size;
1092 
1093 		/*
1094 		 * we can't merge these if they are from different
1095 		 * devices or if they are not contiguous
1096 		 */
1097 		if (last_end == disk_start && stripe->dev->bdev &&
1098 		    !last->bi_error &&
1099 		    last->bi_bdev == stripe->dev->bdev) {
1100 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1101 			if (ret == PAGE_SIZE)
1102 				return 0;
1103 		}
1104 	}
1105 
1106 	/* put a new bio on the list */
1107 	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1108 	if (!bio)
1109 		return -ENOMEM;
1110 
1111 	bio->bi_iter.bi_size = 0;
1112 	bio->bi_bdev = stripe->dev->bdev;
1113 	bio->bi_iter.bi_sector = disk_start >> 9;
1114 
1115 	bio_add_page(bio, page, PAGE_SIZE, 0);
1116 	bio_list_add(bio_list, bio);
1117 	return 0;
1118 }
1119 
1120 /*
1121  * while we're doing the read/modify/write cycle, we could
1122  * have errors in reading pages off the disk.  This checks
1123  * for errors and if we're not able to read the page it'll
1124  * trigger parity reconstruction.  The rmw will be finished
1125  * after we've reconstructed the failed stripes
1126  */
1127 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1128 {
1129 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1130 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1131 		__raid56_parity_recover(rbio);
1132 	} else {
1133 		finish_rmw(rbio);
1134 	}
1135 }
1136 
1137 /*
1138  * helper function to walk our bio list and populate the bio_pages array with
1139  * the result.  This seems expensive, but it is faster than constantly
1140  * searching through the bio list as we setup the IO in finish_rmw or stripe
1141  * reconstruction.
1142  *
1143  * This must be called before you trust the answers from page_in_rbio
1144  */
1145 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1146 {
1147 	struct bio *bio;
1148 	struct bio_vec *bvec;
1149 	u64 start;
1150 	unsigned long stripe_offset;
1151 	unsigned long page_index;
1152 	int i;
1153 
1154 	spin_lock_irq(&rbio->bio_list_lock);
1155 	bio_list_for_each(bio, &rbio->bio_list) {
1156 		start = (u64)bio->bi_iter.bi_sector << 9;
1157 		stripe_offset = start - rbio->bbio->raid_map[0];
1158 		page_index = stripe_offset >> PAGE_SHIFT;
1159 
1160 		bio_for_each_segment_all(bvec, bio, i)
1161 			rbio->bio_pages[page_index + i] = bvec->bv_page;
1162 	}
1163 	spin_unlock_irq(&rbio->bio_list_lock);
1164 }
1165 
1166 /*
1167  * this is called from one of two situations.  We either
1168  * have a full stripe from the higher layers, or we've read all
1169  * the missing bits off disk.
1170  *
1171  * This will calculate the parity and then send down any
1172  * changed blocks.
1173  */
1174 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1175 {
1176 	struct btrfs_bio *bbio = rbio->bbio;
1177 	void *pointers[rbio->real_stripes];
1178 	int nr_data = rbio->nr_data;
1179 	int stripe;
1180 	int pagenr;
1181 	int p_stripe = -1;
1182 	int q_stripe = -1;
1183 	struct bio_list bio_list;
1184 	struct bio *bio;
1185 	int ret;
1186 
1187 	bio_list_init(&bio_list);
1188 
1189 	if (rbio->real_stripes - rbio->nr_data == 1) {
1190 		p_stripe = rbio->real_stripes - 1;
1191 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1192 		p_stripe = rbio->real_stripes - 2;
1193 		q_stripe = rbio->real_stripes - 1;
1194 	} else {
1195 		BUG();
1196 	}
1197 
1198 	/* at this point we either have a full stripe,
1199 	 * or we've read the full stripe from the drive.
1200 	 * recalculate the parity and write the new results.
1201 	 *
1202 	 * We're not allowed to add any new bios to the
1203 	 * bio list here, anyone else that wants to
1204 	 * change this stripe needs to do their own rmw.
1205 	 */
1206 	spin_lock_irq(&rbio->bio_list_lock);
1207 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1208 	spin_unlock_irq(&rbio->bio_list_lock);
1209 
1210 	atomic_set(&rbio->error, 0);
1211 
1212 	/*
1213 	 * now that we've set rmw_locked, run through the
1214 	 * bio list one last time and map the page pointers
1215 	 *
1216 	 * We don't cache full rbios because we're assuming
1217 	 * the higher layers are unlikely to use this area of
1218 	 * the disk again soon.  If they do use it again,
1219 	 * hopefully they will send another full bio.
1220 	 */
1221 	index_rbio_pages(rbio);
1222 	if (!rbio_is_full(rbio))
1223 		cache_rbio_pages(rbio);
1224 	else
1225 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1226 
1227 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1228 		struct page *p;
1229 		/* first collect one page from each data stripe */
1230 		for (stripe = 0; stripe < nr_data; stripe++) {
1231 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1232 			pointers[stripe] = kmap(p);
1233 		}
1234 
1235 		/* then add the parity stripe */
1236 		p = rbio_pstripe_page(rbio, pagenr);
1237 		SetPageUptodate(p);
1238 		pointers[stripe++] = kmap(p);
1239 
1240 		if (q_stripe != -1) {
1241 
1242 			/*
1243 			 * raid6, add the qstripe and call the
1244 			 * library function to fill in our p/q
1245 			 */
1246 			p = rbio_qstripe_page(rbio, pagenr);
1247 			SetPageUptodate(p);
1248 			pointers[stripe++] = kmap(p);
1249 
1250 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1251 						pointers);
1252 		} else {
1253 			/* raid5 */
1254 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1255 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1256 		}
1257 
1258 
1259 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1260 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1261 	}
1262 
1263 	/*
1264 	 * time to start writing.  Make bios for everything from the
1265 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1266 	 * everything else.
