xref: /linux/fs/btrfs/file.c (revision 0ddefc2a7ce4be261a4ac3dffdca4a2ee9b716af)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 
40 /* simple helper to fault in pages and copy.  This should go away
41  * and be replaced with calls into generic code.
42  */
43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 					 struct page **prepared_pages,
45 					 struct iov_iter *i)
46 {
47 	size_t copied = 0;
48 	size_t total_copied = 0;
49 	int pg = 0;
50 	int offset = offset_in_page(pos);
51 
52 	while (write_bytes > 0) {
53 		size_t count = min_t(size_t,
54 				     PAGE_SIZE - offset, write_bytes);
55 		struct page *page = prepared_pages[pg];
56 		/*
57 		 * Copy data from userspace to the current page
58 		 */
59 		copied = copy_page_from_iter_atomic(page, offset, count, i);
60 
61 		/* Flush processor's dcache for this page */
62 		flush_dcache_page(page);
63 
64 		/*
65 		 * if we get a partial write, we can end up with
66 		 * partially up to date pages.  These add
67 		 * a lot of complexity, so make sure they don't
68 		 * happen by forcing this copy to be retried.
69 		 *
70 		 * The rest of the btrfs_file_write code will fall
71 		 * back to page at a time copies after we return 0.
72 		 */
73 		if (unlikely(copied < count)) {
74 			if (!PageUptodate(page)) {
75 				iov_iter_revert(i, copied);
76 				copied = 0;
77 			}
78 			if (!copied)
79 				break;
80 		}
81 
82 		write_bytes -= copied;
83 		total_copied += copied;
84 		offset += copied;
85 		if (offset == PAGE_SIZE) {
86 			pg++;
87 			offset = 0;
88 		}
89 	}
90 	return total_copied;
91 }
92 
93 /*
94  * unlocks pages after btrfs_file_write is done with them
95  */
96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 			     struct page **pages, size_t num_pages,
98 			     u64 pos, u64 copied)
99 {
100 	size_t i;
101 	u64 block_start = round_down(pos, fs_info->sectorsize);
102 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
103 
104 	ASSERT(block_len <= U32_MAX);
105 	for (i = 0; i < num_pages; i++) {
106 		/* page checked is some magic around finding pages that
107 		 * have been modified without going through btrfs_set_page_dirty
108 		 * clear it here. There should be no need to mark the pages
109 		 * accessed as prepare_pages should have marked them accessed
110 		 * in prepare_pages via find_or_create_page()
111 		 */
112 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 						block_start, block_len);
114 		unlock_page(pages[i]);
115 		put_page(pages[i]);
116 	}
117 }
118 
119 /*
120  * After btrfs_copy_from_user(), update the following things for delalloc:
121  * - Mark newly dirtied pages as DELALLOC in the io tree.
122  *   Used to advise which range is to be written back.
123  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124  * - Update inode size for past EOF write
125  */
126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 		      size_t num_pages, loff_t pos, size_t write_bytes,
128 		      struct extent_state **cached, bool noreserve)
129 {
130 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
131 	int ret = 0;
132 	int i;
133 	u64 num_bytes;
134 	u64 start_pos;
135 	u64 end_of_last_block;
136 	u64 end_pos = pos + write_bytes;
137 	loff_t isize = i_size_read(&inode->vfs_inode);
138 	unsigned int extra_bits = 0;
139 
140 	if (write_bytes == 0)
141 		return 0;
142 
143 	if (noreserve)
144 		extra_bits |= EXTENT_NORESERVE;
145 
146 	start_pos = round_down(pos, fs_info->sectorsize);
147 	num_bytes = round_up(write_bytes + pos - start_pos,
148 			     fs_info->sectorsize);
149 	ASSERT(num_bytes <= U32_MAX);
150 
151 	end_of_last_block = start_pos + num_bytes - 1;
152 
153 	/*
154 	 * The pages may have already been dirty, clear out old accounting so
155 	 * we can set things up properly
156 	 */
157 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
159 			 cached);
160 
161 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
162 					extra_bits, cached);
163 	if (ret)
164 		return ret;
165 
166 	for (i = 0; i < num_pages; i++) {
167 		struct page *p = pages[i];
168 
169 		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 					       start_pos, num_bytes);
171 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 						start_pos, num_bytes);
173 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 					    start_pos, num_bytes);
175 	}
176 
177 	/*
178 	 * we've only changed i_size in ram, and we haven't updated
179 	 * the disk i_size.  There is no need to log the inode
180 	 * at this time.
181 	 */
182 	if (end_pos > isize)
183 		i_size_write(&inode->vfs_inode, end_pos);
184 	return 0;
185 }
186 
187 /*
188  * this is very complex, but the basic idea is to drop all extents
189  * in the range start - end.  hint_block is filled in with a block number
190  * that would be a good hint to the block allocator for this file.
191  *
192  * If an extent intersects the range but is not entirely inside the range
193  * it is either truncated or split.  Anything entirely inside the range
194  * is deleted from the tree.
195  *
196  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197  * to deal with that. We set the field 'bytes_found' of the arguments structure
198  * with the number of allocated bytes found in the target range, so that the
199  * caller can update the inode's number of bytes in an atomic way when
200  * replacing extents in a range to avoid races with stat(2).
201  */
202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 		       struct btrfs_root *root, struct btrfs_inode *inode,
204 		       struct btrfs_drop_extents_args *args)
205 {
206 	struct btrfs_fs_info *fs_info = root->fs_info;
207 	struct extent_buffer *leaf;
208 	struct btrfs_file_extent_item *fi;
209 	struct btrfs_ref ref = { 0 };
210 	struct btrfs_key key;
211 	struct btrfs_key new_key;
212 	u64 ino = btrfs_ino(inode);
213 	u64 search_start = args->start;
214 	u64 disk_bytenr = 0;
215 	u64 num_bytes = 0;
216 	u64 extent_offset = 0;
217 	u64 extent_end = 0;
218 	u64 last_end = args->start;
219 	int del_nr = 0;
220 	int del_slot = 0;
221 	int extent_type;
222 	int recow;
223 	int ret;
224 	int modify_tree = -1;
225 	int update_refs;
226 	int found = 0;
227 	struct btrfs_path *path = args->path;
228 
229 	args->bytes_found = 0;
230 	args->extent_inserted = false;
231 
232 	/* Must always have a path if ->replace_extent is true */
233 	ASSERT(!(args->replace_extent && !args->path));
234 
235 	if (!path) {
236 		path = btrfs_alloc_path();
237 		if (!path) {
238 			ret = -ENOMEM;
239 			goto out;
240 		}
241 	}
242 
243 	if (args->drop_cache)
244 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
245 
246 	if (args->start >= inode->disk_i_size && !args->replace_extent)
247 		modify_tree = 0;
248 
249 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
250 	while (1) {
251 		recow = 0;
252 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
253 					       search_start, modify_tree);
254 		if (ret < 0)
255 			break;
256 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
257 			leaf = path->nodes[0];
258 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
259 			if (key.objectid == ino &&
260 			    key.type == BTRFS_EXTENT_DATA_KEY)
261 				path->slots[0]--;
262 		}
263 		ret = 0;
264 next_slot:
265 		leaf = path->nodes[0];
266 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
267 			BUG_ON(del_nr > 0);
268 			ret = btrfs_next_leaf(root, path);
269 			if (ret < 0)
270 				break;
271 			if (ret > 0) {
272 				ret = 0;
273 				break;
274 			}
275 			leaf = path->nodes[0];
276 			recow = 1;
277 		}
278 
279 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
280 
281 		if (key.objectid > ino)
282 			break;
283 		if (WARN_ON_ONCE(key.objectid < ino) ||
284 		    key.type < BTRFS_EXTENT_DATA_KEY) {
285 			ASSERT(del_nr == 0);
286 			path->slots[0]++;
287 			goto next_slot;
288 		}
289 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
290 			break;
291 
292 		fi = btrfs_item_ptr(leaf, path->slots[0],
293 				    struct btrfs_file_extent_item);
294 		extent_type = btrfs_file_extent_type(leaf, fi);
295 
296 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
297 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
298 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
299 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
300 			extent_offset = btrfs_file_extent_offset(leaf, fi);
301 			extent_end = key.offset +
302 				btrfs_file_extent_num_bytes(leaf, fi);
303 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
304 			extent_end = key.offset +
305 				btrfs_file_extent_ram_bytes(leaf, fi);
306 		} else {
307 			/* can't happen */
308 			BUG();
309 		}
310 
311 		/*
312 		 * Don't skip extent items representing 0 byte lengths. They
313 		 * used to be created (bug) if while punching holes we hit
314 		 * -ENOSPC condition. So if we find one here, just ensure we
315 		 * delete it, otherwise we would insert a new file extent item
316 		 * with the same key (offset) as that 0 bytes length file
317 		 * extent item in the call to setup_items_for_insert() later
318 		 * in this function.
319 		 */
320 		if (extent_end == key.offset && extent_end >= search_start) {
321 			last_end = extent_end;
322 			goto delete_extent_item;
323 		}
324 
325 		if (extent_end <= search_start) {
326 			path->slots[0]++;
327 			goto next_slot;
328 		}
329 
330 		found = 1;
331 		search_start = max(key.offset, args->start);
332 		if (recow || !modify_tree) {
333 			modify_tree = -1;
334 			btrfs_release_path(path);
335 			continue;
336 		}
337 
338 		/*
339 		 *     | - range to drop - |
340 		 *  | -------- extent -------- |
341 		 */
342 		if (args->start > key.offset && args->end < extent_end) {
343 			BUG_ON(del_nr > 0);
344 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
345 				ret = -EOPNOTSUPP;
346 				break;
347 			}
348 
349 			memcpy(&new_key, &key, sizeof(new_key));
350 			new_key.offset = args->start;
351 			ret = btrfs_duplicate_item(trans, root, path,
352 						   &new_key);
353 			if (ret == -EAGAIN) {
354 				btrfs_release_path(path);
355 				continue;
356 			}
357 			if (ret < 0)
358 				break;
359 
360 			leaf = path->nodes[0];
361 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
362 					    struct btrfs_file_extent_item);
363 			btrfs_set_file_extent_num_bytes(leaf, fi,
364 							args->start - key.offset);
365 
366 			fi = btrfs_item_ptr(leaf, path->slots[0],
367 					    struct btrfs_file_extent_item);
368 
369 			extent_offset += args->start - key.offset;
370 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
371 			btrfs_set_file_extent_num_bytes(leaf, fi,
372 							extent_end - args->start);
373 			btrfs_mark_buffer_dirty(trans, leaf);
374 
375 			if (update_refs && disk_bytenr > 0) {
376 				btrfs_init_generic_ref(&ref,
377 						BTRFS_ADD_DELAYED_REF,
378 						disk_bytenr, num_bytes, 0,
379 						root->root_key.objectid);
380 				btrfs_init_data_ref(&ref,
381 						root->root_key.objectid,
382 						new_key.objectid,
383 						args->start - extent_offset,
384 						0, false);
385 				ret = btrfs_inc_extent_ref(trans, &ref);
386 				if (ret) {
387 					btrfs_abort_transaction(trans, ret);
388 					break;
389 				}
390 			}
391 			key.offset = args->start;
392 		}
393 		/*
394 		 * From here on out we will have actually dropped something, so
395 		 * last_end can be updated.
396 		 */
397 		last_end = extent_end;
398 
399 		/*
400 		 *  | ---- range to drop ----- |
401 		 *      | -------- extent -------- |
402 		 */
403 		if (args->start <= key.offset && args->end < extent_end) {
404 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
405 				ret = -EOPNOTSUPP;
406 				break;
407 			}
408 
409 			memcpy(&new_key, &key, sizeof(new_key));
410 			new_key.offset = args->end;
411 			btrfs_set_item_key_safe(trans, path, &new_key);
412 
413 			extent_offset += args->end - key.offset;
414 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
415 			btrfs_set_file_extent_num_bytes(leaf, fi,
416 							extent_end - args->end);
417 			btrfs_mark_buffer_dirty(trans, leaf);
418 			if (update_refs && disk_bytenr > 0)
419 				args->bytes_found += args->end - key.offset;
420 			break;
421 		}
422 
423 		search_start = extent_end;
424 		/*
425 		 *       | ---- range to drop ----- |
426 		 *  | -------- extent -------- |
427 		 */
428 		if (args->start > key.offset && args->end >= extent_end) {
429 			BUG_ON(del_nr > 0);
430 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
431 				ret = -EOPNOTSUPP;
432 				break;
433 			}
434 
435 			btrfs_set_file_extent_num_bytes(leaf, fi,
436 							args->start - key.offset);
437 			btrfs_mark_buffer_dirty(trans, leaf);
438 			if (update_refs && disk_bytenr > 0)
439 				args->bytes_found += extent_end - args->start;
440 			if (args->end == extent_end)
441 				break;
442 
443 			path->slots[0]++;
444 			goto next_slot;
445 		}
446 
447 		/*
448 		 *  | ---- range to drop ----- |
449 		 *    | ------ extent ------ |
450 		 */
451 		if (args->start <= key.offset && args->end >= extent_end) {
452 delete_extent_item:
453 			if (del_nr == 0) {
454 				del_slot = path->slots[0];
455 				del_nr = 1;
456 			} else {
457 				BUG_ON(del_slot + del_nr != path->slots[0]);
458 				del_nr++;
459 			}
460 
461 			if (update_refs &&
462 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
463 				args->bytes_found += extent_end - key.offset;
464 				extent_end = ALIGN(extent_end,
465 						   fs_info->sectorsize);
466 			} else if (update_refs && disk_bytenr > 0) {
467 				btrfs_init_generic_ref(&ref,
468 						BTRFS_DROP_DELAYED_REF,
469 						disk_bytenr, num_bytes, 0,
470 						root->root_key.objectid);
471 				btrfs_init_data_ref(&ref,
472 						root->root_key.objectid,
473 						key.objectid,
474 						key.offset - extent_offset, 0,
475 						false);
476 				ret = btrfs_free_extent(trans, &ref);
477 				if (ret) {
478 					btrfs_abort_transaction(trans, ret);
479 					break;
480 				}
481 				args->bytes_found += extent_end - key.offset;
482 			}
483 
484 			if (args->end == extent_end)
485 				break;
486 
487 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
488 				path->slots[0]++;
489 				goto next_slot;
490 			}
491 
492 			ret = btrfs_del_items(trans, root, path, del_slot,
493 					      del_nr);
494 			if (ret) {
495 				btrfs_abort_transaction(trans, ret);
496 				break;
497 			}
498 
499 			del_nr = 0;
500 			del_slot = 0;
501 
502 			btrfs_release_path(path);
503 			continue;
504 		}
505 
506 		BUG();
507 	}
508 
509 	if (!ret && del_nr > 0) {
510 		/*
511 		 * Set path->slots[0] to first slot, so that after the delete
512 		 * if items are move off from our leaf to its immediate left or
513 		 * right neighbor leafs, we end up with a correct and adjusted
514 		 * path->slots[0] for our insertion (if args->replace_extent).
515 		 */
516 		path->slots[0] = del_slot;
517 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
518 		if (ret)
519 			btrfs_abort_transaction(trans, ret);
520 	}
521 
522 	leaf = path->nodes[0];
523 	/*
524 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
525 	 * which case it unlocked our path, so check path->locks[0] matches a
526 	 * write lock.
