1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/binfmt_elf.c 4 * 5 * These are the functions used to load ELF format executables as used 6 * on SVr4 machines. Information on the format may be found in the book 7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support 8 * Tools". 9 * 10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). 11 */ 12 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/fs.h> 16 #include <linux/log2.h> 17 #include <linux/mm.h> 18 #include <linux/mman.h> 19 #include <linux/errno.h> 20 #include <linux/signal.h> 21 #include <linux/binfmts.h> 22 #include <linux/string.h> 23 #include <linux/file.h> 24 #include <linux/slab.h> 25 #include <linux/personality.h> 26 #include <linux/elfcore.h> 27 #include <linux/init.h> 28 #include <linux/highuid.h> 29 #include <linux/compiler.h> 30 #include <linux/highmem.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vmalloc.h> 34 #include <linux/security.h> 35 #include <linux/random.h> 36 #include <linux/elf.h> 37 #include <linux/elf-randomize.h> 38 #include <linux/utsname.h> 39 #include <linux/coredump.h> 40 #include <linux/sched.h> 41 #include <linux/sched/coredump.h> 42 #include <linux/sched/task_stack.h> 43 #include <linux/sched/cputime.h> 44 #include <linux/sizes.h> 45 #include <linux/types.h> 46 #include <linux/cred.h> 47 #include <linux/dax.h> 48 #include <linux/uaccess.h> 49 #include <linux/rseq.h> 50 #include <asm/param.h> 51 #include <asm/page.h> 52 53 #ifndef ELF_COMPAT 54 #define ELF_COMPAT 0 55 #endif 56 57 #ifndef user_long_t 58 #define user_long_t long 59 #endif 60 #ifndef user_siginfo_t 61 #define user_siginfo_t siginfo_t 62 #endif 63 64 /* That's for binfmt_elf_fdpic to deal with */ 65 #ifndef elf_check_fdpic 66 #define elf_check_fdpic(ex) false 67 #endif 68 69 static int load_elf_binary(struct linux_binprm *bprm); 70 71 #ifdef CONFIG_USELIB 72 static int load_elf_library(struct file *); 73 #else 74 #define load_elf_library NULL 75 #endif 76 77 /* 78 * If we don't support core dumping, then supply a NULL so we 79 * don't even try. 80 */ 81 #ifdef CONFIG_ELF_CORE 82 static int elf_core_dump(struct coredump_params *cprm); 83 #else 84 #define elf_core_dump NULL 85 #endif 86 87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE 88 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE 89 #else 90 #define ELF_MIN_ALIGN PAGE_SIZE 91 #endif 92 93 #ifndef ELF_CORE_EFLAGS 94 #define ELF_CORE_EFLAGS 0 95 #endif 96 97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1)) 98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) 99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) 100 101 static struct linux_binfmt elf_format = { 102 .module = THIS_MODULE, 103 .load_binary = load_elf_binary, 104 .load_shlib = load_elf_library, 105 #ifdef CONFIG_COREDUMP 106 .core_dump = elf_core_dump, 107 .min_coredump = ELF_EXEC_PAGESIZE, 108 #endif 109 }; 110 111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE)) 112 113 /* 114 * We need to explicitly zero any trailing portion of the page that follows 115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this 116 * memory will contain the junk from the file that should not be present. 117 */ 118 static int padzero(unsigned long address) 119 { 120 unsigned long nbyte; 121 122 nbyte = ELF_PAGEOFFSET(address); 123 if (nbyte) { 124 nbyte = ELF_MIN_ALIGN - nbyte; 125 if (clear_user((void __user *)address, nbyte)) 126 return -EFAULT; 127 } 128 return 0; 129 } 130 131 /* Let's use some macros to make this stack manipulation a little clearer */ 132 #ifdef CONFIG_STACK_GROWSUP 133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) 134 #define STACK_ROUND(sp, items) \ 135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) 136 #define STACK_ALLOC(sp, len) ({ \ 137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ 138 old_sp; }) 139 #else 140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) 141 #define STACK_ROUND(sp, items) \ 142 (((unsigned long) (sp - items)) &~ 15UL) 143 #define STACK_ALLOC(sp, len) (sp -= len) 144 #endif 145 146 #ifndef ELF_BASE_PLATFORM 147 /* 148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. 149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value 150 * will be copied to the user stack in the same manner as AT_PLATFORM. 151 */ 152 #define ELF_BASE_PLATFORM NULL 153 #endif 154 155 static int 156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec, 157 unsigned long interp_load_addr, 158 unsigned long e_entry, unsigned long phdr_addr) 159 { 160 struct mm_struct *mm = current->mm; 161 unsigned long p = bprm->p; 162 int argc = bprm->argc; 163 int envc = bprm->envc; 164 elf_addr_t __user *sp; 165 elf_addr_t __user *u_platform; 166 elf_addr_t __user *u_base_platform; 167 elf_addr_t __user *u_rand_bytes; 168 const char *k_platform = ELF_PLATFORM; 169 const char *k_base_platform = ELF_BASE_PLATFORM; 170 unsigned char k_rand_bytes[16]; 171 int items; 172 elf_addr_t *elf_info; 173 elf_addr_t flags = 0; 174 int ei_index; 175 const struct cred *cred = current_cred(); 176 struct vm_area_struct *vma; 177 178 /* 179 * In some cases (e.g. Hyper-Threading), we want to avoid L1 180 * evictions by the processes running on the same package. One 181 * thing we can do is to shuffle the initial stack for them. 182 */ 183 184 p = arch_align_stack(p); 185 186 /* 187 * If this architecture has a platform capability string, copy it 188 * to userspace. In some cases (Sparc), this info is impossible 189 * for userspace to get any other way, in others (i386) it is 190 * merely difficult. 191 */ 192 u_platform = NULL; 193 if (k_platform) { 194 size_t len = strlen(k_platform) + 1; 195 196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 197 if (copy_to_user(u_platform, k_platform, len)) 198 return -EFAULT; 199 } 200 201 /* 202 * If this architecture has a "base" platform capability 203 * string, copy it to userspace. 204 */ 205 u_base_platform = NULL; 206 if (k_base_platform) { 207 size_t len = strlen(k_base_platform) + 1; 208 209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); 210 if (copy_to_user(u_base_platform, k_base_platform, len)) 211 return -EFAULT; 212 } 213 214 /* 215 * Generate 16 random bytes for userspace PRNG seeding. 216 */ 217 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); 218 u_rand_bytes = (elf_addr_t __user *) 219 STACK_ALLOC(p, sizeof(k_rand_bytes)); 220 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) 221 return -EFAULT; 222 223 /* Create the ELF interpreter info */ 224 elf_info = (elf_addr_t *)mm->saved_auxv; 225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ 226 #define NEW_AUX_ENT(id, val) \ 227 do { \ 228 *elf_info++ = id; \ 229 *elf_info++ = val; \ 230 } while (0) 231 232 #ifdef ARCH_DLINFO 233 /* 234 * ARCH_DLINFO must come first so PPC can do its special alignment of 235 * AUXV. 236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in 237 * ARCH_DLINFO changes 238 */ 239 ARCH_DLINFO; 240 #endif 241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); 242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); 243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); 244 NEW_AUX_ENT(AT_PHDR, phdr_addr); 245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); 246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); 247 NEW_AUX_ENT(AT_BASE, interp_load_addr); 248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0) 249 flags |= AT_FLAGS_PRESERVE_ARGV0; 250 NEW_AUX_ENT(AT_FLAGS, flags); 251 NEW_AUX_ENT(AT_ENTRY, e_entry); 252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid)); 253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid)); 254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid)); 255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid)); 256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec); 257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); 