1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "free-space-tree.h" 46 #include "inode-map.h" 47 #include "check-integrity.h" 48 #include "rcu-string.h" 49 #include "dev-replace.h" 50 #include "raid56.h" 51 #include "sysfs.h" 52 #include "qgroup.h" 53 #include "compression.h" 54 55 #ifdef CONFIG_X86 56 #include <asm/cpufeature.h> 57 #endif 58 59 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 60 BTRFS_HEADER_FLAG_RELOC |\ 61 BTRFS_SUPER_FLAG_ERROR |\ 62 BTRFS_SUPER_FLAG_SEEDING |\ 63 BTRFS_SUPER_FLAG_METADUMP) 64 65 static const struct extent_io_ops btree_extent_io_ops; 66 static void end_workqueue_fn(struct btrfs_work *work); 67 static void free_fs_root(struct btrfs_root *root); 68 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 69 int read_only); 70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 72 struct btrfs_root *root); 73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 74 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 75 struct extent_io_tree *dirty_pages, 76 int mark); 77 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 78 struct extent_io_tree *pinned_extents); 79 static int btrfs_cleanup_transaction(struct btrfs_root *root); 80 static void btrfs_error_commit_super(struct btrfs_root *root); 81 82 /* 83 * btrfs_end_io_wq structs are used to do processing in task context when an IO 84 * is complete. This is used during reads to verify checksums, and it is used 85 * by writes to insert metadata for new file extents after IO is complete. 86 */ 87 struct btrfs_end_io_wq { 88 struct bio *bio; 89 bio_end_io_t *end_io; 90 void *private; 91 struct btrfs_fs_info *info; 92 int error; 93 enum btrfs_wq_endio_type metadata; 94 struct list_head list; 95 struct btrfs_work work; 96 }; 97 98 static struct kmem_cache *btrfs_end_io_wq_cache; 99 100 int __init btrfs_end_io_wq_init(void) 101 { 102 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 103 sizeof(struct btrfs_end_io_wq), 104 0, 105 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 106 NULL); 107 if (!btrfs_end_io_wq_cache) 108 return -ENOMEM; 109 return 0; 110 } 111 112 void btrfs_end_io_wq_exit(void) 113 { 114 kmem_cache_destroy(btrfs_end_io_wq_cache); 115 } 116 117 /* 118 * async submit bios are used to offload expensive checksumming 119 * onto the worker threads. They checksum file and metadata bios 120 * just before they are sent down the IO stack. 121 */ 122 struct async_submit_bio { 123 struct inode *inode; 124 struct bio *bio; 125 struct list_head list; 126 extent_submit_bio_hook_t *submit_bio_start; 127 extent_submit_bio_hook_t *submit_bio_done; 128 int rw; 129 int mirror_num; 130 unsigned long bio_flags; 131 /* 132 * bio_offset is optional, can be used if the pages in the bio 133 * can't tell us where in the file the bio should go 134 */ 135 u64 bio_offset; 136 struct btrfs_work work; 137 int error; 138 }; 139 140 /* 141 * Lockdep class keys for extent_buffer->lock's in this root. For a given 142 * eb, the lockdep key is determined by the btrfs_root it belongs to and 143 * the level the eb occupies in the tree. 144 * 145 * Different roots are used for different purposes and may nest inside each 146 * other and they require separate keysets. As lockdep keys should be 147 * static, assign keysets according to the purpose of the root as indicated 148 * by btrfs_root->objectid. This ensures that all special purpose roots 149 * have separate keysets. 150 * 151 * Lock-nesting across peer nodes is always done with the immediate parent 152 * node locked thus preventing deadlock. As lockdep doesn't know this, use 153 * subclass to avoid triggering lockdep warning in such cases. 154 * 155 * The key is set by the readpage_end_io_hook after the buffer has passed 156 * csum validation but before the pages are unlocked. It is also set by 157 * btrfs_init_new_buffer on freshly allocated blocks. 158 * 159 * We also add a check to make sure the highest level of the tree is the 160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 161 * needs update as well. 162 */ 163 #ifdef CONFIG_DEBUG_LOCK_ALLOC 164 # if BTRFS_MAX_LEVEL != 8 165 # error 166 # endif 167 168 static struct btrfs_lockdep_keyset { 169 u64 id; /* root objectid */ 170 const char *name_stem; /* lock name stem */ 171 char names[BTRFS_MAX_LEVEL + 1][20]; 172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 173 } btrfs_lockdep_keysets[] = { 174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 185 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 186 { .id = 0, .name_stem = "tree" }, 187 }; 188 189 void __init btrfs_init_lockdep(void) 190 { 191 int i, j; 192 193 /* initialize lockdep class names */ 194 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 195 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 196 197 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 198 snprintf(ks->names[j], sizeof(ks->names[j]), 199 "btrfs-%s-%02d", ks->name_stem, j); 200 } 201 } 202 203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 204 int level) 205 { 206 struct btrfs_lockdep_keyset *ks; 207 208 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 209 210 /* find the matching keyset, id 0 is the default entry */ 211 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 212 if (ks->id == objectid) 213 break; 214 215 lockdep_set_class_and_name(&eb->lock, 216 &ks->keys[level], ks->names[level]); 217 } 218 219 #endif 220 221 /* 222 * extents on the btree inode are pretty simple, there's one extent 223 * that covers the entire device 224 */ 225 static struct extent_map *btree_get_extent(struct inode *inode, 226 struct page *page, size_t pg_offset, u64 start, u64 len, 227 int create) 228 { 229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 230 struct extent_map *em; 231 int ret; 232 233 read_lock(&em_tree->lock); 234 em = lookup_extent_mapping(em_tree, start, len); 235 if (em) { 236 em->bdev = 237 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 238 read_unlock(&em_tree->lock); 239 goto out; 240 } 241 read_unlock(&em_tree->lock); 242 243 em = alloc_extent_map(); 244 if (!em) { 245 em = ERR_PTR(-ENOMEM); 246 goto out; 247 } 248 em->start = 0; 249 em->len = (u64)-1; 250 em->block_len = (u64)-1; 251 em->block_start = 0; 252 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 253 254 write_lock(&em_tree->lock); 255 ret = add_extent_mapping(em_tree, em, 0); 256 if (ret == -EEXIST) { 257 free_extent_map(em); 258 em = lookup_extent_mapping(em_tree, start, len); 259 if (!em) 260 em = ERR_PTR(-EIO); 261 } else if (ret) { 262 free_extent_map(em); 263 em = ERR_PTR(ret); 264 } 265 write_unlock(&em_tree->lock); 266 267 out: 268 return em; 269 } 270 271 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 272 { 273 return btrfs_crc32c(seed, data, len); 274 } 275 276 void btrfs_csum_final(u32 crc, char *result) 277 { 278 put_unaligned_le32(~crc, result); 279 } 280 281 /* 282 * compute the csum for a btree block, and either verify it or write it 283 * into the csum field of the block. 284 */ 285 static int csum_tree_block(struct btrfs_fs_info *fs_info, 286 struct extent_buffer *buf, 287 int verify) 288 { 289 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 290 char *result = NULL; 291 unsigned long len; 292 unsigned long cur_len; 293 unsigned long offset = BTRFS_CSUM_SIZE; 294 char *kaddr; 295 unsigned long map_start; 296 unsigned long map_len; 297 int err; 298 u32 crc = ~(u32)0; 299 unsigned long inline_result; 300 301 len = buf->len - offset; 302 while (len > 0) { 303 err = map_private_extent_buffer(buf, offset, 32, 304 &kaddr, &map_start, &map_len); 305 if (err) 306 return 1; 307 cur_len = min(len, map_len - (offset - map_start)); 308 crc = btrfs_csum_data(kaddr + offset - map_start, 309 crc, cur_len); 310 len -= cur_len; 311 offset += cur_len; 312 } 313 if (csum_size > sizeof(inline_result)) { 314 result = kzalloc(csum_size, GFP_NOFS); 315 if (!result) 316 return 1; 317 } else { 318 result = (char *)&inline_result; 319 } 320 321 btrfs_csum_final(crc, result); 322 323 if (verify) { 324 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 325 u32 val; 326 u32 found = 0; 327 memcpy(&found, result, csum_size); 328 329 read_extent_buffer(buf, &val, 0, csum_size); 330 btrfs_warn_rl(fs_info, 331 "%s checksum verify failed on %llu wanted %X found %X " 332 "level %d", 333 fs_info->sb->s_id, buf->start, 334 val, found, btrfs_header_level(buf)); 335 if (result != (char *)&inline_result) 336 kfree(result); 337 return 1; 338 } 339 } else { 340 write_extent_buffer(buf, result, 0, csum_size); 341 } 342 if (result != (char *)&inline_result) 343 kfree(result); 344 return 0; 345 } 346 347 /* 348 * we can't consider a given block up to date unless the transid of the 349 * block matches the transid in the parent node's pointer. This is how we 350 * detect blocks that either didn't get written at all or got written 351 * in the wrong place. 352 */ 353 static int verify_parent_transid(struct extent_io_tree *io_tree, 354 struct extent_buffer *eb, u64 parent_transid, 355 int atomic) 356 { 357 struct extent_state *cached_state = NULL; 358 int ret; 359 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 360 361 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 362 return 0; 363 364 if (atomic) 365 return -EAGAIN; 366 367 if (need_lock) { 368 btrfs_tree_read_lock(eb); 369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 370 } 371 372 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 373 &cached_state); 374 if (extent_buffer_uptodate(eb) && 375 btrfs_header_generation(eb) == parent_transid) { 376 ret = 0; 377 goto out; 378 } 379 btrfs_err_rl(eb->fs_info, 380 "parent transid verify failed on %llu wanted %llu found %llu", 381 eb->start, 382 parent_transid, btrfs_header_generation(eb)); 383 ret = 1; 384 385 /* 386 * Things reading via commit roots that don't have normal protection, 387 * like send, can have a really old block in cache that may point at a 388 * block that has been free'd and re-allocated. So don't clear uptodate 389 * if we find an eb that is under IO (dirty/writeback) because we could 390 * end up reading in the stale data and then writing it back out and 391 * making everybody very sad. 392 */ 393 if (!extent_buffer_under_io(eb)) 394 clear_extent_buffer_uptodate(eb); 395 out: 396 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 397 &cached_state, GFP_NOFS); 398 if (need_lock) 399 btrfs_tree_read_unlock_blocking(eb); 400 return ret; 401 } 402 403 /* 404 * Return 0 if the superblock checksum type matches the checksum value of that 405 * algorithm. Pass the raw disk superblock data. 406 */ 407 static int btrfs_check_super_csum(char *raw_disk_sb) 408 { 409 struct btrfs_super_block *disk_sb = 410 (struct btrfs_super_block *)raw_disk_sb; 411 u16 csum_type = btrfs_super_csum_type(disk_sb); 412 int ret = 0; 413 414 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 415 u32 crc = ~(u32)0; 416 const int csum_size = sizeof(crc); 417 char result[csum_size]; 418 419 /* 420 * The super_block structure does not span the whole 421 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 422 * is filled with zeros and is included in the checkum. 423 */ 424 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 425 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 426 btrfs_csum_final(crc, result); 427 428 if (memcmp(raw_disk_sb, result, csum_size)) 429 ret = 1; 430 } 431 432 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 433 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 434 csum_type); 435 ret = 1; 436 } 437 438 return ret; 439 } 440 441 /* 442 * helper to read a given tree block, doing retries as required when 443 * the checksums don't match and we have alternate mirrors to try. 444 */ 445 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 446 struct extent_buffer *eb, 447 u64 start, u64 parent_transid) 448 { 449 struct extent_io_tree *io_tree; 450 int failed = 0; 451 int ret; 452 int num_copies = 0; 453 int mirror_num = 0; 454 int failed_mirror = 0; 455 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 457 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 458 while (1) { 459 ret = read_extent_buffer_pages(io_tree, eb, start, 460 WAIT_COMPLETE, 461 btree_get_extent, mirror_num); 462 if (!ret) { 463 if (!verify_parent_transid(io_tree, eb, 464 parent_transid, 0)) 465 break; 466 else 467 ret = -EIO; 468 } 469 470 /* 471 * This buffer's crc is fine, but its contents are corrupted, so 472 * there is no reason to read the other copies, they won't be 473 * any less wrong. 474 */ 475 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 476 break; 477 478 num_copies = btrfs_num_copies(root->fs_info, 479 eb->start, eb->len); 480 if (num_copies == 1) 481 break; 482 483 if (!failed_mirror) { 484 failed = 1; 485 failed_mirror = eb->read_mirror; 486 } 487 488 mirror_num++; 489 if (mirror_num == failed_mirror) 490 mirror_num++; 491 492 if (mirror_num > num_copies) 493 break; 494 } 495 496 if (failed && !ret && failed_mirror) 497 repair_eb_io_failure(root, eb, failed_mirror); 498 499 return ret; 500 } 501 502 /* 503 * checksum a dirty tree block before IO. This has extra checks to make sure 504 * we only fill in the checksum field in the first page of a multi-page block 505 */ 506 507 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 508 { 509 u64 start = page_offset(page); 510 u64 found_start; 511 struct extent_buffer *eb; 512 513 eb = (struct extent_buffer *)page->private; 514 if (page != eb->pages[0]) 515 return 0; 516 found_start = btrfs_header_bytenr(eb); 517 if (WARN_ON(found_start != start || !PageUptodate(page))) 518 return 0; 519 csum_tree_block(fs_info, eb, 0); 520 return 0; 521 } 522 523 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 524 struct extent_buffer *eb) 525 { 526 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 527 u8 fsid[BTRFS_UUID_SIZE]; 528 int ret = 1; 529 530 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 531 while (fs_devices) { 532 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 533 ret = 0; 534 break; 535 } 536 fs_devices = fs_devices->seed; 537 } 538 return ret; 539 } 540 541 #define CORRUPT(reason, eb, root, slot) \ 542 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 543 "root=%llu, slot=%d", reason, \ 544 btrfs_header_bytenr(eb), root->objectid, slot) 545 546 static noinline int check_leaf(struct btrfs_root *root, 547 struct extent_buffer *leaf) 548 { 549 struct btrfs_key key; 550 struct btrfs_key leaf_key; 551 u32 nritems = btrfs_header_nritems(leaf); 552 int slot; 553 554 if (nritems == 0) 555 return 0; 556 557 /* Check the 0 item */ 558 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 559 BTRFS_LEAF_DATA_SIZE(root)) { 560 CORRUPT("invalid item offset size pair", leaf, root, 0); 561 return -EIO; 562 } 563 564 /* 565 * Check to make sure each items keys are in the correct order and their 566 * offsets make sense. We only have to loop through nritems-1 because 567 * we check the current slot against the next slot, which verifies the 568 * next slot's offset+size makes sense and that the current's slot 569 * offset is correct. 570 */ 571 for (slot = 0; slot < nritems - 1; slot++) { 572 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 573 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 574 575 /* Make sure the keys are in the right order */ 576 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 577 CORRUPT("bad key order", leaf, root, slot); 578 return -EIO; 579 } 580 581 /* 582 * Make sure the offset and ends are right, remember that the 583 * item data starts at the end of the leaf and grows towards the 584 * front. 