xref: /linux/fs/btrfs/extent_io.c (revision 7b7dfdd2b9927c1861bb6d03ca35261f1739aceb)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       state->start, state->end, state->state, state->tree,
65 		       atomic_read(&state->refs));
66 		list_del(&state->leak_list);
67 		kmem_cache_free(extent_state_cache, state);
68 	}
69 
70 	while (!list_empty(&buffers)) {
71 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 		       "refs %d\n",
74 		       eb->start, eb->len, atomic_read(&eb->refs));
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 }
79 
80 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
81 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 		struct extent_io_tree *tree, u64 start, u64 end)
84 {
85 	struct inode *inode;
86 	u64 isize;
87 
88 	if (!tree->mapping)
89 		return;
90 
91 	inode = tree->mapping->host;
92 	isize = i_size_read(inode);
93 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 		printk_ratelimited(KERN_DEBUG
95 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 				caller, btrfs_ino(inode), isize, start, end);
97 	}
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head)	do {} while (0)
101 #define btrfs_leak_debug_del(entry)	do {} while (0)
102 #define btrfs_leak_debug_check()	do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
104 #endif
105 
106 #define BUFFER_LRU_MAX 64
107 
108 struct tree_entry {
109 	u64 start;
110 	u64 end;
111 	struct rb_node rb_node;
112 };
113 
114 struct extent_page_data {
115 	struct bio *bio;
116 	struct extent_io_tree *tree;
117 	get_extent_t *get_extent;
118 	unsigned long bio_flags;
119 
120 	/* tells writepage not to lock the state bits for this range
121 	 * it still does the unlocking
122 	 */
123 	unsigned int extent_locked:1;
124 
125 	/* tells the submit_bio code to use a WRITE_SYNC */
126 	unsigned int sync_io:1;
127 };
128 
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133 	if (!tree->mapping)
134 		return NULL;
135 	return btrfs_sb(tree->mapping->host->i_sb);
136 }
137 
138 int __init extent_io_init(void)
139 {
140 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 			sizeof(struct extent_state), 0,
142 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 	if (!extent_state_cache)
144 		return -ENOMEM;
145 
146 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 			sizeof(struct extent_buffer), 0,
148 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 	if (!extent_buffer_cache)
150 		goto free_state_cache;
151 
152 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 				     offsetof(struct btrfs_io_bio, bio));
154 	if (!btrfs_bioset)
155 		goto free_buffer_cache;
156 
157 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 		goto free_bioset;
159 
160 	return 0;
161 
162 free_bioset:
163 	bioset_free(btrfs_bioset);
164 	btrfs_bioset = NULL;
165 
166 free_buffer_cache:
167 	kmem_cache_destroy(extent_buffer_cache);
168 	extent_buffer_cache = NULL;
169 
170 free_state_cache:
171 	kmem_cache_destroy(extent_state_cache);
172 	extent_state_cache = NULL;
173 	return -ENOMEM;
174 }
175 
176 void extent_io_exit(void)
177 {
178 	btrfs_leak_debug_check();
179 
180 	/*
181 	 * Make sure all delayed rcu free are flushed before we
182 	 * destroy caches.
183 	 */
184 	rcu_barrier();
185 	if (extent_state_cache)
186 		kmem_cache_destroy(extent_state_cache);
187 	if (extent_buffer_cache)
188 		kmem_cache_destroy(extent_buffer_cache);
189 	if (btrfs_bioset)
190 		bioset_free(btrfs_bioset);
191 }
192 
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 			 struct address_space *mapping)
195 {
196 	tree->state = RB_ROOT;
197 	tree->ops = NULL;
198 	tree->dirty_bytes = 0;
199 	spin_lock_init(&tree->lock);
200 	tree->mapping = mapping;
201 }
202 
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205 	struct extent_state *state;
206 
207 	state = kmem_cache_alloc(extent_state_cache, mask);
208 	if (!state)
209 		return state;
210 	state->state = 0;
211 	state->private = 0;
212 	state->tree = NULL;
213 	btrfs_leak_debug_add(&state->leak_list, &states);
214 	atomic_set(&state->refs, 1);
215 	init_waitqueue_head(&state->wq);
216 	trace_alloc_extent_state(state, mask, _RET_IP_);
217 	return state;
218 }
219 
220 void free_extent_state(struct extent_state *state)
221 {
222 	if (!state)
223 		return;
224 	if (atomic_dec_and_test(&state->refs)) {
225 		WARN_ON(state->tree);
226 		btrfs_leak_debug_del(&state->leak_list);
227 		trace_free_extent_state(state, _RET_IP_);
228 		kmem_cache_free(extent_state_cache, state);
229 	}
230 }
231 
232 static struct rb_node *tree_insert(struct rb_root *root,
233 				   struct rb_node *search_start,
234 				   u64 offset,
235 				   struct rb_node *node,
236 				   struct rb_node ***p_in,
237 				   struct rb_node **parent_in)
238 {
239 	struct rb_node **p;
240 	struct rb_node *parent = NULL;
241 	struct tree_entry *entry;
242 
243 	if (p_in && parent_in) {
244 		p = *p_in;
245 		parent = *parent_in;
246 		goto do_insert;
247 	}
248 
249 	p = search_start ? &search_start : &root->rb_node;
250 	while (*p) {
251 		parent = *p;
252 		entry = rb_entry(parent, struct tree_entry, rb_node);
253 
254 		if (offset < entry->start)
255 			p = &(*p)->rb_left;
256 		else if (offset > entry->end)
257 			p = &(*p)->rb_right;
258 		else
259 			return parent;
260 	}
261 
262 do_insert:
263 	rb_link_node(node, parent, p);
264 	rb_insert_color(node, root);
265 	return NULL;
266 }
267 
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269 				      struct rb_node **prev_ret,
270 				      struct rb_node **next_ret,
271 				      struct rb_node ***p_ret,
272 				      struct rb_node **parent_ret)
273 {
274 	struct rb_root *root = &tree->state;
275 	struct rb_node **n = &root->rb_node;
276 	struct rb_node *prev = NULL;
277 	struct rb_node *orig_prev = NULL;
278 	struct tree_entry *entry;
279 	struct tree_entry *prev_entry = NULL;
280 
281 	while (*n) {
282 		prev = *n;
283 		entry = rb_entry(prev, struct tree_entry, rb_node);
284 		prev_entry = entry;
285 
286 		if (offset < entry->start)
287 			n = &(*n)->rb_left;
288 		else if (offset > entry->end)
289 			n = &(*n)->rb_right;
290 		else
291 			return *n;
292 	}
293 
294 	if (p_ret)
295 		*p_ret = n;
296 	if (parent_ret)
297 		*parent_ret = prev;
298 
299 	if (prev_ret) {
300 		orig_prev = prev;
301 		while (prev && offset > prev_entry->end) {
302 			prev = rb_next(prev);
303 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304 		}
305 		*prev_ret = prev;
306 		prev = orig_prev;
307 	}
308 
309 	if (next_ret) {
310 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 		while (prev && offset < prev_entry->start) {
312 			prev = rb_prev(prev);
313 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314 		}
315 		*next_ret = prev;
316 	}
317 	return NULL;
318 }
319 
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322 		       u64 offset,
323 		       struct rb_node ***p_ret,
324 		       struct rb_node **parent_ret)
325 {
326 	struct rb_node *prev = NULL;
327 	struct rb_node *ret;
328 
329 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330 	if (!ret)
331 		return prev;
332 	return ret;
333 }
334 
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 					  u64 offset)
337 {
338 	return tree_search_for_insert(tree, offset, NULL, NULL);
339 }
340 
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 		     struct extent_state *other)
343 {
344 	if (tree->ops && tree->ops->merge_extent_hook)
345 		tree->ops->merge_extent_hook(tree->mapping->host, new,
346 					     other);
347 }
348 
349 /*
350  * utility function to look for merge candidates inside a given range.
351  * Any extents with matching state are merged together into a single
352  * extent in the tree.  Extents with EXTENT_IO in their state field
353  * are not merged because the end_io handlers need to be able to do
354  * operations on them without sleeping (or doing allocations/splits).
355  *
356  * This should be called with the tree lock held.
357  */
358 static void merge_state(struct extent_io_tree *tree,
359 		        struct extent_state *state)
360 {
361 	struct extent_state *other;
362 	struct rb_node *other_node;
363 
364 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365 		return;
366 
367 	other_node = rb_prev(&state->rb_node);
368 	if (other_node) {
369 		other = rb_entry(other_node, struct extent_state, rb_node);
370 		if (other->end == state->start - 1 &&
371 		    other->state == state->state) {
372 			merge_cb(tree, state, other);
373 			state->start = other->start;
374 			other->tree = NULL;
375 			rb_erase(&other->rb_node, &tree->state);
376 			free_extent_state(other);
377 		}
378 	}
379 	other_node = rb_next(&state->rb_node);
380 	if (other_node) {
381 		other = rb_entry(other_node, struct extent_state, rb_node);
382 		if (other->start == state->end + 1 &&
383 		    other->state == state->state) {
384 			merge_cb(tree, state, other);
385 			state->end = other->end;
386 			other->tree = NULL;
387 			rb_erase(&other->rb_node, &tree->state);
388 			free_extent_state(other);
389 		}
390 	}
391 }
392 
393 static void set_state_cb(struct extent_io_tree *tree,
394 			 struct extent_state *state, unsigned long *bits)
395 {
396 	if (tree->ops && tree->ops->set_bit_hook)
397 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
398 }
399 
400 static void clear_state_cb(struct extent_io_tree *tree,
401 			   struct extent_state *state, unsigned long *bits)
402 {
403 	if (tree->ops && tree->ops->clear_bit_hook)
404 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
405 }
406 
407 static void set_state_bits(struct extent_io_tree *tree,
408 			   struct extent_state *state, unsigned long *bits);
409 
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421 			struct extent_state *state, u64 start, u64 end,
422 			struct rb_node ***p,
423 			struct rb_node **parent,
424 			unsigned long *bits)
425 {
426 	struct rb_node *node;
427 
428 	if (end < start)
429 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 		       end, start);
431 	state->start = start;
432 	state->end = end;
433 
434 	set_state_bits(tree, state, bits);
435 
436 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 	if (node) {
438 		struct extent_state *found;
439 		found = rb_entry(node, struct extent_state, rb_node);
440 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441 		       "%llu %llu\n",
442 		       found->start, found->end, start, end);
443 		return -EEXIST;
444 	}
445 	state->tree = tree;
446 	merge_state(tree, state);
447 	return 0;
448 }
449 
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451 		     u64 split)
452 {
453 	if (tree->ops && tree->ops->split_extent_hook)
454 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
455 }
456 
457 /*
458  * split a given extent state struct in two, inserting the preallocated
459  * struct 'prealloc' as the newly created second half.  'split' indicates an
460  * offset inside 'orig' where it should be split.
461  *
462  * Before calling,
463  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
464  * are two extent state structs in the tree:
465  * prealloc: [orig->start, split - 1]
466  * orig: [ split, orig->end ]
467  *
468  * The tree locks are not taken by this function. They need to be held
469  * by the caller.
470  */
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 		       struct extent_state *prealloc, u64 split)
473 {
474 	struct rb_node *node;
475 
476 	split_cb(tree, orig, split);
477 
478 	prealloc->start = orig->start;
479 	prealloc->end = split - 1;
480 	prealloc->state = orig->state;
481 	orig->start = split;
482 
483 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 			   &prealloc->rb_node, NULL, NULL);
485 	if (node) {
486 		free_extent_state(prealloc);
487 		return -EEXIST;
488 	}
489 	prealloc->tree = tree;
490 	return 0;
491 }
492 
493 static struct extent_state *next_state(struct extent_state *state)
494 {
495 	struct rb_node *next = rb_next(&state->rb_node);
496 	if (next)
497 		return rb_entry(next, struct extent_state, rb_node);
498 	else
499 		return NULL;
500 }
501 
502 /*
503  * utility function to clear some bits in an extent state struct.
504  * it will optionally wake up any one waiting on this state (wake == 1).
505  *
506  * If no bits are set on the state struct after clearing things, the
507  * struct is freed and removed from the tree
508  */
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 					    struct extent_state *state,
511 					    unsigned long *bits, int wake)
512 {
513 	struct extent_state *next;
514 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
515 
516 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517 		u64 range = state->end - state->start + 1;
518 		WARN_ON(range > tree->dirty_bytes);
519 		tree->dirty_bytes -= range;
520 	}
521 	clear_state_cb(tree, state, bits);
522 	state->state &= ~bits_to_clear;
523 	if (wake)
524 		wake_up(&state->wq);
525 	if (state->state == 0) {
526 		next = next_state(state);
527 		if (state->tree) {
528 			rb_erase(&state->rb_node, &tree->state);
529 			state->tree = NULL;
530 			free_extent_state(state);
531 		} else {
532 			WARN_ON(1);
533 		}
534 	} else {
535 		merge_state(tree, state);
536 		next = next_state(state);
537 	}
538 	return next;
539 }
540 
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
543 {
544 	if (!prealloc)
545 		prealloc = alloc_extent_state(GFP_ATOMIC);
546 
547 	return prealloc;
548 }
549 
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
551 {
552 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 		    "Extent tree was modified by another "
554 		    "thread while locked.");
555 }
556 
557 /*
558  * clear some bits on a range in the tree.  This may require splitting
559  * or inserting elements in the tree, so the gfp mask is used to
560  * indicate which allocations or sleeping are allowed.
561  *
562  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563  * the given range from the tree regardless of state (ie for truncate).
564  *
565  * the range [start, end] is inclusive.
566  *
567  * This takes the tree lock, and returns 0 on success and < 0 on error.
568  */
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570 		     unsigned long bits, int wake, int delete,
571 		     struct extent_state **cached_state,
572 		     gfp_t mask)
573 {
574 	struct extent_state *state;
575 	struct extent_state *cached;
576 	struct extent_state *prealloc = NULL;
577 	struct rb_node *node;
578 	u64 last_end;
579 	int err;
580 	int clear = 0;
581 
582 	btrfs_debug_check_extent_io_range(tree, start, end);
583 
584 	if (bits & EXTENT_DELALLOC)
585 		bits |= EXTENT_NORESERVE;
586 
587 	if (delete)
588 		bits |= ~EXTENT_CTLBITS;
589 	bits |= EXTENT_FIRST_DELALLOC;
590 
591 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 		clear = 1;
593 again:
594 	if (!prealloc && (mask & __GFP_WAIT)) {
595 		prealloc = alloc_extent_state(mask);
596 		if (!prealloc)
597 			return -ENOMEM;
598 	}
599 
600 	spin_lock(&tree->lock);
601 	if (cached_state) {
602 		cached = *cached_state;
603 
604 		if (clear) {
605 			*cached_state = NULL;
606 			cached_state = NULL;
607 		}
608 
609 		if (cached && cached->tree && cached->start <= start &&
610 		    cached->end > start) {
611 			if (clear)
612 				atomic_dec(&cached->refs);
613 			state = cached;
614 			goto hit_next;
615 		}
616 		if (clear)
617 			free_extent_state(cached);
618 	}
619 	/*
620 	 * this search will find the extents that end after
621 	 * our range starts
622 	 */
623 	node = tree_search(tree, start);
624 	if (!node)
625 		goto out;
626 	state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628 	if (state->start > end)
629 		goto out;
630 	WARN_ON(state->end < start);
631 	last_end = state->end;
632 
633 	/* the state doesn't have the wanted bits, go ahead */
634 	if (!(state->state & bits)) {
635 		state = next_state(state);
636 		goto next;
637 	}
638 
639 	/*
640 	 *     | ---- desired range ---- |
641 	 *  | state | or
642 	 *  | ------------- state -------------- |
643 	 *
644 	 * We need to split the extent we found, and may flip
645 	 * bits on second half.
646 	 *
647 	 * If the extent we found extends past our range, we
648 	 * just split and search again.  It'll get split again
649 	 * the next time though.
650 	 *
651 	 * If the extent we found is inside our range, we clear
652 	 * the desired bit on it.
653 	 */
654 
655 	if (state->start < start) {
656 		prealloc = alloc_extent_state_atomic(prealloc);
657 		BUG_ON(!prealloc);
658 		err = split_state(tree, state, prealloc, start);
659 		if (err)
660 			extent_io_tree_panic(tree, err);
661 
662 		prealloc = NULL;
663 		if (err)
664 			goto out;
665 		if (state->end <= end) {
666 			state = clear_state_bit(tree, state, &bits, wake);
667 			goto next;
668 		}
669 		goto search_again;
670 	}
671 	/*
672 	 * | ---- desired range ---- |
673 	 *                        | state |
674 	 * We need to split the extent, and clear the bit
675 	 * on the first half
676 	 */
677 	if (state->start <= end && state->end > end) {
678 		prealloc = alloc_extent_state_atomic(prealloc);
679 		BUG_ON(!prealloc);
680 		err = split_state(tree, state, prealloc, end + 1);
681 		if (err)
682 			extent_io_tree_panic(tree, err);
683 
684 		if (wake)
685 			wake_up(&state->wq);
686 
687 		clear_state_bit(tree, prealloc, &bits, wake);
688 
689 		prealloc = NULL;
690 		goto out;
691 	}
692 
693 	state = clear_state_bit(tree, state, &bits, wake);
694 next:
695 	if (last_end == (u64)-1)
696 		goto out;
697 	start = last_end + 1;
698 	if (start <= end && state && !need_resched())
699 		goto hit_next;
700 	goto search_again;
701 
702 out:
703 	spin_unlock(&tree->lock);
704 	if (prealloc)
705 		free_extent_state(prealloc);
706 
707 	return 0;
708 
709 search_again:
710 	if (start > end)
711 		goto out;
712 	spin_unlock(&tree->lock);
713 	if (mask & __GFP_WAIT)
714 		cond_resched();
715 	goto again;
716 }
717 
718 static void wait_on_state(struct extent_io_tree *tree,
719 			  struct extent_state *state)
720 		__releases(tree->lock)
721 		__acquires(tree->lock)
722 {
723 	DEFINE_WAIT(wait);
724 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725 	spin_unlock(&tree->lock);
726 	schedule();
727 	spin_lock(&tree->lock);
728 	finish_wait(&state->wq, &wait);
729 }
730 
731 /*
732  * waits for one or more bits to clear on a range in the state tree.
733  * The range [start, end] is inclusive.
734  * The tree lock is taken by this function
735  */
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 			    unsigned long bits)
738 {
739 	struct extent_state *state;
740 	struct rb_node *node;
741 
742 	btrfs_debug_check_extent_io_range(tree, start, end);
743 
744 	spin_lock(&tree->lock);
745 again:
746 	while (1) {
747 		/*
748 		 * this search will find all the extents that end after
749 		 * our range starts
750 		 */
751 		node = tree_search(tree, start);
752 process_node:
753 		if (!node)
754 			break;
755 
756 		state = rb_entry(node, struct extent_state, rb_node);
757 
758 		if (state->start > end)
759 			goto out;
760 
761 		if (state->state & bits) {
762 			start = state->start;
763 			atomic_inc(&state->refs);
764 			wait_on_state(tree, state);
765 			free_extent_state(state);
766 			goto again;
767 		}
768 		start = state->end + 1;
769 
770 		if (start > end)
771 			break;
772 
773 		if (!cond_resched_lock(&tree->lock)) {
774 			node = rb_next(node);
775 			goto process_node;
776 		}
777 	}
778 out:
779 	spin_unlock(&tree->lock);
780 }
781 
782 static void set_state_bits(struct extent_io_tree *tree,
783 			   struct extent_state *state,
784 			   unsigned long *bits)
785 {
786 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
787 
788 	set_state_cb(tree, state, bits);
789 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
790 		u64 range = state->end - state->start + 1;
791 		tree->dirty_bytes += range;
792 	}
793 	state->state |= bits_to_set;
794 }
795 
796 static void cache_state(struct extent_state *state,
797 			struct extent_state **cached_ptr)
798 {
799 	if (cached_ptr && !(*cached_ptr)) {
800 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801 			*cached_ptr = state;
802 			atomic_inc(&state->refs);
803 		}
804 	}
805 }
806 
807 /*
808  * set some bits on a range in the tree.  This may require allocations or
809  * sleeping, so the gfp mask is used to indicate what is allowed.