527 	 */
528 	if (!ret && args->replace_extent &&
529 	    path->locks[0] == BTRFS_WRITE_LOCK &&
530 	    btrfs_leaf_free_space(leaf) >=
531 	    sizeof(struct btrfs_item) + args->extent_item_size) {
532 
533 		key.objectid = ino;
534 		key.type = BTRFS_EXTENT_DATA_KEY;
535 		key.offset = args->start;
536 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
537 			struct btrfs_key slot_key;
538 
539 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
540 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
541 				path->slots[0]++;
542 		}
543 		btrfs_setup_item_for_insert(trans, root, path, &key,
544 					    args->extent_item_size);
545 		args->extent_inserted = true;
546 	}
547 
548 	if (!args->path)
549 		btrfs_free_path(path);
550 	else if (!args->extent_inserted)
551 		btrfs_release_path(path);
552 out:
553 	args->drop_end = found ? min(args->end, last_end) : args->end;
554 
555 	return ret;
556 }
557 
558 static int extent_mergeable(struct extent_buffer *leaf, int slot,
559 			    u64 objectid, u64 bytenr, u64 orig_offset,
560 			    u64 *start, u64 *end)
561 {
562 	struct btrfs_file_extent_item *fi;
563 	struct btrfs_key key;
564 	u64 extent_end;
565 
566 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
567 		return 0;
568 
569 	btrfs_item_key_to_cpu(leaf, &key, slot);
570 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
571 		return 0;
572 
573 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
574 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
575 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
576 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
577 	    btrfs_file_extent_compression(leaf, fi) ||
578 	    btrfs_file_extent_encryption(leaf, fi) ||
579 	    btrfs_file_extent_other_encoding(leaf, fi))
580 		return 0;
581 
582 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
583 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
584 		return 0;
585 
586 	*start = key.offset;
587 	*end = extent_end;
588 	return 1;
589 }
590 
591 /*
592  * Mark extent in the range start - end as written.
593  *
594  * This changes extent type from 'pre-allocated' to 'regular'. If only
595  * part of extent is marked as written, the extent will be split into
596  * two or three.
597  */
598 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
599 			      struct btrfs_inode *inode, u64 start, u64 end)
600 {
601 	struct btrfs_root *root = inode->root;
602 	struct extent_buffer *leaf;
603 	struct btrfs_path *path;
604 	struct btrfs_file_extent_item *fi;
605 	struct btrfs_ref ref = { 0 };
606 	struct btrfs_key key;
607 	struct btrfs_key new_key;
608 	u64 bytenr;
609 	u64 num_bytes;
610 	u64 extent_end;
611 	u64 orig_offset;
612 	u64 other_start;
613 	u64 other_end;
614 	u64 split;
615 	int del_nr = 0;
616 	int del_slot = 0;
617 	int recow;
618 	int ret = 0;
619 	u64 ino = btrfs_ino(inode);
620 
621 	path = btrfs_alloc_path();
622 	if (!path)
623 		return -ENOMEM;
624 again:
625 	recow = 0;
626 	split = start;
627 	key.objectid = ino;
628 	key.type = BTRFS_EXTENT_DATA_KEY;
629 	key.offset = split;
630 
631 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
632 	if (ret < 0)
633 		goto out;
634 	if (ret > 0 && path->slots[0] > 0)
635 		path->slots[0]--;
636 
637 	leaf = path->nodes[0];
638 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
639 	if (key.objectid != ino ||
640 	    key.type != BTRFS_EXTENT_DATA_KEY) {
641 		ret = -EINVAL;
642 		btrfs_abort_transaction(trans, ret);
643 		goto out;
644 	}
645 	fi = btrfs_item_ptr(leaf, path->slots[0],
646 			    struct btrfs_file_extent_item);
647 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
648 		ret = -EINVAL;
649 		btrfs_abort_transaction(trans, ret);
650 		goto out;
651 	}
652 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
653 	if (key.offset > start || extent_end < end) {
654 		ret = -EINVAL;
655 		btrfs_abort_transaction(trans, ret);
656 		goto out;
657 	}
658 
659 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
660 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
661 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
662 	memcpy(&new_key, &key, sizeof(new_key));
663 
664 	if (start == key.offset && end < extent_end) {
665 		other_start = 0;
666 		other_end = start;
667 		if (extent_mergeable(leaf, path->slots[0] - 1,
668 				     ino, bytenr, orig_offset,
669 				     &other_start, &other_end)) {
670 			new_key.offset = end;
671 			btrfs_set_item_key_safe(trans, path, &new_key);
672 			fi = btrfs_item_ptr(leaf, path->slots[0],
673 					    struct btrfs_file_extent_item);
674 			btrfs_set_file_extent_generation(leaf, fi,
675 							 trans->transid);
676 			btrfs_set_file_extent_num_bytes(leaf, fi,
677 							extent_end - end);
678 			btrfs_set_file_extent_offset(leaf, fi,
679 						     end - orig_offset);
680 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
681 					    struct btrfs_file_extent_item);
682 			btrfs_set_file_extent_generation(leaf, fi,
683 							 trans->transid);
684 			btrfs_set_file_extent_num_bytes(leaf, fi,
685 							end - other_start);
686 			btrfs_mark_buffer_dirty(trans, leaf);
687 			goto out;
688 		}
689 	}
690 
691 	if (start > key.offset && end == extent_end) {
692 		other_start = end;
693 		other_end = 0;
694 		if (extent_mergeable(leaf, path->slots[0] + 1,
695 				     ino, bytenr, orig_offset,
696 				     &other_start, &other_end)) {
697 			fi = btrfs_item_ptr(leaf, path->slots[0],
698 					    struct btrfs_file_extent_item);
699 			btrfs_set_file_extent_num_bytes(leaf, fi,
700 							start - key.offset);
701 			btrfs_set_file_extent_generation(leaf, fi,
702 							 trans->transid);
703 			path->slots[0]++;
704 			new_key.offset = start;
705 			btrfs_set_item_key_safe(trans, path, &new_key);
706 
707 			fi = btrfs_item_ptr(leaf, path->slots[0],
708 					    struct btrfs_file_extent_item);
709 			btrfs_set_file_extent_generation(leaf, fi,
710 							 trans->transid);
711 			btrfs_set_file_extent_num_bytes(leaf, fi,
712 							other_end - start);
713 			btrfs_set_file_extent_offset(leaf, fi,
714 						     start - orig_offset);
715 			btrfs_mark_buffer_dirty(trans, leaf);
716 			goto out;
717 		}
718 	}
719 
720 	while (start > key.offset || end < extent_end) {
721 		if (key.offset == start)
722 			split = end;
723 
724 		new_key.offset = split;
725 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
726 		if (ret == -EAGAIN) {
727 			btrfs_release_path(path);
728 			goto again;
729 		}
730 		if (ret < 0) {
731 			btrfs_abort_transaction(trans, ret);
732 			goto out;
733 		}
734 
735 		leaf = path->nodes[0];
736 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
737 				    struct btrfs_file_extent_item);
738 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
739 		btrfs_set_file_extent_num_bytes(leaf, fi,
740 						split - key.offset);
741 
742 		fi = btrfs_item_ptr(leaf, path->slots[0],
743 				    struct btrfs_file_extent_item);
744 
745 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
746 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
747 		btrfs_set_file_extent_num_bytes(leaf, fi,
748 						extent_end - split);
749 		btrfs_mark_buffer_dirty(trans, leaf);
750 
751 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
752 				       num_bytes, 0, root->root_key.objectid);
753 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
754 				    orig_offset, 0, false);
755 		ret = btrfs_inc_extent_ref(trans, &ref);
756 		if (ret) {
757 			btrfs_abort_transaction(trans, ret);
758 			goto out;
759 		}
760 
761 		if (split == start) {
762 			key.offset = start;
763 		} else {
764 			if (start != key.offset) {
765 				ret = -EINVAL;
766 				btrfs_abort_transaction(trans, ret);
767 				goto out;
768 			}
769 			path->slots[0]--;
770 			extent_end = end;
771 		}
772 		recow = 1;
773 	}
774 
775 	other_start = end;
776 	other_end = 0;
777 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
778 			       num_bytes, 0, root->root_key.objectid);
779 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
780 			    0, false);
781 	if (extent_mergeable(leaf, path->slots[0] + 1,
782 			     ino, bytenr, orig_offset,
783 			     &other_start, &other_end)) {
784 		if (recow) {
785 			btrfs_release_path(path);
786 			goto again;
787 		}
788 		extent_end = other_end;
789 		del_slot = path->slots[0] + 1;
790 		del_nr++;
791 		ret = btrfs_free_extent(trans, &ref);
792 		if (ret) {
793 			btrfs_abort_transaction(trans, ret);
794 			goto out;
795 		}
796 	}
797 	other_start = 0;
798 	other_end = start;
799 	if (extent_mergeable(leaf, path->slots[0] - 1,
800 			     ino, bytenr, orig_offset,
801 			     &other_start, &other_end)) {
802 		if (recow) {
803 			btrfs_release_path(path);
804 			goto again;
805 		}
806 		key.offset = other_start;
807 		del_slot = path->slots[0];
808 		del_nr++;
809 		ret = btrfs_free_extent(trans, &ref);
810 		if (ret) {
811 			btrfs_abort_transaction(trans, ret);
812 			goto out;
813 		}
814 	}
815 	if (del_nr == 0) {
816 		fi = btrfs_item_ptr(leaf, path->slots[0],
817 			   struct btrfs_file_extent_item);
818 		btrfs_set_file_extent_type(leaf, fi,
819 					   BTRFS_FILE_EXTENT_REG);
820 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
821 		btrfs_mark_buffer_dirty(trans, leaf);
822 	} else {
823 		fi = btrfs_item_ptr(leaf, del_slot - 1,
824 			   struct btrfs_file_extent_item);
825 		btrfs_set_file_extent_type(leaf, fi,
826 					   BTRFS_FILE_EXTENT_REG);
827 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
828 		btrfs_set_file_extent_num_bytes(leaf, fi,
829 						extent_end - key.offset);
830 		btrfs_mark_buffer_dirty(trans, leaf);
831 
832 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
833 		if (ret < 0) {
834 			btrfs_abort_transaction(trans, ret);
835 			goto out;
836 		}
837 	}
838 out:
839 	btrfs_free_path(path);
840 	return ret;
841 }
842 
843 /*
844  * on error we return an unlocked page and the error value
845  * on success we return a locked page and 0
846  */
847 static int prepare_uptodate_page(struct inode *inode,
848 				 struct page *page, u64 pos,
849 				 bool force_uptodate)
850 {
851 	struct folio *folio = page_folio(page);
852 	int ret = 0;
853 
854 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
855 	    !PageUptodate(page)) {
856 		ret = btrfs_read_folio(NULL, folio);
857 		if (ret)
858 			return ret;
859 		lock_page(page);
860 		if (!PageUptodate(page)) {
861 			unlock_page(page);
862 			return -EIO;
863 		}
864 
865 		/*
866 		 * Since btrfs_read_folio() will unlock the folio before it
867 		 * returns, there is a window where btrfs_release_folio() can be
868 		 * called to release the page.  Here we check both inode
869 		 * mapping and PagePrivate() to make sure the page was not
870 		 * released.
871 		 *
872 		 * The private flag check is essential for subpage as we need
873 		 * to store extra bitmap using folio private.
874 		 */
875 		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
876 			unlock_page(page);
877 			return -EAGAIN;
878 		}
879 	}
880 	return 0;
881 }
882 
883 static fgf_t get_prepare_fgp_flags(bool nowait)
884 {
885 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
886 
887 	if (nowait)
888 		fgp_flags |= FGP_NOWAIT;
889 
890 	return fgp_flags;
891 }
892 
893 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
894 {
895 	gfp_t gfp;
896 
897 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
898 	if (nowait) {
899 		gfp &= ~__GFP_DIRECT_RECLAIM;
900 		gfp |= GFP_NOWAIT;
901 	}
902 
903 	return gfp;
904 }
905 
906 /*
907  * this just gets pages into the page cache and locks them down.
908  */
909 static noinline int prepare_pages(struct inode *inode, struct page **pages,
910 				  size_t num_pages, loff_t pos,
911 				  size_t write_bytes, bool force_uptodate,
912 				  bool nowait)
913 {
914 	int i;
915 	unsigned long index = pos >> PAGE_SHIFT;
916 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
917 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
918 	int ret = 0;
919 	int faili;
920 
921 	for (i = 0; i < num_pages; i++) {
922 again:
923 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
924 					      fgp_flags, mask | __GFP_WRITE);
925 		if (!pages[i]) {
926 			faili = i - 1;
927 			if (nowait)
928 				ret = -EAGAIN;
929 			else
930 				ret = -ENOMEM;
931 			goto fail;
932 		}
933 
934 		ret = set_page_extent_mapped(pages[i]);
935 		if (ret < 0) {
936 			faili = i;
937 			goto fail;
938 		}
939 
940 		if (i == 0)
941 			ret = prepare_uptodate_page(inode, pages[i], pos,
942 						    force_uptodate);
943 		if (!ret && i == num_pages - 1)
944 			ret = prepare_uptodate_page(inode, pages[i],
945 						    pos + write_bytes, false);
946 		if (ret) {
947 			put_page(pages[i]);
948 			if (!nowait && ret == -EAGAIN) {
949 				ret = 0;
950 				goto again;
951 			}
952 			faili = i - 1;
953 			goto fail;
954 		}
955 		wait_on_page_writeback(pages[i]);
956 	}
957 
958 	return 0;
959 fail:
960 	while (faili >= 0) {
961 		unlock_page(pages[faili]);
962 		put_page(pages[faili]);
963 		faili--;
964 	}
965 	return ret;
966 
967 }
968 
969 /*
970  * This function locks the extent and properly waits for data=ordered extents
971  * to finish before allowing the pages to be modified if need.
972  *
973  * The return value:
974  * 1 - the extent is locked
975  * 0 - the extent is not locked, and everything is OK
976  * -EAGAIN - need re-prepare the pages
977  * the other < 0 number - Something wrong happens
978  */
979 static noinline int
980 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
981 				size_t num_pages, loff_t pos,
982 				size_t write_bytes,
983 				u64 *lockstart, u64 *lockend, bool nowait,
984 				struct extent_state **cached_state)
985 {
986 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
987 	u64 start_pos;
988 	u64 last_pos;
989 	int i;
990 	int ret = 0;
991 
992 	start_pos = round_down(pos, fs_info->sectorsize);
993 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
994 
995 	if (start_pos < inode->vfs_inode.i_size) {
996 		struct btrfs_ordered_extent *ordered;
997 
998 		if (nowait) {
999 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1000 					     cached_state)) {
1001 				for (i = 0; i < num_pages; i++) {
1002 					unlock_page(pages[i]);
1003 					put_page(pages[i]);
1004 					pages[i] = NULL;
1005 				}
1006 
1007 				return -EAGAIN;
1008 			}
1009 		} else {
1010 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1011 		}
1012 
1013 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1014 						     last_pos - start_pos + 1);
1015 		if (ordered &&
1016 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1017 		    ordered->file_offset <= last_pos) {
1018 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1019 				      cached_state);
1020 			for (i = 0; i < num_pages; i++) {
1021 				unlock_page(pages[i]);
1022 				put_page(pages[i]);
1023 			}
1024 			btrfs_start_ordered_extent(ordered);
1025 			btrfs_put_ordered_extent(ordered);
1026 			return -EAGAIN;
1027 		}
1028 		if (ordered)
1029 			btrfs_put_ordered_extent(ordered);
1030 
1031 		*lockstart = start_pos;
1032 		*lockend = last_pos;
1033 		ret = 1;
1034 	}
1035 
1036 	/*
1037 	 * We should be called after prepare_pages() which should have locked
1038 	 * all pages in the range.
1039 	 */
1040 	for (i = 0; i < num_pages; i++)
1041 		WARN_ON(!PageLocked(pages[i]));
1042 
1043 	return ret;
1044 }
1045 
1046 /*
1047  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1048  *
1049  * @pos:         File offset.
1050  * @write_bytes: The length to write, will be updated to the nocow writeable
1051  *               range.
1052  *
1053  * This function will flush ordered extents in the range to ensure proper
1054  * nocow checks.
1055  *
1056  * Return:
1057  * > 0          If we can nocow, and updates @write_bytes.
1058  *  0           If we can't do a nocow write.
1059  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1060  *              root is in progress.
1061  * < 0          If an error happened.
