xref: /linux/fs/btrfs/block-group.c (revision 132db93572821ec2fdf81e354cc40f558faf7e4f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 	u64 target = 0;
29 
30 	if (!bctl)
31 		return 0;
32 
33 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42 	}
43 
44 	return target;
45 }
46 
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56 	u64 num_devices = fs_info->fs_devices->rw_devices;
57 	u64 target;
58 	u64 raid_type;
59 	u64 allowed = 0;
60 
61 	/*
62 	 * See if restripe for this chunk_type is in progress, if so try to
63 	 * reduce to the target profile
64 	 */
65 	spin_lock(&fs_info->balance_lock);
66 	target = get_restripe_target(fs_info, flags);
67 	if (target) {
68 		/* Pick target profile only if it's already available */
69 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
70 			spin_unlock(&fs_info->balance_lock);
71 			return extended_to_chunk(target);
72 		}
73 	}
74 	spin_unlock(&fs_info->balance_lock);
75 
76 	/* First, mask out the RAID levels which aren't possible */
77 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
78 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
79 			allowed |= btrfs_raid_array[raid_type].bg_flag;
80 	}
81 	allowed &= flags;
82 
83 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
84 		allowed = BTRFS_BLOCK_GROUP_RAID6;
85 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
86 		allowed = BTRFS_BLOCK_GROUP_RAID5;
87 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
88 		allowed = BTRFS_BLOCK_GROUP_RAID10;
89 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
90 		allowed = BTRFS_BLOCK_GROUP_RAID1;
91 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
92 		allowed = BTRFS_BLOCK_GROUP_RAID0;
93 
94 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
95 
96 	return extended_to_chunk(flags | allowed);
97 }
98 
99 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
100 {
101 	unsigned seq;
102 	u64 flags;
103 
104 	do {
105 		flags = orig_flags;
106 		seq = read_seqbegin(&fs_info->profiles_lock);
107 
108 		if (flags & BTRFS_BLOCK_GROUP_DATA)
109 			flags |= fs_info->avail_data_alloc_bits;
110 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
111 			flags |= fs_info->avail_system_alloc_bits;
112 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
113 			flags |= fs_info->avail_metadata_alloc_bits;
114 	} while (read_seqretry(&fs_info->profiles_lock, seq));
115 
116 	return btrfs_reduce_alloc_profile(fs_info, flags);
117 }
118 
119 void btrfs_get_block_group(struct btrfs_block_group *cache)
120 {
121 	atomic_inc(&cache->count);
122 }
123 
124 void btrfs_put_block_group(struct btrfs_block_group *cache)
125 {
126 	if (atomic_dec_and_test(&cache->count)) {
127 		WARN_ON(cache->pinned > 0);
128 		WARN_ON(cache->reserved > 0);
129 
130 		/*
131 		 * A block_group shouldn't be on the discard_list anymore.
132 		 * Remove the block_group from the discard_list to prevent us
133 		 * from causing a panic due to NULL pointer dereference.
134 		 */
135 		if (WARN_ON(!list_empty(&cache->discard_list)))
136 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
137 						  cache);
138 
139 		/*
140 		 * If not empty, someone is still holding mutex of
141 		 * full_stripe_lock, which can only be released by caller.
142 		 * And it will definitely cause use-after-free when caller
143 		 * tries to release full stripe lock.
144 		 *
145 		 * No better way to resolve, but only to warn.
146 		 */
147 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
148 		kfree(cache->free_space_ctl);
149 		kfree(cache);
150 	}
151 }
152 
153 /*
154  * This adds the block group to the fs_info rb tree for the block group cache
155  */
156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
157 				       struct btrfs_block_group *block_group)
158 {
159 	struct rb_node **p;
160 	struct rb_node *parent = NULL;
161 	struct btrfs_block_group *cache;
162 
163 	ASSERT(block_group->length != 0);
164 
165 	spin_lock(&info->block_group_cache_lock);
166 	p = &info->block_group_cache_tree.rb_node;
167 
168 	while (*p) {
169 		parent = *p;
170 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
171 		if (block_group->start < cache->start) {
172 			p = &(*p)->rb_left;
173 		} else if (block_group->start > cache->start) {
174 			p = &(*p)->rb_right;
175 		} else {
176 			spin_unlock(&info->block_group_cache_lock);
177 			return -EEXIST;
178 		}
179 	}
180 
181 	rb_link_node(&block_group->cache_node, parent, p);
182 	rb_insert_color(&block_group->cache_node,
183 			&info->block_group_cache_tree);
184 
185 	if (info->first_logical_byte > block_group->start)
186 		info->first_logical_byte = block_group->start;
187 
188 	spin_unlock(&info->block_group_cache_lock);
189 
190 	return 0;
191 }
192 
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group *block_group_cache_tree_search(
198 		struct btrfs_fs_info *info, u64 bytenr, int contains)
199 {
200 	struct btrfs_block_group *cache, *ret = NULL;
201 	struct rb_node *n;
202 	u64 end, start;
203 
204 	spin_lock(&info->block_group_cache_lock);
205 	n = info->block_group_cache_tree.rb_node;
206 
207 	while (n) {
208 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
209 		end = cache->start + cache->length - 1;
210 		start = cache->start;
211 
212 		if (bytenr < start) {
213 			if (!contains && (!ret || start < ret->start))
214 				ret = cache;
215 			n = n->rb_left;
216 		} else if (bytenr > start) {
217 			if (contains && bytenr <= end) {
218 				ret = cache;
219 				break;
220 			}
221 			n = n->rb_right;
222 		} else {
223 			ret = cache;
224 			break;
225 		}
226 	}
227 	if (ret) {
228 		btrfs_get_block_group(ret);
229 		if (bytenr == 0 && info->first_logical_byte > ret->start)
230 			info->first_logical_byte = ret->start;
231 	}
232 	spin_unlock(&info->block_group_cache_lock);
233 
234 	return ret;
235 }
236 
237 /*
238  * Return the block group that starts at or after bytenr
239  */
240 struct btrfs_block_group *btrfs_lookup_first_block_group(
241 		struct btrfs_fs_info *info, u64 bytenr)
242 {
243 	return block_group_cache_tree_search(info, bytenr, 0);
244 }
245 
246 /*
247  * Return the block group that contains the given bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_block_group(
250 		struct btrfs_fs_info *info, u64 bytenr)
251 {
252 	return block_group_cache_tree_search(info, bytenr, 1);
253 }
254 
255 struct btrfs_block_group *btrfs_next_block_group(
256 		struct btrfs_block_group *cache)
257 {
258 	struct btrfs_fs_info *fs_info = cache->fs_info;
259 	struct rb_node *node;
260 
261 	spin_lock(&fs_info->block_group_cache_lock);
262 
263 	/* If our block group was removed, we need a full search. */
264 	if (RB_EMPTY_NODE(&cache->cache_node)) {
265 		const u64 next_bytenr = cache->start + cache->length;
266 
267 		spin_unlock(&fs_info->block_group_cache_lock);
268 		btrfs_put_block_group(cache);
269 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
270 	}
271 	node = rb_next(&cache->cache_node);
272 	btrfs_put_block_group(cache);
273 	if (node) {
274 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
275 		btrfs_get_block_group(cache);
276 	} else
277 		cache = NULL;
278 	spin_unlock(&fs_info->block_group_cache_lock);
279 	return cache;
280 }
281 
282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
283 {
284 	struct btrfs_block_group *bg;
285 	bool ret = true;
286 
287 	bg = btrfs_lookup_block_group(fs_info, bytenr);
288 	if (!bg)
289 		return false;
290 
291 	spin_lock(&bg->lock);
292 	if (bg->ro)
293 		ret = false;
294 	else
295 		atomic_inc(&bg->nocow_writers);
296 	spin_unlock(&bg->lock);
297 
298 	/* No put on block group, done by btrfs_dec_nocow_writers */
299 	if (!ret)
300 		btrfs_put_block_group(bg);
301 
302 	return ret;
303 }
304 
305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307 	struct btrfs_block_group *bg;
308 
309 	bg = btrfs_lookup_block_group(fs_info, bytenr);
310 	ASSERT(bg);
311 	if (atomic_dec_and_test(&bg->nocow_writers))
312 		wake_up_var(&bg->nocow_writers);
313 	/*
314 	 * Once for our lookup and once for the lookup done by a previous call
315 	 * to btrfs_inc_nocow_writers()
316 	 */
317 	btrfs_put_block_group(bg);
318 	btrfs_put_block_group(bg);
319 }
320 
321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
322 {
323 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
324 }
325 
326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
327 					const u64 start)
328 {
329 	struct btrfs_block_group *bg;
330 
331 	bg = btrfs_lookup_block_group(fs_info, start);
332 	ASSERT(bg);
333 	if (atomic_dec_and_test(&bg->reservations))
334 		wake_up_var(&bg->reservations);
335 	btrfs_put_block_group(bg);
336 }
337 
338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
339 {
340 	struct btrfs_space_info *space_info = bg->space_info;
341 
342 	ASSERT(bg->ro);
343 
344 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
345 		return;
346 
347 	/*
348 	 * Our block group is read only but before we set it to read only,
349 	 * some task might have had allocated an extent from it already, but it
350 	 * has not yet created a respective ordered extent (and added it to a
351 	 * root's list of ordered extents).
352 	 * Therefore wait for any task currently allocating extents, since the
353 	 * block group's reservations counter is incremented while a read lock
354 	 * on the groups' semaphore is held and decremented after releasing
355 	 * the read access on that semaphore and creating the ordered extent.
356 	 */
357 	down_write(&space_info->groups_sem);
358 	up_write(&space_info->groups_sem);
359 
360 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
361 }
362 
363 struct btrfs_caching_control *btrfs_get_caching_control(
364 		struct btrfs_block_group *cache)
365 {
366 	struct btrfs_caching_control *ctl;
367 
368 	spin_lock(&cache->lock);
369 	if (!cache->caching_ctl) {
370 		spin_unlock(&cache->lock);
371 		return NULL;
372 	}
373 
374 	ctl = cache->caching_ctl;
375 	refcount_inc(&ctl->count);
376 	spin_unlock(&cache->lock);
377 	return ctl;
378 }
379 
380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
381 {
382 	if (refcount_dec_and_test(&ctl->count))
383 		kfree(ctl);
384 }
385 
386 /*
387  * When we wait for progress in the block group caching, its because our
388  * allocation attempt failed at least once.  So, we must sleep and let some
389  * progress happen before we try again.
390  *
391  * This function will sleep at least once waiting for new free space to show
392  * up, and then it will check the block group free space numbers for our min
393  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
394  * a free extent of a given size, but this is a good start.
395  *
396  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
397  * any of the information in this block group.
398  */
399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
400 					   u64 num_bytes)
401 {
402 	struct btrfs_caching_control *caching_ctl;
403 
404 	caching_ctl = btrfs_get_caching_control(cache);
405 	if (!caching_ctl)
406 		return;
407 
408 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
409 		   (cache->free_space_ctl->free_space >= num_bytes));
410 
411 	btrfs_put_caching_control(caching_ctl);
412 }
413 
414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
415 {
416 	struct btrfs_caching_control *caching_ctl;
417 	int ret = 0;
418 
419 	caching_ctl = btrfs_get_caching_control(cache);
420 	if (!caching_ctl)
421 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
422 
423 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
424 	if (cache->cached == BTRFS_CACHE_ERROR)
425 		ret = -EIO;
426 	btrfs_put_caching_control(caching_ctl);
427 	return ret;
428 }
429 
430 #ifdef CONFIG_BTRFS_DEBUG
431 static void fragment_free_space(struct btrfs_block_group *block_group)
432 {
433 	struct btrfs_fs_info *fs_info = block_group->fs_info;
434 	u64 start = block_group->start;
435 	u64 len = block_group->length;
436 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
437 		fs_info->nodesize : fs_info->sectorsize;
438 	u64 step = chunk << 1;
439 
440 	while (len > chunk) {
441 		btrfs_remove_free_space(block_group, start, chunk);
442 		start += step;
443 		if (len < step)
444 			len = 0;
445 		else
446 			len -= step;
447 	}
448 }
449 #endif
450 
451 /*
452  * This is only called by btrfs_cache_block_group, since we could have freed
453  * extents we need to check the pinned_extents for any extents that can't be
454  * used yet since their free space will be released as soon as the transaction
455  * commits.
456  */
457 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
458 {
459 	struct btrfs_fs_info *info = block_group->fs_info;
460 	u64 extent_start, extent_end, size, total_added = 0;
461 	int ret;
462 
463 	while (start < end) {
464 		ret = find_first_extent_bit(&info->excluded_extents, start,
465 					    &extent_start, &extent_end,
466 					    EXTENT_DIRTY | EXTENT_UPTODATE,
467 					    NULL);
468 		if (ret)
469 			break;
470 
471 		if (extent_start <= start) {
472 			start = extent_end + 1;
473 		} else if (extent_start > start && extent_start < end) {
474 			size = extent_start - start;
475 			total_added += size;
476 			ret = btrfs_add_free_space_async_trimmed(block_group,
477 								 start, size);
478 			BUG_ON(ret); /* -ENOMEM or logic error */
479 			start = extent_end + 1;
480 		} else {
481 			break;
482 		}
483 	}
484 
485 	if (start < end) {
486 		size = end - start;
487 		total_added += size;
488 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
489 							 size);
490 		BUG_ON(ret); /* -ENOMEM or logic error */
491 	}
492 
493 	return total_added;
494 }
495 
496 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
497 {
498 	struct btrfs_block_group *block_group = caching_ctl->block_group;
499 	struct btrfs_fs_info *fs_info = block_group->fs_info;
500 	struct btrfs_root *extent_root = fs_info->extent_root;
501 	struct btrfs_path *path;
502 	struct extent_buffer *leaf;
503 	struct btrfs_key key;
504 	u64 total_found = 0;
505 	u64 last = 0;
506 	u32 nritems;
507 	int ret;
508 	bool wakeup = true;
509 
510 	path = btrfs_alloc_path();
511 	if (!path)
512 		return -ENOMEM;
513 
514 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
515 
516 #ifdef CONFIG_BTRFS_DEBUG
517 	/*
518 	 * If we're fragmenting we don't want to make anybody think we can
519 	 * allocate from this block group until we've had a chance to fragment
520 	 * the free space.