258 #ifdef ELF_HWCAP2 259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2); 260 #endif 261 NEW_AUX_ENT(AT_EXECFN, bprm->exec); 262 if (k_platform) { 263 NEW_AUX_ENT(AT_PLATFORM, 264 (elf_addr_t)(unsigned long)u_platform); 265 } 266 if (k_base_platform) { 267 NEW_AUX_ENT(AT_BASE_PLATFORM, 268 (elf_addr_t)(unsigned long)u_base_platform); 269 } 270 if (bprm->have_execfd) { 271 NEW_AUX_ENT(AT_EXECFD, bprm->execfd); 272 } 273 #ifdef CONFIG_RSEQ 274 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end)); 275 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq)); 276 #endif 277 #undef NEW_AUX_ENT 278 /* AT_NULL is zero; clear the rest too */ 279 memset(elf_info, 0, (char *)mm->saved_auxv + 280 sizeof(mm->saved_auxv) - (char *)elf_info); 281 282 /* And advance past the AT_NULL entry. */ 283 elf_info += 2; 284 285 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv; 286 sp = STACK_ADD(p, ei_index); 287 288 items = (argc + 1) + (envc + 1) + 1; 289 bprm->p = STACK_ROUND(sp, items); 290 291 /* Point sp at the lowest address on the stack */ 292 #ifdef CONFIG_STACK_GROWSUP 293 sp = (elf_addr_t __user *)bprm->p - items - ei_index; 294 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ 295 #else 296 sp = (elf_addr_t __user *)bprm->p; 297 #endif 298 299 300 /* 301 * Grow the stack manually; some architectures have a limit on how 302 * far ahead a user-space access may be in order to grow the stack. 303 */ 304 if (mmap_write_lock_killable(mm)) 305 return -EINTR; 306 vma = find_extend_vma_locked(mm, bprm->p); 307 mmap_write_unlock(mm); 308 if (!vma) 309 return -EFAULT; 310 311 /* Now, let's put argc (and argv, envp if appropriate) on the stack */ 312 if (put_user(argc, sp++)) 313 return -EFAULT; 314 315 /* Populate list of argv pointers back to argv strings. */ 316 p = mm->arg_end = mm->arg_start; 317 while (argc-- > 0) { 318 size_t len; 319 if (put_user((elf_addr_t)p, sp++)) 320 return -EFAULT; 321 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 322 if (!len || len > MAX_ARG_STRLEN) 323 return -EINVAL; 324 p += len; 325 } 326 if (put_user(0, sp++)) 327 return -EFAULT; 328 mm->arg_end = p; 329 330 /* Populate list of envp pointers back to envp strings. */ 331 mm->env_end = mm->env_start = p; 332 while (envc-- > 0) { 333 size_t len; 334 if (put_user((elf_addr_t)p, sp++)) 335 return -EFAULT; 336 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); 337 if (!len || len > MAX_ARG_STRLEN) 338 return -EINVAL; 339 p += len; 340 } 341 if (put_user(0, sp++)) 342 return -EFAULT; 343 mm->env_end = p; 344 345 /* Put the elf_info on the stack in the right place. */ 346 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t))) 347 return -EFAULT; 348 return 0; 349 } 350 351 /* 352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 353 * into memory at "addr". (Note that p_filesz is rounded up to the 354 * next page, so any extra bytes from the file must be wiped.) 355 */ 356 static unsigned long elf_map(struct file *filep, unsigned long addr, 357 const struct elf_phdr *eppnt, int prot, int type, 358 unsigned long total_size) 359 { 360 unsigned long map_addr; 361 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); 362 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); 363 addr = ELF_PAGESTART(addr); 364 size = ELF_PAGEALIGN(size); 365 366 /* mmap() will return -EINVAL if given a zero size, but a 367 * segment with zero filesize is perfectly valid */ 368 if (!size) 369 return addr; 370 371 /* 372 * total_size is the size of the ELF (interpreter) image. 373 * The _first_ mmap needs to know the full size, otherwise 374 * randomization might put this image into an overlapping 375 * position with the ELF binary image. (since size < total_size) 376 * So we first map the 'big' image - and unmap the remainder at 377 * the end. (which unmap is needed for ELF images with holes.) 378 */ 379 if (total_size) { 380 total_size = ELF_PAGEALIGN(total_size); 381 map_addr = vm_mmap(filep, addr, total_size, prot, type, off); 382 if (!BAD_ADDR(map_addr)) 383 vm_munmap(map_addr+size, total_size-size); 384 } else 385 map_addr = vm_mmap(filep, addr, size, prot, type, off); 386 387 if ((type & MAP_FIXED_NOREPLACE) && 388 PTR_ERR((void *)map_addr) == -EEXIST) 389 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n", 390 task_pid_nr(current), current->comm, (void *)addr); 391 392 return(map_addr); 393 } 394 395 /* 396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset" 397 * into memory at "addr". Memory from "p_filesz" through "p_memsz" 398 * rounded up to the next page is zeroed. 399 */ 400 static unsigned long elf_load(struct file *filep, unsigned long addr, 401 const struct elf_phdr *eppnt, int prot, int type, 402 unsigned long total_size) 403 { 404 unsigned long zero_start, zero_end; 405 unsigned long map_addr; 406 407 if (eppnt->p_filesz) { 408 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size); 409 if (BAD_ADDR(map_addr)) 410 return map_addr; 411 if (eppnt->p_memsz > eppnt->p_filesz) { 412 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 413 eppnt->p_filesz; 414 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) + 415 eppnt->p_memsz; 416 417 /* 418 * Zero the end of the last mapped page but ignore 419 * any errors if the segment isn't writable. 420 */ 421 if (padzero(zero_start) && (prot & PROT_WRITE)) 422 return -EFAULT; 423 } 424 } else { 425 map_addr = zero_start = ELF_PAGESTART(addr); 426 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) + 427 eppnt->p_memsz; 428 } 429 if (eppnt->p_memsz > eppnt->p_filesz) { 430 /* 431 * Map the last of the segment. 432 * If the header is requesting these pages to be 433 * executable, honour that (ppc32 needs this). 434 */ 435 int error; 436 437 zero_start = ELF_PAGEALIGN(zero_start); 438 zero_end = ELF_PAGEALIGN(zero_end); 439 440 error = vm_brk_flags(zero_start, zero_end - zero_start, 441 prot & PROT_EXEC ? VM_EXEC : 0); 442 if (error) 443 map_addr = error; 444 } 445 return map_addr; 446 } 447 448 449 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr) 450 { 451 elf_addr_t min_addr = -1; 452 elf_addr_t max_addr = 0; 453 bool pt_load = false; 454 int i; 455 456 for (i = 0; i < nr; i++) { 457 if (phdr[i].p_type == PT_LOAD) { 458 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr)); 459 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz); 460 pt_load = true; 461 } 462 } 463 return pt_load ? (max_addr - min_addr) : 0; 464 } 465 466 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos) 467 { 468 ssize_t rv; 469 470 rv = kernel_read(file, buf, len, &pos); 471 if (unlikely(rv != len)) { 472 return (rv < 0) ? rv : -EIO; 473 } 474 return 0; 475 } 476 477 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr) 478 { 479 unsigned long alignment = 0; 480 int i; 481 482 for (i = 0; i < nr; i++) { 483 if (cmds[i].p_type == PT_LOAD) { 484 unsigned long p_align = cmds[i].p_align; 485 486 /* skip non-power of two alignments as invalid */ 487 if (!is_power_of_2(p_align)) 488 continue; 489 alignment = max(alignment, p_align); 490 } 491 } 492 493 /* ensure we align to at least one page */ 494 return ELF_PAGEALIGN(alignment); 495 } 496 497 /** 498 * load_elf_phdrs() - load ELF program headers 499 * @elf_ex: ELF header of the binary whose program headers should be loaded 500 * @elf_file: the opened ELF binary file 501 * 502 * Loads ELF program headers from the binary file elf_file, which has the ELF 503 * header pointed to by elf_ex, into a newly allocated array. The caller is 504 * responsible for freeing the allocated data. Returns NULL upon failure. 505 */ 506 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex, 507 struct file *elf_file) 508 { 509 struct elf_phdr *elf_phdata = NULL; 510 int retval = -1; 511 unsigned int size; 512 513 /* 514 * If the size of this structure has changed, then punt, since 515 * we will be doing the wrong thing. 