1267 	 */
1268 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1269 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1270 			struct page *page;
1271 			if (stripe < rbio->nr_data) {
1272 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1273 				if (!page)
1274 					continue;
1275 			} else {
1276 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1277 			}
1278 
1279 			ret = rbio_add_io_page(rbio, &bio_list,
1280 				       page, stripe, pagenr, rbio->stripe_len);
1281 			if (ret)
1282 				goto cleanup;
1283 		}
1284 	}
1285 
1286 	if (likely(!bbio->num_tgtdevs))
1287 		goto write_data;
1288 
1289 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1290 		if (!bbio->tgtdev_map[stripe])
1291 			continue;
1292 
1293 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1294 			struct page *page;
1295 			if (stripe < rbio->nr_data) {
1296 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1297 				if (!page)
1298 					continue;
1299 			} else {
1300 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1301 			}
1302 
1303 			ret = rbio_add_io_page(rbio, &bio_list, page,
1304 					       rbio->bbio->tgtdev_map[stripe],
1305 					       pagenr, rbio->stripe_len);
1306 			if (ret)
1307 				goto cleanup;
1308 		}
1309 	}
1310 
1311 write_data:
1312 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1313 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1314 
1315 	while (1) {
1316 		bio = bio_list_pop(&bio_list);
1317 		if (!bio)
1318 			break;
1319 
1320 		bio->bi_private = rbio;
1321 		bio->bi_end_io = raid_write_end_io;
1322 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1323 
1324 		submit_bio(bio);
1325 	}
1326 	return;
1327 
1328 cleanup:
1329 	rbio_orig_end_io(rbio, -EIO);
1330 }
1331 
1332 /*
1333  * helper to find the stripe number for a given bio.  Used to figure out which
1334  * stripe has failed.  This expects the bio to correspond to a physical disk,
1335  * so it looks up based on physical sector numbers.
1336  */
1337 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338 			   struct bio *bio)
1339 {
1340 	u64 physical = bio->bi_iter.bi_sector;
1341 	u64 stripe_start;
1342 	int i;
1343 	struct btrfs_bio_stripe *stripe;
1344 
1345 	physical <<= 9;
1346 
1347 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1348 		stripe = &rbio->bbio->stripes[i];
1349 		stripe_start = stripe->physical;
1350 		if (physical >= stripe_start &&
1351 		    physical < stripe_start + rbio->stripe_len &&
1352 		    bio->bi_bdev == stripe->dev->bdev) {
1353 			return i;
1354 		}
1355 	}
1356 	return -1;
1357 }
1358 
1359 /*
1360  * helper to find the stripe number for a given
1361  * bio (before mapping).  Used to figure out which stripe has
1362  * failed.  This looks up based on logical block numbers.
1363  */
1364 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 				   struct bio *bio)
1366 {
1367 	u64 logical = bio->bi_iter.bi_sector;
1368 	u64 stripe_start;
1369 	int i;
1370 
1371 	logical <<= 9;
1372 
1373 	for (i = 0; i < rbio->nr_data; i++) {
1374 		stripe_start = rbio->bbio->raid_map[i];
1375 		if (logical >= stripe_start &&
1376 		    logical < stripe_start + rbio->stripe_len) {
1377 			return i;
1378 		}
1379 	}
1380 	return -1;
1381 }
1382 
1383 /*
1384  * returns -EIO if we had too many failures
1385  */
1386 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1387 {
1388 	unsigned long flags;
1389 	int ret = 0;
1390 
1391 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1392 
1393 	/* we already know this stripe is bad, move on */
1394 	if (rbio->faila == failed || rbio->failb == failed)
1395 		goto out;
1396 
1397 	if (rbio->faila == -1) {
1398 		/* first failure on this rbio */
1399 		rbio->faila = failed;
1400 		atomic_inc(&rbio->error);
1401 	} else if (rbio->failb == -1) {
1402 		/* second failure on this rbio */
1403 		rbio->failb = failed;
1404 		atomic_inc(&rbio->error);
1405 	} else {
1406 		ret = -EIO;
1407 	}
1408 out:
1409 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1410 
1411 	return ret;
1412 }
1413 
1414 /*
1415  * helper to fail a stripe based on a physical disk
1416  * bio.
1417  */
1418 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 			   struct bio *bio)
1420 {
1421 	int failed = find_bio_stripe(rbio, bio);
1422 
1423 	if (failed < 0)
1424 		return -EIO;
1425 
1426 	return fail_rbio_index(rbio, failed);
1427 }
1428 
1429 /*
1430  * this sets each page in the bio uptodate.  It should only be used on private
1431  * rbio pages, nothing that comes in from the higher layers
1432  */
1433 static void set_bio_pages_uptodate(struct bio *bio)
1434 {
1435 	struct bio_vec *bvec;
1436 	int i;
1437 
1438 	bio_for_each_segment_all(bvec, bio, i)
1439 		SetPageUptodate(bvec->bv_page);
1440 }
1441 
1442 /*
1443  * end io for the read phase of the rmw cycle.  All the bios here are physical
1444  * stripe bios we've read from the disk so we can recalculate the parity of the
1445  * stripe.
1446  *
1447  * This will usually kick off finish_rmw once all the bios are read in, but it
1448  * may trigger parity reconstruction if we had any errors along the way
1449  */
1450 static void raid_rmw_end_io(struct bio *bio)
1451 {
1452 	struct btrfs_raid_bio *rbio = bio->bi_private;
1453 
1454 	if (bio->bi_error)
1455 		fail_bio_stripe(rbio, bio);
1456 	else
1457 		set_bio_pages_uptodate(bio);
1458 
1459 	bio_put(bio);
1460 
1461 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1462 		return;
1463 
1464 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1465 		goto cleanup;
1466 
1467 	/*
1468 	 * this will normally call finish_rmw to start our write
1469 	 * but if there are any failed stripes we'll reconstruct
1470 	 * from parity first
1471 	 */
1472 	validate_rbio_for_rmw(rbio);
1473 	return;
1474 
1475 cleanup:
1476 
1477 	rbio_orig_end_io(rbio, -EIO);
1478 }
1479 
1480 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1481 {
1482 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1483 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1484 }
1485 
1486 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1487 {
1488 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1489 			read_rebuild_work, NULL, NULL);
1490 
1491 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1492 }
1493 
1494 /*
1495  * the stripe must be locked by the caller.  It will
1496  * unlock after all the writes are done
1497  */
1498 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1499 {
1500 	int bios_to_read = 0;
1501 	struct bio_list bio_list;
1502 	int ret;
1503 	int pagenr;
1504 	int stripe;
1505 	struct bio *bio;
1506 
1507 	bio_list_init(&bio_list);
1508 
1509 	ret = alloc_rbio_pages(rbio);
1510 	if (ret)
1511 		goto cleanup;
1512 
1513 	index_rbio_pages(rbio);
1514 
1515 	atomic_set(&rbio->error, 0);
1516 	/*
1517 	 * build a list of bios to read all the missing parts of this
1518 	 * stripe
1519 	 */
1520 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1521 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1522 			struct page *page;
1523 			/*
1524 			 * we want to find all the pages missing from
1525 			 * the rbio and read them from the disk.  If
1526 			 * page_in_rbio finds a page in the bio list
1527 			 * we don't need to read it off the stripe.