810  *
811  * If any of the exclusive bits are set, this will fail with -EEXIST if some
812  * part of the range already has the desired bits set.  The start of the
813  * existing range is returned in failed_start in this case.
814  *
815  * [start, end] is inclusive This takes the tree lock.
816  */
817 
818 static int __must_check
819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
820 		 unsigned long bits, unsigned long exclusive_bits,
821 		 u64 *failed_start, struct extent_state **cached_state,
822 		 gfp_t mask)
823 {
824 	struct extent_state *state;
825 	struct extent_state *prealloc = NULL;
826 	struct rb_node *node;
827 	struct rb_node **p;
828 	struct rb_node *parent;
829 	int err = 0;
830 	u64 last_start;
831 	u64 last_end;
832 
833 	btrfs_debug_check_extent_io_range(tree, start, end);
834 
835 	bits |= EXTENT_FIRST_DELALLOC;
836 again:
837 	if (!prealloc && (mask & __GFP_WAIT)) {
838 		prealloc = alloc_extent_state(mask);
839 		BUG_ON(!prealloc);
840 	}
841 
842 	spin_lock(&tree->lock);
843 	if (cached_state && *cached_state) {
844 		state = *cached_state;
845 		if (state->start <= start && state->end > start &&
846 		    state->tree) {
847 			node = &state->rb_node;
848 			goto hit_next;
849 		}
850 	}
851 	/*
852 	 * this search will find all the extents that end after
853 	 * our range starts.
854 	 */
855 	node = tree_search_for_insert(tree, start, &p, &parent);
856 	if (!node) {
857 		prealloc = alloc_extent_state_atomic(prealloc);
858 		BUG_ON(!prealloc);
859 		err = insert_state(tree, prealloc, start, end,
860 				   &p, &parent, &bits);
861 		if (err)
862 			extent_io_tree_panic(tree, err);
863 
864 		cache_state(prealloc, cached_state);
865 		prealloc = NULL;
866 		goto out;
867 	}
868 	state = rb_entry(node, struct extent_state, rb_node);
869 hit_next:
870 	last_start = state->start;
871 	last_end = state->end;
872 
873 	/*
874 	 * | ---- desired range ---- |
875 	 * | state |
876 	 *
877 	 * Just lock what we found and keep going
878 	 */
879 	if (state->start == start && state->end <= end) {
880 		if (state->state & exclusive_bits) {
881 			*failed_start = state->start;
882 			err = -EEXIST;
883 			goto out;
884 		}
885 
886 		set_state_bits(tree, state, &bits);
887 		cache_state(state, cached_state);
888 		merge_state(tree, state);
889 		if (last_end == (u64)-1)
890 			goto out;
891 		start = last_end + 1;
892 		state = next_state(state);
893 		if (start < end && state && state->start == start &&
894 		    !need_resched())
895 			goto hit_next;
896 		goto search_again;
897 	}
898 
899 	/*
900 	 *     | ---- desired range ---- |
901 	 * | state |
902 	 *   or
903 	 * | ------------- state -------------- |
904 	 *
905 	 * We need to split the extent we found, and may flip bits on
906 	 * second half.
907 	 *
908 	 * If the extent we found extends past our
909 	 * range, we just split and search again.  It'll get split
910 	 * again the next time though.
911 	 *
912 	 * If the extent we found is inside our range, we set the
913 	 * desired bit on it.
914 	 */
915 	if (state->start < start) {
916 		if (state->state & exclusive_bits) {
917 			*failed_start = start;
918 			err = -EEXIST;
919 			goto out;
920 		}
921 
922 		prealloc = alloc_extent_state_atomic(prealloc);
923 		BUG_ON(!prealloc);
924 		err = split_state(tree, state, prealloc, start);
925 		if (err)
926 			extent_io_tree_panic(tree, err);
927 
928 		prealloc = NULL;
929 		if (err)
930 			goto out;
931 		if (state->end <= end) {
932 			set_state_bits(tree, state, &bits);
933 			cache_state(state, cached_state);
934 			merge_state(tree, state);
935 			if (last_end == (u64)-1)
936 				goto out;
937 			start = last_end + 1;
938 			state = next_state(state);
939 			if (start < end && state && state->start == start &&
940 			    !need_resched())
941 				goto hit_next;
942 		}
943 		goto search_again;
944 	}
945 	/*
946 	 * | ---- desired range ---- |
947 	 *     | state | or               | state |
948 	 *
949 	 * There's a hole, we need to insert something in it and
950 	 * ignore the extent we found.
951 	 */
952 	if (state->start > start) {
953 		u64 this_end;
954 		if (end < last_start)
955 			this_end = end;
956 		else
957 			this_end = last_start - 1;
958 
959 		prealloc = alloc_extent_state_atomic(prealloc);
960 		BUG_ON(!prealloc);
961 
962 		/*
963 		 * Avoid to free 'prealloc' if it can be merged with
964 		 * the later extent.
965 		 */
966 		err = insert_state(tree, prealloc, start, this_end,
967 				   NULL, NULL, &bits);
968 		if (err)
969 			extent_io_tree_panic(tree, err);
970 
971 		cache_state(prealloc, cached_state);
972 		prealloc = NULL;
973 		start = this_end + 1;
974 		goto search_again;
975 	}
976 	/*
977 	 * | ---- desired range ---- |
978 	 *                        | state |
979 	 * We need to split the extent, and set the bit
980 	 * on the first half
981 	 */
982 	if (state->start <= end && state->end > end) {
983 		if (state->state & exclusive_bits) {
984 			*failed_start = start;
985 			err = -EEXIST;
986 			goto out;
987 		}
988 
989 		prealloc = alloc_extent_state_atomic(prealloc);
990 		BUG_ON(!prealloc);
991 		err = split_state(tree, state, prealloc, end + 1);
992 		if (err)
993 			extent_io_tree_panic(tree, err);
994 
995 		set_state_bits(tree, prealloc, &bits);
996 		cache_state(prealloc, cached_state);
997 		merge_state(tree, prealloc);
998 		prealloc = NULL;
999 		goto out;
1000 	}
1001 
1002 	goto search_again;
1003 
1004 out:
1005 	spin_unlock(&tree->lock);
1006 	if (prealloc)
1007 		free_extent_state(prealloc);
1008 
1009 	return err;
1010 
1011 search_again:
1012 	if (start > end)
1013 		goto out;
1014 	spin_unlock(&tree->lock);
1015 	if (mask & __GFP_WAIT)
1016 		cond_resched();
1017 	goto again;
1018 }
1019 
1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021 		   unsigned long bits, u64 * failed_start,
1022 		   struct extent_state **cached_state, gfp_t mask)
1023 {
1024 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025 				cached_state, mask);
1026 }
1027 
1028 
1029 /**
1030  * convert_extent_bit - convert all bits in a given range from one bit to
1031  * 			another
1032  * @tree:	the io tree to search
1033  * @start:	the start offset in bytes
1034  * @end:	the end offset in bytes (inclusive)
1035  * @bits:	the bits to set in this range
1036  * @clear_bits:	the bits to clear in this range
1037  * @cached_state:	state that we're going to cache
1038  * @mask:	the allocation mask
1039  *
1040  * This will go through and set bits for the given range.  If any states exist
1041  * already in this range they are set with the given bit and cleared of the
1042  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1043  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1044  * boundary bits like LOCK.
1045  */
1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047 		       unsigned long bits, unsigned long clear_bits,
1048 		       struct extent_state **cached_state, gfp_t mask)
1049 {
1050 	struct extent_state *state;
1051 	struct extent_state *prealloc = NULL;
1052 	struct rb_node *node;
1053 	struct rb_node **p;
1054 	struct rb_node *parent;
1055 	int err = 0;
1056 	u64 last_start;
1057 	u64 last_end;
1058 
1059 	btrfs_debug_check_extent_io_range(tree, start, end);
1060 
1061 again:
1062 	if (!prealloc && (mask & __GFP_WAIT)) {
1063 		prealloc = alloc_extent_state(mask);
1064 		if (!prealloc)
1065 			return -ENOMEM;
1066 	}
1067 
1068 	spin_lock(&tree->lock);
1069 	if (cached_state && *cached_state) {
1070 		state = *cached_state;
1071 		if (state->start <= start && state->end > start &&
1072 		    state->tree) {
1073 			node = &state->rb_node;
1074 			goto hit_next;
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * this search will find all the extents that end after
1080 	 * our range starts.
1081 	 */
1082 	node = tree_search_for_insert(tree, start, &p, &parent);
1083 	if (!node) {
1084 		prealloc = alloc_extent_state_atomic(prealloc);
1085 		if (!prealloc) {
1086 			err = -ENOMEM;
1087 			goto out;
1088 		}
1089 		err = insert_state(tree, prealloc, start, end,
1090 				   &p, &parent, &bits);
1091 		if (err)
1092 			extent_io_tree_panic(tree, err);
1093 		cache_state(prealloc, cached_state);
1094 		prealloc = NULL;
1095 		goto out;
1096 	}
1097 	state = rb_entry(node, struct extent_state, rb_node);
1098 hit_next:
1099 	last_start = state->start;
1100 	last_end = state->end;
1101 
1102 	/*
1103 	 * | ---- desired range ---- |
1104 	 * | state |
1105 	 *
1106 	 * Just lock what we found and keep going
1107 	 */
1108 	if (state->start == start && state->end <= end) {
1109 		set_state_bits(tree, state, &bits);
1110 		cache_state(state, cached_state);
1111 		state = clear_state_bit(tree, state, &clear_bits, 0);
1112 		if (last_end == (u64)-1)
1113 			goto out;
1114 		start = last_end + 1;
1115 		if (start < end && state && state->start == start &&
1116 		    !need_resched())
1117 			goto hit_next;
1118 		goto search_again;
1119 	}
1120 
1121 	/*
1122 	 *     | ---- desired range ---- |
1123 	 * | state |
1124 	 *   or
1125 	 * | ------------- state -------------- |
1126 	 *
1127 	 * We need to split the extent we found, and may flip bits on
1128 	 * second half.
1129 	 *
1130 	 * If the extent we found extends past our
1131 	 * range, we just split and search again.  It'll get split
1132 	 * again the next time though.
1133 	 *
1134 	 * If the extent we found is inside our range, we set the
1135 	 * desired bit on it.
1136 	 */
1137 	if (state->start < start) {
1138 		prealloc = alloc_extent_state_atomic(prealloc);
1139 		if (!prealloc) {
1140 			err = -ENOMEM;
1141 			goto out;
1142 		}
1143 		err = split_state(tree, state, prealloc, start);
1144 		if (err)
1145 			extent_io_tree_panic(tree, err);
1146 		prealloc = NULL;
1147 		if (err)
1148 			goto out;
1149 		if (state->end <= end) {
1150 			set_state_bits(tree, state, &bits);
1151 			cache_state(state, cached_state);
1152 			state = clear_state_bit(tree, state, &clear_bits, 0);
1153 			if (last_end == (u64)-1)
1154 				goto out;
1155 			start = last_end + 1;
1156 			if (start < end && state && state->start == start &&
1157 			    !need_resched())
1158 				goto hit_next;
1159 		}
1160 		goto search_again;
1161 	}
1162 	/*
1163 	 * | ---- desired range ---- |
1164 	 *     | state | or               | state |
1165 	 *
1166 	 * There's a hole, we need to insert something in it and
1167 	 * ignore the extent we found.
1168 	 */
1169 	if (state->start > start) {
1170 		u64 this_end;
1171 		if (end < last_start)
1172 			this_end = end;
1173 		else
1174 			this_end = last_start - 1;
1175 
1176 		prealloc = alloc_extent_state_atomic(prealloc);
1177 		if (!prealloc) {
1178 			err = -ENOMEM;
1179 			goto out;
1180 		}
1181 
1182 		/*
1183 		 * Avoid to free 'prealloc' if it can be merged with
1184 		 * the later extent.
1185 		 */
1186 		err = insert_state(tree, prealloc, start, this_end,
1187 				   NULL, NULL, &bits);
1188 		if (err)
1189 			extent_io_tree_panic(tree, err);
1190 		cache_state(prealloc, cached_state);
1191 		prealloc = NULL;
1192 		start = this_end + 1;
1193 		goto search_again;
1194 	}
1195 	/*
1196 	 * | ---- desired range ---- |
1197 	 *                        | state |
1198 	 * We need to split the extent, and set the bit
1199 	 * on the first half
1200 	 */
1201 	if (state->start <= end && state->end > end) {
1202 		prealloc = alloc_extent_state_atomic(prealloc);
1203 		if (!prealloc) {
1204 			err = -ENOMEM;
1205 			goto out;
1206 		}
1207 
1208 		err = split_state(tree, state, prealloc, end + 1);
1209 		if (err)
1210 			extent_io_tree_panic(tree, err);
1211 
1212 		set_state_bits(tree, prealloc, &bits);
1213 		cache_state(prealloc, cached_state);
1214 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1215 		prealloc = NULL;
1216 		goto out;
1217 	}
1218 
1219 	goto search_again;
1220 
1221 out:
1222 	spin_unlock(&tree->lock);
1223 	if (prealloc)
1224 		free_extent_state(prealloc);
1225 
1226 	return err;
1227 
1228 search_again:
1229 	if (start > end)
1230 		goto out;
1231 	spin_unlock(&tree->lock);
1232 	if (mask & __GFP_WAIT)
1233 		cond_resched();
1234 	goto again;
1235 }
1236 
1237 /* wrappers around set/clear extent bit */
1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239 		     gfp_t mask)
1240 {
1241 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242 			      NULL, mask);
1243 }
1244 
1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246 		    unsigned long bits, gfp_t mask)
1247 {
1248 	return set_extent_bit(tree, start, end, bits, NULL,
1249 			      NULL, mask);
1250 }
1251 
1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253 		      unsigned long bits, gfp_t mask)
1254 {
1255 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1256 }
1257 
1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259 			struct extent_state **cached_state, gfp_t mask)
1260 {
1261 	return set_extent_bit(tree, start, end,
1262 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1263 			      NULL, cached_state, mask);
1264 }
1265 
1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267 		      struct extent_state **cached_state, gfp_t mask)
1268 {
1269 	return set_extent_bit(tree, start, end,
1270 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271 			      NULL, cached_state, mask);
1272 }
1273 
1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275 		       gfp_t mask)
1276 {
1277 	return clear_extent_bit(tree, start, end,
1278 				EXTENT_DIRTY | EXTENT_DELALLOC |
1279 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1280 }
1281 
1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283 		     gfp_t mask)
1284 {
1285 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286 			      NULL, mask);
1287 }
1288 
1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 			struct extent_state **cached_state, gfp_t mask)
1291 {
1292 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293 			      cached_state, mask);
1294 }
1295 
1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297 			  struct extent_state **cached_state, gfp_t mask)
1298 {
1299 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300 				cached_state, mask);
1301 }
1302 
1303 /*
1304  * either insert or lock state struct between start and end use mask to tell
1305  * us if waiting is desired.
1306  */
1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308 		     unsigned long bits, struct extent_state **cached_state)
1309 {
1310 	int err;
1311 	u64 failed_start;
1312 	while (1) {
1313 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314 				       EXTENT_LOCKED, &failed_start,
1315 				       cached_state, GFP_NOFS);
1316 		if (err == -EEXIST) {
1317 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318 			start = failed_start;
1319 		} else
1320 			break;
1321 		WARN_ON(start > end);
1322 	}
1323 	return err;
1324 }
1325 
1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1327 {
1328 	return lock_extent_bits(tree, start, end, 0, NULL);
1329 }
1330 
1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1332 {
1333 	int err;
1334 	u64 failed_start;
1335 
1336 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337 			       &failed_start, NULL, GFP_NOFS);
1338 	if (err == -EEXIST) {
1339 		if (failed_start > start)
1340 			clear_extent_bit(tree, start, failed_start - 1,
1341 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342 		return 0;
1343 	}
1344 	return 1;
1345 }
1346 
1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348 			 struct extent_state **cached, gfp_t mask)
1349 {
1350 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351 				mask);
1352 }
1353 
1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355 {
1356 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357 				GFP_NOFS);
1358 }
1359 
1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1363 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364 	struct page *page;
1365 
1366 	while (index <= end_index) {
1367 		page = find_get_page(inode->i_mapping, index);
1368 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 		clear_page_dirty_for_io(page);
1370 		page_cache_release(page);
1371 		index++;
1372 	}
1373 	return 0;
1374 }
1375 
1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377 {
1378 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1379 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380 	struct page *page;
1381 
1382 	while (index <= end_index) {
1383 		page = find_get_page(inode->i_mapping, index);
1384 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 		account_page_redirty(page);
1386 		__set_page_dirty_nobuffers(page);
1387 		page_cache_release(page);
1388 		index++;
1389 	}
1390 	return 0;
1391 }
1392 
1393 /*
1394  * helper function to set both pages and extents in the tree writeback
1395  */
1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1397 {
1398 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1399 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400 	struct page *page;
1401 
1402 	while (index <= end_index) {
1403 		page = find_get_page(tree->mapping, index);
1404 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405 		set_page_writeback(page);
1406 		page_cache_release(page);
1407 		index++;
1408 	}
1409 	return 0;
1410 }
1411 
1412 /* find the first state struct with 'bits' set after 'start', and
1413  * return it.  tree->lock must be held.  NULL will returned if
1414  * nothing was found after 'start'
1415  */
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418 			    u64 start, unsigned long bits)
1419 {
1420 	struct rb_node *node;
1421 	struct extent_state *state;
1422 
1423 	/*
1424 	 * this search will find all the extents that end after
1425 	 * our range starts.
1426 	 */
1427 	node = tree_search(tree, start);
1428 	if (!node)
1429 		goto out;
1430 
1431 	while (1) {
1432 		state = rb_entry(node, struct extent_state, rb_node);
1433 		if (state->end >= start && (state->state & bits))
1434 			return state;
1435 
1436 		node = rb_next(node);
1437 		if (!node)
1438 			break;
1439 	}
1440 out:
1441 	return NULL;
1442 }
1443 
1444 /*
1445  * find the first offset in the io tree with 'bits' set. zero is
1446  * returned if we find something, and *start_ret and *end_ret are
1447  * set to reflect the state struct that was found.
1448  *
1449  * If nothing was found, 1 is returned. If found something, return 0.
1450  */
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1453 			  struct extent_state **cached_state)
1454 {
1455 	struct extent_state *state;
1456 	struct rb_node *n;
1457 	int ret = 1;
1458 
1459 	spin_lock(&tree->lock);
1460 	if (cached_state && *cached_state) {
1461 		state = *cached_state;
1462 		if (state->end == start - 1 && state->tree) {
1463 			n = rb_next(&state->rb_node);
1464 			while (n) {
1465 				state = rb_entry(n, struct extent_state,
1466 						 rb_node);
1467 				if (state->state & bits)
1468 					goto got_it;
1469 				n = rb_next(n);
1470 			}
1471 			free_extent_state(*cached_state);
1472 			*cached_state = NULL;
1473 			goto out;
1474 		}
1475 		free_extent_state(*cached_state);
1476 		*cached_state = NULL;
1477 	}
1478 
1479 	state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481 	if (state) {
1482 		cache_state(state, cached_state);
1483 		*start_ret = state->start;
1484 		*end_ret = state->end;
1485 		ret = 0;
1486 	}
1487 out:
1488 	spin_unlock(&tree->lock);
1489 	return ret;
1490 }
1491 
1492 /*
1493  * find a contiguous range of bytes in the file marked as delalloc, not
1494  * more than 'max_bytes'.  start and end are used to return the range,
1495  *
1496  * 1 is returned if we find something, 0 if nothing was in the tree
1497  */
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 					u64 *start, u64 *end, u64 max_bytes,
1500 					struct extent_state **cached_state)
1501 {
1502 	struct rb_node *node;
1503 	struct extent_state *state;
1504 	u64 cur_start = *start;
1505 	u64 found = 0;
1506 	u64 total_bytes = 0;
1507 
1508 	spin_lock(&tree->lock);
1509 
1510 	/*
1511 	 * this search will find all the extents that end after
1512 	 * our range starts.