1062  *
1063  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1064  */
1065 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1066 			   size_t *write_bytes, bool nowait)
1067 {
1068 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1069 	struct btrfs_root *root = inode->root;
1070 	struct extent_state *cached_state = NULL;
1071 	u64 lockstart, lockend;
1072 	u64 num_bytes;
1073 	int ret;
1074 
1075 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1076 		return 0;
1077 
1078 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1079 		return -EAGAIN;
1080 
1081 	lockstart = round_down(pos, fs_info->sectorsize);
1082 	lockend = round_up(pos + *write_bytes,
1083 			   fs_info->sectorsize) - 1;
1084 	num_bytes = lockend - lockstart + 1;
1085 
1086 	if (nowait) {
1087 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1088 						  &cached_state)) {
1089 			btrfs_drew_write_unlock(&root->snapshot_lock);
1090 			return -EAGAIN;
1091 		}
1092 	} else {
1093 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1094 						   &cached_state);
1095 	}
1096 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1097 			NULL, NULL, NULL, nowait, false);
1098 	if (ret <= 0)
1099 		btrfs_drew_write_unlock(&root->snapshot_lock);
1100 	else
1101 		*write_bytes = min_t(size_t, *write_bytes ,
1102 				     num_bytes - pos + lockstart);
1103 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1104 
1105 	return ret;
1106 }
1107 
1108 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1109 {
1110 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1111 }
1112 
1113 static void update_time_for_write(struct inode *inode)
1114 {
1115 	struct timespec64 now, ts;
1116 
1117 	if (IS_NOCMTIME(inode))
1118 		return;
1119 
1120 	now = current_time(inode);
1121 	ts = inode_get_mtime(inode);
1122 	if (!timespec64_equal(&ts, &now))
1123 		inode_set_mtime_to_ts(inode, now);
1124 
1125 	ts = inode_get_ctime(inode);
1126 	if (!timespec64_equal(&ts, &now))
1127 		inode_set_ctime_to_ts(inode, now);
1128 
1129 	if (IS_I_VERSION(inode))
1130 		inode_inc_iversion(inode);
1131 }
1132 
1133 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1134 			     size_t count)
1135 {
1136 	struct file *file = iocb->ki_filp;
1137 	struct inode *inode = file_inode(file);
1138 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1139 	loff_t pos = iocb->ki_pos;
1140 	int ret;
1141 	loff_t oldsize;
1142 	loff_t start_pos;
1143 
1144 	/*
1145 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1146 	 * prealloc flags, as without those flags we always have to COW. We will
1147 	 * later check if we can really COW into the target range (using
1148 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1149 	 */
1150 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1151 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1152 		return -EAGAIN;
1153 
1154 	ret = file_remove_privs(file);
1155 	if (ret)
1156 		return ret;
1157 
1158 	/*
1159 	 * We reserve space for updating the inode when we reserve space for the
1160 	 * extent we are going to write, so we will enospc out there.  We don't
1161 	 * need to start yet another transaction to update the inode as we will
1162 	 * update the inode when we finish writing whatever data we write.
1163 	 */
1164 	update_time_for_write(inode);
1165 
1166 	start_pos = round_down(pos, fs_info->sectorsize);
1167 	oldsize = i_size_read(inode);
1168 	if (start_pos > oldsize) {
1169 		/* Expand hole size to cover write data, preventing empty gap */
1170 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1171 
1172 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1173 		if (ret)
1174 			return ret;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1181 					       struct iov_iter *i)
1182 {
1183 	struct file *file = iocb->ki_filp;
1184 	loff_t pos;
1185 	struct inode *inode = file_inode(file);
1186 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1187 	struct page **pages = NULL;
1188 	struct extent_changeset *data_reserved = NULL;
1189 	u64 release_bytes = 0;
1190 	u64 lockstart;
1191 	u64 lockend;
1192 	size_t num_written = 0;
1193 	int nrptrs;
1194 	ssize_t ret;
1195 	bool only_release_metadata = false;
1196 	bool force_page_uptodate = false;
1197 	loff_t old_isize = i_size_read(inode);
1198 	unsigned int ilock_flags = 0;
1199 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1200 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1201 
1202 	if (nowait)
1203 		ilock_flags |= BTRFS_ILOCK_TRY;
1204 
1205 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1206 	if (ret < 0)
1207 		return ret;
1208 
1209 	ret = generic_write_checks(iocb, i);
1210 	if (ret <= 0)
1211 		goto out;
1212 
1213 	ret = btrfs_write_check(iocb, i, ret);
1214 	if (ret < 0)
1215 		goto out;
1216 
1217 	pos = iocb->ki_pos;
1218 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1219 			PAGE_SIZE / (sizeof(struct page *)));
1220 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1221 	nrptrs = max(nrptrs, 8);
1222 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1223 	if (!pages) {
1224 		ret = -ENOMEM;
1225 		goto out;
1226 	}
1227 
1228 	while (iov_iter_count(i) > 0) {
1229 		struct extent_state *cached_state = NULL;
1230 		size_t offset = offset_in_page(pos);
1231 		size_t sector_offset;
1232 		size_t write_bytes = min(iov_iter_count(i),
1233 					 nrptrs * (size_t)PAGE_SIZE -
1234 					 offset);
1235 		size_t num_pages;
1236 		size_t reserve_bytes;
1237 		size_t dirty_pages;
1238 		size_t copied;
1239 		size_t dirty_sectors;
1240 		size_t num_sectors;
1241 		int extents_locked;
1242 
1243 		/*
1244 		 * Fault pages before locking them in prepare_pages
1245 		 * to avoid recursive lock
1246 		 */
1247 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1248 			ret = -EFAULT;
1249 			break;
1250 		}
1251 
1252 		only_release_metadata = false;
1253 		sector_offset = pos & (fs_info->sectorsize - 1);
1254 
1255 		extent_changeset_release(data_reserved);
1256 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1257 						  &data_reserved, pos,
1258 						  write_bytes, nowait);
1259 		if (ret < 0) {
1260 			int can_nocow;
1261 
1262 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1263 				ret = -EAGAIN;
1264 				break;
1265 			}
1266 
1267 			/*
1268 			 * If we don't have to COW at the offset, reserve
1269 			 * metadata only. write_bytes may get smaller than
1270 			 * requested here.
1271 			 */
1272 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1273 							   &write_bytes, nowait);
1274 			if (can_nocow < 0)
1275 				ret = can_nocow;
1276 			if (can_nocow > 0)
1277 				ret = 0;
1278 			if (ret)
1279 				break;
1280 			only_release_metadata = true;
1281 		}
1282 
1283 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1284 		WARN_ON(num_pages > nrptrs);
1285 		reserve_bytes = round_up(write_bytes + sector_offset,
1286 					 fs_info->sectorsize);
1287 		WARN_ON(reserve_bytes == 0);
1288 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1289 						      reserve_bytes,
1290 						      reserve_bytes, nowait);
1291 		if (ret) {
1292 			if (!only_release_metadata)
1293 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1294 						data_reserved, pos,
1295 						write_bytes);
1296 			else
1297 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1298 
1299 			if (nowait && ret == -ENOSPC)
1300 				ret = -EAGAIN;
1301 			break;
1302 		}
1303 
1304 		release_bytes = reserve_bytes;
1305 again:
1306 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1307 		if (ret) {
1308 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1309 			break;
1310 		}
1311 
1312 		/*
1313 		 * This is going to setup the pages array with the number of
1314 		 * pages we want, so we don't really need to worry about the
1315 		 * contents of pages from loop to loop
1316 		 */
1317 		ret = prepare_pages(inode, pages, num_pages,
1318 				    pos, write_bytes, force_page_uptodate, false);
1319 		if (ret) {
1320 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1321 						       reserve_bytes);
1322 			break;
1323 		}
1324 
1325 		extents_locked = lock_and_cleanup_extent_if_need(
1326 				BTRFS_I(inode), pages,
1327 				num_pages, pos, write_bytes, &lockstart,
1328 				&lockend, nowait, &cached_state);
1329 		if (extents_locked < 0) {
1330 			if (!nowait && extents_locked == -EAGAIN)
1331 				goto again;
1332 
1333 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1334 						       reserve_bytes);
1335 			ret = extents_locked;
1336 			break;
1337 		}
1338 
1339 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1340 
1341 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1342 		dirty_sectors = round_up(copied + sector_offset,
1343 					fs_info->sectorsize);
1344 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1345 
1346 		/*
1347 		 * if we have trouble faulting in the pages, fall
1348 		 * back to one page at a time
1349 		 */
1350 		if (copied < write_bytes)
1351 			nrptrs = 1;
1352 
1353 		if (copied == 0) {
1354 			force_page_uptodate = true;
1355 			dirty_sectors = 0;
1356 			dirty_pages = 0;
1357 		} else {
1358 			force_page_uptodate = false;
1359 			dirty_pages = DIV_ROUND_UP(copied + offset,
1360 						   PAGE_SIZE);
1361 		}
1362 
1363 		if (num_sectors > dirty_sectors) {
1364 			/* release everything except the sectors we dirtied */
1365 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1366 			if (only_release_metadata) {
1367 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1368 							release_bytes, true);
1369 			} else {
1370 				u64 __pos;
1371 
1372 				__pos = round_down(pos,
1373 						   fs_info->sectorsize) +
1374 					(dirty_pages << PAGE_SHIFT);
1375 				btrfs_delalloc_release_space(BTRFS_I(inode),
1376 						data_reserved, __pos,
1377 						release_bytes, true);
1378 			}
1379 		}
1380 
1381 		release_bytes = round_up(copied + sector_offset,
1382 					fs_info->sectorsize);
1383 
1384 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1385 					dirty_pages, pos, copied,
1386 					&cached_state, only_release_metadata);
1387 
1388 		/*
1389 		 * If we have not locked the extent range, because the range's
1390 		 * start offset is >= i_size, we might still have a non-NULL
1391 		 * cached extent state, acquired while marking the extent range
1392 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1393 		 * possible cached extent state to avoid a memory leak.
1394 		 */
1395 		if (extents_locked)
1396 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1397 				      lockend, &cached_state);
1398 		else
1399 			free_extent_state(cached_state);
1400 
1401 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1402 		if (ret) {
1403 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1404 			break;
1405 		}
1406 
1407 		release_bytes = 0;
1408 		if (only_release_metadata)
1409 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1410 
1411 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1412 
1413 		cond_resched();
1414 
1415 		pos += copied;
1416 		num_written += copied;
1417 	}
1418 
1419 	kfree(pages);
1420 
1421 	if (release_bytes) {
1422 		if (only_release_metadata) {
1423 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1424 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1425 					release_bytes, true);
1426 		} else {
1427 			btrfs_delalloc_release_space(BTRFS_I(inode),
1428 					data_reserved,
1429 					round_down(pos, fs_info->sectorsize),
1430 					release_bytes, true);
1431 		}
1432 	}
1433 
1434 	extent_changeset_free(data_reserved);
1435 	if (num_written > 0) {
1436 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1437 		iocb->ki_pos += num_written;
1438 	}
1439 out:
1440 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1441 	return num_written ? num_written : ret;
1442 }
1443 
1444 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1445 			       const struct iov_iter *iter, loff_t offset)
1446 {
1447 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1448 
1449 	if (offset & blocksize_mask)
1450 		return -EINVAL;
1451 
1452 	if (iov_iter_alignment(iter) & blocksize_mask)
1453 		return -EINVAL;
1454 
1455 	return 0;
1456 }
1457 
1458 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1459 {
1460 	struct file *file = iocb->ki_filp;
1461 	struct inode *inode = file_inode(file);
1462 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1463 	loff_t pos;
1464 	ssize_t written = 0;
1465 	ssize_t written_buffered;
1466 	size_t prev_left = 0;
1467 	loff_t endbyte;
1468 	ssize_t ret;
1469 	unsigned int ilock_flags = 0;
1470 	struct iomap_dio *dio;
1471 
1472 	if (iocb->ki_flags & IOCB_NOWAIT)
1473 		ilock_flags |= BTRFS_ILOCK_TRY;
1474 
1475 	/*
1476 	 * If the write DIO is within EOF, use a shared lock and also only if
1477 	 * security bits will likely not be dropped by file_remove_privs() called
1478 	 * from btrfs_write_check(). Either will need to be rechecked after the
1479 	 * lock was acquired.
1480 	 */
1481 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1482 		ilock_flags |= BTRFS_ILOCK_SHARED;
1483 
1484 relock:
1485 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1486 	if (ret < 0)
1487 		return ret;
1488 
1489 	/* Shared lock cannot be used with security bits set. */
1490 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1491 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1492 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1493 		goto relock;
1494 	}
1495 
1496 	ret = generic_write_checks(iocb, from);
1497 	if (ret <= 0) {
1498 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1499 		return ret;
1500 	}
1501 
1502 	ret = btrfs_write_check(iocb, from, ret);
1503 	if (ret < 0) {
1504 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1505 		goto out;
1506 	}
1507 
1508 	pos = iocb->ki_pos;
1509 	/*
1510 	 * Re-check since file size may have changed just before taking the
1511 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1512 	 */
1513 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1514 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1515 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1516 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1517 		goto relock;
1518 	}
1519 
1520 	if (check_direct_IO(fs_info, from, pos)) {
1521 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1522 		goto buffered;
1523 	}
1524 
1525 	/*
1526 	 * The iov_iter can be mapped to the same file range we are writing to.
1527 	 * If that's the case, then we will deadlock in the iomap code, because
1528 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1529 	 * an ordered extent, and after that it will fault in the pages that the
1530 	 * iov_iter refers to. During the fault in we end up in the readahead
1531 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1532 	 * find that ordered extent and then wait for it to complete (at
1533 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1534 	 * obviously the ordered extent can never complete as we didn't submit
1535 	 * yet the respective bio(s). This always happens when the buffer is
1536 	 * memory mapped to the same file range, since the iomap DIO code always
1537 	 * invalidates pages in the target file range (after starting and waiting
1538 	 * for any writeback).
1539 	 *
1540 	 * So here we disable page faults in the iov_iter and then retry if we
1541 	 * got -EFAULT, faulting in the pages before the retry.
1542 	 */
1543 	from->nofault = true;
1544 	dio = btrfs_dio_write(iocb, from, written);
1545 	from->nofault = false;
1546 
1547 	/*
1548 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1549 	 * iocb, and that needs to lock the inode. So unlock it before calling
1550 	 * iomap_dio_complete() to avoid a deadlock.
1551 	 */
1552 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1553 
1554 	if (IS_ERR_OR_NULL(dio))
1555 		ret = PTR_ERR_OR_ZERO(dio);
1556 	else
1557 		ret = iomap_dio_complete(dio);
1558 
1559 	/* No increment (+=) because iomap returns a cumulative value. */
1560 	if (ret > 0)
1561 		written = ret;
1562 
1563 	if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) {
1564 		const size_t left = iov_iter_count(from);
1565 		/*
1566 		 * We have more data left to write. Try to fault in as many as
1567 		 * possible of the remainder pages and retry. We do this without
1568 		 * releasing and locking again the inode, to prevent races with
1569 		 * truncate.
1570 		 *
1571 		 * Also, in case the iov refers to pages in the file range of the
1572 		 * file we want to write to (due to a mmap), we could enter an
1573 		 * infinite loop if we retry after faulting the pages in, since
1574 		 * iomap will invalidate any pages in the range early on, before
1575 		 * it tries to fault in the pages of the iov. So we keep track of
1576 		 * how much was left of iov in the previous EFAULT and fallback
1577 		 * to buffered IO in case we haven't made any progress.
1578 		 */
1579 		if (left == prev_left) {
1580 			ret = -ENOTBLK;
1581 		} else {
1582 			fault_in_iov_iter_readable(from, left);
1583 			prev_left = left;
1584 			goto relock;
1585 		}
1586 	}
1587 
1588 	/*
1589 	 * If 'ret' is -ENOTBLK or we have not written all data, then it means
1590 	 * we must fallback to buffered IO.
1591 	 */
1592 	if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from))
1593 		goto out;
1594 
1595 buffered:
1596 	/*
1597 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1598 	 * it must retry the operation in a context where blocking is acceptable,
1599 	 * because even if we end up not blocking during the buffered IO attempt
1600 	 * below, we will block when flushing and waiting for the IO.