516 */ 517 if (elf_ex->e_phentsize != sizeof(struct elf_phdr)) 518 goto out; 519 520 /* Sanity check the number of program headers... */ 521 /* ...and their total size. */ 522 size = sizeof(struct elf_phdr) * elf_ex->e_phnum; 523 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN) 524 goto out; 525 526 elf_phdata = kmalloc(size, GFP_KERNEL); 527 if (!elf_phdata) 528 goto out; 529 530 /* Read in the program headers */ 531 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff); 532 533 out: 534 if (retval) { 535 kfree(elf_phdata); 536 elf_phdata = NULL; 537 } 538 return elf_phdata; 539 } 540 541 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE 542 543 /** 544 * struct arch_elf_state - arch-specific ELF loading state 545 * 546 * This structure is used to preserve architecture specific data during 547 * the loading of an ELF file, throughout the checking of architecture 548 * specific ELF headers & through to the point where the ELF load is 549 * known to be proceeding (ie. SET_PERSONALITY). 550 * 551 * This implementation is a dummy for architectures which require no 552 * specific state. 553 */ 554 struct arch_elf_state { 555 }; 556 557 #define INIT_ARCH_ELF_STATE {} 558 559 /** 560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header 561 * @ehdr: The main ELF header 562 * @phdr: The program header to check 563 * @elf: The open ELF file 564 * @is_interp: True if the phdr is from the interpreter of the ELF being 565 * loaded, else false. 566 * @state: Architecture-specific state preserved throughout the process 567 * of loading the ELF. 568 * 569 * Inspects the program header phdr to validate its correctness and/or 570 * suitability for the system. Called once per ELF program header in the 571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its 572 * interpreter. 573 * 574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 575 * with that return code. 576 */ 577 static inline int arch_elf_pt_proc(struct elfhdr *ehdr, 578 struct elf_phdr *phdr, 579 struct file *elf, bool is_interp, 580 struct arch_elf_state *state) 581 { 582 /* Dummy implementation, always proceed */ 583 return 0; 584 } 585 586 /** 587 * arch_check_elf() - check an ELF executable 588 * @ehdr: The main ELF header 589 * @has_interp: True if the ELF has an interpreter, else false. 590 * @interp_ehdr: The interpreter's ELF header 591 * @state: Architecture-specific state preserved throughout the process 592 * of loading the ELF. 593 * 594 * Provides a final opportunity for architecture code to reject the loading 595 * of the ELF & cause an exec syscall to return an error. This is called after 596 * all program headers to be checked by arch_elf_pt_proc have been. 597 * 598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load 599 * with that return code. 600 */ 601 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp, 602 struct elfhdr *interp_ehdr, 603 struct arch_elf_state *state) 604 { 605 /* Dummy implementation, always proceed */ 606 return 0; 607 } 608 609 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */ 610 611 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state, 612 bool has_interp, bool is_interp) 613 { 614 int prot = 0; 615 616 if (p_flags & PF_R) 617 prot |= PROT_READ; 618 if (p_flags & PF_W) 619 prot |= PROT_WRITE; 620 if (p_flags & PF_X) 621 prot |= PROT_EXEC; 622 623 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp); 624 } 625 626 /* This is much more generalized than the library routine read function, 627 so we keep this separate. Technically the library read function 628 is only provided so that we can read a.out libraries that have 629 an ELF header */ 630 631 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, 632 struct file *interpreter, 633 unsigned long no_base, struct elf_phdr *interp_elf_phdata, 634 struct arch_elf_state *arch_state) 635 { 636 struct elf_phdr *eppnt; 637 unsigned long load_addr = 0; 638 int load_addr_set = 0; 639 unsigned long error = ~0UL; 640 unsigned long total_size; 641 int i; 642 643 /* First of all, some simple consistency checks */ 644 if (interp_elf_ex->e_type != ET_EXEC && 645 interp_elf_ex->e_type != ET_DYN) 646 goto out; 647 if (!elf_check_arch(interp_elf_ex) || 648 elf_check_fdpic(interp_elf_ex)) 649 goto out; 650 if (!interpreter->f_op->mmap) 651 goto out; 652 653 total_size = total_mapping_size(interp_elf_phdata, 654 interp_elf_ex->e_phnum); 655 if (!total_size) { 656 error = -EINVAL; 657 goto out; 658 } 659 660 eppnt = interp_elf_phdata; 661 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { 662 if (eppnt->p_type == PT_LOAD) { 663 int elf_type = MAP_PRIVATE; 664 int elf_prot = make_prot(eppnt->p_flags, arch_state, 665 true, true); 666 unsigned long vaddr = 0; 667 unsigned long k, map_addr; 668 669 vaddr = eppnt->p_vaddr; 670 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) 671 elf_type |= MAP_FIXED; 672 else if (no_base && interp_elf_ex->e_type == ET_DYN) 673 load_addr = -vaddr; 674 675 map_addr = elf_load(interpreter, load_addr + vaddr, 676 eppnt, elf_prot, elf_type, total_size); 677 total_size = 0; 678 error = map_addr; 679 if (BAD_ADDR(map_addr)) 680 goto out; 681 682 if (!load_addr_set && 683 interp_elf_ex->e_type == ET_DYN) { 684 load_addr = map_addr - ELF_PAGESTART(vaddr); 685 load_addr_set = 1; 686 } 687 688 /* 689 * Check to see if the section's size will overflow the 690 * allowed task size. Note that p_filesz must always be 691 * <= p_memsize so it's only necessary to check p_memsz. 692 */ 693 k = load_addr + eppnt->p_vaddr; 694 if (BAD_ADDR(k) || 695 eppnt->p_filesz > eppnt->p_memsz || 696 eppnt->p_memsz > TASK_SIZE || 697 TASK_SIZE - eppnt->p_memsz < k) { 698 error = -ENOMEM; 699 goto out; 700 } 701 } 702 } 703 704 error = load_addr; 705 out: 706 return error; 707 } 708 709 /* 710 * These are the functions used to load ELF style executables and shared 711 * libraries. There is no binary dependent code anywhere else. 712 */ 713 714 static int parse_elf_property(const char *data, size_t *off, size_t datasz, 715 struct arch_elf_state *arch, 716 bool have_prev_type, u32 *prev_type) 717 { 718 size_t o, step; 719 const struct gnu_property *pr; 720 int ret; 721 722 if (*off == datasz) 723 return -ENOENT; 724 725 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN)) 726 return -EIO; 727 o = *off; 728 datasz -= *off; 729 730 if (datasz < sizeof(*pr)) 731 return -ENOEXEC; 732 pr = (const struct gnu_property *)(data + o); 733 o += sizeof(*pr); 734 datasz -= sizeof(*pr); 735 736 if (pr->pr_datasz > datasz) 737 return -ENOEXEC; 738 739 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN); 740 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN); 741 if (step > datasz) 742 return -ENOEXEC; 743 744 /* Properties are supposed to be unique and sorted on pr_type: */ 745 if (have_prev_type && pr->pr_type <= *prev_type) 746 return -ENOEXEC; 747 *prev_type = pr->pr_type; 748 749 ret = arch_parse_elf_property(pr->pr_type, data + o, 750 pr->pr_datasz, ELF_COMPAT, arch); 751 if (ret) 752 return ret; 753 754 *off = o + step; 755 return 0; 756 } 757 758 #define NOTE_DATA_SZ SZ_1K 759 #define GNU_PROPERTY_TYPE_0_NAME "GNU" 760 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME)) 761 762 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr, 763 struct arch_elf_state *arch) 764 { 765 union { 766 struct elf_note nhdr; 767 char data[NOTE_DATA_SZ]; 768 } note; 769 loff_t pos; 770 ssize_t n; 771 size_t off, datasz; 772 int ret; 773 bool have_prev_type; 774 u32 prev_type; 775 776 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr) 777 return 0; 778 779 /* load_elf_binary() shouldn't call us unless this is true... */ 780 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY)) 781 return -ENOEXEC; 782 783 /* If the properties are crazy large, that's too bad (for now): */ 784 if (phdr->p_filesz > sizeof(note)) 785 return -ENOEXEC; 786 787 pos = phdr->p_offset; 788 n = kernel_read(f, ¬e, phdr->p_filesz, &pos); 789 790 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ); 791 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ) 792 return -EIO; 793 794 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 795 note.nhdr.n_namesz != NOTE_NAME_SZ || 796 strncmp(note.data + sizeof(note.nhdr), 797 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr))) 798 return -ENOEXEC; 799 800 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ, 801 ELF_GNU_PROPERTY_ALIGN); 802 if (off > n) 803 return -ENOEXEC; 804 805 if (note.nhdr.n_descsz > n - off) 806 return -ENOEXEC; 807 datasz = off + note.nhdr.n_descsz; 808 809 have_prev_type = false; 810 do { 811 ret = parse_elf_property(note.data, &off, datasz, arch, 812 have_prev_type, &prev_type); 813 have_prev_type = true; 814 } while (!ret); 815 816 return ret == -ENOENT ? 