1528 			 */
1529 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1530 			if (page)
1531 				continue;
1532 
1533 			page = rbio_stripe_page(rbio, stripe, pagenr);
1534 			/*
1535 			 * the bio cache may have handed us an uptodate
1536 			 * page.  If so, be happy and use it
1537 			 */
1538 			if (PageUptodate(page))
1539 				continue;
1540 
1541 			ret = rbio_add_io_page(rbio, &bio_list, page,
1542 				       stripe, pagenr, rbio->stripe_len);
1543 			if (ret)
1544 				goto cleanup;
1545 		}
1546 	}
1547 
1548 	bios_to_read = bio_list_size(&bio_list);
1549 	if (!bios_to_read) {
1550 		/*
1551 		 * this can happen if others have merged with
1552 		 * us, it means there is nothing left to read.
1553 		 * But if there are missing devices it may not be
1554 		 * safe to do the full stripe write yet.
1555 		 */
1556 		goto finish;
1557 	}
1558 
1559 	/*
1560 	 * the bbio may be freed once we submit the last bio.  Make sure
1561 	 * not to touch it after that
1562 	 */
1563 	atomic_set(&rbio->stripes_pending, bios_to_read);
1564 	while (1) {
1565 		bio = bio_list_pop(&bio_list);
1566 		if (!bio)
1567 			break;
1568 
1569 		bio->bi_private = rbio;
1570 		bio->bi_end_io = raid_rmw_end_io;
1571 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1572 
1573 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1574 
1575 		submit_bio(bio);
1576 	}
1577 	/* the actual write will happen once the reads are done */
1578 	return 0;
1579 
1580 cleanup:
1581 	rbio_orig_end_io(rbio, -EIO);
1582 	return -EIO;
1583 
1584 finish:
1585 	validate_rbio_for_rmw(rbio);
1586 	return 0;
1587 }
1588 
1589 /*
1590  * if the upper layers pass in a full stripe, we thank them by only allocating
1591  * enough pages to hold the parity, and sending it all down quickly.
1592  */
1593 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1594 {
1595 	int ret;
1596 
1597 	ret = alloc_rbio_parity_pages(rbio);
1598 	if (ret) {
1599 		__free_raid_bio(rbio);
1600 		return ret;
1601 	}
1602 
1603 	ret = lock_stripe_add(rbio);
1604 	if (ret == 0)
1605 		finish_rmw(rbio);
1606 	return 0;
1607 }
1608 
1609 /*
1610  * partial stripe writes get handed over to async helpers.
1611  * We're really hoping to merge a few more writes into this
1612  * rbio before calculating new parity
1613  */
1614 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1615 {
1616 	int ret;
1617 
1618 	ret = lock_stripe_add(rbio);
1619 	if (ret == 0)
1620 		async_rmw_stripe(rbio);
1621 	return 0;
1622 }
1623 
1624 /*
1625  * sometimes while we were reading from the drive to
1626  * recalculate parity, enough new bios come into create
1627  * a full stripe.  So we do a check here to see if we can
1628  * go directly to finish_rmw
1629  */
1630 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1631 {
1632 	/* head off into rmw land if we don't have a full stripe */
1633 	if (!rbio_is_full(rbio))
1634 		return partial_stripe_write(rbio);
1635 	return full_stripe_write(rbio);
1636 }
1637 
1638 /*
1639  * We use plugging call backs to collect full stripes.
1640  * Any time we get a partial stripe write while plugged
1641  * we collect it into a list.  When the unplug comes down,
1642  * we sort the list by logical block number and merge
1643  * everything we can into the same rbios
1644  */
1645 struct btrfs_plug_cb {
1646 	struct blk_plug_cb cb;
1647 	struct btrfs_fs_info *info;
1648 	struct list_head rbio_list;
1649 	struct btrfs_work work;
1650 };
1651 
1652 /*
1653  * rbios on the plug list are sorted for easier merging.
1654  */
1655 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1656 {
1657 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1658 						 plug_list);
1659 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1660 						 plug_list);
1661 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1662 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1663 
1664 	if (a_sector < b_sector)
1665 		return -1;
1666 	if (a_sector > b_sector)
1667 		return 1;
1668 	return 0;
1669 }
1670 
1671 static void run_plug(struct btrfs_plug_cb *plug)
1672 {
1673 	struct btrfs_raid_bio *cur;
1674 	struct btrfs_raid_bio *last = NULL;
1675 
1676 	/*
1677 	 * sort our plug list then try to merge
1678 	 * everything we can in hopes of creating full
1679 	 * stripes.