1513 	 */
1514 	node = tree_search(tree, cur_start);
1515 	if (!node) {
1516 		if (!found)
1517 			*end = (u64)-1;
1518 		goto out;
1519 	}
1520 
1521 	while (1) {
1522 		state = rb_entry(node, struct extent_state, rb_node);
1523 		if (found && (state->start != cur_start ||
1524 			      (state->state & EXTENT_BOUNDARY))) {
1525 			goto out;
1526 		}
1527 		if (!(state->state & EXTENT_DELALLOC)) {
1528 			if (!found)
1529 				*end = state->end;
1530 			goto out;
1531 		}
1532 		if (!found) {
1533 			*start = state->start;
1534 			*cached_state = state;
1535 			atomic_inc(&state->refs);
1536 		}
1537 		found++;
1538 		*end = state->end;
1539 		cur_start = state->end + 1;
1540 		node = rb_next(node);
1541 		total_bytes += state->end - state->start + 1;
1542 		if (total_bytes >= max_bytes)
1543 			break;
1544 		if (!node)
1545 			break;
1546 	}
1547 out:
1548 	spin_unlock(&tree->lock);
1549 	return found;
1550 }
1551 
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553 					   struct page *locked_page,
1554 					   u64 start, u64 end)
1555 {
1556 	int ret;
1557 	struct page *pages[16];
1558 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1559 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560 	unsigned long nr_pages = end_index - index + 1;
1561 	int i;
1562 
1563 	if (index == locked_page->index && end_index == index)
1564 		return;
1565 
1566 	while (nr_pages > 0) {
1567 		ret = find_get_pages_contig(inode->i_mapping, index,
1568 				     min_t(unsigned long, nr_pages,
1569 				     ARRAY_SIZE(pages)), pages);
1570 		for (i = 0; i < ret; i++) {
1571 			if (pages[i] != locked_page)
1572 				unlock_page(pages[i]);
1573 			page_cache_release(pages[i]);
1574 		}
1575 		nr_pages -= ret;
1576 		index += ret;
1577 		cond_resched();
1578 	}
1579 }
1580 
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582 					struct page *locked_page,
1583 					u64 delalloc_start,
1584 					u64 delalloc_end)
1585 {
1586 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587 	unsigned long start_index = index;
1588 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589 	unsigned long pages_locked = 0;
1590 	struct page *pages[16];
1591 	unsigned long nrpages;
1592 	int ret;
1593 	int i;
1594 
1595 	/* the caller is responsible for locking the start index */
1596 	if (index == locked_page->index && index == end_index)
1597 		return 0;
1598 
1599 	/* skip the page at the start index */
1600 	nrpages = end_index - index + 1;
1601 	while (nrpages > 0) {
1602 		ret = find_get_pages_contig(inode->i_mapping, index,
1603 				     min_t(unsigned long,
1604 				     nrpages, ARRAY_SIZE(pages)), pages);
1605 		if (ret == 0) {
1606 			ret = -EAGAIN;
1607 			goto done;
1608 		}
1609 		/* now we have an array of pages, lock them all */
1610 		for (i = 0; i < ret; i++) {
1611 			/*
1612 			 * the caller is taking responsibility for
1613 			 * locked_page
1614 			 */
1615 			if (pages[i] != locked_page) {
1616 				lock_page(pages[i]);
1617 				if (!PageDirty(pages[i]) ||
1618 				    pages[i]->mapping != inode->i_mapping) {
1619 					ret = -EAGAIN;
1620 					unlock_page(pages[i]);
1621 					page_cache_release(pages[i]);
1622 					goto done;
1623 				}
1624 			}
1625 			page_cache_release(pages[i]);
1626 			pages_locked++;
1627 		}
1628 		nrpages -= ret;
1629 		index += ret;
1630 		cond_resched();
1631 	}
1632 	ret = 0;
1633 done:
1634 	if (ret && pages_locked) {
1635 		__unlock_for_delalloc(inode, locked_page,
1636 			      delalloc_start,
1637 			      ((u64)(start_index + pages_locked - 1)) <<
1638 			      PAGE_CACHE_SHIFT);
1639 	}
1640 	return ret;
1641 }
1642 
1643 /*
1644  * find a contiguous range of bytes in the file marked as delalloc, not
1645  * more than 'max_bytes'.  start and end are used to return the range,
1646  *
1647  * 1 is returned if we find something, 0 if nothing was in the tree
1648  */
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 				    struct extent_io_tree *tree,
1651 				    struct page *locked_page, u64 *start,
1652 				    u64 *end, u64 max_bytes)
1653 {
1654 	u64 delalloc_start;
1655 	u64 delalloc_end;
1656 	u64 found;
1657 	struct extent_state *cached_state = NULL;
1658 	int ret;
1659 	int loops = 0;
1660 
1661 again:
1662 	/* step one, find a bunch of delalloc bytes starting at start */
1663 	delalloc_start = *start;
1664 	delalloc_end = 0;
1665 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 				    max_bytes, &cached_state);
1667 	if (!found || delalloc_end <= *start) {
1668 		*start = delalloc_start;
1669 		*end = delalloc_end;
1670 		free_extent_state(cached_state);
1671 		return 0;
1672 	}
1673 
1674 	/*
1675 	 * start comes from the offset of locked_page.  We have to lock
1676 	 * pages in order, so we can't process delalloc bytes before
1677 	 * locked_page
1678 	 */
1679 	if (delalloc_start < *start)
1680 		delalloc_start = *start;
1681 
1682 	/*
1683 	 * make sure to limit the number of pages we try to lock down
1684 	 */
1685 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 		delalloc_end = delalloc_start + max_bytes - 1;
1687 
1688 	/* step two, lock all the pages after the page that has start */
1689 	ret = lock_delalloc_pages(inode, locked_page,
1690 				  delalloc_start, delalloc_end);
1691 	if (ret == -EAGAIN) {
1692 		/* some of the pages are gone, lets avoid looping by
1693 		 * shortening the size of the delalloc range we're searching
1694 		 */
1695 		free_extent_state(cached_state);
1696 		cached_state = NULL;
1697 		if (!loops) {
1698 			max_bytes = PAGE_CACHE_SIZE;
1699 			loops = 1;
1700 			goto again;
1701 		} else {
1702 			found = 0;
1703 			goto out_failed;
1704 		}
1705 	}
1706 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707 
1708 	/* step three, lock the state bits for the whole range */
1709 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1710 
1711 	/* then test to make sure it is all still delalloc */
1712 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 			     EXTENT_DELALLOC, 1, cached_state);
1714 	if (!ret) {
1715 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 				     &cached_state, GFP_NOFS);
1717 		__unlock_for_delalloc(inode, locked_page,
1718 			      delalloc_start, delalloc_end);
1719 		cond_resched();
1720 		goto again;
1721 	}
1722 	free_extent_state(cached_state);
1723 	*start = delalloc_start;
1724 	*end = delalloc_end;
1725 out_failed:
1726 	return found;
1727 }
1728 
1729 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 				 struct page *locked_page,
1731 				 unsigned long clear_bits,
1732 				 unsigned long page_ops)
1733 {
1734 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 	int ret;
1736 	struct page *pages[16];
1737 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1738 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1739 	unsigned long nr_pages = end_index - index + 1;
1740 	int i;
1741 
1742 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 	if (page_ops == 0)
1744 		return 0;
1745 
1746 	while (nr_pages > 0) {
1747 		ret = find_get_pages_contig(inode->i_mapping, index,
1748 				     min_t(unsigned long,
1749 				     nr_pages, ARRAY_SIZE(pages)), pages);
1750 		for (i = 0; i < ret; i++) {
1751 
1752 			if (page_ops & PAGE_SET_PRIVATE2)
1753 				SetPagePrivate2(pages[i]);
1754 
1755 			if (pages[i] == locked_page) {
1756 				page_cache_release(pages[i]);
1757 				continue;
1758 			}
1759 			if (page_ops & PAGE_CLEAR_DIRTY)
1760 				clear_page_dirty_for_io(pages[i]);
1761 			if (page_ops & PAGE_SET_WRITEBACK)
1762 				set_page_writeback(pages[i]);
1763 			if (page_ops & PAGE_END_WRITEBACK)
1764 				end_page_writeback(pages[i]);
1765 			if (page_ops & PAGE_UNLOCK)
1766 				unlock_page(pages[i]);
1767 			page_cache_release(pages[i]);
1768 		}
1769 		nr_pages -= ret;
1770 		index += ret;
1771 		cond_resched();
1772 	}
1773 	return 0;
1774 }
1775 
1776 /*
1777  * count the number of bytes in the tree that have a given bit(s)
1778  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1779  * cached.  The total number found is returned.
1780  */
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782 		     u64 *start, u64 search_end, u64 max_bytes,
1783 		     unsigned long bits, int contig)
1784 {
1785 	struct rb_node *node;
1786 	struct extent_state *state;
1787 	u64 cur_start = *start;
1788 	u64 total_bytes = 0;
1789 	u64 last = 0;
1790 	int found = 0;
1791 
1792 	if (WARN_ON(search_end <= cur_start))
1793 		return 0;
1794 
1795 	spin_lock(&tree->lock);
1796 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 		total_bytes = tree->dirty_bytes;
1798 		goto out;
1799 	}
1800 	/*
1801 	 * this search will find all the extents that end after
1802 	 * our range starts.
1803 	 */
1804 	node = tree_search(tree, cur_start);
1805 	if (!node)
1806 		goto out;
1807 
1808 	while (1) {
1809 		state = rb_entry(node, struct extent_state, rb_node);
1810 		if (state->start > search_end)
1811 			break;
1812 		if (contig && found && state->start > last + 1)
1813 			break;
1814 		if (state->end >= cur_start && (state->state & bits) == bits) {
1815 			total_bytes += min(search_end, state->end) + 1 -
1816 				       max(cur_start, state->start);
1817 			if (total_bytes >= max_bytes)
1818 				break;
1819 			if (!found) {
1820 				*start = max(cur_start, state->start);
1821 				found = 1;
1822 			}
1823 			last = state->end;
1824 		} else if (contig && found) {
1825 			break;
1826 		}
1827 		node = rb_next(node);
1828 		if (!node)
1829 			break;
1830 	}
1831 out:
1832 	spin_unlock(&tree->lock);
1833 	return total_bytes;
1834 }
1835 
1836 /*
1837  * set the private field for a given byte offset in the tree.  If there isn't
1838  * an extent_state there already, this does nothing.
1839  */
1840 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1841 {
1842 	struct rb_node *node;
1843 	struct extent_state *state;
1844 	int ret = 0;
1845 
1846 	spin_lock(&tree->lock);
1847 	/*
1848 	 * this search will find all the extents that end after
1849 	 * our range starts.
1850 	 */
1851 	node = tree_search(tree, start);
1852 	if (!node) {
1853 		ret = -ENOENT;
1854 		goto out;
1855 	}
1856 	state = rb_entry(node, struct extent_state, rb_node);
1857 	if (state->start != start) {
1858 		ret = -ENOENT;
1859 		goto out;
1860 	}
1861 	state->private = private;
1862 out:
1863 	spin_unlock(&tree->lock);
1864 	return ret;
1865 }
1866 
1867 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1868 {
1869 	struct rb_node *node;
1870 	struct extent_state *state;
1871 	int ret = 0;
1872 
1873 	spin_lock(&tree->lock);
1874 	/*
1875 	 * this search will find all the extents that end after
1876 	 * our range starts.
1877 	 */
1878 	node = tree_search(tree, start);
1879 	if (!node) {
1880 		ret = -ENOENT;
1881 		goto out;
1882 	}
1883 	state = rb_entry(node, struct extent_state, rb_node);
1884 	if (state->start != start) {
1885 		ret = -ENOENT;
1886 		goto out;
1887 	}
1888 	*private = state->private;
1889 out:
1890 	spin_unlock(&tree->lock);
1891 	return ret;
1892 }
1893 
1894 /*
1895  * searches a range in the state tree for a given mask.
1896  * If 'filled' == 1, this returns 1 only if every extent in the tree
1897  * has the bits set.  Otherwise, 1 is returned if any bit in the
1898  * range is found set.
1899  */
1900 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1901 		   unsigned long bits, int filled, struct extent_state *cached)
1902 {
1903 	struct extent_state *state = NULL;
1904 	struct rb_node *node;
1905 	int bitset = 0;
1906 
1907 	spin_lock(&tree->lock);
1908 	if (cached && cached->tree && cached->start <= start &&
1909 	    cached->end > start)
1910 		node = &cached->rb_node;
1911 	else
1912 		node = tree_search(tree, start);
1913 	while (node && start <= end) {
1914 		state = rb_entry(node, struct extent_state, rb_node);
1915 
1916 		if (filled && state->start > start) {
1917 			bitset = 0;
1918 			break;
1919 		}
1920 
1921 		if (state->start > end)
1922 			break;
1923 
1924 		if (state->state & bits) {
1925 			bitset = 1;
1926 			if (!filled)
1927 				break;
1928 		} else if (filled) {
1929 			bitset = 0;
1930 			break;
1931 		}
1932 
1933 		if (state->end == (u64)-1)
1934 			break;
1935 
1936 		start = state->end + 1;
1937 		if (start > end)
1938 			break;
1939 		node = rb_next(node);
1940 		if (!node) {
1941 			if (filled)
1942 				bitset = 0;
1943 			break;
1944 		}
1945 	}
1946 	spin_unlock(&tree->lock);
1947 	return bitset;
1948 }
1949 
1950 /*
1951  * helper function to set a given page up to date if all the
1952  * extents in the tree for that page are up to date
1953  */
1954 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1955 {
1956 	u64 start = page_offset(page);
1957 	u64 end = start + PAGE_CACHE_SIZE - 1;
1958 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1959 		SetPageUptodate(page);
1960 }
1961 
1962 /*
1963  * When IO fails, either with EIO or csum verification fails, we
1964  * try other mirrors that might have a good copy of the data.  This
1965  * io_failure_record is used to record state as we go through all the
1966  * mirrors.  If another mirror has good data, the page is set up to date
1967  * and things continue.  If a good mirror can't be found, the original
1968  * bio end_io callback is called to indicate things have failed.
1969  */
1970 struct io_failure_record {
1971 	struct page *page;
1972 	u64 start;
1973 	u64 len;
1974 	u64 logical;
1975 	unsigned long bio_flags;
1976 	int this_mirror;
1977 	int failed_mirror;
1978 	int in_validation;
1979 };
1980 
1981 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1982 				int did_repair)
1983 {
1984 	int ret;
1985 	int err = 0;
1986 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987 
1988 	set_state_private(failure_tree, rec->start, 0);
1989 	ret = clear_extent_bits(failure_tree, rec->start,
1990 				rec->start + rec->len - 1,
1991 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1992 	if (ret)
1993 		err = ret;
1994 
1995 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1996 				rec->start + rec->len - 1,
1997 				EXTENT_DAMAGED, GFP_NOFS);
1998 	if (ret && !err)
1999 		err = ret;
2000 
2001 	kfree(rec);
2002 	return err;
2003 }
2004 
2005 /*
2006  * this bypasses the standard btrfs submit functions deliberately, as
2007  * the standard behavior is to write all copies in a raid setup. here we only
2008  * want to write the one bad copy. so we do the mapping for ourselves and issue
2009  * submit_bio directly.
2010  * to avoid any synchronization issues, wait for the data after writing, which
2011  * actually prevents the read that triggered the error from finishing.
2012  * currently, there can be no more than two copies of every data bit. thus,
2013  * exactly one rewrite is required.
2014  */
2015 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2016 			u64 length, u64 logical, struct page *page,
2017 			int mirror_num)
2018 {
2019 	struct bio *bio;
2020 	struct btrfs_device *dev;
2021 	u64 map_length = 0;
2022 	u64 sector;
2023 	struct btrfs_bio *bbio = NULL;
2024 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2025 	int ret;
2026 
2027 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2028 	BUG_ON(!mirror_num);
2029 
2030 	/* we can't repair anything in raid56 yet */
2031 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2032 		return 0;
2033 
2034 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2035 	if (!bio)
2036 		return -EIO;
2037 	bio->bi_iter.bi_size = 0;
2038 	map_length = length;
2039 
2040 	ret = btrfs_map_block(fs_info, WRITE, logical,
2041 			      &map_length, &bbio, mirror_num);
2042 	if (ret) {
2043 		bio_put(bio);
2044 		return -EIO;
2045 	}
2046 	BUG_ON(mirror_num != bbio->mirror_num);
2047 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2048 	bio->bi_iter.bi_sector = sector;
2049 	dev = bbio->stripes[mirror_num-1].dev;
2050 	kfree(bbio);
2051 	if (!dev || !dev->bdev || !dev->writeable) {
2052 		bio_put(bio);
2053 		return -EIO;
2054 	}
2055 	bio->bi_bdev = dev->bdev;
2056 	bio_add_page(bio, page, length, start - page_offset(page));
2057 
2058 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2059 		/* try to remap that extent elsewhere? */
2060 		bio_put(bio);
2061 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2062 		return -EIO;
2063 	}
2064 
2065 	printk_ratelimited_in_rcu(KERN_INFO
2066 			"BTRFS: read error corrected: ino %lu off %llu "
2067 		    "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2068 		    start, rcu_str_deref(dev->name), sector);
2069 
2070 	bio_put(bio);
2071 	return 0;
2072 }
2073 
2074 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2075 			 int mirror_num)
2076 {
2077 	u64 start = eb->start;
2078 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2079 	int ret = 0;
2080 
2081 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2082 		return -EROFS;
2083 
2084 	for (i = 0; i < num_pages; i++) {
2085 		struct page *p = extent_buffer_page(eb, i);
2086 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2087 					start, p, mirror_num);
2088 		if (ret)
2089 			break;
2090 		start += PAGE_CACHE_SIZE;
2091 	}
2092 
2093 	return ret;
2094 }
2095 
2096 /*
2097  * each time an IO finishes, we do a fast check in the IO failure tree
2098  * to see if we need to process or clean up an io_failure_record
2099  */
2100 static int clean_io_failure(u64 start, struct page *page)
2101 {
2102 	u64 private;
2103 	u64 private_failure;
2104 	struct io_failure_record *failrec;
2105 	struct inode *inode = page->mapping->host;
2106 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2107 	struct extent_state *state;
2108 	int num_copies;
2109 	int did_repair = 0;
2110 	int ret;
2111 
2112 	private = 0;
2113 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2114 				(u64)-1, 1, EXTENT_DIRTY, 0);
2115 	if (!ret)
2116 		return 0;
2117 
2118 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2119 				&private_failure);
2120 	if (ret)
2121 		return 0;
2122 
2123 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2124 	BUG_ON(!failrec->this_mirror);
2125 
2126 	if (failrec->in_validation) {
2127 		/* there was no real error, just free the record */
2128 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2129 			 failrec->start);
2130 		did_repair = 1;
2131 		goto out;
2132 	}
2133 	if (fs_info->sb->s_flags & MS_RDONLY)
2134 		goto out;
2135 
2136 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2137 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2138 					    failrec->start,
2139 					    EXTENT_LOCKED);
2140 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2141 
2142 	if (state && state->start <= failrec->start &&
2143 	    state->end >= failrec->start + failrec->len - 1) {
2144 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2145 					      failrec->len);
2146 		if (num_copies > 1)  {
2147 			ret = repair_io_failure(fs_info, start, failrec->len,
2148 						failrec->logical, page,
2149 						failrec->failed_mirror);
2150 			did_repair = !ret;
2151 		}
2152 		ret = 0;
2153 	}
2154 
2155 out:
2156 	if (!ret)
2157 		ret = free_io_failure(inode, failrec, did_repair);
2158 
2159 	return ret;
2160 }
2161 
2162 /*
2163  * this is a generic handler for readpage errors (default
2164  * readpage_io_failed_hook). if other copies exist, read those and write back
2165  * good data to the failed position. does not investigate in remapping the
2166  * failed extent elsewhere, hoping the device will be smart enough to do this as
2167  * needed
2168  */
2169 
2170 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2171 			      struct page *page, u64 start, u64 end,
2172 			      int failed_mirror)
2173 {
2174 	struct io_failure_record *failrec = NULL;
2175 	u64 private;
2176 	struct extent_map *em;
2177 	struct inode *inode = page->mapping->host;
2178 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2179 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2180 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2181 	struct bio *bio;
2182 	struct btrfs_io_bio *btrfs_failed_bio;
2183 	struct btrfs_io_bio *btrfs_bio;
2184 	int num_copies;
2185 	int ret;
2186 	int read_mode;
2187 	u64 logical;
2188 
2189 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2190 
2191 	ret = get_state_private(failure_tree, start, &private);
2192 	if (ret) {
2193 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194 		if (!failrec)
2195 			return -ENOMEM;
2196 		failrec->start = start;
2197 		failrec->len = end - start + 1;
2198 		failrec->this_mirror = 0;
2199 		failrec->bio_flags = 0;
2200 		failrec->in_validation = 0;
2201 
2202 		read_lock(&em_tree->lock);
2203 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 		if (!em) {
2205 			read_unlock(&em_tree->lock);
2206 			kfree(failrec);
2207 			return -EIO;
2208 		}
2209 
2210 		if (em->start > start || em->start + em->len <= start) {
2211 			free_extent_map(em);
2212 			em = NULL;
2213 		}
2214 		read_unlock(&em_tree->lock);
2215 
2216 		if (!em) {
2217 			kfree(failrec);
2218 			return -EIO;
2219 		}
2220 		logical = start - em->start;
2221 		logical = em->block_start + logical;
2222 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 			logical = em->block_start;
2224 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 			extent_set_compress_type(&failrec->bio_flags,
2226 						 em->compress_type);
2227 		}
2228 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2229 			 "len=%llu\n", logical, start, failrec->len);
2230 		failrec->logical = logical;
2231 		free_extent_map(em);
2232 
2233 		/* set the bits in the private failure tree */
2234 		ret = set_extent_bits(failure_tree, start, end,
2235 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 		if (ret >= 0)
2237 			ret = set_state_private(failure_tree, start,
2238 						(u64)(unsigned long)failrec);
2239 		/* set the bits in the inode's tree */
2240 		if (ret >= 0)
2241 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2242 						GFP_NOFS);
2243 		if (ret < 0) {
2244 			kfree(failrec);
2245 			return ret;
2246 		}
2247 	} else {
2248 		failrec = (struct io_failure_record *)(unsigned long)private;
2249 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2250 			 "start=%llu, len=%llu, validation=%d\n",
2251 			 failrec->logical, failrec->start, failrec->len,
2252 			 failrec->in_validation);
2253 		/*
2254 		 * when data can be on disk more than twice, add to failrec here
2255 		 * (e.g. with a list for failed_mirror) to make
2256 		 * clean_io_failure() clean all those errors at once.
