xref: /linux/fs/btrfs/disk-io.c (revision cc622420798c4bcf093785d872525087a7798db9)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 #include "compression.h"
54 
55 #ifdef CONFIG_X86
56 #include <asm/cpufeature.h>
57 #endif
58 
59 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
60 				 BTRFS_HEADER_FLAG_RELOC |\
61 				 BTRFS_SUPER_FLAG_ERROR |\
62 				 BTRFS_SUPER_FLAG_SEEDING |\
63 				 BTRFS_SUPER_FLAG_METADUMP)
64 
65 static const struct extent_io_ops btree_extent_io_ops;
66 static void end_workqueue_fn(struct btrfs_work *work);
67 static void free_fs_root(struct btrfs_root *root);
68 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
69 				    int read_only);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72 				      struct btrfs_root *root);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
75 					struct extent_io_tree *dirty_pages,
76 					int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
78 				       struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_root *root);
80 static void btrfs_error_commit_super(struct btrfs_root *root);
81 
82 /*
83  * btrfs_end_io_wq structs are used to do processing in task context when an IO
84  * is complete.  This is used during reads to verify checksums, and it is used
85  * by writes to insert metadata for new file extents after IO is complete.
86  */
87 struct btrfs_end_io_wq {
88 	struct bio *bio;
89 	bio_end_io_t *end_io;
90 	void *private;
91 	struct btrfs_fs_info *info;
92 	int error;
93 	enum btrfs_wq_endio_type metadata;
94 	struct list_head list;
95 	struct btrfs_work work;
96 };
97 
98 static struct kmem_cache *btrfs_end_io_wq_cache;
99 
100 int __init btrfs_end_io_wq_init(void)
101 {
102 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103 					sizeof(struct btrfs_end_io_wq),
104 					0,
105 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
106 					NULL);
107 	if (!btrfs_end_io_wq_cache)
108 		return -ENOMEM;
109 	return 0;
110 }
111 
112 void btrfs_end_io_wq_exit(void)
113 {
114 	kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116 
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123 	struct inode *inode;
124 	struct bio *bio;
125 	struct list_head list;
126 	extent_submit_bio_hook_t *submit_bio_start;
127 	extent_submit_bio_hook_t *submit_bio_done;
128 	int rw;
129 	int mirror_num;
130 	unsigned long bio_flags;
131 	/*
132 	 * bio_offset is optional, can be used if the pages in the bio
133 	 * can't tell us where in the file the bio should go
134 	 */
135 	u64 bio_offset;
136 	struct btrfs_work work;
137 	int error;
138 };
139 
140 /*
141  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
142  * eb, the lockdep key is determined by the btrfs_root it belongs to and
143  * the level the eb occupies in the tree.
144  *
145  * Different roots are used for different purposes and may nest inside each
146  * other and they require separate keysets.  As lockdep keys should be
147  * static, assign keysets according to the purpose of the root as indicated
148  * by btrfs_root->objectid.  This ensures that all special purpose roots
149  * have separate keysets.
150  *
151  * Lock-nesting across peer nodes is always done with the immediate parent
152  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
153  * subclass to avoid triggering lockdep warning in such cases.
154  *
155  * The key is set by the readpage_end_io_hook after the buffer has passed
156  * csum validation but before the pages are unlocked.  It is also set by
157  * btrfs_init_new_buffer on freshly allocated blocks.
158  *
159  * We also add a check to make sure the highest level of the tree is the
160  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
161  * needs update as well.
162  */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 #  error
166 # endif
167 
168 static struct btrfs_lockdep_keyset {
169 	u64			id;		/* root objectid */
170 	const char		*name_stem;	/* lock name stem */
171 	char			names[BTRFS_MAX_LEVEL + 1][20];
172 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
175 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
176 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
177 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
178 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
179 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
180 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
181 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
182 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
183 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
184 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
185 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
186 	{ .id = 0,				.name_stem = "tree"	},
187 };
188 
189 void __init btrfs_init_lockdep(void)
190 {
191 	int i, j;
192 
193 	/* initialize lockdep class names */
194 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196 
197 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198 			snprintf(ks->names[j], sizeof(ks->names[j]),
199 				 "btrfs-%s-%02d", ks->name_stem, j);
200 	}
201 }
202 
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204 				    int level)
205 {
206 	struct btrfs_lockdep_keyset *ks;
207 
208 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
209 
210 	/* find the matching keyset, id 0 is the default entry */
211 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212 		if (ks->id == objectid)
213 			break;
214 
215 	lockdep_set_class_and_name(&eb->lock,
216 				   &ks->keys[level], ks->names[level]);
217 }
218 
219 #endif
220 
221 /*
222  * extents on the btree inode are pretty simple, there's one extent
223  * that covers the entire device
224  */
225 static struct extent_map *btree_get_extent(struct inode *inode,
226 		struct page *page, size_t pg_offset, u64 start, u64 len,
227 		int create)
228 {
229 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230 	struct extent_map *em;
231 	int ret;
232 
233 	read_lock(&em_tree->lock);
234 	em = lookup_extent_mapping(em_tree, start, len);
235 	if (em) {
236 		em->bdev =
237 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238 		read_unlock(&em_tree->lock);
239 		goto out;
240 	}
241 	read_unlock(&em_tree->lock);
242 
243 	em = alloc_extent_map();
244 	if (!em) {
245 		em = ERR_PTR(-ENOMEM);
246 		goto out;
247 	}
248 	em->start = 0;
249 	em->len = (u64)-1;
250 	em->block_len = (u64)-1;
251 	em->block_start = 0;
252 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
253 
254 	write_lock(&em_tree->lock);
255 	ret = add_extent_mapping(em_tree, em, 0);
256 	if (ret == -EEXIST) {
257 		free_extent_map(em);
258 		em = lookup_extent_mapping(em_tree, start, len);
259 		if (!em)
260 			em = ERR_PTR(-EIO);
261 	} else if (ret) {
262 		free_extent_map(em);
263 		em = ERR_PTR(ret);
264 	}
265 	write_unlock(&em_tree->lock);
266 
267 out:
268 	return em;
269 }
270 
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
272 {
273 	return btrfs_crc32c(seed, data, len);
274 }
275 
276 void btrfs_csum_final(u32 crc, char *result)
277 {
278 	put_unaligned_le32(~crc, result);
279 }
280 
281 /*
282  * compute the csum for a btree block, and either verify it or write it
283  * into the csum field of the block.
284  */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286 			   struct extent_buffer *buf,
287 			   int verify)
288 {
289 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290 	char *result = NULL;
291 	unsigned long len;
292 	unsigned long cur_len;
293 	unsigned long offset = BTRFS_CSUM_SIZE;
294 	char *kaddr;
295 	unsigned long map_start;
296 	unsigned long map_len;
297 	int err;
298 	u32 crc = ~(u32)0;
299 	unsigned long inline_result;
300 
301 	len = buf->len - offset;
302 	while (len > 0) {
303 		err = map_private_extent_buffer(buf, offset, 32,
304 					&kaddr, &map_start, &map_len);
305 		if (err)
306 			return 1;
307 		cur_len = min(len, map_len - (offset - map_start));
308 		crc = btrfs_csum_data(kaddr + offset - map_start,
309 				      crc, cur_len);
310 		len -= cur_len;
311 		offset += cur_len;
312 	}
313 	if (csum_size > sizeof(inline_result)) {
314 		result = kzalloc(csum_size, GFP_NOFS);
315 		if (!result)
316 			return 1;
317 	} else {
318 		result = (char *)&inline_result;
319 	}
320 
321 	btrfs_csum_final(crc, result);
322 
323 	if (verify) {
324 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325 			u32 val;
326 			u32 found = 0;
327 			memcpy(&found, result, csum_size);
328 
329 			read_extent_buffer(buf, &val, 0, csum_size);
330 			btrfs_warn_rl(fs_info,
331 				"%s checksum verify failed on %llu wanted %X found %X "
332 				"level %d",
333 				fs_info->sb->s_id, buf->start,
334 				val, found, btrfs_header_level(buf));
335 			if (result != (char *)&inline_result)
336 				kfree(result);
337 			return 1;
338 		}
339 	} else {
340 		write_extent_buffer(buf, result, 0, csum_size);
341 	}
342 	if (result != (char *)&inline_result)
343 		kfree(result);
344 	return 0;
345 }
346 
347 /*
348  * we can't consider a given block up to date unless the transid of the
349  * block matches the transid in the parent node's pointer.  This is how we
350  * detect blocks that either didn't get written at all or got written
351  * in the wrong place.
352  */
353 static int verify_parent_transid(struct extent_io_tree *io_tree,
354 				 struct extent_buffer *eb, u64 parent_transid,
355 				 int atomic)
356 {
357 	struct extent_state *cached_state = NULL;
358 	int ret;
359 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360 
361 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
362 		return 0;
363 
364 	if (atomic)
365 		return -EAGAIN;
366 
367 	if (need_lock) {
368 		btrfs_tree_read_lock(eb);
369 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
370 	}
371 
372 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
373 			 &cached_state);
374 	if (extent_buffer_uptodate(eb) &&
375 	    btrfs_header_generation(eb) == parent_transid) {
376 		ret = 0;
377 		goto out;
378 	}
379 	btrfs_err_rl(eb->fs_info,
380 		"parent transid verify failed on %llu wanted %llu found %llu",
381 			eb->start,
382 			parent_transid, btrfs_header_generation(eb));
383 	ret = 1;
384 
385 	/*
386 	 * Things reading via commit roots that don't have normal protection,
387 	 * like send, can have a really old block in cache that may point at a
388 	 * block that has been free'd and re-allocated.  So don't clear uptodate
389 	 * if we find an eb that is under IO (dirty/writeback) because we could
390 	 * end up reading in the stale data and then writing it back out and
391 	 * making everybody very sad.
392 	 */
393 	if (!extent_buffer_under_io(eb))
394 		clear_extent_buffer_uptodate(eb);
395 out:
396 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
397 			     &cached_state, GFP_NOFS);
398 	if (need_lock)
399 		btrfs_tree_read_unlock_blocking(eb);
400 	return ret;
401 }
402 
403 /*
404  * Return 0 if the superblock checksum type matches the checksum value of that
405  * algorithm. Pass the raw disk superblock data.
406  */
407 static int btrfs_check_super_csum(char *raw_disk_sb)
408 {
409 	struct btrfs_super_block *disk_sb =
410 		(struct btrfs_super_block *)raw_disk_sb;
411 	u16 csum_type = btrfs_super_csum_type(disk_sb);
412 	int ret = 0;
413 
414 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
415 		u32 crc = ~(u32)0;
416 		const int csum_size = sizeof(crc);
417 		char result[csum_size];
418 
419 		/*
420 		 * The super_block structure does not span the whole
421 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422 		 * is filled with zeros and is included in the checkum.
423 		 */
424 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426 		btrfs_csum_final(crc, result);
427 
428 		if (memcmp(raw_disk_sb, result, csum_size))
429 			ret = 1;
430 	}
431 
432 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
434 				csum_type);
435 		ret = 1;
436 	}
437 
438 	return ret;
439 }
440 
441 /*
442  * helper to read a given tree block, doing retries as required when
443  * the checksums don't match and we have alternate mirrors to try.
444  */
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446 					  struct extent_buffer *eb,
447 					  u64 start, u64 parent_transid)
448 {
449 	struct extent_io_tree *io_tree;
450 	int failed = 0;
451 	int ret;
452 	int num_copies = 0;
453 	int mirror_num = 0;
454 	int failed_mirror = 0;
455 
456 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
458 	while (1) {
459 		ret = read_extent_buffer_pages(io_tree, eb, start,
460 					       WAIT_COMPLETE,
461 					       btree_get_extent, mirror_num);
462 		if (!ret) {
463 			if (!verify_parent_transid(io_tree, eb,
464 						   parent_transid, 0))
465 				break;
466 			else
467 				ret = -EIO;
468 		}
469 
470 		/*
471 		 * This buffer's crc is fine, but its contents are corrupted, so
472 		 * there is no reason to read the other copies, they won't be
473 		 * any less wrong.
474 		 */
475 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
476 			break;
477 
478 		num_copies = btrfs_num_copies(root->fs_info,
479 					      eb->start, eb->len);
480 		if (num_copies == 1)
481 			break;
482 
483 		if (!failed_mirror) {
484 			failed = 1;
485 			failed_mirror = eb->read_mirror;
486 		}
487 
488 		mirror_num++;
489 		if (mirror_num == failed_mirror)
490 			mirror_num++;
491 
492 		if (mirror_num > num_copies)
493 			break;
494 	}
495 
496 	if (failed && !ret && failed_mirror)
497 		repair_eb_io_failure(root, eb, failed_mirror);
498 
499 	return ret;
500 }
501 
502 /*
503  * checksum a dirty tree block before IO.  This has extra checks to make sure
504  * we only fill in the checksum field in the first page of a multi-page block
505  */
506 
507 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
508 {
509 	u64 start = page_offset(page);
510 	u64 found_start;
511 	struct extent_buffer *eb;
512 
513 	eb = (struct extent_buffer *)page->private;
514 	if (page != eb->pages[0])
515 		return 0;
516 	found_start = btrfs_header_bytenr(eb);
517 	if (WARN_ON(found_start != start || !PageUptodate(page)))
518 		return 0;
519 	csum_tree_block(fs_info, eb, 0);
520 	return 0;
521 }
522 
523 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
524 				 struct extent_buffer *eb)
525 {
526 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
527 	u8 fsid[BTRFS_UUID_SIZE];
528 	int ret = 1;
529 
530 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
531 	while (fs_devices) {
532 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
533 			ret = 0;
534 			break;
535 		}
536 		fs_devices = fs_devices->seed;
537 	}
538 	return ret;
539 }
540 
541 #define CORRUPT(reason, eb, root, slot)				\
542 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
543 		   "root=%llu, slot=%d", reason,			\
544 	       btrfs_header_bytenr(eb),	root->objectid, slot)
545 
546 static noinline int check_leaf(struct btrfs_root *root,
547 			       struct extent_buffer *leaf)
548 {
549 	struct btrfs_key key;
550 	struct btrfs_key leaf_key;
551 	u32 nritems = btrfs_header_nritems(leaf);
552 	int slot;
553 
554 	if (nritems == 0)
555 		return 0;
556 
557 	/* Check the 0 item */
558 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
559 	    BTRFS_LEAF_DATA_SIZE(root)) {
560 		CORRUPT("invalid item offset size pair", leaf, root, 0);
561 		return -EIO;
562 	}
563 
564 	/*
565 	 * Check to make sure each items keys are in the correct order and their
566 	 * offsets make sense.  We only have to loop through nritems-1 because
567 	 * we check the current slot against the next slot, which verifies the
568 	 * next slot's offset+size makes sense and that the current's slot
569 	 * offset is correct.
570 	 */
571 	for (slot = 0; slot < nritems - 1; slot++) {
572 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
573 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
574 
575 		/* Make sure the keys are in the right order */
576 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
577 			CORRUPT("bad key order", leaf, root, slot);
578 			return -EIO;
579 		}
580 
581 		/*
582 		 * Make sure the offset and ends are right, remember that the
583 		 * item data starts at the end of the leaf and grows towards the
584 		 * front.
585 		 */
586 		if (btrfs_item_offset_nr(leaf, slot) !=
587 			btrfs_item_end_nr(leaf, slot + 1)) {
588 			CORRUPT("slot offset bad", leaf, root, slot);
589 			return -EIO;
590 		}
591 
592 		/*
593 		 * Check to make sure that we don't point outside of the leaf,
594 		 * just incase all the items are consistent to eachother, but
595 		 * all point outside of the leaf.
596 		 */
597 		if (btrfs_item_end_nr(leaf, slot) >
598 		    BTRFS_LEAF_DATA_SIZE(root)) {
599 			CORRUPT("slot end outside of leaf", leaf, root, slot);
600 			return -EIO;
601 		}
602 	}
603 
604 	return 0;
605 }
606 
607 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
608 				      u64 phy_offset, struct page *page,
609 				      u64 start, u64 end, int mirror)
610 {
611 	u64 found_start;
612 	int found_level;
613 	struct extent_buffer *eb;
614 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
615 	struct btrfs_fs_info *fs_info = root->fs_info;
616 	int ret = 0;
617 	int reads_done;
618 
619 	if (!page->private)
620 		goto out;
621 
622 	eb = (struct extent_buffer *)page->private;
623 
624 	/* the pending IO might have been the only thing that kept this buffer
625 	 * in memory.  Make sure we have a ref for all this other checks
626 	 */
627 	extent_buffer_get(eb);
628 
629 	reads_done = atomic_dec_and_test(&eb->io_pages);
630 	if (!reads_done)
631 		goto err;
632 
633 	eb->read_mirror = mirror;
634 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
635 		ret = -EIO;
636 		goto err;
637 	}
638 
639 	found_start = btrfs_header_bytenr(eb);
640 	if (found_start != eb->start) {
641 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
642 			     found_start, eb->start);
643 		ret = -EIO;
644 		goto err;
645 	}
646 	if (check_tree_block_fsid(fs_info, eb)) {
647 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
648 			     eb->start);
649 		ret = -EIO;
650 		goto err;
651 	}
652 	found_level = btrfs_header_level(eb);
653 	if (found_level >= BTRFS_MAX_LEVEL) {
654 		btrfs_err(fs_info, "bad tree block level %d",
655 			  (int)btrfs_header_level(eb));
656 		ret = -EIO;
657 		goto err;
658 	}
659 
660 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
661 				       eb, found_level);
662 
663 	ret = csum_tree_block(fs_info, eb, 1);
664 	if (ret) {
665 		ret = -EIO;
666 		goto err;
667 	}
668 
669 	/*
670 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
671 	 * that we don't try and read the other copies of this block, just
672 	 * return -EIO.