0 : ret; 817 } 818 819 static int load_elf_binary(struct linux_binprm *bprm) 820 { 821 struct file *interpreter = NULL; /* to shut gcc up */ 822 unsigned long load_bias = 0, phdr_addr = 0; 823 int first_pt_load = 1; 824 unsigned long error; 825 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL; 826 struct elf_phdr *elf_property_phdata = NULL; 827 unsigned long elf_brk; 828 int retval, i; 829 unsigned long elf_entry; 830 unsigned long e_entry; 831 unsigned long interp_load_addr = 0; 832 unsigned long start_code, end_code, start_data, end_data; 833 unsigned long reloc_func_desc __maybe_unused = 0; 834 int executable_stack = EXSTACK_DEFAULT; 835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf; 836 struct elfhdr *interp_elf_ex = NULL; 837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE; 838 struct mm_struct *mm; 839 struct pt_regs *regs; 840 841 retval = -ENOEXEC; 842 /* First of all, some simple consistency checks */ 843 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 844 goto out; 845 846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN) 847 goto out; 848 if (!elf_check_arch(elf_ex)) 849 goto out; 850 if (elf_check_fdpic(elf_ex)) 851 goto out; 852 if (!bprm->file->f_op->mmap) 853 goto out; 854 855 elf_phdata = load_elf_phdrs(elf_ex, bprm->file); 856 if (!elf_phdata) 857 goto out; 858 859 elf_ppnt = elf_phdata; 860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) { 861 char *elf_interpreter; 862 863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) { 864 elf_property_phdata = elf_ppnt; 865 continue; 866 } 867 868 if (elf_ppnt->p_type != PT_INTERP) 869 continue; 870 871 /* 872 * This is the program interpreter used for shared libraries - 873 * for now assume that this is an a.out format binary. 874 */ 875 retval = -ENOEXEC; 876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2) 877 goto out_free_ph; 878 879 retval = -ENOMEM; 880 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL); 881 if (!elf_interpreter) 882 goto out_free_ph; 883 884 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz, 885 elf_ppnt->p_offset); 886 if (retval < 0) 887 goto out_free_interp; 888 /* make sure path is NULL terminated */ 889 retval = -ENOEXEC; 890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') 891 goto out_free_interp; 892 893 interpreter = open_exec(elf_interpreter); 894 kfree(elf_interpreter); 895 retval = PTR_ERR(interpreter); 896 if (IS_ERR(interpreter)) 897 goto out_free_ph; 898 899 /* 900 * If the binary is not readable then enforce mm->dumpable = 0 901 * regardless of the interpreter's permissions. 902 */ 903 would_dump(bprm, interpreter); 904 905 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL); 906 if (!interp_elf_ex) { 907 retval = -ENOMEM; 908 goto out_free_file; 909 } 910 911 /* Get the exec headers */ 912 retval = elf_read(interpreter, interp_elf_ex, 913 sizeof(*interp_elf_ex), 0); 914 if (retval < 0) 915 goto out_free_dentry; 916 917 break; 918 919 out_free_interp: 920 kfree(elf_interpreter); 921 goto out_free_ph; 922 } 923 924 elf_ppnt = elf_phdata; 925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) 926 switch (elf_ppnt->p_type) { 927 case PT_GNU_STACK: 928 if (elf_ppnt->p_flags & PF_X) 929 executable_stack = EXSTACK_ENABLE_X; 930 else 931 executable_stack = EXSTACK_DISABLE_X; 932 break; 933 934 case PT_LOPROC ... PT_HIPROC: 935 retval = arch_elf_pt_proc(elf_ex, elf_ppnt, 936 bprm->file, false, 937 &arch_state); 938 if (retval) 939 goto out_free_dentry; 940 break; 941 } 942 943 /* Some simple consistency checks for the interpreter */ 944 if (interpreter) { 945 retval = -ELIBBAD; 946 /* Not an ELF interpreter */ 947 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0) 948 goto out_free_dentry; 949 /* Verify the interpreter has a valid arch */ 950 if (!elf_check_arch(interp_elf_ex) || 951 elf_check_fdpic(interp_elf_ex)) 952 goto out_free_dentry; 953 954 /* Load the interpreter program headers */ 955 interp_elf_phdata = load_elf_phdrs(interp_elf_ex, 956 interpreter); 957 if (!interp_elf_phdata) 958 goto out_free_dentry; 959 960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */ 961 elf_property_phdata = NULL; 962 elf_ppnt = interp_elf_phdata; 963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++) 964 switch (elf_ppnt->p_type) { 965 case PT_GNU_PROPERTY: 966 elf_property_phdata = elf_ppnt; 967 break; 968 969 case PT_LOPROC ... PT_HIPROC: 970 retval = arch_elf_pt_proc(interp_elf_ex, 971 elf_ppnt, interpreter, 972 true, &arch_state); 973 if (retval) 974 goto out_free_dentry; 975 break; 976 } 977 } 978 979 retval = parse_elf_properties(interpreter ?: bprm->file, 980 elf_property_phdata, &arch_state); 981 if (retval) 982 goto out_free_dentry; 983 984 /* 985 * Allow arch code to reject the ELF at this point, whilst it's 986 * still possible to return an error to the code that invoked 987 * the exec syscall. 988 */ 989 retval = arch_check_elf(elf_ex, 990 !!interpreter, interp_elf_ex, 991 &arch_state); 992 if (retval) 993 goto out_free_dentry; 994 995 /* Flush all traces of the currently running executable */ 996 retval = begin_new_exec(bprm); 997 if (retval) 998 goto out_free_dentry; 999 1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages 1001 may depend on the personality. */ 1002 SET_PERSONALITY2(*elf_ex, &arch_state); 1003 if (elf_read_implies_exec(*elf_ex, executable_stack)) 1004 current->personality |= READ_IMPLIES_EXEC; 1005 1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1007 current->flags |= PF_RANDOMIZE; 1008 1009 setup_new_exec(bprm); 1010 1011 /* Do this so that we can load the interpreter, if need be. We will 1012 change some of these later */ 1013 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), 1014 executable_stack); 1015 if (retval < 0) 1016 goto out_free_dentry; 1017 1018 elf_brk = 0; 1019 1020 start_code = ~0UL; 1021 end_code = 0; 1022 start_data = 0; 1023 end_data = 0; 1024 1025 /* Now we do a little grungy work by mmapping the ELF image into 1026 the correct location in memory. */ 1027 for(i = 0, elf_ppnt = elf_phdata; 1028 i < elf_ex->e_phnum; i++, elf_ppnt++) { 1029 int elf_prot, elf_flags; 1030 unsigned long k, vaddr; 1031 unsigned long total_size = 0; 1032 unsigned long alignment; 1033 1034 if (elf_ppnt->p_type != PT_LOAD) 1035 continue; 1036 1037 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state, 1038 !!interpreter, false); 1039 1040 elf_flags = MAP_PRIVATE; 1041 1042 vaddr = elf_ppnt->p_vaddr; 1043 /* 1044 * The first time through the loop, first_pt_load is true: 1045 * layout will be calculated. Once set, use MAP_FIXED since 1046 * we know we've already safely mapped the entire region with 1047 * MAP_FIXED_NOREPLACE in the once-per-binary logic following. 1048 */ 1049 if (!first_pt_load) { 1050 elf_flags |= MAP_FIXED; 1051 } else if (elf_ex->e_type == ET_EXEC) { 1052 /* 1053 * This logic is run once for the first LOAD Program 1054 * Header for ET_EXEC binaries. No special handling 1055 * is needed. 