xref: /linux/fs/btrfs/disk-io.c (revision 97e728d4353f38c87bf0804cdfd79a9b13fc2c3e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42 
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 
46 /*
47  * end_io_wq structs are used to do processing in task context when an IO is
48  * complete.  This is used during reads to verify checksums, and it is used
49  * by writes to insert metadata for new file extents after IO is complete.
50  */
51 struct end_io_wq {
52 	struct bio *bio;
53 	bio_end_io_t *end_io;
54 	void *private;
55 	struct btrfs_fs_info *info;
56 	int error;
57 	int metadata;
58 	struct list_head list;
59 	struct btrfs_work work;
60 };
61 
62 /*
63  * async submit bios are used to offload expensive checksumming
64  * onto the worker threads.  They checksum file and metadata bios
65  * just before they are sent down the IO stack.
66  */
67 struct async_submit_bio {
68 	struct inode *inode;
69 	struct bio *bio;
70 	struct list_head list;
71 	extent_submit_bio_hook_t *submit_bio_start;
72 	extent_submit_bio_hook_t *submit_bio_done;
73 	int rw;
74 	int mirror_num;
75 	unsigned long bio_flags;
76 	struct btrfs_work work;
77 };
78 
79 /* These are used to set the lockdep class on the extent buffer locks.
80  * The class is set by the readpage_end_io_hook after the buffer has
81  * passed csum validation but before the pages are unlocked.
82  *
83  * The lockdep class is also set by btrfs_init_new_buffer on freshly
84  * allocated blocks.
85  *
86  * The class is based on the level in the tree block, which allows lockdep
87  * to know that lower nodes nest inside the locks of higher nodes.
88  *
89  * We also add a check to make sure the highest level of the tree is
90  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
91  * code needs update as well.
92  */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
95 #  error
96 # endif
97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
99 	/* leaf */
100 	"btrfs-extent-00",
101 	"btrfs-extent-01",
102 	"btrfs-extent-02",
103 	"btrfs-extent-03",
104 	"btrfs-extent-04",
105 	"btrfs-extent-05",
106 	"btrfs-extent-06",
107 	"btrfs-extent-07",
108 	/* highest possible level */
109 	"btrfs-extent-08",
110 };
111 #endif
112 
113 /*
114  * extents on the btree inode are pretty simple, there's one extent
115  * that covers the entire device
116  */
117 static struct extent_map *btree_get_extent(struct inode *inode,
118 		struct page *page, size_t page_offset, u64 start, u64 len,
119 		int create)
120 {
121 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
122 	struct extent_map *em;
123 	int ret;
124 
125 	spin_lock(&em_tree->lock);
126 	em = lookup_extent_mapping(em_tree, start, len);
127 	if (em) {
128 		em->bdev =
129 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
130 		spin_unlock(&em_tree->lock);
131 		goto out;
132 	}
133 	spin_unlock(&em_tree->lock);
134 
135 	em = alloc_extent_map(GFP_NOFS);
136 	if (!em) {
137 		em = ERR_PTR(-ENOMEM);
138 		goto out;
139 	}
140 	em->start = 0;
141 	em->len = (u64)-1;
142 	em->block_len = (u64)-1;
143 	em->block_start = 0;
144 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
145 
146 	spin_lock(&em_tree->lock);
147 	ret = add_extent_mapping(em_tree, em);
148 	if (ret == -EEXIST) {
149 		u64 failed_start = em->start;
150 		u64 failed_len = em->len;
151 
152 		free_extent_map(em);
153 		em = lookup_extent_mapping(em_tree, start, len);
154 		if (em) {
155 			ret = 0;
156 		} else {
157 			em = lookup_extent_mapping(em_tree, failed_start,
158 						   failed_len);
159 			ret = -EIO;
160 		}
161 	} else if (ret) {
162 		free_extent_map(em);
163 		em = NULL;
164 	}
165 	spin_unlock(&em_tree->lock);
166 
167 	if (ret)
168 		em = ERR_PTR(ret);
169 out:
170 	return em;
171 }
172 
173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
174 {
175 	return btrfs_crc32c(seed, data, len);
176 }
177 
178 void btrfs_csum_final(u32 crc, char *result)
179 {
180 	*(__le32 *)result = ~cpu_to_le32(crc);
181 }
182 
183 /*
184  * compute the csum for a btree block, and either verify it or write it
185  * into the csum field of the block.
186  */
187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
188 			   int verify)
189 {
190 	u16 csum_size =
191 		btrfs_super_csum_size(&root->fs_info->super_copy);
192 	char *result = NULL;
193 	unsigned long len;
194 	unsigned long cur_len;
195 	unsigned long offset = BTRFS_CSUM_SIZE;
196 	char *map_token = NULL;
197 	char *kaddr;
198 	unsigned long map_start;
199 	unsigned long map_len;
200 	int err;
201 	u32 crc = ~(u32)0;
202 	unsigned long inline_result;
203 
204 	len = buf->len - offset;
205 	while (len > 0) {
206 		err = map_private_extent_buffer(buf, offset, 32,
207 					&map_token, &kaddr,
208 					&map_start, &map_len, KM_USER0);
209 		if (err)
210 			return 1;
211 		cur_len = min(len, map_len - (offset - map_start));
212 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
213 				      crc, cur_len);
214 		len -= cur_len;
215 		offset += cur_len;
216 		unmap_extent_buffer(buf, map_token, KM_USER0);
217 	}
218 	if (csum_size > sizeof(inline_result)) {
219 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
220 		if (!result)
221 			return 1;
222 	} else {
223 		result = (char *)&inline_result;
224 	}
225 
226 	btrfs_csum_final(crc, result);
227 
228 	if (verify) {
229 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
230 			u32 val;
231 			u32 found = 0;
232 			memcpy(&found, result, csum_size);
233 
234 			read_extent_buffer(buf, &val, 0, csum_size);
235 			printk(KERN_INFO "btrfs: %s checksum verify failed "
236 			       "on %llu wanted %X found %X level %d\n",
237 			       root->fs_info->sb->s_id,
238 			       buf->start, val, found, btrfs_header_level(buf));
239 			if (result != (char *)&inline_result)
240 				kfree(result);
241 			return 1;
242 		}
243 	} else {
244 		write_extent_buffer(buf, result, 0, csum_size);
245 	}
246 	if (result != (char *)&inline_result)
247 		kfree(result);
248 	return 0;
249 }
250 
251 /*
252  * we can't consider a given block up to date unless the transid of the
253  * block matches the transid in the parent node's pointer.  This is how we
254  * detect blocks that either didn't get written at all or got written
255  * in the wrong place.
256  */
257 static int verify_parent_transid(struct extent_io_tree *io_tree,
258 				 struct extent_buffer *eb, u64 parent_transid)
259 {
260 	int ret;
261 
262 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
263 		return 0;
264 
265 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
266 	if (extent_buffer_uptodate(io_tree, eb) &&
267 	    btrfs_header_generation(eb) == parent_transid) {
268 		ret = 0;
269 		goto out;
270 	}
271 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272 	       (unsigned long long)eb->start,
273 	       (unsigned long long)parent_transid,
274 	       (unsigned long long)btrfs_header_generation(eb));
275 	ret = 1;
276 	clear_extent_buffer_uptodate(io_tree, eb);
277 out:
278 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
279 		      GFP_NOFS);
280 	return ret;
281 }
282 
283 /*
284  * helper to read a given tree block, doing retries as required when
285  * the checksums don't match and we have alternate mirrors to try.