673 	 */
674 	if (found_level == 0 && check_leaf(root, eb)) {
675 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676 		ret = -EIO;
677 	}
678 
679 	if (!ret)
680 		set_extent_buffer_uptodate(eb);
681 err:
682 	if (reads_done &&
683 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 		btree_readahead_hook(fs_info, eb, eb->start, ret);
685 
686 	if (ret) {
687 		/*
688 		 * our io error hook is going to dec the io pages
689 		 * again, we have to make sure it has something
690 		 * to decrement
691 		 */
692 		atomic_inc(&eb->io_pages);
693 		clear_extent_buffer_uptodate(eb);
694 	}
695 	free_extent_buffer(eb);
696 out:
697 	return ret;
698 }
699 
700 static int btree_io_failed_hook(struct page *page, int failed_mirror)
701 {
702 	struct extent_buffer *eb;
703 
704 	eb = (struct extent_buffer *)page->private;
705 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
706 	eb->read_mirror = failed_mirror;
707 	atomic_dec(&eb->io_pages);
708 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
709 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
710 	return -EIO;	/* we fixed nothing */
711 }
712 
713 static void end_workqueue_bio(struct bio *bio)
714 {
715 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
716 	struct btrfs_fs_info *fs_info;
717 	struct btrfs_workqueue *wq;
718 	btrfs_work_func_t func;
719 
720 	fs_info = end_io_wq->info;
721 	end_io_wq->error = bio->bi_error;
722 
723 	if (bio->bi_rw & REQ_WRITE) {
724 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
725 			wq = fs_info->endio_meta_write_workers;
726 			func = btrfs_endio_meta_write_helper;
727 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
728 			wq = fs_info->endio_freespace_worker;
729 			func = btrfs_freespace_write_helper;
730 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
731 			wq = fs_info->endio_raid56_workers;
732 			func = btrfs_endio_raid56_helper;
733 		} else {
734 			wq = fs_info->endio_write_workers;
735 			func = btrfs_endio_write_helper;
736 		}
737 	} else {
738 		if (unlikely(end_io_wq->metadata ==
739 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
740 			wq = fs_info->endio_repair_workers;
741 			func = btrfs_endio_repair_helper;
742 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
743 			wq = fs_info->endio_raid56_workers;
744 			func = btrfs_endio_raid56_helper;
745 		} else if (end_io_wq->metadata) {
746 			wq = fs_info->endio_meta_workers;
747 			func = btrfs_endio_meta_helper;
748 		} else {
749 			wq = fs_info->endio_workers;
750 			func = btrfs_endio_helper;
751 		}
752 	}
753 
754 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
755 	btrfs_queue_work(wq, &end_io_wq->work);
756 }
757 
758 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
759 			enum btrfs_wq_endio_type metadata)
760 {
761 	struct btrfs_end_io_wq *end_io_wq;
762 
763 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
764 	if (!end_io_wq)
765 		return -ENOMEM;
766 
767 	end_io_wq->private = bio->bi_private;
768 	end_io_wq->end_io = bio->bi_end_io;
769 	end_io_wq->info = info;
770 	end_io_wq->error = 0;
771 	end_io_wq->bio = bio;
772 	end_io_wq->metadata = metadata;
773 
774 	bio->bi_private = end_io_wq;
775 	bio->bi_end_io = end_workqueue_bio;
776 	return 0;
777 }
778 
779 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
780 {
781 	unsigned long limit = min_t(unsigned long,
782 				    info->thread_pool_size,
783 				    info->fs_devices->open_devices);
784 	return 256 * limit;
785 }
786 
787 static void run_one_async_start(struct btrfs_work *work)
788 {
789 	struct async_submit_bio *async;
790 	int ret;
791 
792 	async = container_of(work, struct  async_submit_bio, work);
793 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
794 				      async->mirror_num, async->bio_flags,
795 				      async->bio_offset);
796 	if (ret)
797 		async->error = ret;
798 }
799 
800 static void run_one_async_done(struct btrfs_work *work)
801 {
802 	struct btrfs_fs_info *fs_info;
803 	struct async_submit_bio *async;
804 	int limit;
805 
806 	async = container_of(work, struct  async_submit_bio, work);
807 	fs_info = BTRFS_I(async->inode)->root->fs_info;
808 
809 	limit = btrfs_async_submit_limit(fs_info);
810 	limit = limit * 2 / 3;
811 
812 	/*
813 	 * atomic_dec_return implies a barrier for waitqueue_active
814 	 */
815 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
816 	    waitqueue_active(&fs_info->async_submit_wait))
817 		wake_up(&fs_info->async_submit_wait);
818 
819 	/* If an error occurred we just want to clean up the bio and move on */
820 	if (async->error) {
821 		async->bio->bi_error = async->error;
822 		bio_endio(async->bio);
823 		return;
824 	}
825 
826 	async->submit_bio_done(async->inode, async->rw, async->bio,
827 			       async->mirror_num, async->bio_flags,
828 			       async->bio_offset);
829 }
830 
831 static void run_one_async_free(struct btrfs_work *work)
832 {
833 	struct async_submit_bio *async;
834 
835 	async = container_of(work, struct  async_submit_bio, work);
836 	kfree(async);
837 }
838 
839 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
840 			int rw, struct bio *bio, int mirror_num,
841 			unsigned long bio_flags,
842 			u64 bio_offset,
843 			extent_submit_bio_hook_t *submit_bio_start,
844 			extent_submit_bio_hook_t *submit_bio_done)
845 {
846 	struct async_submit_bio *async;
847 
848 	async = kmalloc(sizeof(*async), GFP_NOFS);
849 	if (!async)
850 		return -ENOMEM;
851 
852 	async->inode = inode;
853 	async->rw = rw;
854 	async->bio = bio;
855 	async->mirror_num = mirror_num;
856 	async->submit_bio_start = submit_bio_start;
857 	async->submit_bio_done = submit_bio_done;
858 
859 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
860 			run_one_async_done, run_one_async_free);
861 
862 	async->bio_flags = bio_flags;
863 	async->bio_offset = bio_offset;
864 
865 	async->error = 0;
866 
867 	atomic_inc(&fs_info->nr_async_submits);
868 
869 	if (rw & REQ_SYNC)
870 		btrfs_set_work_high_priority(&async->work);
871 
872 	btrfs_queue_work(fs_info->workers, &async->work);
873 
874 	while (atomic_read(&fs_info->async_submit_draining) &&
875 	      atomic_read(&fs_info->nr_async_submits)) {
876 		wait_event(fs_info->async_submit_wait,
877 			   (atomic_read(&fs_info->nr_async_submits) == 0));
878 	}
879 
880 	return 0;
881 }
882 
883 static int btree_csum_one_bio(struct bio *bio)
884 {
885 	struct bio_vec *bvec;
886 	struct btrfs_root *root;
887 	int i, ret = 0;
888 
889 	bio_for_each_segment_all(bvec, bio, i) {
890 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
891 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
892 		if (ret)
893 			break;
894 	}
895 
896 	return ret;
897 }
898 
899 static int __btree_submit_bio_start(struct inode *inode, int rw,
900 				    struct bio *bio, int mirror_num,
901 				    unsigned long bio_flags,
902 				    u64 bio_offset)
903 {
904 	/*
905 	 * when we're called for a write, we're already in the async
906 	 * submission context.  Just jump into btrfs_map_bio
907 	 */
908 	return btree_csum_one_bio(bio);
909 }
910 
911 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
912 				 int mirror_num, unsigned long bio_flags,
913 				 u64 bio_offset)
914 {
915 	int ret;
916 
917 	/*
918 	 * when we're called for a write, we're already in the async
919 	 * submission context.  Just jump into btrfs_map_bio
920 	 */
921 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
922 	if (ret) {
923 		bio->bi_error = ret;
924 		bio_endio(bio);
925 	}
926 	return ret;
927 }
928 
929 static int check_async_write(struct inode *inode, unsigned long bio_flags)
930 {
931 	if (bio_flags & EXTENT_BIO_TREE_LOG)
932 		return 0;
933 #ifdef CONFIG_X86
934 	if (static_cpu_has(X86_FEATURE_XMM4_2))
935 		return 0;
936 #endif
937 	return 1;
938 }
939 
940 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
941 				 int mirror_num, unsigned long bio_flags,
942 				 u64 bio_offset)
943 {
944 	int async = check_async_write(inode, bio_flags);
945 	int ret;
946 
947 	if (!(rw & REQ_WRITE)) {
948 		/*
949 		 * called for a read, do the setup so that checksum validation
950 		 * can happen in the async kernel threads
951 		 */
952 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
953 					  bio, BTRFS_WQ_ENDIO_METADATA);
954 		if (ret)
955 			goto out_w_error;
956 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
957 				    mirror_num, 0);
958 	} else if (!async) {
959 		ret = btree_csum_one_bio(bio);
960 		if (ret)
961 			goto out_w_error;
962 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
963 				    mirror_num, 0);
964 	} else {
965 		/*
966 		 * kthread helpers are used to submit writes so that
967 		 * checksumming can happen in parallel across all CPUs
968 		 */
969 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
970 					  inode, rw, bio, mirror_num, 0,
971 					  bio_offset,
972 					  __btree_submit_bio_start,
973 					  __btree_submit_bio_done);
974 	}
975 
976 	if (ret)
977 		goto out_w_error;
978 	return 0;
979 
980 out_w_error:
981 	bio->bi_error = ret;
982 	bio_endio(bio);
983 	return ret;
984 }
985 
986 #ifdef CONFIG_MIGRATION
987 static int btree_migratepage(struct address_space *mapping,
988 			struct page *newpage, struct page *page,
989 			enum migrate_mode mode)
990 {
991 	/*
992 	 * we can't safely write a btree page from here,
993 	 * we haven't done the locking hook
994 	 */
995 	if (PageDirty(page))
996 		return -EAGAIN;
997 	/*
998 	 * Buffers may be managed in a filesystem specific way.
999 	 * We must have no buffers or drop them.
1000 	 */
1001 	if (page_has_private(page) &&
1002 	    !try_to_release_page(page, GFP_KERNEL))
1003 		return -EAGAIN;
1004 	return migrate_page(mapping, newpage, page, mode);
1005 }
1006 #endif
1007 
1008 
1009 static int btree_writepages(struct address_space *mapping,
1010 			    struct writeback_control *wbc)
1011 {
1012 	struct btrfs_fs_info *fs_info;
1013 	int ret;
1014 
1015 	if (wbc->sync_mode == WB_SYNC_NONE) {
1016 
1017 		if (wbc->for_kupdate)
1018 			return 0;
1019 
1020 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1021 		/* this is a bit racy, but that's ok */
1022 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1023 					     BTRFS_DIRTY_METADATA_THRESH);
1024 		if (ret < 0)
1025 			return 0;
1026 	}
1027 	return btree_write_cache_pages(mapping, wbc);
1028 }
1029 
1030 static int btree_readpage(struct file *file, struct page *page)
1031 {
1032 	struct extent_io_tree *tree;
1033 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1035 }
1036 
1037 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1038 {
1039 	if (PageWriteback(page) || PageDirty(page))
1040 		return 0;
1041 
1042 	return try_release_extent_buffer(page);
1043 }
1044 
1045 static void btree_invalidatepage(struct page *page, unsigned int offset,
1046 				 unsigned int length)
1047 {
1048 	struct extent_io_tree *tree;
1049 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1050 	extent_invalidatepage(tree, page, offset);
1051 	btree_releasepage(page, GFP_NOFS);
1052 	if (PagePrivate(page)) {
1053 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1054 			   "page private not zero on page %llu",
1055 			   (unsigned long long)page_offset(page));
1056 		ClearPagePrivate(page);
1057 		set_page_private(page, 0);
1058 		page_cache_release(page);
1059 	}
1060 }
1061 
1062 static int btree_set_page_dirty(struct page *page)
1063 {
1064 #ifdef DEBUG
1065 	struct extent_buffer *eb;
1066 
1067 	BUG_ON(!PagePrivate(page));
1068 	eb = (struct extent_buffer *)page->private;
1069 	BUG_ON(!eb);
1070 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1071 	BUG_ON(!atomic_read(&eb->refs));
1072 	btrfs_assert_tree_locked(eb);
1073 #endif
1074 	return __set_page_dirty_nobuffers(page);
1075 }
1076 
1077 static const struct address_space_operations btree_aops = {
1078 	.readpage	= btree_readpage,
1079 	.writepages	= btree_writepages,
1080 	.releasepage	= btree_releasepage,
1081 	.invalidatepage = btree_invalidatepage,
1082 #ifdef CONFIG_MIGRATION
1083 	.migratepage	= btree_migratepage,
1084 #endif
1085 	.set_page_dirty = btree_set_page_dirty,
1086 };
1087 
1088 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1089 {
1090 	struct extent_buffer *buf = NULL;
1091 	struct inode *btree_inode = root->fs_info->btree_inode;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr);
1094 	if (!buf)
1095 		return;
1096 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1097 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1098 	free_extent_buffer(buf);
1099 }
1100 
1101 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1102 			 int mirror_num, struct extent_buffer **eb)
1103 {
1104 	struct extent_buffer *buf = NULL;
1105 	struct inode *btree_inode = root->fs_info->btree_inode;
1106 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1107 	int ret;
1108 
1109 	buf = btrfs_find_create_tree_block(root, bytenr);
1110 	if (!buf)
1111 		return 0;
1112 
1113 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1114 
1115 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1116 				       btree_get_extent, mirror_num);
1117 	if (ret) {
1118 		free_extent_buffer(buf);
1119 		return ret;
1120 	}
1121 
1122 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1123 		free_extent_buffer(buf);
1124 		return -EIO;
1125 	} else if (extent_buffer_uptodate(buf)) {
1126 		*eb = buf;
1127 	} else {
1128 		free_extent_buffer(buf);
1129 	}
1130 	return 0;
1131 }
1132 
1133 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1134 					    u64 bytenr)
1135 {
1136 	return find_extent_buffer(fs_info, bytenr);
1137 }
1138 
1139 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1140 						 u64 bytenr)
1141 {
1142 	if (btrfs_test_is_dummy_root(root))
1143 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1144 	return alloc_extent_buffer(root->fs_info, bytenr);
1145 }
1146 
1147 
1148 int btrfs_write_tree_block(struct extent_buffer *buf)
1149 {
1150 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1151 					buf->start + buf->len - 1);
1152 }
1153 
1154 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1155 {
1156 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1157 				       buf->start, buf->start + buf->len - 1);
1158 }
1159 
1160 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1161 				      u64 parent_transid)
1162 {
1163 	struct extent_buffer *buf = NULL;
1164 	int ret;
1165 
1166 	buf = btrfs_find_create_tree_block(root, bytenr);
1167 	if (!buf)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1171 	if (ret) {
1172 		free_extent_buffer(buf);
1173 		return ERR_PTR(ret);
1174 	}
1175 	return buf;
1176 
1177 }
1178 
1179 void clean_tree_block(struct btrfs_trans_handle *trans,
1180 		      struct btrfs_fs_info *fs_info,
1181 		      struct extent_buffer *buf)
1182 {
1183 	if (btrfs_header_generation(buf) ==
1184 	    fs_info->running_transaction->transid) {
1185 		btrfs_assert_tree_locked(buf);
1186 
1187 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1188 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1189 					     -buf->len,
1190 					     fs_info->dirty_metadata_batch);
1191 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1192 			btrfs_set_lock_blocking(buf);
1193 			clear_extent_buffer_dirty(buf);
1194 		}
1195 	}
1196 }
1197 
1198 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1199 {
1200 	struct btrfs_subvolume_writers *writers;
1201 	int ret;
1202 
1203 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1204 	if (!writers)
1205 		return ERR_PTR(-ENOMEM);
1206 
1207 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1208 	if (ret < 0) {
1209 		kfree(writers);
1210 		return ERR_PTR(ret);
1211 	}
1212 
1213 	init_waitqueue_head(&writers->wait);
1214 	return writers;
1215 }
1216 
1217 static void
1218 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1219 {
1220 	percpu_counter_destroy(&writers->counter);
1221 	kfree(writers);
1222 }
1223 
1224 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1225 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1226 			 u64 objectid)
1227 {
1228 	root->node = NULL;
1229 	root->commit_root = NULL;
1230 	root->sectorsize = sectorsize;
1231 	root->nodesize = nodesize;
1232 	root->stripesize = stripesize;
1233 	root->state = 0;
1234 	root->orphan_cleanup_state = 0;
1235 
1236 	root->objectid = objectid;
1237 	root->last_trans = 0;
1238 	root->highest_objectid = 0;
1239 	root->nr_delalloc_inodes = 0;
1240 	root->nr_ordered_extents = 0;
1241 	root->name = NULL;
1242 	root->inode_tree = RB_ROOT;
1243 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1244 	root->block_rsv = NULL;
1245 	root->orphan_block_rsv = NULL;
1246 
1247 	INIT_LIST_HEAD(&root->dirty_list);
1248 	INIT_LIST_HEAD(&root->root_list);
1249 	INIT_LIST_HEAD(&root->delalloc_inodes);
1250 	INIT_LIST_HEAD(&root->delalloc_root);
1251 	INIT_LIST_HEAD(&root->ordered_extents);
1252 	INIT_LIST_HEAD(&root->ordered_root);
1253 	INIT_LIST_HEAD(&root->logged_list[0]);