1056 */ 1057 elf_flags |= MAP_FIXED_NOREPLACE; 1058 } else if (elf_ex->e_type == ET_DYN) { 1059 /* 1060 * This logic is run once for the first LOAD Program 1061 * Header for ET_DYN binaries to calculate the 1062 * randomization (load_bias) for all the LOAD 1063 * Program Headers. 1064 * 1065 * There are effectively two types of ET_DYN 1066 * binaries: programs (i.e. PIE: ET_DYN with INTERP) 1067 * and loaders (ET_DYN without INTERP, since they 1068 * _are_ the ELF interpreter). The loaders must 1069 * be loaded away from programs since the program 1070 * may otherwise collide with the loader (especially 1071 * for ET_EXEC which does not have a randomized 1072 * position). For example to handle invocations of 1073 * "./ld.so someprog" to test out a new version of 1074 * the loader, the subsequent program that the 1075 * loader loads must avoid the loader itself, so 1076 * they cannot share the same load range. Sufficient 1077 * room for the brk must be allocated with the 1078 * loader as well, since brk must be available with 1079 * the loader. 1080 * 1081 * Therefore, programs are loaded offset from 1082 * ELF_ET_DYN_BASE and loaders are loaded into the 1083 * independently randomized mmap region (0 load_bias 1084 * without MAP_FIXED nor MAP_FIXED_NOREPLACE). 1085 */ 1086 if (interpreter) { 1087 load_bias = ELF_ET_DYN_BASE; 1088 if (current->flags & PF_RANDOMIZE) 1089 load_bias += arch_mmap_rnd(); 1090 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum); 1091 if (alignment) 1092 load_bias &= ~(alignment - 1); 1093 elf_flags |= MAP_FIXED_NOREPLACE; 1094 } else 1095 load_bias = 0; 1096 1097 /* 1098 * Since load_bias is used for all subsequent loading 1099 * calculations, we must lower it by the first vaddr 1100 * so that the remaining calculations based on the 1101 * ELF vaddrs will be correctly offset. The result 1102 * is then page aligned. 1103 */ 1104 load_bias = ELF_PAGESTART(load_bias - vaddr); 1105 1106 /* 1107 * Calculate the entire size of the ELF mapping 1108 * (total_size), used for the initial mapping, 1109 * due to load_addr_set which is set to true later 1110 * once the initial mapping is performed. 1111 * 1112 * Note that this is only sensible when the LOAD 1113 * segments are contiguous (or overlapping). If 1114 * used for LOADs that are far apart, this would 1115 * cause the holes between LOADs to be mapped, 1116 * running the risk of having the mapping fail, 1117 * as it would be larger than the ELF file itself. 1118 * 1119 * As a result, only ET_DYN does this, since 1120 * some ET_EXEC (e.g. ia64) may have large virtual 1121 * memory holes between LOADs. 1122 * 1123 */ 1124 total_size = total_mapping_size(elf_phdata, 1125 elf_ex->e_phnum); 1126 if (!total_size) { 1127 retval = -EINVAL; 1128 goto out_free_dentry; 1129 } 1130 } 1131 1132 error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt, 1133 elf_prot, elf_flags, total_size); 1134 if (BAD_ADDR(error)) { 1135 retval = IS_ERR_VALUE(error) ? 1136 PTR_ERR((void*)error) : -EINVAL; 1137 goto out_free_dentry; 1138 } 1139 1140 if (first_pt_load) { 1141 first_pt_load = 0; 1142 if (elf_ex->e_type == ET_DYN) { 1143 load_bias += error - 1144 ELF_PAGESTART(load_bias + vaddr); 1145 reloc_func_desc = load_bias; 1146 } 1147 } 1148 1149 /* 1150 * Figure out which segment in the file contains the Program 1151 * Header table, and map to the associated memory address. 1152 */ 1153 if (elf_ppnt->p_offset <= elf_ex->e_phoff && 1154 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) { 1155 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset + 1156 elf_ppnt->p_vaddr; 1157 } 1158 1159 k = elf_ppnt->p_vaddr; 1160 if ((elf_ppnt->p_flags & PF_X) && k < start_code) 1161 start_code = k; 1162 if (start_data < k) 1163 start_data = k; 1164 1165 /* 1166 * Check to see if the section's size will overflow the 1167 * allowed task size. Note that p_filesz must always be 1168 * <= p_memsz so it is only necessary to check p_memsz. 1169 */ 1170 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || 1171 elf_ppnt->p_memsz > TASK_SIZE || 1172 TASK_SIZE - elf_ppnt->p_memsz < k) { 1173 /* set_brk can never work. Avoid overflows. */ 1174 retval = -EINVAL; 1175 goto out_free_dentry; 1176 } 1177 1178 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; 1179 1180 if ((elf_ppnt->p_flags & PF_X) && end_code < k) 1181 end_code = k; 1182 if (end_data < k) 1183 end_data = k; 1184 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; 1185 if (k > elf_brk) 1186 elf_brk = k; 1187 } 1188 1189 e_entry = elf_ex->e_entry + load_bias; 1190 phdr_addr += load_bias; 1191 elf_brk += load_bias; 1192 start_code += load_bias; 1193 end_code += load_bias; 1194 start_data += load_bias; 1195 end_data += load_bias; 1196 1197 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk); 1198 1199 if (interpreter) { 1200 elf_entry = load_elf_interp(interp_elf_ex, 1201 interpreter, 1202 load_bias, interp_elf_phdata, 1203 &arch_state); 1204 if (!IS_ERR_VALUE(elf_entry)) { 1205 /* 1206 * load_elf_interp() returns relocation 1207 * adjustment 1208 */ 1209 interp_load_addr = elf_entry; 1210 elf_entry += interp_elf_ex->e_entry; 1211 } 1212 if (BAD_ADDR(elf_entry)) { 1213 retval = IS_ERR_VALUE(elf_entry) ? 1214 (int)elf_entry : -EINVAL; 1215 goto out_free_dentry; 1216 } 1217 reloc_func_desc = interp_load_addr; 1218 1219 fput(interpreter); 1220 1221 kfree(interp_elf_ex); 1222 kfree(interp_elf_phdata); 1223 } else { 1224 elf_entry = e_entry; 1225 if (BAD_ADDR(elf_entry)) { 1226 retval = -EINVAL; 1227 goto out_free_dentry; 1228 } 1229 } 1230 1231 kfree(elf_phdata); 1232 1233 set_binfmt(&elf_format); 1234 1235 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES 1236 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter); 1237 if (retval < 0) 1238 goto out; 1239 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ 1240 1241 retval = create_elf_tables(bprm, elf_ex, interp_load_addr, 1242 e_entry, phdr_addr); 1243 if (retval < 0) 1244 goto out; 1245 1246 mm = current->mm; 1247 mm->end_code = end_code; 1248 mm->start_code = start_code; 1249 mm->start_data = start_data; 1250 mm->end_data = end_data; 1251 mm->start_stack = bprm->p; 1252 1253 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { 1254 /* 1255 * For architectures with ELF randomization, when executing 1256 * a loader directly (i.e. no interpreter listed in ELF 1257 * headers), move the brk area out of the mmap region 1258 * (since it grows up, and may collide early with the stack 1259 * growing down), and into the unused ELF_ET_DYN_BASE region. 1260 */ 1261 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && 1262 elf_ex->e_type == ET_DYN && !interpreter) { 1263 mm->brk = mm->start_brk = ELF_ET_DYN_BASE; 1264 } else { 1265 /* Otherwise leave a gap between .bss and brk. */ 1266 mm->brk = mm->start_brk = mm->brk + PAGE_SIZE; 1267 } 1268 1269 mm->brk = mm->start_brk = arch_randomize_brk(mm); 1270 #ifdef compat_brk_randomized 1271 current->brk_randomized = 1; 1272 #endif 1273 } 1274 1275 if (current->personality & MMAP_PAGE_ZERO) { 1276 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1277 and some applications "depend" upon this behavior. 