1601 	 */
1602 	if (iocb->ki_flags & IOCB_NOWAIT) {
1603 		ret = -EAGAIN;
1604 		goto out;
1605 	}
1606 
1607 	pos = iocb->ki_pos;
1608 	written_buffered = btrfs_buffered_write(iocb, from);
1609 	if (written_buffered < 0) {
1610 		ret = written_buffered;
1611 		goto out;
1612 	}
1613 	/*
1614 	 * Ensure all data is persisted. We want the next direct IO read to be
1615 	 * able to read what was just written.
1616 	 */
1617 	endbyte = pos + written_buffered - 1;
1618 	ret = btrfs_fdatawrite_range(inode, pos, endbyte);
1619 	if (ret)
1620 		goto out;
1621 	ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1622 	if (ret)
1623 		goto out;
1624 	written += written_buffered;
1625 	iocb->ki_pos = pos + written_buffered;
1626 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1627 				 endbyte >> PAGE_SHIFT);
1628 out:
1629 	return ret < 0 ? ret : written;
1630 }
1631 
1632 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1633 			const struct btrfs_ioctl_encoded_io_args *encoded)
1634 {
1635 	struct file *file = iocb->ki_filp;
1636 	struct inode *inode = file_inode(file);
1637 	loff_t count;
1638 	ssize_t ret;
1639 
1640 	btrfs_inode_lock(BTRFS_I(inode), 0);
1641 	count = encoded->len;
1642 	ret = generic_write_checks_count(iocb, &count);
1643 	if (ret == 0 && count != encoded->len) {
1644 		/*
1645 		 * The write got truncated by generic_write_checks_count(). We
1646 		 * can't do a partial encoded write.
1647 		 */
1648 		ret = -EFBIG;
1649 	}
1650 	if (ret || encoded->len == 0)
1651 		goto out;
1652 
1653 	ret = btrfs_write_check(iocb, from, encoded->len);
1654 	if (ret < 0)
1655 		goto out;
1656 
1657 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1658 out:
1659 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1660 	return ret;
1661 }
1662 
1663 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1664 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1665 {
1666 	struct file *file = iocb->ki_filp;
1667 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1668 	ssize_t num_written, num_sync;
1669 
1670 	/*
1671 	 * If the fs flips readonly due to some impossible error, although we
1672 	 * have opened a file as writable, we have to stop this write operation
1673 	 * to ensure consistency.
1674 	 */
1675 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1676 		return -EROFS;
1677 
1678 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1679 		return -EOPNOTSUPP;
1680 
1681 	if (encoded) {
1682 		num_written = btrfs_encoded_write(iocb, from, encoded);
1683 		num_sync = encoded->len;
1684 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1685 		num_written = btrfs_direct_write(iocb, from);
1686 		num_sync = num_written;
1687 	} else {
1688 		num_written = btrfs_buffered_write(iocb, from);
1689 		num_sync = num_written;
1690 	}
1691 
1692 	btrfs_set_inode_last_sub_trans(inode);
1693 
1694 	if (num_sync > 0) {
1695 		num_sync = generic_write_sync(iocb, num_sync);
1696 		if (num_sync < 0)
1697 			num_written = num_sync;
1698 	}
1699 
1700 	return num_written;
1701 }
1702 
1703 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1704 {
1705 	return btrfs_do_write_iter(iocb, from, NULL);
1706 }
1707 
1708 int btrfs_release_file(struct inode *inode, struct file *filp)
1709 {
1710 	struct btrfs_file_private *private = filp->private_data;
1711 
1712 	if (private) {
1713 		kfree(private->filldir_buf);
1714 		free_extent_state(private->llseek_cached_state);
1715 		kfree(private);
1716 		filp->private_data = NULL;
1717 	}
1718 
1719 	/*
1720 	 * Set by setattr when we are about to truncate a file from a non-zero
1721 	 * size to a zero size.  This tries to flush down new bytes that may
1722 	 * have been written if the application were using truncate to replace
1723 	 * a file in place.
1724 	 */
1725 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1726 			       &BTRFS_I(inode)->runtime_flags))
1727 			filemap_flush(inode->i_mapping);
1728 	return 0;
1729 }
1730 
1731 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1732 {
1733 	int ret;
1734 	struct blk_plug plug;
1735 
1736 	/*
1737 	 * This is only called in fsync, which would do synchronous writes, so
1738 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1739 	 * multiple disks using raid profile, a large IO can be split to
1740 	 * several segments of stripe length (currently 64K).
1741 	 */
1742 	blk_start_plug(&plug);
1743 	ret = btrfs_fdatawrite_range(inode, start, end);
1744 	blk_finish_plug(&plug);
1745 
1746 	return ret;
1747 }
1748 
1749 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1750 {
1751 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1752 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1753 
1754 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1755 	    list_empty(&ctx->ordered_extents))
1756 		return true;
1757 
1758 	/*
1759 	 * If we are doing a fast fsync we can not bail out if the inode's
1760 	 * last_trans is <= then the last committed transaction, because we only
1761 	 * update the last_trans of the inode during ordered extent completion,
1762 	 * and for a fast fsync we don't wait for that, we only wait for the
1763 	 * writeback to complete.
1764 	 */
1765 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1766 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1767 	     list_empty(&ctx->ordered_extents)))
1768 		return true;
1769 
1770 	return false;
1771 }
1772 
1773 /*
1774  * fsync call for both files and directories.  This logs the inode into
1775  * the tree log instead of forcing full commits whenever possible.
1776  *
1777  * It needs to call filemap_fdatawait so that all ordered extent updates are
1778  * in the metadata btree are up to date for copying to the log.
1779  *
1780  * It drops the inode mutex before doing the tree log commit.  This is an
1781  * important optimization for directories because holding the mutex prevents
1782  * new operations on the dir while we write to disk.
1783  */
1784 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1785 {
1786 	struct dentry *dentry = file_dentry(file);
1787 	struct inode *inode = d_inode(dentry);
1788 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1789 	struct btrfs_root *root = BTRFS_I(inode)->root;
1790 	struct btrfs_trans_handle *trans;
1791 	struct btrfs_log_ctx ctx;
1792 	int ret = 0, err;
1793 	u64 len;
1794 	bool full_sync;
1795 
1796 	trace_btrfs_sync_file(file, datasync);
1797 
1798 	btrfs_init_log_ctx(&ctx, inode);
1799 
1800 	/*
1801 	 * Always set the range to a full range, otherwise we can get into
1802 	 * several problems, from missing file extent items to represent holes
1803 	 * when not using the NO_HOLES feature, to log tree corruption due to
1804 	 * races between hole detection during logging and completion of ordered
1805 	 * extents outside the range, to missing checksums due to ordered extents
1806 	 * for which we flushed only a subset of their pages.
1807 	 */
1808 	start = 0;
1809 	end = LLONG_MAX;
1810 	len = (u64)LLONG_MAX + 1;
1811 
1812 	/*
1813 	 * We write the dirty pages in the range and wait until they complete
1814 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1815 	 * multi-task, and make the performance up.  See
1816 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1817 	 */
1818 	ret = start_ordered_ops(inode, start, end);
1819 	if (ret)
1820 		goto out;
1821 
1822 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1823 
1824 	atomic_inc(&root->log_batch);
1825 
1826 	/*
1827 	 * Before we acquired the inode's lock and the mmap lock, someone may
1828 	 * have dirtied more pages in the target range. We need to make sure
1829 	 * that writeback for any such pages does not start while we are logging
1830 	 * the inode, because if it does, any of the following might happen when
1831 	 * we are not doing a full inode sync:
1832 	 *
1833 	 * 1) We log an extent after its writeback finishes but before its
1834 	 *    checksums are added to the csum tree, leading to -EIO errors
1835 	 *    when attempting to read the extent after a log replay.
1836 	 *
1837 	 * 2) We can end up logging an extent before its writeback finishes.
1838 	 *    Therefore after the log replay we will have a file extent item
1839 	 *    pointing to an unwritten extent (and no data checksums as well).
1840 	 *
1841 	 * So trigger writeback for any eventual new dirty pages and then we
1842 	 * wait for all ordered extents to complete below.
1843 	 */
1844 	ret = start_ordered_ops(inode, start, end);
1845 	if (ret) {
1846 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1847 		goto out;
1848 	}
1849 
1850 	/*
1851 	 * Always check for the full sync flag while holding the inode's lock,
1852 	 * to avoid races with other tasks. The flag must be either set all the
1853 	 * time during logging or always off all the time while logging.
1854 	 * We check the flag here after starting delalloc above, because when
1855 	 * running delalloc the full sync flag may be set if we need to drop
1856 	 * extra extent map ranges due to temporary memory allocation failures.
1857 	 */
1858 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1859 			     &BTRFS_I(inode)->runtime_flags);
1860 
1861 	/*
1862 	 * We have to do this here to avoid the priority inversion of waiting on
1863 	 * IO of a lower priority task while holding a transaction open.
1864 	 *
1865 	 * For a full fsync we wait for the ordered extents to complete while
1866 	 * for a fast fsync we wait just for writeback to complete, and then
1867 	 * attach the ordered extents to the transaction so that a transaction
1868 	 * commit waits for their completion, to avoid data loss if we fsync,
1869 	 * the current transaction commits before the ordered extents complete
1870 	 * and a power failure happens right after that.
1871 	 *
1872 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1873 	 * logical address recorded in the ordered extent may change. We need
1874 	 * to wait for the IO to stabilize the logical address.
1875 	 */
1876 	if (full_sync || btrfs_is_zoned(fs_info)) {
1877 		ret = btrfs_wait_ordered_range(inode, start, len);
1878 	} else {
1879 		/*
1880 		 * Get our ordered extents as soon as possible to avoid doing
1881 		 * checksum lookups in the csum tree, and use instead the
1882 		 * checksums attached to the ordered extents.
1883 		 */
1884 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1885 						      &ctx.ordered_extents);
1886 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1887 	}
1888 
1889 	if (ret)
1890 		goto out_release_extents;
1891 
1892 	atomic_inc(&root->log_batch);
1893 
1894 	if (skip_inode_logging(&ctx)) {
1895 		/*
1896 		 * We've had everything committed since the last time we were
1897 		 * modified so clear this flag in case it was set for whatever
1898 		 * reason, it's no longer relevant.
1899 		 */
1900 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1901 			  &BTRFS_I(inode)->runtime_flags);
1902 		/*
1903 		 * An ordered extent might have started before and completed
1904 		 * already with io errors, in which case the inode was not
1905 		 * updated and we end up here. So check the inode's mapping
1906 		 * for any errors that might have happened since we last
1907 		 * checked called fsync.
1908 		 */
1909 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1910 		goto out_release_extents;
1911 	}
1912 
1913 	btrfs_init_log_ctx_scratch_eb(&ctx);
1914 
1915 	/*
1916 	 * We use start here because we will need to wait on the IO to complete
1917 	 * in btrfs_sync_log, which could require joining a transaction (for
1918 	 * example checking cross references in the nocow path).  If we use join
1919 	 * here we could get into a situation where we're waiting on IO to
1920 	 * happen that is blocked on a transaction trying to commit.  With start
1921 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1922 	 * before we start blocking joiners.  This comment is to keep somebody
1923 	 * from thinking they are super smart and changing this to
1924 	 * btrfs_join_transaction *cough*Josef*cough*.
1925 	 */
1926 	trans = btrfs_start_transaction(root, 0);
1927 	if (IS_ERR(trans)) {
1928 		ret = PTR_ERR(trans);
1929 		goto out_release_extents;
1930 	}
1931 	trans->in_fsync = true;
1932 
1933 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1934 	/*
1935 	 * Scratch eb no longer needed, release before syncing log or commit
1936 	 * transaction, to avoid holding unnecessary memory during such long
1937 	 * operations.
1938 	 */
1939 	if (ctx.scratch_eb) {
1940 		free_extent_buffer(ctx.scratch_eb);
1941 		ctx.scratch_eb = NULL;
1942 	}
1943 	btrfs_release_log_ctx_extents(&ctx);
1944 	if (ret < 0) {
1945 		/* Fallthrough and commit/free transaction. */
1946 		ret = BTRFS_LOG_FORCE_COMMIT;
1947 	}
1948 
1949 	/* we've logged all the items and now have a consistent
1950 	 * version of the file in the log.  It is possible that
1951 	 * someone will come in and modify the file, but that's
1952 	 * fine because the log is consistent on disk, and we
1953 	 * have references to all of the file's extents
1954 	 *
1955 	 * It is possible that someone will come in and log the
1956 	 * file again, but that will end up using the synchronization
1957 	 * inside btrfs_sync_log to keep things safe.
1958 	 */
1959 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1960 
1961 	if (ret == BTRFS_NO_LOG_SYNC) {
1962 		ret = btrfs_end_transaction(trans);
1963 		goto out;
1964 	}
1965 
1966 	/* We successfully logged the inode, attempt to sync the log. */
1967 	if (!ret) {
1968 		ret = btrfs_sync_log(trans, root, &ctx);
1969 		if (!ret) {
1970 			ret = btrfs_end_transaction(trans);
1971 			goto out;
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * At this point we need to commit the transaction because we had
1977 	 * btrfs_need_log_full_commit() or some other error.
1978 	 *
1979 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1980 	 * the ordered extents, start it again and commit the transaction.  If
1981 	 * we attempt to wait on the ordered extents here we could deadlock with
1982 	 * something like fallocate() that is holding the extent lock trying to
1983 	 * start a transaction while some other thread is trying to commit the
1984 	 * transaction while we (fsync) are currently holding the transaction
1985 	 * open.
1986 	 */
1987 	if (!full_sync) {
1988 		ret = btrfs_end_transaction(trans);
1989 		if (ret)
1990 			goto out;
1991 		ret = btrfs_wait_ordered_range(inode, start, len);
1992 		if (ret)
1993 			goto out;
1994 
1995 		/*
1996 		 * This is safe to use here because we're only interested in
1997 		 * making sure the transaction that had the ordered extents is
1998 		 * committed.  We aren't waiting on anything past this point,
1999 		 * we're purely getting the transaction and committing it.
2000 		 */
2001 		trans = btrfs_attach_transaction_barrier(root);
2002 		if (IS_ERR(trans)) {
2003 			ret = PTR_ERR(trans);
2004 
2005 			/*
2006 			 * We committed the transaction and there's no currently
2007 			 * running transaction, this means everything we care
2008 			 * about made it to disk and we are done.
2009 			 */
2010 			if (ret == -ENOENT)
2011 				ret = 0;
2012 			goto out;
2013 		}
2014 	}
2015 
2016 	ret = btrfs_commit_transaction(trans);
2017 out:
2018 	free_extent_buffer(ctx.scratch_eb);
2019 	ASSERT(list_empty(&ctx.list));
2020 	ASSERT(list_empty(&ctx.conflict_inodes));
2021 	err = file_check_and_advance_wb_err(file);
2022 	if (!ret)
2023 		ret = err;
2024 	return ret > 0 ? -EIO : ret;
2025 
2026 out_release_extents:
2027 	btrfs_release_log_ctx_extents(&ctx);
2028 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2029 	goto out;
2030 }
2031 
2032 /*
2033  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
2034  * called from a page fault handler when a page is first dirtied. Hence we must
2035  * be careful to check for EOF conditions here. We set the page up correctly
2036  * for a written page which means we get ENOSPC checking when writing into
2037  * holes and correct delalloc and unwritten extent mapping on filesystems that
2038  * support these features.
2039  *
2040  * We are not allowed to take the i_mutex here so we have to play games to
2041  * protect against truncate races as the page could now be beyond EOF.  Because
2042  * truncate_setsize() writes the inode size before removing pages, once we have
2043  * the page lock we can determine safely if the page is beyond EOF. If it is not
2044  * beyond EOF, then the page is guaranteed safe against truncation until we
2045  * unlock the page.