1254 	INIT_LIST_HEAD(&root->logged_list[1]);
1255 	spin_lock_init(&root->orphan_lock);
1256 	spin_lock_init(&root->inode_lock);
1257 	spin_lock_init(&root->delalloc_lock);
1258 	spin_lock_init(&root->ordered_extent_lock);
1259 	spin_lock_init(&root->accounting_lock);
1260 	spin_lock_init(&root->log_extents_lock[0]);
1261 	spin_lock_init(&root->log_extents_lock[1]);
1262 	mutex_init(&root->objectid_mutex);
1263 	mutex_init(&root->log_mutex);
1264 	mutex_init(&root->ordered_extent_mutex);
1265 	mutex_init(&root->delalloc_mutex);
1266 	init_waitqueue_head(&root->log_writer_wait);
1267 	init_waitqueue_head(&root->log_commit_wait[0]);
1268 	init_waitqueue_head(&root->log_commit_wait[1]);
1269 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1270 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1271 	atomic_set(&root->log_commit[0], 0);
1272 	atomic_set(&root->log_commit[1], 0);
1273 	atomic_set(&root->log_writers, 0);
1274 	atomic_set(&root->log_batch, 0);
1275 	atomic_set(&root->orphan_inodes, 0);
1276 	atomic_set(&root->refs, 1);
1277 	atomic_set(&root->will_be_snapshoted, 0);
1278 	atomic_set(&root->qgroup_meta_rsv, 0);
1279 	root->log_transid = 0;
1280 	root->log_transid_committed = -1;
1281 	root->last_log_commit = 0;
1282 	if (fs_info)
1283 		extent_io_tree_init(&root->dirty_log_pages,
1284 				     fs_info->btree_inode->i_mapping);
1285 
1286 	memset(&root->root_key, 0, sizeof(root->root_key));
1287 	memset(&root->root_item, 0, sizeof(root->root_item));
1288 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1289 	if (fs_info)
1290 		root->defrag_trans_start = fs_info->generation;
1291 	else
1292 		root->defrag_trans_start = 0;
1293 	root->root_key.objectid = objectid;
1294 	root->anon_dev = 0;
1295 
1296 	spin_lock_init(&root->root_item_lock);
1297 }
1298 
1299 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1300 		gfp_t flags)
1301 {
1302 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1303 	if (root)
1304 		root->fs_info = fs_info;
1305 	return root;
1306 }
1307 
1308 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1309 /* Should only be used by the testing infrastructure */
1310 struct btrfs_root *btrfs_alloc_dummy_root(void)
1311 {
1312 	struct btrfs_root *root;
1313 
1314 	root = btrfs_alloc_root(NULL, GFP_KERNEL);
1315 	if (!root)
1316 		return ERR_PTR(-ENOMEM);
1317 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1318 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1319 	root->alloc_bytenr = 0;
1320 
1321 	return root;
1322 }
1323 #endif
1324 
1325 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1326 				     struct btrfs_fs_info *fs_info,
1327 				     u64 objectid)
1328 {
1329 	struct extent_buffer *leaf;
1330 	struct btrfs_root *tree_root = fs_info->tree_root;
1331 	struct btrfs_root *root;
1332 	struct btrfs_key key;
1333 	int ret = 0;
1334 	uuid_le uuid;
1335 
1336 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1337 	if (!root)
1338 		return ERR_PTR(-ENOMEM);
1339 
1340 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1341 		tree_root->stripesize, root, fs_info, objectid);
1342 	root->root_key.objectid = objectid;
1343 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344 	root->root_key.offset = 0;
1345 
1346 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1347 	if (IS_ERR(leaf)) {
1348 		ret = PTR_ERR(leaf);
1349 		leaf = NULL;
1350 		goto fail;
1351 	}
1352 
1353 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1354 	btrfs_set_header_bytenr(leaf, leaf->start);
1355 	btrfs_set_header_generation(leaf, trans->transid);
1356 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1357 	btrfs_set_header_owner(leaf, objectid);
1358 	root->node = leaf;
1359 
1360 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1361 			    BTRFS_FSID_SIZE);
1362 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1363 			    btrfs_header_chunk_tree_uuid(leaf),
1364 			    BTRFS_UUID_SIZE);
1365 	btrfs_mark_buffer_dirty(leaf);
1366 
1367 	root->commit_root = btrfs_root_node(root);
1368 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1369 
1370 	root->root_item.flags = 0;
1371 	root->root_item.byte_limit = 0;
1372 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1373 	btrfs_set_root_generation(&root->root_item, trans->transid);
1374 	btrfs_set_root_level(&root->root_item, 0);
1375 	btrfs_set_root_refs(&root->root_item, 1);
1376 	btrfs_set_root_used(&root->root_item, leaf->len);
1377 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1378 	btrfs_set_root_dirid(&root->root_item, 0);
1379 	uuid_le_gen(&uuid);
1380 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1381 	root->root_item.drop_level = 0;
1382 
1383 	key.objectid = objectid;
1384 	key.type = BTRFS_ROOT_ITEM_KEY;
1385 	key.offset = 0;
1386 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1387 	if (ret)
1388 		goto fail;
1389 
1390 	btrfs_tree_unlock(leaf);
1391 
1392 	return root;
1393 
1394 fail:
1395 	if (leaf) {
1396 		btrfs_tree_unlock(leaf);
1397 		free_extent_buffer(root->commit_root);
1398 		free_extent_buffer(leaf);
1399 	}
1400 	kfree(root);
1401 
1402 	return ERR_PTR(ret);
1403 }
1404 
1405 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1406 					 struct btrfs_fs_info *fs_info)
1407 {
1408 	struct btrfs_root *root;
1409 	struct btrfs_root *tree_root = fs_info->tree_root;
1410 	struct extent_buffer *leaf;
1411 
1412 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1413 	if (!root)
1414 		return ERR_PTR(-ENOMEM);
1415 
1416 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1417 		     tree_root->stripesize, root, fs_info,
1418 		     BTRFS_TREE_LOG_OBJECTID);
1419 
1420 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1421 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1422 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1423 
1424 	/*
1425 	 * DON'T set REF_COWS for log trees
1426 	 *
1427 	 * log trees do not get reference counted because they go away
1428 	 * before a real commit is actually done.  They do store pointers
1429 	 * to file data extents, and those reference counts still get
1430 	 * updated (along with back refs to the log tree).
1431 	 */
1432 
1433 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1434 			NULL, 0, 0, 0);
1435 	if (IS_ERR(leaf)) {
1436 		kfree(root);
1437 		return ERR_CAST(leaf);
1438 	}
1439 
1440 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1441 	btrfs_set_header_bytenr(leaf, leaf->start);
1442 	btrfs_set_header_generation(leaf, trans->transid);
1443 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1444 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1445 	root->node = leaf;
1446 
1447 	write_extent_buffer(root->node, root->fs_info->fsid,
1448 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1449 	btrfs_mark_buffer_dirty(root->node);
1450 	btrfs_tree_unlock(root->node);
1451 	return root;
1452 }
1453 
1454 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1455 			     struct btrfs_fs_info *fs_info)
1456 {
1457 	struct btrfs_root *log_root;
1458 
1459 	log_root = alloc_log_tree(trans, fs_info);
1460 	if (IS_ERR(log_root))
1461 		return PTR_ERR(log_root);
1462 	WARN_ON(fs_info->log_root_tree);
1463 	fs_info->log_root_tree = log_root;
1464 	return 0;
1465 }
1466 
1467 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1468 		       struct btrfs_root *root)
1469 {
1470 	struct btrfs_root *log_root;
1471 	struct btrfs_inode_item *inode_item;
1472 
1473 	log_root = alloc_log_tree(trans, root->fs_info);
1474 	if (IS_ERR(log_root))
1475 		return PTR_ERR(log_root);
1476 
1477 	log_root->last_trans = trans->transid;
1478 	log_root->root_key.offset = root->root_key.objectid;
1479 
1480 	inode_item = &log_root->root_item.inode;
1481 	btrfs_set_stack_inode_generation(inode_item, 1);
1482 	btrfs_set_stack_inode_size(inode_item, 3);
1483 	btrfs_set_stack_inode_nlink(inode_item, 1);
1484 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1485 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1486 
1487 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1488 
1489 	WARN_ON(root->log_root);
1490 	root->log_root = log_root;
1491 	root->log_transid = 0;
1492 	root->log_transid_committed = -1;
1493 	root->last_log_commit = 0;
1494 	return 0;
1495 }
1496 
1497 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1498 					       struct btrfs_key *key)
1499 {
1500 	struct btrfs_root *root;
1501 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1502 	struct btrfs_path *path;
1503 	u64 generation;
1504 	int ret;
1505 
1506 	path = btrfs_alloc_path();
1507 	if (!path)
1508 		return ERR_PTR(-ENOMEM);
1509 
1510 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1511 	if (!root) {
1512 		ret = -ENOMEM;
1513 		goto alloc_fail;
1514 	}
1515 
1516 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1517 		tree_root->stripesize, root, fs_info, key->objectid);
1518 
1519 	ret = btrfs_find_root(tree_root, key, path,
1520 			      &root->root_item, &root->root_key);
1521 	if (ret) {
1522 		if (ret > 0)
1523 			ret = -ENOENT;
1524 		goto find_fail;
1525 	}
1526 
1527 	generation = btrfs_root_generation(&root->root_item);
1528 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1529 				     generation);
1530 	if (IS_ERR(root->node)) {
1531 		ret = PTR_ERR(root->node);
1532 		goto find_fail;
1533 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1534 		ret = -EIO;
1535 		free_extent_buffer(root->node);
1536 		goto find_fail;
1537 	}
1538 	root->commit_root = btrfs_root_node(root);
1539 out:
1540 	btrfs_free_path(path);
1541 	return root;
1542 
1543 find_fail:
1544 	kfree(root);
1545 alloc_fail:
1546 	root = ERR_PTR(ret);
1547 	goto out;
1548 }
1549 
1550 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1551 				      struct btrfs_key *location)
1552 {
1553 	struct btrfs_root *root;
1554 
1555 	root = btrfs_read_tree_root(tree_root, location);
1556 	if (IS_ERR(root))
1557 		return root;
1558 
1559 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1560 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1561 		btrfs_check_and_init_root_item(&root->root_item);
1562 	}
1563 
1564 	return root;
1565 }
1566 
1567 int btrfs_init_fs_root(struct btrfs_root *root)
1568 {
1569 	int ret;
1570 	struct btrfs_subvolume_writers *writers;
1571 
1572 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1573 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1574 					GFP_NOFS);
1575 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1576 		ret = -ENOMEM;
1577 		goto fail;
1578 	}
1579 
1580 	writers = btrfs_alloc_subvolume_writers();
1581 	if (IS_ERR(writers)) {
1582 		ret = PTR_ERR(writers);
1583 		goto fail;
1584 	}
1585 	root->subv_writers = writers;
1586 
1587 	btrfs_init_free_ino_ctl(root);
1588 	spin_lock_init(&root->ino_cache_lock);
1589 	init_waitqueue_head(&root->ino_cache_wait);
1590 
1591 	ret = get_anon_bdev(&root->anon_dev);
1592 	if (ret)
1593 		goto free_writers;
1594 
1595 	mutex_lock(&root->objectid_mutex);
1596 	ret = btrfs_find_highest_objectid(root,
1597 					&root->highest_objectid);
1598 	if (ret) {
1599 		mutex_unlock(&root->objectid_mutex);
1600 		goto free_root_dev;
1601 	}
1602 
1603 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1604 
1605 	mutex_unlock(&root->objectid_mutex);
1606 
1607 	return 0;
1608 
1609 free_root_dev:
1610 	free_anon_bdev(root->anon_dev);
1611 free_writers:
1612 	btrfs_free_subvolume_writers(root->subv_writers);
1613 fail:
1614 	kfree(root->free_ino_ctl);
1615 	kfree(root->free_ino_pinned);
1616 	return ret;
1617 }
1618 
1619 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1620 					       u64 root_id)
1621 {
1622 	struct btrfs_root *root;
1623 
1624 	spin_lock(&fs_info->fs_roots_radix_lock);
1625 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1626 				 (unsigned long)root_id);
1627 	spin_unlock(&fs_info->fs_roots_radix_lock);
1628 	return root;
1629 }
1630 
1631 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1632 			 struct btrfs_root *root)
1633 {
1634 	int ret;
1635 
1636 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1637 	if (ret)
1638 		return ret;
1639 
1640 	spin_lock(&fs_info->fs_roots_radix_lock);
1641 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1642 				(unsigned long)root->root_key.objectid,
1643 				root);
1644 	if (ret == 0)
1645 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1646 	spin_unlock(&fs_info->fs_roots_radix_lock);
1647 	radix_tree_preload_end();
1648 
1649 	return ret;
1650 }
1651 
1652 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1653 				     struct btrfs_key *location,
1654 				     bool check_ref)
1655 {
1656 	struct btrfs_root *root;
1657 	struct btrfs_path *path;
1658 	struct btrfs_key key;
1659 	int ret;
1660 
1661 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1662 		return fs_info->tree_root;
1663 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1664 		return fs_info->extent_root;
1665 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1666 		return fs_info->chunk_root;
1667 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1668 		return fs_info->dev_root;
1669 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1670 		return fs_info->csum_root;
1671 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1672 		return fs_info->quota_root ? fs_info->quota_root :
1673 					     ERR_PTR(-ENOENT);
1674 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1675 		return fs_info->uuid_root ? fs_info->uuid_root :
1676 					    ERR_PTR(-ENOENT);
1677 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1678 		return fs_info->free_space_root ? fs_info->free_space_root :
1679 						  ERR_PTR(-ENOENT);
1680 again:
1681 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1682 	if (root) {
1683 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1684 			return ERR_PTR(-ENOENT);
1685 		return root;
1686 	}
1687 
1688 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1689 	if (IS_ERR(root))
1690 		return root;
1691 
1692 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1693 		ret = -ENOENT;
1694 		goto fail;
1695 	}
1696 
1697 	ret = btrfs_init_fs_root(root);
1698 	if (ret)
1699 		goto fail;
1700 
1701 	path = btrfs_alloc_path();
1702 	if (!path) {
1703 		ret = -ENOMEM;
1704 		goto fail;
1705 	}
1706 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1707 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1708 	key.offset = location->objectid;
1709 
1710 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1711 	btrfs_free_path(path);
1712 	if (ret < 0)
1713 		goto fail;
1714 	if (ret == 0)
1715 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1716 
1717 	ret = btrfs_insert_fs_root(fs_info, root);
1718 	if (ret) {
1719 		if (ret == -EEXIST) {
1720 			free_fs_root(root);
1721 			goto again;
1722 		}
1723 		goto fail;
1724 	}
1725 	return root;
1726 fail:
1727 	free_fs_root(root);
1728 	return ERR_PTR(ret);
1729 }
1730 
1731 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1732 {
1733 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1734 	int ret = 0;
1735 	struct btrfs_device *device;
1736 	struct backing_dev_info *bdi;
1737 
1738 	rcu_read_lock();
1739 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1740 		if (!device->bdev)
1741 			continue;
1742 		bdi = blk_get_backing_dev_info(device->bdev);
1743 		if (bdi_congested(bdi, bdi_bits)) {
1744 			ret = 1;
1745 			break;
1746 		}
1747 	}
1748 	rcu_read_unlock();
1749 	return ret;
1750 }
1751 
1752 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1753 {
1754 	int err;
1755 
1756 	err = bdi_setup_and_register(bdi, "btrfs");
1757 	if (err)
1758 		return err;
1759 
1760 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1761 	bdi->congested_fn	= btrfs_congested_fn;
1762 	bdi->congested_data	= info;
1763 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1764 	return 0;
1765 }
1766 
1767 /*
1768  * called by the kthread helper functions to finally call the bio end_io
1769  * functions.  This is where read checksum verification actually happens
1770  */
1771 static void end_workqueue_fn(struct btrfs_work *work)
1772 {
1773 	struct bio *bio;
1774 	struct btrfs_end_io_wq *end_io_wq;
1775 
1776 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1777 	bio = end_io_wq->bio;
1778 
1779 	bio->bi_error = end_io_wq->error;
1780 	bio->bi_private = end_io_wq->private;
1781 	bio->bi_end_io = end_io_wq->end_io;
1782 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1783 	bio_endio(bio);
1784 }
1785 
1786 static int cleaner_kthread(void *arg)
1787 {
1788 	struct btrfs_root *root = arg;
1789 	int again;
1790 	struct btrfs_trans_handle *trans;
1791 
1792 	do {
1793 		again = 0;
1794 
1795 		/* Make the cleaner go to sleep early. */
1796 		if (btrfs_need_cleaner_sleep(root))
1797 			goto sleep;
1798 
1799 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1800 			goto sleep;
1801 
1802 		/*
1803 		 * Avoid the problem that we change the status of the fs
1804 		 * during the above check and trylock.