2257 		 */
2258 	}
2259 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2260 				      failrec->logical, failrec->len);
2261 	if (num_copies == 1) {
2262 		/*
2263 		 * we only have a single copy of the data, so don't bother with
2264 		 * all the retry and error correction code that follows. no
2265 		 * matter what the error is, it is very likely to persist.
2266 		 */
2267 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2268 			 num_copies, failrec->this_mirror, failed_mirror);
2269 		free_io_failure(inode, failrec, 0);
2270 		return -EIO;
2271 	}
2272 
2273 	/*
2274 	 * there are two premises:
2275 	 *	a) deliver good data to the caller
2276 	 *	b) correct the bad sectors on disk
2277 	 */
2278 	if (failed_bio->bi_vcnt > 1) {
2279 		/*
2280 		 * to fulfill b), we need to know the exact failing sectors, as
2281 		 * we don't want to rewrite any more than the failed ones. thus,
2282 		 * we need separate read requests for the failed bio
2283 		 *
2284 		 * if the following BUG_ON triggers, our validation request got
2285 		 * merged. we need separate requests for our algorithm to work.
2286 		 */
2287 		BUG_ON(failrec->in_validation);
2288 		failrec->in_validation = 1;
2289 		failrec->this_mirror = failed_mirror;
2290 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2291 	} else {
2292 		/*
2293 		 * we're ready to fulfill a) and b) alongside. get a good copy
2294 		 * of the failed sector and if we succeed, we have setup
2295 		 * everything for repair_io_failure to do the rest for us.
2296 		 */
2297 		if (failrec->in_validation) {
2298 			BUG_ON(failrec->this_mirror != failed_mirror);
2299 			failrec->in_validation = 0;
2300 			failrec->this_mirror = 0;
2301 		}
2302 		failrec->failed_mirror = failed_mirror;
2303 		failrec->this_mirror++;
2304 		if (failrec->this_mirror == failed_mirror)
2305 			failrec->this_mirror++;
2306 		read_mode = READ_SYNC;
2307 	}
2308 
2309 	if (failrec->this_mirror > num_copies) {
2310 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2311 			 num_copies, failrec->this_mirror, failed_mirror);
2312 		free_io_failure(inode, failrec, 0);
2313 		return -EIO;
2314 	}
2315 
2316 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2317 	if (!bio) {
2318 		free_io_failure(inode, failrec, 0);
2319 		return -EIO;
2320 	}
2321 	bio->bi_end_io = failed_bio->bi_end_io;
2322 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2323 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2324 	bio->bi_iter.bi_size = 0;
2325 
2326 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2327 	if (btrfs_failed_bio->csum) {
2328 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2329 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2330 
2331 		btrfs_bio = btrfs_io_bio(bio);
2332 		btrfs_bio->csum = btrfs_bio->csum_inline;
2333 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2334 		phy_offset *= csum_size;
2335 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2336 		       csum_size);
2337 	}
2338 
2339 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2340 
2341 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2342 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2343 		 failrec->this_mirror, num_copies, failrec->in_validation);
2344 
2345 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2346 					 failrec->this_mirror,
2347 					 failrec->bio_flags, 0);
2348 	return ret;
2349 }
2350 
2351 /* lots and lots of room for performance fixes in the end_bio funcs */
2352 
2353 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2354 {
2355 	int uptodate = (err == 0);
2356 	struct extent_io_tree *tree;
2357 	int ret = 0;
2358 
2359 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2360 
2361 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2362 		ret = tree->ops->writepage_end_io_hook(page, start,
2363 					       end, NULL, uptodate);
2364 		if (ret)
2365 			uptodate = 0;
2366 	}
2367 
2368 	if (!uptodate) {
2369 		ClearPageUptodate(page);
2370 		SetPageError(page);
2371 		ret = ret < 0 ? ret : -EIO;
2372 		mapping_set_error(page->mapping, ret);
2373 	}
2374 	return 0;
2375 }
2376 
2377 /*
2378  * after a writepage IO is done, we need to:
2379  * clear the uptodate bits on error
2380  * clear the writeback bits in the extent tree for this IO
2381  * end_page_writeback if the page has no more pending IO
2382  *
2383  * Scheduling is not allowed, so the extent state tree is expected
2384  * to have one and only one object corresponding to this IO.
2385  */
2386 static void end_bio_extent_writepage(struct bio *bio, int err)
2387 {
2388 	struct bio_vec *bvec;
2389 	u64 start;
2390 	u64 end;
2391 	int i;
2392 
2393 	bio_for_each_segment_all(bvec, bio, i) {
2394 		struct page *page = bvec->bv_page;
2395 
2396 		/* We always issue full-page reads, but if some block
2397 		 * in a page fails to read, blk_update_request() will
2398 		 * advance bv_offset and adjust bv_len to compensate.
2399 		 * Print a warning for nonzero offsets, and an error
2400 		 * if they don't add up to a full page.  */
2401 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2402 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2403 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2404 				   "partial page write in btrfs with offset %u and length %u",
2405 					bvec->bv_offset, bvec->bv_len);
2406 			else
2407 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2408 				   "incomplete page write in btrfs with offset %u and "
2409 				   "length %u",
2410 					bvec->bv_offset, bvec->bv_len);
2411 		}
2412 
2413 		start = page_offset(page);
2414 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2415 
2416 		if (end_extent_writepage(page, err, start, end))
2417 			continue;
2418 
2419 		end_page_writeback(page);
2420 	}
2421 
2422 	bio_put(bio);
2423 }
2424 
2425 static void
2426 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2427 			      int uptodate)
2428 {
2429 	struct extent_state *cached = NULL;
2430 	u64 end = start + len - 1;
2431 
2432 	if (uptodate && tree->track_uptodate)
2433 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2434 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2435 }
2436 
2437 /*
2438  * after a readpage IO is done, we need to:
2439  * clear the uptodate bits on error
2440  * set the uptodate bits if things worked
2441  * set the page up to date if all extents in the tree are uptodate
2442  * clear the lock bit in the extent tree
2443  * unlock the page if there are no other extents locked for it
2444  *
2445  * Scheduling is not allowed, so the extent state tree is expected
2446  * to have one and only one object corresponding to this IO.
2447  */
2448 static void end_bio_extent_readpage(struct bio *bio, int err)
2449 {
2450 	struct bio_vec *bvec;
2451 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2452 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453 	struct extent_io_tree *tree;
2454 	u64 offset = 0;
2455 	u64 start;
2456 	u64 end;
2457 	u64 len;
2458 	u64 extent_start = 0;
2459 	u64 extent_len = 0;
2460 	int mirror;
2461 	int ret;
2462 	int i;
2463 
2464 	if (err)
2465 		uptodate = 0;
2466 
2467 	bio_for_each_segment_all(bvec, bio, i) {
2468 		struct page *page = bvec->bv_page;
2469 		struct inode *inode = page->mapping->host;
2470 
2471 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2472 			 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2473 			 io_bio->mirror_num);
2474 		tree = &BTRFS_I(inode)->io_tree;
2475 
2476 		/* We always issue full-page reads, but if some block
2477 		 * in a page fails to read, blk_update_request() will
2478 		 * advance bv_offset and adjust bv_len to compensate.
2479 		 * Print a warning for nonzero offsets, and an error
2480 		 * if they don't add up to a full page.  */
2481 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2482 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2483 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2484 				   "partial page read in btrfs with offset %u and length %u",
2485 					bvec->bv_offset, bvec->bv_len);
2486 			else
2487 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2488 				   "incomplete page read in btrfs with offset %u and "
2489 				   "length %u",
2490 					bvec->bv_offset, bvec->bv_len);
2491 		}
2492 
2493 		start = page_offset(page);
2494 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2495 		len = bvec->bv_len;
2496 
2497 		mirror = io_bio->mirror_num;
2498 		if (likely(uptodate && tree->ops &&
2499 			   tree->ops->readpage_end_io_hook)) {
2500 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2501 							      page, start, end,
2502 							      mirror);
2503 			if (ret)
2504 				uptodate = 0;
2505 			else
2506 				clean_io_failure(start, page);
2507 		}
2508 
2509 		if (likely(uptodate))
2510 			goto readpage_ok;
2511 
2512 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2513 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2514 			if (!ret && !err &&
2515 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2516 				uptodate = 1;
2517 		} else {
2518 			/*
2519 			 * The generic bio_readpage_error handles errors the
2520 			 * following way: If possible, new read requests are
2521 			 * created and submitted and will end up in
2522 			 * end_bio_extent_readpage as well (if we're lucky, not
2523 			 * in the !uptodate case). In that case it returns 0 and
2524 			 * we just go on with the next page in our bio. If it
2525 			 * can't handle the error it will return -EIO and we
2526 			 * remain responsible for that page.
2527 			 */
2528 			ret = bio_readpage_error(bio, offset, page, start, end,
2529 						 mirror);
2530 			if (ret == 0) {
2531 				uptodate =
2532 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2533 				if (err)
2534 					uptodate = 0;
2535 				continue;
2536 			}
2537 		}
2538 readpage_ok:
2539 		if (likely(uptodate)) {
2540 			loff_t i_size = i_size_read(inode);
2541 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2542 			unsigned offset;
2543 
2544 			/* Zero out the end if this page straddles i_size */
2545 			offset = i_size & (PAGE_CACHE_SIZE-1);
2546 			if (page->index == end_index && offset)
2547 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2548 			SetPageUptodate(page);
2549 		} else {
2550 			ClearPageUptodate(page);
2551 			SetPageError(page);
2552 		}
2553 		unlock_page(page);
2554 		offset += len;
2555 
2556 		if (unlikely(!uptodate)) {
2557 			if (extent_len) {
2558 				endio_readpage_release_extent(tree,
2559 							      extent_start,
2560 							      extent_len, 1);
2561 				extent_start = 0;
2562 				extent_len = 0;
2563 			}
2564 			endio_readpage_release_extent(tree, start,
2565 						      end - start + 1, 0);
2566 		} else if (!extent_len) {
2567 			extent_start = start;
2568 			extent_len = end + 1 - start;
2569 		} else if (extent_start + extent_len == start) {
2570 			extent_len += end + 1 - start;
2571 		} else {
2572 			endio_readpage_release_extent(tree, extent_start,
2573 						      extent_len, uptodate);
2574 			extent_start = start;
2575 			extent_len = end + 1 - start;
2576 		}
2577 	}
2578 
2579 	if (extent_len)
2580 		endio_readpage_release_extent(tree, extent_start, extent_len,
2581 					      uptodate);
2582 	if (io_bio->end_io)
2583 		io_bio->end_io(io_bio, err);
2584 	bio_put(bio);
2585 }
2586 
2587 /*
2588  * this allocates from the btrfs_bioset.  We're returning a bio right now
2589  * but you can call btrfs_io_bio for the appropriate container_of magic
2590  */
2591 struct bio *
2592 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2593 		gfp_t gfp_flags)
2594 {
2595 	struct btrfs_io_bio *btrfs_bio;
2596 	struct bio *bio;
2597 
2598 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2599 
2600 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2601 		while (!bio && (nr_vecs /= 2)) {
2602 			bio = bio_alloc_bioset(gfp_flags,
2603 					       nr_vecs, btrfs_bioset);
2604 		}
2605 	}
2606 
2607 	if (bio) {
2608 		bio->bi_bdev = bdev;
2609 		bio->bi_iter.bi_sector = first_sector;
2610 		btrfs_bio = btrfs_io_bio(bio);
2611 		btrfs_bio->csum = NULL;
2612 		btrfs_bio->csum_allocated = NULL;
2613 		btrfs_bio->end_io = NULL;
2614 	}
2615 	return bio;
2616 }
2617 
2618 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2619 {
2620 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2621 }
2622 
2623 
2624 /* this also allocates from the btrfs_bioset */
2625 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2626 {
2627 	struct btrfs_io_bio *btrfs_bio;
2628 	struct bio *bio;
2629 
2630 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2631 	if (bio) {
2632 		btrfs_bio = btrfs_io_bio(bio);
2633 		btrfs_bio->csum = NULL;
2634 		btrfs_bio->csum_allocated = NULL;
2635 		btrfs_bio->end_io = NULL;
2636 	}
2637 	return bio;
2638 }
2639 
2640 
2641 static int __must_check submit_one_bio(int rw, struct bio *bio,
2642 				       int mirror_num, unsigned long bio_flags)
2643 {
2644 	int ret = 0;
2645 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2646 	struct page *page = bvec->bv_page;
2647 	struct extent_io_tree *tree = bio->bi_private;
2648 	u64 start;
2649 
2650 	start = page_offset(page) + bvec->bv_offset;
2651 
2652 	bio->bi_private = NULL;
2653 
2654 	bio_get(bio);
2655 
2656 	if (tree->ops && tree->ops->submit_bio_hook)
2657 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2658 					   mirror_num, bio_flags, start);
2659 	else
2660 		btrfsic_submit_bio(rw, bio);
2661 
2662 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2663 		ret = -EOPNOTSUPP;
2664 	bio_put(bio);
2665 	return ret;
2666 }
2667 
2668 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2669 		     unsigned long offset, size_t size, struct bio *bio,
2670 		     unsigned long bio_flags)
2671 {
2672 	int ret = 0;
2673 	if (tree->ops && tree->ops->merge_bio_hook)
2674 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2675 						bio_flags);
2676 	BUG_ON(ret < 0);
2677 	return ret;
2678 
2679 }
2680 
2681 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2682 			      struct page *page, sector_t sector,
2683 			      size_t size, unsigned long offset,
2684 			      struct block_device *bdev,
2685 			      struct bio **bio_ret,
2686 			      unsigned long max_pages,
2687 			      bio_end_io_t end_io_func,
2688 			      int mirror_num,
2689 			      unsigned long prev_bio_flags,
2690 			      unsigned long bio_flags)
2691 {
2692 	int ret = 0;
2693 	struct bio *bio;
2694 	int nr;
2695 	int contig = 0;
2696 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2697 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2698 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2699 
2700 	if (bio_ret && *bio_ret) {
2701 		bio = *bio_ret;
2702 		if (old_compressed)
2703 			contig = bio->bi_iter.bi_sector == sector;
2704 		else
2705 			contig = bio_end_sector(bio) == sector;
2706 
2707 		if (prev_bio_flags != bio_flags || !contig ||
2708 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2709 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2710 			ret = submit_one_bio(rw, bio, mirror_num,
2711 					     prev_bio_flags);
2712 			if (ret < 0)
2713 				return ret;
2714 			bio = NULL;
2715 		} else {
2716 			return 0;
2717 		}
2718 	}
2719 	if (this_compressed)
2720 		nr = BIO_MAX_PAGES;
2721 	else
2722 		nr = bio_get_nr_vecs(bdev);
2723 
2724 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2725 	if (!bio)
2726 		return -ENOMEM;
2727 
2728 	bio_add_page(bio, page, page_size, offset);
2729 	bio->bi_end_io = end_io_func;
2730 	bio->bi_private = tree;
2731 
2732 	if (bio_ret)
2733 		*bio_ret = bio;
2734 	else
2735 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2736 
2737 	return ret;
2738 }
2739 
2740 static void attach_extent_buffer_page(struct extent_buffer *eb,
2741 				      struct page *page)
2742 {
2743 	if (!PagePrivate(page)) {
2744 		SetPagePrivate(page);
2745 		page_cache_get(page);
2746 		set_page_private(page, (unsigned long)eb);
2747 	} else {
2748 		WARN_ON(page->private != (unsigned long)eb);
2749 	}
2750 }
2751 
2752 void set_page_extent_mapped(struct page *page)
2753 {
2754 	if (!PagePrivate(page)) {
2755 		SetPagePrivate(page);
2756 		page_cache_get(page);
2757 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2758 	}
2759 }
2760 
2761 static struct extent_map *
2762 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2763 		 u64 start, u64 len, get_extent_t *get_extent,
2764 		 struct extent_map **em_cached)
2765 {
2766 	struct extent_map *em;
2767 
2768 	if (em_cached && *em_cached) {
2769 		em = *em_cached;
2770 		if (extent_map_in_tree(em) && start >= em->start &&
2771 		    start < extent_map_end(em)) {
2772 			atomic_inc(&em->refs);
2773 			return em;
2774 		}
2775 
2776 		free_extent_map(em);
2777 		*em_cached = NULL;
2778 	}
2779 
2780 	em = get_extent(inode, page, pg_offset, start, len, 0);
2781 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2782 		BUG_ON(*em_cached);
2783 		atomic_inc(&em->refs);
2784 		*em_cached = em;
2785 	}
2786 	return em;
2787 }
2788 /*
2789  * basic readpage implementation.  Locked extent state structs are inserted
2790  * into the tree that are removed when the IO is done (by the end_io
2791  * handlers)
2792  * XXX JDM: This needs looking at to ensure proper page locking
2793  */
2794 static int __do_readpage(struct extent_io_tree *tree,
2795 			 struct page *page,
2796 			 get_extent_t *get_extent,
2797 			 struct extent_map **em_cached,
2798 			 struct bio **bio, int mirror_num,
2799 			 unsigned long *bio_flags, int rw)
2800 {
2801 	struct inode *inode = page->mapping->host;
2802 	u64 start = page_offset(page);
2803 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2804 	u64 end;
2805 	u64 cur = start;
2806 	u64 extent_offset;
2807 	u64 last_byte = i_size_read(inode);
2808 	u64 block_start;
2809 	u64 cur_end;
2810 	sector_t sector;
2811 	struct extent_map *em;
2812 	struct block_device *bdev;
2813 	int ret;
2814 	int nr = 0;
2815 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2816 	size_t pg_offset = 0;
2817 	size_t iosize;
2818 	size_t disk_io_size;
2819 	size_t blocksize = inode->i_sb->s_blocksize;
2820 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2821 
2822 	set_page_extent_mapped(page);
2823 
2824 	end = page_end;
2825 	if (!PageUptodate(page)) {
2826 		if (cleancache_get_page(page) == 0) {
2827 			BUG_ON(blocksize != PAGE_SIZE);
2828 			unlock_extent(tree, start, end);
2829 			goto out;
2830 		}
2831 	}
2832 
2833 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2834 		char *userpage;
2835 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2836 
2837 		if (zero_offset) {
2838 			iosize = PAGE_CACHE_SIZE - zero_offset;
2839 			userpage = kmap_atomic(page);
2840 			memset(userpage + zero_offset, 0, iosize);
2841 			flush_dcache_page(page);
2842 			kunmap_atomic(userpage);
2843 		}
2844 	}
2845 	while (cur <= end) {
2846 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2847 
2848 		if (cur >= last_byte) {
2849 			char *userpage;
2850 			struct extent_state *cached = NULL;
2851 
2852 			iosize = PAGE_CACHE_SIZE - pg_offset;
2853 			userpage = kmap_atomic(page);
2854 			memset(userpage + pg_offset, 0, iosize);
2855 			flush_dcache_page(page);