521 	 */
522 	if (btrfs_should_fragment_free_space(block_group))
523 		wakeup = false;
524 #endif
525 	/*
526 	 * We don't want to deadlock with somebody trying to allocate a new
527 	 * extent for the extent root while also trying to search the extent
528 	 * root to add free space.  So we skip locking and search the commit
529 	 * root, since its read-only
530 	 */
531 	path->skip_locking = 1;
532 	path->search_commit_root = 1;
533 	path->reada = READA_FORWARD;
534 
535 	key.objectid = last;
536 	key.offset = 0;
537 	key.type = BTRFS_EXTENT_ITEM_KEY;
538 
539 next:
540 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
541 	if (ret < 0)
542 		goto out;
543 
544 	leaf = path->nodes[0];
545 	nritems = btrfs_header_nritems(leaf);
546 
547 	while (1) {
548 		if (btrfs_fs_closing(fs_info) > 1) {
549 			last = (u64)-1;
550 			break;
551 		}
552 
553 		if (path->slots[0] < nritems) {
554 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
555 		} else {
556 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
557 			if (ret)
558 				break;
559 
560 			if (need_resched() ||
561 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
562 				if (wakeup)
563 					caching_ctl->progress = last;
564 				btrfs_release_path(path);
565 				up_read(&fs_info->commit_root_sem);
566 				mutex_unlock(&caching_ctl->mutex);
567 				cond_resched();
568 				mutex_lock(&caching_ctl->mutex);
569 				down_read(&fs_info->commit_root_sem);
570 				goto next;
571 			}
572 
573 			ret = btrfs_next_leaf(extent_root, path);
574 			if (ret < 0)
575 				goto out;
576 			if (ret)
577 				break;
578 			leaf = path->nodes[0];
579 			nritems = btrfs_header_nritems(leaf);
580 			continue;
581 		}
582 
583 		if (key.objectid < last) {
584 			key.objectid = last;
585 			key.offset = 0;
586 			key.type = BTRFS_EXTENT_ITEM_KEY;
587 
588 			if (wakeup)
589 				caching_ctl->progress = last;
590 			btrfs_release_path(path);
591 			goto next;
592 		}
593 
594 		if (key.objectid < block_group->start) {
595 			path->slots[0]++;
596 			continue;
597 		}
598 
599 		if (key.objectid >= block_group->start + block_group->length)
600 			break;
601 
602 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
603 		    key.type == BTRFS_METADATA_ITEM_KEY) {
604 			total_found += add_new_free_space(block_group, last,
605 							  key.objectid);
606 			if (key.type == BTRFS_METADATA_ITEM_KEY)
607 				last = key.objectid +
608 					fs_info->nodesize;
609 			else
610 				last = key.objectid + key.offset;
611 
612 			if (total_found > CACHING_CTL_WAKE_UP) {
613 				total_found = 0;
614 				if (wakeup)
615 					wake_up(&caching_ctl->wait);
616 			}
617 		}
618 		path->slots[0]++;
619 	}
620 	ret = 0;
621 
622 	total_found += add_new_free_space(block_group, last,
623 				block_group->start + block_group->length);
624 	caching_ctl->progress = (u64)-1;
625 
626 out:
627 	btrfs_free_path(path);
628 	return ret;
629 }
630 
631 static noinline void caching_thread(struct btrfs_work *work)
632 {
633 	struct btrfs_block_group *block_group;
634 	struct btrfs_fs_info *fs_info;
635 	struct btrfs_caching_control *caching_ctl;
636 	int ret;
637 
638 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
639 	block_group = caching_ctl->block_group;
640 	fs_info = block_group->fs_info;
641 
642 	mutex_lock(&caching_ctl->mutex);
643 	down_read(&fs_info->commit_root_sem);
644 
645 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
646 		ret = load_free_space_tree(caching_ctl);
647 	else
648 		ret = load_extent_tree_free(caching_ctl);
649 
650 	spin_lock(&block_group->lock);
651 	block_group->caching_ctl = NULL;
652 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
653 	spin_unlock(&block_group->lock);
654 
655 #ifdef CONFIG_BTRFS_DEBUG
656 	if (btrfs_should_fragment_free_space(block_group)) {
657 		u64 bytes_used;
658 
659 		spin_lock(&block_group->space_info->lock);
660 		spin_lock(&block_group->lock);
661 		bytes_used = block_group->length - block_group->used;
662 		block_group->space_info->bytes_used += bytes_used >> 1;
663 		spin_unlock(&block_group->lock);
664 		spin_unlock(&block_group->space_info->lock);
665 		fragment_free_space(block_group);
666 	}
667 #endif
668 
669 	caching_ctl->progress = (u64)-1;
670 
671 	up_read(&fs_info->commit_root_sem);
672 	btrfs_free_excluded_extents(block_group);
673 	mutex_unlock(&caching_ctl->mutex);
674 
675 	wake_up(&caching_ctl->wait);
676 
677 	btrfs_put_caching_control(caching_ctl);
678 	btrfs_put_block_group(block_group);
679 }
680 
681 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
682 {
683 	DEFINE_WAIT(wait);
684 	struct btrfs_fs_info *fs_info = cache->fs_info;
685 	struct btrfs_caching_control *caching_ctl;
686 	int ret = 0;
687 
688 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689 	if (!caching_ctl)
690 		return -ENOMEM;
691 
692 	INIT_LIST_HEAD(&caching_ctl->list);
693 	mutex_init(&caching_ctl->mutex);
694 	init_waitqueue_head(&caching_ctl->wait);
695 	caching_ctl->block_group = cache;
696 	caching_ctl->progress = cache->start;
697 	refcount_set(&caching_ctl->count, 1);
698 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
699 
700 	spin_lock(&cache->lock);
701 	/*
702 	 * This should be a rare occasion, but this could happen I think in the
703 	 * case where one thread starts to load the space cache info, and then
704 	 * some other thread starts a transaction commit which tries to do an
705 	 * allocation while the other thread is still loading the space cache
706 	 * info.  The previous loop should have kept us from choosing this block
707 	 * group, but if we've moved to the state where we will wait on caching
708 	 * block groups we need to first check if we're doing a fast load here,
709 	 * so we can wait for it to finish, otherwise we could end up allocating
710 	 * from a block group who's cache gets evicted for one reason or
711 	 * another.
712 	 */
713 	while (cache->cached == BTRFS_CACHE_FAST) {
714 		struct btrfs_caching_control *ctl;
715 
716 		ctl = cache->caching_ctl;
717 		refcount_inc(&ctl->count);
718 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
719 		spin_unlock(&cache->lock);
720 
721 		schedule();
722 
723 		finish_wait(&ctl->wait, &wait);
724 		btrfs_put_caching_control(ctl);
725 		spin_lock(&cache->lock);
726 	}
727 
728 	if (cache->cached != BTRFS_CACHE_NO) {
729 		spin_unlock(&cache->lock);
730 		kfree(caching_ctl);
731 		return 0;
732 	}
733 	WARN_ON(cache->caching_ctl);
734 	cache->caching_ctl = caching_ctl;
735 	cache->cached = BTRFS_CACHE_FAST;
736 	spin_unlock(&cache->lock);
737 
738 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
739 		mutex_lock(&caching_ctl->mutex);
740 		ret = load_free_space_cache(cache);
741 
742 		spin_lock(&cache->lock);
743 		if (ret == 1) {
744 			cache->caching_ctl = NULL;
745 			cache->cached = BTRFS_CACHE_FINISHED;
746 			cache->last_byte_to_unpin = (u64)-1;
747 			caching_ctl->progress = (u64)-1;
748 		} else {
749 			if (load_cache_only) {
750 				cache->caching_ctl = NULL;
751 				cache->cached = BTRFS_CACHE_NO;
752 			} else {
753 				cache->cached = BTRFS_CACHE_STARTED;
754 				cache->has_caching_ctl = 1;
755 			}
756 		}
757 		spin_unlock(&cache->lock);
758 #ifdef CONFIG_BTRFS_DEBUG
759 		if (ret == 1 &&
760 		    btrfs_should_fragment_free_space(cache)) {
761 			u64 bytes_used;
762 
763 			spin_lock(&cache->space_info->lock);
764 			spin_lock(&cache->lock);
765 			bytes_used = cache->length - cache->used;
766 			cache->space_info->bytes_used += bytes_used >> 1;
767 			spin_unlock(&cache->lock);
768 			spin_unlock(&cache->space_info->lock);
769 			fragment_free_space(cache);
770 		}
771 #endif
772 		mutex_unlock(&caching_ctl->mutex);
773 
774 		wake_up(&caching_ctl->wait);
775 		if (ret == 1) {
776 			btrfs_put_caching_control(caching_ctl);
777 			btrfs_free_excluded_extents(cache);
778 			return 0;
779 		}
780 	} else {
781 		/*
782 		 * We're either using the free space tree or no caching at all.
783 		 * Set cached to the appropriate value and wakeup any waiters.
784 		 */
785 		spin_lock(&cache->lock);
786 		if (load_cache_only) {
787 			cache->caching_ctl = NULL;
788 			cache->cached = BTRFS_CACHE_NO;
789 		} else {
790 			cache->cached = BTRFS_CACHE_STARTED;
791 			cache->has_caching_ctl = 1;
792 		}
793 		spin_unlock(&cache->lock);
794 		wake_up(&caching_ctl->wait);
795 	}
796 
797 	if (load_cache_only) {
798 		btrfs_put_caching_control(caching_ctl);
799 		return 0;
800 	}
801 
802 	down_write(&fs_info->commit_root_sem);
803 	refcount_inc(&caching_ctl->count);
804 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
805 	up_write(&fs_info->commit_root_sem);
806 
807 	btrfs_get_block_group(cache);
808 
809 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
810 
811 	return ret;
812 }
813 
814 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
815 {
816 	u64 extra_flags = chunk_to_extended(flags) &
817 				BTRFS_EXTENDED_PROFILE_MASK;
818 
819 	write_seqlock(&fs_info->profiles_lock);
820 	if (flags & BTRFS_BLOCK_GROUP_DATA)
821 		fs_info->avail_data_alloc_bits &= ~extra_flags;
822 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
823 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
824 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
825 		fs_info->avail_system_alloc_bits &= ~extra_flags;
826 	write_sequnlock(&fs_info->profiles_lock);
827 }
828 
829 /*
830  * Clear incompat bits for the following feature(s):
831  *
832  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
833  *            in the whole filesystem
834  *
835  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
836  */
837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
838 {
839 	bool found_raid56 = false;
840 	bool found_raid1c34 = false;
841 
842 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
843 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
844 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
845 		struct list_head *head = &fs_info->space_info;
846 		struct btrfs_space_info *sinfo;
847 
848 		list_for_each_entry_rcu(sinfo, head, list) {
849 			down_read(&sinfo->groups_sem);
850 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
851 				found_raid56 = true;
852 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
853 				found_raid56 = true;
854 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
855 				found_raid1c34 = true;
856 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
857 				found_raid1c34 = true;
858 			up_read(&sinfo->groups_sem);
859 		}
860 		if (!found_raid56)
861 			btrfs_clear_fs_incompat(fs_info, RAID56);
862 		if (!found_raid1c34)
863 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
864 	}
865 }
866 
867 static int remove_block_group_item(struct btrfs_trans_handle *trans,
868 				   struct btrfs_path *path,
869 				   struct btrfs_block_group *block_group)
870 {
871 	struct btrfs_fs_info *fs_info = trans->fs_info;
872 	struct btrfs_root *root;
873 	struct btrfs_key key;
874 	int ret;
875 
876 	root = fs_info->extent_root;
877 	key.objectid = block_group->start;
878 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
879 	key.offset = block_group->length;
880 
881 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
882 	if (ret > 0)
883 		ret = -ENOENT;
884 	if (ret < 0)
885 		return ret;
886 
887 	ret = btrfs_del_item(trans, root, path);
888 	return ret;
889 }
890 
891 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
892 			     u64 group_start, struct extent_map *em)
893 {
894 	struct btrfs_fs_info *fs_info = trans->fs_info;
895 	struct btrfs_path *path;
896 	struct btrfs_block_group *block_group;
897 	struct btrfs_free_cluster *cluster;
898 	struct btrfs_root *tree_root = fs_info->tree_root;
899 	struct btrfs_key key;
900 	struct inode *inode;
901 	struct kobject *kobj = NULL;
902 	int ret;
903 	int index;
904 	int factor;
905 	struct btrfs_caching_control *caching_ctl = NULL;
906 	bool remove_em;
907 	bool remove_rsv = false;
908 
909 	block_group = btrfs_lookup_block_group(fs_info, group_start);
910 	BUG_ON(!block_group);
911 	BUG_ON(!block_group->ro);
912 
913 	trace_btrfs_remove_block_group(block_group);
914 	/*
915 	 * Free the reserved super bytes from this block group before
916 	 * remove it.