1805 		 */
1806 		if (btrfs_need_cleaner_sleep(root)) {
1807 			mutex_unlock(&root->fs_info->cleaner_mutex);
1808 			goto sleep;
1809 		}
1810 
1811 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1812 		btrfs_run_delayed_iputs(root);
1813 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1814 
1815 		again = btrfs_clean_one_deleted_snapshot(root);
1816 		mutex_unlock(&root->fs_info->cleaner_mutex);
1817 
1818 		/*
1819 		 * The defragger has dealt with the R/O remount and umount,
1820 		 * needn't do anything special here.
1821 		 */
1822 		btrfs_run_defrag_inodes(root->fs_info);
1823 
1824 		/*
1825 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1826 		 * with relocation (btrfs_relocate_chunk) and relocation
1827 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1828 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1829 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1830 		 * unused block groups.
1831 		 */
1832 		btrfs_delete_unused_bgs(root->fs_info);
1833 sleep:
1834 		if (!try_to_freeze() && !again) {
1835 			set_current_state(TASK_INTERRUPTIBLE);
1836 			if (!kthread_should_stop())
1837 				schedule();
1838 			__set_current_state(TASK_RUNNING);
1839 		}
1840 	} while (!kthread_should_stop());
1841 
1842 	/*
1843 	 * Transaction kthread is stopped before us and wakes us up.
1844 	 * However we might have started a new transaction and COWed some
1845 	 * tree blocks when deleting unused block groups for example. So
1846 	 * make sure we commit the transaction we started to have a clean
1847 	 * shutdown when evicting the btree inode - if it has dirty pages
1848 	 * when we do the final iput() on it, eviction will trigger a
1849 	 * writeback for it which will fail with null pointer dereferences
1850 	 * since work queues and other resources were already released and
1851 	 * destroyed by the time the iput/eviction/writeback is made.
1852 	 */
1853 	trans = btrfs_attach_transaction(root);
1854 	if (IS_ERR(trans)) {
1855 		if (PTR_ERR(trans) != -ENOENT)
1856 			btrfs_err(root->fs_info,
1857 				  "cleaner transaction attach returned %ld",
1858 				  PTR_ERR(trans));
1859 	} else {
1860 		int ret;
1861 
1862 		ret = btrfs_commit_transaction(trans, root);
1863 		if (ret)
1864 			btrfs_err(root->fs_info,
1865 				  "cleaner open transaction commit returned %d",
1866 				  ret);
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 static int transaction_kthread(void *arg)
1873 {
1874 	struct btrfs_root *root = arg;
1875 	struct btrfs_trans_handle *trans;
1876 	struct btrfs_transaction *cur;
1877 	u64 transid;
1878 	unsigned long now;
1879 	unsigned long delay;
1880 	bool cannot_commit;
1881 
1882 	do {
1883 		cannot_commit = false;
1884 		delay = HZ * root->fs_info->commit_interval;
1885 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1886 
1887 		spin_lock(&root->fs_info->trans_lock);
1888 		cur = root->fs_info->running_transaction;
1889 		if (!cur) {
1890 			spin_unlock(&root->fs_info->trans_lock);
1891 			goto sleep;
1892 		}
1893 
1894 		now = get_seconds();
1895 		if (cur->state < TRANS_STATE_BLOCKED &&
1896 		    (now < cur->start_time ||
1897 		     now - cur->start_time < root->fs_info->commit_interval)) {
1898 			spin_unlock(&root->fs_info->trans_lock);
1899 			delay = HZ * 5;
1900 			goto sleep;
1901 		}
1902 		transid = cur->transid;
1903 		spin_unlock(&root->fs_info->trans_lock);
1904 
1905 		/* If the file system is aborted, this will always fail. */
1906 		trans = btrfs_attach_transaction(root);
1907 		if (IS_ERR(trans)) {
1908 			if (PTR_ERR(trans) != -ENOENT)
1909 				cannot_commit = true;
1910 			goto sleep;
1911 		}
1912 		if (transid == trans->transid) {
1913 			btrfs_commit_transaction(trans, root);
1914 		} else {
1915 			btrfs_end_transaction(trans, root);
1916 		}
1917 sleep:
1918 		wake_up_process(root->fs_info->cleaner_kthread);
1919 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1920 
1921 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1922 				      &root->fs_info->fs_state)))
1923 			btrfs_cleanup_transaction(root);
1924 		if (!try_to_freeze()) {
1925 			set_current_state(TASK_INTERRUPTIBLE);
1926 			if (!kthread_should_stop() &&
1927 			    (!btrfs_transaction_blocked(root->fs_info) ||
1928 			     cannot_commit))
1929 				schedule_timeout(delay);
1930 			__set_current_state(TASK_RUNNING);
1931 		}
1932 	} while (!kthread_should_stop());
1933 	return 0;
1934 }
1935 
1936 /*
1937  * this will find the highest generation in the array of
1938  * root backups.  The index of the highest array is returned,
1939  * or -1 if we can't find anything.
1940  *
1941  * We check to make sure the array is valid by comparing the
1942  * generation of the latest  root in the array with the generation
1943  * in the super block.  If they don't match we pitch it.
1944  */
1945 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1946 {
1947 	u64 cur;
1948 	int newest_index = -1;
1949 	struct btrfs_root_backup *root_backup;
1950 	int i;
1951 
1952 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1953 		root_backup = info->super_copy->super_roots + i;
1954 		cur = btrfs_backup_tree_root_gen(root_backup);
1955 		if (cur == newest_gen)
1956 			newest_index = i;
1957 	}
1958 
1959 	/* check to see if we actually wrapped around */
1960 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1961 		root_backup = info->super_copy->super_roots;
1962 		cur = btrfs_backup_tree_root_gen(root_backup);
1963 		if (cur == newest_gen)
1964 			newest_index = 0;
1965 	}
1966 	return newest_index;
1967 }
1968 
1969 
1970 /*
1971  * find the oldest backup so we know where to store new entries
1972  * in the backup array.  This will set the backup_root_index
1973  * field in the fs_info struct
1974  */
1975 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1976 				     u64 newest_gen)
1977 {
1978 	int newest_index = -1;
1979 
1980 	newest_index = find_newest_super_backup(info, newest_gen);
1981 	/* if there was garbage in there, just move along */
1982 	if (newest_index == -1) {
1983 		info->backup_root_index = 0;
1984 	} else {
1985 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1986 	}
1987 }
1988 
1989 /*
1990  * copy all the root pointers into the super backup array.
1991  * this will bump the backup pointer by one when it is
1992  * done
1993  */
1994 static void backup_super_roots(struct btrfs_fs_info *info)
1995 {
1996 	int next_backup;
1997 	struct btrfs_root_backup *root_backup;
1998 	int last_backup;
1999 
2000 	next_backup = info->backup_root_index;
2001 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2002 		BTRFS_NUM_BACKUP_ROOTS;
2003 
2004 	/*
2005 	 * just overwrite the last backup if we're at the same generation
2006 	 * this happens only at umount
2007 	 */
2008 	root_backup = info->super_for_commit->super_roots + last_backup;
2009 	if (btrfs_backup_tree_root_gen(root_backup) ==
2010 	    btrfs_header_generation(info->tree_root->node))
2011 		next_backup = last_backup;
2012 
2013 	root_backup = info->super_for_commit->super_roots + next_backup;
2014 
2015 	/*
2016 	 * make sure all of our padding and empty slots get zero filled
2017 	 * regardless of which ones we use today
2018 	 */
2019 	memset(root_backup, 0, sizeof(*root_backup));
2020 
2021 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2022 
2023 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2024 	btrfs_set_backup_tree_root_gen(root_backup,
2025 			       btrfs_header_generation(info->tree_root->node));
2026 
2027 	btrfs_set_backup_tree_root_level(root_backup,
2028 			       btrfs_header_level(info->tree_root->node));
2029 
2030 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2031 	btrfs_set_backup_chunk_root_gen(root_backup,
2032 			       btrfs_header_generation(info->chunk_root->node));
2033 	btrfs_set_backup_chunk_root_level(root_backup,
2034 			       btrfs_header_level(info->chunk_root->node));
2035 
2036 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2037 	btrfs_set_backup_extent_root_gen(root_backup,
2038 			       btrfs_header_generation(info->extent_root->node));
2039 	btrfs_set_backup_extent_root_level(root_backup,
2040 			       btrfs_header_level(info->extent_root->node));
2041 
2042 	/*
2043 	 * we might commit during log recovery, which happens before we set
2044 	 * the fs_root.  Make sure it is valid before we fill it in.
2045 	 */
2046 	if (info->fs_root && info->fs_root->node) {
2047 		btrfs_set_backup_fs_root(root_backup,
2048 					 info->fs_root->node->start);
2049 		btrfs_set_backup_fs_root_gen(root_backup,
2050 			       btrfs_header_generation(info->fs_root->node));
2051 		btrfs_set_backup_fs_root_level(root_backup,
2052 			       btrfs_header_level(info->fs_root->node));
2053 	}
2054 
2055 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2056 	btrfs_set_backup_dev_root_gen(root_backup,
2057 			       btrfs_header_generation(info->dev_root->node));
2058 	btrfs_set_backup_dev_root_level(root_backup,
2059 				       btrfs_header_level(info->dev_root->node));
2060 
2061 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2062 	btrfs_set_backup_csum_root_gen(root_backup,
2063 			       btrfs_header_generation(info->csum_root->node));
2064 	btrfs_set_backup_csum_root_level(root_backup,
2065 			       btrfs_header_level(info->csum_root->node));
2066 
2067 	btrfs_set_backup_total_bytes(root_backup,
2068 			     btrfs_super_total_bytes(info->super_copy));
2069 	btrfs_set_backup_bytes_used(root_backup,
2070 			     btrfs_super_bytes_used(info->super_copy));
2071 	btrfs_set_backup_num_devices(root_backup,
2072 			     btrfs_super_num_devices(info->super_copy));
2073 
2074 	/*
2075 	 * if we don't copy this out to the super_copy, it won't get remembered
2076 	 * for the next commit
2077 	 */
2078 	memcpy(&info->super_copy->super_roots,
2079 	       &info->super_for_commit->super_roots,
2080 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2081 }
2082 
2083 /*
2084  * this copies info out of the root backup array and back into
2085  * the in-memory super block.  It is meant to help iterate through
2086  * the array, so you send it the number of backups you've already
2087  * tried and the last backup index you used.
2088  *
2089  * this returns -1 when it has tried all the backups
2090  */
2091 static noinline int next_root_backup(struct btrfs_fs_info *info,
2092 				     struct btrfs_super_block *super,
2093 				     int *num_backups_tried, int *backup_index)
2094 {
2095 	struct btrfs_root_backup *root_backup;
2096 	int newest = *backup_index;
2097 
2098 	if (*num_backups_tried == 0) {
2099 		u64 gen = btrfs_super_generation(super);
2100 
2101 		newest = find_newest_super_backup(info, gen);
2102 		if (newest == -1)
2103 			return -1;
2104 
2105 		*backup_index = newest;
2106 		*num_backups_tried = 1;
2107 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2108 		/* we've tried all the backups, all done */
2109 		return -1;
2110 	} else {
2111 		/* jump to the next oldest backup */
2112 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2113 			BTRFS_NUM_BACKUP_ROOTS;
2114 		*backup_index = newest;
2115 		*num_backups_tried += 1;
2116 	}
2117 	root_backup = super->super_roots + newest;
2118 
2119 	btrfs_set_super_generation(super,
2120 				   btrfs_backup_tree_root_gen(root_backup));
2121 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2122 	btrfs_set_super_root_level(super,
2123 				   btrfs_backup_tree_root_level(root_backup));
2124 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2125 
2126 	/*
2127 	 * fixme: the total bytes and num_devices need to match or we should
2128 	 * need a fsck
2129 	 */
2130 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2131 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2132 	return 0;
2133 }
2134 
2135 /* helper to cleanup workers */
2136 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2137 {
2138 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2139 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2140 	btrfs_destroy_workqueue(fs_info->workers);
2141 	btrfs_destroy_workqueue(fs_info->endio_workers);
2142 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2143 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2144 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2145 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2146 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2147 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2148 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2149 	btrfs_destroy_workqueue(fs_info->submit_workers);
2150 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2151 	btrfs_destroy_workqueue(fs_info->caching_workers);
2152 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2153 	btrfs_destroy_workqueue(fs_info->flush_workers);
2154 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2155 	btrfs_destroy_workqueue(fs_info->extent_workers);
2156 }
2157 
2158 static void free_root_extent_buffers(struct btrfs_root *root)
2159 {
2160 	if (root) {
2161 		free_extent_buffer(root->node);
2162 		free_extent_buffer(root->commit_root);
2163 		root->node = NULL;
2164 		root->commit_root = NULL;
2165 	}
2166 }
2167 
2168 /* helper to cleanup tree roots */
2169 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2170 {
2171 	free_root_extent_buffers(info->tree_root);
2172 
2173 	free_root_extent_buffers(info->dev_root);
2174 	free_root_extent_buffers(info->extent_root);
2175 	free_root_extent_buffers(info->csum_root);
2176 	free_root_extent_buffers(info->quota_root);
2177 	free_root_extent_buffers(info->uuid_root);
2178 	if (chunk_root)
2179 		free_root_extent_buffers(info->chunk_root);
2180 	free_root_extent_buffers(info->free_space_root);
2181 }
2182 
2183 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2184 {
2185 	int ret;
2186 	struct btrfs_root *gang[8];
2187 	int i;
2188 
2189 	while (!list_empty(&fs_info->dead_roots)) {
2190 		gang[0] = list_entry(fs_info->dead_roots.next,
2191 				     struct btrfs_root, root_list);
2192 		list_del(&gang[0]->root_list);
2193 
2194 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2195 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2196 		} else {
2197 			free_extent_buffer(gang[0]->node);
2198 			free_extent_buffer(gang[0]->commit_root);
2199 			btrfs_put_fs_root(gang[0]);
2200 		}
2201 	}
2202 
2203 	while (1) {
2204 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2205 					     (void **)gang, 0,
2206 					     ARRAY_SIZE(gang));
2207 		if (!ret)
2208 			break;
2209 		for (i = 0; i < ret; i++)
2210 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2211 	}
2212 
2213 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2214 		btrfs_free_log_root_tree(NULL, fs_info);
2215 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2216 					    fs_info->pinned_extents);
2217 	}
2218 }
2219 
2220 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2221 {
2222 	mutex_init(&fs_info->scrub_lock);
2223 	atomic_set(&fs_info->scrubs_running, 0);
2224 	atomic_set(&fs_info->scrub_pause_req, 0);
2225 	atomic_set(&fs_info->scrubs_paused, 0);
2226 	atomic_set(&fs_info->scrub_cancel_req, 0);
2227 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2228 	fs_info->scrub_workers_refcnt = 0;
2229 }
2230 
2231 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2232 {
2233 	spin_lock_init(&fs_info->balance_lock);
2234 	mutex_init(&fs_info->balance_mutex);
2235 	atomic_set(&fs_info->balance_running, 0);
2236 	atomic_set(&fs_info->balance_pause_req, 0);
2237 	atomic_set(&fs_info->balance_cancel_req, 0);
2238 	fs_info->balance_ctl = NULL;
2239 	init_waitqueue_head(&fs_info->balance_wait_q);
2240 }
2241 
2242 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2243 				   struct btrfs_root *tree_root)
2244 {
2245 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2246 	set_nlink(fs_info->btree_inode, 1);
2247 	/*
2248 	 * we set the i_size on the btree inode to the max possible int.