286  */
287 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
288 					  struct extent_buffer *eb,
289 					  u64 start, u64 parent_transid)
290 {
291 	struct extent_io_tree *io_tree;
292 	int ret;
293 	int num_copies = 0;
294 	int mirror_num = 0;
295 
296 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
297 	while (1) {
298 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
299 					       btree_get_extent, mirror_num);
300 		if (!ret &&
301 		    !verify_parent_transid(io_tree, eb, parent_transid))
302 			return ret;
303 
304 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
305 					      eb->start, eb->len);
306 		if (num_copies == 1)
307 			return ret;
308 
309 		mirror_num++;
310 		if (mirror_num > num_copies)
311 			return ret;
312 	}
313 	return -EIO;
314 }
315 
316 /*
317  * checksum a dirty tree block before IO.  This has extra checks to make sure
318  * we only fill in the checksum field in the first page of a multi-page block
319  */
320 
321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
322 {
323 	struct extent_io_tree *tree;
324 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
325 	u64 found_start;
326 	int found_level;
327 	unsigned long len;
328 	struct extent_buffer *eb;
329 	int ret;
330 
331 	tree = &BTRFS_I(page->mapping->host)->io_tree;
332 
333 	if (page->private == EXTENT_PAGE_PRIVATE)
334 		goto out;
335 	if (!page->private)
336 		goto out;
337 	len = page->private >> 2;
338 	WARN_ON(len == 0);
339 
340 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
341 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
342 					     btrfs_header_generation(eb));
343 	BUG_ON(ret);
344 	found_start = btrfs_header_bytenr(eb);
345 	if (found_start != start) {
346 		WARN_ON(1);
347 		goto err;
348 	}
349 	if (eb->first_page != page) {
350 		WARN_ON(1);
351 		goto err;
352 	}
353 	if (!PageUptodate(page)) {
354 		WARN_ON(1);
355 		goto err;
356 	}
357 	found_level = btrfs_header_level(eb);
358 
359 	csum_tree_block(root, eb, 0);
360 err:
361 	free_extent_buffer(eb);
362 out:
363 	return 0;
364 }
365 
366 static int check_tree_block_fsid(struct btrfs_root *root,
367 				 struct extent_buffer *eb)
368 {
369 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
370 	u8 fsid[BTRFS_UUID_SIZE];
371 	int ret = 1;
372 
373 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
374 			   BTRFS_FSID_SIZE);
375 	while (fs_devices) {
376 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
377 			ret = 0;
378 			break;
379 		}
380 		fs_devices = fs_devices->seed;
381 	}
382 	return ret;
383 }
384 
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
387 {
388 	lockdep_set_class_and_name(&eb->lock,
389 			   &btrfs_eb_class[level],
390 			   btrfs_eb_name[level]);
391 }
392 #endif
393 
394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
395 			       struct extent_state *state)
396 {
397 	struct extent_io_tree *tree;
398 	u64 found_start;
399 	int found_level;
400 	unsigned long len;
401 	struct extent_buffer *eb;
402 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
403 	int ret = 0;
404 
405 	tree = &BTRFS_I(page->mapping->host)->io_tree;
406 	if (page->private == EXTENT_PAGE_PRIVATE)
407 		goto out;
408 	if (!page->private)
409 		goto out;
410 
411 	len = page->private >> 2;
412 	WARN_ON(len == 0);
413 
414 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
415 
416 	found_start = btrfs_header_bytenr(eb);
417 	if (found_start != start) {
418 		printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
419 		       (unsigned long long)found_start,
420 		       (unsigned long long)eb->start);
421 		ret = -EIO;
422 		goto err;
423 	}
424 	if (eb->first_page != page) {
425 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
426 		       eb->first_page->index, page->index);
427 		WARN_ON(1);
428 		ret = -EIO;
429 		goto err;
430 	}
431 	if (check_tree_block_fsid(root, eb)) {
432 		printk(KERN_INFO "btrfs bad fsid on block %llu\n",
433 		       (unsigned long long)eb->start);
434 		ret = -EIO;
435 		goto err;
436 	}
437 	found_level = btrfs_header_level(eb);
438 
439 	btrfs_set_buffer_lockdep_class(eb, found_level);
440 
441 	ret = csum_tree_block(root, eb, 1);
442 	if (ret)
443 		ret = -EIO;
444 
445 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
446 	end = eb->start + end - 1;
447 err:
448 	free_extent_buffer(eb);
449 out:
450 	return ret;
451 }
452 
453 static void end_workqueue_bio(struct bio *bio, int err)
454 {
455 	struct end_io_wq *end_io_wq = bio->bi_private;
456 	struct btrfs_fs_info *fs_info;
457 
458 	fs_info = end_io_wq->info;
459 	end_io_wq->error = err;
460 	end_io_wq->work.func = end_workqueue_fn;
461 	end_io_wq->work.flags = 0;
462 
463 	if (bio->bi_rw & (1 << BIO_RW)) {
464 		if (end_io_wq->metadata)
465 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
466 					   &end_io_wq->work);
467 		else
468 			btrfs_queue_worker(&fs_info->endio_write_workers,
469 					   &end_io_wq->work);
470 	} else {
471 		if (end_io_wq->metadata)
472 			btrfs_queue_worker(&fs_info->endio_meta_workers,
473 					   &end_io_wq->work);
474 		else
475 			btrfs_queue_worker(&fs_info->endio_workers,
476 					   &end_io_wq->work);
477 	}
478 }
479 
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
481 			int metadata)
482 {
483 	struct end_io_wq *end_io_wq;
484 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
485 	if (!end_io_wq)
486 		return -ENOMEM;
487 
488 	end_io_wq->private = bio->bi_private;
489 	end_io_wq->end_io = bio->bi_end_io;
490 	end_io_wq->info = info;
491 	end_io_wq->error = 0;
492 	end_io_wq->bio = bio;
493 	end_io_wq->metadata = metadata;
494 
495 	bio->bi_private = end_io_wq;
496 	bio->bi_end_io = end_workqueue_bio;
497 	return 0;
498 }
499 
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
501 {
502 	unsigned long limit = min_t(unsigned long,
503 				    info->workers.max_workers,
504 				    info->fs_devices->open_devices);
505 	return 256 * limit;
506 }
507 
508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
509 {
510 	return atomic_read(&info->nr_async_bios) >
511 		btrfs_async_submit_limit(info);
512 }
513 
514 static void run_one_async_start(struct btrfs_work *work)
515 {
516 	struct btrfs_fs_info *fs_info;
517 	struct async_submit_bio *async;
518 
519 	async = container_of(work, struct  async_submit_bio, work);
520 	fs_info = BTRFS_I(async->inode)->root->fs_info;
521 	async->submit_bio_start(async->inode, async->rw, async->bio,
522 			       async->mirror_num, async->bio_flags);
523 }
524 
525 static void run_one_async_done(struct btrfs_work *work)
526 {
527 	struct btrfs_fs_info *fs_info;
528 	struct async_submit_bio *async;
529 	int limit;
530 
531 	async = container_of(work, struct  async_submit_bio, work);
532 	fs_info = BTRFS_I(async->inode)->root->fs_info;
533 
534 	limit = btrfs_async_submit_limit(fs_info);
535 	limit = limit * 2 / 3;
536 
537 	atomic_dec(&fs_info->nr_async_submits);
538 
539 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
540 	    waitqueue_active(&fs_info->async_submit_wait))
541 		wake_up(&fs_info->async_submit_wait);
542 
543 	async->submit_bio_done(async->inode, async->rw, async->bio,
544 			       async->mirror_num, async->bio_flags);
545 }
546 
547 static void run_one_async_free(struct btrfs_work *work)
548 {
549 	struct async_submit_bio *async;
550 
551 	async = container_of(work, struct  async_submit_bio, work);
552 	kfree(async);
553 }
554 
555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
556 			int rw, struct bio *bio, int mirror_num,
557 			unsigned long bio_flags,
558 			extent_submit_bio_hook_t *submit_bio_start,
559 			extent_submit_bio_hook_t *submit_bio_done)
560 {
561 	struct async_submit_bio *async;
562 
563 	async = kmalloc(sizeof(*async), GFP_NOFS);
564 	if (!async)
565 		return -ENOMEM;
566 
567 	async->inode = inode;
568 	async->rw = rw;
569 	async->bio = bio;
570 	async->mirror_num = mirror_num;
571 	async->submit_bio_start = submit_bio_start;
572 	async->submit_bio_done = submit_bio_done;
573 
574 	async->work.func = run_one_async_start;
575 	async->work.ordered_func = run_one_async_done;
576 	async->work.ordered_free = run_one_async_free;
577 
578 	async->work.flags = 0;
579 	async->bio_flags = bio_flags;
580 
581 	atomic_inc(&fs_info->nr_async_submits);
582 
583 	if (rw & (1 << BIO_RW_SYNCIO))
584 		btrfs_set_work_high_prio(&async->work);
585 
586 	btrfs_queue_worker(&fs_info->workers, &async->work);
587 #if 0
588 	int limit = btrfs_async_submit_limit(fs_info);
589 	if (atomic_read(&fs_info->nr_async_submits) > limit) {
590 		wait_event_timeout(fs_info->async_submit_wait,
591 			   (atomic_read(&fs_info->nr_async_submits) < limit),
592 			   HZ/10);
593 
594 		wait_event_timeout(fs_info->async_submit_wait,
595 			   (atomic_read(&fs_info->nr_async_bios) < limit),
596 			   HZ/10);
597 	}
598 #endif
599 	while (atomic_read(&fs_info->async_submit_draining) &&
600 	      atomic_read(&fs_info->nr_async_submits)) {
601 		wait_event(fs_info->async_submit_wait,
602 			   (atomic_read(&fs_info->nr_async_submits) == 0));
603 	}
604 
605 	return 0;
606 }
607 
608 static int btree_csum_one_bio(struct bio *bio)
609 {
610 	struct bio_vec *bvec = bio->bi_io_vec;
611 	int bio_index = 0;
612 	struct btrfs_root *root;
613 
614 	WARN_ON(bio->bi_vcnt <= 0);
615 	while (bio_index < bio->bi_vcnt) {
616 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
617 		csum_dirty_buffer(root, bvec->bv_page);
618 		bio_index++;
619 		bvec++;
620 	}
621 	return 0;
622 }
623 
624 static int __btree_submit_bio_start(struct inode *inode, int rw,
625 				    struct bio *bio, int mirror_num,
626 				    unsigned long bio_flags)
627 {
628 	/*
629 	 * when we're called for a write, we're already in the async
630 	 * submission context.  Just jump into btrfs_map_bio
631 	 */
632 	btree_csum_one_bio(bio);
633 	return 0;
634 }
635 
636 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
637 				 int mirror_num, unsigned long bio_flags)
638 {
639 	/*
640 	 * when we're called for a write, we're already in the async
641 	 * submission context.  Just jump into btrfs_map_bio
642 	 */
643 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
644 }
645 
646 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
647 				 int mirror_num, unsigned long bio_flags)
648 {
649 	int ret;
650 
651 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
652 					  bio, 1);
653 	BUG_ON(ret);
654 
655 	if (!(rw & (1 << BIO_RW))) {
656 		/*
657 		 * called for a read, do the setup so that checksum validation
658 		 * can happen in the async kernel threads
659 		 */
660 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
661 				     mirror_num, 0);
662 	}
663 
664 	/*
665 	 * kthread helpers are used to submit writes so that checksumming
666 	 * can happen in parallel across all CPUs
667 	 */
668 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
669 				   inode, rw, bio, mirror_num, 0,
670 				   __btree_submit_bio_start,
671 				   __btree_submit_bio_done);
672 }
673 
674 static int btree_writepage(struct page *page, struct writeback_control *wbc)
675 {
676 	struct extent_io_tree *tree;
677 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678 	struct extent_buffer *eb;
679 	int was_dirty;
680 
681 	tree = &BTRFS_I(page->mapping->host)->io_tree;
682 	if (!(current->flags & PF_MEMALLOC)) {
683 		return extent_write_full_page(tree, page,