585 */ 586 if (btrfs_item_offset_nr(leaf, slot) != 587 btrfs_item_end_nr(leaf, slot + 1)) { 588 CORRUPT("slot offset bad", leaf, root, slot); 589 return -EIO; 590 } 591 592 /* 593 * Check to make sure that we don't point outside of the leaf, 594 * just incase all the items are consistent to eachother, but 595 * all point outside of the leaf. 596 */ 597 if (btrfs_item_end_nr(leaf, slot) > 598 BTRFS_LEAF_DATA_SIZE(root)) { 599 CORRUPT("slot end outside of leaf", leaf, root, slot); 600 return -EIO; 601 } 602 } 603 604 return 0; 605 } 606 607 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 608 u64 phy_offset, struct page *page, 609 u64 start, u64 end, int mirror) 610 { 611 u64 found_start; 612 int found_level; 613 struct extent_buffer *eb; 614 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 615 struct btrfs_fs_info *fs_info = root->fs_info; 616 int ret = 0; 617 int reads_done; 618 619 if (!page->private) 620 goto out; 621 622 eb = (struct extent_buffer *)page->private; 623 624 /* the pending IO might have been the only thing that kept this buffer 625 * in memory. Make sure we have a ref for all this other checks 626 */ 627 extent_buffer_get(eb); 628 629 reads_done = atomic_dec_and_test(&eb->io_pages); 630 if (!reads_done) 631 goto err; 632 633 eb->read_mirror = mirror; 634 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 635 ret = -EIO; 636 goto err; 637 } 638 639 found_start = btrfs_header_bytenr(eb); 640 if (found_start != eb->start) { 641 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 642 found_start, eb->start); 643 ret = -EIO; 644 goto err; 645 } 646 if (check_tree_block_fsid(fs_info, eb)) { 647 btrfs_err_rl(fs_info, "bad fsid on block %llu", 648 eb->start); 649 ret = -EIO; 650 goto err; 651 } 652 found_level = btrfs_header_level(eb); 653 if (found_level >= BTRFS_MAX_LEVEL) { 654 btrfs_err(fs_info, "bad tree block level %d", 655 (int)btrfs_header_level(eb)); 656 ret = -EIO; 657 goto err; 658 } 659 660 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 661 eb, found_level); 662 663 ret = csum_tree_block(fs_info, eb, 1); 664 if (ret) { 665 ret = -EIO; 666 goto err; 667 } 668 669 /* 670 * If this is a leaf block and it is corrupt, set the corrupt bit so 671 * that we don't try and read the other copies of this block, just 672 * return -EIO. 673 */ 674 if (found_level == 0 && check_leaf(root, eb)) { 675 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 676 ret = -EIO; 677 } 678 679 if (!ret) 680 set_extent_buffer_uptodate(eb); 681 err: 682 if (reads_done && 683 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 684 btree_readahead_hook(fs_info, eb, eb->start, ret); 685 686 if (ret) { 687 /* 688 * our io error hook is going to dec the io pages 689 * again, we have to make sure it has something 690 * to decrement 691 */ 692 atomic_inc(&eb->io_pages); 693 clear_extent_buffer_uptodate(eb); 694 } 695 free_extent_buffer(eb); 696 out: 697 return ret; 698 } 699 700 static int btree_io_failed_hook(struct page *page, int failed_mirror) 701 { 702 struct extent_buffer *eb; 703 704 eb = (struct extent_buffer *)page->private; 705 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 706 eb->read_mirror = failed_mirror; 707 atomic_dec(&eb->io_pages); 708 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 709 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO); 710 return -EIO; /* we fixed nothing */ 711 } 712 713 static void end_workqueue_bio(struct bio *bio) 714 { 715 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 716 struct btrfs_fs_info *fs_info; 717 struct btrfs_workqueue *wq; 718 btrfs_work_func_t func; 719 720 fs_info = end_io_wq->info; 721 end_io_wq->error = bio->bi_error; 722 723 if (bio->bi_rw & REQ_WRITE) { 724 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 725 wq = fs_info->endio_meta_write_workers; 726 func = btrfs_endio_meta_write_helper; 727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 728 wq = fs_info->endio_freespace_worker; 729 func = btrfs_freespace_write_helper; 730 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 731 wq = fs_info->endio_raid56_workers; 732 func = btrfs_endio_raid56_helper; 733 } else { 734 wq = fs_info->endio_write_workers; 735 func = btrfs_endio_write_helper; 736 } 737 } else { 738 if (unlikely(end_io_wq->metadata == 739 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 740 wq = fs_info->endio_repair_workers; 741 func = btrfs_endio_repair_helper; 742 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 743 wq = fs_info->endio_raid56_workers; 744 func = btrfs_endio_raid56_helper; 745 } else if (end_io_wq->metadata) { 746 wq = fs_info->endio_meta_workers; 747 func = btrfs_endio_meta_helper; 748 } else { 749 wq = fs_info->endio_workers; 750 func = btrfs_endio_helper; 751 } 752 } 753 754 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 755 btrfs_queue_work(wq, &end_io_wq->work); 756 } 757 758 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 759 enum btrfs_wq_endio_type metadata) 760 { 761 struct btrfs_end_io_wq *end_io_wq; 762 763 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 764 if (!end_io_wq) 765 return -ENOMEM; 766 767 end_io_wq->private = bio->bi_private; 768 end_io_wq->end_io = bio->bi_end_io; 769 end_io_wq->info = info; 770 end_io_wq->error = 0; 771 end_io_wq->bio = bio; 772 end_io_wq->metadata = metadata; 773 774 bio->bi_private = end_io_wq; 775 bio->bi_end_io = end_workqueue_bio; 776 return 0; 777 } 778 779 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 780 { 781 unsigned long limit = min_t(unsigned long, 782 info->thread_pool_size, 783 info->fs_devices->open_devices); 784 return 256 * limit; 785 } 786 787 static void run_one_async_start(struct btrfs_work *work) 788 { 789 struct async_submit_bio *async; 790 int ret; 791 792 async = container_of(work, struct async_submit_bio, work); 793 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 794 async->mirror_num, async->bio_flags, 795 async->bio_offset); 796 if (ret) 797 async->error = ret; 798 } 799 800 static void run_one_async_done(struct btrfs_work *work) 801 { 802 struct btrfs_fs_info *fs_info; 803 struct async_submit_bio *async; 804 int limit; 805 806 async = container_of(work, struct async_submit_bio, work); 807 fs_info = BTRFS_I(async->inode)->root->fs_info; 808 809 limit = btrfs_async_submit_limit(fs_info); 810 limit = limit * 2 / 3; 811 812 /* 813 * atomic_dec_return implies a barrier for waitqueue_active 814 */ 815 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 816 waitqueue_active(&fs_info->async_submit_wait)) 817 wake_up(&fs_info->async_submit_wait); 818 819 /* If an error occurred we just want to clean up the bio and move on */ 820 if (async->error) { 821 async->bio->bi_error = async->error; 822 bio_endio(async->bio); 823 return; 824 } 825 826 async->submit_bio_done(async->inode, async->rw, async->bio, 827 async->mirror_num, async->bio_flags, 828 async->bio_offset); 829 } 830 831 static void run_one_async_free(struct btrfs_work *work) 832 { 833 struct async_submit_bio *async; 834 835 async = container_of(work, struct async_submit_bio, work); 836 kfree(async); 837 } 838 839 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 840 int rw, struct bio *bio, int mirror_num, 841 unsigned long bio_flags, 842 u64 bio_offset, 843 extent_submit_bio_hook_t *submit_bio_start, 844 extent_submit_bio_hook_t *submit_bio_done) 845 { 846 struct async_submit_bio *async; 847 848 async = kmalloc(sizeof(*async), GFP_NOFS); 849 if (!async) 850 return -ENOMEM; 851 852 async->inode = inode; 853 async->rw = rw; 854 async->bio = bio; 855 async->mirror_num = mirror_num; 856 async->submit_bio_start = submit_bio_start; 857 async->submit_bio_done = submit_bio_done; 858 859 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 860 run_one_async_done, run_one_async_free); 861 862 async->bio_flags = bio_flags; 863 async->bio_offset = bio_offset; 864 865 async->error = 0; 866 867 atomic_inc(&fs_info->nr_async_submits); 868 869 if (rw & REQ_SYNC) 870 btrfs_set_work_high_priority(&async->work); 871 872 btrfs_queue_work(fs_info->workers, &async->work); 873 874 while (atomic_read(&fs_info->async_submit_draining) && 875 atomic_read(&fs_info->nr_async_submits)) { 876 wait_event(fs_info->async_submit_wait, 877 (atomic_read(&fs_info->nr_async_submits) == 0)); 878 } 879 880 return 0; 881 } 882 883 static int btree_csum_one_bio(struct bio *bio) 884 { 885 struct bio_vec *bvec; 886 struct btrfs_root *root; 887 int i, ret = 0; 888 889 bio_for_each_segment_all(bvec, bio, i) { 890 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 891 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 892 if (ret) 893 break; 894 } 895 896 return ret; 897 } 898 899 static int __btree_submit_bio_start(struct inode *inode, int rw, 900 struct bio *bio, int mirror_num, 901 unsigned long bio_flags, 902 u64 bio_offset) 903 { 904 /* 905 * when we're called for a write, we're already in the async 906 * submission context. Just jump into btrfs_map_bio 907 */ 908 return btree_csum_one_bio(bio); 909 } 910 911 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 912 int mirror_num, unsigned long bio_flags, 913 u64 bio_offset) 914 { 915 int ret; 916 917 /* 918 * when we're called for a write, we're already in the async 919 * submission context. Just jump into btrfs_map_bio 920 */ 921 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 922 if (ret) { 923 bio->bi_error = ret; 924 bio_endio(bio); 925 } 926 return ret; 927 } 928 929 static int check_async_write(struct inode *inode, unsigned long bio_flags) 930 { 931 if (bio_flags & EXTENT_BIO_TREE_LOG) 932 return 0; 933 #ifdef CONFIG_X86 934 if (static_cpu_has(X86_FEATURE_XMM4_2)) 935 return 0; 936 #endif 937 return 1; 938 } 939 940 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 941 int mirror_num, unsigned long bio_flags, 942 u64 bio_offset) 943 { 944 int async = check_async_write(inode, bio_flags); 945 int ret; 946 947 if (!(rw & REQ_WRITE)) { 948 /* 949 * called for a read, do the setup so that checksum validation 950 * can happen in the async kernel threads 951 */ 952 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 953 bio, BTRFS_WQ_ENDIO_METADATA); 954 if (ret) 955 goto out_w_error; 956 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 957 mirror_num, 0); 958 } else if (!async) { 959 ret = btree_csum_one_bio(bio); 960 if (ret) 961 goto out_w_error; 962 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 963 mirror_num, 0); 964 } else { 965 /* 966 * kthread helpers are used to submit writes so that 967 * checksumming can happen in parallel across all CPUs 968 */ 969 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 970 inode, rw, bio, mirror_num, 0, 971 bio_offset, 972 __btree_submit_bio_start, 973 __btree_submit_bio_done); 974 } 975 976 if (ret) 977 goto out_w_error; 978 return 0; 979 980 out_w_error: 981 bio->bi_error = ret; 982 bio_endio(bio); 983 return ret; 984 } 985 986 #ifdef CONFIG_MIGRATION 987 static int btree_migratepage(struct address_space *mapping, 988 struct page *newpage, struct page *page, 989 enum migrate_mode mode) 990 { 991 /* 992 * we can't safely write a btree page from here, 993 * we haven't done the locking hook 994 */ 995 if (PageDirty(page)) 996 return -EAGAIN; 997 /* 998 * Buffers may be managed in a filesystem specific way. 999 * We must have no buffers or drop them. 1000 */ 1001 if (page_has_private(page) && 1002 !try_to_release_page(page, GFP_KERNEL)) 1003 return -EAGAIN; 1004 return migrate_page(mapping, newpage, page, mode); 1005 } 1006 #endif 1007 1008 1009 static int btree_writepages(struct address_space *mapping, 1010 struct writeback_control *wbc) 1011 { 1012 struct btrfs_fs_info *fs_info; 1013 int ret; 1014 1015 if (wbc->sync_mode == WB_SYNC_NONE) { 1016 1017 if (wbc->for_kupdate) 1018 return 0; 1019 1020 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1021 /* this is a bit racy, but that's ok */ 1022 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1023 BTRFS_DIRTY_METADATA_THRESH); 1024 if (ret < 0) 1025 return 0; 1026 } 1027 return btree_write_cache_pages(mapping, wbc); 1028 } 1029 1030 static int btree_readpage(struct file *file, struct page *page) 1031 { 1032 struct extent_io_tree *tree; 1033 tree = &BTRFS_I(page->mapping->host)->io_tree; 1034 return extent_read_full_page(tree, page, btree_get_extent, 0); 1035 } 1036 1037 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1038 { 1039 if (PageWriteback(page) || PageDirty(page)) 1040 return 0; 1041 1042 return try_release_extent_buffer(page); 1043 } 1044 1045 static void btree_invalidatepage(struct page *page, unsigned int offset, 1046 unsigned int length) 1047 { 1048 struct extent_io_tree *tree; 1049 tree = &BTRFS_I(page->mapping->host)->io_tree; 1050 extent_invalidatepage(tree, page, offset); 1051 btree_releasepage(page, GFP_NOFS); 1052 if (PagePrivate(page)) { 1053 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1054 "page private not zero on page %llu", 1055 (unsigned long long)page_offset(page)); 1056 ClearPagePrivate(page); 1057 set_page_private(page, 0); 1058 page_cache_release(page); 1059 } 1060 } 1061 1062 static int btree_set_page_dirty(struct page *page) 1063 { 1064 #ifdef DEBUG 1065 struct extent_buffer *eb; 1066 1067 BUG_ON(!PagePrivate(page)); 1068 eb = (struct extent_buffer *)page->private; 1069 BUG_ON(!eb); 1070 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1071 BUG_ON(!atomic_read(&eb->refs)); 1072 btrfs_assert_tree_locked(eb); 1073 #endif 1074 return __set_page_dirty_nobuffers(page); 1075 } 1076 1077 static const struct address_space_operations btree_aops = { 1078 .readpage = btree_readpage, 1079 .writepages = btree_writepages, 1080 .releasepage = btree_releasepage, 1081 .invalidatepage = btree_invalidatepage, 1082 #ifdef CONFIG_MIGRATION 1083 .migratepage = btree_migratepage, 1084 #endif 1085 .set_page_dirty = btree_set_page_dirty, 1086 }; 1087 1088 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1089 { 1090 struct extent_buffer *buf = NULL; 1091 struct inode *btree_inode = root->fs_info->btree_inode; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr); 1094 if (!buf) 1095 return; 1096 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1097 buf, 0, WAIT_NONE, btree_get_extent, 0); 1098 free_extent_buffer(buf); 1099 } 1100 1101 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1102 int mirror_num, struct extent_buffer **eb) 1103 { 1104 struct extent_buffer *buf = NULL; 1105 struct inode *btree_inode = root->fs_info->btree_inode; 1106 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1107 int ret; 1108 1109 buf = btrfs_find_create_tree_block(root, bytenr); 1110 if (!buf) 1111 return 0; 1112 1113 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1114 1115 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1116 btree_get_extent, mirror_num); 1117 if (ret) { 1118 free_extent_buffer(buf); 1119 return ret; 1120 } 1121 1122 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1123 free_extent_buffer(buf); 1124 return -EIO; 1125 } else if (extent_buffer_uptodate(buf)) { 1126 *eb = buf; 1127 } else { 1128 free_extent_buffer(buf); 1129 } 1130 return 0; 1131 } 1132 1133 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1134 u64 bytenr) 1135 { 1136 return find_extent_buffer(fs_info, bytenr); 1137 } 1138 1139 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1140 u64 bytenr) 1141 { 1142 if (btrfs_test_is_dummy_root(root)) 1143 return alloc_test_extent_buffer(root->fs_info, bytenr); 1144 return alloc_extent_buffer(root->fs_info, bytenr); 1145 } 1146 1147 1148 int btrfs_write_tree_block(struct extent_buffer *buf) 1149 { 1150 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1151 buf->start + buf->len - 1); 1152 } 1153 1154 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1155 { 1156 return filemap_fdatawait_range(buf->pages[0]->mapping, 1157 buf->start, buf->start + buf->len - 1); 1158 } 1159 1160 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1161 u64 parent_transid) 1162 { 1163 struct extent_buffer *buf = NULL; 1164 int ret; 1165 1166 buf = btrfs_find_create_tree_block(root, bytenr); 1167 if (!buf) 1168 return ERR_PTR(-ENOMEM); 1169 1170 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1171 if (ret) { 1172 free_extent_buffer(buf); 1173 return ERR_PTR(ret); 1174 } 1175 return buf; 1176 1177 } 1178 1179 void clean_tree_block(struct btrfs_trans_handle *trans, 1180 struct btrfs_fs_info *fs_info, 1181 struct extent_buffer *buf) 1182 { 1183 if (btrfs_header_generation(buf) == 1184 fs_info->running_transaction->transid) { 1185 btrfs_assert_tree_locked(buf); 1186 1187 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1188 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1189 -buf->len, 1190 fs_info->dirty_metadata_batch); 1191 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1192 btrfs_set_lock_blocking(buf); 1193 clear_extent_buffer_dirty(buf); 1194 } 1195 } 1196 } 1197 1198 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1199 { 1200 struct btrfs_subvolume_writers *writers; 1201 int ret; 1202 1203 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1204 if (!writers) 1205 return ERR_PTR(-ENOMEM); 1206 1207 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1208 if (ret < 0) { 1209 kfree(writers); 1210 return ERR_PTR(ret); 1211 } 1212 1213 init_waitqueue_head(&writers->wait); 1214 return writers; 1215 } 1216 1217 static void 1218 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1219 { 1220 percpu_counter_destroy(&writers->counter); 1221 kfree(writers); 1222 } 1223 1224 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1225 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1226 u64 objectid) 1227 { 1228 root->node = NULL; 1229 root->commit_root = NULL; 1230 root->sectorsize = sectorsize; 1231 root->nodesize = nodesize; 1232 root->stripesize = stripesize; 1233 root->state = 0; 1234 root->orphan_cleanup_state = 0; 1235 1236 root->objectid = objectid; 1237 