2249 	 * the real end of the address space is determined by all of
2250 	 * the devices in the system
2251 	 */
2252 	fs_info->btree_inode->i_size = OFFSET_MAX;
2253 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2254 
2255 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2256 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2257 			     fs_info->btree_inode->i_mapping);
2258 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2259 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2260 
2261 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2262 
2263 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2264 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2265 	       sizeof(struct btrfs_key));
2266 	set_bit(BTRFS_INODE_DUMMY,
2267 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2268 	btrfs_insert_inode_hash(fs_info->btree_inode);
2269 }
2270 
2271 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2272 {
2273 	fs_info->dev_replace.lock_owner = 0;
2274 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2275 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2276 	rwlock_init(&fs_info->dev_replace.lock);
2277 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2278 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2279 	init_waitqueue_head(&fs_info->replace_wait);
2280 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2281 }
2282 
2283 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2284 {
2285 	spin_lock_init(&fs_info->qgroup_lock);
2286 	mutex_init(&fs_info->qgroup_ioctl_lock);
2287 	fs_info->qgroup_tree = RB_ROOT;
2288 	fs_info->qgroup_op_tree = RB_ROOT;
2289 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2290 	fs_info->qgroup_seq = 1;
2291 	fs_info->quota_enabled = 0;
2292 	fs_info->pending_quota_state = 0;
2293 	fs_info->qgroup_ulist = NULL;
2294 	mutex_init(&fs_info->qgroup_rescan_lock);
2295 }
2296 
2297 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2298 		struct btrfs_fs_devices *fs_devices)
2299 {
2300 	int max_active = fs_info->thread_pool_size;
2301 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2302 
2303 	fs_info->workers =
2304 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2305 				      max_active, 16);
2306 
2307 	fs_info->delalloc_workers =
2308 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2309 
2310 	fs_info->flush_workers =
2311 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2312 
2313 	fs_info->caching_workers =
2314 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2315 
2316 	/*
2317 	 * a higher idle thresh on the submit workers makes it much more
2318 	 * likely that bios will be send down in a sane order to the
2319 	 * devices
2320 	 */
2321 	fs_info->submit_workers =
2322 		btrfs_alloc_workqueue("submit", flags,
2323 				      min_t(u64, fs_devices->num_devices,
2324 					    max_active), 64);
2325 
2326 	fs_info->fixup_workers =
2327 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2328 
2329 	/*
2330 	 * endios are largely parallel and should have a very
2331 	 * low idle thresh
2332 	 */
2333 	fs_info->endio_workers =
2334 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2335 	fs_info->endio_meta_workers =
2336 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2337 	fs_info->endio_meta_write_workers =
2338 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2339 	fs_info->endio_raid56_workers =
2340 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2341 	fs_info->endio_repair_workers =
2342 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2343 	fs_info->rmw_workers =
2344 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2345 	fs_info->endio_write_workers =
2346 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2347 	fs_info->endio_freespace_worker =
2348 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2349 	fs_info->delayed_workers =
2350 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2351 	fs_info->readahead_workers =
2352 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2353 	fs_info->qgroup_rescan_workers =
2354 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2355 	fs_info->extent_workers =
2356 		btrfs_alloc_workqueue("extent-refs", flags,
2357 				      min_t(u64, fs_devices->num_devices,
2358 					    max_active), 8);
2359 
2360 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2361 	      fs_info->submit_workers && fs_info->flush_workers &&
2362 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2363 	      fs_info->endio_meta_write_workers &&
2364 	      fs_info->endio_repair_workers &&
2365 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2366 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2367 	      fs_info->caching_workers && fs_info->readahead_workers &&
2368 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2369 	      fs_info->extent_workers &&
2370 	      fs_info->qgroup_rescan_workers)) {
2371 		return -ENOMEM;
2372 	}
2373 
2374 	return 0;
2375 }
2376 
2377 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2378 			    struct btrfs_fs_devices *fs_devices)
2379 {
2380 	int ret;
2381 	struct btrfs_root *tree_root = fs_info->tree_root;
2382 	struct btrfs_root *log_tree_root;
2383 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2384 	u64 bytenr = btrfs_super_log_root(disk_super);
2385 
2386 	if (fs_devices->rw_devices == 0) {
2387 		btrfs_warn(fs_info, "log replay required on RO media");
2388 		return -EIO;
2389 	}
2390 
2391 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2392 	if (!log_tree_root)
2393 		return -ENOMEM;
2394 
2395 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2396 			tree_root->stripesize, log_tree_root, fs_info,
2397 			BTRFS_TREE_LOG_OBJECTID);
2398 
2399 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2400 			fs_info->generation + 1);
2401 	if (IS_ERR(log_tree_root->node)) {
2402 		btrfs_warn(fs_info, "failed to read log tree");
2403 		ret = PTR_ERR(log_tree_root->node);
2404 		kfree(log_tree_root);
2405 		return ret;
2406 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2407 		btrfs_err(fs_info, "failed to read log tree");
2408 		free_extent_buffer(log_tree_root->node);
2409 		kfree(log_tree_root);
2410 		return -EIO;
2411 	}
2412 	/* returns with log_tree_root freed on success */
2413 	ret = btrfs_recover_log_trees(log_tree_root);
2414 	if (ret) {
2415 		btrfs_std_error(tree_root->fs_info, ret,
2416 			    "Failed to recover log tree");
2417 		free_extent_buffer(log_tree_root->node);
2418 		kfree(log_tree_root);
2419 		return ret;
2420 	}
2421 
2422 	if (fs_info->sb->s_flags & MS_RDONLY) {
2423 		ret = btrfs_commit_super(tree_root);
2424 		if (ret)
2425 			return ret;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2432 			    struct btrfs_root *tree_root)
2433 {
2434 	struct btrfs_root *root;
2435 	struct btrfs_key location;
2436 	int ret;
2437 
2438 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2439 	location.type = BTRFS_ROOT_ITEM_KEY;
2440 	location.offset = 0;
2441 
2442 	root = btrfs_read_tree_root(tree_root, &location);
2443 	if (IS_ERR(root))
2444 		return PTR_ERR(root);
2445 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446 	fs_info->extent_root = root;
2447 
2448 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2449 	root = btrfs_read_tree_root(tree_root, &location);
2450 	if (IS_ERR(root))
2451 		return PTR_ERR(root);
2452 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2453 	fs_info->dev_root = root;
2454 	btrfs_init_devices_late(fs_info);
2455 
2456 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2457 	root = btrfs_read_tree_root(tree_root, &location);
2458 	if (IS_ERR(root))
2459 		return PTR_ERR(root);
2460 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2461 	fs_info->csum_root = root;
2462 
2463 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2464 	root = btrfs_read_tree_root(tree_root, &location);
2465 	if (!IS_ERR(root)) {
2466 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467 		fs_info->quota_enabled = 1;
2468 		fs_info->pending_quota_state = 1;
2469 		fs_info->quota_root = root;
2470 	}
2471 
2472 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2473 	root = btrfs_read_tree_root(tree_root, &location);
2474 	if (IS_ERR(root)) {
2475 		ret = PTR_ERR(root);
2476 		if (ret != -ENOENT)
2477 			return ret;
2478 	} else {
2479 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2480 		fs_info->uuid_root = root;
2481 	}
2482 
2483 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2484 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2485 		root = btrfs_read_tree_root(tree_root, &location);
2486 		if (IS_ERR(root))
2487 			return PTR_ERR(root);
2488 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2489 		fs_info->free_space_root = root;
2490 	}
2491 
2492 	return 0;
2493 }
2494 
2495 int open_ctree(struct super_block *sb,
2496 	       struct btrfs_fs_devices *fs_devices,
2497 	       char *options)
2498 {
2499 	u32 sectorsize;
2500 	u32 nodesize;
2501 	u32 stripesize;
2502 	u64 generation;
2503 	u64 features;
2504 	struct btrfs_key location;
2505 	struct buffer_head *bh;
2506 	struct btrfs_super_block *disk_super;
2507 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2508 	struct btrfs_root *tree_root;
2509 	struct btrfs_root *chunk_root;
2510 	int ret;
2511 	int err = -EINVAL;
2512 	int num_backups_tried = 0;
2513 	int backup_index = 0;
2514 	int max_active;
2515 
2516 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2517 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2518 	if (!tree_root || !chunk_root) {
2519 		err = -ENOMEM;
2520 		goto fail;
2521 	}
2522 
2523 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2524 	if (ret) {
2525 		err = ret;
2526 		goto fail;
2527 	}
2528 
2529 	ret = setup_bdi(fs_info, &fs_info->bdi);
2530 	if (ret) {
2531 		err = ret;
2532 		goto fail_srcu;
2533 	}
2534 
2535 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2536 	if (ret) {
2537 		err = ret;
2538 		goto fail_bdi;
2539 	}
2540 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2541 					(1 + ilog2(nr_cpu_ids));
2542 
2543 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2544 	if (ret) {
2545 		err = ret;
2546 		goto fail_dirty_metadata_bytes;
2547 	}
2548 
2549 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2550 	if (ret) {
2551 		err = ret;
2552 		goto fail_delalloc_bytes;
2553 	}
2554 
2555 	fs_info->btree_inode = new_inode(sb);
2556 	if (!fs_info->btree_inode) {
2557 		err = -ENOMEM;
2558 		goto fail_bio_counter;
2559 	}
2560 
2561 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2562 
2563 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2564 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2565 	INIT_LIST_HEAD(&fs_info->trans_list);
2566 	INIT_LIST_HEAD(&fs_info->dead_roots);
2567 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2568 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2569 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2570 	spin_lock_init(&fs_info->delalloc_root_lock);
2571 	spin_lock_init(&fs_info->trans_lock);
2572 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2573 	spin_lock_init(&fs_info->delayed_iput_lock);
2574 	spin_lock_init(&fs_info->defrag_inodes_lock);
2575 	spin_lock_init(&fs_info->free_chunk_lock);
2576 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2577 	spin_lock_init(&fs_info->super_lock);
2578 	spin_lock_init(&fs_info->qgroup_op_lock);
2579 	spin_lock_init(&fs_info->buffer_lock);
2580 	spin_lock_init(&fs_info->unused_bgs_lock);
2581 	rwlock_init(&fs_info->tree_mod_log_lock);
2582 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2583 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2584 	mutex_init(&fs_info->reloc_mutex);
2585 	mutex_init(&fs_info->delalloc_root_mutex);
2586 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2587 	seqlock_init(&fs_info->profiles_lock);
2588 
2589 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2590 	INIT_LIST_HEAD(&fs_info->space_info);
2591 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2592 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2593 	btrfs_mapping_init(&fs_info->mapping_tree);
2594 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2595 			     BTRFS_BLOCK_RSV_GLOBAL);
2596 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2597 			     BTRFS_BLOCK_RSV_DELALLOC);
2598 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2599 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2600 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2601 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2602 			     BTRFS_BLOCK_RSV_DELOPS);
2603 	atomic_set(&fs_info->nr_async_submits, 0);
2604 	atomic_set(&fs_info->async_delalloc_pages, 0);
2605 	atomic_set(&fs_info->async_submit_draining, 0);
2606 	atomic_set(&fs_info->nr_async_bios, 0);
2607 	atomic_set(&fs_info->defrag_running, 0);
2608 	atomic_set(&fs_info->qgroup_op_seq, 0);
2609 	atomic_set(&fs_info->reada_works_cnt, 0);
2610 	atomic64_set(&fs_info->tree_mod_seq, 0);
2611 	fs_info->sb = sb;
2612 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2613 	fs_info->metadata_ratio = 0;
2614 	fs_info->defrag_inodes = RB_ROOT;
2615 	fs_info->free_chunk_space = 0;
2616 	fs_info->tree_mod_log = RB_ROOT;
2617 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2618 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2619 	/* readahead state */
2620 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2621 	spin_lock_init(&fs_info->reada_lock);
2622 
2623 	fs_info->thread_pool_size = min_t(unsigned long,
2624 					  num_online_cpus() + 2, 8);
2625 
2626 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2627 	spin_lock_init(&fs_info->ordered_root_lock);
2628 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2629 					GFP_KERNEL);
2630 	if (!fs_info->delayed_root) {
2631 		err = -ENOMEM;
2632 		goto fail_iput;
2633 	}
2634 	btrfs_init_delayed_root(fs_info->delayed_root);
2635 
2636 	btrfs_init_scrub(fs_info);
2637 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2638 	fs_info->check_integrity_print_mask = 0;
2639 #endif
2640 	btrfs_init_balance(fs_info);
2641 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2642 
2643 	sb->s_blocksize = 4096;
2644 	sb->s_blocksize_bits = blksize_bits(4096);
2645 	sb->s_bdi = &fs_info->bdi;
2646 
2647 	btrfs_init_btree_inode(fs_info, tree_root);
2648 
2649 	spin_lock_init(&fs_info->block_group_cache_lock);
2650 	fs_info->block_group_cache_tree = RB_ROOT;
2651 	fs_info->first_logical_byte = (u64)-1;
2652 
2653 	extent_io_tree_init(&fs_info->freed_extents[0],
2654 			     fs_info->btree_inode->i_mapping);
2655 	extent_io_tree_init(&fs_info->freed_extents[1],
2656 			     fs_info->btree_inode->i_mapping);
2657 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2658 	fs_info->do_barriers = 1;
2659 
2660 
2661 	mutex_init(&fs_info->ordered_operations_mutex);
2662 	mutex_init(&fs_info->tree_log_mutex);
2663 	mutex_init(&fs_info->chunk_mutex);
2664 	mutex_init(&fs_info->transaction_kthread_mutex);
2665 	mutex_init(&fs_info->cleaner_mutex);
2666 	mutex_init(&fs_info->volume_mutex);
2667 	mutex_init(&fs_info->ro_block_group_mutex);
2668 	init_rwsem(&fs_info->commit_root_sem);
2669 	init_rwsem(&fs_info->cleanup_work_sem);
2670 	init_rwsem(&fs_info->subvol_sem);
2671 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2672 
2673 	btrfs_init_dev_replace_locks(fs_info);
2674 	btrfs_init_qgroup(fs_info);
2675 
2676 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2677 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2678 
2679 	init_waitqueue_head(&fs_info->transaction_throttle);
2680 	init_waitqueue_head(&fs_info->transaction_wait);
2681 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2682 	init_waitqueue_head(&fs_info->async_submit_wait);
2683 
2684 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2685 
2686 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2687 	if (ret) {
2688 		err = ret;
2689 		goto fail_alloc;
2690 	}
2691 
2692 	__setup_root(4096, 4096, 4096, tree_root,
2693 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2694 
2695 	invalidate_bdev(fs_devices->latest_bdev);
2696 
2697 	/*
2698 	 * Read super block and check the signature bytes only
2699 	 */
2700 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2701 	if (IS_ERR(bh)) {
2702 		err = PTR_ERR(bh);
2703 		goto fail_alloc;
2704 	}
2705 
2706 	/*
2707 	 * We want to check superblock checksum, the type is stored inside.
2708 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2709 	 */
2710 	if (btrfs_check_super_csum(bh->b_data)) {
2711 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2712 		err = -EINVAL;
2713 		brelse(bh);
2714 		goto fail_alloc;
2715 	}
2716 
2717 	/*
2718 	 * super_copy is zeroed at allocation time and we never touch the
2719 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2720 	 * the whole block of INFO_SIZE
2721 	 */
2722 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2723 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2724 	       sizeof(*fs_info->super_for_commit));
2725 	brelse(bh);
2726 
2727 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2728 
2729 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2730 	if (ret) {
2731 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2732 		err = -EINVAL;
2733 		goto fail_alloc;
2734 	}
2735 
2736 	disk_super = fs_info->super_copy;
2737 	if (!btrfs_super_root(disk_super))
2738 		goto fail_alloc;
2739 
2740 	/* check FS state, whether FS is broken. */
2741 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2742 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2743 
2744 	/*
2745 	 * run through our array of backup supers and setup
2746 	 * our ring pointer to the oldest one
2747 	 */
2748 	generation = btrfs_super_generation(disk_super);
2749 	find_oldest_super_backup(fs_info, generation);
2750 
2751 	/*
2752 	 * In the long term, we'll store the compression type in the super
2753 	 * block, and it'll be used for per file compression control.
2754 	 */
2755 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2756 
2757 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2758 	if (ret) {
2759 		err = ret;
2760 		goto fail_alloc;
2761 	}
2762 
2763 	features = btrfs_super_incompat_flags(disk_super) &
2764 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2765 	if (features) {
2766 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2767 		       "unsupported optional features (%Lx).\n",
2768 		       features);
2769 		err = -EINVAL;
2770 		goto fail_alloc;
2771 	}
2772 
2773 	features = btrfs_super_incompat_flags(disk_super);
2774 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2775 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2776 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2777 
2778 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2779 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2780 
2781 	/*
2782 	 * flag our filesystem as having big metadata blocks if
2783 	 * they are bigger than the page size
2784 	 */
2785 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2786 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2787 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2788 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2789 	}
2790 
2791 	nodesize = btrfs_super_nodesize(disk_super);
2792 	sectorsize = btrfs_super_sectorsize(disk_super);
2793 	stripesize = btrfs_super_stripesize(disk_super);
2794 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2795 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2796 
2797 	/*
2798 	 * mixed block groups end up with duplicate but slightly offset
2799 	 * extent buffers for the same range.  It leads to corruptions
2800 	 */
2801 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2802 	    (sectorsize != nodesize)) {
2803 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2804 				"are not allowed for mixed block groups on %s\n",
2805 				sb->s_id);
2806 		goto fail_alloc;
2807 	}
2808 
2809 	/*
2810 	 * Needn't use the lock because there is no other task which will
2811 	 * update the flag.