684 					      btree_get_extent, wbc);
685 	}
686 
687 	redirty_page_for_writepage(wbc, page);
688 	eb = btrfs_find_tree_block(root, page_offset(page),
689 				      PAGE_CACHE_SIZE);
690 	WARN_ON(!eb);
691 
692 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
693 	if (!was_dirty) {
694 		spin_lock(&root->fs_info->delalloc_lock);
695 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
696 		spin_unlock(&root->fs_info->delalloc_lock);
697 	}
698 	free_extent_buffer(eb);
699 
700 	unlock_page(page);
701 	return 0;
702 }
703 
704 static int btree_writepages(struct address_space *mapping,
705 			    struct writeback_control *wbc)
706 {
707 	struct extent_io_tree *tree;
708 	tree = &BTRFS_I(mapping->host)->io_tree;
709 	if (wbc->sync_mode == WB_SYNC_NONE) {
710 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
711 		u64 num_dirty;
712 		unsigned long thresh = 32 * 1024 * 1024;
713 
714 		if (wbc->for_kupdate)
715 			return 0;
716 
717 		/* this is a bit racy, but that's ok */
718 		num_dirty = root->fs_info->dirty_metadata_bytes;
719 		if (num_dirty < thresh)
720 			return 0;
721 	}
722 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
723 }
724 
725 static int btree_readpage(struct file *file, struct page *page)
726 {
727 	struct extent_io_tree *tree;
728 	tree = &BTRFS_I(page->mapping->host)->io_tree;
729 	return extent_read_full_page(tree, page, btree_get_extent);
730 }
731 
732 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
733 {
734 	struct extent_io_tree *tree;
735 	struct extent_map_tree *map;
736 	int ret;
737 
738 	if (PageWriteback(page) || PageDirty(page))
739 		return 0;
740 
741 	tree = &BTRFS_I(page->mapping->host)->io_tree;
742 	map = &BTRFS_I(page->mapping->host)->extent_tree;
743 
744 	ret = try_release_extent_state(map, tree, page, gfp_flags);
745 	if (!ret)
746 		return 0;
747 
748 	ret = try_release_extent_buffer(tree, page);
749 	if (ret == 1) {
750 		ClearPagePrivate(page);
751 		set_page_private(page, 0);
752 		page_cache_release(page);
753 	}
754 
755 	return ret;
756 }
757 
758 static void btree_invalidatepage(struct page *page, unsigned long offset)
759 {
760 	struct extent_io_tree *tree;
761 	tree = &BTRFS_I(page->mapping->host)->io_tree;
762 	extent_invalidatepage(tree, page, offset);
763 	btree_releasepage(page, GFP_NOFS);
764 	if (PagePrivate(page)) {
765 		printk(KERN_WARNING "btrfs warning page private not zero "
766 		       "on page %llu\n", (unsigned long long)page_offset(page));
767 		ClearPagePrivate(page);
768 		set_page_private(page, 0);
769 		page_cache_release(page);
770 	}
771 }
772 
773 #if 0
774 static int btree_writepage(struct page *page, struct writeback_control *wbc)
775 {
776 	struct buffer_head *bh;
777 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
778 	struct buffer_head *head;
779 	if (!page_has_buffers(page)) {
780 		create_empty_buffers(page, root->fs_info->sb->s_blocksize,
781 					(1 << BH_Dirty)|(1 << BH_Uptodate));
782 	}
783 	head = page_buffers(page);
784 	bh = head;
785 	do {
786 		if (buffer_dirty(bh))
787 			csum_tree_block(root, bh, 0);
788 		bh = bh->b_this_page;
789 	} while (bh != head);
790 	return block_write_full_page(page, btree_get_block, wbc);
791 }
792 #endif
793 
794 static struct address_space_operations btree_aops = {
795 	.readpage	= btree_readpage,
796 	.writepage	= btree_writepage,
797 	.writepages	= btree_writepages,
798 	.releasepage	= btree_releasepage,
799 	.invalidatepage = btree_invalidatepage,
800 	.sync_page	= block_sync_page,
801 };
802 
803 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
804 			 u64 parent_transid)
805 {
806 	struct extent_buffer *buf = NULL;
807 	struct inode *btree_inode = root->fs_info->btree_inode;
808 	int ret = 0;
809 
810 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
811 	if (!buf)
812 		return 0;
813 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
814 				 buf, 0, 0, btree_get_extent, 0);
815 	free_extent_buffer(buf);
816 	return ret;
817 }
818 
819 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
820 					    u64 bytenr, u32 blocksize)
821 {
822 	struct inode *btree_inode = root->fs_info->btree_inode;
823 	struct extent_buffer *eb;
824 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
825 				bytenr, blocksize, GFP_NOFS);
826 	return eb;
827 }
828 
829 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
830 						 u64 bytenr, u32 blocksize)
831 {
832 	struct inode *btree_inode = root->fs_info->btree_inode;
833 	struct extent_buffer *eb;
834 
835 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
836 				 bytenr, blocksize, NULL, GFP_NOFS);
837 	return eb;
838 }
839 
840 
841 int btrfs_write_tree_block(struct extent_buffer *buf)
842 {
843 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
844 				      buf->start + buf->len - 1, WB_SYNC_ALL);
845 }
846 
847 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
848 {
849 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
850 				  buf->start, buf->start + buf->len - 1);
851 }
852 
853 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
854 				      u32 blocksize, u64 parent_transid)
855 {
856 	struct extent_buffer *buf = NULL;
857 	struct inode *btree_inode = root->fs_info->btree_inode;
858 	struct extent_io_tree *io_tree;
859 	int ret;
860 
861 	io_tree = &BTRFS_I(btree_inode)->io_tree;
862 
863 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
864 	if (!buf)
865 		return NULL;
866 
867 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
868 
869 	if (ret == 0)
870 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
871 	else
872 		WARN_ON(1);
873 	return buf;
874 
875 }
876 
877 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
878 		     struct extent_buffer *buf)
879 {
880 	struct inode *btree_inode = root->fs_info->btree_inode;
881 	if (btrfs_header_generation(buf) ==
882 	    root->fs_info->running_transaction->transid) {
883 		btrfs_assert_tree_locked(buf);
884 
885 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
886 			spin_lock(&root->fs_info->delalloc_lock);
887 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
888 				root->fs_info->dirty_metadata_bytes -= buf->len;
889 			else
890 				WARN_ON(1);
891 			spin_unlock(&root->fs_info->delalloc_lock);
892 		}
893 
894 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
895 		btrfs_set_lock_blocking(buf);
896 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
897 					  buf);
898 	}
899 	return 0;
900 }
901 
902 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
903 			u32 stripesize, struct btrfs_root *root,
904 			struct btrfs_fs_info *fs_info,
905 			u64 objectid)
906 {
907 	root->node = NULL;
908 	root->commit_root = NULL;
909 	root->ref_tree = NULL;
910 	root->sectorsize = sectorsize;
911 	root->nodesize = nodesize;
912 	root->leafsize = leafsize;
913 	root->stripesize = stripesize;
914 	root->ref_cows = 0;
915 	root->track_dirty = 0;
916 
917 	root->fs_info = fs_info;
918 	root->objectid = objectid;
919 	root->last_trans = 0;
920 	root->highest_inode = 0;
921 	root->last_inode_alloc = 0;
922 	root->name = NULL;
923 	root->in_sysfs = 0;
924 
925 	INIT_LIST_HEAD(&root->dirty_list);
926 	INIT_LIST_HEAD(&root->orphan_list);
927 	INIT_LIST_HEAD(&root->dead_list);
928 	spin_lock_init(&root->node_lock);
929 	spin_lock_init(&root->list_lock);
930 	mutex_init(&root->objectid_mutex);
931 	mutex_init(&root->log_mutex);
932 	init_waitqueue_head(&root->log_writer_wait);
933 	init_waitqueue_head(&root->log_commit_wait[0]);
934 	init_waitqueue_head(&root->log_commit_wait[1]);
935 	atomic_set(&root->log_commit[0], 0);
936 	atomic_set(&root->log_commit[1], 0);
937 	atomic_set(&root->log_writers, 0);
938 	root->log_batch = 0;
939 	root->log_transid = 0;
940 	extent_io_tree_init(&root->dirty_log_pages,
941 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
942 
943 	btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
944 	root->ref_tree = &root->ref_tree_struct;
945 
946 	memset(&root->root_key, 0, sizeof(root->root_key));
947 	memset(&root->root_item, 0, sizeof(root->root_item));
948 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
949 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
950 	root->defrag_trans_start = fs_info->generation;
951 	init_completion(&root->kobj_unregister);
952 	root->defrag_running = 0;
953 	root->defrag_level = 0;
954 	root->root_key.objectid = objectid;
955 	root->anon_super.s_root = NULL;
956 	root->anon_super.s_dev = 0;
957 	INIT_LIST_HEAD(&root->anon_super.s_list);
958 	INIT_LIST_HEAD(&root->anon_super.s_instances);
959 	init_rwsem(&root->anon_super.s_umount);
960 
961 	return 0;
962 }
963 
964 static int find_and_setup_root(struct btrfs_root *tree_root,
965 			       struct btrfs_fs_info *fs_info,
966 			       u64 objectid,
967 			       struct btrfs_root *root)
968 {
969 	int ret;
970 	u32 blocksize;
971 	u64 generation;
972 
973 	__setup_root(tree_root->nodesize, tree_root->leafsize,
974 		     tree_root->sectorsize, tree_root->stripesize,
975 		     root, fs_info, objectid);
976 	ret = btrfs_find_last_root(tree_root, objectid,
977 				   &root->root_item, &root->root_key);
978 	BUG_ON(ret);
979 
980 	generation = btrfs_root_generation(&root->root_item);
981 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
982 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
983 				     blocksize, generation);
984 	BUG_ON(!root->node);
985 	return 0;
986 }
987 
988 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
989 			     struct btrfs_fs_info *fs_info)
990 {
991 	struct extent_buffer *eb;
992 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
993 	u64 start = 0;
994 	u64 end = 0;
995 	int ret;
996 
997 	if (!log_root_tree)
998 		return 0;
999 
1000 	while (1) {
1001 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
1002 				    0, &start, &end, EXTENT_DIRTY);
1003 		if (ret)
1004 			break;
1005 
1006 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
1007 				   start, end, GFP_NOFS);
1008 	}
1009 	eb = fs_info->log_root_tree->node;
1010 
1011 	WARN_ON(btrfs_header_level(eb) != 0);
1012 	WARN_ON(btrfs_header_nritems(eb) != 0);
1013 
1014 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
1015 				eb->start, eb->len);
1016 	BUG_ON(ret);
1017 
1018 	free_extent_buffer(eb);
1019 	kfree(fs_info->log_root_tree);
1020 	fs_info->log_root_tree = NULL;
1021 	return 0;
1022 }
1023 
1024 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1025 					 struct btrfs_fs_info *fs_info)
1026 {
1027 	struct btrfs_root *root;
1028 	struct btrfs_root *tree_root = fs_info->tree_root;
1029 	struct extent_buffer *leaf;
1030 
1031 	root = kzalloc(sizeof(*root), GFP_NOFS);
1032 	if (!root)
1033 		return ERR_PTR(-ENOMEM);
1034 
1035 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1036 		     tree_root->sectorsize, tree_root->stripesize,
1037 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1038 
1039 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1040 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1041 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1042 	/*
1043 	 * log trees do not get reference counted because they go away
1044 	 * before a real commit is actually done.  They do store pointers
1045 	 * to file data extents, and those reference counts still get
1046 	 * updated (along with back refs to the log tree).