2856 			kunmap_atomic(userpage);
2857 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2858 					    &cached, GFP_NOFS);
2859 			if (!parent_locked)
2860 				unlock_extent_cached(tree, cur,
2861 						     cur + iosize - 1,
2862 						     &cached, GFP_NOFS);
2863 			break;
2864 		}
2865 		em = __get_extent_map(inode, page, pg_offset, cur,
2866 				      end - cur + 1, get_extent, em_cached);
2867 		if (IS_ERR_OR_NULL(em)) {
2868 			SetPageError(page);
2869 			if (!parent_locked)
2870 				unlock_extent(tree, cur, end);
2871 			break;
2872 		}
2873 		extent_offset = cur - em->start;
2874 		BUG_ON(extent_map_end(em) <= cur);
2875 		BUG_ON(end < cur);
2876 
2877 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2878 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2879 			extent_set_compress_type(&this_bio_flag,
2880 						 em->compress_type);
2881 		}
2882 
2883 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2884 		cur_end = min(extent_map_end(em) - 1, end);
2885 		iosize = ALIGN(iosize, blocksize);
2886 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2887 			disk_io_size = em->block_len;
2888 			sector = em->block_start >> 9;
2889 		} else {
2890 			sector = (em->block_start + extent_offset) >> 9;
2891 			disk_io_size = iosize;
2892 		}
2893 		bdev = em->bdev;
2894 		block_start = em->block_start;
2895 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2896 			block_start = EXTENT_MAP_HOLE;
2897 		free_extent_map(em);
2898 		em = NULL;
2899 
2900 		/* we've found a hole, just zero and go on */
2901 		if (block_start == EXTENT_MAP_HOLE) {
2902 			char *userpage;
2903 			struct extent_state *cached = NULL;
2904 
2905 			userpage = kmap_atomic(page);
2906 			memset(userpage + pg_offset, 0, iosize);
2907 			flush_dcache_page(page);
2908 			kunmap_atomic(userpage);
2909 
2910 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2911 					    &cached, GFP_NOFS);
2912 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2913 			                     &cached, GFP_NOFS);
2914 			cur = cur + iosize;
2915 			pg_offset += iosize;
2916 			continue;
2917 		}
2918 		/* the get_extent function already copied into the page */
2919 		if (test_range_bit(tree, cur, cur_end,
2920 				   EXTENT_UPTODATE, 1, NULL)) {
2921 			check_page_uptodate(tree, page);
2922 			if (!parent_locked)
2923 				unlock_extent(tree, cur, cur + iosize - 1);
2924 			cur = cur + iosize;
2925 			pg_offset += iosize;
2926 			continue;
2927 		}
2928 		/* we have an inline extent but it didn't get marked up
2929 		 * to date.  Error out
2930 		 */
2931 		if (block_start == EXTENT_MAP_INLINE) {
2932 			SetPageError(page);
2933 			if (!parent_locked)
2934 				unlock_extent(tree, cur, cur + iosize - 1);
2935 			cur = cur + iosize;
2936 			pg_offset += iosize;
2937 			continue;
2938 		}
2939 
2940 		pnr -= page->index;
2941 		ret = submit_extent_page(rw, tree, page,
2942 					 sector, disk_io_size, pg_offset,
2943 					 bdev, bio, pnr,
2944 					 end_bio_extent_readpage, mirror_num,
2945 					 *bio_flags,
2946 					 this_bio_flag);
2947 		if (!ret) {
2948 			nr++;
2949 			*bio_flags = this_bio_flag;
2950 		} else {
2951 			SetPageError(page);
2952 			if (!parent_locked)
2953 				unlock_extent(tree, cur, cur + iosize - 1);
2954 		}
2955 		cur = cur + iosize;
2956 		pg_offset += iosize;
2957 	}
2958 out:
2959 	if (!nr) {
2960 		if (!PageError(page))
2961 			SetPageUptodate(page);
2962 		unlock_page(page);
2963 	}
2964 	return 0;
2965 }
2966 
2967 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2968 					     struct page *pages[], int nr_pages,
2969 					     u64 start, u64 end,
2970 					     get_extent_t *get_extent,
2971 					     struct extent_map **em_cached,
2972 					     struct bio **bio, int mirror_num,
2973 					     unsigned long *bio_flags, int rw)
2974 {
2975 	struct inode *inode;
2976 	struct btrfs_ordered_extent *ordered;
2977 	int index;
2978 
2979 	inode = pages[0]->mapping->host;
2980 	while (1) {
2981 		lock_extent(tree, start, end);
2982 		ordered = btrfs_lookup_ordered_range(inode, start,
2983 						     end - start + 1);
2984 		if (!ordered)
2985 			break;
2986 		unlock_extent(tree, start, end);
2987 		btrfs_start_ordered_extent(inode, ordered, 1);
2988 		btrfs_put_ordered_extent(ordered);
2989 	}
2990 
2991 	for (index = 0; index < nr_pages; index++) {
2992 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2993 			      mirror_num, bio_flags, rw);
2994 		page_cache_release(pages[index]);
2995 	}
2996 }
2997 
2998 static void __extent_readpages(struct extent_io_tree *tree,
2999 			       struct page *pages[],
3000 			       int nr_pages, get_extent_t *get_extent,
3001 			       struct extent_map **em_cached,
3002 			       struct bio **bio, int mirror_num,
3003 			       unsigned long *bio_flags, int rw)
3004 {
3005 	u64 start = 0;
3006 	u64 end = 0;
3007 	u64 page_start;
3008 	int index;
3009 	int first_index = 0;
3010 
3011 	for (index = 0; index < nr_pages; index++) {
3012 		page_start = page_offset(pages[index]);
3013 		if (!end) {
3014 			start = page_start;
3015 			end = start + PAGE_CACHE_SIZE - 1;
3016 			first_index = index;
3017 		} else if (end + 1 == page_start) {
3018 			end += PAGE_CACHE_SIZE;
3019 		} else {
3020 			__do_contiguous_readpages(tree, &pages[first_index],
3021 						  index - first_index, start,
3022 						  end, get_extent, em_cached,
3023 						  bio, mirror_num, bio_flags,
3024 						  rw);
3025 			start = page_start;
3026 			end = start + PAGE_CACHE_SIZE - 1;
3027 			first_index = index;
3028 		}
3029 	}
3030 
3031 	if (end)
3032 		__do_contiguous_readpages(tree, &pages[first_index],
3033 					  index - first_index, start,
3034 					  end, get_extent, em_cached, bio,
3035 					  mirror_num, bio_flags, rw);
3036 }
3037 
3038 static int __extent_read_full_page(struct extent_io_tree *tree,
3039 				   struct page *page,
3040 				   get_extent_t *get_extent,
3041 				   struct bio **bio, int mirror_num,
3042 				   unsigned long *bio_flags, int rw)
3043 {
3044 	struct inode *inode = page->mapping->host;
3045 	struct btrfs_ordered_extent *ordered;
3046 	u64 start = page_offset(page);
3047 	u64 end = start + PAGE_CACHE_SIZE - 1;
3048 	int ret;
3049 
3050 	while (1) {
3051 		lock_extent(tree, start, end);
3052 		ordered = btrfs_lookup_ordered_extent(inode, start);
3053 		if (!ordered)
3054 			break;
3055 		unlock_extent(tree, start, end);
3056 		btrfs_start_ordered_extent(inode, ordered, 1);
3057 		btrfs_put_ordered_extent(ordered);
3058 	}
3059 
3060 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3061 			    bio_flags, rw);
3062 	return ret;
3063 }
3064 
3065 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3066 			    get_extent_t *get_extent, int mirror_num)
3067 {
3068 	struct bio *bio = NULL;
3069 	unsigned long bio_flags = 0;
3070 	int ret;
3071 
3072 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3073 				      &bio_flags, READ);
3074 	if (bio)
3075 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3076 	return ret;
3077 }
3078 
3079 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3080 				 get_extent_t *get_extent, int mirror_num)
3081 {
3082 	struct bio *bio = NULL;
3083 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3084 	int ret;
3085 
3086 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3087 				      &bio_flags, READ);
3088 	if (bio)
3089 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3090 	return ret;
3091 }
3092 
3093 static noinline void update_nr_written(struct page *page,
3094 				      struct writeback_control *wbc,
3095 				      unsigned long nr_written)
3096 {
3097 	wbc->nr_to_write -= nr_written;
3098 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3099 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3100 		page->mapping->writeback_index = page->index + nr_written;
3101 }
3102 
3103 /*
3104  * helper for __extent_writepage, doing all of the delayed allocation setup.
3105  *
3106  * This returns 1 if our fill_delalloc function did all the work required
3107  * to write the page (copy into inline extent).  In this case the IO has
3108  * been started and the page is already unlocked.
3109  *
3110  * This returns 0 if all went well (page still locked)
3111  * This returns < 0 if there were errors (page still locked)
3112  */
3113 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3114 			      struct page *page, struct writeback_control *wbc,
3115 			      struct extent_page_data *epd,
3116 			      u64 delalloc_start,
3117 			      unsigned long *nr_written)
3118 {
3119 	struct extent_io_tree *tree = epd->tree;
3120 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3121 	u64 nr_delalloc;
3122 	u64 delalloc_to_write = 0;
3123 	u64 delalloc_end = 0;
3124 	int ret;
3125 	int page_started = 0;
3126 
3127 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3128 		return 0;
3129 
3130 	while (delalloc_end < page_end) {
3131 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3132 					       page,
3133 					       &delalloc_start,
3134 					       &delalloc_end,
3135 					       128 * 1024 * 1024);
3136 		if (nr_delalloc == 0) {
3137 			delalloc_start = delalloc_end + 1;
3138 			continue;
3139 		}
3140 		ret = tree->ops->fill_delalloc(inode, page,
3141 					       delalloc_start,
3142 					       delalloc_end,
3143 					       &page_started,
3144 					       nr_written);
3145 		/* File system has been set read-only */
3146 		if (ret) {
3147 			SetPageError(page);
3148 			/* fill_delalloc should be return < 0 for error
3149 			 * but just in case, we use > 0 here meaning the
3150 			 * IO is started, so we don't want to return > 0
3151 			 * unless things are going well.
3152 			 */
3153 			ret = ret < 0 ? ret : -EIO;
3154 			goto done;
3155 		}
3156 		/*
3157 		 * delalloc_end is already one less than the total
3158 		 * length, so we don't subtract one from
3159 		 * PAGE_CACHE_SIZE
3160 		 */
3161 		delalloc_to_write += (delalloc_end - delalloc_start +
3162 				      PAGE_CACHE_SIZE) >>
3163 				      PAGE_CACHE_SHIFT;
3164 		delalloc_start = delalloc_end + 1;
3165 	}
3166 	if (wbc->nr_to_write < delalloc_to_write) {
3167 		int thresh = 8192;
3168 
3169 		if (delalloc_to_write < thresh * 2)
3170 			thresh = delalloc_to_write;
3171 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3172 					 thresh);
3173 	}
3174 
3175 	/* did the fill delalloc function already unlock and start
3176 	 * the IO?
3177 	 */
3178 	if (page_started) {
3179 		/*
3180 		 * we've unlocked the page, so we can't update
3181 		 * the mapping's writeback index, just update
3182 		 * nr_to_write.
3183 		 */
3184 		wbc->nr_to_write -= *nr_written;
3185 		return 1;
3186 	}
3187 
3188 	ret = 0;
3189 
3190 done:
3191 	return ret;
3192 }
3193 
3194 /*
3195  * helper for __extent_writepage.  This calls the writepage start hooks,
3196  * and does the loop to map the page into extents and bios.
3197  *
3198  * We return 1 if the IO is started and the page is unlocked,
3199  * 0 if all went well (page still locked)
3200  * < 0 if there were errors (page still locked)
3201  */
3202 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3203 				 struct page *page,
3204 				 struct writeback_control *wbc,
3205 				 struct extent_page_data *epd,
3206 				 loff_t i_size,
3207 				 unsigned long nr_written,
3208 				 int write_flags, int *nr_ret)
3209 {
3210 	struct extent_io_tree *tree = epd->tree;
3211 	u64 start = page_offset(page);
3212 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3213 	u64 end;
3214 	u64 cur = start;
3215 	u64 extent_offset;
3216 	u64 block_start;
3217 	u64 iosize;
3218 	sector_t sector;
3219 	struct extent_state *cached_state = NULL;
3220 	struct extent_map *em;
3221 	struct block_device *bdev;
3222 	size_t pg_offset = 0;
3223 	size_t blocksize;
3224 	int ret = 0;
3225 	int nr = 0;
3226 	bool compressed;
3227 
3228 	if (tree->ops && tree->ops->writepage_start_hook) {
3229 		ret = tree->ops->writepage_start_hook(page, start,
3230 						      page_end);
3231 		if (ret) {
3232 			/* Fixup worker will requeue */
3233 			if (ret == -EBUSY)
3234 				wbc->pages_skipped++;
3235 			else
3236 				redirty_page_for_writepage(wbc, page);
3237 
3238 			update_nr_written(page, wbc, nr_written);
3239 			unlock_page(page);
3240 			ret = 1;
3241 			goto done_unlocked;
3242 		}
3243 	}
3244 
3245 	/*
3246 	 * we don't want to touch the inode after unlocking the page,
3247 	 * so we update the mapping writeback index now
3248 	 */
3249 	update_nr_written(page, wbc, nr_written + 1);
3250 
3251 	end = page_end;
3252 	if (i_size <= start) {
3253 		if (tree->ops && tree->ops->writepage_end_io_hook)
3254 			tree->ops->writepage_end_io_hook(page, start,
3255 							 page_end, NULL, 1);
3256 		goto done;
3257 	}
3258 
3259 	blocksize = inode->i_sb->s_blocksize;
3260 
3261 	while (cur <= end) {
3262 		u64 em_end;
3263 		if (cur >= i_size) {
3264 			if (tree->ops && tree->ops->writepage_end_io_hook)
3265 				tree->ops->writepage_end_io_hook(page, cur,
3266 							 page_end, NULL, 1);
3267 			break;
3268 		}
3269 		em = epd->get_extent(inode, page, pg_offset, cur,
3270 				     end - cur + 1, 1);
3271 		if (IS_ERR_OR_NULL(em)) {
3272 			SetPageError(page);
3273 			ret = PTR_ERR_OR_ZERO(em);
3274 			break;
3275 		}
3276 
3277 		extent_offset = cur - em->start;
3278 		em_end = extent_map_end(em);
3279 		BUG_ON(em_end <= cur);
3280 		BUG_ON(end < cur);
3281 		iosize = min(em_end - cur, end - cur + 1);
3282 		iosize = ALIGN(iosize, blocksize);
3283 		sector = (em->block_start + extent_offset) >> 9;
3284 		bdev = em->bdev;
3285 		block_start = em->block_start;
3286 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3287 		free_extent_map(em);
3288 		em = NULL;
3289 
3290 		/*
3291 		 * compressed and inline extents are written through other
3292 		 * paths in the FS
3293 		 */
3294 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3295 		    block_start == EXTENT_MAP_INLINE) {
3296 			/*
3297 			 * end_io notification does not happen here for
3298 			 * compressed extents
3299 			 */
3300 			if (!compressed && tree->ops &&
3301 			    tree->ops->writepage_end_io_hook)
3302 				tree->ops->writepage_end_io_hook(page, cur,
3303 							 cur + iosize - 1,
3304 							 NULL, 1);
3305 			else if (compressed) {
3306 				/* we don't want to end_page_writeback on
3307 				 * a compressed extent.  this happens
3308 				 * elsewhere
3309 				 */
3310 				nr++;
3311 			}
3312 
3313 			cur += iosize;
3314 			pg_offset += iosize;
3315 			continue;
3316 		}
3317 
3318 		if (tree->ops && tree->ops->writepage_io_hook) {
3319 			ret = tree->ops->writepage_io_hook(page, cur,
3320 						cur + iosize - 1);
3321 		} else {
3322 			ret = 0;
3323 		}
3324 		if (ret) {
3325 			SetPageError(page);
3326 		} else {
3327 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3328 
3329 			set_range_writeback(tree, cur, cur + iosize - 1);
3330 			if (!PageWriteback(page)) {
3331 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3332 					   "page %lu not writeback, cur %llu end %llu",
3333 				       page->index, cur, end);
3334 			}
3335 
3336 			ret = submit_extent_page(write_flags, tree, page,
3337 						 sector, iosize, pg_offset,
3338 						 bdev, &epd->bio, max_nr,
3339 						 end_bio_extent_writepage,
3340 						 0, 0, 0);
3341 			if (ret)
3342 				SetPageError(page);
3343 		}
3344 		cur = cur + iosize;
3345 		pg_offset += iosize;
3346 		nr++;
3347 	}
3348 done:
3349 	*nr_ret = nr;
3350 
3351 done_unlocked:
3352 
3353 	/* drop our reference on any cached states */
3354 	free_extent_state(cached_state);
3355 	return ret;
3356 }
3357 
3358 /*
3359  * the writepage semantics are similar to regular writepage.  extent
3360  * records are inserted to lock ranges in the tree, and as dirty areas
3361  * are found, they are marked writeback.  Then the lock bits are removed
3362  * and the end_io handler clears the writeback ranges
3363  */
3364 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3365 			      void *data)
3366 {
3367 	struct inode *inode = page->mapping->host;
3368 	struct extent_page_data *epd = data;
3369 	u64 start = page_offset(page);
3370 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3371 	int ret;
3372 	int nr = 0;
3373 	size_t pg_offset = 0;
3374 	loff_t i_size = i_size_read(inode);
3375 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3376 	int write_flags;
3377 	unsigned long nr_written = 0;
3378 
3379 	if (wbc->sync_mode == WB_SYNC_ALL)
3380 		write_flags = WRITE_SYNC;
3381 	else
3382 		write_flags = WRITE;
3383 
3384 	trace___extent_writepage(page, inode, wbc);
3385 
3386 	WARN_ON(!PageLocked(page));
3387 
3388 	ClearPageError(page);
3389 
3390 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3391 	if (page->index > end_index ||
3392 	   (page->index == end_index && !pg_offset)) {
3393 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3394 		unlock_page(page);
3395 		return 0;
3396 	}
3397 
3398 	if (page->index == end_index) {
3399 		char *userpage;
3400 
3401 		userpage = kmap_atomic(page);
3402 		memset(userpage + pg_offset, 0,
3403 		       PAGE_CACHE_SIZE - pg_offset);
3404 		kunmap_atomic(userpage);
3405 		flush_dcache_page(page);
3406 	}
3407 
3408 	pg_offset = 0;
3409 
3410 	set_page_extent_mapped(page);
3411 
3412 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3413 	if (ret == 1)
3414 		goto done_unlocked;
3415 	if (ret)
3416 		goto done;
3417 
3418 	ret = __extent_writepage_io(inode, page, wbc, epd,
3419 				    i_size, nr_written, write_flags, &nr);
3420 	if (ret == 1)
3421 		goto done_unlocked;
3422 
3423 done:
3424 	if (nr == 0) {
3425 		/* make sure the mapping tag for page dirty gets cleared */
3426 		set_page_writeback(page);
3427 		end_page_writeback(page);
3428 	}
3429 	if (PageError(page)) {
3430 		ret = ret < 0 ? ret : -EIO;
3431 		end_extent_writepage(page, ret, start, page_end);
3432 	}
3433 	unlock_page(page);
3434 	return ret;
3435 
3436 done_unlocked:
3437 	return 0;
3438 }
3439 
3440 static int eb_wait(void *word)
3441 {
3442 	io_schedule();
3443 	return 0;
3444 }
3445 
3446 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3447 {
3448 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3449 		    TASK_UNINTERRUPTIBLE);
3450 }
3451 
3452 static noinline_for_stack int
3453 lock_extent_buffer_for_io(struct extent_buffer *eb,
3454 			  struct btrfs_fs_info *fs_info,
3455 			  struct extent_page_data *epd)
3456 {
3457 	unsigned long i, num_pages;
3458 	int flush = 0;
3459 	int ret = 0;
3460 
3461 	if (!btrfs_try_tree_write_lock(eb)) {
3462 		flush = 1;
3463 		flush_write_bio(epd);
3464 		btrfs_tree_lock(eb);
3465 	}
3466 
3467 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3468 		btrfs_tree_unlock(eb);
3469 		if (!epd->sync_io)
3470 			return 0;
3471 		if (!flush) {
3472 			flush_write_bio(epd);
3473 			flush = 1;
3474 		}
3475 		while (1) {
3476 			wait_on_extent_buffer_writeback(eb);
3477 			btrfs_tree_lock(eb);
3478 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3479 				break;
3480 			btrfs_tree_unlock(eb);
3481 		}
3482 	}
3483 
3484 	/*
3485 	 * We need to do this to prevent races in people who check if the eb is
3486 	 * under IO since we can end up having no IO bits set for a short period
3487 	 * of time.