917 	 */
918 	btrfs_free_excluded_extents(block_group);
919 	btrfs_free_ref_tree_range(fs_info, block_group->start,
920 				  block_group->length);
921 
922 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
923 	factor = btrfs_bg_type_to_factor(block_group->flags);
924 
925 	/* make sure this block group isn't part of an allocation cluster */
926 	cluster = &fs_info->data_alloc_cluster;
927 	spin_lock(&cluster->refill_lock);
928 	btrfs_return_cluster_to_free_space(block_group, cluster);
929 	spin_unlock(&cluster->refill_lock);
930 
931 	/*
932 	 * make sure this block group isn't part of a metadata
933 	 * allocation cluster
934 	 */
935 	cluster = &fs_info->meta_alloc_cluster;
936 	spin_lock(&cluster->refill_lock);
937 	btrfs_return_cluster_to_free_space(block_group, cluster);
938 	spin_unlock(&cluster->refill_lock);
939 
940 	path = btrfs_alloc_path();
941 	if (!path) {
942 		ret = -ENOMEM;
943 		goto out;
944 	}
945 
946 	/*
947 	 * get the inode first so any iput calls done for the io_list
948 	 * aren't the final iput (no unlinks allowed now)
949 	 */
950 	inode = lookup_free_space_inode(block_group, path);
951 
952 	mutex_lock(&trans->transaction->cache_write_mutex);
953 	/*
954 	 * Make sure our free space cache IO is done before removing the
955 	 * free space inode
956 	 */
957 	spin_lock(&trans->transaction->dirty_bgs_lock);
958 	if (!list_empty(&block_group->io_list)) {
959 		list_del_init(&block_group->io_list);
960 
961 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
962 
963 		spin_unlock(&trans->transaction->dirty_bgs_lock);
964 		btrfs_wait_cache_io(trans, block_group, path);
965 		btrfs_put_block_group(block_group);
966 		spin_lock(&trans->transaction->dirty_bgs_lock);
967 	}
968 
969 	if (!list_empty(&block_group->dirty_list)) {
970 		list_del_init(&block_group->dirty_list);
971 		remove_rsv = true;
972 		btrfs_put_block_group(block_group);
973 	}
974 	spin_unlock(&trans->transaction->dirty_bgs_lock);
975 	mutex_unlock(&trans->transaction->cache_write_mutex);
976 
977 	if (!IS_ERR(inode)) {
978 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
979 		if (ret) {
980 			btrfs_add_delayed_iput(inode);
981 			goto out;
982 		}
983 		clear_nlink(inode);
984 		/* One for the block groups ref */
985 		spin_lock(&block_group->lock);
986 		if (block_group->iref) {
987 			block_group->iref = 0;
988 			block_group->inode = NULL;
989 			spin_unlock(&block_group->lock);
990 			iput(inode);
991 		} else {
992 			spin_unlock(&block_group->lock);
993 		}
994 		/* One for our lookup ref */
995 		btrfs_add_delayed_iput(inode);
996 	}
997 
998 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
999 	key.type = 0;
1000 	key.offset = block_group->start;
1001 
1002 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1003 	if (ret < 0)
1004 		goto out;
1005 	if (ret > 0)
1006 		btrfs_release_path(path);
1007 	if (ret == 0) {
1008 		ret = btrfs_del_item(trans, tree_root, path);
1009 		if (ret)
1010 			goto out;
1011 		btrfs_release_path(path);
1012 	}
1013 
1014 	spin_lock(&fs_info->block_group_cache_lock);
1015 	rb_erase(&block_group->cache_node,
1016 		 &fs_info->block_group_cache_tree);
1017 	RB_CLEAR_NODE(&block_group->cache_node);
1018 
1019 	/* Once for the block groups rbtree */
1020 	btrfs_put_block_group(block_group);
1021 
1022 	if (fs_info->first_logical_byte == block_group->start)
1023 		fs_info->first_logical_byte = (u64)-1;
1024 	spin_unlock(&fs_info->block_group_cache_lock);
1025 
1026 	down_write(&block_group->space_info->groups_sem);
1027 	/*
1028 	 * we must use list_del_init so people can check to see if they
1029 	 * are still on the list after taking the semaphore
1030 	 */
1031 	list_del_init(&block_group->list);
1032 	if (list_empty(&block_group->space_info->block_groups[index])) {
1033 		kobj = block_group->space_info->block_group_kobjs[index];
1034 		block_group->space_info->block_group_kobjs[index] = NULL;
1035 		clear_avail_alloc_bits(fs_info, block_group->flags);
1036 	}
1037 	up_write(&block_group->space_info->groups_sem);
1038 	clear_incompat_bg_bits(fs_info, block_group->flags);
1039 	if (kobj) {
1040 		kobject_del(kobj);
1041 		kobject_put(kobj);
1042 	}
1043 
1044 	if (block_group->has_caching_ctl)
1045 		caching_ctl = btrfs_get_caching_control(block_group);
1046 	if (block_group->cached == BTRFS_CACHE_STARTED)
1047 		btrfs_wait_block_group_cache_done(block_group);
1048 	if (block_group->has_caching_ctl) {
1049 		down_write(&fs_info->commit_root_sem);
1050 		if (!caching_ctl) {
1051 			struct btrfs_caching_control *ctl;
1052 
1053 			list_for_each_entry(ctl,
1054 				    &fs_info->caching_block_groups, list)
1055 				if (ctl->block_group == block_group) {
1056 					caching_ctl = ctl;
1057 					refcount_inc(&caching_ctl->count);
1058 					break;
1059 				}
1060 		}
1061 		if (caching_ctl)
1062 			list_del_init(&caching_ctl->list);
1063 		up_write(&fs_info->commit_root_sem);
1064 		if (caching_ctl) {
1065 			/* Once for the caching bgs list and once for us. */
1066 			btrfs_put_caching_control(caching_ctl);
1067 			btrfs_put_caching_control(caching_ctl);
1068 		}
1069 	}
1070 
1071 	spin_lock(&trans->transaction->dirty_bgs_lock);
1072 	WARN_ON(!list_empty(&block_group->dirty_list));
1073 	WARN_ON(!list_empty(&block_group->io_list));
1074 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1075 
1076 	btrfs_remove_free_space_cache(block_group);
1077 
1078 	spin_lock(&block_group->space_info->lock);
1079 	list_del_init(&block_group->ro_list);
1080 
1081 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1082 		WARN_ON(block_group->space_info->total_bytes
1083 			< block_group->length);
1084 		WARN_ON(block_group->space_info->bytes_readonly
1085 			< block_group->length);
1086 		WARN_ON(block_group->space_info->disk_total
1087 			< block_group->length * factor);
1088 	}
1089 	block_group->space_info->total_bytes -= block_group->length;
1090 	block_group->space_info->bytes_readonly -= block_group->length;
1091 	block_group->space_info->disk_total -= block_group->length * factor;
1092 
1093 	spin_unlock(&block_group->space_info->lock);
1094 
1095 	/*
1096 	 * Remove the free space for the block group from the free space tree
1097 	 * and the block group's item from the extent tree before marking the
1098 	 * block group as removed. This is to prevent races with tasks that
1099 	 * freeze and unfreeze a block group, this task and another task
1100 	 * allocating a new block group - the unfreeze task ends up removing
1101 	 * the block group's extent map before the task calling this function
1102 	 * deletes the block group item from the extent tree, allowing for
1103 	 * another task to attempt to create another block group with the same
1104 	 * item key (and failing with -EEXIST and a transaction abort).
1105 	 */
1106 	ret = remove_block_group_free_space(trans, block_group);
1107 	if (ret)
1108 		goto out;
1109 
1110 	ret = remove_block_group_item(trans, path, block_group);
1111 	if (ret < 0)
1112 		goto out;
1113 
1114 	mutex_lock(&fs_info->chunk_mutex);
1115 	spin_lock(&block_group->lock);
1116 	block_group->removed = 1;
1117 	/*
1118 	 * At this point trimming or scrub can't start on this block group,
1119 	 * because we removed the block group from the rbtree
1120 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1121 	 * even if someone already got this block group before we removed it
1122 	 * from the rbtree, they have already incremented block_group->frozen -
1123 	 * if they didn't, for the trimming case they won't find any free space
1124 	 * entries because we already removed them all when we called
1125 	 * btrfs_remove_free_space_cache().
1126 	 *
1127 	 * And we must not remove the extent map from the fs_info->mapping_tree
1128 	 * to prevent the same logical address range and physical device space
1129 	 * ranges from being reused for a new block group. This is needed to
1130 	 * avoid races with trimming and scrub.
1131 	 *
1132 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1133 	 * completely transactionless, so while it is trimming a range the
1134 	 * currently running transaction might finish and a new one start,
1135 	 * allowing for new block groups to be created that can reuse the same
1136 	 * physical device locations unless we take this special care.
1137 	 *
1138 	 * There may also be an implicit trim operation if the file system
1139 	 * is mounted with -odiscard. The same protections must remain
1140 	 * in place until the extents have been discarded completely when
1141 	 * the transaction commit has completed.
1142 	 */
1143 	remove_em = (atomic_read(&block_group->frozen) == 0);
1144 	spin_unlock(&block_group->lock);
1145 
1146 	mutex_unlock(&fs_info->chunk_mutex);
1147 
1148 	if (remove_em) {
1149 		struct extent_map_tree *em_tree;
1150 
1151 		em_tree = &fs_info->mapping_tree;
1152 		write_lock(&em_tree->lock);
1153 		remove_extent_mapping(em_tree, em);
1154 		write_unlock(&em_tree->lock);
1155 		/* once for the tree */
1156 		free_extent_map(em);
1157 	}
1158 
1159 out:
1160 	/* Once for the lookup reference */
1161 	btrfs_put_block_group(block_group);
1162 	if (remove_rsv)
1163 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1164 	btrfs_free_path(path);
1165 	return ret;
1166 }
1167 
1168 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1169 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1170 {
1171 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1172 	struct extent_map *em;
1173 	struct map_lookup *map;
1174 	unsigned int num_items;
1175 
1176 	read_lock(&em_tree->lock);
1177 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1178 	read_unlock(&em_tree->lock);
1179 	ASSERT(em && em->start == chunk_offset);
1180 
1181 	/*
1182 	 * We need to reserve 3 + N units from the metadata space info in order
1183 	 * to remove a block group (done at btrfs_remove_chunk() and at
1184 	 * btrfs_remove_block_group()), which are used for:
1185 	 *
1186 	 * 1 unit for adding the free space inode's orphan (located in the tree
1187 	 * of tree roots).
1188 	 * 1 unit for deleting the block group item (located in the extent
1189 	 * tree).
1190 	 * 1 unit for deleting the free space item (located in tree of tree
1191 	 * roots).
1192 	 * N units for deleting N device extent items corresponding to each
1193 	 * stripe (located in the device tree).
1194 	 *
1195 	 * In order to remove a block group we also need to reserve units in the
1196 	 * system space info in order to update the chunk tree (update one or
1197 	 * more device items and remove one chunk item), but this is done at
1198 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1199 	 */
1200 	map = em->map_lookup;
1201 	num_items = 3 + map->num_stripes;
1202 	free_extent_map(em);
1203 
1204 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1205 							   num_items);
1206 }
1207 
1208 /*
1209  * Mark block group @cache read-only, so later write won't happen to block
1210  * group @cache.
1211  *
1212  * If @force is not set, this function will only mark the block group readonly
1213  * if we have enough free space (1M) in other metadata/system block groups.
1214  * If @force is not set, this function will mark the block group readonly
1215  * without checking free space.
1216  *
1217  * NOTE: This function doesn't care if other block groups can contain all the
1218  * data in this block group. That check should be done by relocation routine,
1219  * not this function.
1220  */
1221 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1222 {
1223 	struct btrfs_space_info *sinfo = cache->space_info;
1224 	u64 num_bytes;
1225 	int ret = -ENOSPC;
1226 
1227 	spin_lock(&sinfo->lock);
1228 	spin_lock(&cache->lock);
1229 
1230 	if (cache->ro) {
1231 		cache->ro++;
1232 		ret = 0;
1233 		goto out;
1234 	}
1235 
1236 	num_bytes = cache->length - cache->reserved - cache->pinned -
1237 		    cache->bytes_super - cache->used;
1238 
1239 	/*
1240 	 * Data never overcommits, even in mixed mode, so do just the straight
1241 	 * check of left over space in how much we have allocated.
1242 	 */
1243 	if (force) {
1244 		ret = 0;
1245 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1246 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1247 
1248 		/*
1249 		 * Here we make sure if we mark this bg RO, we still have enough
1250 		 * free space as buffer.
1251 		 */
1252 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1253 			ret = 0;
1254 	} else {
1255 		/*
1256 		 * We overcommit metadata, so we need to do the
1257 		 * btrfs_can_overcommit check here, and we need to pass in
1258 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1259 		 * leeway to allow us to mark this block group as read only.
1260 		 */
1261 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1262 					 BTRFS_RESERVE_NO_FLUSH))
1263 			ret = 0;
1264 	}
1265 
1266 	if (!ret) {
1267 		sinfo->bytes_readonly += num_bytes;
1268 		cache->ro++;
1269 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1270 	}
1271 out:
1272 	spin_unlock(&cache->lock);
1273 	spin_unlock(&sinfo->lock);
1274 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1275 		btrfs_info(cache->fs_info,
1276 			"unable to make block group %llu ro", cache->start);
1277 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1278 	}
1279 	return ret;
1280 }
1281 
1282 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1283 				 struct btrfs_block_group *bg)
1284 {
1285 	struct btrfs_fs_info *fs_info = bg->fs_info;
1286 	struct btrfs_transaction *prev_trans = NULL;
1287 	const u64 start = bg->start;
1288 	const u64 end = start + bg->length - 1;
1289 	int ret;
1290 
1291 	spin_lock(&fs_info->trans_lock);
1292 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1293 		prev_trans = list_last_entry(&trans->transaction->list,
1294 					     struct btrfs_transaction, list);
1295 		refcount_inc(&prev_trans->use_count);
1296 	}
1297 	spin_unlock(&fs_info->trans_lock);
1298 
1299 	/*
1300 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1301 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1302 	 * task might be running finish_extent_commit() for the previous
1303 	 * transaction N - 1, and have seen a range belonging to the block
1304 	 * group in pinned_extents before we were able to clear the whole block
1305 	 * group range from pinned_extents. This means that task can lookup for
1306 	 * the block group after we unpinned it from pinned_extents and removed
1307 	 * it, leading to a BUG_ON() at unpin_extent_range().
1308 	 */
1309 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1310 	if (prev_trans) {
1311 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1312 					EXTENT_DIRTY);
1313 		if (ret)
1314 			goto out;
1315 	}
1316 
1317 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1318 				EXTENT_DIRTY);
1319 out:
1320 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1321 	if (prev_trans)
1322 		btrfs_put_transaction(prev_trans);
1323 
1324 	return ret == 0;
1325 }
1326 
1327 /*
1328  * Process the unused_bgs list and remove any that don't have any allocated
1329  * space inside of them.
1330  */
1331 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1332 {
1333 	struct btrfs_block_group *block_group;
1334 	struct btrfs_space_info *space_info;
1335 	struct btrfs_trans_handle *trans;
1336 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1337 	int ret = 0;
1338 
1339 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1340 		return;
1341 
1342 	spin_lock(&fs_info->unused_bgs_lock);
1343 	while (!list_empty(&fs_info->unused_bgs)) {
1344 		int trimming;
1345 
1346 		block_group = list_first_entry(&fs_info->unused_bgs,
1347 					       struct btrfs_block_group,
1348 					       bg_list);
1349 		list_del_init(&block_group->bg_list);
1350 
1351 		space_info = block_group->space_info;
1352 
1353 		if (ret || btrfs_mixed_space_info(space_info)) {
1354 			btrfs_put_block_group(block_group);
1355 			continue;
1356 		}
1357 		spin_unlock(&fs_info->unused_bgs_lock);
1358 
1359 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1360 
1361 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1362 
1363 		/* Don't want to race with allocators so take the groups_sem */
1364 		down_write(&space_info->groups_sem);
1365 
1366 		/*
1367 		 * Async discard moves the final block group discard to be prior
1368 		 * to the unused_bgs code path.  Therefore, if it's not fully
1369 		 * trimmed, punt it back to the async discard lists.