1047 	 */
1048 	root->ref_cows = 0;
1049 
1050 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1051 				      0, BTRFS_TREE_LOG_OBJECTID,
1052 				      trans->transid, 0, 0, 0);
1053 	if (IS_ERR(leaf)) {
1054 		kfree(root);
1055 		return ERR_CAST(leaf);
1056 	}
1057 
1058 	root->node = leaf;
1059 	btrfs_set_header_nritems(root->node, 0);
1060 	btrfs_set_header_level(root->node, 0);
1061 	btrfs_set_header_bytenr(root->node, root->node->start);
1062 	btrfs_set_header_generation(root->node, trans->transid);
1063 	btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1064 
1065 	write_extent_buffer(root->node, root->fs_info->fsid,
1066 			    (unsigned long)btrfs_header_fsid(root->node),
1067 			    BTRFS_FSID_SIZE);
1068 	btrfs_mark_buffer_dirty(root->node);
1069 	btrfs_tree_unlock(root->node);
1070 	return root;
1071 }
1072 
1073 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1074 			     struct btrfs_fs_info *fs_info)
1075 {
1076 	struct btrfs_root *log_root;
1077 
1078 	log_root = alloc_log_tree(trans, fs_info);
1079 	if (IS_ERR(log_root))
1080 		return PTR_ERR(log_root);
1081 	WARN_ON(fs_info->log_root_tree);
1082 	fs_info->log_root_tree = log_root;
1083 	return 0;
1084 }
1085 
1086 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1087 		       struct btrfs_root *root)
1088 {
1089 	struct btrfs_root *log_root;
1090 	struct btrfs_inode_item *inode_item;
1091 
1092 	log_root = alloc_log_tree(trans, root->fs_info);
1093 	if (IS_ERR(log_root))
1094 		return PTR_ERR(log_root);
1095 
1096 	log_root->last_trans = trans->transid;
1097 	log_root->root_key.offset = root->root_key.objectid;
1098 
1099 	inode_item = &log_root->root_item.inode;
1100 	inode_item->generation = cpu_to_le64(1);
1101 	inode_item->size = cpu_to_le64(3);
1102 	inode_item->nlink = cpu_to_le32(1);
1103 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1104 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1105 
1106 	btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1107 	btrfs_set_root_generation(&log_root->root_item, trans->transid);
1108 
1109 	WARN_ON(root->log_root);
1110 	root->log_root = log_root;
1111 	root->log_transid = 0;
1112 	return 0;
1113 }
1114 
1115 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1116 					       struct btrfs_key *location)
1117 {
1118 	struct btrfs_root *root;
1119 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1120 	struct btrfs_path *path;
1121 	struct extent_buffer *l;
1122 	u64 highest_inode;
1123 	u64 generation;
1124 	u32 blocksize;
1125 	int ret = 0;
1126 
1127 	root = kzalloc(sizeof(*root), GFP_NOFS);
1128 	if (!root)
1129 		return ERR_PTR(-ENOMEM);
1130 	if (location->offset == (u64)-1) {
1131 		ret = find_and_setup_root(tree_root, fs_info,
1132 					  location->objectid, root);
1133 		if (ret) {
1134 			kfree(root);
1135 			return ERR_PTR(ret);
1136 		}
1137 		goto insert;
1138 	}
1139 
1140 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1141 		     tree_root->sectorsize, tree_root->stripesize,
1142 		     root, fs_info, location->objectid);
1143 
1144 	path = btrfs_alloc_path();
1145 	BUG_ON(!path);
1146 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1147 	if (ret != 0) {
1148 		if (ret > 0)
1149 			ret = -ENOENT;
1150 		goto out;
1151 	}
1152 	l = path->nodes[0];
1153 	read_extent_buffer(l, &root->root_item,
1154 	       btrfs_item_ptr_offset(l, path->slots[0]),
1155 	       sizeof(root->root_item));
1156 	memcpy(&root->root_key, location, sizeof(*location));
1157 	ret = 0;
1158 out:
1159 	btrfs_release_path(root, path);
1160 	btrfs_free_path(path);
1161 	if (ret) {
1162 		kfree(root);
1163 		return ERR_PTR(ret);
1164 	}
1165 	generation = btrfs_root_generation(&root->root_item);
1166 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1167 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1168 				     blocksize, generation);
1169 	BUG_ON(!root->node);
1170 insert:
1171 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1172 		root->ref_cows = 1;
1173 		ret = btrfs_find_highest_inode(root, &highest_inode);
1174 		if (ret == 0) {
1175 			root->highest_inode = highest_inode;
1176 			root->last_inode_alloc = highest_inode;
1177 		}
1178 	}
1179 	return root;
1180 }
1181 
1182 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1183 					u64 root_objectid)
1184 {
1185 	struct btrfs_root *root;
1186 
1187 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1188 		return fs_info->tree_root;
1189 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1190 		return fs_info->extent_root;
1191 
1192 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1193 				 (unsigned long)root_objectid);
1194 	return root;
1195 }
1196 
1197 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1198 					      struct btrfs_key *location)
1199 {
1200 	struct btrfs_root *root;
1201 	int ret;
1202 
1203 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1204 		return fs_info->tree_root;
1205 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1206 		return fs_info->extent_root;
1207 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1208 		return fs_info->chunk_root;
1209 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1210 		return fs_info->dev_root;
1211 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1212 		return fs_info->csum_root;
1213 
1214 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1215 				 (unsigned long)location->objectid);
1216 	if (root)
1217 		return root;
1218 
1219 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1220 	if (IS_ERR(root))
1221 		return root;
1222 
1223 	set_anon_super(&root->anon_super, NULL);
1224 
1225 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1226 				(unsigned long)root->root_key.objectid,
1227 				root);
1228 	if (ret) {
1229 		free_extent_buffer(root->node);
1230 		kfree(root);
1231 		return ERR_PTR(ret);
1232 	}
1233 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1234 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1235 					    root->root_key.objectid, root);
1236 		BUG_ON(ret);
1237 		btrfs_orphan_cleanup(root);
1238 	}
1239 	return root;
1240 }
1241 
1242 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1243 				      struct btrfs_key *location,
1244 				      const char *name, int namelen)
1245 {
1246 	struct btrfs_root *root;
1247 	int ret;
1248 
1249 	root = btrfs_read_fs_root_no_name(fs_info, location);
1250 	if (!root)
1251 		return NULL;
1252 
1253 	if (root->in_sysfs)
1254 		return root;
1255 
1256 	ret = btrfs_set_root_name(root, name, namelen);
1257 	if (ret) {
1258 		free_extent_buffer(root->node);
1259 		kfree(root);
1260 		return ERR_PTR(ret);
1261 	}
1262 #if 0
1263 	ret = btrfs_sysfs_add_root(root);
1264 	if (ret) {
1265 		free_extent_buffer(root->node);
1266 		kfree(root->name);
1267 		kfree(root);
1268 		return ERR_PTR(ret);
1269 	}
1270 #endif
1271 	root->in_sysfs = 1;
1272 	return root;
1273 }
1274 
1275 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1276 {
1277 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1278 	int ret = 0;
1279 	struct btrfs_device *device;
1280 	struct backing_dev_info *bdi;
1281 #if 0
1282 	if ((bdi_bits & (1 << BDI_write_congested)) &&
1283 	    btrfs_congested_async(info, 0))
1284 		return 1;
1285 #endif
1286 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1287 		if (!device->bdev)
1288 			continue;
1289 		bdi = blk_get_backing_dev_info(device->bdev);
1290 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1291 			ret = 1;
1292 			break;
1293 		}
1294 	}
1295 	return ret;
1296 }
1297 
1298 /*
1299  * this unplugs every device on the box, and it is only used when page
1300  * is null
1301  */
1302 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1303 {
1304 	struct btrfs_device *device;
1305 	struct btrfs_fs_info *info;
1306 
1307 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1308 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1309 		if (!device->bdev)
1310 			continue;
1311 
1312 		bdi = blk_get_backing_dev_info(device->bdev);
1313 		if (bdi->unplug_io_fn)
1314 			bdi->unplug_io_fn(bdi, page);
1315 	}
1316 }
1317 
1318 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1319 {
1320 	struct inode *inode;
1321 	struct extent_map_tree *em_tree;
1322 	struct extent_map *em;
1323 	struct address_space *mapping;
1324 	u64 offset;
1325 
1326 	/* the generic O_DIRECT read code does this */
1327 	if (1 || !page) {
1328 		__unplug_io_fn(bdi, page);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * page->mapping may change at any time.  Get a consistent copy
1334 	 * and use that for everything below
1335 	 */
1336 	smp_mb();
1337 	mapping = page->mapping;
1338 	if (!mapping)
1339 		return;
1340 
1341 	inode = mapping->host;