3488 	 */
3489 	spin_lock(&eb->refs_lock);
3490 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3491 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3492 		spin_unlock(&eb->refs_lock);
3493 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3494 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3495 				     -eb->len,
3496 				     fs_info->dirty_metadata_batch);
3497 		ret = 1;
3498 	} else {
3499 		spin_unlock(&eb->refs_lock);
3500 	}
3501 
3502 	btrfs_tree_unlock(eb);
3503 
3504 	if (!ret)
3505 		return ret;
3506 
3507 	num_pages = num_extent_pages(eb->start, eb->len);
3508 	for (i = 0; i < num_pages; i++) {
3509 		struct page *p = extent_buffer_page(eb, i);
3510 
3511 		if (!trylock_page(p)) {
3512 			if (!flush) {
3513 				flush_write_bio(epd);
3514 				flush = 1;
3515 			}
3516 			lock_page(p);
3517 		}
3518 	}
3519 
3520 	return ret;
3521 }
3522 
3523 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3524 {
3525 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3526 	smp_mb__after_atomic();
3527 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3528 }
3529 
3530 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3531 {
3532 	struct bio_vec *bvec;
3533 	struct extent_buffer *eb;
3534 	int i, done;
3535 
3536 	bio_for_each_segment_all(bvec, bio, i) {
3537 		struct page *page = bvec->bv_page;
3538 
3539 		eb = (struct extent_buffer *)page->private;
3540 		BUG_ON(!eb);
3541 		done = atomic_dec_and_test(&eb->io_pages);
3542 
3543 		if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3544 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3545 			ClearPageUptodate(page);
3546 			SetPageError(page);
3547 		}
3548 
3549 		end_page_writeback(page);
3550 
3551 		if (!done)
3552 			continue;
3553 
3554 		end_extent_buffer_writeback(eb);
3555 	}
3556 
3557 	bio_put(bio);
3558 }
3559 
3560 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3561 			struct btrfs_fs_info *fs_info,
3562 			struct writeback_control *wbc,
3563 			struct extent_page_data *epd)
3564 {
3565 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3566 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3567 	u64 offset = eb->start;
3568 	unsigned long i, num_pages;
3569 	unsigned long bio_flags = 0;
3570 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3571 	int ret = 0;
3572 
3573 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3574 	num_pages = num_extent_pages(eb->start, eb->len);
3575 	atomic_set(&eb->io_pages, num_pages);
3576 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3577 		bio_flags = EXTENT_BIO_TREE_LOG;
3578 
3579 	for (i = 0; i < num_pages; i++) {
3580 		struct page *p = extent_buffer_page(eb, i);
3581 
3582 		clear_page_dirty_for_io(p);
3583 		set_page_writeback(p);
3584 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3585 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3586 					 -1, end_bio_extent_buffer_writepage,
3587 					 0, epd->bio_flags, bio_flags);
3588 		epd->bio_flags = bio_flags;
3589 		if (ret) {
3590 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3591 			SetPageError(p);
3592 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3593 				end_extent_buffer_writeback(eb);
3594 			ret = -EIO;
3595 			break;
3596 		}
3597 		offset += PAGE_CACHE_SIZE;
3598 		update_nr_written(p, wbc, 1);
3599 		unlock_page(p);
3600 	}
3601 
3602 	if (unlikely(ret)) {
3603 		for (; i < num_pages; i++) {
3604 			struct page *p = extent_buffer_page(eb, i);
3605 			unlock_page(p);
3606 		}
3607 	}
3608 
3609 	return ret;
3610 }
3611 
3612 int btree_write_cache_pages(struct address_space *mapping,
3613 				   struct writeback_control *wbc)
3614 {
3615 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3616 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3617 	struct extent_buffer *eb, *prev_eb = NULL;
3618 	struct extent_page_data epd = {
3619 		.bio = NULL,
3620 		.tree = tree,
3621 		.extent_locked = 0,
3622 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3623 		.bio_flags = 0,
3624 	};
3625 	int ret = 0;
3626 	int done = 0;
3627 	int nr_to_write_done = 0;
3628 	struct pagevec pvec;
3629 	int nr_pages;
3630 	pgoff_t index;
3631 	pgoff_t end;		/* Inclusive */
3632 	int scanned = 0;
3633 	int tag;
3634 
3635 	pagevec_init(&pvec, 0);
3636 	if (wbc->range_cyclic) {
3637 		index = mapping->writeback_index; /* Start from prev offset */
3638 		end = -1;
3639 	} else {
3640 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3641 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3642 		scanned = 1;
3643 	}
3644 	if (wbc->sync_mode == WB_SYNC_ALL)
3645 		tag = PAGECACHE_TAG_TOWRITE;
3646 	else
3647 		tag = PAGECACHE_TAG_DIRTY;
3648 retry:
3649 	if (wbc->sync_mode == WB_SYNC_ALL)
3650 		tag_pages_for_writeback(mapping, index, end);
3651 	while (!done && !nr_to_write_done && (index <= end) &&
3652 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3653 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3654 		unsigned i;
3655 
3656 		scanned = 1;
3657 		for (i = 0; i < nr_pages; i++) {
3658 			struct page *page = pvec.pages[i];
3659 
3660 			if (!PagePrivate(page))
3661 				continue;
3662 
3663 			if (!wbc->range_cyclic && page->index > end) {
3664 				done = 1;
3665 				break;
3666 			}
3667 
3668 			spin_lock(&mapping->private_lock);
3669 			if (!PagePrivate(page)) {
3670 				spin_unlock(&mapping->private_lock);
3671 				continue;
3672 			}
3673 
3674 			eb = (struct extent_buffer *)page->private;
3675 
3676 			/*
3677 			 * Shouldn't happen and normally this would be a BUG_ON
3678 			 * but no sense in crashing the users box for something
3679 			 * we can survive anyway.
3680 			 */
3681 			if (WARN_ON(!eb)) {
3682 				spin_unlock(&mapping->private_lock);
3683 				continue;
3684 			}
3685 
3686 			if (eb == prev_eb) {
3687 				spin_unlock(&mapping->private_lock);
3688 				continue;
3689 			}
3690 
3691 			ret = atomic_inc_not_zero(&eb->refs);
3692 			spin_unlock(&mapping->private_lock);
3693 			if (!ret)
3694 				continue;
3695 
3696 			prev_eb = eb;
3697 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3698 			if (!ret) {
3699 				free_extent_buffer(eb);
3700 				continue;
3701 			}
3702 
3703 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3704 			if (ret) {
3705 				done = 1;
3706 				free_extent_buffer(eb);
3707 				break;
3708 			}
3709 			free_extent_buffer(eb);
3710 
3711 			/*
3712 			 * the filesystem may choose to bump up nr_to_write.
3713 			 * We have to make sure to honor the new nr_to_write
3714 			 * at any time
3715 			 */
3716 			nr_to_write_done = wbc->nr_to_write <= 0;
3717 		}
3718 		pagevec_release(&pvec);
3719 		cond_resched();
3720 	}
3721 	if (!scanned && !done) {
3722 		/*
3723 		 * We hit the last page and there is more work to be done: wrap
3724 		 * back to the start of the file
3725 		 */
3726 		scanned = 1;
3727 		index = 0;
3728 		goto retry;
3729 	}
3730 	flush_write_bio(&epd);
3731 	return ret;
3732 }
3733 
3734 /**
3735  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3736  * @mapping: address space structure to write
3737  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3738  * @writepage: function called for each page
3739  * @data: data passed to writepage function
3740  *
3741  * If a page is already under I/O, write_cache_pages() skips it, even
3742  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3743  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3744  * and msync() need to guarantee that all the data which was dirty at the time
3745  * the call was made get new I/O started against them.  If wbc->sync_mode is
3746  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3747  * existing IO to complete.
3748  */
3749 static int extent_write_cache_pages(struct extent_io_tree *tree,
3750 			     struct address_space *mapping,
3751 			     struct writeback_control *wbc,
3752 			     writepage_t writepage, void *data,
3753 			     void (*flush_fn)(void *))
3754 {
3755 	struct inode *inode = mapping->host;
3756 	int ret = 0;
3757 	int done = 0;
3758 	int err = 0;
3759 	int nr_to_write_done = 0;
3760 	struct pagevec pvec;
3761 	int nr_pages;
3762 	pgoff_t index;
3763 	pgoff_t end;		/* Inclusive */
3764 	int scanned = 0;
3765 	int tag;
3766 
3767 	/*
3768 	 * We have to hold onto the inode so that ordered extents can do their
3769 	 * work when the IO finishes.  The alternative to this is failing to add
3770 	 * an ordered extent if the igrab() fails there and that is a huge pain
3771 	 * to deal with, so instead just hold onto the inode throughout the
3772 	 * writepages operation.  If it fails here we are freeing up the inode
3773 	 * anyway and we'd rather not waste our time writing out stuff that is
3774 	 * going to be truncated anyway.
3775 	 */
3776 	if (!igrab(inode))
3777 		return 0;
3778 
3779 	pagevec_init(&pvec, 0);
3780 	if (wbc->range_cyclic) {
3781 		index = mapping->writeback_index; /* Start from prev offset */
3782 		end = -1;
3783 	} else {
3784 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3785 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3786 		scanned = 1;
3787 	}
3788 	if (wbc->sync_mode == WB_SYNC_ALL)
3789 		tag = PAGECACHE_TAG_TOWRITE;
3790 	else
3791 		tag = PAGECACHE_TAG_DIRTY;
3792 retry:
3793 	if (wbc->sync_mode == WB_SYNC_ALL)
3794 		tag_pages_for_writeback(mapping, index, end);
3795 	while (!done && !nr_to_write_done && (index <= end) &&
3796 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3797 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3798 		unsigned i;
3799 
3800 		scanned = 1;
3801 		for (i = 0; i < nr_pages; i++) {
3802 			struct page *page = pvec.pages[i];
3803 
3804 			/*
3805 			 * At this point we hold neither mapping->tree_lock nor
3806 			 * lock on the page itself: the page may be truncated or
3807 			 * invalidated (changing page->mapping to NULL), or even
3808 			 * swizzled back from swapper_space to tmpfs file
3809 			 * mapping
3810 			 */
3811 			if (!trylock_page(page)) {
3812 				flush_fn(data);
3813 				lock_page(page);
3814 			}
3815 
3816 			if (unlikely(page->mapping != mapping)) {
3817 				unlock_page(page);
3818 				continue;
3819 			}
3820 
3821 			if (!wbc->range_cyclic && page->index > end) {
3822 				done = 1;
3823 				unlock_page(page);
3824 				continue;
3825 			}
3826 
3827 			if (wbc->sync_mode != WB_SYNC_NONE) {
3828 				if (PageWriteback(page))
3829 					flush_fn(data);
3830 				wait_on_page_writeback(page);
3831 			}
3832 
3833 			if (PageWriteback(page) ||
3834 			    !clear_page_dirty_for_io(page)) {
3835 				unlock_page(page);
3836 				continue;
3837 			}
3838 
3839 			ret = (*writepage)(page, wbc, data);
3840 
3841 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3842 				unlock_page(page);
3843 				ret = 0;
3844 			}
3845 			if (!err && ret < 0)
3846 				err = ret;
3847 
3848 			/*
3849 			 * the filesystem may choose to bump up nr_to_write.
3850 			 * We have to make sure to honor the new nr_to_write
3851 			 * at any time
3852 			 */
3853 			nr_to_write_done = wbc->nr_to_write <= 0;
3854 		}
3855 		pagevec_release(&pvec);
3856 		cond_resched();
3857 	}
3858 	if (!scanned && !done && !err) {
3859 		/*
3860 		 * We hit the last page and there is more work to be done: wrap
3861 		 * back to the start of the file
3862 		 */
3863 		scanned = 1;
3864 		index = 0;
3865 		goto retry;
3866 	}
3867 	btrfs_add_delayed_iput(inode);
3868 	return err;
3869 }
3870 
3871 static void flush_epd_write_bio(struct extent_page_data *epd)
3872 {
3873 	if (epd->bio) {
3874 		int rw = WRITE;
3875 		int ret;
3876 
3877 		if (epd->sync_io)
3878 			rw = WRITE_SYNC;
3879 
3880 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3881 		BUG_ON(ret < 0); /* -ENOMEM */
3882 		epd->bio = NULL;
3883 	}
3884 }
3885 
3886 static noinline void flush_write_bio(void *data)
3887 {
3888 	struct extent_page_data *epd = data;
3889 	flush_epd_write_bio(epd);
3890 }
3891 
3892 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3893 			  get_extent_t *get_extent,
3894 			  struct writeback_control *wbc)
3895 {
3896 	int ret;
3897 	struct extent_page_data epd = {
3898 		.bio = NULL,
3899 		.tree = tree,
3900 		.get_extent = get_extent,
3901 		.extent_locked = 0,
3902 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3903 		.bio_flags = 0,
3904 	};
3905 
3906 	ret = __extent_writepage(page, wbc, &epd);
3907 
3908 	flush_epd_write_bio(&epd);
3909 	return ret;
3910 }
3911 
3912 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3913 			      u64 start, u64 end, get_extent_t *get_extent,
3914 			      int mode)
3915 {
3916 	int ret = 0;
3917 	struct address_space *mapping = inode->i_mapping;
3918 	struct page *page;
3919 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3920 		PAGE_CACHE_SHIFT;
3921 
3922 	struct extent_page_data epd = {
3923 		.bio = NULL,
3924 		.tree = tree,
3925 		.get_extent = get_extent,
3926 		.extent_locked = 1,
3927 		.sync_io = mode == WB_SYNC_ALL,
3928 		.bio_flags = 0,
3929 	};
3930 	struct writeback_control wbc_writepages = {
3931 		.sync_mode	= mode,
3932 		.nr_to_write	= nr_pages * 2,
3933 		.range_start	= start,
3934 		.range_end	= end + 1,
3935 	};
3936 
3937 	while (start <= end) {
3938 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3939 		if (clear_page_dirty_for_io(page))
3940 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3941 		else {
3942 			if (tree->ops && tree->ops->writepage_end_io_hook)
3943 				tree->ops->writepage_end_io_hook(page, start,
3944 						 start + PAGE_CACHE_SIZE - 1,
3945 						 NULL, 1);
3946 			unlock_page(page);
3947 		}
3948 		page_cache_release(page);
3949 		start += PAGE_CACHE_SIZE;
3950 	}
3951 
3952 	flush_epd_write_bio(&epd);
3953 	return ret;
3954 }
3955 
3956 int extent_writepages(struct extent_io_tree *tree,
3957 		      struct address_space *mapping,
3958 		      get_extent_t *get_extent,
3959 		      struct writeback_control *wbc)
3960 {
3961 	int ret = 0;
3962 	struct extent_page_data epd = {
3963 		.bio = NULL,
3964 		.tree = tree,
3965 		.get_extent = get_extent,
3966 		.extent_locked = 0,
3967 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3968 		.bio_flags = 0,
3969 	};
3970 
3971 	ret = extent_write_cache_pages(tree, mapping, wbc,
3972 				       __extent_writepage, &epd,
3973 				       flush_write_bio);
3974 	flush_epd_write_bio(&epd);
3975 	return ret;
3976 }
3977 
3978 int extent_readpages(struct extent_io_tree *tree,
3979 		     struct address_space *mapping,
3980 		     struct list_head *pages, unsigned nr_pages,
3981 		     get_extent_t get_extent)
3982 {
3983 	struct bio *bio = NULL;
3984 	unsigned page_idx;
3985 	unsigned long bio_flags = 0;
3986 	struct page *pagepool[16];
3987 	struct page *page;
3988 	struct extent_map *em_cached = NULL;
3989 	int nr = 0;
3990 
3991 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3992 		page = list_entry(pages->prev, struct page, lru);
3993 
3994 		prefetchw(&page->flags);
3995 		list_del(&page->lru);
3996 		if (add_to_page_cache_lru(page, mapping,
3997 					page->index, GFP_NOFS)) {
3998 			page_cache_release(page);
3999 			continue;
4000 		}
4001 
4002 		pagepool[nr++] = page;
4003 		if (nr < ARRAY_SIZE(pagepool))
4004 			continue;
4005 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4006 				   &bio, 0, &bio_flags, READ);
4007 		nr = 0;
4008 	}
4009 	if (nr)
4010 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4011 				   &bio, 0, &bio_flags, READ);
4012 
4013 	if (em_cached)
4014 		free_extent_map(em_cached);
4015 
4016 	BUG_ON(!list_empty(pages));
4017 	if (bio)
4018 		return submit_one_bio(READ, bio, 0, bio_flags);
4019 	return 0;
4020 }
4021 
4022 /*
4023  * basic invalidatepage code, this waits on any locked or writeback
4024  * ranges corresponding to the page, and then deletes any extent state
4025  * records from the tree
4026  */
4027 int extent_invalidatepage(struct extent_io_tree *tree,
4028 			  struct page *page, unsigned long offset)
4029 {
4030 	struct extent_state *cached_state = NULL;
4031 	u64 start = page_offset(page);
4032 	u64 end = start + PAGE_CACHE_SIZE - 1;
4033 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4034 
4035 	start += ALIGN(offset, blocksize);
4036 	if (start > end)
4037 		return 0;
4038 
4039 	lock_extent_bits(tree, start, end, 0, &cached_state);
4040 	wait_on_page_writeback(page);
4041 	clear_extent_bit(tree, start, end,
4042 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4043 			 EXTENT_DO_ACCOUNTING,
4044 			 1, 1, &cached_state, GFP_NOFS);
4045 	return 0;
4046 }
4047 
4048 /*
4049  * a helper for releasepage, this tests for areas of the page that
4050  * are locked or under IO and drops the related state bits if it is safe
4051  * to drop the page.
4052  */
4053 static int try_release_extent_state(struct extent_map_tree *map,
4054 				    struct extent_io_tree *tree,
4055 				    struct page *page, gfp_t mask)
4056 {
4057 	u64 start = page_offset(page);
4058 	u64 end = start + PAGE_CACHE_SIZE - 1;
4059 	int ret = 1;
4060 
4061 	if (test_range_bit(tree, start, end,
4062 			   EXTENT_IOBITS, 0, NULL))
4063 		ret = 0;
4064 	else {
4065 		if ((mask & GFP_NOFS) == GFP_NOFS)
4066 			mask = GFP_NOFS;
4067 		/*
4068 		 * at this point we can safely clear everything except the
4069 		 * locked bit and the nodatasum bit
4070 		 */
4071 		ret = clear_extent_bit(tree, start, end,
4072 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4073 				 0, 0, NULL, mask);
4074 
4075 		/* if clear_extent_bit failed for enomem reasons,
4076 		 * we can't allow the release to continue.