1680 	 */
1681 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1682 	while (!list_empty(&plug->rbio_list)) {
1683 		cur = list_entry(plug->rbio_list.next,
1684 				 struct btrfs_raid_bio, plug_list);
1685 		list_del_init(&cur->plug_list);
1686 
1687 		if (rbio_is_full(cur)) {
1688 			/* we have a full stripe, send it down */
1689 			full_stripe_write(cur);
1690 			continue;
1691 		}
1692 		if (last) {
1693 			if (rbio_can_merge(last, cur)) {
1694 				merge_rbio(last, cur);
1695 				__free_raid_bio(cur);
1696 				continue;
1697 
1698 			}
1699 			__raid56_parity_write(last);
1700 		}
1701 		last = cur;
1702 	}
1703 	if (last) {
1704 		__raid56_parity_write(last);
1705 	}
1706 	kfree(plug);
1707 }
1708 
1709 /*
1710  * if the unplug comes from schedule, we have to push the
1711  * work off to a helper thread
1712  */
1713 static void unplug_work(struct btrfs_work *work)
1714 {
1715 	struct btrfs_plug_cb *plug;
1716 	plug = container_of(work, struct btrfs_plug_cb, work);
1717 	run_plug(plug);
1718 }
1719 
1720 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1721 {
1722 	struct btrfs_plug_cb *plug;
1723 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1724 
1725 	if (from_schedule) {
1726 		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1727 				unplug_work, NULL, NULL);
1728 		btrfs_queue_work(plug->info->rmw_workers,
1729 				 &plug->work);
1730 		return;
1731 	}
1732 	run_plug(plug);
1733 }
1734 
1735 /*
1736  * our main entry point for writes from the rest of the FS.
1737  */
1738 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1739 			struct btrfs_bio *bbio, u64 stripe_len)
1740 {
1741 	struct btrfs_raid_bio *rbio;
1742 	struct btrfs_plug_cb *plug = NULL;
1743 	struct blk_plug_cb *cb;
1744 	int ret;
1745 
1746 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1747 	if (IS_ERR(rbio)) {
1748 		btrfs_put_bbio(bbio);
1749 		return PTR_ERR(rbio);
1750 	}
1751 	bio_list_add(&rbio->bio_list, bio);
1752 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1753 	rbio->operation = BTRFS_RBIO_WRITE;
1754 
1755 	btrfs_bio_counter_inc_noblocked(fs_info);
1756 	rbio->generic_bio_cnt = 1;
1757 
1758 	/*
1759 	 * don't plug on full rbios, just get them out the door
1760 	 * as quickly as we can
1761 	 */
1762 	if (rbio_is_full(rbio)) {
1763 		ret = full_stripe_write(rbio);
1764 		if (ret)
1765 			btrfs_bio_counter_dec(fs_info);
1766 		return ret;
1767 	}
1768 
1769 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1770 	if (cb) {
1771 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1772 		if (!plug->info) {
1773 			plug->info = fs_info;
1774 			INIT_LIST_HEAD(&plug->rbio_list);
1775 		}
1776 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1777 		ret = 0;
1778 	} else {
1779 		ret = __raid56_parity_write(rbio);
1780 		if (ret)
1781 			btrfs_bio_counter_dec(fs_info);
1782 	}
1783 	return ret;
1784 }
1785 
1786 /*
1787  * all parity reconstruction happens here.  We've read in everything
1788  * we can find from the drives and this does the heavy lifting of
1789  * sorting the good from the bad.
1790  */
1791 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1792 {
1793 	int pagenr, stripe;
1794 	void **pointers;
1795 	int faila = -1, failb = -1;
1796 	struct page *page;
1797 	int err;
1798 	int i;
1799 
1800 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1801 	if (!pointers) {
1802 		err = -ENOMEM;
1803 		goto cleanup_io;
1804 	}
1805 
1806 	faila = rbio->faila;
1807 	failb = rbio->failb;
1808 
1809 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1810 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1811 		spin_lock_irq(&rbio->bio_list_lock);
1812 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1813 		spin_unlock_irq(&rbio->bio_list_lock);
1814 	}
1815 
1816 	index_rbio_pages(rbio);
1817 
1818 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1819 		/*
1820 		 * Now we just use bitmap to mark the horizontal stripes in
1821 		 * which we have data when doing parity scrub.
1822 		 */
1823 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1824 		    !test_bit(pagenr, rbio->dbitmap))
1825 			continue;
1826 
1827 		/* setup our array of pointers with pages
1828 		 * from each stripe
1829 		 */
1830 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1831 			/*
1832 			 * if we're rebuilding a read, we have to use
1833 			 * pages from the bio list
1834 			 */
1835 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1836 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1837 			    (stripe == faila || stripe == failb)) {
1838 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1839 			} else {
1840 				page = rbio_stripe_page(rbio, stripe, pagenr);
1841 			}
1842 			pointers[stripe] = kmap(page);
1843 		}
1844 
1845 		/* all raid6 handling here */
1846 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1847 			/*
1848 			 * single failure, rebuild from parity raid5
1849 			 * style
1850 			 */
1851 			if (failb < 0) {
1852 				if (faila == rbio->nr_data) {
1853 					/*
1854 					 * Just the P stripe has failed, without
1855 					 * a bad data or Q stripe.
1856 					 * TODO, we should redo the xor here.
1857 					 */
1858 					err = -EIO;
1859 					goto cleanup;
1860 				}
1861 				/*
1862 				 * a single failure in raid6 is rebuilt
1863 				 * in the pstripe code below
1864 				 */
1865 				goto pstripe;
1866 			}
1867 
1868 			/* make sure our ps and qs are in order */
1869 			if (faila > failb) {
1870 				int tmp = failb;
1871 				failb = faila;
1872 				faila = tmp;
1873 			}
1874 
1875 			/* if the q stripe is failed, do a pstripe reconstruction
1876 			 * from the xors.
1877 			 * If both the q stripe and the P stripe are failed, we're
1878 			 * here due to a crc mismatch and we can't give them the
1879 			 * data they want
1880 			 */
1881 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1882 				if (rbio->bbio->raid_map[faila] ==
1883 				    RAID5_P_STRIPE) {
1884 					err = -EIO;
1885 					goto cleanup;
1886 				}
1887 				/*
1888 				 * otherwise we have one bad data stripe and
1889 				 * a good P stripe.  raid5!