root->last_trans = 0; 1238 root->highest_objectid = 0; 1239 root->nr_delalloc_inodes = 0; 1240 root->nr_ordered_extents = 0; 1241 root->name = NULL; 1242 root->inode_tree = RB_ROOT; 1243 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1244 root->block_rsv = NULL; 1245 root->orphan_block_rsv = NULL; 1246 1247 INIT_LIST_HEAD(&root->dirty_list); 1248 INIT_LIST_HEAD(&root->root_list); 1249 INIT_LIST_HEAD(&root->delalloc_inodes); 1250 INIT_LIST_HEAD(&root->delalloc_root); 1251 INIT_LIST_HEAD(&root->ordered_extents); 1252 INIT_LIST_HEAD(&root->ordered_root); 1253 INIT_LIST_HEAD(&root->logged_list[0]); 1254 INIT_LIST_HEAD(&root->logged_list[1]); 1255 spin_lock_init(&root->orphan_lock); 1256 spin_lock_init(&root->inode_lock); 1257 spin_lock_init(&root->delalloc_lock); 1258 spin_lock_init(&root->ordered_extent_lock); 1259 spin_lock_init(&root->accounting_lock); 1260 spin_lock_init(&root->log_extents_lock[0]); 1261 spin_lock_init(&root->log_extents_lock[1]); 1262 mutex_init(&root->objectid_mutex); 1263 mutex_init(&root->log_mutex); 1264 mutex_init(&root->ordered_extent_mutex); 1265 mutex_init(&root->delalloc_mutex); 1266 init_waitqueue_head(&root->log_writer_wait); 1267 init_waitqueue_head(&root->log_commit_wait[0]); 1268 init_waitqueue_head(&root->log_commit_wait[1]); 1269 INIT_LIST_HEAD(&root->log_ctxs[0]); 1270 INIT_LIST_HEAD(&root->log_ctxs[1]); 1271 atomic_set(&root->log_commit[0], 0); 1272 atomic_set(&root->log_commit[1], 0); 1273 atomic_set(&root->log_writers, 0); 1274 atomic_set(&root->log_batch, 0); 1275 atomic_set(&root->orphan_inodes, 0); 1276 atomic_set(&root->refs, 1); 1277 atomic_set(&root->will_be_snapshoted, 0); 1278 atomic_set(&root->qgroup_meta_rsv, 0); 1279 root->log_transid = 0; 1280 root->log_transid_committed = -1; 1281 root->last_log_commit = 0; 1282 if (fs_info) 1283 extent_io_tree_init(&root->dirty_log_pages, 1284 fs_info->btree_inode->i_mapping); 1285 1286 memset(&root->root_key, 0, sizeof(root->root_key)); 1287 memset(&root->root_item, 0, sizeof(root->root_item)); 1288 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1289 if (fs_info) 1290 root->defrag_trans_start = fs_info->generation; 1291 else 1292 root->defrag_trans_start = 0; 1293 root->root_key.objectid = objectid; 1294 root->anon_dev = 0; 1295 1296 spin_lock_init(&root->root_item_lock); 1297 } 1298 1299 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1300 gfp_t flags) 1301 { 1302 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1303 if (root) 1304 root->fs_info = fs_info; 1305 return root; 1306 } 1307 1308 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1309 /* Should only be used by the testing infrastructure */ 1310 struct btrfs_root *btrfs_alloc_dummy_root(void) 1311 { 1312 struct btrfs_root *root; 1313 1314 root = btrfs_alloc_root(NULL, GFP_KERNEL); 1315 if (!root) 1316 return ERR_PTR(-ENOMEM); 1317 __setup_root(4096, 4096, 4096, root, NULL, 1); 1318 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1319 root->alloc_bytenr = 0; 1320 1321 return root; 1322 } 1323 #endif 1324 1325 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1326 struct btrfs_fs_info *fs_info, 1327 u64 objectid) 1328 { 1329 struct extent_buffer *leaf; 1330 struct btrfs_root *tree_root = fs_info->tree_root; 1331 struct btrfs_root *root; 1332 struct btrfs_key key; 1333 int ret = 0; 1334 uuid_le uuid; 1335 1336 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1337 if (!root) 1338 return ERR_PTR(-ENOMEM); 1339 1340 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1341 tree_root->stripesize, root, fs_info, objectid); 1342 root->root_key.objectid = objectid; 1343 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1344 root->root_key.offset = 0; 1345 1346 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1347 if (IS_ERR(leaf)) { 1348 ret = PTR_ERR(leaf); 1349 leaf = NULL; 1350 goto fail; 1351 } 1352 1353 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1354 btrfs_set_header_bytenr(leaf, leaf->start); 1355 btrfs_set_header_generation(leaf, trans->transid); 1356 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1357 btrfs_set_header_owner(leaf, objectid); 1358 root->node = leaf; 1359 1360 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1361 BTRFS_FSID_SIZE); 1362 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1363 btrfs_header_chunk_tree_uuid(leaf), 1364 BTRFS_UUID_SIZE); 1365 btrfs_mark_buffer_dirty(leaf); 1366 1367 root->commit_root = btrfs_root_node(root); 1368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1369 1370 root->root_item.flags = 0; 1371 root->root_item.byte_limit = 0; 1372 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1373 btrfs_set_root_generation(&root->root_item, trans->transid); 1374 btrfs_set_root_level(&root->root_item, 0); 1375 btrfs_set_root_refs(&root->root_item, 1); 1376 btrfs_set_root_used(&root->root_item, leaf->len); 1377 btrfs_set_root_last_snapshot(&root->root_item, 0); 1378 btrfs_set_root_dirid(&root->root_item, 0); 1379 uuid_le_gen(&uuid); 1380 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1381 root->root_item.drop_level = 0; 1382 1383 key.objectid = objectid; 1384 key.type = BTRFS_ROOT_ITEM_KEY; 1385 key.offset = 0; 1386 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1387 if (ret) 1388 goto fail; 1389 1390 btrfs_tree_unlock(leaf); 1391 1392 return root; 1393 1394 fail: 1395 if (leaf) { 1396 btrfs_tree_unlock(leaf); 1397 free_extent_buffer(root->commit_root); 1398 free_extent_buffer(leaf); 1399 } 1400 kfree(root); 1401 1402 return ERR_PTR(ret); 1403 } 1404 1405 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1406 struct btrfs_fs_info *fs_info) 1407 { 1408 struct btrfs_root *root; 1409 struct btrfs_root *tree_root = fs_info->tree_root; 1410 struct extent_buffer *leaf; 1411 1412 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1413 if (!root) 1414 return ERR_PTR(-ENOMEM); 1415 1416 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1417 tree_root->stripesize, root, fs_info, 1418 BTRFS_TREE_LOG_OBJECTID); 1419 1420 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1421 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1422 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1423 1424 /* 1425 * DON'T set REF_COWS for log trees 1426 * 1427 * log trees do not get reference counted because they go away 1428 * before a real commit is actually done. They do store pointers 1429 * to file data extents, and those reference counts still get 1430 * updated (along with back refs to the log tree). 1431 */ 1432 1433 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1434 NULL, 0, 0, 0); 1435 if (IS_ERR(leaf)) { 1436 kfree(root); 1437 return ERR_CAST(leaf); 1438 } 1439 1440 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1441 btrfs_set_header_bytenr(leaf, leaf->start); 1442 btrfs_set_header_generation(leaf, trans->transid); 1443 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1444 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1445 root->node = leaf; 1446 1447 write_extent_buffer(root->node, root->fs_info->fsid, 1448 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1449 btrfs_mark_buffer_dirty(root->node); 1450 btrfs_tree_unlock(root->node); 1451 return root; 1452 } 1453 1454 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1455 struct btrfs_fs_info *fs_info) 1456 { 1457 struct btrfs_root *log_root; 1458 1459 log_root = alloc_log_tree(trans, fs_info); 1460 if (IS_ERR(log_root)) 1461 return PTR_ERR(log_root); 1462 WARN_ON(fs_info->log_root_tree); 1463 fs_info->log_root_tree = log_root; 1464 return 0; 1465 } 1466 1467 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1468 struct btrfs_root *root) 1469 { 1470 struct btrfs_root *log_root; 1471 struct btrfs_inode_item *inode_item; 1472 1473 log_root = alloc_log_tree(trans, root->fs_info); 1474 if (IS_ERR(log_root)) 1475 return PTR_ERR(log_root); 1476 1477 log_root->last_trans = trans->transid; 1478 log_root->root_key.offset = root->root_key.objectid; 1479 1480 inode_item = &log_root->root_item.inode; 1481 btrfs_set_stack_inode_generation(inode_item, 1); 1482 btrfs_set_stack_inode_size(inode_item, 3); 1483 btrfs_set_stack_inode_nlink(inode_item, 1); 1484 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1485 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1486 1487 btrfs_set_root_node(&log_root->root_item, log_root->node); 1488 1489 WARN_ON(root->log_root); 1490 root->log_root = log_root; 1491 root->log_transid = 0; 1492 root->log_transid_committed = -1; 1493 root->last_log_commit = 0; 1494 return 0; 1495 } 1496 1497 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1498 struct btrfs_key *key) 1499 { 1500 struct btrfs_root *root; 1501 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1502 struct btrfs_path *path; 1503 u64 generation; 1504 int ret; 1505 1506 path = btrfs_alloc_path(); 1507 if (!path) 1508 return ERR_PTR(-ENOMEM); 1509 1510 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1511 if (!root) { 1512 ret = -ENOMEM; 1513 goto alloc_fail; 1514 } 1515 1516 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1517 tree_root->stripesize, root, fs_info, key->objectid); 1518 1519 ret = btrfs_find_root(tree_root, key, path, 1520 &root->root_item, &root->root_key); 1521 if (ret) { 1522 if (ret > 0) 1523 ret = -ENOENT; 1524 goto find_fail; 1525 } 1526 1527 generation = btrfs_root_generation(&root->root_item); 1528 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1529 generation); 1530 if (IS_ERR(root->node)) { 1531 ret = PTR_ERR(root->node); 1532 goto find_fail; 1533 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1534 ret = -EIO; 1535 free_extent_buffer(root->node); 1536 goto find_fail; 1537 } 1538 root->commit_root = btrfs_root_node(root); 1539 out: 1540 btrfs_free_path(path); 1541 return root; 1542 1543 find_fail: 1544 kfree(root); 1545 alloc_fail: 1546 root = ERR_PTR(ret); 1547 goto out; 1548 } 1549 1550 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1551 struct btrfs_key *location) 1552 { 1553 struct btrfs_root *root; 1554 1555 root = btrfs_read_tree_root(tree_root, location); 1556 if (IS_ERR(root)) 1557 return root; 1558 1559 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1560 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1561 btrfs_check_and_init_root_item(&root->root_item); 1562 } 1563 1564 return root; 1565 } 1566 1567 int btrfs_init_fs_root(struct btrfs_root *root) 1568 { 1569 int ret; 1570 struct btrfs_subvolume_writers *writers; 1571 1572 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1573 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1574 GFP_NOFS); 1575 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1576 ret = -ENOMEM; 1577 goto fail; 1578 } 1579 1580 writers = btrfs_alloc_subvolume_writers(); 1581 if (IS_ERR(writers)) { 1582 ret = PTR_ERR(writers); 1583 goto fail; 1584 } 1585 root->subv_writers = writers; 1586 1587 btrfs_init_free_ino_ctl(root); 1588 spin_lock_init(&root->ino_cache_lock); 1589 init_waitqueue_head(&root->ino_cache_wait); 1590 1591 ret = get_anon_bdev(&root->anon_dev); 1592 if (ret) 1593 goto free_writers; 1594 1595 mutex_lock(&root->objectid_mutex); 1596 ret = btrfs_find_highest_objectid(root, 1597 &root->highest_objectid); 1598 if (ret) { 1599 mutex_unlock(&root->objectid_mutex); 1600 goto free_root_dev; 1601 } 1602 1603 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1604 1605 mutex_unlock(&root->objectid_mutex); 1606 1607 return 0; 1608 1609 free_root_dev: 1610 free_anon_bdev(root->anon_dev); 1611 free_writers: 1612 btrfs_free_subvolume_writers(root->subv_writers); 1613 fail: 1614 kfree(root->free_ino_ctl); 1615 kfree(root->free_ino_pinned); 1616 return ret; 1617 } 1618 1619 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1620 u64 root_id) 1621 { 1622 struct btrfs_root *root; 1623 1624 spin_lock(&fs_info->fs_roots_radix_lock); 1625 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1626 (unsigned long)root_id); 1627 spin_unlock(&fs_info->fs_roots_radix_lock); 1628 return root; 1629 } 1630 1631 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1632 struct btrfs_root *root) 1633 { 1634 int ret; 1635 1636 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1637 if (ret) 1638 return ret; 1639 1640 spin_lock(&fs_info->fs_roots_radix_lock); 1641 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1642 (unsigned long)root->root_key.objectid, 1643 root); 1644 if (ret == 0) 1645 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1646 spin_unlock(&fs_info->fs_roots_radix_lock); 1647 radix_tree_preload_end(); 1648 1649 return ret; 1650 } 1651 1652 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1653 struct btrfs_key *location, 1654 bool check_ref) 1655 { 1656 struct btrfs_root *root; 1657 struct btrfs_path *path; 1658 struct btrfs_key key; 1659 int ret; 1660 1661 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1662 return fs_info->tree_root; 1663 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1664 return fs_info->extent_root; 1665 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1666 return fs_info->chunk_root; 1667 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1668 return fs_info->dev_root; 1669 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1670 return fs_info->csum_root; 1671 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1672 return fs_info->quota_root ? fs_info->quota_root : 1673 ERR_PTR(-ENOENT); 1674 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1675 return fs_info->uuid_root ? fs_info->uuid_root : 1676 ERR_PTR(-ENOENT); 1677 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1678 return fs_info->free_space_root ? fs_info->free_space_root : 1679 ERR_PTR(-ENOENT); 1680 again: 1681 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1682 if (root) { 1683 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1684 return ERR_PTR(-ENOENT); 1685 return root; 1686 } 1687 1688 root = btrfs_read_fs_root(fs_info->tree_root, location); 1689 if (IS_ERR(root)) 1690 return root; 1691 1692 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1693 ret = -ENOENT; 1694 goto fail; 1695 } 1696 1697 ret = btrfs_init_fs_root(root); 1698 if (ret) 1699 goto fail; 1700 1701 path = btrfs_alloc_path(); 1702 if (!path) { 1703 ret = -ENOMEM; 1704 goto fail; 1705 } 1706 key.objectid = BTRFS_ORPHAN_OBJECTID; 1707 key.type = BTRFS_ORPHAN_ITEM_KEY; 1708 key.offset = location->objectid; 1709 1710 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1711 btrfs_free_path(path); 1712 if (ret < 0) 1713 goto fail; 1714 if (ret == 0) 1715 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1716 1717 ret = btrfs_insert_fs_root(fs_info, root); 1718 if (ret) { 1719 if (ret == -EEXIST) { 1720 free_fs_root(root); 1721 goto again; 1722 } 1723 goto fail; 1724 } 1725 return root; 1726 fail: 1727 free_fs_root(root); 1728 return ERR_PTR(ret); 1729 } 1730 1731 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1732 { 1733 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1734 int ret = 0; 1735 struct btrfs_device *device; 1736 struct backing_dev_info *bdi; 1737 1738 rcu_read_lock(); 1739 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1740 if (!device->bdev) 1741 continue; 1742 bdi = blk_get_backing_dev_info(device->bdev); 1743 if (bdi_congested(bdi, bdi_bits)) { 1744 ret = 1; 1745 break; 1746 } 1747 } 1748 rcu_read_unlock(); 1749 return ret; 1750 } 1751 1752 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1753 { 1754 int err; 1755 1756 err = bdi_setup_and_register(bdi, "btrfs"); 1757 if (err) 1758 return err; 1759 1760 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1761 bdi->congested_fn = btrfs_congested_fn; 1762 bdi->congested_data = info; 1763 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1764 return 0; 1765 } 1766 1767 /* 1768 * called by the kthread helper functions to finally call the bio end_io 1769 * functions. This is where read checksum verification actually happens 1770 */ 1771 static void end_workqueue_fn(struct btrfs_work *work) 1772 { 1773 struct bio *bio; 1774 struct btrfs_end_io_wq *end_io_wq; 1775 1776 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1777 bio = end_io_wq->bio; 1778 1779 bio->bi_error = end_io_wq->error; 1780 bio->bi_private = end_io_wq->private; 1781 bio->bi_end_io = end_io_wq->end_io; 1782 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1783 bio_endio(bio); 1784 } 1785 1786 static int cleaner_kthread(void *arg) 1787 { 1788 struct btrfs_root *root = arg; 1789 int again; 1790 struct btrfs_trans_handle *trans; 1791 1792 do { 1793 again = 0; 1794 1795 /* Make the cleaner go to sleep early. */ 1796 if (btrfs_need_cleaner_sleep(root)) 1797 goto sleep; 1798 1799 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1800 goto sleep; 1801 1802 /* 1803 * Avoid the problem that we change the status of the fs 1804 * during the above check and trylock. 