1342 
1343 	/*
1344 	 * don't do the expensive searching for a small number of
1345 	 * devices
1346 	 */
1347 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1348 		__unplug_io_fn(bdi, page);
1349 		return;
1350 	}
1351 
1352 	offset = page_offset(page);
1353 
1354 	em_tree = &BTRFS_I(inode)->extent_tree;
1355 	spin_lock(&em_tree->lock);
1356 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1357 	spin_unlock(&em_tree->lock);
1358 	if (!em) {
1359 		__unplug_io_fn(bdi, page);
1360 		return;
1361 	}
1362 
1363 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1364 		free_extent_map(em);
1365 		__unplug_io_fn(bdi, page);
1366 		return;
1367 	}
1368 	offset = offset - em->start;
1369 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1370 			  em->block_start + offset, page);
1371 	free_extent_map(em);
1372 }
1373 
1374 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1375 {
1376 	bdi_init(bdi);
1377 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1378 	bdi->state		= 0;
1379 	bdi->capabilities	= default_backing_dev_info.capabilities;
1380 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1381 	bdi->unplug_io_data	= info;
1382 	bdi->congested_fn	= btrfs_congested_fn;
1383 	bdi->congested_data	= info;
1384 	return 0;
1385 }
1386 
1387 static int bio_ready_for_csum(struct bio *bio)
1388 {
1389 	u64 length = 0;
1390 	u64 buf_len = 0;
1391 	u64 start = 0;
1392 	struct page *page;
1393 	struct extent_io_tree *io_tree = NULL;
1394 	struct btrfs_fs_info *info = NULL;
1395 	struct bio_vec *bvec;
1396 	int i;
1397 	int ret;
1398 
1399 	bio_for_each_segment(bvec, bio, i) {
1400 		page = bvec->bv_page;
1401 		if (page->private == EXTENT_PAGE_PRIVATE) {
1402 			length += bvec->bv_len;
1403 			continue;
1404 		}
1405 		if (!page->private) {
1406 			length += bvec->bv_len;
1407 			continue;
1408 		}
1409 		length = bvec->bv_len;
1410 		buf_len = page->private >> 2;
1411 		start = page_offset(page) + bvec->bv_offset;
1412 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1413 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1414 	}
1415 	/* are we fully contained in this bio? */
1416 	if (buf_len <= length)
1417 		return 1;
1418 
1419 	ret = extent_range_uptodate(io_tree, start + length,
1420 				    start + buf_len - 1);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * called by the kthread helper functions to finally call the bio end_io
1426  * functions.  This is where read checksum verification actually happens
1427  */
1428 static void end_workqueue_fn(struct btrfs_work *work)
1429 {
1430 	struct bio *bio;
1431 	struct end_io_wq *end_io_wq;
1432 	struct btrfs_fs_info *fs_info;
1433 	int error;
1434 
1435 	end_io_wq = container_of(work, struct end_io_wq, work);
1436 	bio = end_io_wq->bio;
1437 	fs_info = end_io_wq->info;
1438 
1439 	/* metadata bio reads are special because the whole tree block must
1440 	 * be checksummed at once.  This makes sure the entire block is in
1441 	 * ram and up to date before trying to verify things.  For
1442 	 * blocksize <= pagesize, it is basically a noop
1443 	 */
1444 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1445 	    !bio_ready_for_csum(bio)) {
1446 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1447 				   &end_io_wq->work);
1448 		return;
1449 	}
1450 	error = end_io_wq->error;
1451 	bio->bi_private = end_io_wq->private;
1452 	bio->bi_end_io = end_io_wq->end_io;
1453 	kfree(end_io_wq);
1454 	bio_endio(bio, error);
1455 }
1456 
1457 static int cleaner_kthread(void *arg)
1458 {
1459 	struct btrfs_root *root = arg;
1460 
1461 	do {
1462 		smp_mb();
1463 		if (root->fs_info->closing)
1464 			break;
1465 
1466 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1467 		mutex_lock(&root->fs_info->cleaner_mutex);
1468 		btrfs_clean_old_snapshots(root);
1469 		mutex_unlock(&root->fs_info->cleaner_mutex);
1470 
1471 		if (freezing(current)) {
1472 			refrigerator();
1473 		} else {
1474 			smp_mb();
1475 			if (root->fs_info->closing)
1476 				break;
1477 			set_current_state(TASK_INTERRUPTIBLE);
1478 			schedule();
1479 			__set_current_state(TASK_RUNNING);
1480 		}
1481 	} while (!kthread_should_stop());
1482 	return 0;
1483 }
1484 
1485 static int transaction_kthread(void *arg)
1486 {
1487 	struct btrfs_root *root = arg;
1488 	struct btrfs_trans_handle *trans;
1489 	struct btrfs_transaction *cur;
1490 	unsigned long now;
1491 	unsigned long delay;
1492 	int ret;
1493 
1494 	do {
1495 		smp_mb();
1496 		if (root->fs_info->closing)
1497 			break;
1498 
1499 		delay = HZ * 30;
1500 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1501 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1502 
1503 		mutex_lock(&root->fs_info->trans_mutex);
1504 		cur = root->fs_info->running_transaction;
1505 		if (!cur) {
1506 			mutex_unlock(&root->fs_info->trans_mutex);
1507 			goto sleep;
1508 		}
1509 
1510 		now = get_seconds();
1511 		if (now < cur->start_time || now - cur->start_time < 30) {
1512 			mutex_unlock(&root->fs_info->trans_mutex);
1513 			delay = HZ * 5;
1514 			goto sleep;
1515 		}
1516 		mutex_unlock(&root->fs_info->trans_mutex);
1517 		trans = btrfs_start_transaction(root, 1);
1518 		ret = btrfs_commit_transaction(trans, root);
1519 
1520 sleep:
1521 		wake_up_process(root->fs_info->cleaner_kthread);
1522 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1523 
1524 		if (freezing(current)) {
1525 			refrigerator();
1526 		} else {
1527 			if (root->fs_info->closing)
1528 				break;
1529 			set_current_state(TASK_INTERRUPTIBLE);
1530 			schedule_timeout(delay);
1531 			__set_current_state(TASK_RUNNING);
1532 		}
1533 	} while (!kthread_should_stop());
1534 	return 0;
1535 }
1536 
1537 struct btrfs_root *open_ctree(struct super_block *sb,
1538 			      struct btrfs_fs_devices *fs_devices,
1539 			      char *options)
1540 {
1541 	u32 sectorsize;
1542 	u32 nodesize;
1543 	u32 leafsize;
1544 	u32 blocksize;
1545 	u32 stripesize;
1546 	u64 generation;
1547 	u64 features;
1548 	struct btrfs_key location;
1549 	struct buffer_head *bh;
1550 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1551 						 GFP_NOFS);
1552 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1553 						 GFP_NOFS);
1554 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1555 					       GFP_NOFS);
1556 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1557 						GFP_NOFS);
1558 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1559 						GFP_NOFS);
1560 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1561 					      GFP_NOFS);
1562 	struct btrfs_root *log_tree_root;
1563 
1564 	int ret;
1565 	int err = -EINVAL;
1566 
1567 	struct btrfs_super_block *disk_super;
1568 
1569 	if (!extent_root || !tree_root || !fs_info ||
1570 	    !chunk_root || !dev_root || !csum_root) {
1571 		err = -ENOMEM;
1572 		goto fail;
1573 	}
1574 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1575 	INIT_LIST_HEAD(&fs_info->trans_list);
1576 	INIT_LIST_HEAD(&fs_info->dead_roots);
1577 	INIT_LIST_HEAD(&fs_info->hashers);
1578 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1579 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1580 	spin_lock_init(&fs_info->delalloc_lock);
1581 	spin_lock_init(&fs_info->new_trans_lock);
1582 	spin_lock_init(&fs_info->ref_cache_lock);
1583 
1584 	init_completion(&fs_info->kobj_unregister);
1585 	fs_info->tree_root = tree_root;
1586 	fs_info->extent_root = extent_root;
1587 	fs_info->csum_root = csum_root;
1588 	fs_info->chunk_root = chunk_root;
1589 	fs_info->dev_root = dev_root;
1590 	fs_info->fs_devices = fs_devices;
1591 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1592 	INIT_LIST_HEAD(&fs_info->space_info);
1593 	btrfs_mapping_init(&fs_info->mapping_tree);
1594 	atomic_set(&fs_info->nr_async_submits, 0);
1595 	atomic_set(&fs_info->async_delalloc_pages, 0);
1596 	atomic_set(&fs_info->async_submit_draining, 0);
1597 	atomic_set(&fs_info->nr_async_bios, 0);
1598 	atomic_set(&fs_info->throttles, 0);
1599 	atomic_set(&fs_info->throttle_gen, 0);
1600 	fs_info->sb = sb;
1601 	fs_info->max_extent = (u64)-1;
1602 	fs_info->max_inline = 8192 * 1024;
1603 	setup_bdi(fs_info, &fs_info->bdi);
1604 	fs_info->btree_inode = new_inode(sb);
1605 	fs_info->btree_inode->i_ino = 1;
1606 	fs_info->btree_inode->i_nlink = 1;
1607 	fs_info->metadata_ratio = 8;
1608 
1609 	fs_info->thread_pool_size = min_t(unsigned long,
1610 					  num_online_cpus() + 2, 8);
1611 
1612 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1613 	spin_lock_init(&fs_info->ordered_extent_lock);
1614 
1615 	sb->s_blocksize = 4096;
1616 	sb->s_blocksize_bits = blksize_bits(4096);
1617 
1618 	/*
1619 	 * we set the i_size on the btree inode to the max possible int.