1890 				 */
1891 				goto pstripe;
1892 			}
1893 
1894 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1895 				raid6_datap_recov(rbio->real_stripes,
1896 						  PAGE_SIZE, faila, pointers);
1897 			} else {
1898 				raid6_2data_recov(rbio->real_stripes,
1899 						  PAGE_SIZE, faila, failb,
1900 						  pointers);
1901 			}
1902 		} else {
1903 			void *p;
1904 
1905 			/* rebuild from P stripe here (raid5 or raid6) */
1906 			BUG_ON(failb != -1);
1907 pstripe:
1908 			/* Copy parity block into failed block to start with */
1909 			memcpy(pointers[faila],
1910 			       pointers[rbio->nr_data],
1911 			       PAGE_SIZE);
1912 
1913 			/* rearrange the pointer array */
1914 			p = pointers[faila];
1915 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1916 				pointers[stripe] = pointers[stripe + 1];
1917 			pointers[rbio->nr_data - 1] = p;
1918 
1919 			/* xor in the rest */
1920 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1921 		}
1922 		/* if we're doing this rebuild as part of an rmw, go through
1923 		 * and set all of our private rbio pages in the
1924 		 * failed stripes as uptodate.  This way finish_rmw will
1925 		 * know they can be trusted.  If this was a read reconstruction,
1926 		 * other endio functions will fiddle the uptodate bits
1927 		 */
1928 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1929 			for (i = 0;  i < rbio->stripe_npages; i++) {
1930 				if (faila != -1) {
1931 					page = rbio_stripe_page(rbio, faila, i);
1932 					SetPageUptodate(page);
1933 				}
1934 				if (failb != -1) {
1935 					page = rbio_stripe_page(rbio, failb, i);
1936 					SetPageUptodate(page);
1937 				}
1938 			}
1939 		}
1940 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1941 			/*
1942 			 * if we're rebuilding a read, we have to use
1943 			 * pages from the bio list
1944 			 */
1945 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1946 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1947 			    (stripe == faila || stripe == failb)) {
1948 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1949 			} else {
1950 				page = rbio_stripe_page(rbio, stripe, pagenr);
1951 			}
1952 			kunmap(page);
1953 		}
1954 	}
1955 
1956 	err = 0;
1957 cleanup:
1958 	kfree(pointers);
1959 
1960 cleanup_io:
1961 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1962 		if (err == 0)
1963 			cache_rbio_pages(rbio);
1964 		else
1965 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1966 
1967 		rbio_orig_end_io(rbio, err);
1968 	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1969 		rbio_orig_end_io(rbio, err);
1970 	} else if (err == 0) {
1971 		rbio->faila = -1;
1972 		rbio->failb = -1;
1973 
1974 		if (rbio->operation == BTRFS_RBIO_WRITE)
1975 			finish_rmw(rbio);
1976 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1977 			finish_parity_scrub(rbio, 0);
1978 		else
1979 			BUG();
1980 	} else {
1981 		rbio_orig_end_io(rbio, err);
1982 	}
1983 }
1984 
1985 /*
1986  * This is called only for stripes we've read from disk to
1987  * reconstruct the parity.
1988  */
1989 static void raid_recover_end_io(struct bio *bio)
1990 {
1991 	struct btrfs_raid_bio *rbio = bio->bi_private;
1992 
1993 	/*
1994 	 * we only read stripe pages off the disk, set them
1995 	 * up to date if there were no errors
1996 	 */
1997 	if (bio->bi_error)
1998 		fail_bio_stripe(rbio, bio);
1999 	else
2000 		set_bio_pages_uptodate(bio);
2001 	bio_put(bio);
2002 
2003 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2004 		return;
2005 
2006 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2007 		rbio_orig_end_io(rbio, -EIO);
2008 	else
2009 		__raid_recover_end_io(rbio);
2010 }
2011 
2012 /*
2013  * reads everything we need off the disk to reconstruct
2014  * the parity. endio handlers trigger final reconstruction
2015  * when the IO is done.
2016  *
2017  * This is used both for reads from the higher layers and for
2018  * parity construction required to finish a rmw cycle.
2019  */
2020 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2021 {
2022 	int bios_to_read = 0;
2023 	struct bio_list bio_list;
2024 	int ret;
2025 	int pagenr;
2026 	int stripe;
2027 	struct bio *bio;
2028 
2029 	bio_list_init(&bio_list);
2030 
2031 	ret = alloc_rbio_pages(rbio);
2032 	if (ret)
2033 		goto cleanup;
2034 
2035 	atomic_set(&rbio->error, 0);
2036 
2037 	/*
2038 	 * read everything that hasn't failed.  Thanks to the
2039 	 * stripe cache, it is possible that some or all of these
2040 	 * pages are going to be uptodate.
2041 	 */
2042 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2043 		if (rbio->faila == stripe || rbio->failb == stripe) {
2044 			atomic_inc(&rbio->error);
2045 			continue;
2046 		}
2047 
2048 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2049 			struct page *p;
2050 
2051 			/*
2052 			 * the rmw code may have already read this
2053 			 * page in
2054 			 */
2055 			p = rbio_stripe_page(rbio, stripe, pagenr);
2056 			if (PageUptodate(p))
2057 				continue;
2058 
2059 			ret = rbio_add_io_page(rbio, &bio_list,
2060 				       rbio_stripe_page(rbio, stripe, pagenr),
2061 				       stripe, pagenr, rbio->stripe_len);
2062 			if (ret < 0)
2063 				goto cleanup;
2064 		}
2065 	}
2066 
2067 	bios_to_read = bio_list_size(&bio_list);
2068 	if (!bios_to_read) {
2069 		/*
2070 		 * we might have no bios to read just because the pages
2071 		 * were up to date, or we might have no bios to read because
2072 		 * the devices were gone.