1805 */ 1806 if (btrfs_need_cleaner_sleep(root)) { 1807 mutex_unlock(&root->fs_info->cleaner_mutex); 1808 goto sleep; 1809 } 1810 1811 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1812 btrfs_run_delayed_iputs(root); 1813 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1814 1815 again = btrfs_clean_one_deleted_snapshot(root); 1816 mutex_unlock(&root->fs_info->cleaner_mutex); 1817 1818 /* 1819 * The defragger has dealt with the R/O remount and umount, 1820 * needn't do anything special here. 1821 */ 1822 btrfs_run_defrag_inodes(root->fs_info); 1823 1824 /* 1825 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1826 * with relocation (btrfs_relocate_chunk) and relocation 1827 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1828 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1829 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1830 * unused block groups. 1831 */ 1832 btrfs_delete_unused_bgs(root->fs_info); 1833 sleep: 1834 if (!try_to_freeze() && !again) { 1835 set_current_state(TASK_INTERRUPTIBLE); 1836 if (!kthread_should_stop()) 1837 schedule(); 1838 __set_current_state(TASK_RUNNING); 1839 } 1840 } while (!kthread_should_stop()); 1841 1842 /* 1843 * Transaction kthread is stopped before us and wakes us up. 1844 * However we might have started a new transaction and COWed some 1845 * tree blocks when deleting unused block groups for example. So 1846 * make sure we commit the transaction we started to have a clean 1847 * shutdown when evicting the btree inode - if it has dirty pages 1848 * when we do the final iput() on it, eviction will trigger a 1849 * writeback for it which will fail with null pointer dereferences 1850 * since work queues and other resources were already released and 1851 * destroyed by the time the iput/eviction/writeback is made. 1852 */ 1853 trans = btrfs_attach_transaction(root); 1854 if (IS_ERR(trans)) { 1855 if (PTR_ERR(trans) != -ENOENT) 1856 btrfs_err(root->fs_info, 1857 "cleaner transaction attach returned %ld", 1858 PTR_ERR(trans)); 1859 } else { 1860 int ret; 1861 1862 ret = btrfs_commit_transaction(trans, root); 1863 if (ret) 1864 btrfs_err(root->fs_info, 1865 "cleaner open transaction commit returned %d", 1866 ret); 1867 } 1868 1869 return 0; 1870 } 1871 1872 static int transaction_kthread(void *arg) 1873 { 1874 struct btrfs_root *root = arg; 1875 struct btrfs_trans_handle *trans; 1876 struct btrfs_transaction *cur; 1877 u64 transid; 1878 unsigned long now; 1879 unsigned long delay; 1880 bool cannot_commit; 1881 1882 do { 1883 cannot_commit = false; 1884 delay = HZ * root->fs_info->commit_interval; 1885 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1886 1887 spin_lock(&root->fs_info->trans_lock); 1888 cur = root->fs_info->running_transaction; 1889 if (!cur) { 1890 spin_unlock(&root->fs_info->trans_lock); 1891 goto sleep; 1892 } 1893 1894 now = get_seconds(); 1895 if (cur->state < TRANS_STATE_BLOCKED && 1896 (now < cur->start_time || 1897 now - cur->start_time < root->fs_info->commit_interval)) { 1898 spin_unlock(&root->fs_info->trans_lock); 1899 delay = HZ * 5; 1900 goto sleep; 1901 } 1902 transid = cur->transid; 1903 spin_unlock(&root->fs_info->trans_lock); 1904 1905 /* If the file system is aborted, this will always fail. */ 1906 trans = btrfs_attach_transaction(root); 1907 if (IS_ERR(trans)) { 1908 if (PTR_ERR(trans) != -ENOENT) 1909 cannot_commit = true; 1910 goto sleep; 1911 } 1912 if (transid == trans->transid) { 1913 btrfs_commit_transaction(trans, root); 1914 } else { 1915 btrfs_end_transaction(trans, root); 1916 } 1917 sleep: 1918 wake_up_process(root->fs_info->cleaner_kthread); 1919 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1920 1921 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1922 &root->fs_info->fs_state))) 1923 btrfs_cleanup_transaction(root); 1924 if (!try_to_freeze()) { 1925 set_current_state(TASK_INTERRUPTIBLE); 1926 if (!kthread_should_stop() && 1927 (!btrfs_transaction_blocked(root->fs_info) || 1928 cannot_commit)) 1929 schedule_timeout(delay); 1930 __set_current_state(TASK_RUNNING); 1931 } 1932 } while (!kthread_should_stop()); 1933 return 0; 1934 } 1935 1936 /* 1937 * this will find the highest generation in the array of 1938 * root backups. The index of the highest array is returned, 1939 * or -1 if we can't find anything. 1940 * 1941 * We check to make sure the array is valid by comparing the 1942 * generation of the latest root in the array with the generation 1943 * in the super block. If they don't match we pitch it. 1944 */ 1945 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1946 { 1947 u64 cur; 1948 int newest_index = -1; 1949 struct btrfs_root_backup *root_backup; 1950 int i; 1951 1952 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1953 root_backup = info->super_copy->super_roots + i; 1954 cur = btrfs_backup_tree_root_gen(root_backup); 1955 if (cur == newest_gen) 1956 newest_index = i; 1957 } 1958 1959 /* check to see if we actually wrapped around */ 1960 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1961 root_backup = info->super_copy->super_roots; 1962 cur = btrfs_backup_tree_root_gen(root_backup); 1963 if (cur == newest_gen) 1964 newest_index = 0; 1965 } 1966 return newest_index; 1967 } 1968 1969 1970 /* 1971 * find the oldest backup so we know where to store new entries 1972 * in the backup array. This will set the backup_root_index 1973 * field in the fs_info struct 1974 */ 1975 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1976 u64 newest_gen) 1977 { 1978 int newest_index = -1; 1979 1980 newest_index = find_newest_super_backup(info, newest_gen); 1981 /* if there was garbage in there, just move along */ 1982 if (newest_index == -1) { 1983 info->backup_root_index = 0; 1984 } else { 1985 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1986 } 1987 } 1988 1989 /* 1990 * copy all the root pointers into the super backup array. 1991 * this will bump the backup pointer by one when it is 1992 * done 1993 */ 1994 static void backup_super_roots(struct btrfs_fs_info *info) 1995 { 1996 int next_backup; 1997 struct btrfs_root_backup *root_backup; 1998 int last_backup; 1999 2000 next_backup = info->backup_root_index; 2001 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2002 BTRFS_NUM_BACKUP_ROOTS; 2003 2004 /* 2005 * just overwrite the last backup if we're at the same generation 2006 * this happens only at umount 2007 */ 2008 root_backup = info->super_for_commit->super_roots + last_backup; 2009 if (btrfs_backup_tree_root_gen(root_backup) == 2010 btrfs_header_generation(info->tree_root->node)) 2011 next_backup = last_backup; 2012 2013 root_backup = info->super_for_commit->super_roots + next_backup; 2014 2015 /* 2016 * make sure all of our padding and empty slots get zero filled 2017 * regardless of which ones we use today 2018 */ 2019 memset(root_backup, 0, sizeof(*root_backup)); 2020 2021 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2022 2023 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2024 btrfs_set_backup_tree_root_gen(root_backup, 2025 btrfs_header_generation(info->tree_root->node)); 2026 2027 btrfs_set_backup_tree_root_level(root_backup, 2028 btrfs_header_level(info->tree_root->node)); 2029 2030 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2031 btrfs_set_backup_chunk_root_gen(root_backup, 2032 btrfs_header_generation(info->chunk_root->node)); 2033 btrfs_set_backup_chunk_root_level(root_backup, 2034 btrfs_header_level(info->chunk_root->node)); 2035 2036 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2037 btrfs_set_backup_extent_root_gen(root_backup, 2038 btrfs_header_generation(info->extent_root->node)); 2039 btrfs_set_backup_extent_root_level(root_backup, 2040 btrfs_header_level(info->extent_root->node)); 2041 2042 /* 2043 * we might commit during log recovery, which happens before we set 2044 * the fs_root. Make sure it is valid before we fill it in. 2045 */ 2046 if (info->fs_root && info->fs_root->node) { 2047 btrfs_set_backup_fs_root(root_backup, 2048 info->fs_root->node->start); 2049 btrfs_set_backup_fs_root_gen(root_backup, 2050 btrfs_header_generation(info->fs_root->node)); 2051 btrfs_set_backup_fs_root_level(root_backup, 2052 btrfs_header_level(info->fs_root->node)); 2053 } 2054 2055 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2056 btrfs_set_backup_dev_root_gen(root_backup, 2057 btrfs_header_generation(info->dev_root->node)); 2058 btrfs_set_backup_dev_root_level(root_backup, 2059 btrfs_header_level(info->dev_root->node)); 2060 2061 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2062 btrfs_set_backup_csum_root_gen(root_backup, 2063 btrfs_header_generation(info->csum_root->node)); 2064 btrfs_set_backup_csum_root_level(root_backup, 2065 btrfs_header_level(info->csum_root->node)); 2066 2067 btrfs_set_backup_total_bytes(root_backup, 2068 btrfs_super_total_bytes(info->super_copy)); 2069 btrfs_set_backup_bytes_used(root_backup, 2070 btrfs_super_bytes_used(info->super_copy)); 2071 btrfs_set_backup_num_devices(root_backup, 2072 btrfs_super_num_devices(info->super_copy)); 2073 2074 /* 2075 * if we don't copy this out to the super_copy, it won't get remembered 2076 * for the next commit 2077 */ 2078 memcpy(&info->super_copy->super_roots, 2079 &info->super_for_commit->super_roots, 2080 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2081 } 2082 2083 /* 2084 * this copies info out of the root backup array and back into 2085 * the in-memory super block. It is meant to help iterate through 2086 * the array, so you send it the number of backups you've already 2087 * tried and the last backup index you used. 2088 * 2089 * this returns -1 when it has tried all the backups 2090 */ 2091 static noinline int next_root_backup(struct btrfs_fs_info *info, 2092 struct btrfs_super_block *super, 2093 int *num_backups_tried, int *backup_index) 2094 { 2095 struct btrfs_root_backup *root_backup; 2096 int newest = *backup_index; 2097 2098 if (*num_backups_tried == 0) { 2099 u64 gen = btrfs_super_generation(super); 2100 2101 newest = find_newest_super_backup(info, gen); 2102 if (newest == -1) 2103 return -1; 2104 2105 *backup_index = newest; 2106 *num_backups_tried = 1; 2107 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2108 /* we've tried all the backups, all done */ 2109 return -1; 2110 } else { 2111 /* jump to the next oldest backup */ 2112 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2113 BTRFS_NUM_BACKUP_ROOTS; 2114 *backup_index = newest; 2115 *num_backups_tried += 1; 2116 } 2117 root_backup = super->super_roots + newest; 2118 2119 btrfs_set_super_generation(super, 2120 btrfs_backup_tree_root_gen(root_backup)); 2121 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2122 btrfs_set_super_root_level(super, 2123 btrfs_backup_tree_root_level(root_backup)); 2124 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2125 2126 /* 2127 * fixme: the total bytes and num_devices need to match or we should 2128 * need a fsck 2129 */ 2130 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2131 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2132 return 0; 2133 } 2134 2135 /* helper to cleanup workers */ 2136 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2137 { 2138 btrfs_destroy_workqueue(fs_info->fixup_workers); 2139 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2140 btrfs_destroy_workqueue(fs_info->workers); 2141 btrfs_destroy_workqueue(fs_info->endio_workers); 2142 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2143 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2144 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2145 btrfs_destroy_workqueue(fs_info->rmw_workers); 2146 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2147 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2148 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2149 btrfs_destroy_workqueue(fs_info->submit_workers); 2150 btrfs_destroy_workqueue(fs_info->delayed_workers); 2151 btrfs_destroy_workqueue(fs_info->caching_workers); 2152 btrfs_destroy_workqueue(fs_info->readahead_workers); 2153 btrfs_destroy_workqueue(fs_info->flush_workers); 2154 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2155 btrfs_destroy_workqueue(fs_info->extent_workers); 2156 } 2157 2158 static void free_root_extent_buffers(struct btrfs_root *root) 2159 { 2160 if (root) { 2161 free_extent_buffer(root->node); 2162 free_extent_buffer(root->commit_root); 2163 root->node = NULL; 2164 root->commit_root = NULL; 2165 } 2166 } 2167 2168 /* helper to cleanup tree roots */ 2169 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2170 { 2171 free_root_extent_buffers(info->tree_root); 2172 2173 free_root_extent_buffers(info->dev_root); 2174 free_root_extent_buffers(info->extent_root); 2175 free_root_extent_buffers(info->csum_root); 2176 free_root_extent_buffers(info->quota_root); 2177 free_root_extent_buffers(info->uuid_root); 2178 if (chunk_root) 2179 free_root_extent_buffers(info->chunk_root); 2180 free_root_extent_buffers(info->free_space_root); 2181 } 2182 2183 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2184 { 2185 int ret; 2186 struct btrfs_root *gang[8]; 2187 int i; 2188 2189 while (!list_empty(&fs_info->dead_roots)) { 2190 gang[0] = list_entry(fs_info->dead_roots.next, 2191 struct btrfs_root, root_list); 2192 list_del(&gang[0]->root_list); 2193 2194 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2195 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2196 } else { 2197 free_extent_buffer(gang[0]->node); 2198 free_extent_buffer(gang[0]->commit_root); 2199 btrfs_put_fs_root(gang[0]); 2200 } 2201 } 2202 2203 while (1) { 2204 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2205 (void **)gang, 0, 2206 ARRAY_SIZE(gang)); 2207 if (!ret) 2208 break; 2209 for (i = 0; i < ret; i++) 2210 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2211 } 2212 2213 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2214 btrfs_free_log_root_tree(NULL, fs_info); 2215 btrfs_destroy_pinned_extent(fs_info->tree_root, 2216 fs_info->pinned_extents); 2217 } 2218 } 2219 2220 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2221 { 2222 mutex_init(&fs_info->scrub_lock); 2223 atomic_set(&fs_info->scrubs_running, 0); 2224 atomic_set(&fs_info->scrub_pause_req, 0); 2225 atomic_set(&fs_info->scrubs_paused, 0); 2226 atomic_set(&fs_info->scrub_cancel_req, 0); 2227 init_waitqueue_head(&fs_info->scrub_pause_wait); 2228 fs_info->scrub_workers_refcnt = 0; 2229 } 2230 2231 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2232 { 2233 spin_lock_init(&fs_info->balance_lock); 2234 mutex_init(&fs_info->balance_mutex); 2235 atomic_set(&fs_info->balance_running, 0); 2236 atomic_set(&fs_info->balance_pause_req, 0); 2237 atomic_set(&fs_info->balance_cancel_req, 0); 2238 fs_info->balance_ctl = NULL; 2239 init_waitqueue_head(&fs_info->balance_wait_q); 2240 } 2241 2242 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2243 struct btrfs_root *tree_root) 2244 { 2245 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2246 set_nlink(fs_info->btree_inode, 1); 2247 /* 2248 * we set the i_size on the btree inode to the max possible int. 2249 * the real end of the address space is determined by all of 2250 * the devices in the system 2251 */ 2252 fs_info->btree_inode->i_size = OFFSET_MAX; 2253 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2254 2255 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2256 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2257 fs_info->btree_inode->i_mapping); 2258 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2259 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2260 2261 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2262 2263 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2264 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2265 sizeof(struct btrfs_key)); 2266 set_bit(BTRFS_INODE_DUMMY, 2267 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2268 btrfs_insert_inode_hash(fs_info->btree_inode); 2269 } 2270 2271 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2272 { 2273 fs_info->dev_replace.lock_owner = 0; 2274 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2275 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2276 rwlock_init(&fs_info->dev_replace.lock); 2277 atomic_set(&fs_info->dev_replace.read_locks, 0); 2278 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2279 init_waitqueue_head(&fs_info->replace_wait); 2280 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2281 } 2282 2283 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2284 { 2285 spin_lock_init(&fs_info->qgroup_lock); 2286 mutex_init(&fs_info->qgroup_ioctl_lock); 2287 fs_info->qgroup_tree = RB_ROOT; 2288 fs_info->qgroup_op_tree = RB_ROOT; 2289 