2046  */
2047 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
2048 {
2049 	struct page *page = vmf->page;
2050 	struct folio *folio = page_folio(page);
2051 	struct inode *inode = file_inode(vmf->vma->vm_file);
2052 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2053 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2054 	struct btrfs_ordered_extent *ordered;
2055 	struct extent_state *cached_state = NULL;
2056 	struct extent_changeset *data_reserved = NULL;
2057 	unsigned long zero_start;
2058 	loff_t size;
2059 	vm_fault_t ret;
2060 	int ret2;
2061 	int reserved = 0;
2062 	u64 reserved_space;
2063 	u64 page_start;
2064 	u64 page_end;
2065 	u64 end;
2066 
2067 	ASSERT(folio_order(folio) == 0);
2068 
2069 	reserved_space = PAGE_SIZE;
2070 
2071 	sb_start_pagefault(inode->i_sb);
2072 	page_start = page_offset(page);
2073 	page_end = page_start + PAGE_SIZE - 1;
2074 	end = page_end;
2075 
2076 	/*
2077 	 * Reserving delalloc space after obtaining the page lock can lead to
2078 	 * deadlock. For example, if a dirty page is locked by this function
2079 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
2080 	 * dirty page write out, then the btrfs_writepages() function could
2081 	 * end up waiting indefinitely to get a lock on the page currently
2082 	 * being processed by btrfs_page_mkwrite() function.
2083 	 */
2084 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
2085 					    page_start, reserved_space);
2086 	if (!ret2) {
2087 		ret2 = file_update_time(vmf->vma->vm_file);
2088 		reserved = 1;
2089 	}
2090 	if (ret2) {
2091 		ret = vmf_error(ret2);
2092 		if (reserved)
2093 			goto out;
2094 		goto out_noreserve;
2095 	}
2096 
2097 	/* Make the VM retry the fault. */
2098 	ret = VM_FAULT_NOPAGE;
2099 again:
2100 	down_read(&BTRFS_I(inode)->i_mmap_lock);
2101 	lock_page(page);
2102 	size = i_size_read(inode);
2103 
2104 	if ((page->mapping != inode->i_mapping) ||
2105 	    (page_start >= size)) {
2106 		/* Page got truncated out from underneath us. */
2107 		goto out_unlock;
2108 	}
2109 	wait_on_page_writeback(page);
2110 
2111 	lock_extent(io_tree, page_start, page_end, &cached_state);
2112 	ret2 = set_page_extent_mapped(page);
2113 	if (ret2 < 0) {
2114 		ret = vmf_error(ret2);
2115 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2116 		goto out_unlock;
2117 	}
2118 
2119 	/*
2120 	 * We can't set the delalloc bits if there are pending ordered
2121 	 * extents.  Drop our locks and wait for them to finish.
2122 	 */
2123 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
2124 	if (ordered) {
2125 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2126 		unlock_page(page);
2127 		up_read(&BTRFS_I(inode)->i_mmap_lock);
2128 		btrfs_start_ordered_extent(ordered);
2129 		btrfs_put_ordered_extent(ordered);
2130 		goto again;
2131 	}
2132 
2133 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
2134 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
2135 		if (reserved_space < PAGE_SIZE) {
2136 			end = page_start + reserved_space - 1;
2137 			btrfs_delalloc_release_space(BTRFS_I(inode),
2138 					data_reserved, page_start,
2139 					PAGE_SIZE - reserved_space, true);
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * page_mkwrite gets called when the page is firstly dirtied after it's
2145 	 * faulted in, but write(2) could also dirty a page and set delalloc
2146 	 * bits, thus in this case for space account reason, we still need to
2147 	 * clear any delalloc bits within this page range since we have to
2148 	 * reserve data&meta space before lock_page() (see above comments).
2149 	 */
2150 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
2151 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
2152 			  EXTENT_DEFRAG, &cached_state);
2153 
2154 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
2155 					&cached_state);
2156 	if (ret2) {
2157 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2158 		ret = VM_FAULT_SIGBUS;
2159 		goto out_unlock;
2160 	}
2161 
2162 	/* Page is wholly or partially inside EOF. */
2163 	if (page_start + PAGE_SIZE > size)
2164 		zero_start = offset_in_page(size);
2165 	else
2166 		zero_start = PAGE_SIZE;
2167 
2168 	if (zero_start != PAGE_SIZE)
2169 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
2170 
2171 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2172 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2173 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2174 
2175 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2176 
2177 	unlock_extent(io_tree, page_start, page_end, &cached_state);
2178 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2179 
2180 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2181 	sb_end_pagefault(inode->i_sb);
2182 	extent_changeset_free(data_reserved);
2183 	return VM_FAULT_LOCKED;
2184 
2185 out_unlock:
2186 	unlock_page(page);
2187 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2188 out:
2189 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2190 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2191 				     reserved_space, (ret != 0));
2192 out_noreserve:
2193 	sb_end_pagefault(inode->i_sb);
2194 	extent_changeset_free(data_reserved);
2195 	return ret;
2196 }
2197 
2198 static const struct vm_operations_struct btrfs_file_vm_ops = {
2199 	.fault		= filemap_fault,
2200 	.map_pages	= filemap_map_pages,
2201 	.page_mkwrite	= btrfs_page_mkwrite,
2202 };
2203 
2204 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2205 {
2206 	struct address_space *mapping = filp->f_mapping;
2207 
2208 	if (!mapping->a_ops->read_folio)
2209 		return -ENOEXEC;
2210 
2211 	file_accessed(filp);
2212 	vma->vm_ops = &btrfs_file_vm_ops;
2213 
2214 	return 0;
2215 }
2216 
2217 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2218 			  int slot, u64 start, u64 end)
2219 {
2220 	struct btrfs_file_extent_item *fi;
2221 	struct btrfs_key key;
2222 
2223 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2224 		return 0;
2225 
2226 	btrfs_item_key_to_cpu(leaf, &key, slot);
2227 	if (key.objectid != btrfs_ino(inode) ||
2228 	    key.type != BTRFS_EXTENT_DATA_KEY)
2229 		return 0;
2230 
2231 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2232 
2233 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2234 		return 0;
2235 
2236 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2237 		return 0;
2238 
2239 	if (key.offset == end)
2240 		return 1;
2241 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2242 		return 1;
2243 	return 0;
2244 }
2245 
2246 static int fill_holes(struct btrfs_trans_handle *trans,
2247 		struct btrfs_inode *inode,
2248 		struct btrfs_path *path, u64 offset, u64 end)
2249 {
2250 	struct btrfs_fs_info *fs_info = trans->fs_info;
2251 	struct btrfs_root *root = inode->root;
2252 	struct extent_buffer *leaf;
2253 	struct btrfs_file_extent_item *fi;
2254 	struct extent_map *hole_em;
2255 	struct btrfs_key key;
2256 	int ret;
2257 
2258 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2259 		goto out;
2260 
2261 	key.objectid = btrfs_ino(inode);
2262 	key.type = BTRFS_EXTENT_DATA_KEY;
2263 	key.offset = offset;
2264 
2265 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2266 	if (ret <= 0) {
2267 		/*
2268 		 * We should have dropped this offset, so if we find it then
2269 		 * something has gone horribly wrong.
2270 		 */
2271 		if (ret == 0)
2272 			ret = -EINVAL;
2273 		return ret;
2274 	}
2275 
2276 	leaf = path->nodes[0];
2277 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2278 		u64 num_bytes;
2279 
2280 		path->slots[0]--;
2281 		fi = btrfs_item_ptr(leaf, path->slots[0],
2282 				    struct btrfs_file_extent_item);
2283 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2284 			end - offset;
2285 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2286 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2287 		btrfs_set_file_extent_offset(leaf, fi, 0);
2288 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2289 		btrfs_mark_buffer_dirty(trans, leaf);
2290 		goto out;
2291 	}
2292 
2293 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2294 		u64 num_bytes;
2295 
2296 		key.offset = offset;
2297 		btrfs_set_item_key_safe(trans, path, &key);
2298 		fi = btrfs_item_ptr(leaf, path->slots[0],
2299 				    struct btrfs_file_extent_item);
2300 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2301 			offset;
2302 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2303 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2304 		btrfs_set_file_extent_offset(leaf, fi, 0);
2305 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2306 		btrfs_mark_buffer_dirty(trans, leaf);
2307 		goto out;
2308 	}
2309 	btrfs_release_path(path);
2310 
2311 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2312 				       end - offset);
2313 	if (ret)
2314 		return ret;
2315 
2316 out:
2317 	btrfs_release_path(path);
2318 
2319 	hole_em = alloc_extent_map();
2320 	if (!hole_em) {
2321 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2322 		btrfs_set_inode_full_sync(inode);
2323 	} else {
2324 		hole_em->start = offset;
2325 		hole_em->len = end - offset;
2326 		hole_em->ram_bytes = hole_em->len;
2327 		hole_em->orig_start = offset;
2328 
2329 		hole_em->block_start = EXTENT_MAP_HOLE;
2330 		hole_em->block_len = 0;
2331 		hole_em->orig_block_len = 0;
2332 		hole_em->generation = trans->transid;
2333 
2334 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2335 		free_extent_map(hole_em);
2336 		if (ret)
2337 			btrfs_set_inode_full_sync(inode);
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 /*
2344  * Find a hole extent on given inode and change start/len to the end of hole
2345  * extent.(hole/vacuum extent whose em->start <= start &&
2346  *	   em->start + em->len > start)
2347  * When a hole extent is found, return 1 and modify start/len.
2348  */
2349 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2350 {
2351 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2352 	struct extent_map *em;
2353 	int ret = 0;
2354 
2355 	em = btrfs_get_extent(inode, NULL,
2356 			      round_down(*start, fs_info->sectorsize),
2357 			      round_up(*len, fs_info->sectorsize));
2358 	if (IS_ERR(em))
2359 		return PTR_ERR(em);
2360 
2361 	/* Hole or vacuum extent(only exists in no-hole mode) */
2362 	if (em->block_start == EXTENT_MAP_HOLE) {
2363 		ret = 1;
2364 		*len = em->start + em->len > *start + *len ?
2365 		       0 : *start + *len - em->start - em->len;
2366 		*start = em->start + em->len;
2367 	}
2368 	free_extent_map(em);
2369 	return ret;
2370 }
2371 
2372 static void btrfs_punch_hole_lock_range(struct inode *inode,
2373 					const u64 lockstart,
2374 					const u64 lockend,
2375 					struct extent_state **cached_state)
2376 {
2377 	/*
2378 	 * For subpage case, if the range is not at page boundary, we could
2379 	 * have pages at the leading/tailing part of the range.
2380 	 * This could lead to dead loop since filemap_range_has_page()
2381 	 * will always return true.
2382 	 * So here we need to do extra page alignment for
2383 	 * filemap_range_has_page().
2384 	 */
2385 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2386 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2387 
2388 	while (1) {
2389 		truncate_pagecache_range(inode, lockstart, lockend);
2390 
2391 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2392 			    cached_state);
2393 		/*
2394 		 * We can't have ordered extents in the range, nor dirty/writeback
2395 		 * pages, because we have locked the inode's VFS lock in exclusive
2396 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2397 		 * we have flushed all delalloc in the range and we have waited
2398 		 * for any ordered extents in the range to complete.
2399 		 * We can race with anyone reading pages from this range, so after
2400 		 * locking the range check if we have pages in the range, and if
2401 		 * we do, unlock the range and retry.
2402 		 */
2403 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2404 					    page_lockend))
2405 			break;
2406 
2407 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2408 			      cached_state);
2409 	}
2410 
2411 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2412 }
2413 
2414 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2415 				     struct btrfs_inode *inode,
2416 				     struct btrfs_path *path,
2417 				     struct btrfs_replace_extent_info *extent_info,
2418 				     const u64 replace_len,
2419 				     const u64 bytes_to_drop)
2420 {
2421 	struct btrfs_fs_info *fs_info = trans->fs_info;
2422 	struct btrfs_root *root = inode->root;
2423 	struct btrfs_file_extent_item *extent;
2424 	struct extent_buffer *leaf;
2425 	struct btrfs_key key;
2426 	int slot;
2427 	struct btrfs_ref ref = { 0 };
2428 	int ret;
2429 
2430 	if (replace_len == 0)
2431 		return 0;
2432 
2433 	if (extent_info->disk_offset == 0 &&
2434 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2435 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2436 		return 0;
2437 	}
2438 
2439 	key.objectid = btrfs_ino(inode);
2440 	key.type = BTRFS_EXTENT_DATA_KEY;
2441 	key.offset = extent_info->file_offset;
2442 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2443 				      sizeof(struct btrfs_file_extent_item));
2444 	if (ret)
2445 		return ret;
2446 	leaf = path->nodes[0];
2447 	slot = path->slots[0];
2448 	write_extent_buffer(leaf, extent_info->extent_buf,
2449 			    btrfs_item_ptr_offset(leaf, slot),
2450 			    sizeof(struct btrfs_file_extent_item));
2451 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2452 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2453 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2454 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2455 	if (extent_info->is_new_extent)
2456 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2457 	btrfs_mark_buffer_dirty(trans, leaf);
2458 	btrfs_release_path(path);
2459 
2460 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2461 						replace_len);
2462 	if (ret)
2463 		return ret;
2464 
2465 	/* If it's a hole, nothing more needs to be done. */
2466 	if (extent_info->disk_offset == 0) {
2467 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2468 		return 0;
2469 	}
2470 
2471 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2472 
2473 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2474 		key.objectid = extent_info->disk_offset;
2475 		key.type = BTRFS_EXTENT_ITEM_KEY;
2476 		key.offset = extent_info->disk_len;
2477 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2478 						       btrfs_ino(inode),
2479 						       extent_info->file_offset,
2480 						       extent_info->qgroup_reserved,
2481 						       &key);
2482 	} else {
2483 		u64 ref_offset;
2484 
2485 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2486 				       extent_info->disk_offset,
2487 				       extent_info->disk_len, 0,
2488 				       root->root_key.objectid);
2489 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2490 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2491 				    btrfs_ino(inode), ref_offset, 0, false);
2492 		ret = btrfs_inc_extent_ref(trans, &ref);
2493 	}
2494 
2495 	extent_info->insertions++;
2496 
2497 	return ret;
2498 }
2499 
2500 /*
2501  * The respective range must have been previously locked, as well as the inode.
2502  * The end offset is inclusive (last byte of the range).
2503  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2504  * the file range with an extent.
2505  * When not punching a hole, we don't want to end up in a state where we dropped
2506  * extents without inserting a new one, so we must abort the transaction to avoid
2507  * a corruption.
2508  */
2509 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2510 			       struct btrfs_path *path, const u64 start,
2511 			       const u64 end,
2512 			       struct btrfs_replace_extent_info *extent_info,
2513 			       struct btrfs_trans_handle **trans_out)
2514 {
2515 	struct btrfs_drop_extents_args drop_args = { 0 };
2516 	struct btrfs_root *root = inode->root;
2517 	struct btrfs_fs_info *fs_info = root->fs_info;
2518 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2519 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2520 	struct btrfs_trans_handle *trans = NULL;
2521 	struct btrfs_block_rsv *rsv;
2522 	unsigned int rsv_count;
2523 	u64 cur_offset;
2524 	u64 len = end - start;
2525 	int ret = 0;
2526 
2527 	if (end <= start)
2528 		return -EINVAL;
2529 
2530 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2531 	if (!rsv) {
2532 		ret = -ENOMEM;
2533 		goto out;
2534 	}
2535 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2536 	rsv->failfast = true;
2537 
2538 	/*
2539 	 * 1 - update the inode
2540 	 * 1 - removing the extents in the range
2541 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2542 	 *     replacing the range with a new extent
2543 	 */
2544 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2545 		rsv_count = 3;
2546 	else
2547 		rsv_count = 2;
2548 
2549 	trans = btrfs_start_transaction(root, rsv_count);
2550 	if (IS_ERR(trans)) {
2551 		ret = PTR_ERR(trans);
2552 		trans = NULL;
2553 		goto out_free;
2554 	}
2555 
2556 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2557 				      min_size, false);
2558 	if (WARN_ON(ret))
2559 		goto out_trans;
2560 	trans->block_rsv = rsv;
2561 
2562 	cur_offset = start;
2563 	drop_args.path = path;
2564 	drop_args.end = end + 1;
2565 	drop_args.drop_cache = true;
2566 	while (cur_offset < end) {
2567 		drop_args.start = cur_offset;
2568 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2569 		/* If we are punching a hole decrement the inode's byte count */
2570 		if (!extent_info)
2571 			btrfs_update_inode_bytes(inode, 0,
2572 						 drop_args.bytes_found);
2573 		if (ret != -ENOSPC) {
2574 			/*
2575 			 * The only time we don't want to abort is if we are
2576 			 * attempting to clone a partial inline extent, in which
2577 			 * case we'll get EOPNOTSUPP.  However if we aren't
2578 			 * clone we need to abort no matter what, because if we
2579 			 * got EOPNOTSUPP via prealloc then we messed up and
2580 			 * need to abort.