2073 		 */
2074 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2075 			__raid_recover_end_io(rbio);
2076 			goto out;
2077 		} else {
2078 			goto cleanup;
2079 		}
2080 	}
2081 
2082 	/*
2083 	 * the bbio may be freed once we submit the last bio.  Make sure
2084 	 * not to touch it after that
2085 	 */
2086 	atomic_set(&rbio->stripes_pending, bios_to_read);
2087 	while (1) {
2088 		bio = bio_list_pop(&bio_list);
2089 		if (!bio)
2090 			break;
2091 
2092 		bio->bi_private = rbio;
2093 		bio->bi_end_io = raid_recover_end_io;
2094 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2095 
2096 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2097 
2098 		submit_bio(bio);
2099 	}
2100 out:
2101 	return 0;
2102 
2103 cleanup:
2104 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2105 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2106 		rbio_orig_end_io(rbio, -EIO);
2107 	return -EIO;
2108 }
2109 
2110 /*
2111  * the main entry point for reads from the higher layers.  This
2112  * is really only called when the normal read path had a failure,
2113  * so we assume the bio they send down corresponds to a failed part
2114  * of the drive.
2115  */
2116 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2117 			  struct btrfs_bio *bbio, u64 stripe_len,
2118 			  int mirror_num, int generic_io)
2119 {
2120 	struct btrfs_raid_bio *rbio;
2121 	int ret;
2122 
2123 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2124 	if (IS_ERR(rbio)) {
2125 		if (generic_io)
2126 			btrfs_put_bbio(bbio);
2127 		return PTR_ERR(rbio);
2128 	}
2129 
2130 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2131 	bio_list_add(&rbio->bio_list, bio);
2132 	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2133 
2134 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2135 	if (rbio->faila == -1) {
2136 		btrfs_warn(fs_info,
2137 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2138 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2139 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2140 		if (generic_io)
2141 			btrfs_put_bbio(bbio);
2142 		kfree(rbio);
2143 		return -EIO;
2144 	}
2145 
2146 	if (generic_io) {
2147 		btrfs_bio_counter_inc_noblocked(fs_info);
2148 		rbio->generic_bio_cnt = 1;
2149 	} else {
2150 		btrfs_get_bbio(bbio);
2151 	}
2152 
2153 	/*
2154 	 * reconstruct from the q stripe if they are
2155 	 * asking for mirror 3
2156 	 */
2157 	if (mirror_num == 3)
2158 		rbio->failb = rbio->real_stripes - 2;
2159 
2160 	ret = lock_stripe_add(rbio);
2161 
2162 	/*
2163 	 * __raid56_parity_recover will end the bio with
2164 	 * any errors it hits.  We don't want to return
2165 	 * its error value up the stack because our caller
2166 	 * will end up calling bio_endio with any nonzero
2167 	 * return
2168 	 */
2169 	if (ret == 0)
2170 		__raid56_parity_recover(rbio);
2171 	/*
2172 	 * our rbio has been added to the list of
2173 	 * rbios that will be handled after the
2174 	 * currently lock owner is done
2175 	 */
2176 	return 0;
2177 
2178 }
2179 
2180 static void rmw_work(struct btrfs_work *work)
2181 {
2182 	struct btrfs_raid_bio *rbio;
2183 
2184 	rbio = container_of(work, struct btrfs_raid_bio, work);
2185 	raid56_rmw_stripe(rbio);
2186 }
2187 
2188 static void read_rebuild_work(struct btrfs_work *work)
2189 {
2190 	struct btrfs_raid_bio *rbio;
2191 
2192 	rbio = container_of(work, struct btrfs_raid_bio, work);
2193 	__raid56_parity_recover(rbio);
2194 }
2195 
2196 /*
2197  * The following code is used to scrub/replace the parity stripe
2198  *
2199  * Note: We need make sure all the pages that add into the scrub/replace
2200  * raid bio are correct and not be changed during the scrub/replace. That
2201  * is those pages just hold metadata or file data with checksum.
2202  */
2203 
2204 struct btrfs_raid_bio *
2205 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2206 			       struct btrfs_bio *bbio, u64 stripe_len,
2207 			       struct btrfs_device *scrub_dev,
2208 			       unsigned long *dbitmap, int stripe_nsectors)
2209 {
2210 	struct btrfs_raid_bio *rbio;
2211 	int i;
2212 
2213 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2214 	if (IS_ERR(rbio))
2215 		return NULL;
2216 	bio_list_add(&rbio->bio_list, bio);
2217 	/*
2218 	 * This is a special bio which is used to hold the completion handler
2219 	 * and make the scrub rbio is similar to the other types
2220 	 */
2221 	ASSERT(!bio->bi_iter.bi_size);
2222 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2223 
2224 	for (i = 0; i < rbio->real_stripes; i++) {
2225 		if (bbio->stripes[i].dev == scrub_dev) {
2226 			rbio->scrubp = i;
2227 			break;
2228 		}
2229 	}
2230 
2231 	/* Now we just support the sectorsize equals to page size */
2232 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2233 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2234 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2235 
2236 	return rbio;
2237 }
2238 
2239 /* Used for both parity scrub and missing. */
2240 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2241 			    u64 logical)
2242 {
2243 	int stripe_offset;
2244 	int index;
2245 
2246 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2247 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2248 				rbio->stripe_len * rbio->nr_data);
2249 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2250 	index = stripe_offset >> PAGE_SHIFT;
2251 	rbio->bio_pages[index] = page;
2252 }
2253 
2254 /*
2255  * We just scrub the parity that we have correct data on the same horizontal,
2256  * so we needn't allocate all pages for all the stripes.