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2290 fs_info->qgroup_seq = 1; 2291 fs_info->quota_enabled = 0; 2292 fs_info->pending_quota_state = 0; 2293 fs_info->qgroup_ulist = NULL; 2294 mutex_init(&fs_info->qgroup_rescan_lock); 2295 } 2296 2297 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2298 struct btrfs_fs_devices *fs_devices) 2299 { 2300 int max_active = fs_info->thread_pool_size; 2301 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2302 2303 fs_info->workers = 2304 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2305 max_active, 16); 2306 2307 fs_info->delalloc_workers = 2308 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2309 2310 fs_info->flush_workers = 2311 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2312 2313 fs_info->caching_workers = 2314 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2315 2316 /* 2317 * a higher idle thresh on the submit workers makes it much more 2318 * likely that bios will be send down in a sane order to the 2319 * devices 2320 */ 2321 fs_info->submit_workers = 2322 btrfs_alloc_workqueue("submit", flags, 2323 min_t(u64, fs_devices->num_devices, 2324 max_active), 64); 2325 2326 fs_info->fixup_workers = 2327 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2328 2329 /* 2330 * endios are largely parallel and should have a very 2331 * low idle thresh 2332 */ 2333 fs_info->endio_workers = 2334 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2335 fs_info->endio_meta_workers = 2336 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2337 fs_info->endio_meta_write_workers = 2338 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2339 fs_info->endio_raid56_workers = 2340 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2341 fs_info->endio_repair_workers = 2342 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2343 fs_info->rmw_workers = 2344 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2345 fs_info->endio_write_workers = 2346 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2347 fs_info->endio_freespace_worker = 2348 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2349 fs_info->delayed_workers = 2350 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2351 fs_info->readahead_workers = 2352 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2353 fs_info->qgroup_rescan_workers = 2354 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2355 fs_info->extent_workers = 2356 btrfs_alloc_workqueue("extent-refs", flags, 2357 min_t(u64, fs_devices->num_devices, 2358 max_active), 8); 2359 2360 if (!(fs_info->workers && fs_info->delalloc_workers && 2361 fs_info->submit_workers && fs_info->flush_workers && 2362 fs_info->endio_workers && fs_info->endio_meta_workers && 2363 fs_info->endio_meta_write_workers && 2364 fs_info->endio_repair_workers && 2365 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2366 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2367 fs_info->caching_workers && fs_info->readahead_workers && 2368 fs_info->fixup_workers && fs_info->delayed_workers && 2369 fs_info->extent_workers && 2370 fs_info->qgroup_rescan_workers)) { 2371 return -ENOMEM; 2372 } 2373 2374 return 0; 2375 } 2376 2377 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2378 struct btrfs_fs_devices *fs_devices) 2379 { 2380 int ret; 2381 struct btrfs_root *tree_root = fs_info->tree_root; 2382 struct btrfs_root *log_tree_root; 2383 struct btrfs_super_block *disk_super = fs_info->super_copy; 2384 u64 bytenr = btrfs_super_log_root(disk_super); 2385 2386 if (fs_devices->rw_devices == 0) { 2387 btrfs_warn(fs_info, "log replay required on RO media"); 2388 return -EIO; 2389 } 2390 2391 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2392 if (!log_tree_root) 2393 return -ENOMEM; 2394 2395 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2396 tree_root->stripesize, log_tree_root, fs_info, 2397 BTRFS_TREE_LOG_OBJECTID); 2398 2399 log_tree_root->node = read_tree_block(tree_root, bytenr, 2400 fs_info->generation + 1); 2401 if (IS_ERR(log_tree_root->node)) { 2402 btrfs_warn(fs_info, "failed to read log tree"); 2403 ret = PTR_ERR(log_tree_root->node); 2404 kfree(log_tree_root); 2405 return ret; 2406 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2407 btrfs_err(fs_info, "failed to read log tree"); 2408 free_extent_buffer(log_tree_root->node); 2409 kfree(log_tree_root); 2410 return -EIO; 2411 } 2412 /* returns with log_tree_root freed on success */ 2413 ret = btrfs_recover_log_trees(log_tree_root); 2414 if (ret) { 2415 btrfs_std_error(tree_root->fs_info, ret, 2416 "Failed to recover log tree"); 2417 free_extent_buffer(log_tree_root->node); 2418 kfree(log_tree_root); 2419 return ret; 2420 } 2421 2422 if (fs_info->sb->s_flags & MS_RDONLY) { 2423 ret = btrfs_commit_super(tree_root); 2424 if (ret) 2425 return ret; 2426 } 2427 2428 return 0; 2429 } 2430 2431 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2432 struct btrfs_root *tree_root) 2433 { 2434 struct btrfs_root *root; 2435 struct btrfs_key location; 2436 int ret; 2437 2438 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2439 location.type = BTRFS_ROOT_ITEM_KEY; 2440 location.offset = 0; 2441 2442 root = btrfs_read_tree_root(tree_root, &location); 2443 if (IS_ERR(root)) 2444 return PTR_ERR(root); 2445 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2446 fs_info->extent_root = root; 2447 2448 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2449 root = btrfs_read_tree_root(tree_root, &location); 2450 if (IS_ERR(root)) 2451 return PTR_ERR(root); 2452 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2453 fs_info->dev_root = root; 2454 btrfs_init_devices_late(fs_info); 2455 2456 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2457 root = btrfs_read_tree_root(tree_root, &location); 2458 if (IS_ERR(root)) 2459 return PTR_ERR(root); 2460 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2461 fs_info->csum_root = root; 2462 2463 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2464 root = btrfs_read_tree_root(tree_root, &location); 2465 if (!IS_ERR(root)) { 2466 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2467 fs_info->quota_enabled = 1; 2468 fs_info->pending_quota_state = 1; 2469 fs_info->quota_root = root; 2470 } 2471 2472 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2473 root = btrfs_read_tree_root(tree_root, &location); 2474 if (IS_ERR(root)) { 2475 ret = PTR_ERR(root); 2476 if (ret != -ENOENT) 2477 return ret; 2478 } else { 2479 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2480 fs_info->uuid_root = root; 2481 } 2482 2483 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2484 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2485 root = btrfs_read_tree_root(tree_root, &location); 2486 if (IS_ERR(root)) 2487 return PTR_ERR(root); 2488 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2489 fs_info->free_space_root = root; 2490 } 2491 2492 return 0; 2493 } 2494 2495 int open_ctree(struct super_block *sb, 2496 struct btrfs_fs_devices *fs_devices, 2497 char *options) 2498 { 2499 u32 sectorsize; 2500 u32 nodesize; 2501 u32 stripesize; 2502 u64 generation; 2503 u64 features; 2504 struct btrfs_key location; 2505 struct buffer_head *bh; 2506 struct btrfs_super_block *disk_super; 2507 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2508 struct btrfs_root *tree_root; 2509 struct btrfs_root *chunk_root; 2510 int ret; 2511 int err = -EINVAL; 2512 int num_backups_tried = 0; 2513 int backup_index = 0; 2514 int max_active; 2515 2516 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2517 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2518 if (!tree_root || !chunk_root) { 2519 err = -ENOMEM; 2520 goto fail; 2521 } 2522 2523 ret = init_srcu_struct(&fs_info->subvol_srcu); 2524 if (ret) { 2525 err = ret; 2526 goto fail; 2527 } 2528 2529 ret = setup_bdi(fs_info, &fs_info->bdi); 2530 if (ret) { 2531 err = ret; 2532 goto fail_srcu; 2533 } 2534 2535 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2536 if (ret) { 2537 err = ret; 2538 goto fail_bdi; 2539 } 2540 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2541 (1 + ilog2(nr_cpu_ids)); 2542 2543 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2544 if (ret) { 2545 err = ret; 2546 goto fail_dirty_metadata_bytes; 2547 } 2548 2549 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2550 if (ret) { 2551 err = ret; 2552 goto fail_delalloc_bytes; 2553 } 2554 2555 fs_info->btree_inode = new_inode(sb); 2556 if (!fs_info->btree_inode) { 2557 err = -ENOMEM; 2558 goto fail_bio_counter; 2559 } 2560 2561 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2562 2563 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2564 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2565 INIT_LIST_HEAD(&fs_info->trans_list); 2566 INIT_LIST_HEAD(&fs_info->dead_roots); 2567 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2568 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2569 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2570 spin_lock_init(&fs_info->delalloc_root_lock); 2571 spin_lock_init(&fs_info->trans_lock); 2572 spin_lock_init(&fs_info->fs_roots_radix_lock); 2573 spin_lock_init(&fs_info->delayed_iput_lock); 2574 spin_lock_init(&fs_info->defrag_inodes_lock); 2575 spin_lock_init(&fs_info->free_chunk_lock); 2576 spin_lock_init(&fs_info->tree_mod_seq_lock); 2577 spin_lock_init(&fs_info->super_lock); 2578 spin_lock_init(&fs_info->qgroup_op_lock); 2579 spin_lock_init(&fs_info->buffer_lock); 2580 spin_lock_init(&fs_info->unused_bgs_lock); 2581 rwlock_init(&fs_info->tree_mod_log_lock); 2582 mutex_init(&fs_info->unused_bg_unpin_mutex); 2583 mutex_init(&fs_info->delete_unused_bgs_mutex); 2584 mutex_init(&fs_info->reloc_mutex); 2585 mutex_init(&fs_info->delalloc_root_mutex); 2586 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2587 seqlock_init(&fs_info->profiles_lock); 2588 2589 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2590 INIT_LIST_HEAD(&fs_info->space_info); 2591 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2592 INIT_LIST_HEAD(&fs_info->unused_bgs); 2593 btrfs_mapping_init(&fs_info->mapping_tree); 2594 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2595 BTRFS_BLOCK_RSV_GLOBAL); 2596 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2597 BTRFS_BLOCK_RSV_DELALLOC); 2598 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2599 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2600 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2601 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2602 BTRFS_BLOCK_RSV_DELOPS); 2603 atomic_set(&fs_info->nr_async_submits, 0); 2604 atomic_set(&fs_info->async_delalloc_pages, 0); 2605 atomic_set(&fs_info->async_submit_draining, 0); 2606 atomic_set(&fs_info->nr_async_bios, 0); 2607 atomic_set(&fs_info->defrag_running, 0); 2608 atomic_set(&fs_info->qgroup_op_seq, 0); 2609 atomic_set(&fs_info->reada_works_cnt, 0); 2610 atomic64_set(&fs_info->tree_mod_seq, 0); 2611 fs_info->sb = sb; 2612 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2613 fs_info->metadata_ratio = 0; 2614 fs_info->defrag_inodes = RB_ROOT; 2615 fs_info->free_chunk_space = 0; 2616 fs_info->tree_mod_log = RB_ROOT; 2617 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2618 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2619 /* readahead state */ 2620 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2621 spin_lock_init(&fs_info->reada_lock); 2622 2623 fs_info->thread_pool_size = min_t(unsigned long, 2624 num_online_cpus() + 2, 8); 2625 2626 INIT_LIST_HEAD(&fs_info->ordered_roots); 2627 spin_lock_init(&fs_info->ordered_root_lock); 2628 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2629 GFP_KERNEL); 2630 if (!fs_info->delayed_root) { 2631 err = -ENOMEM; 2632 goto fail_iput; 2633 } 2634 btrfs_init_delayed_root(fs_info->delayed_root); 2635 2636 btrfs_init_scrub(fs_info); 2637 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2638 fs_info->check_integrity_print_mask = 0; 2639 #endif 2640 btrfs_init_balance(fs_info); 2641 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2642 2643 sb->s_blocksize = 4096; 2644 sb->s_blocksize_bits = blksize_bits(4096); 2645 sb->s_bdi = &fs_info->bdi; 2646 2647 btrfs_init_btree_inode(fs_info, tree_root); 2648 2649 spin_lock_init(&fs_info->block_group_cache_lock); 2650 fs_info->block_group_cache_tree = RB_ROOT; 2651 fs_info->first_logical_byte = (u64)-1; 2652 2653 extent_io_tree_init(&fs_info->freed_extents[0], 2654 fs_info->btree_inode->i_mapping); 2655 extent_io_tree_init(&fs_info->freed_extents[1], 2656 fs_info->btree_inode->i_mapping); 2657 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2658 fs_info->do_barriers = 1; 2659 2660 2661 mutex_init(&fs_info->ordered_operations_mutex); 2662 mutex_init(&fs_info->tree_log_mutex); 2663 mutex_init(&fs_info->chunk_mutex); 2664 mutex_init(&fs_info->transaction_kthread_mutex); 2665 mutex_init(&fs_info->cleaner_mutex); 2666 mutex_init(&fs_info->volume_mutex); 2667 mutex_init(&fs_info->ro_block_group_mutex); 2668 init_rwsem(&fs_info->commit_root_sem); 2669 init_rwsem(&fs_info->cleanup_work_sem); 2670 init_rwsem(&fs_info->subvol_sem); 2671 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2672 2673 btrfs_init_dev_replace_locks(fs_info); 2674 btrfs_init_qgroup(fs_info); 2675 2676 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2677 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2678 2679 init_waitqueue_head(&fs_info->transaction_throttle); 2680 init_waitqueue_head(&fs_info->transaction_wait); 2681 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2682 init_waitqueue_head(&fs_info->async_submit_wait); 2683 2684 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2685 2686 ret = btrfs_alloc_stripe_hash_table(fs_info); 2687 if (ret) { 2688 err = ret; 2689 goto fail_alloc; 2690 } 2691 2692 __setup_root(4096, 4096, 4096, tree_root, 2693 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2694 2695 invalidate_bdev(fs_devices->latest_bdev); 2696 2697 /* 2698 * Read super block and check the signature bytes only 2699 */ 2700 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2701 if (IS_ERR(bh)) { 2702 err = PTR_ERR(bh); 2703 goto fail_alloc; 2704 } 2705 2706 /* 2707 * We want to check superblock checksum, the type is stored inside. 2708 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2709 */ 2710 if (btrfs_check_super_csum(bh->b_data)) { 2711 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2712 err = -EINVAL; 2713 brelse(bh); 2714 goto fail_alloc; 2715 } 2716 2717 /* 2718 * super_copy is zeroed at allocation time and we never touch the 2719 * following bytes up to INFO_SIZE, the checksum is calculated from 2720 * the whole block of INFO_SIZE 2721 */ 2722 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2723 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2724 sizeof(*fs_info->super_for_commit)); 2725 brelse(bh); 2726 2727 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2728 2729 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2730 if (ret) { 2731 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2732 err = -EINVAL; 2733 goto fail_alloc; 2734 } 2735 2736 disk_super = fs_info->super_copy; 2737 if (!btrfs_super_root(disk_super)) 2738 goto fail_alloc; 2739 2740 /* check FS state, whether FS is broken. */ 2741 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2742 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2743 2744 /* 2745 * run through our array of backup supers and setup 2746 * our ring pointer to the oldest one 2747 */ 2748 generation = btrfs_super_generation(disk_super); 2749 find_oldest_super_backup(fs_info, generation); 2750 2751 /* 2752 * In the long term, we'll store the compression type in the super 2753 * block, and it'll be used for per file compression control. 2754 */ 2755 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2756 2757 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2758 if (ret) { 2759 err = ret; 2760 goto fail_alloc; 2761 } 2762 2763 features = btrfs_super_incompat_flags(disk_super) & 2764 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2765 if (features) { 2766 printk(KERN_ERR "BTRFS: couldn't mount because of " 2767 "unsupported optional features (%Lx).