2581 			 */
2582 			if (ret &&
2583 			    (ret != -EOPNOTSUPP ||
2584 			     (extent_info && extent_info->is_new_extent)))
2585 				btrfs_abort_transaction(trans, ret);
2586 			break;
2587 		}
2588 
2589 		trans->block_rsv = &fs_info->trans_block_rsv;
2590 
2591 		if (!extent_info && cur_offset < drop_args.drop_end &&
2592 		    cur_offset < ino_size) {
2593 			ret = fill_holes(trans, inode, path, cur_offset,
2594 					 drop_args.drop_end);
2595 			if (ret) {
2596 				/*
2597 				 * If we failed then we didn't insert our hole
2598 				 * entries for the area we dropped, so now the
2599 				 * fs is corrupted, so we must abort the
2600 				 * transaction.
2601 				 */
2602 				btrfs_abort_transaction(trans, ret);
2603 				break;
2604 			}
2605 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2606 			/*
2607 			 * We are past the i_size here, but since we didn't
2608 			 * insert holes we need to clear the mapped area so we
2609 			 * know to not set disk_i_size in this area until a new
2610 			 * file extent is inserted here.
2611 			 */
2612 			ret = btrfs_inode_clear_file_extent_range(inode,
2613 					cur_offset,
2614 					drop_args.drop_end - cur_offset);
2615 			if (ret) {
2616 				/*
2617 				 * We couldn't clear our area, so we could
2618 				 * presumably adjust up and corrupt the fs, so
2619 				 * we need to abort.
2620 				 */
2621 				btrfs_abort_transaction(trans, ret);
2622 				break;
2623 			}
2624 		}
2625 
2626 		if (extent_info &&
2627 		    drop_args.drop_end > extent_info->file_offset) {
2628 			u64 replace_len = drop_args.drop_end -
2629 					  extent_info->file_offset;
2630 
2631 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2632 					extent_info, replace_len,
2633 					drop_args.bytes_found);
2634 			if (ret) {
2635 				btrfs_abort_transaction(trans, ret);
2636 				break;
2637 			}
2638 			extent_info->data_len -= replace_len;
2639 			extent_info->data_offset += replace_len;
2640 			extent_info->file_offset += replace_len;
2641 		}
2642 
2643 		/*
2644 		 * We are releasing our handle on the transaction, balance the
2645 		 * dirty pages of the btree inode and flush delayed items, and
2646 		 * then get a new transaction handle, which may now point to a
2647 		 * new transaction in case someone else may have committed the
2648 		 * transaction we used to replace/drop file extent items. So
2649 		 * bump the inode's iversion and update mtime and ctime except
2650 		 * if we are called from a dedupe context. This is because a
2651 		 * power failure/crash may happen after the transaction is
2652 		 * committed and before we finish replacing/dropping all the
2653 		 * file extent items we need.
2654 		 */
2655 		inode_inc_iversion(&inode->vfs_inode);
2656 
2657 		if (!extent_info || extent_info->update_times)
2658 			inode_set_mtime_to_ts(&inode->vfs_inode,
2659 					      inode_set_ctime_current(&inode->vfs_inode));
2660 
2661 		ret = btrfs_update_inode(trans, inode);
2662 		if (ret)
2663 			break;
2664 
2665 		btrfs_end_transaction(trans);
2666 		btrfs_btree_balance_dirty(fs_info);
2667 
2668 		trans = btrfs_start_transaction(root, rsv_count);
2669 		if (IS_ERR(trans)) {
2670 			ret = PTR_ERR(trans);
2671 			trans = NULL;
2672 			break;
2673 		}
2674 
2675 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2676 					      rsv, min_size, false);
2677 		if (WARN_ON(ret))
2678 			break;
2679 		trans->block_rsv = rsv;
2680 
2681 		cur_offset = drop_args.drop_end;
2682 		len = end - cur_offset;
2683 		if (!extent_info && len) {
2684 			ret = find_first_non_hole(inode, &cur_offset, &len);
2685 			if (unlikely(ret < 0))
2686 				break;
2687 			if (ret && !len) {
2688 				ret = 0;
2689 				break;
2690 			}
2691 		}
2692 	}
2693 
2694 	/*
2695 	 * If we were cloning, force the next fsync to be a full one since we
2696 	 * we replaced (or just dropped in the case of cloning holes when
2697 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2698 	 * maps for the replacement extents (or holes).
2699 	 */
2700 	if (extent_info && !extent_info->is_new_extent)
2701 		btrfs_set_inode_full_sync(inode);
2702 
2703 	if (ret)
2704 		goto out_trans;
2705 
2706 	trans->block_rsv = &fs_info->trans_block_rsv;
2707 	/*
2708 	 * If we are using the NO_HOLES feature we might have had already an
2709 	 * hole that overlaps a part of the region [lockstart, lockend] and
2710 	 * ends at (or beyond) lockend. Since we have no file extent items to
2711 	 * represent holes, drop_end can be less than lockend and so we must
2712 	 * make sure we have an extent map representing the existing hole (the
2713 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2714 	 * map representing the existing hole), otherwise the fast fsync path
2715 	 * will not record the existence of the hole region
2716 	 * [existing_hole_start, lockend].
2717 	 */
2718 	if (drop_args.drop_end <= end)
2719 		drop_args.drop_end = end + 1;
2720 	/*
2721 	 * Don't insert file hole extent item if it's for a range beyond eof
2722 	 * (because it's useless) or if it represents a 0 bytes range (when
2723 	 * cur_offset == drop_end).
2724 	 */
2725 	if (!extent_info && cur_offset < ino_size &&
2726 	    cur_offset < drop_args.drop_end) {
2727 		ret = fill_holes(trans, inode, path, cur_offset,
2728 				 drop_args.drop_end);
2729 		if (ret) {
2730 			/* Same comment as above. */
2731 			btrfs_abort_transaction(trans, ret);
2732 			goto out_trans;
2733 		}
2734 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2735 		/* See the comment in the loop above for the reasoning here. */
2736 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2737 					drop_args.drop_end - cur_offset);
2738 		if (ret) {
2739 			btrfs_abort_transaction(trans, ret);
2740 			goto out_trans;
2741 		}
2742 
2743 	}
2744 	if (extent_info) {
2745 		ret = btrfs_insert_replace_extent(trans, inode, path,
2746 				extent_info, extent_info->data_len,
2747 				drop_args.bytes_found);
2748 		if (ret) {
2749 			btrfs_abort_transaction(trans, ret);
2750 			goto out_trans;
2751 		}
2752 	}
2753 
2754 out_trans:
2755 	if (!trans)
2756 		goto out_free;
2757 
2758 	trans->block_rsv = &fs_info->trans_block_rsv;
2759 	if (ret)
2760 		btrfs_end_transaction(trans);
2761 	else
2762 		*trans_out = trans;
2763 out_free:
2764 	btrfs_free_block_rsv(fs_info, rsv);
2765 out:
2766 	return ret;
2767 }
2768 
2769 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2770 {
2771 	struct inode *inode = file_inode(file);
2772 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2773 	struct btrfs_root *root = BTRFS_I(inode)->root;
2774 	struct extent_state *cached_state = NULL;
2775 	struct btrfs_path *path;
2776 	struct btrfs_trans_handle *trans = NULL;
2777 	u64 lockstart;
2778 	u64 lockend;
2779 	u64 tail_start;
2780 	u64 tail_len;
2781 	u64 orig_start = offset;
2782 	int ret = 0;
2783 	bool same_block;
2784 	u64 ino_size;
2785 	bool truncated_block = false;
2786 	bool updated_inode = false;
2787 
2788 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2789 
2790 	ret = btrfs_wait_ordered_range(inode, offset, len);
2791 	if (ret)
2792 		goto out_only_mutex;
2793 
2794 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2795 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2796 	if (ret < 0)
2797 		goto out_only_mutex;
2798 	if (ret && !len) {
2799 		/* Already in a large hole */
2800 		ret = 0;
2801 		goto out_only_mutex;
2802 	}
2803 
2804 	ret = file_modified(file);
2805 	if (ret)
2806 		goto out_only_mutex;
2807 
2808 	lockstart = round_up(offset, fs_info->sectorsize);
2809 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2810 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2811 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2812 	/*
2813 	 * We needn't truncate any block which is beyond the end of the file
2814 	 * because we are sure there is no data there.
2815 	 */
2816 	/*
2817 	 * Only do this if we are in the same block and we aren't doing the
2818 	 * entire block.
2819 	 */
2820 	if (same_block && len < fs_info->sectorsize) {
2821 		if (offset < ino_size) {
2822 			truncated_block = true;
2823 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2824 						   0);
2825 		} else {
2826 			ret = 0;
2827 		}
2828 		goto out_only_mutex;
2829 	}
2830 
2831 	/* zero back part of the first block */
2832 	if (offset < ino_size) {
2833 		truncated_block = true;
2834 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2835 		if (ret) {
2836 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2837 			return ret;
2838 		}
2839 	}
2840 
2841 	/* Check the aligned pages after the first unaligned page,
2842 	 * if offset != orig_start, which means the first unaligned page
2843 	 * including several following pages are already in holes,
2844 	 * the extra check can be skipped */
2845 	if (offset == orig_start) {
2846 		/* after truncate page, check hole again */
2847 		len = offset + len - lockstart;
2848 		offset = lockstart;
2849 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2850 		if (ret < 0)
2851 			goto out_only_mutex;
2852 		if (ret && !len) {
2853 			ret = 0;
2854 			goto out_only_mutex;
2855 		}
2856 		lockstart = offset;
2857 	}
2858 
2859 	/* Check the tail unaligned part is in a hole */
2860 	tail_start = lockend + 1;
2861 	tail_len = offset + len - tail_start;
2862 	if (tail_len) {
2863 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2864 		if (unlikely(ret < 0))
2865 			goto out_only_mutex;
2866 		if (!ret) {
2867 			/* zero the front end of the last page */
2868 			if (tail_start + tail_len < ino_size) {
2869 				truncated_block = true;
2870 				ret = btrfs_truncate_block(BTRFS_I(inode),
2871 							tail_start + tail_len,
2872 							0, 1);
2873 				if (ret)
2874 					goto out_only_mutex;
2875 			}
2876 		}
2877 	}
2878 
2879 	if (lockend < lockstart) {
2880 		ret = 0;
2881 		goto out_only_mutex;
2882 	}
2883 
2884 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2885 
2886 	path = btrfs_alloc_path();
2887 	if (!path) {
2888 		ret = -ENOMEM;
2889 		goto out;
2890 	}
2891 
2892 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2893 					 lockend, NULL, &trans);
2894 	btrfs_free_path(path);
2895 	if (ret)
2896 		goto out;
2897 
2898 	ASSERT(trans != NULL);
2899 	inode_inc_iversion(inode);
2900 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2901 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2902 	updated_inode = true;
2903 	btrfs_end_transaction(trans);
2904 	btrfs_btree_balance_dirty(fs_info);
2905 out:
2906 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2907 		      &cached_state);
2908 out_only_mutex:
2909 	if (!updated_inode && truncated_block && !ret) {
2910 		/*
2911 		 * If we only end up zeroing part of a page, we still need to
2912 		 * update the inode item, so that all the time fields are
2913 		 * updated as well as the necessary btrfs inode in memory fields
2914 		 * for detecting, at fsync time, if the inode isn't yet in the
2915 		 * log tree or it's there but not up to date.
2916 		 */
2917 		struct timespec64 now = inode_set_ctime_current(inode);
2918 
2919 		inode_inc_iversion(inode);
2920 		inode_set_mtime_to_ts(inode, now);
2921 		trans = btrfs_start_transaction(root, 1);
2922 		if (IS_ERR(trans)) {
2923 			ret = PTR_ERR(trans);
2924 		} else {
2925 			int ret2;
2926 
2927 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2928 			ret2 = btrfs_end_transaction(trans);
2929 			if (!ret)
2930 				ret = ret2;
2931 		}
2932 	}
2933 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2934 	return ret;
2935 }
2936 
2937 /* Helper structure to record which range is already reserved */
2938 struct falloc_range {
2939 	struct list_head list;
2940 	u64 start;
2941 	u64 len;
2942 };
2943 
2944 /*
2945  * Helper function to add falloc range
2946  *
2947  * Caller should have locked the larger range of extent containing
2948  * [start, len)
2949  */
2950 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2951 {
2952 	struct falloc_range *range = NULL;
2953 
2954 	if (!list_empty(head)) {
2955 		/*
2956 		 * As fallocate iterates by bytenr order, we only need to check
2957 		 * the last range.
2958 		 */
2959 		range = list_last_entry(head, struct falloc_range, list);
2960 		if (range->start + range->len == start) {
2961 			range->len += len;
2962 			return 0;
2963 		}
2964 	}
2965 
2966 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2967 	if (!range)
2968 		return -ENOMEM;
2969 	range->start = start;
2970 	range->len = len;
2971 	list_add_tail(&range->list, head);
2972 	return 0;
2973 }
2974 
2975 static int btrfs_fallocate_update_isize(struct inode *inode,
2976 					const u64 end,
2977 					const int mode)
2978 {
2979 	struct btrfs_trans_handle *trans;
2980 	struct btrfs_root *root = BTRFS_I(inode)->root;
2981 	int ret;
2982 	int ret2;
2983 
2984 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2985 		return 0;
2986 
2987 	trans = btrfs_start_transaction(root, 1);
2988 	if (IS_ERR(trans))
2989 		return PTR_ERR(trans);
2990 
2991 	inode_set_ctime_current(inode);
2992 	i_size_write(inode, end);
2993 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2994 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2995 	ret2 = btrfs_end_transaction(trans);
2996 
2997 	return ret ? ret : ret2;
2998 }
2999 
3000 enum {
3001 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3002 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3003 	RANGE_BOUNDARY_HOLE,
3004 };
3005 
3006 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3007 						 u64 offset)
3008 {
3009 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3010 	struct extent_map *em;
3011 	int ret;
3012 
3013 	offset = round_down(offset, sectorsize);
3014 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
3015 	if (IS_ERR(em))
3016 		return PTR_ERR(em);
3017 
3018 	if (em->block_start == EXTENT_MAP_HOLE)
3019 		ret = RANGE_BOUNDARY_HOLE;
3020 	else if (em->flags & EXTENT_FLAG_PREALLOC)
3021 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3022 	else
3023 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3024 
3025 	free_extent_map(em);
3026 	return ret;
3027 }
3028 
3029 static int btrfs_zero_range(struct inode *inode,
3030 			    loff_t offset,
3031 			    loff_t len,
3032 			    const int mode)
3033 {
3034 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3035 	struct extent_map *em;
3036 	struct extent_changeset *data_reserved = NULL;
3037 	int ret;
3038 	u64 alloc_hint = 0;
3039 	const u64 sectorsize = fs_info->sectorsize;
3040 	u64 alloc_start = round_down(offset, sectorsize);
3041 	u64 alloc_end = round_up(offset + len, sectorsize);
3042 	u64 bytes_to_reserve = 0;
3043 	bool space_reserved = false;
3044 
3045 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
3046 			      alloc_end - alloc_start);
3047 	if (IS_ERR(em)) {
3048 		ret = PTR_ERR(em);
3049 		goto out;
3050 	}
3051 
3052 	/*
3053 	 * Avoid hole punching and extent allocation for some cases. More cases
3054 	 * could be considered, but these are unlikely common and we keep things
3055 	 * as simple as possible for now. Also, intentionally, if the target
3056 	 * range contains one or more prealloc extents together with regular
3057 	 * extents and holes, we drop all the existing extents and allocate a
3058 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3059 	 */
3060 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
3061 		const u64 em_end = em->start + em->len;
3062 
3063 		if (em_end >= offset + len) {
3064 			/*
3065 			 * The whole range is already a prealloc extent,
3066 			 * do nothing except updating the inode's i_size if
3067 			 * needed.