2257  */
2258 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2259 {
2260 	int i;
2261 	int bit;
2262 	int index;
2263 	struct page *page;
2264 
2265 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2266 		for (i = 0; i < rbio->real_stripes; i++) {
2267 			index = i * rbio->stripe_npages + bit;
2268 			if (rbio->stripe_pages[index])
2269 				continue;
2270 
2271 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2272 			if (!page)
2273 				return -ENOMEM;
2274 			rbio->stripe_pages[index] = page;
2275 		}
2276 	}
2277 	return 0;
2278 }
2279 
2280 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2281 					 int need_check)
2282 {
2283 	struct btrfs_bio *bbio = rbio->bbio;
2284 	void *pointers[rbio->real_stripes];
2285 	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2286 	int nr_data = rbio->nr_data;
2287 	int stripe;
2288 	int pagenr;
2289 	int p_stripe = -1;
2290 	int q_stripe = -1;
2291 	struct page *p_page = NULL;
2292 	struct page *q_page = NULL;
2293 	struct bio_list bio_list;
2294 	struct bio *bio;
2295 	int is_replace = 0;
2296 	int ret;
2297 
2298 	bio_list_init(&bio_list);
2299 
2300 	if (rbio->real_stripes - rbio->nr_data == 1) {
2301 		p_stripe = rbio->real_stripes - 1;
2302 	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2303 		p_stripe = rbio->real_stripes - 2;
2304 		q_stripe = rbio->real_stripes - 1;
2305 	} else {
2306 		BUG();
2307 	}
2308 
2309 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2310 		is_replace = 1;
2311 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2312 	}
2313 
2314 	/*
2315 	 * Because the higher layers(scrubber) are unlikely to
2316 	 * use this area of the disk again soon, so don't cache
2317 	 * it.
2318 	 */
2319 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2320 
2321 	if (!need_check)
2322 		goto writeback;
2323 
2324 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2325 	if (!p_page)
2326 		goto cleanup;
2327 	SetPageUptodate(p_page);
2328 
2329 	if (q_stripe != -1) {
2330 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2331 		if (!q_page) {
2332 			__free_page(p_page);
2333 			goto cleanup;
2334 		}
2335 		SetPageUptodate(q_page);
2336 	}
2337 
2338 	atomic_set(&rbio->error, 0);
2339 
2340 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2341 		struct page *p;
2342 		void *parity;
2343 		/* first collect one page from each data stripe */
2344 		for (stripe = 0; stripe < nr_data; stripe++) {
2345 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2346 			pointers[stripe] = kmap(p);
2347 		}
2348 
2349 		/* then add the parity stripe */
2350 		pointers[stripe++] = kmap(p_page);
2351 
2352 		if (q_stripe != -1) {
2353 
2354 			/*
2355 			 * raid6, add the qstripe and call the
2356 			 * library function to fill in our p/q
2357 			 */
2358 			pointers[stripe++] = kmap(q_page);
2359 
2360 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2361 						pointers);
2362 		} else {
2363 			/* raid5 */
2364 			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2365 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2366 		}
2367 
2368 		/* Check scrubbing parity and repair it */
2369 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2370 		parity = kmap(p);
2371 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2372 			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2373 		else
2374 			/* Parity is right, needn't writeback */
2375 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2376 		kunmap(p);
2377 
2378 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2379 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2380 	}
2381 
2382 	__free_page(p_page);
2383 	if (q_page)
2384 		__free_page(q_page);
2385 
2386 writeback:
2387 	/*
2388 	 * time to start writing.  Make bios for everything from the
2389 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2390 	 * everything else.
2391 	 */
2392 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2393 		struct page *page;
2394 
2395 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2396 		ret = rbio_add_io_page(rbio, &bio_list,
2397 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2398 		if (ret)
2399 			goto cleanup;
2400 	}
2401 
2402 	if (!is_replace)
2403 		goto submit_write;
2404 
2405 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2406 		struct page *page;
2407 
2408 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2409 		ret = rbio_add_io_page(rbio, &bio_list, page,
2410 				       bbio->tgtdev_map[rbio->scrubp],
2411 				       pagenr, rbio->stripe_len);
2412 		if (ret)
2413 			goto cleanup;
2414 	}
2415 
2416 submit_write:
2417 	nr_data = bio_list_size(&bio_list);
2418 	if (!nr_data) {
2419 		/* Every parity is right */
2420 		rbio_orig_end_io(rbio, 0);
2421 		return;
2422 	}
2423 
2424 	atomic_set(&rbio->stripes_pending, nr_data);
2425 
2426 	while (1) {
2427 		bio = bio_list_pop(&bio_list);
2428 		if (!bio)
2429 			break;
2430 
2431 		bio->bi_private = rbio;
2432 		bio->bi_end_io = raid_write_end_io;
2433 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2434 
2435 		submit_bio(bio);
2436 	}
2437 	return;
2438 
2439 cleanup:
2440 	rbio_orig_end_io(rbio, -EIO);
2441 }
2442 
2443 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2444 {
2445 	if (stripe >= 0 && stripe < rbio->nr_data)
2446 		return 1;
2447 	return 0;
2448 }
2449 
2450 /*
2451  * While we're doing the parity check and repair, we could have errors
2452  * in reading pages off the disk.  This checks for errors and if we're
2453  * not able to read the page it'll trigger parity reconstruction.  The
2454  * parity scrub will be finished after we've reconstructed the failed
2455  * stripes
2456  */
2457 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2458 {
2459 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2460 		goto cleanup;
2461 
2462 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2463 		int dfail = 0, failp = -1;
2464 
2465 		if (is_data_stripe(rbio, rbio->faila))
2466 			dfail++;
2467 		else if (is_parity_stripe(rbio->faila))
2468 			failp = rbio->faila;
2469 
2470 		if (is_data_stripe(rbio, rbio->failb))
2471 			dfail++;
2472 		else if (is_parity_stripe(rbio->failb))
2473 			failp = rbio->failb;
2474 
2475 		/*
2476 		 * Because we can not use a scrubbing parity to repair
2477 		 * the data, so the capability of the repair is declined.
2478 		 * (In the case of RAID5, we can not repair anything)
2479 		 */
2480 		if (dfail > rbio->bbio->max_errors - 1)
2481 			goto cleanup;
2482 
2483 		/*
2484 		 * If all data is good, only parity is correctly, just
2485 		 * repair the parity.
2486 		 */
2487 		if (dfail == 0) {
2488 			finish_parity_scrub(rbio, 0);
2489 			return;
2490 		}
2491 
2492 		/*
2493 		 * Here means we got one corrupted data stripe and one
2494 		 * corrupted parity on RAID6, if the corrupted parity
2495 		 * is scrubbing parity, luckily, use the other one to repair
2496 		 * the data, or we can not repair the data stripe.