\n", 2768 features); 2769 err = -EINVAL; 2770 goto fail_alloc; 2771 } 2772 2773 features = btrfs_super_incompat_flags(disk_super); 2774 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2775 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2776 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2777 2778 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2779 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2780 2781 /* 2782 * flag our filesystem as having big metadata blocks if 2783 * they are bigger than the page size 2784 */ 2785 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2786 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2787 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2788 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2789 } 2790 2791 nodesize = btrfs_super_nodesize(disk_super); 2792 sectorsize = btrfs_super_sectorsize(disk_super); 2793 stripesize = btrfs_super_stripesize(disk_super); 2794 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2795 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2796 2797 /* 2798 * mixed block groups end up with duplicate but slightly offset 2799 * extent buffers for the same range. It leads to corruptions 2800 */ 2801 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2802 (sectorsize != nodesize)) { 2803 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2804 "are not allowed for mixed block groups on %s\n", 2805 sb->s_id); 2806 goto fail_alloc; 2807 } 2808 2809 /* 2810 * Needn't use the lock because there is no other task which will 2811 * update the flag. 2812 */ 2813 btrfs_set_super_incompat_flags(disk_super, features); 2814 2815 features = btrfs_super_compat_ro_flags(disk_super) & 2816 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2817 if (!(sb->s_flags & MS_RDONLY) && features) { 2818 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2819 "unsupported option features (%Lx).\n", 2820 features); 2821 err = -EINVAL; 2822 goto fail_alloc; 2823 } 2824 2825 max_active = fs_info->thread_pool_size; 2826 2827 ret = btrfs_init_workqueues(fs_info, fs_devices); 2828 if (ret) { 2829 err = ret; 2830 goto fail_sb_buffer; 2831 } 2832 2833 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2834 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2835 SZ_4M / PAGE_CACHE_SIZE); 2836 2837 tree_root->nodesize = nodesize; 2838 tree_root->sectorsize = sectorsize; 2839 tree_root->stripesize = stripesize; 2840 2841 sb->s_blocksize = sectorsize; 2842 sb->s_blocksize_bits = blksize_bits(sectorsize); 2843 2844 mutex_lock(&fs_info->chunk_mutex); 2845 ret = btrfs_read_sys_array(tree_root); 2846 mutex_unlock(&fs_info->chunk_mutex); 2847 if (ret) { 2848 printk(KERN_ERR "BTRFS: failed to read the system " 2849 "array on %s\n", sb->s_id); 2850 goto fail_sb_buffer; 2851 } 2852 2853 generation = btrfs_super_chunk_root_generation(disk_super); 2854 2855 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2856 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2857 2858 chunk_root->node = read_tree_block(chunk_root, 2859 btrfs_super_chunk_root(disk_super), 2860 generation); 2861 if (IS_ERR(chunk_root->node) || 2862 !extent_buffer_uptodate(chunk_root->node)) { 2863 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2864 sb->s_id); 2865 if (!IS_ERR(chunk_root->node)) 2866 free_extent_buffer(chunk_root->node); 2867 chunk_root->node = NULL; 2868 goto fail_tree_roots; 2869 } 2870 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2871 chunk_root->commit_root = btrfs_root_node(chunk_root); 2872 2873 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2874 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2875 2876 ret = btrfs_read_chunk_tree(chunk_root); 2877 if (ret) { 2878 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2879 sb->s_id); 2880 goto fail_tree_roots; 2881 } 2882 2883 /* 2884 * keep the device that is marked to be the target device for the 2885 * dev_replace procedure 2886 */ 2887 btrfs_close_extra_devices(fs_devices, 0); 2888 2889 if (!fs_devices->latest_bdev) { 2890 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2891 sb->s_id); 2892 goto fail_tree_roots; 2893 } 2894 2895 retry_root_backup: 2896 generation = btrfs_super_generation(disk_super); 2897 2898 tree_root->node = read_tree_block(tree_root, 2899 btrfs_super_root(disk_super), 2900 generation); 2901 if (IS_ERR(tree_root->node) || 2902 !extent_buffer_uptodate(tree_root->node)) { 2903 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2904 sb->s_id); 2905 if (!IS_ERR(tree_root->node)) 2906 free_extent_buffer(tree_root->node); 2907 tree_root->node = NULL; 2908 goto recovery_tree_root; 2909 } 2910 2911 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2912 tree_root->commit_root = btrfs_root_node(tree_root); 2913 btrfs_set_root_refs(&tree_root->root_item, 1); 2914 2915 mutex_lock(&tree_root->objectid_mutex); 2916 ret = btrfs_find_highest_objectid(tree_root, 2917 &tree_root->highest_objectid); 2918 if (ret) { 2919 mutex_unlock(&tree_root->objectid_mutex); 2920 goto recovery_tree_root; 2921 } 2922 2923 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2924 2925 mutex_unlock(&tree_root->objectid_mutex); 2926 2927 ret = btrfs_read_roots(fs_info, tree_root); 2928 if (ret) 2929 goto recovery_tree_root; 2930 2931 fs_info->generation = generation; 2932 fs_info->last_trans_committed = generation; 2933 2934 ret = btrfs_recover_balance(fs_info); 2935 if (ret) { 2936 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2937 goto fail_block_groups; 2938 } 2939 2940 ret = btrfs_init_dev_stats(fs_info); 2941 if (ret) { 2942 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2943 ret); 2944 goto fail_block_groups; 2945 } 2946 2947 ret = btrfs_init_dev_replace(fs_info); 2948 if (ret) { 2949 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2950 goto fail_block_groups; 2951 } 2952 2953 btrfs_close_extra_devices(fs_devices, 1); 2954 2955 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2956 if (ret) { 2957 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2958 goto fail_block_groups; 2959 } 2960 2961 ret = btrfs_sysfs_add_device(fs_devices); 2962 if (ret) { 2963 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2964 goto fail_fsdev_sysfs; 2965 } 2966 2967 ret = btrfs_sysfs_add_mounted(fs_info); 2968 if (ret) { 2969 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2970 goto fail_fsdev_sysfs; 2971 } 2972 2973 ret = btrfs_init_space_info(fs_info); 2974 if (ret) { 2975 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2976 goto fail_sysfs; 2977 } 2978 2979 ret = btrfs_read_block_groups(fs_info->extent_root); 2980 if (ret) { 2981 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2982 goto fail_sysfs; 2983 } 2984 fs_info->num_tolerated_disk_barrier_failures = 2985 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2986 if (fs_info->fs_devices->missing_devices > 2987 fs_info->num_tolerated_disk_barrier_failures && 2988 !(sb->s_flags & MS_RDONLY)) { 2989 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n", 2990 fs_info->fs_devices->missing_devices, 2991 fs_info->num_tolerated_disk_barrier_failures); 2992 goto fail_sysfs; 2993 } 2994 2995 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2996 "btrfs-cleaner"); 2997 if (IS_ERR(fs_info->cleaner_kthread)) 2998 goto fail_sysfs; 2999 3000 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3001 tree_root, 3002 "btrfs-transaction"); 3003 if (IS_ERR(fs_info->transaction_kthread)) 3004 goto fail_cleaner; 3005 3006 if (!btrfs_test_opt(tree_root, SSD) && 3007 !btrfs_test_opt(tree_root, NOSSD) && 3008 !fs_info->fs_devices->rotating) { 3009 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 3010 "mode\n"); 3011 btrfs_set_opt(fs_info->mount_opt, SSD); 3012 } 3013 3014 /* 3015 * Mount does not set all options immediatelly, we can do it now and do 3016 * not have to wait for transaction commit 3017 */ 3018 btrfs_apply_pending_changes(fs_info); 3019 3020 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3021 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 3022 ret = btrfsic_mount(tree_root, fs_devices, 3023 btrfs_test_opt(tree_root, 3024 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3025 1 : 0, 3026 fs_info->check_integrity_print_mask); 3027 if (ret) 3028 printk(KERN_WARNING "BTRFS: failed to initialize" 3029 " integrity check module %s\n", sb->s_id); 3030 } 3031 #endif 3032 ret = btrfs_read_qgroup_config(fs_info); 3033 if (ret) 3034 goto fail_trans_kthread; 3035 3036 /* do not make disk changes in broken FS or nologreplay is given */ 3037 if (btrfs_super_log_root(disk_super) != 0 && 3038 !btrfs_test_opt(tree_root, NOLOGREPLAY)) { 3039 ret = btrfs_replay_log(fs_info, fs_devices); 3040 if (ret) { 3041 err = ret; 3042 goto fail_qgroup; 3043 } 3044 } 3045 3046 ret = btrfs_find_orphan_roots(tree_root); 3047 if (ret) 3048 goto fail_qgroup; 3049 3050 if (!(sb->s_flags & MS_RDONLY)) { 3051 ret = btrfs_cleanup_fs_roots(fs_info); 3052 if (ret) 3053 goto fail_qgroup; 3054 3055 mutex_lock(&fs_info->cleaner_mutex); 3056 ret = btrfs_recover_relocation(tree_root); 3057 mutex_unlock(&fs_info->cleaner_mutex); 3058 if (ret < 0) { 3059 printk(KERN_WARNING 3060 "BTRFS: failed to recover relocation\n"); 3061 err = -EINVAL; 3062 goto fail_qgroup; 3063 } 3064 } 3065 3066 location.objectid = BTRFS_FS_TREE_OBJECTID; 3067 location.type = BTRFS_ROOT_ITEM_KEY; 3068 location.offset = 0; 3069 3070 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3071 if (IS_ERR(fs_info->fs_root)) { 3072 err = PTR_ERR(fs_info->fs_root); 3073 goto fail_qgroup; 3074 } 3075 3076 if (sb->s_flags & MS_RDONLY) 3077 return 0; 3078 3079 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) && 3080 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3081 pr_info("BTRFS: creating free space tree\n"); 3082 ret = btrfs_create_free_space_tree(fs_info); 3083 if (ret) { 3084 pr_warn("BTRFS: failed to create free space tree %d\n", 3085 ret); 3086 close_ctree(tree_root); 3087 return ret; 3088 } 3089 } 3090 3091 down_read(&fs_info->cleanup_work_sem); 3092 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3093 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3094 up_read(&fs_info->cleanup_work_sem); 3095 close_ctree(tree_root); 3096 return ret; 3097 } 3098 up_read(&fs_info->cleanup_work_sem); 3099 3100 ret = btrfs_resume_balance_async(fs_info); 3101 if (ret) { 3102 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3103 close_ctree(tree_root); 3104 return ret; 3105 } 3106 3107 ret = btrfs_resume_dev_replace_async(fs_info); 3108 if (ret) { 3109 pr_warn("BTRFS: failed to resume dev_replace\n"); 3110 close_ctree(tree_root); 3111 return ret; 3112 } 3113 3114 btrfs_qgroup_rescan_resume(fs_info); 3115 3116 if (btrfs_test_opt(tree_root, CLEAR_CACHE) && 3117 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3118 pr_info("BTRFS: clearing free space tree\n"); 3119 ret = btrfs_clear_free_space_tree(fs_info); 3120 if (ret) { 3121 pr_warn("BTRFS: failed to clear free space tree %d\n", 3122 ret); 3123 close_ctree(tree_root); 3124 return ret; 3125 } 3126 } 3127 3128 if (!fs_info->uuid_root) { 3129 pr_info("BTRFS: creating UUID tree\n"); 3130 ret = btrfs_create_uuid_tree(fs_info); 3131 if (ret) { 3132 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3133 ret); 3134 close_ctree(tree_root); 3135 return ret; 3136 } 3137 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3138 fs_info->generation != 3139 btrfs_super_uuid_tree_generation(disk_super)) { 3140 pr_info("BTRFS: checking UUID tree\n"); 3141 ret = btrfs_check_uuid_tree(fs_info); 3142 if (ret) { 3143 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3144 ret); 3145 close_ctree(tree_root); 3146 return ret; 3147 } 3148 } else { 3149 fs_info->update_uuid_tree_gen = 1; 3150 } 3151 3152 fs_info->open = 1; 3153 3154 /* 3155 * backuproot only affect mount behavior, and if open_ctree succeeded, 3156 * no need to keep the flag 3157 */ 3158 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3159 3160 return 0; 3161 3162 fail_qgroup: 3163 btrfs_free_qgroup_config(fs_info); 3164 fail_trans_kthread: 3165 kthread_stop(fs_info->transaction_kthread); 3166 btrfs_cleanup_transaction(fs_info->tree_root); 3167 btrfs_free_fs_roots(fs_info); 3168 fail_cleaner: 3169 kthread_stop(fs_info->cleaner_kthread); 3170 3171 /* 3172 * make sure we're done with the btree inode before we stop our 3173 * kthreads 3174 */ 3175 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3176 3177 fail_sysfs: 3178 btrfs_sysfs_remove_mounted(fs_info); 3179 3180 fail_fsdev_sysfs: 3181 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3182 3183 fail_block_groups: 3184 btrfs_put_block_group_cache(fs_info); 3185 btrfs_free_block_groups(fs_info); 3186 3187 fail_tree_roots: 3188 free_root_pointers(fs_info, 1); 3189 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3190 3191 fail_sb_buffer: 3192 btrfs_stop_all_workers(fs_info); 3193 fail_alloc: 3194 fail_iput: 3195 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3196 3197 iput(fs_info->btree_inode); 3198 fail_bio_counter: 3199 percpu_counter_destroy(&fs_info->bio_counter); 3200 fail_delalloc_bytes: 3201 percpu_counter_destroy(&fs_info->delalloc_bytes); 3202 fail_dirty_metadata_bytes: 3203 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3204 fail_bdi: 3205 bdi_destroy(&fs_info->bdi); 3206 fail_srcu: 3207 cleanup_srcu_struct(&fs_info->subvol_srcu); 3208 fail: 3209 btrfs_free_stripe_hash_table(fs_info); 3210 btrfs_close_devices(fs_info->fs_devices); 3211 return err; 3212 3213 recovery_tree_root: 3214 if (!btrfs_test_opt(tree_root, USEBACKUPROOT)) 3215 goto fail_tree_roots; 3216 3217 free_root_pointers(fs_info, 0); 3218 3219 /* don't use the log in recovery mode, it won't be valid */ 3220 btrfs_set_super_log_root(disk_super, 0); 3221 3222 /* we can't trust the free space cache either */ 3223 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3224 3225 ret = next_root_backup(fs_info, fs_info->super_copy, 3226 &num_backups_tried, &backup_index); 3227 if (ret == -1) 3228 goto fail_block_groups; 3229 goto retry_root_backup; 3230 } 3231 3232 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3233 { 3234 if (uptodate) { 3235 set_buffer_uptodate(bh); 3236 } else { 3237 struct btrfs_device *device = (struct btrfs_device *) 3238 bh->b_private; 3239 3240 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3241 "lost page write due to IO error on %s", 3242 rcu_str_deref(device->name)); 3243 /* note, we dont' set_buffer_write_io_error because we have 3244 * our own ways of dealing with the IO errors 3245 */ 3246 clear_buffer_uptodate(bh); 3247 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3248 } 3249 unlock_buffer(bh); 3250 put_bh(bh); 3251 } 3252 3253 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3254 struct buffer_head **bh_ret) 3255 { 3256 struct buffer_head *bh; 3257 struct btrfs_super_block *super; 3258 u64 bytenr; 3259 3260 bytenr = btrfs_sb_offset(copy_num); 3261 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3262 return -EINVAL; 3263 3264 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3265 /* 3266 * If we fail to read from the underlying devices, as of now 3267 * the best option we have is to mark it EIO. 3268 */ 3269 if (!bh) 3270 return -EIO; 3271 3272 super = (struct btrfs_super_block *)bh->b_data; 3273 if (btrfs_super_bytenr(super) != bytenr || 3274 btrfs_super_magic(super) != BTRFS_MAGIC) { 3275 brelse(bh); 3276 return -EINVAL; 3277 } 3278 3279 *bh_ret = bh; 3280 return 0; 3281 } 3282 3283 3284 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3285 { 3286 struct buffer_head *bh; 3287 struct buffer_head *latest = NULL; 3288 struct btrfs_super_block *super; 3289 int i; 3290 u64 transid = 0; 3291 int ret = -EINVAL; 3292 3293 /* we would like to check all the supers, but that would make 3294 * a btrfs mount succeed after a mkfs from a different FS. 3295 * So, we need to add a special mount option to scan for 3296 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3297 */ 3298 for (i = 0; i < 1; i++) { 3299 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3300 if (ret) 3301 continue; 3302 3303 super = (struct btrfs_super_block *)bh->b_data; 3304 3305 if (!latest || btrfs_super_generation(super) > transid) { 3306 brelse(latest); 3307 latest = bh; 3308 transid = btrfs_super_generation(super); 3309 } else { 3310 brelse(bh); 3311 } 3312 } 3313 3314 if (!latest) 3315 return ERR_PTR(ret); 3316 3317 return latest; 3318 } 3319 3320 /* 3321 * this should be called twice, once with wait == 0 and 3322 * once with wait == 1. When wait == 0 is done, all the buffer heads 3323 * we write are pinned. 3324 * 3325 * They are released when wait == 1 is done. 3326 * max_mirrors must be the same for both runs, and it indicates how 3327 * many supers on this one device should be written. 