1620 	 * the real end of the address space is determined by all of
1621 	 * the devices in the system
1622 	 */
1623 	fs_info->btree_inode->i_size = OFFSET_MAX;
1624 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1625 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1626 
1627 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1628 			     fs_info->btree_inode->i_mapping,
1629 			     GFP_NOFS);
1630 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1631 			     GFP_NOFS);
1632 
1633 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1634 
1635 	spin_lock_init(&fs_info->block_group_cache_lock);
1636 	fs_info->block_group_cache_tree.rb_node = NULL;
1637 
1638 	extent_io_tree_init(&fs_info->pinned_extents,
1639 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1640 	fs_info->do_barriers = 1;
1641 
1642 	INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1643 	btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1644 	btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1645 
1646 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1647 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1648 	       sizeof(struct btrfs_key));
1649 	insert_inode_hash(fs_info->btree_inode);
1650 
1651 	mutex_init(&fs_info->trans_mutex);
1652 	mutex_init(&fs_info->ordered_operations_mutex);
1653 	mutex_init(&fs_info->tree_log_mutex);
1654 	mutex_init(&fs_info->drop_mutex);
1655 	mutex_init(&fs_info->chunk_mutex);
1656 	mutex_init(&fs_info->transaction_kthread_mutex);
1657 	mutex_init(&fs_info->cleaner_mutex);
1658 	mutex_init(&fs_info->volume_mutex);
1659 	mutex_init(&fs_info->tree_reloc_mutex);
1660 
1661 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1662 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1663 
1664 	init_waitqueue_head(&fs_info->transaction_throttle);
1665 	init_waitqueue_head(&fs_info->transaction_wait);
1666 	init_waitqueue_head(&fs_info->async_submit_wait);
1667 
1668 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1669 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1670 
1671 
1672 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1673 	if (!bh)
1674 		goto fail_iput;
1675 
1676 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1677 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1678 	       sizeof(fs_info->super_for_commit));
1679 	brelse(bh);
1680 
1681 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1682 
1683 	disk_super = &fs_info->super_copy;
1684 	if (!btrfs_super_root(disk_super))
1685 		goto fail_iput;
1686 
1687 	ret = btrfs_parse_options(tree_root, options);
1688 	if (ret) {
1689 		err = ret;
1690 		goto fail_iput;
1691 	}
1692 
1693 	features = btrfs_super_incompat_flags(disk_super) &
1694 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1695 	if (features) {
1696 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1697 		       "unsupported optional features (%Lx).\n",
1698 		       features);
1699 		err = -EINVAL;
1700 		goto fail_iput;
1701 	}
1702 
1703 	features = btrfs_super_compat_ro_flags(disk_super) &
1704 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1705 	if (!(sb->s_flags & MS_RDONLY) && features) {
1706 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1707 		       "unsupported option features (%Lx).\n",
1708 		       features);
1709 		err = -EINVAL;
1710 		goto fail_iput;
1711 	}
1712 
1713 	/*
1714 	 * we need to start all the end_io workers up front because the
1715 	 * queue work function gets called at interrupt time, and so it
1716 	 * cannot dynamically grow.
1717 	 */
1718 	btrfs_init_workers(&fs_info->workers, "worker",
1719 			   fs_info->thread_pool_size);
1720 
1721 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1722 			   fs_info->thread_pool_size);
1723 
1724 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1725 			   min_t(u64, fs_devices->num_devices,
1726 			   fs_info->thread_pool_size));
1727 
1728 	/* a higher idle thresh on the submit workers makes it much more
1729 	 * likely that bios will be send down in a sane order to the
1730 	 * devices
1731 	 */
1732 	fs_info->submit_workers.idle_thresh = 64;
1733 
1734 	fs_info->workers.idle_thresh = 16;
1735 	fs_info->workers.ordered = 1;
1736 
1737 	fs_info->delalloc_workers.idle_thresh = 2;
1738 	fs_info->delalloc_workers.ordered = 1;
1739 
1740 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1741 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1742 			   fs_info->thread_pool_size);
1743 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1744 			   fs_info->thread_pool_size);
1745 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1746 			   "endio-meta-write", fs_info->thread_pool_size);
1747 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1748 			   fs_info->thread_pool_size);
1749 
1750 	/*
1751 	 * endios are largely parallel and should have a very
1752 	 * low idle thresh
1753 	 */
1754 	fs_info->endio_workers.idle_thresh = 4;
1755 	fs_info->endio_meta_workers.idle_thresh = 4;
1756 
1757 	fs_info->endio_write_workers.idle_thresh = 64;
1758 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1759 
1760 	btrfs_start_workers(&fs_info->workers, 1);
1761 	btrfs_start_workers(&fs_info->submit_workers, 1);
1762 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1763 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1764 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1765 	btrfs_start_workers(&fs_info->endio_meta_workers,
1766 			    fs_info->thread_pool_size);
1767 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1768 			    fs_info->thread_pool_size);
1769 	btrfs_start_workers(&fs_info->endio_write_workers,
1770 			    fs_info->thread_pool_size);
1771 
1772 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1773 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1774 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1775 
1776 	nodesize = btrfs_super_nodesize(disk_super);
1777 	leafsize = btrfs_super_leafsize(disk_super);
1778 	sectorsize = btrfs_super_sectorsize(disk_super);
1779 	stripesize = btrfs_super_stripesize(disk_super);
1780 	tree_root->nodesize = nodesize;
1781 	tree_root->leafsize = leafsize;
1782 	tree_root->sectorsize = sectorsize;
1783 	tree_root->stripesize = stripesize;
1784 
1785 	sb->s_blocksize = sectorsize;
1786 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1787 
1788 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1789 		    sizeof(disk_super->magic))) {
1790 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1791 		goto fail_sb_buffer;
1792 	}
1793 
1794 	mutex_lock(&fs_info->chunk_mutex);
1795 	ret = btrfs_read_sys_array(tree_root);
1796 	mutex_unlock(&fs_info->chunk_mutex);
1797 	if (ret) {
1798 		printk(KERN_WARNING "btrfs: failed to read the system "
1799 		       "array on %s\n", sb->s_id);
1800 		goto fail_sys_array;
1801 	}
1802 
1803 	blocksize = btrfs_level_size(tree_root,
1804 				     btrfs_super_chunk_root_level(disk_super));
1805 	generation = btrfs_super_chunk_root_generation(disk_super);
1806 
1807 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1808 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1809 
1810 	chunk_root->node = read_tree_block(chunk_root,
1811 					   btrfs_super_chunk_root(disk_super),
1812 					   blocksize, generation);
1813 	BUG_ON(!chunk_root->node);
1814 
1815 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1816 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1817 	   BTRFS_UUID_SIZE);
1818 
1819 	mutex_lock(&fs_info->chunk_mutex);
1820 	ret = btrfs_read_chunk_tree(chunk_root);
1821 	mutex_unlock(&fs_info->chunk_mutex);
1822 	if (ret) {
1823 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1824 		       sb->s_id);
1825 		goto fail_chunk_root;
1826 	}
1827 
1828 	btrfs_close_extra_devices(fs_devices);
1829 
1830 	blocksize = btrfs_level_size(tree_root,
1831 				     btrfs_super_root_level(disk_super));
1832 	generation = btrfs_super_generation(disk_super);
1833 
1834 	tree_root->node = read_tree_block(tree_root,
1835 					  btrfs_super_root(disk_super),
1836 					  blocksize, generation);
1837 	if (!tree_root->node)
1838 		goto fail_chunk_root;
1839 
1840 
1841 	ret = find_and_setup_root(tree_root, fs_info,
1842 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1843 	if (ret)
1844 		goto fail_tree_root;
1845 	extent_root->track_dirty = 1;
1846 
1847 	ret = find_and_setup_root(tree_root, fs_info,
1848 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1849 	dev_root->track_dirty = 1;
1850 	if (ret)
1851 		goto fail_extent_root;
1852 
1853 	ret = find_and_setup_root(tree_root, fs_info,
1854 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1855 	if (ret)
1856 		goto fail_extent_root;
1857 
1858 	csum_root->track_dirty = 1;
1859 
1860 	btrfs_read_block_groups(extent_root);
1861 
1862 	fs_info->generation = generation;
1863 	fs_info->last_trans_committed = generation;
1864 	fs_info->data_alloc_profile = (u64)-1;
1865 	fs_info->metadata_alloc_profile = (u64)-1;
1866 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1867 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1868 					       "btrfs-cleaner");
1869 	if (IS_ERR(fs_info->cleaner_kthread))
1870 		goto fail_csum_root;
1871 
1872 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1873 						   tree_root,