1370 		 */
1371 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1372 		    !btrfs_is_free_space_trimmed(block_group)) {
1373 			trace_btrfs_skip_unused_block_group(block_group);
1374 			up_write(&space_info->groups_sem);
1375 			/* Requeue if we failed because of async discard */
1376 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1377 						 block_group);
1378 			goto next;
1379 		}
1380 
1381 		spin_lock(&block_group->lock);
1382 		if (block_group->reserved || block_group->pinned ||
1383 		    block_group->used || block_group->ro ||
1384 		    list_is_singular(&block_group->list)) {
1385 			/*
1386 			 * We want to bail if we made new allocations or have
1387 			 * outstanding allocations in this block group.  We do
1388 			 * the ro check in case balance is currently acting on
1389 			 * this block group.
1390 			 */
1391 			trace_btrfs_skip_unused_block_group(block_group);
1392 			spin_unlock(&block_group->lock);
1393 			up_write(&space_info->groups_sem);
1394 			goto next;
1395 		}
1396 		spin_unlock(&block_group->lock);
1397 
1398 		/* We don't want to force the issue, only flip if it's ok. */
1399 		ret = inc_block_group_ro(block_group, 0);
1400 		up_write(&space_info->groups_sem);
1401 		if (ret < 0) {
1402 			ret = 0;
1403 			goto next;
1404 		}
1405 
1406 		/*
1407 		 * Want to do this before we do anything else so we can recover
1408 		 * properly if we fail to join the transaction.
1409 		 */
1410 		trans = btrfs_start_trans_remove_block_group(fs_info,
1411 						     block_group->start);
1412 		if (IS_ERR(trans)) {
1413 			btrfs_dec_block_group_ro(block_group);
1414 			ret = PTR_ERR(trans);
1415 			goto next;
1416 		}
1417 
1418 		/*
1419 		 * We could have pending pinned extents for this block group,
1420 		 * just delete them, we don't care about them anymore.
1421 		 */
1422 		if (!clean_pinned_extents(trans, block_group)) {
1423 			btrfs_dec_block_group_ro(block_group);
1424 			goto end_trans;
1425 		}
1426 
1427 		/*
1428 		 * At this point, the block_group is read only and should fail
1429 		 * new allocations.  However, btrfs_finish_extent_commit() can
1430 		 * cause this block_group to be placed back on the discard
1431 		 * lists because now the block_group isn't fully discarded.
1432 		 * Bail here and try again later after discarding everything.
1433 		 */
1434 		spin_lock(&fs_info->discard_ctl.lock);
1435 		if (!list_empty(&block_group->discard_list)) {
1436 			spin_unlock(&fs_info->discard_ctl.lock);
1437 			btrfs_dec_block_group_ro(block_group);
1438 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1439 						 block_group);
1440 			goto end_trans;
1441 		}
1442 		spin_unlock(&fs_info->discard_ctl.lock);
1443 
1444 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1445 		spin_lock(&space_info->lock);
1446 		spin_lock(&block_group->lock);
1447 
1448 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1449 						     -block_group->pinned);
1450 		space_info->bytes_readonly += block_group->pinned;
1451 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1452 				   -block_group->pinned,
1453 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1454 		block_group->pinned = 0;
1455 
1456 		spin_unlock(&block_group->lock);
1457 		spin_unlock(&space_info->lock);
1458 
1459 		/*
1460 		 * The normal path here is an unused block group is passed here,
1461 		 * then trimming is handled in the transaction commit path.
1462 		 * Async discard interposes before this to do the trimming
1463 		 * before coming down the unused block group path as trimming
1464 		 * will no longer be done later in the transaction commit path.
1465 		 */
1466 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1467 			goto flip_async;
1468 
1469 		/* DISCARD can flip during remount */
1470 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1471 
1472 		/* Implicit trim during transaction commit. */
1473 		if (trimming)
1474 			btrfs_freeze_block_group(block_group);
1475 
1476 		/*
1477 		 * Btrfs_remove_chunk will abort the transaction if things go
1478 		 * horribly wrong.
1479 		 */
1480 		ret = btrfs_remove_chunk(trans, block_group->start);
1481 
1482 		if (ret) {
1483 			if (trimming)
1484 				btrfs_unfreeze_block_group(block_group);
1485 			goto end_trans;
1486 		}
1487 
1488 		/*
1489 		 * If we're not mounted with -odiscard, we can just forget
1490 		 * about this block group. Otherwise we'll need to wait
1491 		 * until transaction commit to do the actual discard.
1492 		 */
1493 		if (trimming) {
1494 			spin_lock(&fs_info->unused_bgs_lock);
1495 			/*
1496 			 * A concurrent scrub might have added us to the list
1497 			 * fs_info->unused_bgs, so use a list_move operation
1498 			 * to add the block group to the deleted_bgs list.
1499 			 */
1500 			list_move(&block_group->bg_list,
1501 				  &trans->transaction->deleted_bgs);
1502 			spin_unlock(&fs_info->unused_bgs_lock);
1503 			btrfs_get_block_group(block_group);
1504 		}
1505 end_trans:
1506 		btrfs_end_transaction(trans);
1507 next:
1508 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1509 		btrfs_put_block_group(block_group);
1510 		spin_lock(&fs_info->unused_bgs_lock);
1511 	}
1512 	spin_unlock(&fs_info->unused_bgs_lock);
1513 	return;
1514 
1515 flip_async:
1516 	btrfs_end_transaction(trans);
1517 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1518 	btrfs_put_block_group(block_group);
1519 	btrfs_discard_punt_unused_bgs_list(fs_info);
1520 }
1521 
1522 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1523 {
1524 	struct btrfs_fs_info *fs_info = bg->fs_info;
1525 
1526 	spin_lock(&fs_info->unused_bgs_lock);
1527 	if (list_empty(&bg->bg_list)) {
1528 		btrfs_get_block_group(bg);
1529 		trace_btrfs_add_unused_block_group(bg);
1530 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1531 	}
1532 	spin_unlock(&fs_info->unused_bgs_lock);
1533 }
1534 
1535 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1536 				  struct btrfs_path *path,
1537 				  struct btrfs_key *key)
1538 {
1539 	struct btrfs_root *root = fs_info->extent_root;
1540 	int ret = 0;
1541 	struct btrfs_key found_key;
1542 	struct extent_buffer *leaf;
1543 	struct btrfs_block_group_item bg;
1544 	u64 flags;
1545 	int slot;
1546 
1547 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1548 	if (ret < 0)
1549 		goto out;
1550 
1551 	while (1) {
1552 		slot = path->slots[0];
1553 		leaf = path->nodes[0];
1554 		if (slot >= btrfs_header_nritems(leaf)) {
1555 			ret = btrfs_next_leaf(root, path);
1556 			if (ret == 0)
1557 				continue;
1558 			if (ret < 0)
1559 				goto out;
1560 			break;
1561 		}
1562 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1563 
1564 		if (found_key.objectid >= key->objectid &&
1565 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1566 			struct extent_map_tree *em_tree;
1567 			struct extent_map *em;
1568 
1569 			em_tree = &root->fs_info->mapping_tree;
1570 			read_lock(&em_tree->lock);
1571 			em = lookup_extent_mapping(em_tree, found_key.objectid,
1572 						   found_key.offset);
1573 			read_unlock(&em_tree->lock);
1574 			if (!em) {
1575 				btrfs_err(fs_info,
1576 			"logical %llu len %llu found bg but no related chunk",
1577 					  found_key.objectid, found_key.offset);
1578 				ret = -ENOENT;
1579 			} else if (em->start != found_key.objectid ||
1580 				   em->len != found_key.offset) {
1581 				btrfs_err(fs_info,
1582 		"block group %llu len %llu mismatch with chunk %llu len %llu",
1583 					  found_key.objectid, found_key.offset,
1584 					  em->start, em->len);
1585 				ret = -EUCLEAN;
1586 			} else {
1587 				read_extent_buffer(leaf, &bg,
1588 					btrfs_item_ptr_offset(leaf, slot),
1589 					sizeof(bg));
1590 				flags = btrfs_stack_block_group_flags(&bg) &
1591 					BTRFS_BLOCK_GROUP_TYPE_MASK;
1592 
1593 				if (flags != (em->map_lookup->type &
1594 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1595 					btrfs_err(fs_info,
1596 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1597 						found_key.objectid,
1598 						found_key.offset, flags,
1599 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
1600 						 em->map_lookup->type));
1601 					ret = -EUCLEAN;
1602 				} else {
1603 					ret = 0;
1604 				}
1605 			}
1606 			free_extent_map(em);
1607 			goto out;
1608 		}
1609 		path->slots[0]++;
1610 	}
1611 out:
1612 	return ret;
1613 }
1614 
1615 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1616 {
1617 	u64 extra_flags = chunk_to_extended(flags) &
1618 				BTRFS_EXTENDED_PROFILE_MASK;
1619 
1620 	write_seqlock(&fs_info->profiles_lock);
1621 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1622 		fs_info->avail_data_alloc_bits |= extra_flags;
1623 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1624 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1625 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1626 		fs_info->avail_system_alloc_bits |= extra_flags;
1627 	write_sequnlock(&fs_info->profiles_lock);
1628 }
1629 
1630 /**
1631  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1632  * @chunk_start:   logical address of block group
1633  * @physical:	   physical address to map to logical addresses
1634  * @logical:	   return array of logical addresses which map to @physical
1635  * @naddrs:	   length of @logical
1636  * @stripe_len:    size of IO stripe for the given block group
1637  *
1638  * Maps a particular @physical disk address to a list of @logical addresses.
1639  * Used primarily to exclude those portions of a block group that contain super
1640  * block copies.
1641  */
1642 EXPORT_FOR_TESTS
1643 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1644 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1645 {
1646 	struct extent_map *em;
1647 	struct map_lookup *map;
1648 	u64 *buf;
1649 	u64 bytenr;
1650 	u64 data_stripe_length;
1651 	u64 io_stripe_size;
1652 	int i, nr = 0;
1653 	int ret = 0;
1654 
1655 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1656 	if (IS_ERR(em))
1657 		return -EIO;
1658 
1659 	map = em->map_lookup;
1660 	data_stripe_length = em->len;
1661 	io_stripe_size = map->stripe_len;
1662 
1663 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1664 		data_stripe_length = div_u64(data_stripe_length,
1665 					     map->num_stripes / map->sub_stripes);
1666 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1667 		data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
1668 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1669 		data_stripe_length = div_u64(data_stripe_length,
1670 					     nr_data_stripes(map));
1671 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1672 	}
1673 
1674 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1675 	if (!buf) {
1676 		ret = -ENOMEM;
1677 		goto out;
1678 	}
1679 
1680 	for (i = 0; i < map->num_stripes; i++) {
1681 		bool already_inserted = false;
1682 		u64 stripe_nr;
1683 		int j;
1684 
1685 		if (!in_range(physical, map->stripes[i].physical,
1686 			      data_stripe_length))
1687 			continue;
1688 
1689 		stripe_nr = physical - map->stripes[i].physical;
1690 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1691 
1692 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1693 			stripe_nr = stripe_nr * map->num_stripes + i;
1694 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1695 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1696 			stripe_nr = stripe_nr * map->num_stripes + i;
1697 		}
1698 		/*
1699 		 * The remaining case would be for RAID56, multiply by
1700 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1701 		 * instead of map->stripe_len
1702 		 */
1703 
1704 		bytenr = chunk_start + stripe_nr * io_stripe_size;
1705 
1706 		/* Ensure we don't add duplicate addresses */
1707 		for (j = 0; j < nr; j++) {
1708 			if (buf[j] == bytenr) {
1709 				already_inserted = true;
1710 				break;
1711 			}
1712 		}
1713 
1714 		if (!already_inserted)
1715 			buf[nr++] = bytenr;
1716 	}
1717 
1718 	*logical = buf;
1719 	*naddrs = nr;
1720 	*stripe_len = io_stripe_size;
1721 out:
1722 	free_extent_map(em);
1723 	return ret;
1724 }
1725 
1726 static int exclude_super_stripes(struct btrfs_block_group *cache)
1727 {
1728 	struct btrfs_fs_info *fs_info = cache->fs_info;
1729 	u64 bytenr;
1730 	u64 *logical;
1731 	int stripe_len;
1732 	int i, nr, ret;
1733 
1734 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1735 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1736 		cache->bytes_super += stripe_len;
1737 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1738 						stripe_len);
1739 		if (ret)
1740 			return ret;
1741 	}
1742 
1743 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1744 		bytenr = btrfs_sb_offset(i);
1745 		ret = btrfs_rmap_block(fs_info, cache->start,
1746 				       bytenr, &logical, &nr, &stripe_len);
1747 		if (ret)
1748 			return ret;
1749 
1750 		while (nr--) {
1751 			u64 start, len;
1752 
1753 			if (logical[nr] > cache->start + cache->length)
1754 				continue;
1755 
1756 			if (logical[nr] + stripe_len <= cache->start)
1757 				continue;
1758 
1759 			start = logical[nr];
1760 			if (start < cache->start) {
1761 				start = cache->start;
1762 				len = (logical[nr] + stripe_len) - start;
1763 			} else {
1764 				len = min_t(u64, stripe_len,
1765 					    cache->start + cache->length - start);
1766 			}
1767 
1768 			cache->bytes_super += len;
1769 			ret = btrfs_add_excluded_extent(fs_info, start, len);
1770 			if (ret) {
1771 				kfree(logical);
1772 				return ret;
1773 			}
1774 		}
1775 
1776 		kfree(logical);
1777 	}
1778 	return 0;
1779 }
1780 
1781 static void link_block_group(struct btrfs_block_group *cache)
1782 {
1783 	struct btrfs_space_info *space_info = cache->space_info;
1784 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1785 	bool first = false;
1786 
1787 	down_write(&space_info->groups_sem);
1788 	if (list_empty(&space_info->block_groups[index]))
1789 		first = true;
1790 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1791 	up_write(&space_info->groups_sem);
1792 
1793 	if (first)
1794 		btrfs_sysfs_add_block_group_type(cache);
1795 }
1796 
1797 static struct btrfs_block_group *btrfs_create_block_group_cache(
1798 		struct btrfs_fs_info *fs_info, u64 start)
1799 {
1800 	struct btrfs_block_group *cache;
1801 
1802 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1803 	if (!cache)
1804 		return NULL;
1805 
1806 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1807 					GFP_NOFS);
1808 	if (!cache->free_space_ctl) {
1809 		kfree(cache);
1810 		return NULL;
1811 	}
1812 
1813 	cache->start = start;
1814 
1815 	cache->fs_info = fs_info;
1816 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1817 	set_free_space_tree_thresholds(cache);
1818 
1819 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1820 
1821 	atomic_set(&cache->count, 1);
1822 	spin_lock_init(&cache->lock);
1823 	init_rwsem(&cache->data_rwsem);
1824 	INIT_LIST_HEAD(&cache->list);
1825 	INIT_LIST_HEAD(&cache->cluster_list);
1826 	INIT_LIST_HEAD(&cache->bg_list);
1827 	INIT_LIST_HEAD(&cache->ro_list);
1828 	INIT_LIST_HEAD(&cache->discard_list);
1829 	INIT_LIST_HEAD(&cache->dirty_list);
1830 	INIT_LIST_HEAD(&cache->io_list);
1831 	btrfs_init_free_space_ctl(cache);
1832 	atomic_set(&cache->frozen, 0);
1833 	mutex_init(&cache->free_space_lock);
1834 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1835 
1836 	return cache;
1837 }
1838 
1839 /*
1840  * Iterate all chunks and verify that each of them has the corresponding block
1841  * group
1842  */
1843 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1844 {
1845 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1846 	struct extent_map *em;
1847 	struct btrfs_block_group *bg;
1848 	u64 start = 0;
1849 	int ret = 0;
1850 
1851 	while (1) {
1852 		read_lock(&map_tree->lock);
1853 		/*
1854 		 * lookup_extent_mapping will return the first extent map
1855 		 * intersecting the range, so setting @len to 1 is enough to
1856 		 * get the first chunk.