3328 * 3329 * max_mirrors == 0 means to write them all. 3330 */ 3331 static int write_dev_supers(struct btrfs_device *device, 3332 struct btrfs_super_block *sb, 3333 int do_barriers, int wait, int max_mirrors) 3334 { 3335 struct buffer_head *bh; 3336 int i; 3337 int ret; 3338 int errors = 0; 3339 u32 crc; 3340 u64 bytenr; 3341 3342 if (max_mirrors == 0) 3343 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3344 3345 for (i = 0; i < max_mirrors; i++) { 3346 bytenr = btrfs_sb_offset(i); 3347 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3348 device->commit_total_bytes) 3349 break; 3350 3351 if (wait) { 3352 bh = __find_get_block(device->bdev, bytenr / 4096, 3353 BTRFS_SUPER_INFO_SIZE); 3354 if (!bh) { 3355 errors++; 3356 continue; 3357 } 3358 wait_on_buffer(bh); 3359 if (!buffer_uptodate(bh)) 3360 errors++; 3361 3362 /* drop our reference */ 3363 brelse(bh); 3364 3365 /* drop the reference from the wait == 0 run */ 3366 brelse(bh); 3367 continue; 3368 } else { 3369 btrfs_set_super_bytenr(sb, bytenr); 3370 3371 crc = ~(u32)0; 3372 crc = btrfs_csum_data((char *)sb + 3373 BTRFS_CSUM_SIZE, crc, 3374 BTRFS_SUPER_INFO_SIZE - 3375 BTRFS_CSUM_SIZE); 3376 btrfs_csum_final(crc, sb->csum); 3377 3378 /* 3379 * one reference for us, and we leave it for the 3380 * caller 3381 */ 3382 bh = __getblk(device->bdev, bytenr / 4096, 3383 BTRFS_SUPER_INFO_SIZE); 3384 if (!bh) { 3385 btrfs_err(device->dev_root->fs_info, 3386 "couldn't get super buffer head for bytenr %llu", 3387 bytenr); 3388 errors++; 3389 continue; 3390 } 3391 3392 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3393 3394 /* one reference for submit_bh */ 3395 get_bh(bh); 3396 3397 set_buffer_uptodate(bh); 3398 lock_buffer(bh); 3399 bh->b_end_io = btrfs_end_buffer_write_sync; 3400 bh->b_private = device; 3401 } 3402 3403 /* 3404 * we fua the first super. The others we allow 3405 * to go down lazy. 3406 */ 3407 if (i == 0) 3408 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3409 else 3410 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3411 if (ret) 3412 errors++; 3413 } 3414 return errors < i ? 0 : -1; 3415 } 3416 3417 /* 3418 * endio for the write_dev_flush, this will wake anyone waiting 3419 * for the barrier when it is done 3420 */ 3421 static void btrfs_end_empty_barrier(struct bio *bio) 3422 { 3423 if (bio->bi_private) 3424 complete(bio->bi_private); 3425 bio_put(bio); 3426 } 3427 3428 /* 3429 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3430 * sent down. With wait == 1, it waits for the previous flush. 3431 * 3432 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3433 * capable 3434 */ 3435 static int write_dev_flush(struct btrfs_device *device, int wait) 3436 { 3437 struct bio *bio; 3438 int ret = 0; 3439 3440 if (device->nobarriers) 3441 return 0; 3442 3443 if (wait) { 3444 bio = device->flush_bio; 3445 if (!bio) 3446 return 0; 3447 3448 wait_for_completion(&device->flush_wait); 3449 3450 if (bio->bi_error) { 3451 ret = bio->bi_error; 3452 btrfs_dev_stat_inc_and_print(device, 3453 BTRFS_DEV_STAT_FLUSH_ERRS); 3454 } 3455 3456 /* drop the reference from the wait == 0 run */ 3457 bio_put(bio); 3458 device->flush_bio = NULL; 3459 3460 return ret; 3461 } 3462 3463 /* 3464 * one reference for us, and we leave it for the 3465 * caller 3466 */ 3467 device->flush_bio = NULL; 3468 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3469 if (!bio) 3470 return -ENOMEM; 3471 3472 bio->bi_end_io = btrfs_end_empty_barrier; 3473 bio->bi_bdev = device->bdev; 3474 init_completion(&device->flush_wait); 3475 bio->bi_private = &device->flush_wait; 3476 device->flush_bio = bio; 3477 3478 bio_get(bio); 3479 btrfsic_submit_bio(WRITE_FLUSH, bio); 3480 3481 return 0; 3482 } 3483 3484 /* 3485 * send an empty flush down to each device in parallel, 3486 * then wait for them 3487 */ 3488 static int barrier_all_devices(struct btrfs_fs_info *info) 3489 { 3490 struct list_head *head; 3491 struct btrfs_device *dev; 3492 int errors_send = 0; 3493 int errors_wait = 0; 3494 int ret; 3495 3496 /* send down all the barriers */ 3497 head = &info->fs_devices->devices; 3498 list_for_each_entry_rcu(dev, head, dev_list) { 3499 if (dev->missing) 3500 continue; 3501 if (!dev->bdev) { 3502 errors_send++; 3503 continue; 3504 } 3505 if (!dev->in_fs_metadata || !dev->writeable) 3506 continue; 3507 3508 ret = write_dev_flush(dev, 0); 3509 if (ret) 3510 errors_send++; 3511 } 3512 3513 /* wait for all the barriers */ 3514 list_for_each_entry_rcu(dev, head, dev_list) { 3515 if (dev->missing) 3516 continue; 3517 if (!dev->bdev) { 3518 errors_wait++; 3519 continue; 3520 } 3521 if (!dev->in_fs_metadata || !dev->writeable) 3522 continue; 3523 3524 ret = write_dev_flush(dev, 1); 3525 if (ret) 3526 errors_wait++; 3527 } 3528 if (errors_send > info->num_tolerated_disk_barrier_failures || 3529 errors_wait > info->num_tolerated_disk_barrier_failures) 3530 return -EIO; 3531 return 0; 3532 } 3533 3534 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3535 { 3536 int raid_type; 3537 int min_tolerated = INT_MAX; 3538 3539 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3540 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3541 min_tolerated = min(min_tolerated, 3542 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3543 tolerated_failures); 3544 3545 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3546 if (raid_type == BTRFS_RAID_SINGLE) 3547 continue; 3548 if (!(flags & btrfs_raid_group[raid_type])) 3549 continue; 3550 min_tolerated = min(min_tolerated, 3551 btrfs_raid_array[raid_type]. 3552 tolerated_failures); 3553 } 3554 3555 if (min_tolerated == INT_MAX) { 3556 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3557 min_tolerated = 0; 3558 } 3559 3560 return min_tolerated; 3561 } 3562 3563 int btrfs_calc_num_tolerated_disk_barrier_failures( 3564 struct btrfs_fs_info *fs_info) 3565 { 3566 struct btrfs_ioctl_space_info space; 3567 struct btrfs_space_info *sinfo; 3568 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3569 BTRFS_BLOCK_GROUP_SYSTEM, 3570 BTRFS_BLOCK_GROUP_METADATA, 3571 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3572 int i; 3573 int c; 3574 int num_tolerated_disk_barrier_failures = 3575 (int)fs_info->fs_devices->num_devices; 3576 3577 for (i = 0; i < ARRAY_SIZE(types); i++) { 3578 struct btrfs_space_info *tmp; 3579 3580 sinfo = NULL; 3581 rcu_read_lock(); 3582 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3583 if (tmp->flags == types[i]) { 3584 sinfo = tmp; 3585 break; 3586 } 3587 } 3588 rcu_read_unlock(); 3589 3590 if (!sinfo) 3591 continue; 3592 3593 down_read(&sinfo->groups_sem); 3594 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3595 u64 flags; 3596 3597 if (list_empty(&sinfo->block_groups[c])) 3598 continue; 3599 3600 btrfs_get_block_group_info(&sinfo->block_groups[c], 3601 &space); 3602 if (space.total_bytes == 0 || space.used_bytes == 0) 3603 continue; 3604 flags = space.flags; 3605 3606 num_tolerated_disk_barrier_failures = min( 3607 num_tolerated_disk_barrier_failures, 3608 btrfs_get_num_tolerated_disk_barrier_failures( 3609 flags)); 3610 } 3611 up_read(&sinfo->groups_sem); 3612 } 3613 3614 return num_tolerated_disk_barrier_failures; 3615 } 3616 3617 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3618 { 3619 struct list_head *head; 3620 struct btrfs_device *dev; 3621 struct btrfs_super_block *sb; 3622 struct btrfs_dev_item *dev_item; 3623 int ret; 3624 int do_barriers; 3625 int max_errors; 3626 int total_errors = 0; 3627 u64 flags; 3628 3629 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3630 backup_super_roots(root->fs_info); 3631 3632 sb = root->fs_info->super_for_commit; 3633 dev_item = &sb->dev_item; 3634 3635 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3636 head = &root->fs_info->fs_devices->devices; 3637 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3638 3639 if (do_barriers) { 3640 ret = barrier_all_devices(root->fs_info); 3641 if (ret) { 3642 mutex_unlock( 3643 &root->fs_info->fs_devices->device_list_mutex); 3644 btrfs_std_error(root->fs_info, ret, 3645 "errors while submitting device barriers."); 3646 return ret; 3647 } 3648 } 3649 3650 list_for_each_entry_rcu(dev, head, dev_list) { 3651 if (!dev->bdev) { 3652 total_errors++; 3653 continue; 3654 } 3655 if (!dev->in_fs_metadata || !dev->writeable) 3656 continue; 3657 3658 btrfs_set_stack_device_generation(dev_item, 0); 3659 btrfs_set_stack_device_type(dev_item, dev->type); 3660 btrfs_set_stack_device_id(dev_item, dev->devid); 3661 btrfs_set_stack_device_total_bytes(dev_item, 3662 dev->commit_total_bytes); 3663 btrfs_set_stack_device_bytes_used(dev_item, 3664 dev->commit_bytes_used); 3665 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3666 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3667 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3668 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3669 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3670 3671 flags = btrfs_super_flags(sb); 3672 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3673 3674 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3675 if (ret) 3676 total_errors++; 3677 } 3678 if (total_errors > max_errors) { 3679 btrfs_err(root->fs_info, "%d errors while writing supers", 3680 total_errors); 3681 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3682 3683 /* FUA is masked off if unsupported and can't be the reason */ 3684 btrfs_std_error(root->fs_info, -EIO, 3685 "%d errors while writing supers", total_errors); 3686 return -EIO; 3687 } 3688 3689 total_errors = 0; 3690 list_for_each_entry_rcu(dev, head, dev_list) { 3691 if (!dev->bdev) 3692 continue; 3693 if (!dev->in_fs_metadata || !dev->writeable) 3694 continue; 3695 3696 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3697 if (ret) 3698 total_errors++; 3699 } 3700 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3701 if (total_errors > max_errors) { 3702 btrfs_std_error(root->fs_info, -EIO, 3703 "%d errors while writing supers", total_errors); 3704 return -EIO; 3705 } 3706 return 0; 3707 } 3708 3709 int write_ctree_super(struct btrfs_trans_handle *trans, 3710 struct btrfs_root *root, int max_mirrors) 3711 { 3712 return write_all_supers(root, max_mirrors); 3713 } 3714 3715 /* Drop a fs root from the radix tree and free it. */ 3716 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3717 struct btrfs_root *root) 3718 { 3719 spin_lock(&fs_info->fs_roots_radix_lock); 3720 radix_tree_delete(&fs_info->fs_roots_radix, 3721 (unsigned long)root->root_key.objectid); 3722 spin_unlock(&fs_info->fs_roots_radix_lock); 3723 3724 if (btrfs_root_refs(&root->root_item) == 0) 3725 synchronize_srcu(&fs_info->subvol_srcu); 3726 3727 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3728 btrfs_free_log(NULL, root); 3729 3730 if (root->free_ino_pinned) 3731 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3732 if (root->free_ino_ctl) 3733 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3734 free_fs_root(root); 3735 } 3736 3737 static void free_fs_root(struct btrfs_root *root) 3738 { 3739 iput(root->ino_cache_inode); 3740 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3741 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3742 root->orphan_block_rsv = NULL; 3743 if (root->anon_dev) 3744 free_anon_bdev(root->anon_dev); 3745 if (root->subv_writers) 3746 btrfs_free_subvolume_writers(root->subv_writers); 3747 free_extent_buffer(root->node); 3748 free_extent_buffer(root->commit_root); 3749 kfree(root->free_ino_ctl); 3750 kfree(root->free_ino_pinned); 3751 kfree(root->name); 3752 btrfs_put_fs_root(root); 3753 } 3754 3755 void btrfs_free_fs_root(struct btrfs_root *root) 3756 { 3757 free_fs_root(root); 3758 } 3759 3760 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3761 { 3762 u64 root_objectid = 0; 3763 struct btrfs_root *gang[8]; 3764 int i = 0; 3765 int err = 0; 3766 unsigned int ret = 0; 3767 int index; 3768 3769 while (1) { 3770 index = srcu_read_lock(&fs_info->subvol_srcu); 3771 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3772 (void **)gang, root_objectid, 3773 ARRAY_SIZE(gang)); 3774 if (!ret) { 3775 srcu_read_unlock(&fs_info->subvol_srcu, index); 3776 break; 3777 } 3778 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3779 3780 for (i = 0; i < ret; i++) { 3781 /* Avoid to grab roots in dead_roots */ 3782 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3783 gang[i] = NULL; 3784 continue; 3785 } 3786 /* grab all the search result for later use */ 3787 gang[i] = btrfs_grab_fs_root(gang[i]); 3788 } 3789 srcu_read_unlock(&fs_info->subvol_srcu, index); 3790 3791 for (i = 0; i < ret; i++) { 3792 if (!gang[i]) 3793 continue; 3794 root_objectid = gang[i]->root_key.objectid; 3795 err = btrfs_orphan_cleanup(gang[i]); 3796 if (err) 3797 break; 3798 btrfs_put_fs_root(gang[i]); 3799 } 3800 root_objectid++; 3801 } 3802 3803 /* release the uncleaned roots due to error */ 3804 for (; i < ret; i++) { 3805 if (gang[i]) 3806 btrfs_put_fs_root(gang[i]); 3807 } 3808 return err; 3809 } 3810 3811 int btrfs_commit_super(struct btrfs_root *root) 3812 { 3813 struct btrfs_trans_handle *trans; 3814 3815 mutex_lock(&root->fs_info->cleaner_mutex); 3816 btrfs_run_delayed_iputs(root); 3817 mutex_unlock(&root->fs_info->cleaner_mutex); 3818 wake_up_process(root->fs_info->cleaner_kthread); 3819 3820 /* wait until ongoing cleanup work done */ 3821 down_write(&root->fs_info->cleanup_work_sem); 3822 up_write(&root->fs_info->cleanup_work_sem); 3823 3824 trans = btrfs_join_transaction(root); 3825 if (IS_ERR(trans)) 3826 return PTR_ERR(trans); 3827 return btrfs_commit_transaction(trans, root); 3828 } 3829 3830 void close_ctree(struct btrfs_root *root) 3831 { 3832 struct btrfs_fs_info *fs_info = root->fs_info; 3833 int ret; 3834 3835 fs_info->closing = 1; 3836 smp_mb(); 3837 3838 /* wait for the qgroup rescan worker to stop */ 3839 btrfs_qgroup_wait_for_completion(fs_info); 3840 3841 /* wait for the uuid_scan task to finish */ 3842 down(&fs_info->uuid_tree_rescan_sem); 3843 /* avoid complains from lockdep et al., set sem back to initial state */ 3844 up(&fs_info->uuid_tree_rescan_sem); 3845 3846 /* pause restriper - we want to resume on mount */ 3847 btrfs_pause_balance(fs_info); 3848 3849 btrfs_dev_replace_suspend_for_unmount(fs_info); 3850 3851 btrfs_scrub_cancel(fs_info); 3852 3853 /* wait for any defraggers to finish */ 3854 wait_event(fs_info->transaction_wait, 3855 (atomic_read(&fs_info->defrag_running) == 0)); 3856 3857 /* clear out the rbtree of defraggable inodes */ 3858 btrfs_cleanup_defrag_inodes(fs_info); 3859 3860 cancel_work_sync(&fs_info->async_reclaim_work); 3861 3862 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3863 /* 3864 * If the cleaner thread is stopped and there are 3865 * block groups queued for removal, the deletion will be 3866 * skipped when we quit the cleaner thread. 3867 */ 3868 btrfs_delete_unused_bgs(root->fs_info); 3869 3870 ret = btrfs_commit_super(root); 3871 if (ret) 3872 btrfs_err(fs_info, "commit super ret %d", ret); 3873 } 3874 3875 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3876 btrfs_error_commit_super(root); 3877 3878 kthread_stop(fs_info->transaction_kthread); 3879 kthread_stop(fs_info->cleaner_kthread); 3880 3881 fs_info->closing = 2; 3882 smp_mb(); 3883 3884 btrfs_free_qgroup_config(fs_info); 3885 3886 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3887 btrfs_info(fs_info, "at unmount delalloc count %lld", 3888 percpu_counter_sum(&fs_info->delalloc_bytes)); 3889 } 3890 3891 btrfs_sysfs_remove_mounted(fs_info); 3892 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3893 3894 btrfs_free_fs_roots(fs_info); 3895 3896 btrfs_put_block_group_cache(fs_info); 3897 3898 btrfs_free_block_groups(fs_info); 3899 3900 /* 3901 * we must make sure there is not any read request to 3902 * submit after we stopping all workers. 3903 */ 3904 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3905 btrfs_stop_all_workers(fs_info); 3906 3907 fs_info->open = 0; 3908 free_root_pointers(fs_info, 1); 3909 3910 iput(fs_info->btree_inode); 3911 3912 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3913 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3914 btrfsic_unmount(root, fs_info->fs_devices); 3915 #endif 3916 3917 btrfs_close_devices(fs_info->fs_devices); 3918 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3919 3920 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3921 percpu_counter_destroy(&fs_info->delalloc_bytes); 3922 percpu_counter_destroy(&fs_info->bio_counter); 3923 bdi_destroy(&fs_info->bdi); 3924 cleanup_srcu_struct(&fs_info->subvol_srcu); 3925 3926 btrfs_free_stripe_hash_table(fs_info); 3927 3928 __btrfs_free_block_rsv(root->orphan_block_rsv); 3929 root->orphan_block_rsv = NULL; 3930 3931 lock_chunks(root); 3932 while (!list_empty(&fs_info->pinned_chunks)) { 3933 struct extent_map *em; 3934 3935 em = list_first_entry(&fs_info->pinned_chunks, 3936 struct extent_map, list); 3937 list_del_init(&em->list); 3938 free_extent_map(em); 3939 } 3940 unlock_chunks(root); 3941 } 3942 3943 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3944 int atomic) 3945 { 3946 int ret; 3947 struct inode *btree_inode = buf->pages[0]->mapping->host; 3948 3949 ret = extent_buffer_uptodate(buf); 3950 if (!ret) 3951 return ret; 3952 3953 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3954 parent_transid, atomic); 3955 if (ret == -EAGAIN) 3956 return ret; 3957 return !ret; 3958 } 3959 3960 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3961 { 3962 struct btrfs_root *root; 3963 u64 transid = btrfs_header_generation(buf); 3964 int was_dirty; 3965 3966 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3967 /* 3968 * This is a fast path so only do this check if we have sanity tests 3969 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3970 * outside of the sanity tests. 