1874 						   "btrfs-transaction");
1875 	if (IS_ERR(fs_info->transaction_kthread))
1876 		goto fail_cleaner;
1877 
1878 	if (btrfs_super_log_root(disk_super) != 0) {
1879 		u64 bytenr = btrfs_super_log_root(disk_super);
1880 
1881 		if (fs_devices->rw_devices == 0) {
1882 			printk(KERN_WARNING "Btrfs log replay required "
1883 			       "on RO media\n");
1884 			err = -EIO;
1885 			goto fail_trans_kthread;
1886 		}
1887 		blocksize =
1888 		     btrfs_level_size(tree_root,
1889 				      btrfs_super_log_root_level(disk_super));
1890 
1891 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1892 						      GFP_NOFS);
1893 
1894 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1895 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1896 
1897 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1898 						      blocksize,
1899 						      generation + 1);
1900 		ret = btrfs_recover_log_trees(log_tree_root);
1901 		BUG_ON(ret);
1902 
1903 		if (sb->s_flags & MS_RDONLY) {
1904 			ret =  btrfs_commit_super(tree_root);
1905 			BUG_ON(ret);
1906 		}
1907 	}
1908 
1909 	if (!(sb->s_flags & MS_RDONLY)) {
1910 		ret = btrfs_cleanup_reloc_trees(tree_root);
1911 		BUG_ON(ret);
1912 	}
1913 
1914 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1915 	location.type = BTRFS_ROOT_ITEM_KEY;
1916 	location.offset = (u64)-1;
1917 
1918 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1919 	if (!fs_info->fs_root)
1920 		goto fail_trans_kthread;
1921 	return tree_root;
1922 
1923 fail_trans_kthread:
1924 	kthread_stop(fs_info->transaction_kthread);
1925 fail_cleaner:
1926 	kthread_stop(fs_info->cleaner_kthread);
1927 
1928 	/*
1929 	 * make sure we're done with the btree inode before we stop our
1930 	 * kthreads
1931 	 */
1932 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1933 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1934 
1935 fail_csum_root:
1936 	free_extent_buffer(csum_root->node);
1937 fail_extent_root:
1938 	free_extent_buffer(extent_root->node);
1939 fail_tree_root:
1940 	free_extent_buffer(tree_root->node);
1941 fail_chunk_root:
1942 	free_extent_buffer(chunk_root->node);
1943 fail_sys_array:
1944 	free_extent_buffer(dev_root->node);
1945 fail_sb_buffer:
1946 	btrfs_stop_workers(&fs_info->fixup_workers);
1947 	btrfs_stop_workers(&fs_info->delalloc_workers);
1948 	btrfs_stop_workers(&fs_info->workers);
1949 	btrfs_stop_workers(&fs_info->endio_workers);
1950 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1951 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1952 	btrfs_stop_workers(&fs_info->endio_write_workers);
1953 	btrfs_stop_workers(&fs_info->submit_workers);
1954 fail_iput:
1955 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1956 	iput(fs_info->btree_inode);
1957 
1958 	btrfs_close_devices(fs_info->fs_devices);
1959 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1960 	bdi_destroy(&fs_info->bdi);
1961 
1962 fail:
1963 	kfree(extent_root);
1964 	kfree(tree_root);
1965 	kfree(fs_info);
1966 	kfree(chunk_root);
1967 	kfree(dev_root);
1968 	kfree(csum_root);
1969 	return ERR_PTR(err);
1970 }
1971 
1972 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1973 {
1974 	char b[BDEVNAME_SIZE];
1975 
1976 	if (uptodate) {
1977 		set_buffer_uptodate(bh);
1978 	} else {
1979 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1980 			printk(KERN_WARNING "lost page write due to "
1981 					"I/O error on %s\n",
1982 				       bdevname(bh->b_bdev, b));
1983 		}
1984 		/* note, we dont' set_buffer_write_io_error because we have
1985 		 * our own ways of dealing with the IO errors
1986 		 */
1987 		clear_buffer_uptodate(bh);
1988 	}
1989 	unlock_buffer(bh);
1990 	put_bh(bh);
1991 }
1992 
1993 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1994 {
1995 	struct buffer_head *bh;
1996 	struct buffer_head *latest = NULL;
1997 	struct btrfs_super_block *super;
1998 	int i;
1999 	u64 transid = 0;
2000 	u64 bytenr;
2001 
2002 	/* we would like to check all the supers, but that would make
2003 	 * a btrfs mount succeed after a mkfs from a different FS.
2004 	 * So, we need to add a special mount option to scan for
2005 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2006 	 */
2007 	for (i = 0; i < 1; i++) {
2008 		bytenr = btrfs_sb_offset(i);
2009 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2010 			break;
2011 		bh = __bread(bdev, bytenr / 4096, 4096);
2012 		if (!bh)
2013 			continue;
2014 
2015 		super = (struct btrfs_super_block *)bh->b_data;
2016 		if (btrfs_super_bytenr(super) != bytenr ||
2017 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2018 			    sizeof(super->magic))) {
2019 			brelse(bh);
2020 			continue;
2021 		}
2022 
2023 		if (!latest || btrfs_super_generation(super) > transid) {
2024 			brelse(latest);
2025 			latest = bh;
2026 			transid = btrfs_super_generation(super);
2027 		} else {
2028 			brelse(bh);
2029 		}
2030 	}
2031 	return latest;
2032 }
2033 
2034 static int write_dev_supers(struct btrfs_device *device,
2035 			    struct btrfs_super_block *sb,
2036 			    int do_barriers, int wait, int max_mirrors)
2037 {
2038 	struct buffer_head *bh;
2039 	int i;
2040 	int ret;
2041 	int errors = 0;
2042 	u32 crc;
2043 	u64 bytenr;
2044 	int last_barrier = 0;
2045 
2046 	if (max_mirrors == 0)
2047 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2048 
2049 	/* make sure only the last submit_bh does a barrier */
2050 	if (do_barriers) {
2051 		for (i = 0; i < max_mirrors; i++) {
2052 			bytenr = btrfs_sb_offset(i);
2053 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2054 			    device->total_bytes)
2055 				break;
2056 			last_barrier = i;
2057 		}
2058 	}
2059 
2060 	for (i = 0; i < max_mirrors; i++) {
2061 		bytenr = btrfs_sb_offset(i);
2062 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2063 			break;
2064 
2065 		if (wait) {
2066 			bh = __find_get_block(device->bdev, bytenr / 4096,
2067 					      BTRFS_SUPER_INFO_SIZE);
2068 			BUG_ON(!bh);
2069 			brelse(bh);
2070 			wait_on_buffer(bh);
2071 			if (buffer_uptodate(bh)) {
2072 				brelse(bh);
2073 				continue;
2074 			}
2075 		} else {
2076 			btrfs_set_super_bytenr(sb, bytenr);
2077 
2078 			crc = ~(u32)0;
2079 			crc = btrfs_csum_data(NULL, (char *)sb +
2080 					      BTRFS_CSUM_SIZE, crc,
2081 					      BTRFS_SUPER_INFO_SIZE -
2082 					      BTRFS_CSUM_SIZE);
2083 			btrfs_csum_final(crc, sb->csum);
2084 
2085 			bh = __getblk(device->bdev, bytenr / 4096,
2086 				      BTRFS_SUPER_INFO_SIZE);
2087 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2088 
2089 			set_buffer_uptodate(bh);
2090 			get_bh(bh);
2091 			lock_buffer(bh);
2092 			bh->b_end_io = btrfs_end_buffer_write_sync;
2093 		}
2094 
2095 		if (i == last_barrier && do_barriers && device->barriers) {
2096 			ret = submit_bh(WRITE_BARRIER, bh);
2097 			if (ret == -EOPNOTSUPP) {
2098 				printk("btrfs: disabling barriers on dev %s\n",
2099 				       device->name);
2100 				set_buffer_uptodate(bh);
2101 				device->barriers = 0;
2102 				get_bh(bh);
2103 				lock_buffer(bh);
2104 				ret = submit_bh(WRITE_SYNC, bh);
2105 			}
2106 		} else {
2107 			ret = submit_bh(WRITE_SYNC, bh);
2108 		}
2109 
2110 		if (!ret && wait) {
2111 			wait_on_buffer(bh);
2112 			if (!buffer_uptodate(bh))
2113 				errors++;
2114 		} else if (ret) {
2115 			errors++;
2116 		}
2117 		if (wait)
2118 			brelse(bh);
2119 	}
2120 	return errors < i ? 0 : -1;
2121 }
2122 
2123 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2124 {
2125 	struct list_head *head = &root->fs_info->fs_devices->devices;
2126 	struct btrfs_device *dev;
2127 	struct btrfs_super_block *sb;
2128 	struct btrfs_dev_item *dev_item;
2129 	int ret;
2130 	int do_barriers;
2131 	int max_errors;
2132 	int total_errors = 0;
2133 	u64 flags;
2134 
2135 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2136 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2137 
2138 	sb = &root->fs_info->super_for_commit;
2139 	dev_item = &sb->dev_item;
2140 	list_for_each_entry(dev, head, dev_list) {
2141 		if (!dev->bdev) {
2142 			total_errors++;
2143 			continue;
2144 		}
2145 		if (!dev->in_fs_metadata || !dev->writeable)
2146 			continue;
2147 
2148 		btrfs_set_stack_device_generation(dev_item, 0);
2149 		btrfs_set_stack_device_type(dev_item, dev->type);
2150 		btrfs_set_stack_device_id(dev_item, dev->devid);
2151 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2152 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2153 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2154 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2155 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2156 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2157 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2158 
2159 		flags = btrfs_super_flags(sb);
2160 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2161 
2162 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2163 		if (ret)
2164 			total_errors++;
2165 	}
2166 	if (total_errors > max_errors) {
2167 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2168 		       total_errors);
2169 		BUG();
2170 	}
2171 
2172 	total_errors = 0;
2173 	list_for_each_entry(dev, head, dev_list) {
2174 		if (!dev->bdev)
2175 			continue;
2176 		if (!dev->in_fs_metadata || !dev->writeable)