3068 			 */
3069 			free_extent_map(em);
3070 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3071 							   mode);
3072 			goto out;
3073 		}
3074 		/*
3075 		 * Part of the range is already a prealloc extent, so operate
3076 		 * only on the remaining part of the range.
3077 		 */
3078 		alloc_start = em_end;
3079 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3080 		len = offset + len - alloc_start;
3081 		offset = alloc_start;
3082 		alloc_hint = em->block_start + em->len;
3083 	}
3084 	free_extent_map(em);
3085 
3086 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3087 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3088 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
3089 		if (IS_ERR(em)) {
3090 			ret = PTR_ERR(em);
3091 			goto out;
3092 		}
3093 
3094 		if (em->flags & EXTENT_FLAG_PREALLOC) {
3095 			free_extent_map(em);
3096 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3097 							   mode);
3098 			goto out;
3099 		}
3100 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3101 			free_extent_map(em);
3102 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3103 						   0);
3104 			if (!ret)
3105 				ret = btrfs_fallocate_update_isize(inode,
3106 								   offset + len,
3107 								   mode);
3108 			return ret;
3109 		}
3110 		free_extent_map(em);
3111 		alloc_start = round_down(offset, sectorsize);
3112 		alloc_end = alloc_start + sectorsize;
3113 		goto reserve_space;
3114 	}
3115 
3116 	alloc_start = round_up(offset, sectorsize);
3117 	alloc_end = round_down(offset + len, sectorsize);
3118 
3119 	/*
3120 	 * For unaligned ranges, check the pages at the boundaries, they might
3121 	 * map to an extent, in which case we need to partially zero them, or
3122 	 * they might map to a hole, in which case we need our allocation range
3123 	 * to cover them.
3124 	 */
3125 	if (!IS_ALIGNED(offset, sectorsize)) {
3126 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3127 							    offset);
3128 		if (ret < 0)
3129 			goto out;
3130 		if (ret == RANGE_BOUNDARY_HOLE) {
3131 			alloc_start = round_down(offset, sectorsize);
3132 			ret = 0;
3133 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3134 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3135 			if (ret)
3136 				goto out;
3137 		} else {
3138 			ret = 0;
3139 		}
3140 	}
3141 
3142 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3143 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3144 							    offset + len);
3145 		if (ret < 0)
3146 			goto out;
3147 		if (ret == RANGE_BOUNDARY_HOLE) {
3148 			alloc_end = round_up(offset + len, sectorsize);
3149 			ret = 0;
3150 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3151 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3152 						   0, 1);
3153 			if (ret)
3154 				goto out;
3155 		} else {
3156 			ret = 0;
3157 		}
3158 	}
3159 
3160 reserve_space:
3161 	if (alloc_start < alloc_end) {
3162 		struct extent_state *cached_state = NULL;
3163 		const u64 lockstart = alloc_start;
3164 		const u64 lockend = alloc_end - 1;
3165 
3166 		bytes_to_reserve = alloc_end - alloc_start;
3167 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3168 						      bytes_to_reserve);
3169 		if (ret < 0)
3170 			goto out;
3171 		space_reserved = true;
3172 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3173 					    &cached_state);
3174 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3175 						alloc_start, bytes_to_reserve);
3176 		if (ret) {
3177 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3178 				      lockend, &cached_state);
3179 			goto out;
3180 		}
3181 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3182 						alloc_end - alloc_start,
3183 						fs_info->sectorsize,
3184 						offset + len, &alloc_hint);
3185 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3186 			      &cached_state);
3187 		/* btrfs_prealloc_file_range releases reserved space on error */
3188 		if (ret) {
3189 			space_reserved = false;
3190 			goto out;
3191 		}
3192 	}
3193 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3194  out:
3195 	if (ret && space_reserved)
3196 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3197 					       alloc_start, bytes_to_reserve);
3198 	extent_changeset_free(data_reserved);
3199 
3200 	return ret;
3201 }
3202 
3203 static long btrfs_fallocate(struct file *file, int mode,
3204 			    loff_t offset, loff_t len)
3205 {
3206 	struct inode *inode = file_inode(file);
3207 	struct extent_state *cached_state = NULL;
3208 	struct extent_changeset *data_reserved = NULL;
3209 	struct falloc_range *range;
3210 	struct falloc_range *tmp;
3211 	LIST_HEAD(reserve_list);
3212 	u64 cur_offset;
3213 	u64 last_byte;
3214 	u64 alloc_start;
3215 	u64 alloc_end;
3216 	u64 alloc_hint = 0;
3217 	u64 locked_end;
3218 	u64 actual_end = 0;
3219 	u64 data_space_needed = 0;
3220 	u64 data_space_reserved = 0;
3221 	u64 qgroup_reserved = 0;
3222 	struct extent_map *em;
3223 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3224 	int ret;
3225 
3226 	/* Do not allow fallocate in ZONED mode */
3227 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3228 		return -EOPNOTSUPP;
3229 
3230 	alloc_start = round_down(offset, blocksize);
3231 	alloc_end = round_up(offset + len, blocksize);
3232 	cur_offset = alloc_start;
3233 
3234 	/* Make sure we aren't being give some crap mode */
3235 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3236 		     FALLOC_FL_ZERO_RANGE))
3237 		return -EOPNOTSUPP;
3238 
3239 	if (mode & FALLOC_FL_PUNCH_HOLE)
3240 		return btrfs_punch_hole(file, offset, len);
3241 
3242 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3243 
3244 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3245 		ret = inode_newsize_ok(inode, offset + len);
3246 		if (ret)
3247 			goto out;
3248 	}
3249 
3250 	ret = file_modified(file);
3251 	if (ret)
3252 		goto out;
3253 
3254 	/*
3255 	 * TODO: Move these two operations after we have checked
3256 	 * accurate reserved space, or fallocate can still fail but
3257 	 * with page truncated or size expanded.
3258 	 *
3259 	 * But that's a minor problem and won't do much harm BTW.
3260 	 */
3261 	if (alloc_start > inode->i_size) {
3262 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3263 					alloc_start);
3264 		if (ret)
3265 			goto out;
3266 	} else if (offset + len > inode->i_size) {
3267 		/*
3268 		 * If we are fallocating from the end of the file onward we
3269 		 * need to zero out the end of the block if i_size lands in the
3270 		 * middle of a block.
3271 		 */
3272 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3273 		if (ret)
3274 			goto out;
3275 	}
3276 
3277 	/*
3278 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3279 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3280 	 * locking the file range, flush all dealloc in the range and wait for
3281 	 * all ordered extents in the range to complete. After this we can lock
3282 	 * the file range and, due to the previous locking we did, we know there
3283 	 * can't be more delalloc or ordered extents in the range.
3284 	 */
3285 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3286 				       alloc_end - alloc_start);
3287 	if (ret)
3288 		goto out;
3289 
3290 	if (mode & FALLOC_FL_ZERO_RANGE) {
3291 		ret = btrfs_zero_range(inode, offset, len, mode);
3292 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3293 		return ret;
3294 	}
3295 
3296 	locked_end = alloc_end - 1;
3297 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3298 		    &cached_state);
3299 
3300 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3301 
3302 	/* First, check if we exceed the qgroup limit */
3303 	while (cur_offset < alloc_end) {
3304 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3305 				      alloc_end - cur_offset);
3306 		if (IS_ERR(em)) {
3307 			ret = PTR_ERR(em);
3308 			break;
3309 		}
3310 		last_byte = min(extent_map_end(em), alloc_end);
3311 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3312 		last_byte = ALIGN(last_byte, blocksize);
3313 		if (em->block_start == EXTENT_MAP_HOLE ||
3314 		    (cur_offset >= inode->i_size &&
3315 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3316 			const u64 range_len = last_byte - cur_offset;
3317 
3318 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3319 			if (ret < 0) {
3320 				free_extent_map(em);
3321 				break;
3322 			}
3323 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3324 					&data_reserved, cur_offset, range_len);
3325 			if (ret < 0) {
3326 				free_extent_map(em);
3327 				break;
3328 			}
3329 			qgroup_reserved += range_len;
3330 			data_space_needed += range_len;
3331 		}
3332 		free_extent_map(em);
3333 		cur_offset = last_byte;
3334 	}
3335 
3336 	if (!ret && data_space_needed > 0) {
3337 		/*
3338 		 * We are safe to reserve space here as we can't have delalloc
3339 		 * in the range, see above.
3340 		 */
3341 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3342 						      data_space_needed);
3343 		if (!ret)
3344 			data_space_reserved = data_space_needed;
3345 	}
3346 
3347 	/*
3348 	 * If ret is still 0, means we're OK to fallocate.
3349 	 * Or just cleanup the list and exit.
3350 	 */
3351 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3352 		if (!ret) {
3353 			ret = btrfs_prealloc_file_range(inode, mode,
3354 					range->start,
3355 					range->len, blocksize,
3356 					offset + len, &alloc_hint);
3357 			/*
3358 			 * btrfs_prealloc_file_range() releases space even
3359 			 * if it returns an error.
3360 			 */
3361 			data_space_reserved -= range->len;
3362 			qgroup_reserved -= range->len;
3363 		} else if (data_space_reserved > 0) {
3364 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3365 					       data_reserved, range->start,
3366 					       range->len);
3367 			data_space_reserved -= range->len;
3368 			qgroup_reserved -= range->len;
3369 		} else if (qgroup_reserved > 0) {
3370 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3371 					       range->start, range->len, NULL);
3372 			qgroup_reserved -= range->len;
3373 		}
3374 		list_del(&range->list);
3375 		kfree(range);
3376 	}
3377 	if (ret < 0)
3378 		goto out_unlock;
3379 
3380 	/*
3381 	 * We didn't need to allocate any more space, but we still extended the
3382 	 * size of the file so we need to update i_size and the inode item.
3383 	 */
3384 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3385 out_unlock:
3386 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3387 		      &cached_state);
3388 out:
3389 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3390 	extent_changeset_free(data_reserved);
3391 	return ret;
3392 }
3393 
3394 /*
3395  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3396  * that has unflushed and/or flushing delalloc. There might be other adjacent
3397  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3398  * looping while it gets adjacent subranges, and merging them together.
3399  */
3400 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3401 				   struct extent_state **cached_state,
3402 				   bool *search_io_tree,
3403 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3404 {
3405 	u64 len = end + 1 - start;
3406 	u64 delalloc_len = 0;
3407 	struct btrfs_ordered_extent *oe;
3408 	u64 oe_start;
3409 	u64 oe_end;
3410 
3411 	/*
3412 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3413 	 * means we have delalloc (dirty pages) for which writeback has not
3414 	 * started yet.
3415 	 */
3416 	if (*search_io_tree) {
3417 		spin_lock(&inode->lock);
3418 		if (inode->delalloc_bytes > 0) {
3419 			spin_unlock(&inode->lock);
3420 			*delalloc_start_ret = start;
3421 			delalloc_len = count_range_bits(&inode->io_tree,
3422 							delalloc_start_ret, end,
3423 							len, EXTENT_DELALLOC, 1,
3424 							cached_state);
3425 		} else {
3426 			spin_unlock(&inode->lock);
3427 		}
3428 	}
3429 
3430 	if (delalloc_len > 0) {
3431 		/*
3432 		 * If delalloc was found then *delalloc_start_ret has a sector size
3433 		 * aligned value (rounded down).
3434 		 */
3435 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3436 
3437 		if (*delalloc_start_ret == start) {
3438 			/* Delalloc for the whole range, nothing more to do. */
3439 			if (*delalloc_end_ret == end)
3440 				return true;
3441 			/* Else trim our search range for ordered extents. */
3442 			start = *delalloc_end_ret + 1;
3443 			len = end + 1 - start;
3444 		}
3445 	} else {
3446 		/* No delalloc, future calls don't need to search again. */
3447 		*search_io_tree = false;
3448 	}
3449 
3450 	/*
3451 	 * Now also check if there's any ordered extent in the range.
3452 	 * We do this because:
3453 	 *
3454 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3455 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3456 	 *    an ordered extent for the write. So we might just have been called
3457 	 *    after delalloc is flushed and before the ordered extent completes
3458 	 *    and inserts the new file extent item in the subvolume's btree;
3459 	 *
3460 	 * 2) We may have an ordered extent created by flushing delalloc for a
3461 	 *    subrange that starts before the subrange we found marked with
3462 	 *    EXTENT_DELALLOC in the io tree.
3463 	 *
3464 	 * We could also use the extent map tree to find such delalloc that is
3465 	 * being flushed, but using the ordered extents tree is more efficient
3466 	 * because it's usually much smaller as ordered extents are removed from
3467 	 * the tree once they complete. With the extent maps, we mau have them
3468 	 * in the extent map tree for a very long time, and they were either
3469 	 * created by previous writes or loaded by read operations.
3470 	 */
3471 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3472 	if (!oe)
3473 		return (delalloc_len > 0);
3474 
3475 	/* The ordered extent may span beyond our search range. */
3476 	oe_start = max(oe->file_offset, start);
3477 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3478 
3479 	btrfs_put_ordered_extent(oe);
3480 
3481 	/* Don't have unflushed delalloc, return the ordered extent range. */
3482 	if (delalloc_len == 0) {
3483 		*delalloc_start_ret = oe_start;
3484 		*delalloc_end_ret = oe_end;
3485 		return true;
3486 	}
3487 
3488 	/*
3489 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3490 	 * If the ranges are adjacent returned a combined range, otherwise
3491 	 * return the leftmost range.
3492 	 */
3493 	if (oe_start < *delalloc_start_ret) {
3494 		if (oe_end < *delalloc_start_ret)
3495 			*delalloc_end_ret = oe_end;
3496 		*delalloc_start_ret = oe_start;
3497 	} else if (*delalloc_end_ret + 1 == oe_start) {
3498 		*delalloc_end_ret = oe_end;
3499 	}
3500 
3501 	return true;
3502 }
3503 
3504 /*
3505  * Check if there's delalloc in a given range.
3506  *
3507  * @inode:               The inode.
3508  * @start:               The start offset of the range. It does not need to be
3509  *                       sector size aligned.
3510  * @end:                 The end offset (inclusive value) of the search range.
3511  *                       It does not need to be sector size aligned.
3512  * @cached_state:        Extent state record used for speeding up delalloc
3513  *                       searches in the inode's io_tree. Can be NULL.
3514  * @delalloc_start_ret:  Output argument, set to the start offset of the
3515  *                       subrange found with delalloc (may not be sector size
3516  *                       aligned).
3517  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3518  *                       of the subrange found with delalloc.
3519  *
3520  * Returns true if a subrange with delalloc is found within the given range, and
3521  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3522  * end offsets of the subrange.