1278 Since we do not have the power to recompile these, we 1279 emulate the SVr4 behavior. Sigh. */ 1280 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, 1281 MAP_FIXED | MAP_PRIVATE, 0); 1282 } 1283 1284 regs = current_pt_regs(); 1285 #ifdef ELF_PLAT_INIT 1286 /* 1287 * The ABI may specify that certain registers be set up in special 1288 * ways (on i386 %edx is the address of a DT_FINI function, for 1289 * example. In addition, it may also specify (eg, PowerPC64 ELF) 1290 * that the e_entry field is the address of the function descriptor 1291 * for the startup routine, rather than the address of the startup 1292 * routine itself. This macro performs whatever initialization to 1293 * the regs structure is required as well as any relocations to the 1294 * function descriptor entries when executing dynamically links apps. 1295 */ 1296 ELF_PLAT_INIT(regs, reloc_func_desc); 1297 #endif 1298 1299 finalize_exec(bprm); 1300 START_THREAD(elf_ex, regs, elf_entry, bprm->p); 1301 retval = 0; 1302 out: 1303 return retval; 1304 1305 /* error cleanup */ 1306 out_free_dentry: 1307 kfree(interp_elf_ex); 1308 kfree(interp_elf_phdata); 1309 out_free_file: 1310 if (interpreter) 1311 fput(interpreter); 1312 out_free_ph: 1313 kfree(elf_phdata); 1314 goto out; 1315 } 1316 1317 #ifdef CONFIG_USELIB 1318 /* This is really simpleminded and specialized - we are loading an 1319 a.out library that is given an ELF header. */ 1320 static int load_elf_library(struct file *file) 1321 { 1322 struct elf_phdr *elf_phdata; 1323 struct elf_phdr *eppnt; 1324 int retval, error, i, j; 1325 struct elfhdr elf_ex; 1326 1327 error = -ENOEXEC; 1328 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0); 1329 if (retval < 0) 1330 goto out; 1331 1332 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) 1333 goto out; 1334 1335 /* First of all, some simple consistency checks */ 1336 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || 1337 !elf_check_arch(&elf_ex) || !file->f_op->mmap) 1338 goto out; 1339 if (elf_check_fdpic(&elf_ex)) 1340 goto out; 1341 1342 /* Now read in all of the header information */ 1343 1344 j = sizeof(struct elf_phdr) * elf_ex.e_phnum; 1345 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ 1346 1347 error = -ENOMEM; 1348 elf_phdata = kmalloc(j, GFP_KERNEL); 1349 if (!elf_phdata) 1350 goto out; 1351 1352 eppnt = elf_phdata; 1353 error = -ENOEXEC; 1354 retval = elf_read(file, eppnt, j, elf_ex.e_phoff); 1355 if (retval < 0) 1356 goto out_free_ph; 1357 1358 for (j = 0, i = 0; i<elf_ex.e_phnum; i++) 1359 if ((eppnt + i)->p_type == PT_LOAD) 1360 j++; 1361 if (j != 1) 1362 goto out_free_ph; 1363 1364 while (eppnt->p_type != PT_LOAD) 1365 eppnt++; 1366 1367 /* Now use mmap to map the library into memory. */ 1368 error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr), 1369 eppnt, 1370 PROT_READ | PROT_WRITE | PROT_EXEC, 1371 MAP_FIXED_NOREPLACE | MAP_PRIVATE, 1372 0); 1373 1374 if (error != ELF_PAGESTART(eppnt->p_vaddr)) 1375 goto out_free_ph; 1376 1377 error = 0; 1378 1379 out_free_ph: 1380 kfree(elf_phdata); 1381 out: 1382 return error; 1383 } 1384 #endif /* #ifdef CONFIG_USELIB */ 1385 1386 #ifdef CONFIG_ELF_CORE 1387 /* 1388 * ELF core dumper 1389 * 1390 * Modelled on fs/exec.c:aout_core_dump() 1391 * Jeremy Fitzhardinge <jeremy@sw.oz.au> 1392 */ 1393 1394 /* An ELF note in memory */ 1395 struct memelfnote 1396 { 1397 const char *name; 1398 int type; 1399 unsigned int datasz; 1400 void *data; 1401 }; 1402 1403 static int notesize(struct memelfnote *en) 1404 { 1405 int sz; 1406 1407 sz = sizeof(struct elf_note); 1408 sz += roundup(strlen(en->name) + 1, 4); 1409 sz += roundup(en->datasz, 4); 1410 1411 return sz; 1412 } 1413 1414 static int writenote(struct memelfnote *men, struct coredump_params *cprm) 1415 { 1416 struct elf_note en; 1417 en.n_namesz = strlen(men->name) + 1; 1418 en.n_descsz = men->datasz; 1419 en.n_type = men->type; 1420 1421 return dump_emit(cprm, &en, sizeof(en)) && 1422 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) && 1423 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4); 1424 } 1425 1426 static void fill_elf_header(struct elfhdr *elf, int segs, 1427 u16 machine, u32 flags) 1428 { 1429 memset(elf, 0, sizeof(*elf)); 1430 1431 memcpy(elf->e_ident, ELFMAG, SELFMAG); 1432 elf->e_ident[EI_CLASS] = ELF_CLASS; 1433 elf->e_ident[EI_DATA] = ELF_DATA; 1434 elf->e_ident[EI_VERSION] = EV_CURRENT; 1435 elf->e_ident[EI_OSABI] = ELF_OSABI; 1436 1437 elf->e_type = ET_CORE; 1438 elf->e_machine = machine; 1439 elf->e_version = EV_CURRENT; 1440 elf->e_phoff = sizeof(struct elfhdr); 1441 elf->e_flags = flags; 1442 elf->e_ehsize = sizeof(struct elfhdr); 1443 elf->e_phentsize = sizeof(struct elf_phdr); 1444 elf->e_phnum = segs; 1445 } 1446 1447 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) 1448 { 1449 phdr->p_type = PT_NOTE; 1450 phdr->p_offset = offset; 1451 phdr->p_vaddr = 0; 1452 phdr->p_paddr = 0; 1453 phdr->p_filesz = sz; 1454 phdr->p_memsz = 0; 1455 phdr->p_flags = 0; 1456 phdr->p_align = 4; 1457 } 1458 1459 static void fill_note(struct memelfnote *note, const char *name, int type, 1460 unsigned int sz, void *data) 1461 { 1462 note->name = name; 1463 note->type = type; 1464 note->datasz = sz; 1465 note->data = data; 1466 } 1467 1468 /* 1469 * fill up all the fields in prstatus from the given task struct, except 1470 * registers which need to be filled up separately. 1471 */ 1472 static void fill_prstatus(struct elf_prstatus_common *prstatus, 1473 struct task_struct *p, long signr) 1474 { 1475 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 1476 prstatus->pr_sigpend = p->pending.signal.sig[0]; 1477 prstatus->pr_sighold = p->blocked.sig[0]; 1478 rcu_read_lock(); 1479 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1480 rcu_read_unlock(); 1481 prstatus->pr_pid = task_pid_vnr(p); 1482 prstatus->pr_pgrp = task_pgrp_vnr(p); 1483 prstatus->pr_sid = task_session_vnr(p); 1484 if (thread_group_leader(p)) { 1485 struct task_cputime cputime; 1486 1487 /* 1488 * This is the record for the group leader. It shows the 1489 * group-wide total, not its individual thread total. 1490 */ 1491 thread_group_cputime(p, &cputime); 1492 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime); 1493 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime); 1494 } else { 1495 u64 utime, stime; 1496 1497 task_cputime(p, &utime, &stime); 1498 prstatus->pr_utime = ns_to_kernel_old_timeval(utime); 1499 prstatus->pr_stime = ns_to_kernel_old_timeval(stime); 1500 } 1501 1502 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime); 1503 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime); 1504 } 1505 1506 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, 1507 struct mm_struct *mm) 1508 { 1509 const struct cred *cred; 1510 unsigned int i, len; 1511 unsigned int state; 1512 1513 /* first copy the parameters from user space */ 1514 memset(psinfo, 0, sizeof(struct elf_prpsinfo)); 1515 1516 len = mm->arg_end - mm->arg_start; 1517 if (len >= ELF_PRARGSZ) 1518 len = ELF_PRARGSZ-1; 1519 if (copy_from_user(&psinfo->pr_psargs, 1520 (const char __user *)mm->arg_start, len)) 1521 return -EFAULT; 1522 for(i = 0; i < len; i++) 1523 if (psinfo->pr_psargs[i] == 0) 1524 psinfo->pr_psargs[i] = ' '; 1525 psinfo->pr_psargs[len] = 0; 1526 1527 rcu_read_lock(); 1528 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); 1529 rcu_read_unlock(); 1530 psinfo->pr_pid = task_pid_vnr(p); 1531 psinfo->pr_pgrp = task_pgrp_vnr(p); 1532 psinfo->pr_sid = task_session_vnr(p); 1533 1534 state = READ_ONCE(p->__state); 1535 i = state ? ffz(~state) + 1 : 0; 1536 psinfo->pr_state = i; 1537 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; 1538 psinfo->pr_zomb = psinfo->pr_sname == 'Z'; 1539 psinfo->pr_nice = task_nice(p); 1540 psinfo->pr_flag = p->flags; 1541 rcu_read_lock(); 1542 cred = __task_cred(p); 1543 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid)); 1544 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid)); 1545 rcu_read_unlock(); 1546 get_task_comm(psinfo->pr_fname, p); 1547 1548 return 0; 1549 } 1550 1551 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) 1552 { 1553 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; 1554 int i = 0; 1555 do 1556 i += 2; 1557 while (auxv[i - 2] != AT_NULL); 1558 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); 1559 } 1560 1561 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata, 1562 const kernel_siginfo_t *siginfo) 1563 { 1564 copy_siginfo_to_external(csigdata, siginfo); 1565 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata); 1566 } 1567 1568 /* 1569 * Format of NT_FILE note: 1570 * 1571 * long count -- how many files are mapped 1572 * long page_size -- units for file_ofs 1573 * array of [COUNT] elements of 1574 * long start 1575 * long end 1576 * long file_ofs 1577 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... 