1857 		 */
1858 		em = lookup_extent_mapping(map_tree, start, 1);
1859 		read_unlock(&map_tree->lock);
1860 		if (!em)
1861 			break;
1862 
1863 		bg = btrfs_lookup_block_group(fs_info, em->start);
1864 		if (!bg) {
1865 			btrfs_err(fs_info,
1866 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1867 				     em->start, em->len);
1868 			ret = -EUCLEAN;
1869 			free_extent_map(em);
1870 			break;
1871 		}
1872 		if (bg->start != em->start || bg->length != em->len ||
1873 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1874 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1875 			btrfs_err(fs_info,
1876 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1877 				em->start, em->len,
1878 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1879 				bg->start, bg->length,
1880 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1881 			ret = -EUCLEAN;
1882 			free_extent_map(em);
1883 			btrfs_put_block_group(bg);
1884 			break;
1885 		}
1886 		start = em->start + em->len;
1887 		free_extent_map(em);
1888 		btrfs_put_block_group(bg);
1889 	}
1890 	return ret;
1891 }
1892 
1893 static int read_block_group_item(struct btrfs_block_group *cache,
1894 				 struct btrfs_path *path,
1895 				 const struct btrfs_key *key)
1896 {
1897 	struct extent_buffer *leaf = path->nodes[0];
1898 	struct btrfs_block_group_item bgi;
1899 	int slot = path->slots[0];
1900 
1901 	cache->length = key->offset;
1902 
1903 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1904 			   sizeof(bgi));
1905 	cache->used = btrfs_stack_block_group_used(&bgi);
1906 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1907 
1908 	return 0;
1909 }
1910 
1911 static int read_one_block_group(struct btrfs_fs_info *info,
1912 				struct btrfs_path *path,
1913 				const struct btrfs_key *key,
1914 				int need_clear)
1915 {
1916 	struct btrfs_block_group *cache;
1917 	struct btrfs_space_info *space_info;
1918 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1919 	int ret;
1920 
1921 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1922 
1923 	cache = btrfs_create_block_group_cache(info, key->objectid);
1924 	if (!cache)
1925 		return -ENOMEM;
1926 
1927 	ret = read_block_group_item(cache, path, key);
1928 	if (ret < 0)
1929 		goto error;
1930 
1931 	if (need_clear) {
1932 		/*
1933 		 * When we mount with old space cache, we need to
1934 		 * set BTRFS_DC_CLEAR and set dirty flag.
1935 		 *
1936 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1937 		 *    truncate the old free space cache inode and
1938 		 *    setup a new one.
1939 		 * b) Setting 'dirty flag' makes sure that we flush
1940 		 *    the new space cache info onto disk.
1941 		 */
1942 		if (btrfs_test_opt(info, SPACE_CACHE))
1943 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1944 	}
1945 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1946 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1947 			btrfs_err(info,
1948 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1949 				  cache->start);
1950 			ret = -EINVAL;
1951 			goto error;
1952 	}
1953 
1954 	/*
1955 	 * We need to exclude the super stripes now so that the space info has
1956 	 * super bytes accounted for, otherwise we'll think we have more space
1957 	 * than we actually do.
1958 	 */
1959 	ret = exclude_super_stripes(cache);
1960 	if (ret) {
1961 		/* We may have excluded something, so call this just in case. */
1962 		btrfs_free_excluded_extents(cache);
1963 		goto error;
1964 	}
1965 
1966 	/*
1967 	 * Check for two cases, either we are full, and therefore don't need
1968 	 * to bother with the caching work since we won't find any space, or we
1969 	 * are empty, and we can just add all the space in and be done with it.
1970 	 * This saves us _a_lot_ of time, particularly in the full case.
1971 	 */
1972 	if (cache->length == cache->used) {
1973 		cache->last_byte_to_unpin = (u64)-1;
1974 		cache->cached = BTRFS_CACHE_FINISHED;
1975 		btrfs_free_excluded_extents(cache);
1976 	} else if (cache->used == 0) {
1977 		cache->last_byte_to_unpin = (u64)-1;
1978 		cache->cached = BTRFS_CACHE_FINISHED;
1979 		add_new_free_space(cache, cache->start,
1980 				   cache->start + cache->length);
1981 		btrfs_free_excluded_extents(cache);
1982 	}
1983 
1984 	ret = btrfs_add_block_group_cache(info, cache);
1985 	if (ret) {
1986 		btrfs_remove_free_space_cache(cache);
1987 		goto error;
1988 	}
1989 	trace_btrfs_add_block_group(info, cache, 0);
1990 	btrfs_update_space_info(info, cache->flags, cache->length,
1991 				cache->used, cache->bytes_super, &space_info);
1992 
1993 	cache->space_info = space_info;
1994 
1995 	link_block_group(cache);
1996 
1997 	set_avail_alloc_bits(info, cache->flags);
1998 	if (btrfs_chunk_readonly(info, cache->start)) {
1999 		inc_block_group_ro(cache, 1);
2000 	} else if (cache->used == 0) {
2001 		ASSERT(list_empty(&cache->bg_list));
2002 		if (btrfs_test_opt(info, DISCARD_ASYNC))
2003 			btrfs_discard_queue_work(&info->discard_ctl, cache);
2004 		else
2005 			btrfs_mark_bg_unused(cache);
2006 	}
2007 	return 0;
2008 error:
2009 	btrfs_put_block_group(cache);
2010 	return ret;
2011 }
2012 
2013 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2014 {
2015 	struct btrfs_path *path;
2016 	int ret;
2017 	struct btrfs_block_group *cache;
2018 	struct btrfs_space_info *space_info;
2019 	struct btrfs_key key;
2020 	int need_clear = 0;
2021 	u64 cache_gen;
2022 
2023 	key.objectid = 0;
2024 	key.offset = 0;
2025 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2026 	path = btrfs_alloc_path();
2027 	if (!path)
2028 		return -ENOMEM;
2029 
2030 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2031 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2032 	    btrfs_super_generation(info->super_copy) != cache_gen)
2033 		need_clear = 1;
2034 	if (btrfs_test_opt(info, CLEAR_CACHE))
2035 		need_clear = 1;
2036 
2037 	while (1) {
2038 		ret = find_first_block_group(info, path, &key);
2039 		if (ret > 0)
2040 			break;
2041 		if (ret != 0)
2042 			goto error;
2043 
2044 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2045 		ret = read_one_block_group(info, path, &key, need_clear);
2046 		if (ret < 0)
2047 			goto error;
2048 		key.objectid += key.offset;
2049 		key.offset = 0;
2050 		btrfs_release_path(path);
2051 	}
2052 
2053 	rcu_read_lock();
2054 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
2055 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2056 		      (BTRFS_BLOCK_GROUP_RAID10 |
2057 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2058 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2059 		       BTRFS_BLOCK_GROUP_DUP)))
2060 			continue;
2061 		/*
2062 		 * Avoid allocating from un-mirrored block group if there are
2063 		 * mirrored block groups.
2064 		 */
2065 		list_for_each_entry(cache,
2066 				&space_info->block_groups[BTRFS_RAID_RAID0],
2067 				list)
2068 			inc_block_group_ro(cache, 1);
2069 		list_for_each_entry(cache,
2070 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2071 				list)
2072 			inc_block_group_ro(cache, 1);
2073 	}
2074 	rcu_read_unlock();
2075 
2076 	btrfs_init_global_block_rsv(info);
2077 	ret = check_chunk_block_group_mappings(info);
2078 error:
2079 	btrfs_free_path(path);
2080 	return ret;
2081 }
2082 
2083 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2084 				   struct btrfs_block_group *block_group)
2085 {
2086 	struct btrfs_fs_info *fs_info = trans->fs_info;
2087 	struct btrfs_block_group_item bgi;
2088 	struct btrfs_root *root;
2089 	struct btrfs_key key;
2090 
2091 	spin_lock(&block_group->lock);
2092 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2093 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2094 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2095 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2096 	key.objectid = block_group->start;
2097 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2098 	key.offset = block_group->length;
2099 	spin_unlock(&block_group->lock);
2100 
2101 	root = fs_info->extent_root;
2102 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2103 }
2104 
2105 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2106 {
2107 	struct btrfs_fs_info *fs_info = trans->fs_info;
2108 	struct btrfs_block_group *block_group;
2109 	int ret = 0;
2110 
2111 	if (!trans->can_flush_pending_bgs)
2112 		return;
2113 
2114 	while (!list_empty(&trans->new_bgs)) {
2115 		block_group = list_first_entry(&trans->new_bgs,
2116 					       struct btrfs_block_group,
2117 					       bg_list);
2118 		if (ret)
2119 			goto next;
2120 
2121 		ret = insert_block_group_item(trans, block_group);
2122 		if (ret)
2123 			btrfs_abort_transaction(trans, ret);
2124 		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2125 					block_group->length);
2126 		if (ret)
2127 			btrfs_abort_transaction(trans, ret);
2128 		add_block_group_free_space(trans, block_group);
2129 		/* Already aborted the transaction if it failed. */
2130 next:
2131 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2132 		list_del_init(&block_group->bg_list);
2133 	}
2134 	btrfs_trans_release_chunk_metadata(trans);
2135 }
2136 
2137 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2138 			   u64 type, u64 chunk_offset, u64 size)
2139 {
2140 	struct btrfs_fs_info *fs_info = trans->fs_info;
2141 	struct btrfs_block_group *cache;
2142 	int ret;
2143 
2144 	btrfs_set_log_full_commit(trans);
2145 
2146 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2147 	if (!cache)
2148 		return -ENOMEM;
2149 
2150 	cache->length = size;
2151 	cache->used = bytes_used;
2152 	cache->flags = type;
2153 	cache->last_byte_to_unpin = (u64)-1;
2154 	cache->cached = BTRFS_CACHE_FINISHED;
2155 	cache->needs_free_space = 1;
2156 	ret = exclude_super_stripes(cache);
2157 	if (ret) {
2158 		/* We may have excluded something, so call this just in case */
2159 		btrfs_free_excluded_extents(cache);
2160 		btrfs_put_block_group(cache);
2161 		return ret;
2162 	}
2163 
2164 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2165 
2166 	btrfs_free_excluded_extents(cache);
2167 
2168 #ifdef CONFIG_BTRFS_DEBUG
2169 	if (btrfs_should_fragment_free_space(cache)) {
2170 		u64 new_bytes_used = size - bytes_used;
2171 
2172 		bytes_used += new_bytes_used >> 1;
2173 		fragment_free_space(cache);
2174 	}
2175 #endif
2176 	/*
2177 	 * Ensure the corresponding space_info object is created and
2178 	 * assigned to our block group. We want our bg to be added to the rbtree
2179 	 * with its ->space_info set.
2180 	 */
2181 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2182 	ASSERT(cache->space_info);
2183 
2184 	ret = btrfs_add_block_group_cache(fs_info, cache);
2185 	if (ret) {
2186 		btrfs_remove_free_space_cache(cache);
2187 		btrfs_put_block_group(cache);
2188 		return ret;
2189 	}
2190 
2191 	/*
2192 	 * Now that our block group has its ->space_info set and is inserted in
2193 	 * the rbtree, update the space info's counters.
2194 	 */
2195 	trace_btrfs_add_block_group(fs_info, cache, 1);
2196 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2197 				cache->bytes_super, &cache->space_info);
2198 	btrfs_update_global_block_rsv(fs_info);
2199 
2200 	link_block_group(cache);
2201 
2202 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2203 	trans->delayed_ref_updates++;
2204 	btrfs_update_delayed_refs_rsv(trans);
2205 
2206 	set_avail_alloc_bits(fs_info, type);
2207 	return 0;
2208 }
2209 
2210 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2211 {
2212 	u64 num_devices;
2213 	u64 stripped;
2214 
2215 	/*
2216 	 * if restripe for this chunk_type is on pick target profile and
2217 	 * return, otherwise do the usual balance
2218 	 */
2219 	stripped = get_restripe_target(fs_info, flags);
2220 	if (stripped)
2221 		return extended_to_chunk(stripped);
2222 
2223 	num_devices = fs_info->fs_devices->rw_devices;
2224 
2225 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2226 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2227 
2228 	if (num_devices == 1) {
2229 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2230 		stripped = flags & ~stripped;
2231 
2232 		/* turn raid0 into single device chunks */
2233 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
2234 			return stripped;
2235 
2236 		/* turn mirroring into duplication */
2237 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2238 			     BTRFS_BLOCK_GROUP_RAID10))
2239 			return stripped | BTRFS_BLOCK_GROUP_DUP;
2240 	} else {
2241 		/* they already had raid on here, just return */
2242 		if (flags & stripped)
2243 			return flags;
2244 
2245 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2246 		stripped = flags & ~stripped;
2247 
2248 		/* switch duplicated blocks with raid1 */
2249 		if (flags & BTRFS_BLOCK_GROUP_DUP)
2250 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
2251 
2252 		/* this is drive concat, leave it alone */
2253 	}
2254 
2255 	return flags;
2256 }
2257 
2258 /*
2259  * Mark one block group RO, can be called several times for the same block
2260  * group.