3971 */ 3972 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3973 return; 3974 #endif 3975 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3976 btrfs_assert_tree_locked(buf); 3977 if (transid != root->fs_info->generation) 3978 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3979 "found %llu running %llu\n", 3980 buf->start, transid, root->fs_info->generation); 3981 was_dirty = set_extent_buffer_dirty(buf); 3982 if (!was_dirty) 3983 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3984 buf->len, 3985 root->fs_info->dirty_metadata_batch); 3986 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3987 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3988 btrfs_print_leaf(root, buf); 3989 ASSERT(0); 3990 } 3991 #endif 3992 } 3993 3994 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3995 int flush_delayed) 3996 { 3997 /* 3998 * looks as though older kernels can get into trouble with 3999 * this code, they end up stuck in balance_dirty_pages forever 4000 */ 4001 int ret; 4002 4003 if (current->flags & PF_MEMALLOC) 4004 return; 4005 4006 if (flush_delayed) 4007 btrfs_balance_delayed_items(root); 4008 4009 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 4010 BTRFS_DIRTY_METADATA_THRESH); 4011 if (ret > 0) { 4012 balance_dirty_pages_ratelimited( 4013 root->fs_info->btree_inode->i_mapping); 4014 } 4015 } 4016 4017 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4018 { 4019 __btrfs_btree_balance_dirty(root, 1); 4020 } 4021 4022 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4023 { 4024 __btrfs_btree_balance_dirty(root, 0); 4025 } 4026 4027 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4028 { 4029 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4030 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 4031 } 4032 4033 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4034 int read_only) 4035 { 4036 struct btrfs_super_block *sb = fs_info->super_copy; 4037 u64 nodesize = btrfs_super_nodesize(sb); 4038 u64 sectorsize = btrfs_super_sectorsize(sb); 4039 int ret = 0; 4040 4041 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4042 printk(KERN_ERR "BTRFS: no valid FS found\n"); 4043 ret = -EINVAL; 4044 } 4045 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4046 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n", 4047 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4048 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4049 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 4050 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4051 ret = -EINVAL; 4052 } 4053 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4054 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 4055 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4056 ret = -EINVAL; 4057 } 4058 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4059 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 4060 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4061 ret = -EINVAL; 4062 } 4063 4064 /* 4065 * Check sectorsize and nodesize first, other check will need it. 4066 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4067 */ 4068 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4069 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4070 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize); 4071 ret = -EINVAL; 4072 } 4073 /* Only PAGE SIZE is supported yet */ 4074 if (sectorsize != PAGE_CACHE_SIZE) { 4075 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n", 4076 sectorsize, PAGE_CACHE_SIZE); 4077 ret = -EINVAL; 4078 } 4079 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4080 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4081 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize); 4082 ret = -EINVAL; 4083 } 4084 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4085 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n", 4086 le32_to_cpu(sb->__unused_leafsize), 4087 nodesize); 4088 ret = -EINVAL; 4089 } 4090 4091 /* Root alignment check */ 4092 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4093 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4094 btrfs_super_root(sb)); 4095 ret = -EINVAL; 4096 } 4097 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4098 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4099 btrfs_super_chunk_root(sb)); 4100 ret = -EINVAL; 4101 } 4102 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4103 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4104 btrfs_super_log_root(sb)); 4105 ret = -EINVAL; 4106 } 4107 4108 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4109 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4110 fs_info->fsid, sb->dev_item.fsid); 4111 ret = -EINVAL; 4112 } 4113 4114 /* 4115 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4116 * done later 4117 */ 4118 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4119 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4120 btrfs_super_num_devices(sb)); 4121 if (btrfs_super_num_devices(sb) == 0) { 4122 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4123 ret = -EINVAL; 4124 } 4125 4126 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4127 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4128 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4129 ret = -EINVAL; 4130 } 4131 4132 /* 4133 * Obvious sys_chunk_array corruptions, it must hold at least one key 4134 * and one chunk 4135 */ 4136 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4137 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4138 btrfs_super_sys_array_size(sb), 4139 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4140 ret = -EINVAL; 4141 } 4142 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4143 + sizeof(struct btrfs_chunk)) { 4144 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4145 btrfs_super_sys_array_size(sb), 4146 sizeof(struct btrfs_disk_key) 4147 + sizeof(struct btrfs_chunk)); 4148 ret = -EINVAL; 4149 } 4150 4151 /* 4152 * The generation is a global counter, we'll trust it more than the others 4153 * but it's still possible that it's the one that's wrong. 4154 */ 4155 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4156 printk(KERN_WARNING 4157 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4158 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4159 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4160 && btrfs_super_cache_generation(sb) != (u64)-1) 4161 printk(KERN_WARNING 4162 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4163 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4164 4165 return ret; 4166 } 4167 4168 static void btrfs_error_commit_super(struct btrfs_root *root) 4169 { 4170 mutex_lock(&root->fs_info->cleaner_mutex); 4171 btrfs_run_delayed_iputs(root); 4172 mutex_unlock(&root->fs_info->cleaner_mutex); 4173 4174 down_write(&root->fs_info->cleanup_work_sem); 4175 up_write(&root->fs_info->cleanup_work_sem); 4176 4177 /* cleanup FS via transaction */ 4178 btrfs_cleanup_transaction(root); 4179 } 4180 4181 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4182 { 4183 struct btrfs_ordered_extent *ordered; 4184 4185 spin_lock(&root->ordered_extent_lock); 4186 /* 4187 * This will just short circuit the ordered completion stuff which will 4188 * make sure the ordered extent gets properly cleaned up. 4189 */ 4190 list_for_each_entry(ordered, &root->ordered_extents, 4191 root_extent_list) 4192 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4193 spin_unlock(&root->ordered_extent_lock); 4194 } 4195 4196 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4197 { 4198 struct btrfs_root *root; 4199 struct list_head splice; 4200 4201 INIT_LIST_HEAD(&splice); 4202 4203 spin_lock(&fs_info->ordered_root_lock); 4204 list_splice_init(&fs_info->ordered_roots, &splice); 4205 while (!list_empty(&splice)) { 4206 root = list_first_entry(&splice, struct btrfs_root, 4207 ordered_root); 4208 list_move_tail(&root->ordered_root, 4209 &fs_info->ordered_roots); 4210 4211 spin_unlock(&fs_info->ordered_root_lock); 4212 btrfs_destroy_ordered_extents(root); 4213 4214 cond_resched(); 4215 spin_lock(&fs_info->ordered_root_lock); 4216 } 4217 spin_unlock(&fs_info->ordered_root_lock); 4218 } 4219 4220 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4221 struct btrfs_root *root) 4222 { 4223 struct rb_node *node; 4224 struct btrfs_delayed_ref_root *delayed_refs; 4225 struct btrfs_delayed_ref_node *ref; 4226 int ret = 0; 4227 4228 delayed_refs = &trans->delayed_refs; 4229 4230 spin_lock(&delayed_refs->lock); 4231 if (atomic_read(&delayed_refs->num_entries) == 0) { 4232 spin_unlock(&delayed_refs->lock); 4233 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4234 return ret; 4235 } 4236 4237 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4238 struct btrfs_delayed_ref_head *head; 4239 struct btrfs_delayed_ref_node *tmp; 4240 bool pin_bytes = false; 4241 4242 head = rb_entry(node, struct btrfs_delayed_ref_head, 4243 href_node); 4244 if (!mutex_trylock(&head->mutex)) { 4245 atomic_inc(&head->node.refs); 4246 spin_unlock(&delayed_refs->lock); 4247 4248 mutex_lock(&head->mutex); 4249 mutex_unlock(&head->mutex); 4250 btrfs_put_delayed_ref(&head->node); 4251 spin_lock(&delayed_refs->lock); 4252 continue; 4253 } 4254 spin_lock(&head->lock); 4255 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4256 list) { 4257 ref->in_tree = 0; 4258 list_del(&ref->list); 4259 atomic_dec(&delayed_refs->num_entries); 4260 btrfs_put_delayed_ref(ref); 4261 } 4262 if (head->must_insert_reserved) 4263 pin_bytes = true; 4264 btrfs_free_delayed_extent_op(head->extent_op); 4265 delayed_refs->num_heads--; 4266 if (head->processing == 0) 4267 delayed_refs->num_heads_ready--; 4268 atomic_dec(&delayed_refs->num_entries); 4269 head->node.in_tree = 0; 4270 rb_erase(&head->href_node, &delayed_refs->href_root); 4271 spin_unlock(&head->lock); 4272 spin_unlock(&delayed_refs->lock); 4273 mutex_unlock(&head->mutex); 4274 4275 if (pin_bytes) 4276 btrfs_pin_extent(root, head->node.bytenr, 4277 head->node.num_bytes, 1); 4278 btrfs_put_delayed_ref(&head->node); 4279 cond_resched(); 4280 spin_lock(&delayed_refs->lock); 4281 } 4282 4283 spin_unlock(&delayed_refs->lock); 4284 4285 return ret; 4286 } 4287 4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4289 { 4290 struct btrfs_inode *btrfs_inode; 4291 struct list_head splice; 4292 4293 INIT_LIST_HEAD(&splice); 4294 4295 spin_lock(&root->delalloc_lock); 4296 list_splice_init(&root->delalloc_inodes, &splice); 4297 4298 while (!list_empty(&splice)) { 4299 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4300 delalloc_inodes); 4301 4302 list_del_init(&btrfs_inode->delalloc_inodes); 4303 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4304 &btrfs_inode->runtime_flags); 4305 spin_unlock(&root->delalloc_lock); 4306 4307 btrfs_invalidate_inodes(btrfs_inode->root); 4308 4309 spin_lock(&root->delalloc_lock); 4310 } 4311 4312 spin_unlock(&root->delalloc_lock); 4313 } 4314 4315 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4316 { 4317 struct btrfs_root *root; 4318 struct list_head splice; 4319 4320 INIT_LIST_HEAD(&splice); 4321 4322 spin_lock(&fs_info->delalloc_root_lock); 4323 list_splice_init(&fs_info->delalloc_roots, &splice); 4324 while (!list_empty(&splice)) { 4325 root = list_first_entry(&splice, struct btrfs_root, 4326 delalloc_root); 4327 list_del_init(&root->delalloc_root); 4328 root = btrfs_grab_fs_root(root); 4329 BUG_ON(!root); 4330 spin_unlock(&fs_info->delalloc_root_lock); 4331 4332 btrfs_destroy_delalloc_inodes(root); 4333 btrfs_put_fs_root(root); 4334 4335 spin_lock(&fs_info->delalloc_root_lock); 4336 } 4337 spin_unlock(&fs_info->delalloc_root_lock); 4338 } 4339 4340 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4341 struct extent_io_tree *dirty_pages, 4342 int mark) 4343 { 4344 int ret; 4345 struct extent_buffer *eb; 4346 u64 start = 0; 4347 u64 end; 4348 4349 while (1) { 4350 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4351 mark, NULL); 4352 if (ret) 4353 break; 4354 4355 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4356 while (start <= end) { 4357 eb = btrfs_find_tree_block(root->fs_info, start); 4358 start += root->nodesize; 4359 if (!eb) 4360 continue; 4361 wait_on_extent_buffer_writeback(eb); 4362 4363 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4364 &eb->bflags)) 4365 clear_extent_buffer_dirty(eb); 4366 free_extent_buffer_stale(eb); 4367 } 4368 } 4369 4370 return ret; 4371 } 4372 4373 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4374 struct extent_io_tree *pinned_extents) 4375 { 4376 struct extent_io_tree *unpin; 4377 u64 start; 4378 u64 end; 4379 int ret; 4380 bool loop = true; 4381 4382 unpin = pinned_extents; 4383 again: 4384 while (1) { 4385 ret = find_first_extent_bit(unpin, 0, &start, &end, 4386 EXTENT_DIRTY, NULL); 4387 if (ret) 4388 break; 4389 4390 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4391 btrfs_error_unpin_extent_range(root, start, end); 4392 cond_resched(); 4393 } 4394 4395 if (loop) { 4396 if (unpin == &root->fs_info->freed_extents[0]) 4397 unpin = &root->fs_info->freed_extents[1]; 4398 else 4399 unpin = &root->fs_info->freed_extents[0]; 4400 loop = false; 4401 goto again; 4402 } 4403 4404 return 0; 4405 } 4406 4407 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4408 struct btrfs_root *root) 4409 { 4410 btrfs_destroy_delayed_refs(cur_trans, root); 4411 4412 cur_trans->state = TRANS_STATE_COMMIT_START; 4413 wake_up(&root->fs_info->transaction_blocked_wait); 4414 4415 cur_trans->state = TRANS_STATE_UNBLOCKED; 4416 wake_up(&root->fs_info->transaction_wait); 4417 4418 btrfs_destroy_delayed_inodes(root); 4419 btrfs_assert_delayed_root_empty(root); 4420 4421 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4422 EXTENT_DIRTY); 4423 btrfs_destroy_pinned_extent(root, 4424 root->fs_info->pinned_extents); 4425 4426 cur_trans->state =TRANS_STATE_COMPLETED; 4427 wake_up(&cur_trans->commit_wait); 4428 4429 /* 4430 memset(cur_trans, 0, sizeof(*cur_trans)); 4431 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4432 */ 4433 } 4434 4435 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4436 { 4437 struct btrfs_transaction *t; 4438 4439 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4440 4441 spin_lock(&root->fs_info->trans_lock); 4442 while (!list_empty(&root->fs_info->trans_list)) { 4443 t = list_first_entry(&root->fs_info->trans_list, 4444 struct btrfs_transaction, list); 4445 if (t->state >= TRANS_STATE_COMMIT_START) { 4446 atomic_inc(&t->use_count); 4447 spin_unlock(&root->fs_info->trans_lock); 4448 btrfs_wait_for_commit(root, t->transid); 4449 btrfs_put_transaction(t); 4450 spin_lock(&root->fs_info->trans_lock); 4451 continue; 4452 } 4453 if (t == root->fs_info->running_transaction) { 4454 t->state = TRANS_STATE_COMMIT_DOING; 4455 spin_unlock(&root->fs_info->trans_lock); 4456 /* 4457 * We wait for 0 num_writers since we don't hold a trans 4458 * handle open currently for this transaction. 4459 */ 4460 wait_event(t->writer_wait, 4461 atomic_read(&t->num_writers) == 0); 4462 } else { 4463 spin_unlock(&root->fs_info->trans_lock); 4464 } 4465 btrfs_cleanup_one_transaction(t, root); 4466 4467 spin_lock(&root->fs_info->trans_lock); 4468 if (t == root->fs_info->running_transaction) 4469 root->fs_info->running_transaction = NULL; 4470 list_del_init(&t->list); 4471 spin_unlock(&root->fs_info->trans_lock); 4472 4473 btrfs_put_transaction(t); 4474 trace_btrfs_transaction_commit(root); 4475 spin_lock(&root->fs_info->trans_lock); 4476 } 4477 spin_unlock(&root->fs_info->trans_lock); 4478 btrfs_destroy_all_ordered_extents(root->fs_info); 4479 btrfs_destroy_delayed_inodes(root); 4480 btrfs_assert_delayed_root_empty(root); 4481 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4482 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4483 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4484 4485 return 0; 4486 } 4487 4488 static const struct extent_io_ops btree_extent_io_ops = { 4489 .readpage_end_io_hook = btree_readpage_end_io_hook, 4490 .readpage_io_failed_hook = btree_io_failed_hook, 4491 .submit_bio_hook = btree_submit_bio_hook, 4492 /* note we're sharing with inode.c for the merge bio hook */ 4493 .merge_bio_hook = btrfs_merge_bio_hook, 4494 }; 4495