4077 		 */
4078 		if (ret < 0)
4079 			ret = 0;
4080 		else
4081 			ret = 1;
4082 	}
4083 	return ret;
4084 }
4085 
4086 /*
4087  * a helper for releasepage.  As long as there are no locked extents
4088  * in the range corresponding to the page, both state records and extent
4089  * map records are removed
4090  */
4091 int try_release_extent_mapping(struct extent_map_tree *map,
4092 			       struct extent_io_tree *tree, struct page *page,
4093 			       gfp_t mask)
4094 {
4095 	struct extent_map *em;
4096 	u64 start = page_offset(page);
4097 	u64 end = start + PAGE_CACHE_SIZE - 1;
4098 
4099 	if ((mask & __GFP_WAIT) &&
4100 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4101 		u64 len;
4102 		while (start <= end) {
4103 			len = end - start + 1;
4104 			write_lock(&map->lock);
4105 			em = lookup_extent_mapping(map, start, len);
4106 			if (!em) {
4107 				write_unlock(&map->lock);
4108 				break;
4109 			}
4110 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4111 			    em->start != start) {
4112 				write_unlock(&map->lock);
4113 				free_extent_map(em);
4114 				break;
4115 			}
4116 			if (!test_range_bit(tree, em->start,
4117 					    extent_map_end(em) - 1,
4118 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4119 					    0, NULL)) {
4120 				remove_extent_mapping(map, em);
4121 				/* once for the rb tree */
4122 				free_extent_map(em);
4123 			}
4124 			start = extent_map_end(em);
4125 			write_unlock(&map->lock);
4126 
4127 			/* once for us */
4128 			free_extent_map(em);
4129 		}
4130 	}
4131 	return try_release_extent_state(map, tree, page, mask);
4132 }
4133 
4134 /*
4135  * helper function for fiemap, which doesn't want to see any holes.
4136  * This maps until we find something past 'last'
4137  */
4138 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4139 						u64 offset,
4140 						u64 last,
4141 						get_extent_t *get_extent)
4142 {
4143 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4144 	struct extent_map *em;
4145 	u64 len;
4146 
4147 	if (offset >= last)
4148 		return NULL;
4149 
4150 	while (1) {
4151 		len = last - offset;
4152 		if (len == 0)
4153 			break;
4154 		len = ALIGN(len, sectorsize);
4155 		em = get_extent(inode, NULL, 0, offset, len, 0);
4156 		if (IS_ERR_OR_NULL(em))
4157 			return em;
4158 
4159 		/* if this isn't a hole return it */
4160 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4161 		    em->block_start != EXTENT_MAP_HOLE) {
4162 			return em;
4163 		}
4164 
4165 		/* this is a hole, advance to the next extent */
4166 		offset = extent_map_end(em);
4167 		free_extent_map(em);
4168 		if (offset >= last)
4169 			break;
4170 	}
4171 	return NULL;
4172 }
4173 
4174 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4175 {
4176 	unsigned long cnt = *((unsigned long *)ctx);
4177 
4178 	cnt++;
4179 	*((unsigned long *)ctx) = cnt;
4180 
4181 	/* Now we're sure that the extent is shared. */
4182 	if (cnt > 1)
4183 		return 1;
4184 	return 0;
4185 }
4186 
4187 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4188 		__u64 start, __u64 len, get_extent_t *get_extent)
4189 {
4190 	int ret = 0;
4191 	u64 off = start;
4192 	u64 max = start + len;
4193 	u32 flags = 0;
4194 	u32 found_type;
4195 	u64 last;
4196 	u64 last_for_get_extent = 0;
4197 	u64 disko = 0;
4198 	u64 isize = i_size_read(inode);
4199 	struct btrfs_key found_key;
4200 	struct extent_map *em = NULL;
4201 	struct extent_state *cached_state = NULL;
4202 	struct btrfs_path *path;
4203 	int end = 0;
4204 	u64 em_start = 0;
4205 	u64 em_len = 0;
4206 	u64 em_end = 0;
4207 
4208 	if (len == 0)
4209 		return -EINVAL;
4210 
4211 	path = btrfs_alloc_path();
4212 	if (!path)
4213 		return -ENOMEM;
4214 	path->leave_spinning = 1;
4215 
4216 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4217 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4218 
4219 	/*
4220 	 * lookup the last file extent.  We're not using i_size here
4221 	 * because there might be preallocation past i_size
4222 	 */
4223 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4224 				       path, btrfs_ino(inode), -1, 0);
4225 	if (ret < 0) {
4226 		btrfs_free_path(path);
4227 		return ret;
4228 	}
4229 	WARN_ON(!ret);
4230 	path->slots[0]--;
4231 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4232 	found_type = btrfs_key_type(&found_key);
4233 
4234 	/* No extents, but there might be delalloc bits */
4235 	if (found_key.objectid != btrfs_ino(inode) ||
4236 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4237 		/* have to trust i_size as the end */
4238 		last = (u64)-1;
4239 		last_for_get_extent = isize;
4240 	} else {
4241 		/*
4242 		 * remember the start of the last extent.  There are a
4243 		 * bunch of different factors that go into the length of the
4244 		 * extent, so its much less complex to remember where it started
4245 		 */
4246 		last = found_key.offset;
4247 		last_for_get_extent = last + 1;
4248 	}
4249 	btrfs_release_path(path);
4250 
4251 	/*
4252 	 * we might have some extents allocated but more delalloc past those
4253 	 * extents.  so, we trust isize unless the start of the last extent is
4254 	 * beyond isize
4255 	 */
4256 	if (last < isize) {
4257 		last = (u64)-1;
4258 		last_for_get_extent = isize;
4259 	}
4260 
4261 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4262 			 &cached_state);
4263 
4264 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4265 				   get_extent);
4266 	if (!em)
4267 		goto out;
4268 	if (IS_ERR(em)) {
4269 		ret = PTR_ERR(em);
4270 		goto out;
4271 	}
4272 
4273 	while (!end) {
4274 		u64 offset_in_extent = 0;
4275 
4276 		/* break if the extent we found is outside the range */
4277 		if (em->start >= max || extent_map_end(em) < off)
4278 			break;
4279 
4280 		/*
4281 		 * get_extent may return an extent that starts before our
4282 		 * requested range.  We have to make sure the ranges
4283 		 * we return to fiemap always move forward and don't
4284 		 * overlap, so adjust the offsets here
4285 		 */
4286 		em_start = max(em->start, off);
4287 
4288 		/*
4289 		 * record the offset from the start of the extent
4290 		 * for adjusting the disk offset below.  Only do this if the
4291 		 * extent isn't compressed since our in ram offset may be past
4292 		 * what we have actually allocated on disk.
4293 		 */
4294 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4295 			offset_in_extent = em_start - em->start;
4296 		em_end = extent_map_end(em);
4297 		em_len = em_end - em_start;
4298 		disko = 0;
4299 		flags = 0;
4300 
4301 		/*
4302 		 * bump off for our next call to get_extent
4303 		 */
4304 		off = extent_map_end(em);
4305 		if (off >= max)
4306 			end = 1;
4307 
4308 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4309 			end = 1;
4310 			flags |= FIEMAP_EXTENT_LAST;
4311 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4312 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4313 				  FIEMAP_EXTENT_NOT_ALIGNED);
4314 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4315 			flags |= (FIEMAP_EXTENT_DELALLOC |
4316 				  FIEMAP_EXTENT_UNKNOWN);
4317 		} else {
4318 			unsigned long ref_cnt = 0;
4319 
4320 			disko = em->block_start + offset_in_extent;
4321 
4322 			/*
4323 			 * As btrfs supports shared space, this information
4324 			 * can be exported to userspace tools via
4325 			 * flag FIEMAP_EXTENT_SHARED.
4326 			 */
4327 			ret = iterate_inodes_from_logical(
4328 					em->block_start,
4329 					BTRFS_I(inode)->root->fs_info,
4330 					path, count_ext_ref, &ref_cnt);
4331 			if (ret < 0 && ret != -ENOENT)
4332 				goto out_free;
4333 
4334 			if (ref_cnt > 1)
4335 				flags |= FIEMAP_EXTENT_SHARED;
4336 		}
4337 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4338 			flags |= FIEMAP_EXTENT_ENCODED;
4339 
4340 		free_extent_map(em);
4341 		em = NULL;
4342 		if ((em_start >= last) || em_len == (u64)-1 ||
4343 		   (last == (u64)-1 && isize <= em_end)) {
4344 			flags |= FIEMAP_EXTENT_LAST;
4345 			end = 1;
4346 		}
4347 
4348 		/* now scan forward to see if this is really the last extent. */
4349 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4350 					   get_extent);
4351 		if (IS_ERR(em)) {
4352 			ret = PTR_ERR(em);
4353 			goto out;
4354 		}
4355 		if (!em) {
4356 			flags |= FIEMAP_EXTENT_LAST;
4357 			end = 1;
4358 		}
4359 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4360 					      em_len, flags);
4361 		if (ret)
4362 			goto out_free;
4363 	}
4364 out_free:
4365 	free_extent_map(em);
4366 out:
4367 	btrfs_free_path(path);
4368 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4369 			     &cached_state, GFP_NOFS);
4370 	return ret;
4371 }
4372 
4373 static void __free_extent_buffer(struct extent_buffer *eb)
4374 {
4375 	btrfs_leak_debug_del(&eb->leak_list);
4376 	kmem_cache_free(extent_buffer_cache, eb);
4377 }
4378 
4379 int extent_buffer_under_io(struct extent_buffer *eb)
4380 {
4381 	return (atomic_read(&eb->io_pages) ||
4382 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4383 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4384 }
4385 
4386 /*
4387  * Helper for releasing extent buffer page.
4388  */
4389 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4390 						unsigned long start_idx)
4391 {
4392 	unsigned long index;
4393 	unsigned long num_pages;
4394 	struct page *page;
4395 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4396 
4397 	BUG_ON(extent_buffer_under_io(eb));
4398 
4399 	num_pages = num_extent_pages(eb->start, eb->len);
4400 	index = start_idx + num_pages;
4401 	if (start_idx >= index)
4402 		return;
4403 
4404 	do {
4405 		index--;
4406 		page = extent_buffer_page(eb, index);
4407 		if (page && mapped) {
4408 			spin_lock(&page->mapping->private_lock);
4409 			/*
4410 			 * We do this since we'll remove the pages after we've
4411 			 * removed the eb from the radix tree, so we could race
4412 			 * and have this page now attached to the new eb.  So
4413 			 * only clear page_private if it's still connected to
4414 			 * this eb.
4415 			 */
4416 			if (PagePrivate(page) &&
4417 			    page->private == (unsigned long)eb) {
4418 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4419 				BUG_ON(PageDirty(page));
4420 				BUG_ON(PageWriteback(page));
4421 				/*
4422 				 * We need to make sure we haven't be attached
4423 				 * to a new eb.
4424 				 */
4425 				ClearPagePrivate(page);
4426 				set_page_private(page, 0);
4427 				/* One for the page private */
4428 				page_cache_release(page);
4429 			}
4430 			spin_unlock(&page->mapping->private_lock);
4431 
4432 		}
4433 		if (page) {
4434 			/* One for when we alloced the page */
4435 			page_cache_release(page);
4436 		}
4437 	} while (index != start_idx);
4438 }
4439 
4440 /*
4441  * Helper for releasing the extent buffer.
4442  */
4443 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4444 {
4445 	btrfs_release_extent_buffer_page(eb, 0);
4446 	__free_extent_buffer(eb);
4447 }
4448 
4449 static struct extent_buffer *
4450 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4451 		      unsigned long len, gfp_t mask)
4452 {
4453 	struct extent_buffer *eb = NULL;
4454 
4455 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4456 	if (eb == NULL)
4457 		return NULL;
4458 	eb->start = start;
4459 	eb->len = len;
4460 	eb->fs_info = fs_info;
4461 	eb->bflags = 0;
4462 	rwlock_init(&eb->lock);
4463 	atomic_set(&eb->write_locks, 0);
4464 	atomic_set(&eb->read_locks, 0);
4465 	atomic_set(&eb->blocking_readers, 0);
4466 	atomic_set(&eb->blocking_writers, 0);
4467 	atomic_set(&eb->spinning_readers, 0);
4468 	atomic_set(&eb->spinning_writers, 0);
4469 	eb->lock_nested = 0;
4470 	init_waitqueue_head(&eb->write_lock_wq);
4471 	init_waitqueue_head(&eb->read_lock_wq);
4472 
4473 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4474 
4475 	spin_lock_init(&eb->refs_lock);
4476 	atomic_set(&eb->refs, 1);
4477 	atomic_set(&eb->io_pages, 0);
4478 
4479 	/*
4480 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4481 	 */
4482 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4483 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4484 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4485 
4486 	return eb;
4487 }
4488 
4489 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4490 {
4491 	unsigned long i;
4492 	struct page *p;
4493 	struct extent_buffer *new;
4494 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4495 
4496 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4497 	if (new == NULL)
4498 		return NULL;
4499 
4500 	for (i = 0; i < num_pages; i++) {
4501 		p = alloc_page(GFP_NOFS);
4502 		if (!p) {
4503 			btrfs_release_extent_buffer(new);
4504 			return NULL;
4505 		}
4506 		attach_extent_buffer_page(new, p);
4507 		WARN_ON(PageDirty(p));
4508 		SetPageUptodate(p);
4509 		new->pages[i] = p;
4510 	}
4511 
4512 	copy_extent_buffer(new, src, 0, 0, src->len);
4513 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4514 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4515 
4516 	return new;
4517 }
4518 
4519 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4520 {
4521 	struct extent_buffer *eb;
4522 	unsigned long num_pages = num_extent_pages(0, len);
4523 	unsigned long i;
4524 
4525 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4526 	if (!eb)
4527 		return NULL;
4528 
4529 	for (i = 0; i < num_pages; i++) {
4530 		eb->pages[i] = alloc_page(GFP_NOFS);
4531 		if (!eb->pages[i])
4532 			goto err;
4533 	}
4534 	set_extent_buffer_uptodate(eb);
4535 	btrfs_set_header_nritems(eb, 0);
4536 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4537 
4538 	return eb;
4539 err:
4540 	for (; i > 0; i--)
4541 		__free_page(eb->pages[i - 1]);
4542 	__free_extent_buffer(eb);
4543 	return NULL;
4544 }
4545 
4546 static void check_buffer_tree_ref(struct extent_buffer *eb)
4547 {
4548 	int refs;
4549 	/* the ref bit is tricky.  We have to make sure it is set
4550 	 * if we have the buffer dirty.   Otherwise the
4551 	 * code to free a buffer can end up dropping a dirty
4552 	 * page
4553 	 *
4554 	 * Once the ref bit is set, it won't go away while the
4555 	 * buffer is dirty or in writeback, and it also won't
4556 	 * go away while we have the reference count on the
4557 	 * eb bumped.
4558 	 *
4559 	 * We can't just set the ref bit without bumping the
4560 	 * ref on the eb because free_extent_buffer might
4561 	 * see the ref bit and try to clear it.  If this happens
4562 	 * free_extent_buffer might end up dropping our original
4563 	 * ref by mistake and freeing the page before we are able
4564 	 * to add one more ref.
4565 	 *
4566 	 * So bump the ref count first, then set the bit.  If someone
4567 	 * beat us to it, drop the ref we added.
4568 	 */
4569 	refs = atomic_read(&eb->refs);
4570 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4571 		return;
4572 
4573 	spin_lock(&eb->refs_lock);
4574 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4575 		atomic_inc(&eb->refs);
4576 	spin_unlock(&eb->refs_lock);
4577 }
4578 
4579 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4580 		struct page *accessed)
4581 {
4582 	unsigned long num_pages, i;
4583 
4584 	check_buffer_tree_ref(eb);
4585 
4586 	num_pages = num_extent_pages(eb->start, eb->len);
4587 	for (i = 0; i < num_pages; i++) {
4588 		struct page *p = extent_buffer_page(eb, i);
4589 		if (p != accessed)
4590 			mark_page_accessed(p);
4591 	}
4592 }
4593 
4594 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4595 					 u64 start)
4596 {
4597 	struct extent_buffer *eb;
4598 
4599 	rcu_read_lock();
4600 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4601 			       start >> PAGE_CACHE_SHIFT);
4602 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4603 		rcu_read_unlock();
4604 		mark_extent_buffer_accessed(eb, NULL);
4605 		return eb;
4606 	}
4607 	rcu_read_unlock();
4608 
4609 	return NULL;
4610 }
4611 
4612 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4613 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4614 					       u64 start, unsigned long len)
4615 {
4616 	struct extent_buffer *eb, *exists = NULL;
4617 	int ret;
4618 
4619 	eb = find_extent_buffer(fs_info, start);
4620 	if (eb)
4621 		return eb;
4622 	eb = alloc_dummy_extent_buffer(start, len);
4623 	if (!eb)
4624 		return NULL;
4625 	eb->fs_info = fs_info;
4626 again:
4627 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4628 	if (ret)
4629 		goto free_eb;
4630 	spin_lock(&fs_info->buffer_lock);
4631 	ret = radix_tree_insert(&fs_info->buffer_radix,
4632 				start >> PAGE_CACHE_SHIFT, eb);
4633 	spin_unlock(&fs_info->buffer_lock);
4634 	radix_tree_preload_end();
4635 	if (ret == -EEXIST) {
4636 		exists = find_extent_buffer(fs_info, start);
4637 		if (exists)
4638 			goto free_eb;
4639 		else
4640 			goto again;
4641 	}
4642 	check_buffer_tree_ref(eb);
4643 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4644 
4645 	/*
4646 	 * We will free dummy extent buffer's if they come into
4647 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4648 	 * want the buffers to stay in memory until we're done with them, so
4649 	 * bump the ref count again.
4650 	 */
4651 	atomic_inc(&eb->refs);
4652 	return eb;
4653 free_eb:
4654 	btrfs_release_extent_buffer(eb);
4655 	return exists;
4656 }
4657 #endif
4658 
4659 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4660 					  u64 start, unsigned long len)
4661 {
4662 	unsigned long num_pages = num_extent_pages(start, len);
4663 	unsigned long i;
4664 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4665 	struct extent_buffer *eb;
4666 	struct extent_buffer *exists = NULL;
4667 	struct page *p;
4668 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4669 	int uptodate = 1;
4670 	int ret;
4671 
4672 	eb = find_extent_buffer(fs_info, start);
4673 	if (eb)
4674 		return eb;
4675 
4676 	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4677 	if (!eb)
4678 		return NULL;
4679 
4680 	for (i = 0; i < num_pages; i++, index++) {
4681 		p = find_or_create_page(mapping, index, GFP_NOFS);
4682 		if (!p)
4683 			goto free_eb;
4684 
4685 		spin_lock(&mapping->private_lock);
4686 		if (PagePrivate(p)) {
4687 			/*
4688 			 * We could have already allocated an eb for this page
4689 			 * and attached one so lets see if we can get a ref on
4690 			 * the existing eb, and if we can we know it's good and
4691 			 * we can just return that one, else we know we can just
4692 			 * overwrite page->private.
4693 			 */
4694 			exists = (struct extent_buffer *)p->private;
4695 			if (atomic_inc_not_zero(&exists->refs)) {
4696 				spin_unlock(&mapping->private_lock);
4697 				unlock_page(p);
4698 				page_cache_release(p);
4699 				mark_extent_buffer_accessed(exists, p);
4700 				goto free_eb;
4701 			}
4702 
4703 			/*
4704 			 * Do this so attach doesn't complain and we need to
4705 			 * drop the ref the old guy had.
4706 			 */
4707 			ClearPagePrivate(p);
4708 			WARN_ON(PageDirty(p));
4709 			page_cache_release(p);
4710 		}
4711 		attach_extent_buffer_page(eb, p);
4712 		spin_unlock(&mapping->private_lock);
4713 		WARN_ON(PageDirty(p));
4714 		eb->pages[i] = p;
4715 		if (!PageUptodate(p))
4716 			uptodate = 0;
4717 
4718 		/*
4719 		 * see below about how we avoid a nasty race with release page
4720 		 * and why we unlock later
4721 		 */
4722 	}
4723 	if (uptodate)
4724 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4725 again:
4726 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4727 	if (ret)
4728 		goto free_eb;
4729 
4730 	spin_lock(&fs_info->buffer_lock);
4731 	ret = radix_tree_insert(&fs_info->buffer_radix,
4732 				start >> PAGE_CACHE_SHIFT, eb);
4733 	spin_unlock(&fs_info->buffer_lock);
4734 	radix_tree_preload_end();
4735 	if (ret == -EEXIST) {
4736 		exists = find_extent_buffer(fs_info, start);
4737 		if (exists)
4738 			goto free_eb;
4739 		else
4740 			goto again;
4741 	}
4742 	/* add one reference for the tree */
4743 	check_buffer_tree_ref(eb);
4744 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4745 
4746 	/*
4747 	 * there is a race where release page may have
4748 	 * tried to find this extent buffer in the radix
4749 	 * but failed.  It will tell the VM it is safe to
4750 	 * reclaim the, and it will clear the page private bit.