2261  *
2262  * @cache:		the destination block group
2263  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2264  * 			ensure we still have some free space after marking this
2265  * 			block group RO.
2266  */
2267 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2268 			     bool do_chunk_alloc)
2269 {
2270 	struct btrfs_fs_info *fs_info = cache->fs_info;
2271 	struct btrfs_trans_handle *trans;
2272 	u64 alloc_flags;
2273 	int ret;
2274 
2275 again:
2276 	trans = btrfs_join_transaction(fs_info->extent_root);
2277 	if (IS_ERR(trans))
2278 		return PTR_ERR(trans);
2279 
2280 	/*
2281 	 * we're not allowed to set block groups readonly after the dirty
2282 	 * block groups cache has started writing.  If it already started,
2283 	 * back off and let this transaction commit
2284 	 */
2285 	mutex_lock(&fs_info->ro_block_group_mutex);
2286 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2287 		u64 transid = trans->transid;
2288 
2289 		mutex_unlock(&fs_info->ro_block_group_mutex);
2290 		btrfs_end_transaction(trans);
2291 
2292 		ret = btrfs_wait_for_commit(fs_info, transid);
2293 		if (ret)
2294 			return ret;
2295 		goto again;
2296 	}
2297 
2298 	if (do_chunk_alloc) {
2299 		/*
2300 		 * If we are changing raid levels, try to allocate a
2301 		 * corresponding block group with the new raid level.
2302 		 */
2303 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2304 		if (alloc_flags != cache->flags) {
2305 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2306 						CHUNK_ALLOC_FORCE);
2307 			/*
2308 			 * ENOSPC is allowed here, we may have enough space
2309 			 * already allocated at the new raid level to carry on
2310 			 */
2311 			if (ret == -ENOSPC)
2312 				ret = 0;
2313 			if (ret < 0)
2314 				goto out;
2315 		}
2316 	}
2317 
2318 	ret = inc_block_group_ro(cache, 0);
2319 	if (!do_chunk_alloc)
2320 		goto unlock_out;
2321 	if (!ret)
2322 		goto out;
2323 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2324 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2325 	if (ret < 0)
2326 		goto out;
2327 	ret = inc_block_group_ro(cache, 0);
2328 out:
2329 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2330 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2331 		mutex_lock(&fs_info->chunk_mutex);
2332 		check_system_chunk(trans, alloc_flags);
2333 		mutex_unlock(&fs_info->chunk_mutex);
2334 	}
2335 unlock_out:
2336 	mutex_unlock(&fs_info->ro_block_group_mutex);
2337 
2338 	btrfs_end_transaction(trans);
2339 	return ret;
2340 }
2341 
2342 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2343 {
2344 	struct btrfs_space_info *sinfo = cache->space_info;
2345 	u64 num_bytes;
2346 
2347 	BUG_ON(!cache->ro);
2348 
2349 	spin_lock(&sinfo->lock);
2350 	spin_lock(&cache->lock);
2351 	if (!--cache->ro) {
2352 		num_bytes = cache->length - cache->reserved -
2353 			    cache->pinned - cache->bytes_super - cache->used;
2354 		sinfo->bytes_readonly -= num_bytes;
2355 		list_del_init(&cache->ro_list);
2356 	}
2357 	spin_unlock(&cache->lock);
2358 	spin_unlock(&sinfo->lock);
2359 }
2360 
2361 static int update_block_group_item(struct btrfs_trans_handle *trans,
2362 				   struct btrfs_path *path,
2363 				   struct btrfs_block_group *cache)
2364 {
2365 	struct btrfs_fs_info *fs_info = trans->fs_info;
2366 	int ret;
2367 	struct btrfs_root *root = fs_info->extent_root;
2368 	unsigned long bi;
2369 	struct extent_buffer *leaf;
2370 	struct btrfs_block_group_item bgi;
2371 	struct btrfs_key key;
2372 
2373 	key.objectid = cache->start;
2374 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2375 	key.offset = cache->length;
2376 
2377 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2378 	if (ret) {
2379 		if (ret > 0)
2380 			ret = -ENOENT;
2381 		goto fail;
2382 	}
2383 
2384 	leaf = path->nodes[0];
2385 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2386 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2387 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2388 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2389 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2390 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2391 	btrfs_mark_buffer_dirty(leaf);
2392 fail:
2393 	btrfs_release_path(path);
2394 	return ret;
2395 
2396 }
2397 
2398 static int cache_save_setup(struct btrfs_block_group *block_group,
2399 			    struct btrfs_trans_handle *trans,
2400 			    struct btrfs_path *path)
2401 {
2402 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2403 	struct btrfs_root *root = fs_info->tree_root;
2404 	struct inode *inode = NULL;
2405 	struct extent_changeset *data_reserved = NULL;
2406 	u64 alloc_hint = 0;
2407 	int dcs = BTRFS_DC_ERROR;
2408 	u64 num_pages = 0;
2409 	int retries = 0;
2410 	int ret = 0;
2411 
2412 	/*
2413 	 * If this block group is smaller than 100 megs don't bother caching the
2414 	 * block group.
2415 	 */
2416 	if (block_group->length < (100 * SZ_1M)) {
2417 		spin_lock(&block_group->lock);
2418 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2419 		spin_unlock(&block_group->lock);
2420 		return 0;
2421 	}
2422 
2423 	if (TRANS_ABORTED(trans))
2424 		return 0;
2425 again:
2426 	inode = lookup_free_space_inode(block_group, path);
2427 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2428 		ret = PTR_ERR(inode);
2429 		btrfs_release_path(path);
2430 		goto out;
2431 	}
2432 
2433 	if (IS_ERR(inode)) {
2434 		BUG_ON(retries);
2435 		retries++;
2436 
2437 		if (block_group->ro)
2438 			goto out_free;
2439 
2440 		ret = create_free_space_inode(trans, block_group, path);
2441 		if (ret)
2442 			goto out_free;
2443 		goto again;
2444 	}
2445 
2446 	/*
2447 	 * We want to set the generation to 0, that way if anything goes wrong
2448 	 * from here on out we know not to trust this cache when we load up next
2449 	 * time.
2450 	 */
2451 	BTRFS_I(inode)->generation = 0;
2452 	ret = btrfs_update_inode(trans, root, inode);
2453 	if (ret) {
2454 		/*
2455 		 * So theoretically we could recover from this, simply set the
2456 		 * super cache generation to 0 so we know to invalidate the
2457 		 * cache, but then we'd have to keep track of the block groups
2458 		 * that fail this way so we know we _have_ to reset this cache
2459 		 * before the next commit or risk reading stale cache.  So to
2460 		 * limit our exposure to horrible edge cases lets just abort the
2461 		 * transaction, this only happens in really bad situations
2462 		 * anyway.
2463 		 */
2464 		btrfs_abort_transaction(trans, ret);
2465 		goto out_put;
2466 	}
2467 	WARN_ON(ret);
2468 
2469 	/* We've already setup this transaction, go ahead and exit */
2470 	if (block_group->cache_generation == trans->transid &&
2471 	    i_size_read(inode)) {
2472 		dcs = BTRFS_DC_SETUP;
2473 		goto out_put;
2474 	}
2475 
2476 	if (i_size_read(inode) > 0) {
2477 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2478 					&fs_info->global_block_rsv);
2479 		if (ret)
2480 			goto out_put;
2481 
2482 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2483 		if (ret)
2484 			goto out_put;
2485 	}
2486 
2487 	spin_lock(&block_group->lock);
2488 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2489 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2490 		/*
2491 		 * don't bother trying to write stuff out _if_
2492 		 * a) we're not cached,
2493 		 * b) we're with nospace_cache mount option,
2494 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2495 		 */
2496 		dcs = BTRFS_DC_WRITTEN;
2497 		spin_unlock(&block_group->lock);
2498 		goto out_put;
2499 	}
2500 	spin_unlock(&block_group->lock);
2501 
2502 	/*
2503 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2504 	 * skip doing the setup, we've already cleared the cache so we're safe.
2505 	 */
2506 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2507 		ret = -ENOSPC;
2508 		goto out_put;
2509 	}
2510 
2511 	/*
2512 	 * Try to preallocate enough space based on how big the block group is.
2513 	 * Keep in mind this has to include any pinned space which could end up
2514 	 * taking up quite a bit since it's not folded into the other space
2515 	 * cache.
2516 	 */
2517 	num_pages = div_u64(block_group->length, SZ_256M);
2518 	if (!num_pages)
2519 		num_pages = 1;
2520 
2521 	num_pages *= 16;
2522 	num_pages *= PAGE_SIZE;
2523 
2524 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2525 	if (ret)
2526 		goto out_put;
2527 
2528 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2529 					      num_pages, num_pages,
2530 					      &alloc_hint);
2531 	/*
2532 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2533 	 * of metadata or split extents when writing the cache out, which means
2534 	 * we can enospc if we are heavily fragmented in addition to just normal
2535 	 * out of space conditions.  So if we hit this just skip setting up any
2536 	 * other block groups for this transaction, maybe we'll unpin enough
2537 	 * space the next time around.
2538 	 */
2539 	if (!ret)
2540 		dcs = BTRFS_DC_SETUP;
2541 	else if (ret == -ENOSPC)
2542 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2543 
2544 out_put:
2545 	iput(inode);
2546 out_free:
2547 	btrfs_release_path(path);
2548 out:
2549 	spin_lock(&block_group->lock);
2550 	if (!ret && dcs == BTRFS_DC_SETUP)
2551 		block_group->cache_generation = trans->transid;
2552 	block_group->disk_cache_state = dcs;
2553 	spin_unlock(&block_group->lock);
2554 
2555 	extent_changeset_free(data_reserved);
2556 	return ret;
2557 }
2558 
2559 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2560 {
2561 	struct btrfs_fs_info *fs_info = trans->fs_info;
2562 	struct btrfs_block_group *cache, *tmp;
2563 	struct btrfs_transaction *cur_trans = trans->transaction;
2564 	struct btrfs_path *path;
2565 
2566 	if (list_empty(&cur_trans->dirty_bgs) ||
2567 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2568 		return 0;
2569 
2570 	path = btrfs_alloc_path();
2571 	if (!path)
2572 		return -ENOMEM;
2573 
2574 	/* Could add new block groups, use _safe just in case */
2575 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2576 				 dirty_list) {
2577 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2578 			cache_save_setup(cache, trans, path);
2579 	}
2580 
2581 	btrfs_free_path(path);
2582 	return 0;
2583 }
2584 
2585 /*
2586  * Transaction commit does final block group cache writeback during a critical
2587  * section where nothing is allowed to change the FS.  This is required in
2588  * order for the cache to actually match the block group, but can introduce a
2589  * lot of latency into the commit.
2590  *
2591  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2592  * There's a chance we'll have to redo some of it if the block group changes
2593  * again during the commit, but it greatly reduces the commit latency by
2594  * getting rid of the easy block groups while we're still allowing others to
2595  * join the commit.
2596  */
2597 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2598 {
2599 	struct btrfs_fs_info *fs_info = trans->fs_info;
2600 	struct btrfs_block_group *cache;
2601 	struct btrfs_transaction *cur_trans = trans->transaction;
2602 	int ret = 0;
2603 	int should_put;
2604 	struct btrfs_path *path = NULL;
2605 	LIST_HEAD(dirty);
2606 	struct list_head *io = &cur_trans->io_bgs;
2607 	int num_started = 0;
2608 	int loops = 0;
2609 
2610 	spin_lock(&cur_trans->dirty_bgs_lock);
2611 	if (list_empty(&cur_trans->dirty_bgs)) {
2612 		spin_unlock(&cur_trans->dirty_bgs_lock);
2613 		return 0;
2614 	}
2615 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2616 	spin_unlock(&cur_trans->dirty_bgs_lock);
2617 
2618 again:
2619 	/* Make sure all the block groups on our dirty list actually exist */
2620 	btrfs_create_pending_block_groups(trans);
2621 
2622 	if (!path) {
2623 		path = btrfs_alloc_path();
2624 		if (!path)
2625 			return -ENOMEM;
2626 	}
2627 
2628 	/*
2629 	 * cache_write_mutex is here only to save us from balance or automatic
2630 	 * removal of empty block groups deleting this block group while we are
2631 	 * writing out the cache
2632 	 */
2633 	mutex_lock(&trans->transaction->cache_write_mutex);
2634 	while (!list_empty(&dirty)) {
2635 		bool drop_reserve = true;
2636 
2637 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2638 					 dirty_list);
2639 		/*
2640 		 * This can happen if something re-dirties a block group that
2641 		 * is already under IO.  Just wait for it to finish and then do
2642 		 * it all again
2643 		 */
2644 		if (!list_empty(&cache->io_list)) {
2645 			list_del_init(&cache->io_list);
2646 			btrfs_wait_cache_io(trans, cache, path);
2647 			btrfs_put_block_group(cache);
2648 		}
2649 
2650 
2651 		/*
2652 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2653 		 * it should update the cache_state.  Don't delete until after
2654 		 * we wait.