3523  */
3524 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3525 				  struct extent_state **cached_state,
3526 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3527 {
3528 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3529 	u64 prev_delalloc_end = 0;
3530 	bool search_io_tree = true;
3531 	bool ret = false;
3532 
3533 	while (cur_offset <= end) {
3534 		u64 delalloc_start;
3535 		u64 delalloc_end;
3536 		bool delalloc;
3537 
3538 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3539 						  cached_state, &search_io_tree,
3540 						  &delalloc_start,
3541 						  &delalloc_end);
3542 		if (!delalloc)
3543 			break;
3544 
3545 		if (prev_delalloc_end == 0) {
3546 			/* First subrange found. */
3547 			*delalloc_start_ret = max(delalloc_start, start);
3548 			*delalloc_end_ret = delalloc_end;
3549 			ret = true;
3550 		} else if (delalloc_start == prev_delalloc_end + 1) {
3551 			/* Subrange adjacent to the previous one, merge them. */
3552 			*delalloc_end_ret = delalloc_end;
3553 		} else {
3554 			/* Subrange not adjacent to the previous one, exit. */
3555 			break;
3556 		}
3557 
3558 		prev_delalloc_end = delalloc_end;
3559 		cur_offset = delalloc_end + 1;
3560 		cond_resched();
3561 	}
3562 
3563 	return ret;
3564 }
3565 
3566 /*
3567  * Check if there's a hole or delalloc range in a range representing a hole (or
3568  * prealloc extent) found in the inode's subvolume btree.
3569  *
3570  * @inode:      The inode.
3571  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3572  * @start:      Start offset of the hole region. It does not need to be sector
3573  *              size aligned.
3574  * @end:        End offset (inclusive value) of the hole region. It does not
3575  *              need to be sector size aligned.
3576  * @start_ret:  Return parameter, used to set the start of the subrange in the
3577  *              hole that matches the search criteria (seek mode), if such
3578  *              subrange is found (return value of the function is true).
3579  *              The value returned here may not be sector size aligned.
3580  *
3581  * Returns true if a subrange matching the given seek mode is found, and if one
3582  * is found, it updates @start_ret with the start of the subrange.
3583  */
3584 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3585 					struct extent_state **cached_state,
3586 					u64 start, u64 end, u64 *start_ret)
3587 {
3588 	u64 delalloc_start;
3589 	u64 delalloc_end;
3590 	bool delalloc;
3591 
3592 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3593 						&delalloc_start, &delalloc_end);
3594 	if (delalloc && whence == SEEK_DATA) {
3595 		*start_ret = delalloc_start;
3596 		return true;
3597 	}
3598 
3599 	if (delalloc && whence == SEEK_HOLE) {
3600 		/*
3601 		 * We found delalloc but it starts after out start offset. So we
3602 		 * have a hole between our start offset and the delalloc start.
3603 		 */
3604 		if (start < delalloc_start) {
3605 			*start_ret = start;
3606 			return true;
3607 		}
3608 		/*
3609 		 * Delalloc range starts at our start offset.
3610 		 * If the delalloc range's length is smaller than our range,
3611 		 * then it means we have a hole that starts where the delalloc
3612 		 * subrange ends.
3613 		 */
3614 		if (delalloc_end < end) {
3615 			*start_ret = delalloc_end + 1;
3616 			return true;
3617 		}
3618 
3619 		/* There's delalloc for the whole range. */
3620 		return false;
3621 	}
3622 
3623 	if (!delalloc && whence == SEEK_HOLE) {
3624 		*start_ret = start;
3625 		return true;
3626 	}
3627 
3628 	/*
3629 	 * No delalloc in the range and we are seeking for data. The caller has
3630 	 * to iterate to the next extent item in the subvolume btree.
3631 	 */
3632 	return false;
3633 }
3634 
3635 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3636 {
3637 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3638 	struct btrfs_file_private *private = file->private_data;
3639 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3640 	struct extent_state *cached_state = NULL;
3641 	struct extent_state **delalloc_cached_state;
3642 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3643 	const u64 ino = btrfs_ino(inode);
3644 	struct btrfs_root *root = inode->root;
3645 	struct btrfs_path *path;
3646 	struct btrfs_key key;
3647 	u64 last_extent_end;
3648 	u64 lockstart;
3649 	u64 lockend;
3650 	u64 start;
3651 	int ret;
3652 	bool found = false;
3653 
3654 	if (i_size == 0 || offset >= i_size)
3655 		return -ENXIO;
3656 
3657 	/*
3658 	 * Quick path. If the inode has no prealloc extents and its number of
3659 	 * bytes used matches its i_size, then it can not have holes.
3660 	 */
3661 	if (whence == SEEK_HOLE &&
3662 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3663 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3664 		return i_size;
3665 
3666 	if (!private) {
3667 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3668 		/*
3669 		 * No worries if memory allocation failed.
3670 		 * The private structure is used only for speeding up multiple
3671 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3672 		 * so everything will still be correct.
3673 		 */
3674 		file->private_data = private;
3675 	}
3676 
3677 	if (private)
3678 		delalloc_cached_state = &private->llseek_cached_state;
3679 	else
3680 		delalloc_cached_state = NULL;
3681 
3682 	/*
3683 	 * offset can be negative, in this case we start finding DATA/HOLE from
3684 	 * the very start of the file.
3685 	 */
3686 	start = max_t(loff_t, 0, offset);
3687 
3688 	lockstart = round_down(start, fs_info->sectorsize);
3689 	lockend = round_up(i_size, fs_info->sectorsize);
3690 	if (lockend <= lockstart)
3691 		lockend = lockstart + fs_info->sectorsize;
3692 	lockend--;
3693 
3694 	path = btrfs_alloc_path();
3695 	if (!path)
3696 		return -ENOMEM;
3697 	path->reada = READA_FORWARD;
3698 
3699 	key.objectid = ino;
3700 	key.type = BTRFS_EXTENT_DATA_KEY;
3701 	key.offset = start;
3702 
3703 	last_extent_end = lockstart;
3704 
3705 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3706 
3707 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3708 	if (ret < 0) {
3709 		goto out;
3710 	} else if (ret > 0 && path->slots[0] > 0) {
3711 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3712 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3713 			path->slots[0]--;
3714 	}
3715 
3716 	while (start < i_size) {
3717 		struct extent_buffer *leaf = path->nodes[0];
3718 		struct btrfs_file_extent_item *extent;
3719 		u64 extent_end;
3720 		u8 type;
3721 
3722 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3723 			ret = btrfs_next_leaf(root, path);
3724 			if (ret < 0)
3725 				goto out;
3726 			else if (ret > 0)
3727 				break;
3728 
3729 			leaf = path->nodes[0];
3730 		}
3731 
3732 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3733 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3734 			break;
3735 
3736 		extent_end = btrfs_file_extent_end(path);
3737 
3738 		/*
3739 		 * In the first iteration we may have a slot that points to an
3740 		 * extent that ends before our start offset, so skip it.
3741 		 */
3742 		if (extent_end <= start) {
3743 			path->slots[0]++;
3744 			continue;
3745 		}
3746 
3747 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3748 		if (last_extent_end < key.offset) {
3749 			u64 search_start = last_extent_end;
3750 			u64 found_start;
3751 
3752 			/*
3753 			 * First iteration, @start matches @offset and it's
3754 			 * within the hole.
3755 			 */
3756 			if (start == offset)
3757 				search_start = offset;
3758 
3759 			found = find_desired_extent_in_hole(inode, whence,
3760 							    delalloc_cached_state,
3761 							    search_start,
3762 							    key.offset - 1,
3763 							    &found_start);
3764 			if (found) {
3765 				start = found_start;
3766 				break;
3767 			}
3768 			/*
3769 			 * Didn't find data or a hole (due to delalloc) in the
3770 			 * implicit hole range, so need to analyze the extent.
3771 			 */
3772 		}
3773 
3774 		extent = btrfs_item_ptr(leaf, path->slots[0],
3775 					struct btrfs_file_extent_item);
3776 		type = btrfs_file_extent_type(leaf, extent);
3777 
3778 		/*
3779 		 * Can't access the extent's disk_bytenr field if this is an
3780 		 * inline extent, since at that offset, it's where the extent
3781 		 * data starts.
3782 		 */
3783 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3784 		    (type == BTRFS_FILE_EXTENT_REG &&
3785 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3786 			/*
3787 			 * Explicit hole or prealloc extent, search for delalloc.
3788 			 * A prealloc extent is treated like a hole.
3789 			 */
3790 			u64 search_start = key.offset;
3791 			u64 found_start;
3792 
3793 			/*
3794 			 * First iteration, @start matches @offset and it's
3795 			 * within the hole.
3796 			 */
3797 			if (start == offset)
3798 				search_start = offset;
3799 
3800 			found = find_desired_extent_in_hole(inode, whence,
3801 							    delalloc_cached_state,
3802 							    search_start,
3803 							    extent_end - 1,
3804 							    &found_start);
3805 			if (found) {
3806 				start = found_start;
3807 				break;
3808 			}
3809 			/*
3810 			 * Didn't find data or a hole (due to delalloc) in the
3811 			 * implicit hole range, so need to analyze the next
3812 			 * extent item.
3813 			 */
3814 		} else {
3815 			/*
3816 			 * Found a regular or inline extent.
3817 			 * If we are seeking for data, adjust the start offset
3818 			 * and stop, we're done.
3819 			 */
3820 			if (whence == SEEK_DATA) {
3821 				start = max_t(u64, key.offset, offset);
3822 				found = true;
3823 				break;
3824 			}
3825 			/*
3826 			 * Else, we are seeking for a hole, check the next file
3827 			 * extent item.
3828 			 */
3829 		}
3830 
3831 		start = extent_end;
3832 		last_extent_end = extent_end;
3833 		path->slots[0]++;
3834 		if (fatal_signal_pending(current)) {
3835 			ret = -EINTR;
3836 			goto out;
3837 		}
3838 		cond_resched();
3839 	}
3840 
3841 	/* We have an implicit hole from the last extent found up to i_size. */
3842 	if (!found && start < i_size) {
3843 		found = find_desired_extent_in_hole(inode, whence,
3844 						    delalloc_cached_state, start,
3845 						    i_size - 1, &start);
3846 		if (!found)
3847 			start = i_size;
3848 	}
3849 
3850 out:
3851 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3852 	btrfs_free_path(path);
3853 
3854 	if (ret < 0)
3855 		return ret;
3856 
3857 	if (whence == SEEK_DATA && start >= i_size)
3858 		return -ENXIO;
3859 
3860 	return min_t(loff_t, start, i_size);
3861 }
3862 
3863 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3864 {
3865 	struct inode *inode = file->f_mapping->host;
3866 
3867 	switch (whence) {
3868 	default:
3869 		return generic_file_llseek(file, offset, whence);
3870 	case SEEK_DATA:
3871 	case SEEK_HOLE:
3872 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3873 		offset = find_desired_extent(file, offset, whence);
3874 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3875 		break;
3876 	}
3877 
3878 	if (offset < 0)
3879 		return offset;
3880 
3881 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3882 }
3883 
3884 static int btrfs_file_open(struct inode *inode, struct file *filp)
3885 {
3886 	int ret;
3887 
3888 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3889 		        FMODE_CAN_ODIRECT;
3890 
3891 	ret = fsverity_file_open(inode, filp);
3892 	if (ret)
3893 		return ret;
3894 	return generic_file_open(inode, filp);
3895 }
3896 
3897 static int check_direct_read(struct btrfs_fs_info *fs_info,
3898 			     const struct iov_iter *iter, loff_t offset)
3899 {
3900 	int ret;
3901 	int i, seg;
3902 
3903 	ret = check_direct_IO(fs_info, iter, offset);
3904 	if (ret < 0)
3905 		return ret;
3906 
3907 	if (!iter_is_iovec(iter))
3908 		return 0;
3909 
3910 	for (seg = 0; seg < iter->nr_segs; seg++) {
3911 		for (i = seg + 1; i < iter->nr_segs; i++) {
3912 			const struct iovec *iov1 = iter_iov(iter) + seg;
3913 			const struct iovec *iov2 = iter_iov(iter) + i;
3914 
3915 			if (iov1->iov_base == iov2->iov_base)
3916 				return -EINVAL;
3917 		}
3918 	}
3919 	return 0;
3920 }
3921 
3922 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3923 {
3924 	struct inode *inode = file_inode(iocb->ki_filp);
3925 	size_t prev_left = 0;
3926 	ssize_t read = 0;
3927 	ssize_t ret;
3928 
3929 	if (fsverity_active(inode))
3930 		return 0;
3931 
3932 	if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
3933 		return 0;
3934 
3935 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3936 again:
3937 	/*
3938 	 * This is similar to what we do for direct IO writes, see the comment
3939 	 * at btrfs_direct_write(), but we also disable page faults in addition
3940 	 * to disabling them only at the iov_iter level. This is because when
3941 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3942 	 * which can still trigger page fault ins despite having set ->nofault
3943 	 * to true of our 'to' iov_iter.
3944 	 *
3945 	 * The difference to direct IO writes is that we deadlock when trying
3946 	 * to lock the extent range in the inode's tree during he page reads
3947 	 * triggered by the fault in (while for writes it is due to waiting for
3948 	 * our own ordered extent). This is because for direct IO reads,
3949 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3950 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3951 	 */
3952 	pagefault_disable();
3953 	to->nofault = true;
3954 	ret = btrfs_dio_read(iocb, to, read);
3955 	to->nofault = false;
3956 	pagefault_enable();
3957 
3958 	/* No increment (+=) because iomap returns a cumulative value. */
3959 	if (ret > 0)
3960 		read = ret;
3961 
3962 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3963 		const size_t left = iov_iter_count(to);
3964 
3965 		if (left == prev_left) {
3966 			/*
3967 			 * We didn't make any progress since the last attempt,
3968 			 * fallback to a buffered read for the remainder of the
3969 			 * range. This is just to avoid any possibility of looping
3970 			 * for too long.
3971 			 */
3972 			ret = read;
3973 		} else {
3974 			/*
3975 			 * We made some progress since the last retry or this is
3976 			 * the first time we are retrying. Fault in as many pages
3977 			 * as possible and retry.
3978 			 */
3979 			fault_in_iov_iter_writeable(to, left);
3980 			prev_left = left;
3981 			goto again;
3982 		}
3983 	}
3984 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3985 	return ret < 0 ? ret : read;
3986 }
3987 
3988 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3989 {
3990 	ssize_t ret = 0;
3991 
3992 	if (iocb->ki_flags & IOCB_DIRECT) {
3993 		ret = btrfs_direct_read(iocb, to);
3994 		if (ret < 0 || !iov_iter_count(to) ||
3995 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3996 			return ret;
3997 	}
3998 
3999 	return filemap_read(iocb, to, ret);
4000 }
4001 
4002 const struct file_operations btrfs_file_operations = {
4003 	.llseek		= btrfs_file_llseek,
4004 	.read_iter      = btrfs_file_read_iter,
4005 	.splice_read	= filemap_splice_read,
4006 	.write_iter	= btrfs_file_write_iter,
4007 	.splice_write	= iter_file_splice_write,
4008 	.mmap		= btrfs_file_mmap,
4009 	.open		= btrfs_file_open,
4010 	.release	= btrfs_release_file,
4011 	.get_unmapped_area = thp_get_unmapped_area,
4012 	.fsync		= btrfs_sync_file,
4013 	.fallocate	= btrfs_fallocate,
4014 	.unlocked_ioctl	= btrfs_ioctl,
4015 #ifdef CONFIG_COMPAT
4016 	.compat_ioctl	= btrfs_compat_ioctl,
4017 #endif
4018 	.remap_file_range = btrfs_remap_file_range,
4019 };
4020 
4021 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4022 {
4023 	int ret;
4024 
4025 	/*
4026 	 * So with compression we will find and lock a dirty page and clear the
4027 	 * first one as dirty, setup an async extent, and immediately return
4028 	 * with the entire range locked but with nobody actually marked with
4029 	 * writeback.  So we can't just filemap_write_and_wait_range() and
4030 	 * expect it to work since it will just kick off a thread to do the
4031 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
4032 	 * since it will wait on the page lock, which won't be unlocked until
4033 	 * after the pages have been marked as writeback and so we're good to go
4034 	 * from there.  We have to do this otherwise we'll miss the ordered
4035 	 * extents and that results in badness.  Please Josef, do not think you
4036 	 * know better and pull this out at some point in the future, it is
4037 	 * right and you are wrong.
4038 	 */
4039 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4040 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4041 			     &BTRFS_I(inode)->runtime_flags))
4042 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4043 
4044 	return ret;
4045 }
4046