4751 	 * We must make sure to set the page private bit properly
4752 	 * after the extent buffer is in the radix tree so
4753 	 * it doesn't get lost
4754 	 */
4755 	SetPageChecked(eb->pages[0]);
4756 	for (i = 1; i < num_pages; i++) {
4757 		p = extent_buffer_page(eb, i);
4758 		ClearPageChecked(p);
4759 		unlock_page(p);
4760 	}
4761 	unlock_page(eb->pages[0]);
4762 	return eb;
4763 
4764 free_eb:
4765 	for (i = 0; i < num_pages; i++) {
4766 		if (eb->pages[i])
4767 			unlock_page(eb->pages[i]);
4768 	}
4769 
4770 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4771 	btrfs_release_extent_buffer(eb);
4772 	return exists;
4773 }
4774 
4775 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4776 {
4777 	struct extent_buffer *eb =
4778 			container_of(head, struct extent_buffer, rcu_head);
4779 
4780 	__free_extent_buffer(eb);
4781 }
4782 
4783 /* Expects to have eb->eb_lock already held */
4784 static int release_extent_buffer(struct extent_buffer *eb)
4785 {
4786 	WARN_ON(atomic_read(&eb->refs) == 0);
4787 	if (atomic_dec_and_test(&eb->refs)) {
4788 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4789 			struct btrfs_fs_info *fs_info = eb->fs_info;
4790 
4791 			spin_unlock(&eb->refs_lock);
4792 
4793 			spin_lock(&fs_info->buffer_lock);
4794 			radix_tree_delete(&fs_info->buffer_radix,
4795 					  eb->start >> PAGE_CACHE_SHIFT);
4796 			spin_unlock(&fs_info->buffer_lock);
4797 		} else {
4798 			spin_unlock(&eb->refs_lock);
4799 		}
4800 
4801 		/* Should be safe to release our pages at this point */
4802 		btrfs_release_extent_buffer_page(eb, 0);
4803 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4804 		return 1;
4805 	}
4806 	spin_unlock(&eb->refs_lock);
4807 
4808 	return 0;
4809 }
4810 
4811 void free_extent_buffer(struct extent_buffer *eb)
4812 {
4813 	int refs;
4814 	int old;
4815 	if (!eb)
4816 		return;
4817 
4818 	while (1) {
4819 		refs = atomic_read(&eb->refs);
4820 		if (refs <= 3)
4821 			break;
4822 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4823 		if (old == refs)
4824 			return;
4825 	}
4826 
4827 	spin_lock(&eb->refs_lock);
4828 	if (atomic_read(&eb->refs) == 2 &&
4829 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4830 		atomic_dec(&eb->refs);
4831 
4832 	if (atomic_read(&eb->refs) == 2 &&
4833 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4834 	    !extent_buffer_under_io(eb) &&
4835 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836 		atomic_dec(&eb->refs);
4837 
4838 	/*
4839 	 * I know this is terrible, but it's temporary until we stop tracking
4840 	 * the uptodate bits and such for the extent buffers.
4841 	 */
4842 	release_extent_buffer(eb);
4843 }
4844 
4845 void free_extent_buffer_stale(struct extent_buffer *eb)
4846 {
4847 	if (!eb)
4848 		return;
4849 
4850 	spin_lock(&eb->refs_lock);
4851 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4852 
4853 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4854 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4855 		atomic_dec(&eb->refs);
4856 	release_extent_buffer(eb);
4857 }
4858 
4859 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4860 {
4861 	unsigned long i;
4862 	unsigned long num_pages;
4863 	struct page *page;
4864 
4865 	num_pages = num_extent_pages(eb->start, eb->len);
4866 
4867 	for (i = 0; i < num_pages; i++) {
4868 		page = extent_buffer_page(eb, i);
4869 		if (!PageDirty(page))
4870 			continue;
4871 
4872 		lock_page(page);
4873 		WARN_ON(!PagePrivate(page));
4874 
4875 		clear_page_dirty_for_io(page);
4876 		spin_lock_irq(&page->mapping->tree_lock);
4877 		if (!PageDirty(page)) {
4878 			radix_tree_tag_clear(&page->mapping->page_tree,
4879 						page_index(page),
4880 						PAGECACHE_TAG_DIRTY);
4881 		}
4882 		spin_unlock_irq(&page->mapping->tree_lock);
4883 		ClearPageError(page);
4884 		unlock_page(page);
4885 	}
4886 	WARN_ON(atomic_read(&eb->refs) == 0);
4887 }
4888 
4889 int set_extent_buffer_dirty(struct extent_buffer *eb)
4890 {
4891 	unsigned long i;
4892 	unsigned long num_pages;
4893 	int was_dirty = 0;
4894 
4895 	check_buffer_tree_ref(eb);
4896 
4897 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4898 
4899 	num_pages = num_extent_pages(eb->start, eb->len);
4900 	WARN_ON(atomic_read(&eb->refs) == 0);
4901 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4902 
4903 	for (i = 0; i < num_pages; i++)
4904 		set_page_dirty(extent_buffer_page(eb, i));
4905 	return was_dirty;
4906 }
4907 
4908 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4909 {
4910 	unsigned long i;
4911 	struct page *page;
4912 	unsigned long num_pages;
4913 
4914 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4915 	num_pages = num_extent_pages(eb->start, eb->len);
4916 	for (i = 0; i < num_pages; i++) {
4917 		page = extent_buffer_page(eb, i);
4918 		if (page)
4919 			ClearPageUptodate(page);
4920 	}
4921 	return 0;
4922 }
4923 
4924 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4925 {
4926 	unsigned long i;
4927 	struct page *page;
4928 	unsigned long num_pages;
4929 
4930 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4931 	num_pages = num_extent_pages(eb->start, eb->len);
4932 	for (i = 0; i < num_pages; i++) {
4933 		page = extent_buffer_page(eb, i);
4934 		SetPageUptodate(page);
4935 	}
4936 	return 0;
4937 }
4938 
4939 int extent_buffer_uptodate(struct extent_buffer *eb)
4940 {
4941 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4942 }
4943 
4944 int read_extent_buffer_pages(struct extent_io_tree *tree,
4945 			     struct extent_buffer *eb, u64 start, int wait,
4946 			     get_extent_t *get_extent, int mirror_num)
4947 {
4948 	unsigned long i;
4949 	unsigned long start_i;
4950 	struct page *page;
4951 	int err;
4952 	int ret = 0;
4953 	int locked_pages = 0;
4954 	int all_uptodate = 1;
4955 	unsigned long num_pages;
4956 	unsigned long num_reads = 0;
4957 	struct bio *bio = NULL;
4958 	unsigned long bio_flags = 0;
4959 
4960 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4961 		return 0;
4962 
4963 	if (start) {
4964 		WARN_ON(start < eb->start);
4965 		start_i = (start >> PAGE_CACHE_SHIFT) -
4966 			(eb->start >> PAGE_CACHE_SHIFT);
4967 	} else {
4968 		start_i = 0;
4969 	}
4970 
4971 	num_pages = num_extent_pages(eb->start, eb->len);
4972 	for (i = start_i; i < num_pages; i++) {
4973 		page = extent_buffer_page(eb, i);
4974 		if (wait == WAIT_NONE) {
4975 			if (!trylock_page(page))
4976 				goto unlock_exit;
4977 		} else {
4978 			lock_page(page);
4979 		}
4980 		locked_pages++;
4981 		if (!PageUptodate(page)) {
4982 			num_reads++;
4983 			all_uptodate = 0;
4984 		}
4985 	}
4986 	if (all_uptodate) {
4987 		if (start_i == 0)
4988 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4989 		goto unlock_exit;
4990 	}
4991 
4992 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4993 	eb->read_mirror = 0;
4994 	atomic_set(&eb->io_pages, num_reads);
4995 	for (i = start_i; i < num_pages; i++) {
4996 		page = extent_buffer_page(eb, i);
4997 		if (!PageUptodate(page)) {
4998 			ClearPageError(page);
4999 			err = __extent_read_full_page(tree, page,
5000 						      get_extent, &bio,
5001 						      mirror_num, &bio_flags,
5002 						      READ | REQ_META);
5003 			if (err)
5004 				ret = err;
5005 		} else {
5006 			unlock_page(page);
5007 		}
5008 	}
5009 
5010 	if (bio) {
5011 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5012 				     bio_flags);
5013 		if (err)
5014 			return err;
5015 	}
5016 
5017 	if (ret || wait != WAIT_COMPLETE)
5018 		return ret;
5019 
5020 	for (i = start_i; i < num_pages; i++) {
5021 		page = extent_buffer_page(eb, i);
5022 		wait_on_page_locked(page);
5023 		if (!PageUptodate(page))
5024 			ret = -EIO;
5025 	}
5026 
5027 	return ret;
5028 
5029 unlock_exit:
5030 	i = start_i;
5031 	while (locked_pages > 0) {
5032 		page = extent_buffer_page(eb, i);
5033 		i++;
5034 		unlock_page(page);
5035 		locked_pages--;
5036 	}
5037 	return ret;
5038 }
5039 
5040 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5041 			unsigned long start,
5042 			unsigned long len)
5043 {
5044 	size_t cur;
5045 	size_t offset;
5046 	struct page *page;
5047 	char *kaddr;
5048 	char *dst = (char *)dstv;
5049 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5050 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5051 
5052 	WARN_ON(start > eb->len);
5053 	WARN_ON(start + len > eb->start + eb->len);
5054 
5055 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5056 
5057 	while (len > 0) {
5058 		page = extent_buffer_page(eb, i);
5059 
5060 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5061 		kaddr = page_address(page);
5062 		memcpy(dst, kaddr + offset, cur);
5063 
5064 		dst += cur;
5065 		len -= cur;
5066 		offset = 0;
5067 		i++;
5068 	}
5069 }
5070 
5071 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5072 			unsigned long start,
5073 			unsigned long len)
5074 {
5075 	size_t cur;
5076 	size_t offset;
5077 	struct page *page;
5078 	char *kaddr;
5079 	char __user *dst = (char __user *)dstv;
5080 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5081 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5082 	int ret = 0;
5083 
5084 	WARN_ON(start > eb->len);
5085 	WARN_ON(start + len > eb->start + eb->len);
5086 
5087 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5088 
5089 	while (len > 0) {
5090 		page = extent_buffer_page(eb, i);
5091 
5092 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5093 		kaddr = page_address(page);
5094 		if (copy_to_user(dst, kaddr + offset, cur)) {
5095 			ret = -EFAULT;
5096 			break;
5097 		}
5098 
5099 		dst += cur;
5100 		len -= cur;
5101 		offset = 0;
5102 		i++;
5103 	}
5104 
5105 	return ret;
5106 }
5107 
5108 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5109 			       unsigned long min_len, char **map,
5110 			       unsigned long *map_start,
5111 			       unsigned long *map_len)
5112 {
5113 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5114 	char *kaddr;
5115 	struct page *p;
5116 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5117 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5118 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5119 		PAGE_CACHE_SHIFT;
5120 
5121 	if (i != end_i)
5122 		return -EINVAL;
5123 
5124 	if (i == 0) {
5125 		offset = start_offset;
5126 		*map_start = 0;
5127 	} else {
5128 		offset = 0;
5129 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5130 	}
5131 
5132 	if (start + min_len > eb->len) {
5133 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5134 		       "wanted %lu %lu\n",
5135 		       eb->start, eb->len, start, min_len);
5136 		return -EINVAL;
5137 	}
5138 
5139 	p = extent_buffer_page(eb, i);
5140 	kaddr = page_address(p);
5141 	*map = kaddr + offset;
5142 	*map_len = PAGE_CACHE_SIZE - offset;
5143 	return 0;
5144 }
5145 
5146 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5147 			  unsigned long start,
5148 			  unsigned long len)
5149 {
5150 	size_t cur;
5151 	size_t offset;
5152 	struct page *page;
5153 	char *kaddr;
5154 	char *ptr = (char *)ptrv;
5155 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5156 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5157 	int ret = 0;
5158 
5159 	WARN_ON(start > eb->len);
5160 	WARN_ON(start + len > eb->start + eb->len);
5161 
5162 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5163 
5164 	while (len > 0) {
5165 		page = extent_buffer_page(eb, i);
5166 
5167 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5168 
5169 		kaddr = page_address(page);
5170 		ret = memcmp(ptr, kaddr + offset, cur);
5171 		if (ret)
5172 			break;
5173 
5174 		ptr += cur;
5175 		len -= cur;
5176 		offset = 0;
5177 		i++;
5178 	}
5179 	return ret;
5180 }
5181 
5182 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5183 			 unsigned long start, unsigned long len)
5184 {
5185 	size_t cur;
5186 	size_t offset;
5187 	struct page *page;
5188 	char *kaddr;
5189 	char *src = (char *)srcv;
5190 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5191 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5192 
5193 	WARN_ON(start > eb->len);
5194 	WARN_ON(start + len > eb->start + eb->len);
5195 
5196 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5197 
5198 	while (len > 0) {
5199 		page = extent_buffer_page(eb, i);
5200 		WARN_ON(!PageUptodate(page));
5201 
5202 		cur = min(len, PAGE_CACHE_SIZE - offset);
5203 		kaddr = page_address(page);
5204 		memcpy(kaddr + offset, src, cur);
5205 
5206 		src += cur;
5207 		len -= cur;
5208 		offset = 0;
5209 		i++;
5210 	}
5211 }
5212 
5213 void memset_extent_buffer(struct extent_buffer *eb, char c,
5214 			  unsigned long start, unsigned long len)
5215 {
5216 	size_t cur;
5217 	size_t offset;
5218 	struct page *page;
5219 	char *kaddr;
5220 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5221 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5222 
5223 	WARN_ON(start > eb->len);
5224 	WARN_ON(start + len > eb->start + eb->len);
5225 
5226 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5227 
5228 	while (len > 0) {
5229 		page = extent_buffer_page(eb, i);
5230 		WARN_ON(!PageUptodate(page));
5231 
5232 		cur = min(len, PAGE_CACHE_SIZE - offset);
5233 		kaddr = page_address(page);
5234 		memset(kaddr + offset, c, cur);
5235 
5236 		len -= cur;
5237 		offset = 0;
5238 		i++;
5239 	}
5240 }
5241 
5242 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5243 			unsigned long dst_offset, unsigned long src_offset,
5244 			unsigned long len)
5245 {
5246 	u64 dst_len = dst->len;
5247 	size_t cur;
5248 	size_t offset;
5249 	struct page *page;
5250 	char *kaddr;
5251 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5252 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5253 
5254 	WARN_ON(src->len != dst_len);
5255 
5256 	offset = (start_offset + dst_offset) &
5257 		(PAGE_CACHE_SIZE - 1);
5258 
5259 	while (len > 0) {
5260 		page = extent_buffer_page(dst, i);
5261 		WARN_ON(!PageUptodate(page));
5262 
5263 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5264 
5265 		kaddr = page_address(page);
5266 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5267 
5268 		src_offset += cur;
5269 		len -= cur;
5270 		offset = 0;
5271 		i++;
5272 	}
5273 }
5274 
5275 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5276 {
5277 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5278 	return distance < len;
5279 }
5280 
5281 static void copy_pages(struct page *dst_page, struct page *src_page,
5282 		       unsigned long dst_off, unsigned long src_off,
5283 		       unsigned long len)
5284 {
5285 	char *dst_kaddr = page_address(dst_page);
5286 	char *src_kaddr;
5287 	int must_memmove = 0;
5288 
5289 	if (dst_page != src_page) {
5290 		src_kaddr = page_address(src_page);
5291 	} else {
5292 		src_kaddr = dst_kaddr;
5293 		if (areas_overlap(src_off, dst_off, len))
5294 			must_memmove = 1;
5295 	}
5296 
5297 	if (must_memmove)
5298 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5299 	else
5300 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5301 }
5302 
5303 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5304 			   unsigned long src_offset, unsigned long len)
5305 {
5306 	size_t cur;
5307 	size_t dst_off_in_page;
5308 	size_t src_off_in_page;
5309 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5310 	unsigned long dst_i;
5311 	unsigned long src_i;
5312 
5313 	if (src_offset + len > dst->len) {
5314 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5315 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5316 		BUG_ON(1);
5317 	}
5318 	if (dst_offset + len > dst->len) {
5319 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5320 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5321 		BUG_ON(1);
5322 	}
5323 
5324 	while (len > 0) {
5325 		dst_off_in_page = (start_offset + dst_offset) &
5326 			(PAGE_CACHE_SIZE - 1);
5327 		src_off_in_page = (start_offset + src_offset) &
5328 			(PAGE_CACHE_SIZE - 1);
5329 
5330 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5331 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5332 
5333 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5334 					       src_off_in_page));
5335 		cur = min_t(unsigned long, cur,
5336 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5337 
5338 		copy_pages(extent_buffer_page(dst, dst_i),
5339 			   extent_buffer_page(dst, src_i),
5340 			   dst_off_in_page, src_off_in_page, cur);
5341 
5342 		src_offset += cur;
5343 		dst_offset += cur;
5344 		len -= cur;
5345 	}
5346 }
5347 
5348 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5349 			   unsigned long src_offset, unsigned long len)
5350 {
5351 	size_t cur;
5352 	size_t dst_off_in_page;
5353 	size_t src_off_in_page;
5354 	unsigned long dst_end = dst_offset + len - 1;
5355 	unsigned long src_end = src_offset + len - 1;
5356 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5357 	unsigned long dst_i;
5358 	unsigned long src_i;
5359 
5360 	if (src_offset + len > dst->len) {
5361 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5362 		       "len %lu len %lu\n", src_offset, len, dst->len);
5363 		BUG_ON(1);
5364 	}
5365 	if (dst_offset + len > dst->len) {
5366 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5367 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5368 		BUG_ON(1);
5369 	}
5370 	if (dst_offset < src_offset) {
5371 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5372 		return;
5373 	}
5374 	while (len > 0) {
5375 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5376 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5377 
5378 		dst_off_in_page = (start_offset + dst_end) &
5379 			(PAGE_CACHE_SIZE - 1);
5380 		src_off_in_page = (start_offset + src_end) &
5381 			(PAGE_CACHE_SIZE - 1);
5382 
5383 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5384 		cur = min(cur, dst_off_in_page + 1);
5385 		copy_pages(extent_buffer_page(dst, dst_i),
5386 			   extent_buffer_page(dst, src_i),
5387 			   dst_off_in_page - cur + 1,
5388 			   src_off_in_page - cur + 1, cur);
5389 
5390 		dst_end -= cur;
5391 		src_end -= cur;
5392 		len -= cur;
5393 	}
5394 }
5395 
5396 int try_release_extent_buffer(struct page *page)
5397 {
5398 	struct extent_buffer *eb;
5399 
5400 	/*
5401 	 * We need to make sure noboody is attaching this page to an eb right
5402 	 * now.
5403 	 */
5404 	spin_lock(&page->mapping->private_lock);
5405 	if (!PagePrivate(page)) {
5406 		spin_unlock(&page->mapping->private_lock);
5407 		return 1;
5408 	}
5409 
5410 	eb = (struct extent_buffer *)page->private;
5411 	BUG_ON(!eb);
5412 
5413 	/*
5414 	 * This is a little awful but should be ok, we need to make sure that
5415 	 * the eb doesn't disappear out from under us while we're looking at
5416 	 * this page.
5417 	 */
5418 	spin_lock(&eb->refs_lock);
5419 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5420 		spin_unlock(&eb->refs_lock);
5421 		spin_unlock(&page->mapping->private_lock);
5422 		return 0;
5423 	}
5424 	spin_unlock(&page->mapping->private_lock);
5425 
5426 	/*
5427 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5428 	 * so just return, this page will likely be freed soon anyway.
5429 	 */
5430 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5431 		spin_unlock(&eb->refs_lock);
5432 		return 0;
5433 	}
5434 
5435 	return release_extent_buffer(eb);
5436 }
5437