1578 */ 1579 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm) 1580 { 1581 unsigned count, size, names_ofs, remaining, n; 1582 user_long_t *data; 1583 user_long_t *start_end_ofs; 1584 char *name_base, *name_curpos; 1585 int i; 1586 1587 /* *Estimated* file count and total data size needed */ 1588 count = cprm->vma_count; 1589 if (count > UINT_MAX / 64) 1590 return -EINVAL; 1591 size = count * 64; 1592 1593 names_ofs = (2 + 3 * count) * sizeof(data[0]); 1594 alloc: 1595 /* paranoia check */ 1596 if (size >= core_file_note_size_limit) { 1597 pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n", 1598 size); 1599 return -EINVAL; 1600 } 1601 size = round_up(size, PAGE_SIZE); 1602 /* 1603 * "size" can be 0 here legitimately. 1604 * Let it ENOMEM and omit NT_FILE section which will be empty anyway. 1605 */ 1606 data = kvmalloc(size, GFP_KERNEL); 1607 if (ZERO_OR_NULL_PTR(data)) 1608 return -ENOMEM; 1609 1610 start_end_ofs = data + 2; 1611 name_base = name_curpos = ((char *)data) + names_ofs; 1612 remaining = size - names_ofs; 1613 count = 0; 1614 for (i = 0; i < cprm->vma_count; i++) { 1615 struct core_vma_metadata *m = &cprm->vma_meta[i]; 1616 struct file *file; 1617 const char *filename; 1618 1619 file = m->file; 1620 if (!file) 1621 continue; 1622 filename = file_path(file, name_curpos, remaining); 1623 if (IS_ERR(filename)) { 1624 if (PTR_ERR(filename) == -ENAMETOOLONG) { 1625 kvfree(data); 1626 size = size * 5 / 4; 1627 goto alloc; 1628 } 1629 continue; 1630 } 1631 1632 /* file_path() fills at the end, move name down */ 1633 /* n = strlen(filename) + 1: */ 1634 n = (name_curpos + remaining) - filename; 1635 remaining = filename - name_curpos; 1636 memmove(name_curpos, filename, n); 1637 name_curpos += n; 1638 1639 *start_end_ofs++ = m->start; 1640 *start_end_ofs++ = m->end; 1641 *start_end_ofs++ = m->pgoff; 1642 count++; 1643 } 1644 1645 /* Now we know exact count of files, can store it */ 1646 data[0] = count; 1647 data[1] = PAGE_SIZE; 1648 /* 1649 * Count usually is less than mm->map_count, 1650 * we need to move filenames down. 1651 */ 1652 n = cprm->vma_count - count; 1653 if (n != 0) { 1654 unsigned shift_bytes = n * 3 * sizeof(data[0]); 1655 memmove(name_base - shift_bytes, name_base, 1656 name_curpos - name_base); 1657 name_curpos -= shift_bytes; 1658 } 1659 1660 size = name_curpos - (char *)data; 1661 fill_note(note, "CORE", NT_FILE, size, data); 1662 return 0; 1663 } 1664 1665 #include <linux/regset.h> 1666 1667 struct elf_thread_core_info { 1668 struct elf_thread_core_info *next; 1669 struct task_struct *task; 1670 struct elf_prstatus prstatus; 1671 struct memelfnote notes[]; 1672 }; 1673 1674 struct elf_note_info { 1675 struct elf_thread_core_info *thread; 1676 struct memelfnote psinfo; 1677 struct memelfnote signote; 1678 struct memelfnote auxv; 1679 struct memelfnote files; 1680 user_siginfo_t csigdata; 1681 size_t size; 1682 int thread_notes; 1683 }; 1684 1685 #ifdef CORE_DUMP_USE_REGSET 1686 /* 1687 * When a regset has a writeback hook, we call it on each thread before 1688 * dumping user memory. On register window machines, this makes sure the 1689 * user memory backing the register data is up to date before we read it. 1690 */ 1691 static void do_thread_regset_writeback(struct task_struct *task, 1692 const struct user_regset *regset) 1693 { 1694 if (regset->writeback) 1695 regset->writeback(task, regset, 1); 1696 } 1697 1698 #ifndef PRSTATUS_SIZE 1699 #define PRSTATUS_SIZE sizeof(struct elf_prstatus) 1700 #endif 1701 1702 #ifndef SET_PR_FPVALID 1703 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1) 1704 #endif 1705 1706 static int fill_thread_core_info(struct elf_thread_core_info *t, 1707 const struct user_regset_view *view, 1708 long signr, struct elf_note_info *info) 1709 { 1710 unsigned int note_iter, view_iter; 1711 1712 /* 1713 * NT_PRSTATUS is the one special case, because the regset data 1714 * goes into the pr_reg field inside the note contents, rather 1715 * than being the whole note contents. We fill the regset in here. 1716 * We assume that regset 0 is NT_PRSTATUS. 1717 */ 1718 fill_prstatus(&t->prstatus.common, t->task, signr); 1719 regset_get(t->task, &view->regsets[0], 1720 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg); 1721 1722 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, 1723 PRSTATUS_SIZE, &t->prstatus); 1724 info->size += notesize(&t->notes[0]); 1725 1726 do_thread_regset_writeback(t->task, &view->regsets[0]); 1727 1728 /* 1729 * Each other regset might generate a note too. For each regset 1730 * that has no core_note_type or is inactive, skip it. 1731 */ 1732 note_iter = 1; 1733 for (view_iter = 1; view_iter < view->n; ++view_iter) { 1734 const struct user_regset *regset = &view->regsets[view_iter]; 1735 int note_type = regset->core_note_type; 1736 bool is_fpreg = note_type == NT_PRFPREG; 1737 void *data; 1738 int ret; 1739 1740 do_thread_regset_writeback(t->task, regset); 1741 if (!note_type) // not for coredumps 1742 continue; 1743 if (regset->active && regset->active(t->task, regset) <= 0) 1744 continue; 1745 1746 ret = regset_get_alloc(t->task, regset, ~0U, &data); 1747 if (ret < 0) 1748 continue; 1749 1750 if (WARN_ON_ONCE(note_iter >= info->thread_notes)) 1751 break; 1752 1753 if (is_fpreg) 1754 SET_PR_FPVALID(&t->prstatus); 1755 1756 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX", 1757 note_type, ret, data); 1758 1759 info->size += notesize(&t->notes[note_iter]); 1760 note_iter++; 1761 } 1762 1763 return 1; 1764 } 1765 #else 1766 static int fill_thread_core_info(struct elf_thread_core_info *t, 1767 const struct user_regset_view *view, 1768 long signr, struct elf_note_info *info) 1769 { 1770 struct task_struct *p = t->task; 1771 elf_fpregset_t *fpu; 1772 1773 fill_prstatus(&t->prstatus.common, p, signr); 1774 elf_core_copy_task_regs(p, &t->prstatus.pr_reg); 1775 1776 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), 1777 &(t->prstatus)); 1778 info->size += notesize(&t->notes[0]); 1779 1780 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL); 1781 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) { 1782 kfree(fpu); 1783 return 1; 1784 } 1785 1786 t->prstatus.pr_fpvalid = 1; 1787 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu); 1788 info->size += notesize(&t->notes[1]); 1789 1790 return 1; 1791 } 1792 #endif 1793 1794 static int fill_note_info(struct elfhdr *elf, int phdrs, 1795 struct elf_note_info *info, 1796 struct coredump_params *cprm) 1797 { 1798 struct task_struct *dump_task = current; 1799 const struct user_regset_view *view; 1800 struct elf_thread_core_info *t; 1801 struct elf_prpsinfo *psinfo; 1802 struct core_thread *ct; 1803 1804 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); 1805 if (!psinfo) 1806 return 0; 1807 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); 1808 1809 #ifdef CORE_DUMP_USE_REGSET 1810 view = task_user_regset_view(dump_task); 1811 1812 /* 1813 * Figure out how many notes we're going to need for each thread. 1814 */ 1815 info->thread_notes = 0; 1816 for (int i = 0; i < view->n; ++i) 1817 if (view->regsets[i].core_note_type != 0) 1818 ++info->thread_notes; 1819 1820 /* 1821 * Sanity check. We rely on regset 0 being in NT_PRSTATUS, 1822 * since it is our one special case. 1823 */ 1824 if (unlikely(info->thread_notes == 0) || 1825 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { 1826 WARN_ON(1); 1827 return 0; 1828 } 1829 1830 /* 1831 * Initialize the ELF file header. 