2812 	 */
2813 	btrfs_set_super_incompat_flags(disk_super, features);
2814 
2815 	features = btrfs_super_compat_ro_flags(disk_super) &
2816 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2817 	if (!(sb->s_flags & MS_RDONLY) && features) {
2818 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2819 		       "unsupported option features (%Lx).\n",
2820 		       features);
2821 		err = -EINVAL;
2822 		goto fail_alloc;
2823 	}
2824 
2825 	max_active = fs_info->thread_pool_size;
2826 
2827 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2828 	if (ret) {
2829 		err = ret;
2830 		goto fail_sb_buffer;
2831 	}
2832 
2833 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2834 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2835 				    SZ_4M / PAGE_CACHE_SIZE);
2836 
2837 	tree_root->nodesize = nodesize;
2838 	tree_root->sectorsize = sectorsize;
2839 	tree_root->stripesize = stripesize;
2840 
2841 	sb->s_blocksize = sectorsize;
2842 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2843 
2844 	mutex_lock(&fs_info->chunk_mutex);
2845 	ret = btrfs_read_sys_array(tree_root);
2846 	mutex_unlock(&fs_info->chunk_mutex);
2847 	if (ret) {
2848 		printk(KERN_ERR "BTRFS: failed to read the system "
2849 		       "array on %s\n", sb->s_id);
2850 		goto fail_sb_buffer;
2851 	}
2852 
2853 	generation = btrfs_super_chunk_root_generation(disk_super);
2854 
2855 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2856 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2857 
2858 	chunk_root->node = read_tree_block(chunk_root,
2859 					   btrfs_super_chunk_root(disk_super),
2860 					   generation);
2861 	if (IS_ERR(chunk_root->node) ||
2862 	    !extent_buffer_uptodate(chunk_root->node)) {
2863 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2864 		       sb->s_id);
2865 		if (!IS_ERR(chunk_root->node))
2866 			free_extent_buffer(chunk_root->node);
2867 		chunk_root->node = NULL;
2868 		goto fail_tree_roots;
2869 	}
2870 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2871 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2872 
2873 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2874 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2875 
2876 	ret = btrfs_read_chunk_tree(chunk_root);
2877 	if (ret) {
2878 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2879 		       sb->s_id);
2880 		goto fail_tree_roots;
2881 	}
2882 
2883 	/*
2884 	 * keep the device that is marked to be the target device for the
2885 	 * dev_replace procedure
2886 	 */
2887 	btrfs_close_extra_devices(fs_devices, 0);
2888 
2889 	if (!fs_devices->latest_bdev) {
2890 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2891 		       sb->s_id);
2892 		goto fail_tree_roots;
2893 	}
2894 
2895 retry_root_backup:
2896 	generation = btrfs_super_generation(disk_super);
2897 
2898 	tree_root->node = read_tree_block(tree_root,
2899 					  btrfs_super_root(disk_super),
2900 					  generation);
2901 	if (IS_ERR(tree_root->node) ||
2902 	    !extent_buffer_uptodate(tree_root->node)) {
2903 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2904 		       sb->s_id);
2905 		if (!IS_ERR(tree_root->node))
2906 			free_extent_buffer(tree_root->node);
2907 		tree_root->node = NULL;
2908 		goto recovery_tree_root;
2909 	}
2910 
2911 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2912 	tree_root->commit_root = btrfs_root_node(tree_root);
2913 	btrfs_set_root_refs(&tree_root->root_item, 1);
2914 
2915 	mutex_lock(&tree_root->objectid_mutex);
2916 	ret = btrfs_find_highest_objectid(tree_root,
2917 					&tree_root->highest_objectid);
2918 	if (ret) {
2919 		mutex_unlock(&tree_root->objectid_mutex);
2920 		goto recovery_tree_root;
2921 	}
2922 
2923 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2924 
2925 	mutex_unlock(&tree_root->objectid_mutex);
2926 
2927 	ret = btrfs_read_roots(fs_info, tree_root);
2928 	if (ret)
2929 		goto recovery_tree_root;
2930 
2931 	fs_info->generation = generation;
2932 	fs_info->last_trans_committed = generation;
2933 
2934 	ret = btrfs_recover_balance(fs_info);
2935 	if (ret) {
2936 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2937 		goto fail_block_groups;
2938 	}
2939 
2940 	ret = btrfs_init_dev_stats(fs_info);
2941 	if (ret) {
2942 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2943 		       ret);
2944 		goto fail_block_groups;
2945 	}
2946 
2947 	ret = btrfs_init_dev_replace(fs_info);
2948 	if (ret) {
2949 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2950 		goto fail_block_groups;
2951 	}
2952 
2953 	btrfs_close_extra_devices(fs_devices, 1);
2954 
2955 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2956 	if (ret) {
2957 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2958 		goto fail_block_groups;
2959 	}
2960 
2961 	ret = btrfs_sysfs_add_device(fs_devices);
2962 	if (ret) {
2963 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2964 		goto fail_fsdev_sysfs;
2965 	}
2966 
2967 	ret = btrfs_sysfs_add_mounted(fs_info);
2968 	if (ret) {
2969 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2970 		goto fail_fsdev_sysfs;
2971 	}
2972 
2973 	ret = btrfs_init_space_info(fs_info);
2974 	if (ret) {
2975 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2976 		goto fail_sysfs;
2977 	}
2978 
2979 	ret = btrfs_read_block_groups(fs_info->extent_root);
2980 	if (ret) {
2981 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2982 		goto fail_sysfs;
2983 	}
2984 	fs_info->num_tolerated_disk_barrier_failures =
2985 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2986 	if (fs_info->fs_devices->missing_devices >
2987 	     fs_info->num_tolerated_disk_barrier_failures &&
2988 	    !(sb->s_flags & MS_RDONLY)) {
2989 		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2990 			fs_info->fs_devices->missing_devices,
2991 			fs_info->num_tolerated_disk_barrier_failures);
2992 		goto fail_sysfs;
2993 	}
2994 
2995 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2996 					       "btrfs-cleaner");
2997 	if (IS_ERR(fs_info->cleaner_kthread))
2998 		goto fail_sysfs;
2999 
3000 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3001 						   tree_root,
3002 						   "btrfs-transaction");
3003 	if (IS_ERR(fs_info->transaction_kthread))
3004 		goto fail_cleaner;
3005 
3006 	if (!btrfs_test_opt(tree_root, SSD) &&
3007 	    !btrfs_test_opt(tree_root, NOSSD) &&
3008 	    !fs_info->fs_devices->rotating) {
3009 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3010 		       "mode\n");
3011 		btrfs_set_opt(fs_info->mount_opt, SSD);
3012 	}
3013 
3014 	/*
3015 	 * Mount does not set all options immediatelly, we can do it now and do
3016 	 * not have to wait for transaction commit
3017 	 */
3018 	btrfs_apply_pending_changes(fs_info);
3019 
3020 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3021 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3022 		ret = btrfsic_mount(tree_root, fs_devices,
3023 				    btrfs_test_opt(tree_root,
3024 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3025 				    1 : 0,
3026 				    fs_info->check_integrity_print_mask);
3027 		if (ret)
3028 			printk(KERN_WARNING "BTRFS: failed to initialize"
3029 			       " integrity check module %s\n", sb->s_id);
3030 	}
3031 #endif
3032 	ret = btrfs_read_qgroup_config(fs_info);
3033 	if (ret)
3034 		goto fail_trans_kthread;
3035 
3036 	/* do not make disk changes in broken FS or nologreplay is given */
3037 	if (btrfs_super_log_root(disk_super) != 0 &&
3038 	    !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3039 		ret = btrfs_replay_log(fs_info, fs_devices);
3040 		if (ret) {
3041 			err = ret;
3042 			goto fail_qgroup;
3043 		}
3044 	}
3045 
3046 	ret = btrfs_find_orphan_roots(tree_root);
3047 	if (ret)
3048 		goto fail_qgroup;
3049 
3050 	if (!(sb->s_flags & MS_RDONLY)) {
3051 		ret = btrfs_cleanup_fs_roots(fs_info);
3052 		if (ret)
3053 			goto fail_qgroup;
3054 
3055 		mutex_lock(&fs_info->cleaner_mutex);
3056 		ret = btrfs_recover_relocation(tree_root);
3057 		mutex_unlock(&fs_info->cleaner_mutex);
3058 		if (ret < 0) {
3059 			printk(KERN_WARNING
3060 			       "BTRFS: failed to recover relocation\n");
3061 			err = -EINVAL;
3062 			goto fail_qgroup;
3063 		}
3064 	}
3065 
3066 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3067 	location.type = BTRFS_ROOT_ITEM_KEY;
3068 	location.offset = 0;
3069 
3070 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3071 	if (IS_ERR(fs_info->fs_root)) {
3072 		err = PTR_ERR(fs_info->fs_root);
3073 		goto fail_qgroup;
3074 	}
3075 
3076 	if (sb->s_flags & MS_RDONLY)
3077 		return 0;
3078 
3079 	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3080 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3081 		pr_info("BTRFS: creating free space tree\n");
3082 		ret = btrfs_create_free_space_tree(fs_info);
3083 		if (ret) {
3084 			pr_warn("BTRFS: failed to create free space tree %d\n",
3085 				ret);
3086 			close_ctree(tree_root);
3087 			return ret;
3088 		}
3089 	}
3090 
3091 	down_read(&fs_info->cleanup_work_sem);
3092 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3093 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3094 		up_read(&fs_info->cleanup_work_sem);
3095 		close_ctree(tree_root);
3096 		return ret;
3097 	}
3098 	up_read(&fs_info->cleanup_work_sem);
3099 
3100 	ret = btrfs_resume_balance_async(fs_info);
3101 	if (ret) {
3102 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3103 		close_ctree(tree_root);
3104 		return ret;
3105 	}
3106 
3107 	ret = btrfs_resume_dev_replace_async(fs_info);
3108 	if (ret) {
3109 		pr_warn("BTRFS: failed to resume dev_replace\n");
3110 		close_ctree(tree_root);
3111 		return ret;
3112 	}
3113 
3114 	btrfs_qgroup_rescan_resume(fs_info);
3115 
3116 	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3117 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3118 		pr_info("BTRFS: clearing free space tree\n");
3119 		ret = btrfs_clear_free_space_tree(fs_info);
3120 		if (ret) {
3121 			pr_warn("BTRFS: failed to clear free space tree %d\n",
3122 				ret);
3123 			close_ctree(tree_root);
3124 			return ret;
3125 		}
3126 	}
3127 
3128 	if (!fs_info->uuid_root) {
3129 		pr_info("BTRFS: creating UUID tree\n");
3130 		ret = btrfs_create_uuid_tree(fs_info);
3131 		if (ret) {
3132 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3133 				ret);
3134 			close_ctree(tree_root);
3135 			return ret;
3136 		}
3137 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3138 		   fs_info->generation !=
3139 				btrfs_super_uuid_tree_generation(disk_super)) {
3140 		pr_info("BTRFS: checking UUID tree\n");
3141 		ret = btrfs_check_uuid_tree(fs_info);
3142 		if (ret) {
3143 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3144 				ret);
3145 			close_ctree(tree_root);
3146 			return ret;
3147 		}
3148 	} else {
3149 		fs_info->update_uuid_tree_gen = 1;
3150 	}
3151 
3152 	fs_info->open = 1;
3153 
3154 	/*
3155 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3156 	 * no need to keep the flag
3157 	 */
3158 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3159 
3160 	return 0;
3161 
3162 fail_qgroup:
3163 	btrfs_free_qgroup_config(fs_info);
3164 fail_trans_kthread:
3165 	kthread_stop(fs_info->transaction_kthread);
3166 	btrfs_cleanup_transaction(fs_info->tree_root);
3167 	btrfs_free_fs_roots(fs_info);
3168 fail_cleaner:
3169 	kthread_stop(fs_info->cleaner_kthread);
3170 
3171 	/*
3172 	 * make sure we're done with the btree inode before we stop our
3173 	 * kthreads
3174 	 */
3175 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3176 
3177 fail_sysfs:
3178 	btrfs_sysfs_remove_mounted(fs_info);
3179 
3180 fail_fsdev_sysfs:
3181 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3182 
3183 fail_block_groups:
3184 	btrfs_put_block_group_cache(fs_info);
3185 	btrfs_free_block_groups(fs_info);
3186 
3187 fail_tree_roots:
3188 	free_root_pointers(fs_info, 1);
3189 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3190 
3191 fail_sb_buffer:
3192 	btrfs_stop_all_workers(fs_info);
3193 fail_alloc:
3194 fail_iput:
3195 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3196 
3197 	iput(fs_info->btree_inode);
3198 fail_bio_counter:
3199 	percpu_counter_destroy(&fs_info->bio_counter);
3200 fail_delalloc_bytes:
3201 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3202 fail_dirty_metadata_bytes:
3203 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3204 fail_bdi:
3205 	bdi_destroy(&fs_info->bdi);
3206 fail_srcu:
3207 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3208 fail:
3209 	btrfs_free_stripe_hash_table(fs_info);
3210 	btrfs_close_devices(fs_info->fs_devices);
3211 	return err;
3212 
3213 recovery_tree_root:
3214 	if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3215 		goto fail_tree_roots;
3216 
3217 	free_root_pointers(fs_info, 0);
3218 
3219 	/* don't use the log in recovery mode, it won't be valid */
3220 	btrfs_set_super_log_root(disk_super, 0);
3221 
3222 	/* we can't trust the free space cache either */
3223 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3224 
3225 	ret = next_root_backup(fs_info, fs_info->super_copy,
3226 			       &num_backups_tried, &backup_index);
3227 	if (ret == -1)
3228 		goto fail_block_groups;
3229 	goto retry_root_backup;
3230 }
3231 
3232 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3233 {
3234 	if (uptodate) {
3235 		set_buffer_uptodate(bh);
3236 	} else {
3237 		struct btrfs_device *device = (struct btrfs_device *)
3238 			bh->b_private;
3239 
3240 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3241 				"lost page write due to IO error on %s",
3242 					  rcu_str_deref(device->name));
3243 		/* note, we dont' set_buffer_write_io_error because we have
3244 		 * our own ways of dealing with the IO errors
3245 		 */
3246 		clear_buffer_uptodate(bh);
3247 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3248 	}
3249 	unlock_buffer(bh);
3250 	put_bh(bh);
3251 }
3252 
3253 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3254 			struct buffer_head **bh_ret)
3255 {
3256 	struct buffer_head *bh;
3257 	struct btrfs_super_block *super;
3258 	u64 bytenr;
3259 
3260 	bytenr = btrfs_sb_offset(copy_num);
3261 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3262 		return -EINVAL;
3263 
3264 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3265 	/*
3266 	 * If we fail to read from the underlying devices, as of now
3267 	 * the best option we have is to mark it EIO.
3268 	 */
3269 	if (!bh)
3270 		return -EIO;
3271 
3272 	super = (struct btrfs_super_block *)bh->b_data;
3273 	if (btrfs_super_bytenr(super) != bytenr ||
3274 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3275 		brelse(bh);
3276 		return -EINVAL;
3277 	}
3278 
3279 	*bh_ret = bh;
3280 	return 0;
3281 }
3282 
3283 
3284 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3285 {
3286 	struct buffer_head *bh;
3287 	struct buffer_head *latest = NULL;
3288 	struct btrfs_super_block *super;
3289 	int i;
3290 	u64 transid = 0;
3291 	int ret = -EINVAL;
3292 
3293 	/* we would like to check all the supers, but that would make
3294 	 * a btrfs mount succeed after a mkfs from a different FS.
3295 	 * So, we need to add a special mount option to scan for
3296 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3297 	 */
3298 	for (i = 0; i < 1; i++) {
3299 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3300 		if (ret)
3301 			continue;
3302 
3303 		super = (struct btrfs_super_block *)bh->b_data;
3304 
3305 		if (!latest || btrfs_super_generation(super) > transid) {
3306 			brelse(latest);
3307 			latest = bh;
3308 			transid = btrfs_super_generation(super);
3309 		} else {
3310 			brelse(bh);
3311 		}
3312 	}
3313 
3314 	if (!latest)
3315 		return ERR_PTR(ret);
3316 
3317 	return latest;
3318 }
3319 
3320 /*
3321  * this should be called twice, once with wait == 0 and
3322  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3323  * we write are pinned.
3324  *
3325  * They are released when wait == 1 is done.
3326  * max_mirrors must be the same for both runs, and it indicates how
3327  * many supers on this one device should be written.
3328  *
3329  * max_mirrors == 0 means to write them all.
3330  */
3331 static int write_dev_supers(struct btrfs_device *device,
3332 			    struct btrfs_super_block *sb,
3333 			    int do_barriers, int wait, int max_mirrors)
3334 {
3335 	struct buffer_head *bh;
3336 	int i;
3337 	int ret;
3338 	int errors = 0;
3339 	u32 crc;
3340 	u64 bytenr;
3341 
3342 	if (max_mirrors == 0)
3343 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3344 
3345 	for (i = 0; i < max_mirrors; i++) {
3346 		bytenr = btrfs_sb_offset(i);
3347 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3348 		    device->commit_total_bytes)
3349 			break;
3350 
3351 		if (wait) {
3352 			bh = __find_get_block(device->bdev, bytenr / 4096,
3353 					      BTRFS_SUPER_INFO_SIZE);
3354 			if (!bh) {
3355 				errors++;
3356 				continue;
3357 			}
3358 			wait_on_buffer(bh);
3359 			if (!buffer_uptodate(bh))
3360 				errors++;
3361 
3362 			/* drop our reference */
3363 			brelse(bh);
3364 
3365 			/* drop the reference from the wait == 0 run */
3366 			brelse(bh);
3367 			continue;
3368 		} else {
3369 			btrfs_set_super_bytenr(sb, bytenr);
3370 
3371 			crc = ~(u32)0;
3372 			crc = btrfs_csum_data((char *)sb +
3373 					      BTRFS_CSUM_SIZE, crc,
3374 					      BTRFS_SUPER_INFO_SIZE -
3375 					      BTRFS_CSUM_SIZE);
3376 			btrfs_csum_final(crc, sb->csum);
3377 
3378 			/*
3379 			 * one reference for us, and we leave it for the
3380 			 * caller
3381 			 */
3382 			bh = __getblk(device->bdev, bytenr / 4096,
3383 				      BTRFS_SUPER_INFO_SIZE);
3384 			if (!bh) {
3385 				btrfs_err(device->dev_root->fs_info,
3386 				    "couldn't get super buffer head for bytenr %llu",
3387 				    bytenr);
3388 				errors++;
3389 				continue;
3390 			}
3391 
3392 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3393 
3394 			/* one reference for submit_bh */
3395 			get_bh(bh);
3396 
3397 			set_buffer_uptodate(bh);
3398 			lock_buffer(bh);
3399 			bh->b_end_io = btrfs_end_buffer_write_sync;
3400 			bh->b_private = device;
3401 		}
3402 
3403 		/*
3404 		 * we fua the first super.  The others we allow
3405 		 * to go down lazy.