2497 		 */
2498 		if (failp != rbio->scrubp)
2499 			goto cleanup;
2500 
2501 		__raid_recover_end_io(rbio);
2502 	} else {
2503 		finish_parity_scrub(rbio, 1);
2504 	}
2505 	return;
2506 
2507 cleanup:
2508 	rbio_orig_end_io(rbio, -EIO);
2509 }
2510 
2511 /*
2512  * end io for the read phase of the rmw cycle.  All the bios here are physical
2513  * stripe bios we've read from the disk so we can recalculate the parity of the
2514  * stripe.
2515  *
2516  * This will usually kick off finish_rmw once all the bios are read in, but it
2517  * may trigger parity reconstruction if we had any errors along the way
2518  */
2519 static void raid56_parity_scrub_end_io(struct bio *bio)
2520 {
2521 	struct btrfs_raid_bio *rbio = bio->bi_private;
2522 
2523 	if (bio->bi_error)
2524 		fail_bio_stripe(rbio, bio);
2525 	else
2526 		set_bio_pages_uptodate(bio);
2527 
2528 	bio_put(bio);
2529 
2530 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2531 		return;
2532 
2533 	/*
2534 	 * this will normally call finish_rmw to start our write
2535 	 * but if there are any failed stripes we'll reconstruct
2536 	 * from parity first
2537 	 */
2538 	validate_rbio_for_parity_scrub(rbio);
2539 }
2540 
2541 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2542 {
2543 	int bios_to_read = 0;
2544 	struct bio_list bio_list;
2545 	int ret;
2546 	int pagenr;
2547 	int stripe;
2548 	struct bio *bio;
2549 
2550 	ret = alloc_rbio_essential_pages(rbio);
2551 	if (ret)
2552 		goto cleanup;
2553 
2554 	bio_list_init(&bio_list);
2555 
2556 	atomic_set(&rbio->error, 0);
2557 	/*
2558 	 * build a list of bios to read all the missing parts of this
2559 	 * stripe
2560 	 */
2561 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2562 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2563 			struct page *page;
2564 			/*
2565 			 * we want to find all the pages missing from
2566 			 * the rbio and read them from the disk.  If
2567 			 * page_in_rbio finds a page in the bio list
2568 			 * we don't need to read it off the stripe.
2569 			 */
2570 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2571 			if (page)
2572 				continue;
2573 
2574 			page = rbio_stripe_page(rbio, stripe, pagenr);
2575 			/*
2576 			 * the bio cache may have handed us an uptodate
2577 			 * page.  If so, be happy and use it
2578 			 */
2579 			if (PageUptodate(page))
2580 				continue;
2581 
2582 			ret = rbio_add_io_page(rbio, &bio_list, page,
2583 				       stripe, pagenr, rbio->stripe_len);
2584 			if (ret)
2585 				goto cleanup;
2586 		}
2587 	}
2588 
2589 	bios_to_read = bio_list_size(&bio_list);
2590 	if (!bios_to_read) {
2591 		/*
2592 		 * this can happen if others have merged with
2593 		 * us, it means there is nothing left to read.
2594 		 * But if there are missing devices it may not be
2595 		 * safe to do the full stripe write yet.
2596 		 */
2597 		goto finish;
2598 	}
2599 
2600 	/*
2601 	 * the bbio may be freed once we submit the last bio.  Make sure
2602 	 * not to touch it after that
2603 	 */
2604 	atomic_set(&rbio->stripes_pending, bios_to_read);
2605 	while (1) {
2606 		bio = bio_list_pop(&bio_list);
2607 		if (!bio)
2608 			break;
2609 
2610 		bio->bi_private = rbio;
2611 		bio->bi_end_io = raid56_parity_scrub_end_io;
2612 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2613 
2614 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2615 
2616 		submit_bio(bio);
2617 	}
2618 	/* the actual write will happen once the reads are done */
2619 	return;
2620 
2621 cleanup:
2622 	rbio_orig_end_io(rbio, -EIO);
2623 	return;
2624 
2625 finish:
2626 	validate_rbio_for_parity_scrub(rbio);
2627 }
2628 
2629 static void scrub_parity_work(struct btrfs_work *work)
2630 {
2631 	struct btrfs_raid_bio *rbio;
2632 
2633 	rbio = container_of(work, struct btrfs_raid_bio, work);
2634 	raid56_parity_scrub_stripe(rbio);
2635 }
2636 
2637 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2638 {
2639 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2640 			scrub_parity_work, NULL, NULL);
2641 
2642 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2643 }
2644 
2645 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2646 {
2647 	if (!lock_stripe_add(rbio))
2648 		async_scrub_parity(rbio);
2649 }
2650 
2651 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2652 
2653 struct btrfs_raid_bio *
2654 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2655 			  struct btrfs_bio *bbio, u64 length)
2656 {
2657 	struct btrfs_raid_bio *rbio;
2658 
2659 	rbio = alloc_rbio(fs_info, bbio, length);
2660 	if (IS_ERR(rbio))
2661 		return NULL;
2662 
2663 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2664 	bio_list_add(&rbio->bio_list, bio);
2665 	/*
2666 	 * This is a special bio which is used to hold the completion handler
2667 	 * and make the scrub rbio is similar to the other types
2668 	 */
2669 	ASSERT(!bio->bi_iter.bi_size);
2670 
2671 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2672 	if (rbio->faila == -1) {
2673 		BUG();
2674 		kfree(rbio);
2675 		return NULL;
2676 	}
2677 
2678 	return rbio;
2679 }
2680 
2681 static void missing_raid56_work(struct btrfs_work *work)
2682 {
2683 	struct btrfs_raid_bio *rbio;
2684 
2685 	rbio = container_of(work, struct btrfs_raid_bio, work);
2686 	__raid56_parity_recover(rbio);
2687 }
2688 
2689 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2690 {
2691 	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2692 			missing_raid56_work, NULL, NULL);
2693 
2694 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2695 }
2696 
2697 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2698 {
2699 	if (!lock_stripe_add(rbio))
2700 		async_missing_raid56(rbio);
2701 }
2702