1832 */ 1833 fill_elf_header(elf, phdrs, 1834 view->e_machine, view->e_flags); 1835 #else 1836 view = NULL; 1837 info->thread_notes = 2; 1838 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS); 1839 #endif 1840 1841 /* 1842 * Allocate a structure for each thread. 1843 */ 1844 info->thread = kzalloc(offsetof(struct elf_thread_core_info, 1845 notes[info->thread_notes]), 1846 GFP_KERNEL); 1847 if (unlikely(!info->thread)) 1848 return 0; 1849 1850 info->thread->task = dump_task; 1851 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) { 1852 t = kzalloc(offsetof(struct elf_thread_core_info, 1853 notes[info->thread_notes]), 1854 GFP_KERNEL); 1855 if (unlikely(!t)) 1856 return 0; 1857 1858 t->task = ct->task; 1859 t->next = info->thread->next; 1860 info->thread->next = t; 1861 } 1862 1863 /* 1864 * Now fill in each thread's information. 1865 */ 1866 for (t = info->thread; t != NULL; t = t->next) 1867 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info)) 1868 return 0; 1869 1870 /* 1871 * Fill in the two process-wide notes. 1872 */ 1873 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); 1874 info->size += notesize(&info->psinfo); 1875 1876 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo); 1877 info->size += notesize(&info->signote); 1878 1879 fill_auxv_note(&info->auxv, current->mm); 1880 info->size += notesize(&info->auxv); 1881 1882 if (fill_files_note(&info->files, cprm) == 0) 1883 info->size += notesize(&info->files); 1884 1885 return 1; 1886 } 1887 1888 /* 1889 * Write all the notes for each thread. When writing the first thread, the 1890 * process-wide notes are interleaved after the first thread-specific note. 1891 */ 1892 static int write_note_info(struct elf_note_info *info, 1893 struct coredump_params *cprm) 1894 { 1895 bool first = true; 1896 struct elf_thread_core_info *t = info->thread; 1897 1898 do { 1899 int i; 1900 1901 if (!writenote(&t->notes[0], cprm)) 1902 return 0; 1903 1904 if (first && !writenote(&info->psinfo, cprm)) 1905 return 0; 1906 if (first && !writenote(&info->signote, cprm)) 1907 return 0; 1908 if (first && !writenote(&info->auxv, cprm)) 1909 return 0; 1910 if (first && info->files.data && 1911 !writenote(&info->files, cprm)) 1912 return 0; 1913 1914 for (i = 1; i < info->thread_notes; ++i) 1915 if (t->notes[i].data && 1916 !writenote(&t->notes[i], cprm)) 1917 return 0; 1918 1919 first = false; 1920 t = t->next; 1921 } while (t); 1922 1923 return 1; 1924 } 1925 1926 static void free_note_info(struct elf_note_info *info) 1927 { 1928 struct elf_thread_core_info *threads = info->thread; 1929 while (threads) { 1930 unsigned int i; 1931 struct elf_thread_core_info *t = threads; 1932 threads = t->next; 1933 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); 1934 for (i = 1; i < info->thread_notes; ++i) 1935 kvfree(t->notes[i].data); 1936 kfree(t); 1937 } 1938 kfree(info->psinfo.data); 1939 kvfree(info->files.data); 1940 } 1941 1942 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, 1943 elf_addr_t e_shoff, int segs) 1944 { 1945 elf->e_shoff = e_shoff; 1946 elf->e_shentsize = sizeof(*shdr4extnum); 1947 elf->e_shnum = 1; 1948 elf->e_shstrndx = SHN_UNDEF; 1949 1950 memset(shdr4extnum, 0, sizeof(*shdr4extnum)); 1951 1952 shdr4extnum->sh_type = SHT_NULL; 1953 shdr4extnum->sh_size = elf->e_shnum; 1954 shdr4extnum->sh_link = elf->e_shstrndx; 1955 shdr4extnum->sh_info = segs; 1956 } 1957 1958 /* 1959 * Actual dumper 1960 * 1961 * This is a two-pass process; first we find the offsets of the bits, 1962 * and then they are actually written out. If we run out of core limit 1963 * we just truncate. 1964 */ 1965 static int elf_core_dump(struct coredump_params *cprm) 1966 { 1967 int has_dumped = 0; 1968 int segs, i; 1969 struct elfhdr elf; 1970 loff_t offset = 0, dataoff; 1971 struct elf_note_info info = { }; 1972 struct elf_phdr *phdr4note = NULL; 1973 struct elf_shdr *shdr4extnum = NULL; 1974 Elf_Half e_phnum; 1975 elf_addr_t e_shoff; 1976 1977 /* 1978 * The number of segs are recored into ELF header as 16bit value. 1979 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. 1980 */ 1981 segs = cprm->vma_count + elf_core_extra_phdrs(cprm); 1982 1983 /* for notes section */ 1984 segs++; 1985 1986 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid 1987 * this, kernel supports extended numbering. Have a look at 1988 * include/linux/elf.h for further information. */ 1989 e_phnum = segs > PN_XNUM ? PN_XNUM : segs; 1990 1991 /* 1992 * Collect all the non-memory information about the process for the 1993 * notes. This also sets up the file header. 1994 */ 1995 if (!fill_note_info(&elf, e_phnum, &info, cprm)) 1996 goto end_coredump; 1997 1998 has_dumped = 1; 1999 2000 offset += sizeof(elf); /* ELF header */ 2001 offset += segs * sizeof(struct elf_phdr); /* Program headers */ 2002 2003 /* Write notes phdr entry */ 2004 { 2005 size_t sz = info.size; 2006 2007 /* For cell spufs */ 2008 sz += elf_coredump_extra_notes_size(); 2009 2010 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); 2011 if (!phdr4note) 2012 goto end_coredump; 2013 2014 fill_elf_note_phdr(phdr4note, sz, offset); 2015 offset += sz; 2016 } 2017 2018 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2019 2020 offset += cprm->vma_data_size; 2021 offset += elf_core_extra_data_size(cprm); 2022 e_shoff = offset; 2023 2024 if (e_phnum == PN_XNUM) { 2025 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); 2026 if (!shdr4extnum) 2027 goto end_coredump; 2028 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs); 2029 } 2030 2031 offset = dataoff; 2032 2033 if (!dump_emit(cprm, &elf, sizeof(elf))) 2034 goto end_coredump; 2035 2036 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note))) 2037 goto end_coredump; 2038 2039 /* Write program headers for segments dump */ 2040 for (i = 0; i < cprm->vma_count; i++) { 2041 struct core_vma_metadata *meta = cprm->vma_meta + i; 2042 struct elf_phdr phdr; 2043 2044 phdr.p_type = PT_LOAD; 2045 phdr.p_offset = offset; 2046 phdr.p_vaddr = meta->start; 2047 phdr.p_paddr = 0; 2048 phdr.p_filesz = meta->dump_size; 2049 phdr.p_memsz = meta->end - meta->start; 2050 offset += phdr.p_filesz; 2051 phdr.p_flags = 0; 2052 if (meta->flags & VM_READ) 2053 phdr.p_flags |= PF_R; 2054 if (meta->flags & VM_WRITE) 2055 phdr.p_flags |= PF_W; 2056 if (meta->flags & VM_EXEC) 2057 phdr.p_flags |= PF_X; 2058 phdr.p_align = ELF_EXEC_PAGESIZE; 2059 2060 if (!dump_emit(cprm, &phdr, sizeof(phdr))) 2061 goto end_coredump; 2062 } 2063 2064 if (!elf_core_write_extra_phdrs(cprm, offset)) 2065 goto end_coredump; 2066 2067 /* write out the notes section */ 2068 if (!write_note_info(&info, cprm)) 2069 goto end_coredump; 2070 2071 /* For cell spufs */ 2072 if (elf_coredump_extra_notes_write(cprm)) 2073 goto end_coredump; 2074 2075 /* Align to page */ 2076 dump_skip_to(cprm, dataoff); 2077 2078 for (i = 0; i < cprm->vma_count; i++) { 2079 struct core_vma_metadata *meta = cprm->vma_meta + i; 2080 2081 if (!dump_user_range(cprm, meta->start, meta->dump_size)) 2082 goto end_coredump; 2083 } 2084 2085 if (!elf_core_write_extra_data(cprm)) 2086 goto end_coredump; 2087 2088 if (e_phnum == PN_XNUM) { 2089 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum))) 2090 goto end_coredump; 2091 } 2092 2093 end_coredump: 2094 free_note_info(&info); 2095 kfree(shdr4extnum); 2096 kfree(phdr4note); 2097 return has_dumped; 2098 } 2099 2100 #endif /* CONFIG_ELF_CORE */ 2101 2102 static int __init init_elf_binfmt(void) 2103 { 2104 register_binfmt(&elf_format); 2105 return 0; 2106 } 2107 2108 static void __exit exit_elf_binfmt(void) 2109 { 2110 /* Remove the COFF and ELF loaders. */ 2111 unregister_binfmt(&elf_format); 2112 } 2113 2114 core_initcall(init_elf_binfmt); 2115 module_exit(exit_elf_binfmt); 2116 2117 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST 2118 #include "binfmt_elf_test.c" 2119 #endif 2120