3406 		 */
3407 		if (i == 0)
3408 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3409 		else
3410 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3411 		if (ret)
3412 			errors++;
3413 	}
3414 	return errors < i ? 0 : -1;
3415 }
3416 
3417 /*
3418  * endio for the write_dev_flush, this will wake anyone waiting
3419  * for the barrier when it is done
3420  */
3421 static void btrfs_end_empty_barrier(struct bio *bio)
3422 {
3423 	if (bio->bi_private)
3424 		complete(bio->bi_private);
3425 	bio_put(bio);
3426 }
3427 
3428 /*
3429  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3430  * sent down.  With wait == 1, it waits for the previous flush.
3431  *
3432  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3433  * capable
3434  */
3435 static int write_dev_flush(struct btrfs_device *device, int wait)
3436 {
3437 	struct bio *bio;
3438 	int ret = 0;
3439 
3440 	if (device->nobarriers)
3441 		return 0;
3442 
3443 	if (wait) {
3444 		bio = device->flush_bio;
3445 		if (!bio)
3446 			return 0;
3447 
3448 		wait_for_completion(&device->flush_wait);
3449 
3450 		if (bio->bi_error) {
3451 			ret = bio->bi_error;
3452 			btrfs_dev_stat_inc_and_print(device,
3453 				BTRFS_DEV_STAT_FLUSH_ERRS);
3454 		}
3455 
3456 		/* drop the reference from the wait == 0 run */
3457 		bio_put(bio);
3458 		device->flush_bio = NULL;
3459 
3460 		return ret;
3461 	}
3462 
3463 	/*
3464 	 * one reference for us, and we leave it for the
3465 	 * caller
3466 	 */
3467 	device->flush_bio = NULL;
3468 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3469 	if (!bio)
3470 		return -ENOMEM;
3471 
3472 	bio->bi_end_io = btrfs_end_empty_barrier;
3473 	bio->bi_bdev = device->bdev;
3474 	init_completion(&device->flush_wait);
3475 	bio->bi_private = &device->flush_wait;
3476 	device->flush_bio = bio;
3477 
3478 	bio_get(bio);
3479 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3480 
3481 	return 0;
3482 }
3483 
3484 /*
3485  * send an empty flush down to each device in parallel,
3486  * then wait for them
3487  */
3488 static int barrier_all_devices(struct btrfs_fs_info *info)
3489 {
3490 	struct list_head *head;
3491 	struct btrfs_device *dev;
3492 	int errors_send = 0;
3493 	int errors_wait = 0;
3494 	int ret;
3495 
3496 	/* send down all the barriers */
3497 	head = &info->fs_devices->devices;
3498 	list_for_each_entry_rcu(dev, head, dev_list) {
3499 		if (dev->missing)
3500 			continue;
3501 		if (!dev->bdev) {
3502 			errors_send++;
3503 			continue;
3504 		}
3505 		if (!dev->in_fs_metadata || !dev->writeable)
3506 			continue;
3507 
3508 		ret = write_dev_flush(dev, 0);
3509 		if (ret)
3510 			errors_send++;
3511 	}
3512 
3513 	/* wait for all the barriers */
3514 	list_for_each_entry_rcu(dev, head, dev_list) {
3515 		if (dev->missing)
3516 			continue;
3517 		if (!dev->bdev) {
3518 			errors_wait++;
3519 			continue;
3520 		}
3521 		if (!dev->in_fs_metadata || !dev->writeable)
3522 			continue;
3523 
3524 		ret = write_dev_flush(dev, 1);
3525 		if (ret)
3526 			errors_wait++;
3527 	}
3528 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3529 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3530 		return -EIO;
3531 	return 0;
3532 }
3533 
3534 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3535 {
3536 	int raid_type;
3537 	int min_tolerated = INT_MAX;
3538 
3539 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3540 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3541 		min_tolerated = min(min_tolerated,
3542 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3543 				    tolerated_failures);
3544 
3545 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3546 		if (raid_type == BTRFS_RAID_SINGLE)
3547 			continue;
3548 		if (!(flags & btrfs_raid_group[raid_type]))
3549 			continue;
3550 		min_tolerated = min(min_tolerated,
3551 				    btrfs_raid_array[raid_type].
3552 				    tolerated_failures);
3553 	}
3554 
3555 	if (min_tolerated == INT_MAX) {
3556 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3557 		min_tolerated = 0;
3558 	}
3559 
3560 	return min_tolerated;
3561 }
3562 
3563 int btrfs_calc_num_tolerated_disk_barrier_failures(
3564 	struct btrfs_fs_info *fs_info)
3565 {
3566 	struct btrfs_ioctl_space_info space;
3567 	struct btrfs_space_info *sinfo;
3568 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3569 		       BTRFS_BLOCK_GROUP_SYSTEM,
3570 		       BTRFS_BLOCK_GROUP_METADATA,
3571 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3572 	int i;
3573 	int c;
3574 	int num_tolerated_disk_barrier_failures =
3575 		(int)fs_info->fs_devices->num_devices;
3576 
3577 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3578 		struct btrfs_space_info *tmp;
3579 
3580 		sinfo = NULL;
3581 		rcu_read_lock();
3582 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3583 			if (tmp->flags == types[i]) {
3584 				sinfo = tmp;
3585 				break;
3586 			}
3587 		}
3588 		rcu_read_unlock();
3589 
3590 		if (!sinfo)
3591 			continue;
3592 
3593 		down_read(&sinfo->groups_sem);
3594 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3595 			u64 flags;
3596 
3597 			if (list_empty(&sinfo->block_groups[c]))
3598 				continue;
3599 
3600 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3601 						   &space);
3602 			if (space.total_bytes == 0 || space.used_bytes == 0)
3603 				continue;
3604 			flags = space.flags;
3605 
3606 			num_tolerated_disk_barrier_failures = min(
3607 				num_tolerated_disk_barrier_failures,
3608 				btrfs_get_num_tolerated_disk_barrier_failures(
3609 					flags));
3610 		}
3611 		up_read(&sinfo->groups_sem);
3612 	}
3613 
3614 	return num_tolerated_disk_barrier_failures;
3615 }
3616 
3617 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3618 {
3619 	struct list_head *head;
3620 	struct btrfs_device *dev;
3621 	struct btrfs_super_block *sb;
3622 	struct btrfs_dev_item *dev_item;
3623 	int ret;
3624 	int do_barriers;
3625 	int max_errors;
3626 	int total_errors = 0;
3627 	u64 flags;
3628 
3629 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3630 	backup_super_roots(root->fs_info);
3631 
3632 	sb = root->fs_info->super_for_commit;
3633 	dev_item = &sb->dev_item;
3634 
3635 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3636 	head = &root->fs_info->fs_devices->devices;
3637 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3638 
3639 	if (do_barriers) {
3640 		ret = barrier_all_devices(root->fs_info);
3641 		if (ret) {
3642 			mutex_unlock(
3643 				&root->fs_info->fs_devices->device_list_mutex);
3644 			btrfs_std_error(root->fs_info, ret,
3645 				    "errors while submitting device barriers.");
3646 			return ret;
3647 		}
3648 	}
3649 
3650 	list_for_each_entry_rcu(dev, head, dev_list) {
3651 		if (!dev->bdev) {
3652 			total_errors++;
3653 			continue;
3654 		}
3655 		if (!dev->in_fs_metadata || !dev->writeable)
3656 			continue;
3657 
3658 		btrfs_set_stack_device_generation(dev_item, 0);
3659 		btrfs_set_stack_device_type(dev_item, dev->type);
3660 		btrfs_set_stack_device_id(dev_item, dev->devid);
3661 		btrfs_set_stack_device_total_bytes(dev_item,
3662 						   dev->commit_total_bytes);
3663 		btrfs_set_stack_device_bytes_used(dev_item,
3664 						  dev->commit_bytes_used);
3665 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3666 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3667 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3668 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3669 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3670 
3671 		flags = btrfs_super_flags(sb);
3672 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3673 
3674 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3675 		if (ret)
3676 			total_errors++;
3677 	}
3678 	if (total_errors > max_errors) {
3679 		btrfs_err(root->fs_info, "%d errors while writing supers",
3680 		       total_errors);
3681 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3682 
3683 		/* FUA is masked off if unsupported and can't be the reason */
3684 		btrfs_std_error(root->fs_info, -EIO,
3685 			    "%d errors while writing supers", total_errors);
3686 		return -EIO;
3687 	}
3688 
3689 	total_errors = 0;
3690 	list_for_each_entry_rcu(dev, head, dev_list) {
3691 		if (!dev->bdev)
3692 			continue;
3693 		if (!dev->in_fs_metadata || !dev->writeable)
3694 			continue;
3695 
3696 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3697 		if (ret)
3698 			total_errors++;
3699 	}
3700 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3701 	if (total_errors > max_errors) {
3702 		btrfs_std_error(root->fs_info, -EIO,
3703 			    "%d errors while writing supers", total_errors);
3704 		return -EIO;
3705 	}
3706 	return 0;
3707 }
3708 
3709 int write_ctree_super(struct btrfs_trans_handle *trans,
3710 		      struct btrfs_root *root, int max_mirrors)
3711 {
3712 	return write_all_supers(root, max_mirrors);
3713 }
3714 
3715 /* Drop a fs root from the radix tree and free it. */
3716 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3717 				  struct btrfs_root *root)
3718 {
3719 	spin_lock(&fs_info->fs_roots_radix_lock);
3720 	radix_tree_delete(&fs_info->fs_roots_radix,
3721 			  (unsigned long)root->root_key.objectid);
3722 	spin_unlock(&fs_info->fs_roots_radix_lock);
3723 
3724 	if (btrfs_root_refs(&root->root_item) == 0)
3725 		synchronize_srcu(&fs_info->subvol_srcu);
3726 
3727 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3728 		btrfs_free_log(NULL, root);
3729 
3730 	if (root->free_ino_pinned)
3731 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3732 	if (root->free_ino_ctl)
3733 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3734 	free_fs_root(root);
3735 }
3736 
3737 static void free_fs_root(struct btrfs_root *root)
3738 {
3739 	iput(root->ino_cache_inode);
3740 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3741 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3742 	root->orphan_block_rsv = NULL;
3743 	if (root->anon_dev)
3744 		free_anon_bdev(root->anon_dev);
3745 	if (root->subv_writers)
3746 		btrfs_free_subvolume_writers(root->subv_writers);
3747 	free_extent_buffer(root->node);
3748 	free_extent_buffer(root->commit_root);
3749 	kfree(root->free_ino_ctl);
3750 	kfree(root->free_ino_pinned);
3751 	kfree(root->name);
3752 	btrfs_put_fs_root(root);
3753 }
3754 
3755 void btrfs_free_fs_root(struct btrfs_root *root)
3756 {
3757 	free_fs_root(root);
3758 }
3759 
3760 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3761 {
3762 	u64 root_objectid = 0;
3763 	struct btrfs_root *gang[8];
3764 	int i = 0;
3765 	int err = 0;
3766 	unsigned int ret = 0;
3767 	int index;
3768 
3769 	while (1) {
3770 		index = srcu_read_lock(&fs_info->subvol_srcu);
3771 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3772 					     (void **)gang, root_objectid,
3773 					     ARRAY_SIZE(gang));
3774 		if (!ret) {
3775 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3776 			break;
3777 		}
3778 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3779 
3780 		for (i = 0; i < ret; i++) {
3781 			/* Avoid to grab roots in dead_roots */
3782 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3783 				gang[i] = NULL;
3784 				continue;
3785 			}
3786 			/* grab all the search result for later use */
3787 			gang[i] = btrfs_grab_fs_root(gang[i]);
3788 		}
3789 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3790 
3791 		for (i = 0; i < ret; i++) {
3792 			if (!gang[i])
3793 				continue;
3794 			root_objectid = gang[i]->root_key.objectid;
3795 			err = btrfs_orphan_cleanup(gang[i]);
3796 			if (err)
3797 				break;
3798 			btrfs_put_fs_root(gang[i]);
3799 		}
3800 		root_objectid++;
3801 	}
3802 
3803 	/* release the uncleaned roots due to error */
3804 	for (; i < ret; i++) {
3805 		if (gang[i])
3806 			btrfs_put_fs_root(gang[i]);
3807 	}
3808 	return err;
3809 }
3810 
3811 int btrfs_commit_super(struct btrfs_root *root)
3812 {
3813 	struct btrfs_trans_handle *trans;
3814 
3815 	mutex_lock(&root->fs_info->cleaner_mutex);
3816 	btrfs_run_delayed_iputs(root);
3817 	mutex_unlock(&root->fs_info->cleaner_mutex);
3818 	wake_up_process(root->fs_info->cleaner_kthread);
3819 
3820 	/* wait until ongoing cleanup work done */
3821 	down_write(&root->fs_info->cleanup_work_sem);
3822 	up_write(&root->fs_info->cleanup_work_sem);
3823 
3824 	trans = btrfs_join_transaction(root);
3825 	if (IS_ERR(trans))
3826 		return PTR_ERR(trans);
3827 	return btrfs_commit_transaction(trans, root);
3828 }
3829 
3830 void close_ctree(struct btrfs_root *root)
3831 {
3832 	struct btrfs_fs_info *fs_info = root->fs_info;
3833 	int ret;
3834 
3835 	fs_info->closing = 1;
3836 	smp_mb();
3837 
3838 	/* wait for the qgroup rescan worker to stop */
3839 	btrfs_qgroup_wait_for_completion(fs_info);
3840 
3841 	/* wait for the uuid_scan task to finish */
3842 	down(&fs_info->uuid_tree_rescan_sem);
3843 	/* avoid complains from lockdep et al., set sem back to initial state */
3844 	up(&fs_info->uuid_tree_rescan_sem);
3845 
3846 	/* pause restriper - we want to resume on mount */
3847 	btrfs_pause_balance(fs_info);
3848 
3849 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3850 
3851 	btrfs_scrub_cancel(fs_info);
3852 
3853 	/* wait for any defraggers to finish */
3854 	wait_event(fs_info->transaction_wait,
3855 		   (atomic_read(&fs_info->defrag_running) == 0));
3856 
3857 	/* clear out the rbtree of defraggable inodes */
3858 	btrfs_cleanup_defrag_inodes(fs_info);
3859 
3860 	cancel_work_sync(&fs_info->async_reclaim_work);
3861 
3862 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3863 		/*
3864 		 * If the cleaner thread is stopped and there are
3865 		 * block groups queued for removal, the deletion will be
3866 		 * skipped when we quit the cleaner thread.
3867 		 */
3868 		btrfs_delete_unused_bgs(root->fs_info);
3869 
3870 		ret = btrfs_commit_super(root);
3871 		if (ret)
3872 			btrfs_err(fs_info, "commit super ret %d", ret);
3873 	}
3874 
3875 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3876 		btrfs_error_commit_super(root);
3877 
3878 	kthread_stop(fs_info->transaction_kthread);
3879 	kthread_stop(fs_info->cleaner_kthread);
3880 
3881 	fs_info->closing = 2;
3882 	smp_mb();
3883 
3884 	btrfs_free_qgroup_config(fs_info);
3885 
3886 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3887 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3888 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3889 	}
3890 
3891 	btrfs_sysfs_remove_mounted(fs_info);
3892 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3893 
3894 	btrfs_free_fs_roots(fs_info);
3895 
3896 	btrfs_put_block_group_cache(fs_info);
3897 
3898 	btrfs_free_block_groups(fs_info);
3899 
3900 	/*
3901 	 * we must make sure there is not any read request to
3902 	 * submit after we stopping all workers.