2655 		 *
2656 		 * Since we're not running in the commit critical section
2657 		 * we need the dirty_bgs_lock to protect from update_block_group
2658 		 */
2659 		spin_lock(&cur_trans->dirty_bgs_lock);
2660 		list_del_init(&cache->dirty_list);
2661 		spin_unlock(&cur_trans->dirty_bgs_lock);
2662 
2663 		should_put = 1;
2664 
2665 		cache_save_setup(cache, trans, path);
2666 
2667 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2668 			cache->io_ctl.inode = NULL;
2669 			ret = btrfs_write_out_cache(trans, cache, path);
2670 			if (ret == 0 && cache->io_ctl.inode) {
2671 				num_started++;
2672 				should_put = 0;
2673 
2674 				/*
2675 				 * The cache_write_mutex is protecting the
2676 				 * io_list, also refer to the definition of
2677 				 * btrfs_transaction::io_bgs for more details
2678 				 */
2679 				list_add_tail(&cache->io_list, io);
2680 			} else {
2681 				/*
2682 				 * If we failed to write the cache, the
2683 				 * generation will be bad and life goes on
2684 				 */
2685 				ret = 0;
2686 			}
2687 		}
2688 		if (!ret) {
2689 			ret = update_block_group_item(trans, path, cache);
2690 			/*
2691 			 * Our block group might still be attached to the list
2692 			 * of new block groups in the transaction handle of some
2693 			 * other task (struct btrfs_trans_handle->new_bgs). This
2694 			 * means its block group item isn't yet in the extent
2695 			 * tree. If this happens ignore the error, as we will
2696 			 * try again later in the critical section of the
2697 			 * transaction commit.
2698 			 */
2699 			if (ret == -ENOENT) {
2700 				ret = 0;
2701 				spin_lock(&cur_trans->dirty_bgs_lock);
2702 				if (list_empty(&cache->dirty_list)) {
2703 					list_add_tail(&cache->dirty_list,
2704 						      &cur_trans->dirty_bgs);
2705 					btrfs_get_block_group(cache);
2706 					drop_reserve = false;
2707 				}
2708 				spin_unlock(&cur_trans->dirty_bgs_lock);
2709 			} else if (ret) {
2710 				btrfs_abort_transaction(trans, ret);
2711 			}
2712 		}
2713 
2714 		/* If it's not on the io list, we need to put the block group */
2715 		if (should_put)
2716 			btrfs_put_block_group(cache);
2717 		if (drop_reserve)
2718 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2719 
2720 		if (ret)
2721 			break;
2722 
2723 		/*
2724 		 * Avoid blocking other tasks for too long. It might even save
2725 		 * us from writing caches for block groups that are going to be
2726 		 * removed.
2727 		 */
2728 		mutex_unlock(&trans->transaction->cache_write_mutex);
2729 		mutex_lock(&trans->transaction->cache_write_mutex);
2730 	}
2731 	mutex_unlock(&trans->transaction->cache_write_mutex);
2732 
2733 	/*
2734 	 * Go through delayed refs for all the stuff we've just kicked off
2735 	 * and then loop back (just once)
2736 	 */
2737 	ret = btrfs_run_delayed_refs(trans, 0);
2738 	if (!ret && loops == 0) {
2739 		loops++;
2740 		spin_lock(&cur_trans->dirty_bgs_lock);
2741 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2742 		/*
2743 		 * dirty_bgs_lock protects us from concurrent block group
2744 		 * deletes too (not just cache_write_mutex).
2745 		 */
2746 		if (!list_empty(&dirty)) {
2747 			spin_unlock(&cur_trans->dirty_bgs_lock);
2748 			goto again;
2749 		}
2750 		spin_unlock(&cur_trans->dirty_bgs_lock);
2751 	} else if (ret < 0) {
2752 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2753 	}
2754 
2755 	btrfs_free_path(path);
2756 	return ret;
2757 }
2758 
2759 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2760 {
2761 	struct btrfs_fs_info *fs_info = trans->fs_info;
2762 	struct btrfs_block_group *cache;
2763 	struct btrfs_transaction *cur_trans = trans->transaction;
2764 	int ret = 0;
2765 	int should_put;
2766 	struct btrfs_path *path;
2767 	struct list_head *io = &cur_trans->io_bgs;
2768 	int num_started = 0;
2769 
2770 	path = btrfs_alloc_path();
2771 	if (!path)
2772 		return -ENOMEM;
2773 
2774 	/*
2775 	 * Even though we are in the critical section of the transaction commit,
2776 	 * we can still have concurrent tasks adding elements to this
2777 	 * transaction's list of dirty block groups. These tasks correspond to
2778 	 * endio free space workers started when writeback finishes for a
2779 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2780 	 * allocate new block groups as a result of COWing nodes of the root
2781 	 * tree when updating the free space inode. The writeback for the space
2782 	 * caches is triggered by an earlier call to
2783 	 * btrfs_start_dirty_block_groups() and iterations of the following
2784 	 * loop.
2785 	 * Also we want to do the cache_save_setup first and then run the
2786 	 * delayed refs to make sure we have the best chance at doing this all
2787 	 * in one shot.
2788 	 */
2789 	spin_lock(&cur_trans->dirty_bgs_lock);
2790 	while (!list_empty(&cur_trans->dirty_bgs)) {
2791 		cache = list_first_entry(&cur_trans->dirty_bgs,
2792 					 struct btrfs_block_group,
2793 					 dirty_list);
2794 
2795 		/*
2796 		 * This can happen if cache_save_setup re-dirties a block group
2797 		 * that is already under IO.  Just wait for it to finish and
2798 		 * then do it all again
2799 		 */
2800 		if (!list_empty(&cache->io_list)) {
2801 			spin_unlock(&cur_trans->dirty_bgs_lock);
2802 			list_del_init(&cache->io_list);
2803 			btrfs_wait_cache_io(trans, cache, path);
2804 			btrfs_put_block_group(cache);
2805 			spin_lock(&cur_trans->dirty_bgs_lock);
2806 		}
2807 
2808 		/*
2809 		 * Don't remove from the dirty list until after we've waited on
2810 		 * any pending IO
2811 		 */
2812 		list_del_init(&cache->dirty_list);
2813 		spin_unlock(&cur_trans->dirty_bgs_lock);
2814 		should_put = 1;
2815 
2816 		cache_save_setup(cache, trans, path);
2817 
2818 		if (!ret)
2819 			ret = btrfs_run_delayed_refs(trans,
2820 						     (unsigned long) -1);
2821 
2822 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2823 			cache->io_ctl.inode = NULL;
2824 			ret = btrfs_write_out_cache(trans, cache, path);
2825 			if (ret == 0 && cache->io_ctl.inode) {
2826 				num_started++;
2827 				should_put = 0;
2828 				list_add_tail(&cache->io_list, io);
2829 			} else {
2830 				/*
2831 				 * If we failed to write the cache, the
2832 				 * generation will be bad and life goes on
2833 				 */
2834 				ret = 0;
2835 			}
2836 		}
2837 		if (!ret) {
2838 			ret = update_block_group_item(trans, path, cache);
2839 			/*
2840 			 * One of the free space endio workers might have
2841 			 * created a new block group while updating a free space
2842 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2843 			 * and hasn't released its transaction handle yet, in
2844 			 * which case the new block group is still attached to
2845 			 * its transaction handle and its creation has not
2846 			 * finished yet (no block group item in the extent tree
2847 			 * yet, etc). If this is the case, wait for all free
2848 			 * space endio workers to finish and retry. This is a
2849 			 * a very rare case so no need for a more efficient and
2850 			 * complex approach.
2851 			 */
2852 			if (ret == -ENOENT) {
2853 				wait_event(cur_trans->writer_wait,
2854 				   atomic_read(&cur_trans->num_writers) == 1);
2855 				ret = update_block_group_item(trans, path, cache);
2856 			}
2857 			if (ret)
2858 				btrfs_abort_transaction(trans, ret);
2859 		}
2860 
2861 		/* If its not on the io list, we need to put the block group */
2862 		if (should_put)
2863 			btrfs_put_block_group(cache);
2864 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2865 		spin_lock(&cur_trans->dirty_bgs_lock);
2866 	}
2867 	spin_unlock(&cur_trans->dirty_bgs_lock);
2868 
2869 	/*
2870 	 * Refer to the definition of io_bgs member for details why it's safe
2871 	 * to use it without any locking
2872 	 */
2873 	while (!list_empty(io)) {
2874 		cache = list_first_entry(io, struct btrfs_block_group,
2875 					 io_list);
2876 		list_del_init(&cache->io_list);
2877 		btrfs_wait_cache_io(trans, cache, path);
2878 		btrfs_put_block_group(cache);
2879 	}
2880 
2881 	btrfs_free_path(path);
2882 	return ret;
2883 }
2884 
2885 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2886 			     u64 bytenr, u64 num_bytes, int alloc)
2887 {
2888 	struct btrfs_fs_info *info = trans->fs_info;
2889 	struct btrfs_block_group *cache = NULL;
2890 	u64 total = num_bytes;
2891 	u64 old_val;
2892 	u64 byte_in_group;
2893 	int factor;
2894 	int ret = 0;
2895 
2896 	/* Block accounting for super block */
2897 	spin_lock(&info->delalloc_root_lock);
2898 	old_val = btrfs_super_bytes_used(info->super_copy);
2899 	if (alloc)
2900 		old_val += num_bytes;
2901 	else
2902 		old_val -= num_bytes;
2903 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2904 	spin_unlock(&info->delalloc_root_lock);
2905 
2906 	while (total) {
2907 		cache = btrfs_lookup_block_group(info, bytenr);
2908 		if (!cache) {
2909 			ret = -ENOENT;
2910 			break;
2911 		}
2912 		factor = btrfs_bg_type_to_factor(cache->flags);
2913 
2914 		/*
2915 		 * If this block group has free space cache written out, we
2916 		 * need to make sure to load it if we are removing space.  This
2917 		 * is because we need the unpinning stage to actually add the
2918 		 * space back to the block group, otherwise we will leak space.
2919 		 */
2920 		if (!alloc && !btrfs_block_group_done(cache))
2921 			btrfs_cache_block_group(cache, 1);
2922 
2923 		byte_in_group = bytenr - cache->start;
2924 		WARN_ON(byte_in_group > cache->length);
2925 
2926 		spin_lock(&cache->space_info->lock);
2927 		spin_lock(&cache->lock);
2928 
2929 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2930 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2931 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2932 
2933 		old_val = cache->used;
2934 		num_bytes = min(total, cache->length - byte_in_group);
2935 		if (alloc) {
2936 			old_val += num_bytes;
2937 			cache->used = old_val;
2938 			cache->reserved -= num_bytes;
2939 			cache->space_info->bytes_reserved -= num_bytes;
2940 			cache->space_info->bytes_used += num_bytes;
2941 			cache->space_info->disk_used += num_bytes * factor;
2942 			spin_unlock(&cache->lock);
2943 			spin_unlock(&cache->space_info->lock);
2944 		} else {
2945 			old_val -= num_bytes;
2946 			cache->used = old_val;
2947 			cache->pinned += num_bytes;
2948 			btrfs_space_info_update_bytes_pinned(info,
2949 					cache->space_info, num_bytes);
2950 			cache->space_info->bytes_used -= num_bytes;
2951 			cache->space_info->disk_used -= num_bytes * factor;
2952 			spin_unlock(&cache->lock);
2953 			spin_unlock(&cache->space_info->lock);
2954 
2955 			percpu_counter_add_batch(
2956 					&cache->space_info->total_bytes_pinned,
2957 					num_bytes,
2958 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2959 			set_extent_dirty(&trans->transaction->pinned_extents,
2960 					 bytenr, bytenr + num_bytes - 1,
2961 					 GFP_NOFS | __GFP_NOFAIL);
2962 		}
2963 
2964 		spin_lock(&trans->transaction->dirty_bgs_lock);
2965 		if (list_empty(&cache->dirty_list)) {
2966 			list_add_tail(&cache->dirty_list,
2967 				      &trans->transaction->dirty_bgs);
2968 			trans->delayed_ref_updates++;
2969 			btrfs_get_block_group(cache);
2970 		}
2971 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2972 
2973 		/*
2974 		 * No longer have used bytes in this block group, queue it for
2975 		 * deletion. We do this after adding the block group to the
2976 		 * dirty list to avoid races between cleaner kthread and space
2977 		 * cache writeout.
2978 		 */
2979 		if (!alloc && old_val == 0) {
2980 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
2981 				btrfs_mark_bg_unused(cache);
2982 		}
2983 
2984 		btrfs_put_block_group(cache);
2985 		total -= num_bytes;
2986 		bytenr += num_bytes;
2987 	}
2988 
2989 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2990 	btrfs_update_delayed_refs_rsv(trans);
2991 	return ret;
2992 }
2993 
2994 /**
2995  * btrfs_add_reserved_bytes - update the block_group and space info counters
2996  * @cache:	The cache we are manipulating
2997  * @ram_bytes:  The number of bytes of file content, and will be same to
2998  *              @num_bytes except for the compress path.
2999  * @num_bytes:	The number of bytes in question
3000  * @delalloc:   The blocks are allocated for the delalloc write
3001  *
3002  * This is called by the allocator when it reserves space. If this is a
3003  * reservation and the block group has become read only we cannot make the
3004  * reservation and return -EAGAIN, otherwise this function always succeeds.
3005  */
3006 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3007 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3008 {
3009 	struct btrfs_space_info *space_info = cache->space_info;
3010 	int ret = 0;
3011 
3012 	spin_lock(&space_info->lock);
3013 	spin_lock(&cache->lock);
3014 	if (cache->ro) {
3015 		ret = -EAGAIN;
3016 	} else {
3017 		cache->reserved += num_bytes;
3018 		space_info->bytes_reserved += num_bytes;
3019 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3020 					      space_info->flags, num_bytes, 1);
3021 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3022 						      space_info, -ram_bytes);
3023 		if (delalloc)
3024 			cache->delalloc_bytes += num_bytes;
3025 	}
3026 	spin_unlock(&cache->lock);
3027 	spin_unlock(&space_info->lock);
3028 	return ret;
3029 }
3030 
3031 /**
3032  * btrfs_free_reserved_bytes - update the block_group and space info counters
3033  * @cache:      The cache we are manipulating
3034  * @num_bytes:  The number of bytes in question
3035  * @delalloc:   The blocks are allocated for the delalloc write
3036  *
3037  * This is called by somebody who is freeing space that was never actually used
3038  * on disk.  For example if you reserve some space for a new leaf in transaction
3039  * A and before transaction A commits you free that leaf, you call this with
3040  * reserve set to 0 in order to clear the reservation.