2177 			continue;
2178 
2179 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2180 		if (ret)
2181 			total_errors++;
2182 	}
2183 	if (total_errors > max_errors) {
2184 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2185 		       total_errors);
2186 		BUG();
2187 	}
2188 	return 0;
2189 }
2190 
2191 int write_ctree_super(struct btrfs_trans_handle *trans,
2192 		      struct btrfs_root *root, int max_mirrors)
2193 {
2194 	int ret;
2195 
2196 	ret = write_all_supers(root, max_mirrors);
2197 	return ret;
2198 }
2199 
2200 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2201 {
2202 	radix_tree_delete(&fs_info->fs_roots_radix,
2203 			  (unsigned long)root->root_key.objectid);
2204 	if (root->anon_super.s_dev) {
2205 		down_write(&root->anon_super.s_umount);
2206 		kill_anon_super(&root->anon_super);
2207 	}
2208 	if (root->node)
2209 		free_extent_buffer(root->node);
2210 	if (root->commit_root)
2211 		free_extent_buffer(root->commit_root);
2212 	kfree(root->name);
2213 	kfree(root);
2214 	return 0;
2215 }
2216 
2217 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2218 {
2219 	int ret;
2220 	struct btrfs_root *gang[8];
2221 	int i;
2222 
2223 	while (1) {
2224 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2225 					     (void **)gang, 0,
2226 					     ARRAY_SIZE(gang));
2227 		if (!ret)
2228 			break;
2229 		for (i = 0; i < ret; i++)
2230 			btrfs_free_fs_root(fs_info, gang[i]);
2231 	}
2232 	return 0;
2233 }
2234 
2235 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2236 {
2237 	u64 root_objectid = 0;
2238 	struct btrfs_root *gang[8];
2239 	int i;
2240 	int ret;
2241 
2242 	while (1) {
2243 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2244 					     (void **)gang, root_objectid,
2245 					     ARRAY_SIZE(gang));
2246 		if (!ret)
2247 			break;
2248 		for (i = 0; i < ret; i++) {
2249 			root_objectid = gang[i]->root_key.objectid;
2250 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2251 						    root_objectid, gang[i]);
2252 			BUG_ON(ret);
2253 			btrfs_orphan_cleanup(gang[i]);
2254 		}
2255 		root_objectid++;
2256 	}
2257 	return 0;
2258 }
2259 
2260 int btrfs_commit_super(struct btrfs_root *root)
2261 {
2262 	struct btrfs_trans_handle *trans;
2263 	int ret;
2264 
2265 	mutex_lock(&root->fs_info->cleaner_mutex);
2266 	btrfs_clean_old_snapshots(root);
2267 	mutex_unlock(&root->fs_info->cleaner_mutex);
2268 	trans = btrfs_start_transaction(root, 1);
2269 	ret = btrfs_commit_transaction(trans, root);
2270 	BUG_ON(ret);
2271 	/* run commit again to drop the original snapshot */
2272 	trans = btrfs_start_transaction(root, 1);
2273 	btrfs_commit_transaction(trans, root);
2274 	ret = btrfs_write_and_wait_transaction(NULL, root);
2275 	BUG_ON(ret);
2276 
2277 	ret = write_ctree_super(NULL, root, 0);
2278 	return ret;
2279 }
2280 
2281 int close_ctree(struct btrfs_root *root)
2282 {
2283 	struct btrfs_fs_info *fs_info = root->fs_info;
2284 	int ret;
2285 
2286 	fs_info->closing = 1;
2287 	smp_mb();
2288 
2289 	kthread_stop(root->fs_info->transaction_kthread);
2290 	kthread_stop(root->fs_info->cleaner_kthread);
2291 
2292 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2293 		ret =  btrfs_commit_super(root);
2294 		if (ret)
2295 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2296 	}
2297 
2298 	if (fs_info->delalloc_bytes) {
2299 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2300 		       fs_info->delalloc_bytes);
2301 	}
2302 	if (fs_info->total_ref_cache_size) {
2303 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2304 		       (unsigned long long)fs_info->total_ref_cache_size);
2305 	}
2306 
2307 	if (fs_info->extent_root->node)
2308 		free_extent_buffer(fs_info->extent_root->node);
2309 
2310 	if (fs_info->tree_root->node)
2311 		free_extent_buffer(fs_info->tree_root->node);
2312 
2313 	if (root->fs_info->chunk_root->node)
2314 		free_extent_buffer(root->fs_info->chunk_root->node);
2315 
2316 	if (root->fs_info->dev_root->node)
2317 		free_extent_buffer(root->fs_info->dev_root->node);
2318 
2319 	if (root->fs_info->csum_root->node)
2320 		free_extent_buffer(root->fs_info->csum_root->node);
2321 
2322 	btrfs_free_block_groups(root->fs_info);
2323 
2324 	del_fs_roots(fs_info);
2325 
2326 	iput(fs_info->btree_inode);
2327 
2328 	btrfs_stop_workers(&fs_info->fixup_workers);
2329 	btrfs_stop_workers(&fs_info->delalloc_workers);
2330 	btrfs_stop_workers(&fs_info->workers);
2331 	btrfs_stop_workers(&fs_info->endio_workers);
2332 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2333 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2334 	btrfs_stop_workers(&fs_info->endio_write_workers);
2335 	btrfs_stop_workers(&fs_info->submit_workers);
2336 
2337 #if 0
2338 	while (!list_empty(&fs_info->hashers)) {
2339 		struct btrfs_hasher *hasher;
2340 		hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2341 				    hashers);
2342 		list_del(&hasher->hashers);
2343 		crypto_free_hash(&fs_info->hash_tfm);
2344 		kfree(hasher);
2345 	}
2346 #endif
2347 	btrfs_close_devices(fs_info->fs_devices);
2348 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2349 
2350 	bdi_destroy(&fs_info->bdi);
2351 
2352 	kfree(fs_info->extent_root);
2353 	kfree(fs_info->tree_root);
2354 	kfree(fs_info->chunk_root);
2355 	kfree(fs_info->dev_root);
2356 	kfree(fs_info->csum_root);
2357 	return 0;
2358 }
2359 
2360 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2361 {
2362 	int ret;
2363 	struct inode *btree_inode = buf->first_page->mapping->host;
2364 
2365 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2366 	if (!ret)
2367 		return ret;
2368 
2369 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2370 				    parent_transid);
2371 	return !ret;
2372 }
2373 
2374 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2375 {
2376 	struct inode *btree_inode = buf->first_page->mapping->host;
2377 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2378 					  buf);
2379 }
2380 
2381 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2382 {
2383 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2384 	u64 transid = btrfs_header_generation(buf);
2385 	struct inode *btree_inode = root->fs_info->btree_inode;
2386 	int was_dirty;
2387 
2388 	btrfs_assert_tree_locked(buf);
2389 	if (transid != root->fs_info->generation) {
2390 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2391 		       "found %llu running %llu\n",
2392 			(unsigned long long)buf->start,
2393 			(unsigned long long)transid,
2394 			(unsigned long long)root->fs_info->generation);
2395 		WARN_ON(1);
2396 	}
2397 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2398 					    buf);
2399 	if (!was_dirty) {
2400 		spin_lock(&root->fs_info->delalloc_lock);
2401 		root->fs_info->dirty_metadata_bytes += buf->len;
2402 		spin_unlock(&root->fs_info->delalloc_lock);
2403 	}
2404 }
2405 
2406 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2407 {
2408 	/*
2409 	 * looks as though older kernels can get into trouble with
2410 	 * this code, they end up stuck in balance_dirty_pages forever
2411 	 */
2412 	struct extent_io_tree *tree;
2413 	u64 num_dirty;
2414 	u64 start = 0;
2415 	unsigned long thresh = 32 * 1024 * 1024;
2416 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2417 
2418 	if (current->flags & PF_MEMALLOC)
2419 		return;
2420 
2421 	num_dirty = count_range_bits(tree, &start, (u64)-1,
2422 				     thresh, EXTENT_DIRTY);
2423 	if (num_dirty > thresh) {
2424 		balance_dirty_pages_ratelimited_nr(
2425 				   root->fs_info->btree_inode->i_mapping, 1);
2426 	}
2427 	return;
2428 }
2429 
2430 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2431 {
2432 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2433 	int ret;
2434 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2435 	if (ret == 0)
2436 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2437 	return ret;
2438 }
2439 
2440 int btree_lock_page_hook(struct page *page)
2441 {
2442 	struct inode *inode = page->mapping->host;
2443 	struct btrfs_root *root = BTRFS_I(inode)->root;
2444 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2445 	struct extent_buffer *eb;
2446 	unsigned long len;
2447 	u64 bytenr = page_offset(page);
2448 
2449 	if (page->private == EXTENT_PAGE_PRIVATE)
2450 		goto out;
2451 
2452 	len = page->private >> 2;
2453 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2454 	if (!eb)
2455 		goto out;
2456 
2457 	btrfs_tree_lock(eb);
2458 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2459 
2460 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2461 		spin_lock(&root->fs_info->delalloc_lock);
2462 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2463 			root->fs_info->dirty_metadata_bytes -= eb->len;
2464 		else
2465 			WARN_ON(1);
2466 		spin_unlock(&root->fs_info->delalloc_lock);
2467 	}
2468 
2469 	btrfs_tree_unlock(eb);
2470 	free_extent_buffer(eb);
2471 out:
2472 	lock_page(page);
2473 	return 0;
2474 }
2475 
2476 static struct extent_io_ops btree_extent_io_ops = {
2477 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2478 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2479 	.submit_bio_hook = btree_submit_bio_hook,
2480 	/* note we're sharing with inode.c for the merge bio hook */
2481 	.merge_bio_hook = btrfs_merge_bio_hook,
2482 };
2483