3903 	 */
3904 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3905 	btrfs_stop_all_workers(fs_info);
3906 
3907 	fs_info->open = 0;
3908 	free_root_pointers(fs_info, 1);
3909 
3910 	iput(fs_info->btree_inode);
3911 
3912 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3913 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3914 		btrfsic_unmount(root, fs_info->fs_devices);
3915 #endif
3916 
3917 	btrfs_close_devices(fs_info->fs_devices);
3918 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3919 
3920 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3921 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3922 	percpu_counter_destroy(&fs_info->bio_counter);
3923 	bdi_destroy(&fs_info->bdi);
3924 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3925 
3926 	btrfs_free_stripe_hash_table(fs_info);
3927 
3928 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3929 	root->orphan_block_rsv = NULL;
3930 
3931 	lock_chunks(root);
3932 	while (!list_empty(&fs_info->pinned_chunks)) {
3933 		struct extent_map *em;
3934 
3935 		em = list_first_entry(&fs_info->pinned_chunks,
3936 				      struct extent_map, list);
3937 		list_del_init(&em->list);
3938 		free_extent_map(em);
3939 	}
3940 	unlock_chunks(root);
3941 }
3942 
3943 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3944 			  int atomic)
3945 {
3946 	int ret;
3947 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3948 
3949 	ret = extent_buffer_uptodate(buf);
3950 	if (!ret)
3951 		return ret;
3952 
3953 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3954 				    parent_transid, atomic);
3955 	if (ret == -EAGAIN)
3956 		return ret;
3957 	return !ret;
3958 }
3959 
3960 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3961 {
3962 	struct btrfs_root *root;
3963 	u64 transid = btrfs_header_generation(buf);
3964 	int was_dirty;
3965 
3966 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3967 	/*
3968 	 * This is a fast path so only do this check if we have sanity tests
3969 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3970 	 * outside of the sanity tests.
3971 	 */
3972 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3973 		return;
3974 #endif
3975 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3976 	btrfs_assert_tree_locked(buf);
3977 	if (transid != root->fs_info->generation)
3978 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3979 		       "found %llu running %llu\n",
3980 			buf->start, transid, root->fs_info->generation);
3981 	was_dirty = set_extent_buffer_dirty(buf);
3982 	if (!was_dirty)
3983 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3984 				     buf->len,
3985 				     root->fs_info->dirty_metadata_batch);
3986 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3987 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3988 		btrfs_print_leaf(root, buf);
3989 		ASSERT(0);
3990 	}
3991 #endif
3992 }
3993 
3994 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3995 					int flush_delayed)
3996 {
3997 	/*
3998 	 * looks as though older kernels can get into trouble with
3999 	 * this code, they end up stuck in balance_dirty_pages forever
4000 	 */
4001 	int ret;
4002 
4003 	if (current->flags & PF_MEMALLOC)
4004 		return;
4005 
4006 	if (flush_delayed)
4007 		btrfs_balance_delayed_items(root);
4008 
4009 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4010 				     BTRFS_DIRTY_METADATA_THRESH);
4011 	if (ret > 0) {
4012 		balance_dirty_pages_ratelimited(
4013 				   root->fs_info->btree_inode->i_mapping);
4014 	}
4015 }
4016 
4017 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4018 {
4019 	__btrfs_btree_balance_dirty(root, 1);
4020 }
4021 
4022 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4023 {
4024 	__btrfs_btree_balance_dirty(root, 0);
4025 }
4026 
4027 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4028 {
4029 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4030 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4031 }
4032 
4033 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4034 			      int read_only)
4035 {
4036 	struct btrfs_super_block *sb = fs_info->super_copy;
4037 	u64 nodesize = btrfs_super_nodesize(sb);
4038 	u64 sectorsize = btrfs_super_sectorsize(sb);
4039 	int ret = 0;
4040 
4041 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4042 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4043 		ret = -EINVAL;
4044 	}
4045 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4046 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4047 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4048 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4049 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4050 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4051 		ret = -EINVAL;
4052 	}
4053 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4055 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4056 		ret = -EINVAL;
4057 	}
4058 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4060 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4061 		ret = -EINVAL;
4062 	}
4063 
4064 	/*
4065 	 * Check sectorsize and nodesize first, other check will need it.
4066 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4067 	 */
4068 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4069 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4070 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4071 		ret = -EINVAL;
4072 	}
4073 	/* Only PAGE SIZE is supported yet */
4074 	if (sectorsize != PAGE_CACHE_SIZE) {
4075 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4076 				sectorsize, PAGE_CACHE_SIZE);
4077 		ret = -EINVAL;
4078 	}
4079 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4080 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4081 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4082 		ret = -EINVAL;
4083 	}
4084 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4085 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4086 				le32_to_cpu(sb->__unused_leafsize),
4087 				nodesize);
4088 		ret = -EINVAL;
4089 	}
4090 
4091 	/* Root alignment check */
4092 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4093 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4094 				btrfs_super_root(sb));
4095 		ret = -EINVAL;
4096 	}
4097 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4098 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4099 				btrfs_super_chunk_root(sb));
4100 		ret = -EINVAL;
4101 	}
4102 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4103 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4104 				btrfs_super_log_root(sb));
4105 		ret = -EINVAL;
4106 	}
4107 
4108 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4109 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4110 				fs_info->fsid, sb->dev_item.fsid);
4111 		ret = -EINVAL;
4112 	}
4113 
4114 	/*
4115 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4116 	 * done later
4117 	 */
4118 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4119 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4120 				btrfs_super_num_devices(sb));
4121 	if (btrfs_super_num_devices(sb) == 0) {
4122 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4123 		ret = -EINVAL;
4124 	}
4125 
4126 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4127 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4128 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4129 		ret = -EINVAL;
4130 	}
4131 
4132 	/*
4133 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4134 	 * and one chunk
4135 	 */
4136 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4137 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4138 				btrfs_super_sys_array_size(sb),
4139 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4140 		ret = -EINVAL;
4141 	}
4142 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4143 			+ sizeof(struct btrfs_chunk)) {
4144 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4145 				btrfs_super_sys_array_size(sb),
4146 				sizeof(struct btrfs_disk_key)
4147 				+ sizeof(struct btrfs_chunk));
4148 		ret = -EINVAL;
4149 	}
4150 
4151 	/*
4152 	 * The generation is a global counter, we'll trust it more than the others
4153 	 * but it's still possible that it's the one that's wrong.
4154 	 */
4155 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4156 		printk(KERN_WARNING
4157 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4158 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4159 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4160 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4161 		printk(KERN_WARNING
4162 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4163 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4164 
4165 	return ret;
4166 }
4167 
4168 static void btrfs_error_commit_super(struct btrfs_root *root)
4169 {
4170 	mutex_lock(&root->fs_info->cleaner_mutex);
4171 	btrfs_run_delayed_iputs(root);
4172 	mutex_unlock(&root->fs_info->cleaner_mutex);
4173 
4174 	down_write(&root->fs_info->cleanup_work_sem);
4175 	up_write(&root->fs_info->cleanup_work_sem);
4176 
4177 	/* cleanup FS via transaction */
4178 	btrfs_cleanup_transaction(root);
4179 }
4180 
4181 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4182 {
4183 	struct btrfs_ordered_extent *ordered;
4184 
4185 	spin_lock(&root->ordered_extent_lock);
4186 	/*
4187 	 * This will just short circuit the ordered completion stuff which will
4188 	 * make sure the ordered extent gets properly cleaned up.
4189 	 */
4190 	list_for_each_entry(ordered, &root->ordered_extents,
4191 			    root_extent_list)
4192 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4193 	spin_unlock(&root->ordered_extent_lock);
4194 }
4195 
4196 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4197 {
4198 	struct btrfs_root *root;
4199 	struct list_head splice;
4200 
4201 	INIT_LIST_HEAD(&splice);
4202 
4203 	spin_lock(&fs_info->ordered_root_lock);
4204 	list_splice_init(&fs_info->ordered_roots, &splice);
4205 	while (!list_empty(&splice)) {
4206 		root = list_first_entry(&splice, struct btrfs_root,
4207 					ordered_root);
4208 		list_move_tail(&root->ordered_root,
4209 			       &fs_info->ordered_roots);
4210 
4211 		spin_unlock(&fs_info->ordered_root_lock);
4212 		btrfs_destroy_ordered_extents(root);
4213 
4214 		cond_resched();
4215 		spin_lock(&fs_info->ordered_root_lock);
4216 	}
4217 	spin_unlock(&fs_info->ordered_root_lock);
4218 }
4219 
4220 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4221 				      struct btrfs_root *root)
4222 {
4223 	struct rb_node *node;
4224 	struct btrfs_delayed_ref_root *delayed_refs;
4225 	struct btrfs_delayed_ref_node *ref;
4226 	int ret = 0;
4227 
4228 	delayed_refs = &trans->delayed_refs;
4229 
4230 	spin_lock(&delayed_refs->lock);
4231 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4232 		spin_unlock(&delayed_refs->lock);
4233 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4234 		return ret;
4235 	}
4236 
4237 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4238 		struct btrfs_delayed_ref_head *head;
4239 		struct btrfs_delayed_ref_node *tmp;
4240 		bool pin_bytes = false;
4241 
4242 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4243 				href_node);
4244 		if (!mutex_trylock(&head->mutex)) {
4245 			atomic_inc(&head->node.refs);
4246 			spin_unlock(&delayed_refs->lock);
4247 
4248 			mutex_lock(&head->mutex);
4249 			mutex_unlock(&head->mutex);
4250 			btrfs_put_delayed_ref(&head->node);
4251 			spin_lock(&delayed_refs->lock);
4252 			continue;
4253 		}
4254 		spin_lock(&head->lock);
4255 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4256 						 list) {
4257 			ref->in_tree = 0;
4258 			list_del(&ref->list);
4259 			atomic_dec(&delayed_refs->num_entries);
4260 			btrfs_put_delayed_ref(ref);
4261 		}
4262 		if (head->must_insert_reserved)
4263 			pin_bytes = true;
4264 		btrfs_free_delayed_extent_op(head->extent_op);
4265 		delayed_refs->num_heads--;
4266 		if (head->processing == 0)
4267 			delayed_refs->num_heads_ready--;
4268 		atomic_dec(&delayed_refs->num_entries);
4269 		head->node.in_tree = 0;
4270 		rb_erase(&head->href_node, &delayed_refs->href_root);
4271 		spin_unlock(&head->lock);
4272 		spin_unlock(&delayed_refs->lock);
4273 		mutex_unlock(&head->mutex);
4274 
4275 		if (pin_bytes)
4276 			btrfs_pin_extent(root, head->node.bytenr,
4277 					 head->node.num_bytes, 1);
4278 		btrfs_put_delayed_ref(&head->node);
4279 		cond_resched();
4280 		spin_lock(&delayed_refs->lock);
4281 	}
4282 
4283 	spin_unlock(&delayed_refs->lock);
4284 
4285 	return ret;
4286 }
4287 
4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4289 {
4290 	struct btrfs_inode *btrfs_inode;
4291 	struct list_head splice;
4292 
4293 	INIT_LIST_HEAD(&splice);
4294 
4295 	spin_lock(&root->delalloc_lock);
4296 	list_splice_init(&root->delalloc_inodes, &splice);
4297 
4298 	while (!list_empty(&splice)) {
4299 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4300 					       delalloc_inodes);
4301 
4302 		list_del_init(&btrfs_inode->delalloc_inodes);
4303 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4304 			  &btrfs_inode->runtime_flags);
4305 		spin_unlock(&root->delalloc_lock);
4306 
4307 		btrfs_invalidate_inodes(btrfs_inode->root);
4308 
4309 		spin_lock(&root->delalloc_lock);
4310 	}
4311 
4312 	spin_unlock(&root->delalloc_lock);
4313 }
4314 
4315 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4316 {
4317 	struct btrfs_root *root;
4318 	struct list_head splice;
4319 
4320 	INIT_LIST_HEAD(&splice);
4321 
4322 	spin_lock(&fs_info->delalloc_root_lock);
4323 	list_splice_init(&fs_info->delalloc_roots, &splice);
4324 	while (!list_empty(&splice)) {
4325 		root = list_first_entry(&splice, struct btrfs_root,
4326 					 delalloc_root);
4327 		list_del_init(&root->delalloc_root);
4328 		root = btrfs_grab_fs_root(root);
4329 		BUG_ON(!root);
4330 		spin_unlock(&fs_info->delalloc_root_lock);
4331 
4332 		btrfs_destroy_delalloc_inodes(root);
4333 		btrfs_put_fs_root(root);
4334 
4335 		spin_lock(&fs_info->delalloc_root_lock);
4336 	}
4337 	spin_unlock(&fs_info->delalloc_root_lock);
4338 }
4339 
4340 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4341 					struct extent_io_tree *dirty_pages,
4342 					int mark)
4343 {
4344 	int ret;
4345 	struct extent_buffer *eb;
4346 	u64 start = 0;
4347 	u64 end;
4348 
4349 	while (1) {
4350 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4351 					    mark, NULL);
4352 		if (ret)
4353 			break;
4354 
4355 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4356 		while (start <= end) {
4357 			eb = btrfs_find_tree_block(root->fs_info, start);
4358 			start += root->nodesize;
4359 			if (!eb)
4360 				continue;
4361 			wait_on_extent_buffer_writeback(eb);
4362 
4363 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4364 					       &eb->bflags))
4365 				clear_extent_buffer_dirty(eb);
4366 			free_extent_buffer_stale(eb);
4367 		}
4368 	}
4369 
4370 	return ret;
4371 }
4372 
4373 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4374 				       struct extent_io_tree *pinned_extents)
4375 {
4376 	struct extent_io_tree *unpin;
4377 	u64 start;
4378 	u64 end;
4379 	int ret;
4380 	bool loop = true;
4381 
4382 	unpin = pinned_extents;
4383 again:
4384 	while (1) {
4385 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4386 					    EXTENT_DIRTY, NULL);
4387 		if (ret)
4388 			break;
4389 
4390 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4391 		btrfs_error_unpin_extent_range(root, start, end);
4392 		cond_resched();
4393 	}
4394 
4395 	if (loop) {
4396 		if (unpin == &root->fs_info->freed_extents[0])
4397 			unpin = &root->fs_info->freed_extents[1];
4398 		else
4399 			unpin = &root->fs_info->freed_extents[0];
4400 		loop = false;
4401 		goto again;
4402 	}
4403 
4404 	return 0;
4405 }
4406 
4407 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4408 				   struct btrfs_root *root)
4409 {
4410 	btrfs_destroy_delayed_refs(cur_trans, root);
4411 
4412 	cur_trans->state = TRANS_STATE_COMMIT_START;
4413 	wake_up(&root->fs_info->transaction_blocked_wait);
4414 
4415 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4416 	wake_up(&root->fs_info->transaction_wait);
4417 
4418 	btrfs_destroy_delayed_inodes(root);
4419 	btrfs_assert_delayed_root_empty(root);
4420 
4421 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4422 				     EXTENT_DIRTY);
4423 	btrfs_destroy_pinned_extent(root,
4424 				    root->fs_info->pinned_extents);
4425 
4426 	cur_trans->state =TRANS_STATE_COMPLETED;
4427 	wake_up(&cur_trans->commit_wait);
4428 
4429 	/*
4430 	memset(cur_trans, 0, sizeof(*cur_trans));
4431 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4432 	*/
4433 }
4434 
4435 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4436 {
4437 	struct btrfs_transaction *t;
4438 
4439 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4440 
4441 	spin_lock(&root->fs_info->trans_lock);
4442 	while (!list_empty(&root->fs_info->trans_list)) {
4443 		t = list_first_entry(&root->fs_info->trans_list,
4444 				     struct btrfs_transaction, list);
4445 		if (t->state >= TRANS_STATE_COMMIT_START) {
4446 			atomic_inc(&t->use_count);
4447 			spin_unlock(&root->fs_info->trans_lock);
4448 			btrfs_wait_for_commit(root, t->transid);
4449 			btrfs_put_transaction(t);
4450 			spin_lock(&root->fs_info->trans_lock);
4451 			continue;
4452 		}
4453 		if (t == root->fs_info->running_transaction) {
4454 			t->state = TRANS_STATE_COMMIT_DOING;
4455 			spin_unlock(&root->fs_info->trans_lock);
4456 			/*
4457 			 * We wait for 0 num_writers since we don't hold a trans
4458 			 * handle open currently for this transaction.
4459 			 */
4460 			wait_event(t->writer_wait,
4461 				   atomic_read(&t->num_writers) == 0);
4462 		} else {
4463 			spin_unlock(&root->fs_info->trans_lock);
4464 		}
4465 		btrfs_cleanup_one_transaction(t, root);
4466 
4467 		spin_lock(&root->fs_info->trans_lock);
4468 		if (t == root->fs_info->running_transaction)
4469 			root->fs_info->running_transaction = NULL;
4470 		list_del_init(&t->list);
4471 		spin_unlock(&root->fs_info->trans_lock);
4472 
4473 		btrfs_put_transaction(t);
4474 		trace_btrfs_transaction_commit(root);
4475 		spin_lock(&root->fs_info->trans_lock);
4476 	}
4477 	spin_unlock(&root->fs_info->trans_lock);
4478 	btrfs_destroy_all_ordered_extents(root->fs_info);
4479 	btrfs_destroy_delayed_inodes(root);
4480 	btrfs_assert_delayed_root_empty(root);
4481 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4482 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4483 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4484 
4485 	return 0;
4486 }
4487 
4488 static const struct extent_io_ops btree_extent_io_ops = {
4489 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4490 	.readpage_io_failed_hook = btree_io_failed_hook,
4491 	.submit_bio_hook = btree_submit_bio_hook,
4492 	/* note we're sharing with inode.c for the merge bio hook */
4493 	.merge_bio_hook = btrfs_merge_bio_hook,
4494 };
4495