3041  */
3042 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3043 			       u64 num_bytes, int delalloc)
3044 {
3045 	struct btrfs_space_info *space_info = cache->space_info;
3046 
3047 	spin_lock(&space_info->lock);
3048 	spin_lock(&cache->lock);
3049 	if (cache->ro)
3050 		space_info->bytes_readonly += num_bytes;
3051 	cache->reserved -= num_bytes;
3052 	space_info->bytes_reserved -= num_bytes;
3053 	space_info->max_extent_size = 0;
3054 
3055 	if (delalloc)
3056 		cache->delalloc_bytes -= num_bytes;
3057 	spin_unlock(&cache->lock);
3058 	spin_unlock(&space_info->lock);
3059 }
3060 
3061 static void force_metadata_allocation(struct btrfs_fs_info *info)
3062 {
3063 	struct list_head *head = &info->space_info;
3064 	struct btrfs_space_info *found;
3065 
3066 	rcu_read_lock();
3067 	list_for_each_entry_rcu(found, head, list) {
3068 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3069 			found->force_alloc = CHUNK_ALLOC_FORCE;
3070 	}
3071 	rcu_read_unlock();
3072 }
3073 
3074 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3075 			      struct btrfs_space_info *sinfo, int force)
3076 {
3077 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3078 	u64 thresh;
3079 
3080 	if (force == CHUNK_ALLOC_FORCE)
3081 		return 1;
3082 
3083 	/*
3084 	 * in limited mode, we want to have some free space up to
3085 	 * about 1% of the FS size.
3086 	 */
3087 	if (force == CHUNK_ALLOC_LIMITED) {
3088 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3089 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3090 
3091 		if (sinfo->total_bytes - bytes_used < thresh)
3092 			return 1;
3093 	}
3094 
3095 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3096 		return 0;
3097 	return 1;
3098 }
3099 
3100 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3101 {
3102 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3103 
3104 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3105 }
3106 
3107 /*
3108  * If force is CHUNK_ALLOC_FORCE:
3109  *    - return 1 if it successfully allocates a chunk,
3110  *    - return errors including -ENOSPC otherwise.
3111  * If force is NOT CHUNK_ALLOC_FORCE:
3112  *    - return 0 if it doesn't need to allocate a new chunk,
3113  *    - return 1 if it successfully allocates a chunk,
3114  *    - return errors including -ENOSPC otherwise.
3115  */
3116 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3117 		      enum btrfs_chunk_alloc_enum force)
3118 {
3119 	struct btrfs_fs_info *fs_info = trans->fs_info;
3120 	struct btrfs_space_info *space_info;
3121 	bool wait_for_alloc = false;
3122 	bool should_alloc = false;
3123 	int ret = 0;
3124 
3125 	/* Don't re-enter if we're already allocating a chunk */
3126 	if (trans->allocating_chunk)
3127 		return -ENOSPC;
3128 
3129 	space_info = btrfs_find_space_info(fs_info, flags);
3130 	ASSERT(space_info);
3131 
3132 	do {
3133 		spin_lock(&space_info->lock);
3134 		if (force < space_info->force_alloc)
3135 			force = space_info->force_alloc;
3136 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3137 		if (space_info->full) {
3138 			/* No more free physical space */
3139 			if (should_alloc)
3140 				ret = -ENOSPC;
3141 			else
3142 				ret = 0;
3143 			spin_unlock(&space_info->lock);
3144 			return ret;
3145 		} else if (!should_alloc) {
3146 			spin_unlock(&space_info->lock);
3147 			return 0;
3148 		} else if (space_info->chunk_alloc) {
3149 			/*
3150 			 * Someone is already allocating, so we need to block
3151 			 * until this someone is finished and then loop to
3152 			 * recheck if we should continue with our allocation
3153 			 * attempt.
3154 			 */
3155 			wait_for_alloc = true;
3156 			spin_unlock(&space_info->lock);
3157 			mutex_lock(&fs_info->chunk_mutex);
3158 			mutex_unlock(&fs_info->chunk_mutex);
3159 		} else {
3160 			/* Proceed with allocation */
3161 			space_info->chunk_alloc = 1;
3162 			wait_for_alloc = false;
3163 			spin_unlock(&space_info->lock);
3164 		}
3165 
3166 		cond_resched();
3167 	} while (wait_for_alloc);
3168 
3169 	mutex_lock(&fs_info->chunk_mutex);
3170 	trans->allocating_chunk = true;
3171 
3172 	/*
3173 	 * If we have mixed data/metadata chunks we want to make sure we keep
3174 	 * allocating mixed chunks instead of individual chunks.
3175 	 */
3176 	if (btrfs_mixed_space_info(space_info))
3177 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3178 
3179 	/*
3180 	 * if we're doing a data chunk, go ahead and make sure that
3181 	 * we keep a reasonable number of metadata chunks allocated in the
3182 	 * FS as well.
3183 	 */
3184 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3185 		fs_info->data_chunk_allocations++;
3186 		if (!(fs_info->data_chunk_allocations %
3187 		      fs_info->metadata_ratio))
3188 			force_metadata_allocation(fs_info);
3189 	}
3190 
3191 	/*
3192 	 * Check if we have enough space in SYSTEM chunk because we may need
3193 	 * to update devices.
3194 	 */
3195 	check_system_chunk(trans, flags);
3196 
3197 	ret = btrfs_alloc_chunk(trans, flags);
3198 	trans->allocating_chunk = false;
3199 
3200 	spin_lock(&space_info->lock);
3201 	if (ret < 0) {
3202 		if (ret == -ENOSPC)
3203 			space_info->full = 1;
3204 		else
3205 			goto out;
3206 	} else {
3207 		ret = 1;
3208 		space_info->max_extent_size = 0;
3209 	}
3210 
3211 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3212 out:
3213 	space_info->chunk_alloc = 0;
3214 	spin_unlock(&space_info->lock);
3215 	mutex_unlock(&fs_info->chunk_mutex);
3216 	/*
3217 	 * When we allocate a new chunk we reserve space in the chunk block
3218 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3219 	 * add new nodes/leafs to it if we end up needing to do it when
3220 	 * inserting the chunk item and updating device items as part of the
3221 	 * second phase of chunk allocation, performed by
3222 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3223 	 * large number of new block groups to create in our transaction
3224 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
3225 	 * in extreme cases - like having a single transaction create many new
3226 	 * block groups when starting to write out the free space caches of all
3227 	 * the block groups that were made dirty during the lifetime of the
3228 	 * transaction.
3229 	 */
3230 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3231 		btrfs_create_pending_block_groups(trans);
3232 
3233 	return ret;
3234 }
3235 
3236 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3237 {
3238 	u64 num_dev;
3239 
3240 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3241 	if (!num_dev)
3242 		num_dev = fs_info->fs_devices->rw_devices;
3243 
3244 	return num_dev;
3245 }
3246 
3247 /*
3248  * Reserve space in the system space for allocating or removing a chunk
3249  */
3250 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3251 {
3252 	struct btrfs_fs_info *fs_info = trans->fs_info;
3253 	struct btrfs_space_info *info;
3254 	u64 left;
3255 	u64 thresh;
3256 	int ret = 0;
3257 	u64 num_devs;
3258 
3259 	/*
3260 	 * Needed because we can end up allocating a system chunk and for an
3261 	 * atomic and race free space reservation in the chunk block reserve.
3262 	 */
3263 	lockdep_assert_held(&fs_info->chunk_mutex);
3264 
3265 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3266 	spin_lock(&info->lock);
3267 	left = info->total_bytes - btrfs_space_info_used(info, true);
3268 	spin_unlock(&info->lock);
3269 
3270 	num_devs = get_profile_num_devs(fs_info, type);
3271 
3272 	/* num_devs device items to update and 1 chunk item to add or remove */
3273 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3274 		btrfs_calc_insert_metadata_size(fs_info, 1);
3275 
3276 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3277 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3278 			   left, thresh, type);
3279 		btrfs_dump_space_info(fs_info, info, 0, 0);
3280 	}
3281 
3282 	if (left < thresh) {
3283 		u64 flags = btrfs_system_alloc_profile(fs_info);
3284 
3285 		/*
3286 		 * Ignore failure to create system chunk. We might end up not
3287 		 * needing it, as we might not need to COW all nodes/leafs from
3288 		 * the paths we visit in the chunk tree (they were already COWed
3289 		 * or created in the current transaction for example).
3290 		 */
3291 		ret = btrfs_alloc_chunk(trans, flags);
3292 	}
3293 
3294 	if (!ret) {
3295 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3296 					  &fs_info->chunk_block_rsv,
3297 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3298 		if (!ret)
3299 			trans->chunk_bytes_reserved += thresh;
3300 	}
3301 }
3302 
3303 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3304 {
3305 	struct btrfs_block_group *block_group;
3306 	u64 last = 0;
3307 
3308 	while (1) {
3309 		struct inode *inode;
3310 
3311 		block_group = btrfs_lookup_first_block_group(info, last);
3312 		while (block_group) {
3313 			btrfs_wait_block_group_cache_done(block_group);
3314 			spin_lock(&block_group->lock);
3315 			if (block_group->iref)
3316 				break;
3317 			spin_unlock(&block_group->lock);
3318 			block_group = btrfs_next_block_group(block_group);
3319 		}
3320 		if (!block_group) {
3321 			if (last == 0)
3322 				break;
3323 			last = 0;
3324 			continue;
3325 		}
3326 
3327 		inode = block_group->inode;
3328 		block_group->iref = 0;
3329 		block_group->inode = NULL;
3330 		spin_unlock(&block_group->lock);
3331 		ASSERT(block_group->io_ctl.inode == NULL);
3332 		iput(inode);
3333 		last = block_group->start + block_group->length;
3334 		btrfs_put_block_group(block_group);
3335 	}
3336 }
3337 
3338 /*
3339  * Must be called only after stopping all workers, since we could have block
3340  * group caching kthreads running, and therefore they could race with us if we
3341  * freed the block groups before stopping them.
3342  */
3343 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3344 {
3345 	struct btrfs_block_group *block_group;
3346 	struct btrfs_space_info *space_info;
3347 	struct btrfs_caching_control *caching_ctl;
3348 	struct rb_node *n;
3349 
3350 	down_write(&info->commit_root_sem);
3351 	while (!list_empty(&info->caching_block_groups)) {
3352 		caching_ctl = list_entry(info->caching_block_groups.next,
3353 					 struct btrfs_caching_control, list);
3354 		list_del(&caching_ctl->list);
3355 		btrfs_put_caching_control(caching_ctl);
3356 	}
3357 	up_write(&info->commit_root_sem);
3358 
3359 	spin_lock(&info->unused_bgs_lock);
3360 	while (!list_empty(&info->unused_bgs)) {
3361 		block_group = list_first_entry(&info->unused_bgs,
3362 					       struct btrfs_block_group,
3363 					       bg_list);
3364 		list_del_init(&block_group->bg_list);
3365 		btrfs_put_block_group(block_group);
3366 	}
3367 	spin_unlock(&info->unused_bgs_lock);
3368 
3369 	spin_lock(&info->block_group_cache_lock);
3370 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3371 		block_group = rb_entry(n, struct btrfs_block_group,
3372 				       cache_node);
3373 		rb_erase(&block_group->cache_node,
3374 			 &info->block_group_cache_tree);
3375 		RB_CLEAR_NODE(&block_group->cache_node);
3376 		spin_unlock(&info->block_group_cache_lock);
3377 
3378 		down_write(&block_group->space_info->groups_sem);
3379 		list_del(&block_group->list);
3380 		up_write(&block_group->space_info->groups_sem);
3381 
3382 		/*
3383 		 * We haven't cached this block group, which means we could
3384 		 * possibly have excluded extents on this block group.
3385 		 */
3386 		if (block_group->cached == BTRFS_CACHE_NO ||
3387 		    block_group->cached == BTRFS_CACHE_ERROR)
3388 			btrfs_free_excluded_extents(block_group);
3389 
3390 		btrfs_remove_free_space_cache(block_group);
3391 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3392 		ASSERT(list_empty(&block_group->dirty_list));
3393 		ASSERT(list_empty(&block_group->io_list));
3394 		ASSERT(list_empty(&block_group->bg_list));
3395 		ASSERT(atomic_read(&block_group->count) == 1);
3396 		btrfs_put_block_group(block_group);
3397 
3398 		spin_lock(&info->block_group_cache_lock);
3399 	}
3400 	spin_unlock(&info->block_group_cache_lock);
3401 
3402 	/*
3403 	 * Now that all the block groups are freed, go through and free all the
3404 	 * space_info structs.  This is only called during the final stages of
3405 	 * unmount, and so we know nobody is using them.  We call
3406 	 * synchronize_rcu() once before we start, just to be on the safe side.
3407 	 */
3408 	synchronize_rcu();
3409 
3410 	btrfs_release_global_block_rsv(info);
3411 
3412 	while (!list_empty(&info->space_info)) {
3413 		space_info = list_entry(info->space_info.next,
3414 					struct btrfs_space_info,
3415 					list);
3416 
3417 		/*
3418 		 * Do not hide this behind enospc_debug, this is actually
3419 		 * important and indicates a real bug if this happens.
3420 		 */
3421 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3422 			    space_info->bytes_reserved > 0 ||
3423 			    space_info->bytes_may_use > 0))
3424 			btrfs_dump_space_info(info, space_info, 0, 0);
3425 		WARN_ON(space_info->reclaim_size > 0);
3426 		list_del(&space_info->list);
3427 		btrfs_sysfs_remove_space_info(space_info);
3428 	}
3429 	return 0;
3430 }
3431 
3432 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3433 {
3434 	atomic_inc(&cache->frozen);
3435 }
3436 
3437 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3438 {
3439 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3440 	struct extent_map_tree *em_tree;
3441 	struct extent_map *em;
3442 	bool cleanup;
3443 
3444 	spin_lock(&block_group->lock);
3445 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3446 		   block_group->removed);
3447 	spin_unlock(&block_group->lock);
3448 
3449 	if (cleanup) {
3450 		mutex_lock(&fs_info->chunk_mutex);
3451 		em_tree = &fs_info->mapping_tree;
3452 		write_lock(&em_tree->lock);
3453 		em = lookup_extent_mapping(em_tree, block_group->start,
3454 					   1);
3455 		BUG_ON(!em); /* logic error, can't happen */
3456 		remove_extent_mapping(em_tree, em);
3457 		write_unlock(&em_tree->lock);
3458 		mutex_unlock(&fs_info->chunk_mutex);
3459 
3460 		/* once for us and once for the tree */
3461 		free_extent_map(em);
3462 		free_extent_map(em);
3463 
3464 		/*
3465 		 * We may have left one free space entry and other possible
3466 		 * tasks trimming this block group have left 1 entry each one.
3467 		 * Free them if any.
3468 		 */
3469 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3470 	}
3471 }
3472