1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #if DEBUG > 1 43 #define dprintk printk 44 #else 45 #define dprintk(x...) do { ; } while (0) 46 #endif 47 48 /*------ sysctl variables----*/ 49 static DEFINE_SPINLOCK(aio_nr_lock); 50 unsigned long aio_nr; /* current system wide number of aio requests */ 51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 52 /*----end sysctl variables---*/ 53 54 static struct kmem_cache *kiocb_cachep; 55 static struct kmem_cache *kioctx_cachep; 56 57 static struct workqueue_struct *aio_wq; 58 59 /* Used for rare fput completion. */ 60 static void aio_fput_routine(struct work_struct *); 61 static DECLARE_WORK(fput_work, aio_fput_routine); 62 63 static DEFINE_SPINLOCK(fput_lock); 64 static LIST_HEAD(fput_head); 65 66 static void aio_kick_handler(struct work_struct *); 67 static void aio_queue_work(struct kioctx *); 68 69 /* aio_setup 70 * Creates the slab caches used by the aio routines, panic on 71 * failure as this is done early during the boot sequence. 72 */ 73 static int __init aio_setup(void) 74 { 75 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 76 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 77 78 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */ 79 BUG_ON(!aio_wq); 80 81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 82 83 return 0; 84 } 85 __initcall(aio_setup); 86 87 static void aio_free_ring(struct kioctx *ctx) 88 { 89 struct aio_ring_info *info = &ctx->ring_info; 90 long i; 91 92 for (i=0; i<info->nr_pages; i++) 93 put_page(info->ring_pages[i]); 94 95 if (info->mmap_size) { 96 down_write(&ctx->mm->mmap_sem); 97 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 98 up_write(&ctx->mm->mmap_sem); 99 } 100 101 if (info->ring_pages && info->ring_pages != info->internal_pages) 102 kfree(info->ring_pages); 103 info->ring_pages = NULL; 104 info->nr = 0; 105 } 106 107 static int aio_setup_ring(struct kioctx *ctx) 108 { 109 struct aio_ring *ring; 110 struct aio_ring_info *info = &ctx->ring_info; 111 unsigned nr_events = ctx->max_reqs; 112 unsigned long size; 113 int nr_pages; 114 115 /* Compensate for the ring buffer's head/tail overlap entry */ 116 nr_events += 2; /* 1 is required, 2 for good luck */ 117 118 size = sizeof(struct aio_ring); 119 size += sizeof(struct io_event) * nr_events; 120 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 121 122 if (nr_pages < 0) 123 return -EINVAL; 124 125 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 126 127 info->nr = 0; 128 info->ring_pages = info->internal_pages; 129 if (nr_pages > AIO_RING_PAGES) { 130 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 131 if (!info->ring_pages) 132 return -ENOMEM; 133 } 134 135 info->mmap_size = nr_pages * PAGE_SIZE; 136 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 137 down_write(&ctx->mm->mmap_sem); 138 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 139 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 140 0); 141 if (IS_ERR((void *)info->mmap_base)) { 142 up_write(&ctx->mm->mmap_sem); 143 info->mmap_size = 0; 144 aio_free_ring(ctx); 145 return -EAGAIN; 146 } 147 148 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 149 info->nr_pages = get_user_pages(current, ctx->mm, 150 info->mmap_base, nr_pages, 151 1, 0, info->ring_pages, NULL); 152 up_write(&ctx->mm->mmap_sem); 153 154 if (unlikely(info->nr_pages != nr_pages)) { 155 aio_free_ring(ctx); 156 return -EAGAIN; 157 } 158 159 ctx->user_id = info->mmap_base; 160 161 info->nr = nr_events; /* trusted copy */ 162 163 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 164 ring->nr = nr_events; /* user copy */ 165 ring->id = ctx->user_id; 166 ring->head = ring->tail = 0; 167 ring->magic = AIO_RING_MAGIC; 168 ring->compat_features = AIO_RING_COMPAT_FEATURES; 169 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 170 ring->header_length = sizeof(struct aio_ring); 171 kunmap_atomic(ring, KM_USER0); 172 173 return 0; 174 } 175 176 177 /* aio_ring_event: returns a pointer to the event at the given index from 178 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 179 */ 180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 183 184 #define aio_ring_event(info, nr, km) ({ \ 185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 186 struct io_event *__event; \ 187 __event = kmap_atomic( \ 188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 189 __event += pos % AIO_EVENTS_PER_PAGE; \ 190 __event; \ 191 }) 192 193 #define put_aio_ring_event(event, km) do { \ 194 struct io_event *__event = (event); \ 195 (void)__event; \ 196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 197 } while(0) 198 199 static void ctx_rcu_free(struct rcu_head *head) 200 { 201 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 202 unsigned nr_events = ctx->max_reqs; 203 204 kmem_cache_free(kioctx_cachep, ctx); 205 206 if (nr_events) { 207 spin_lock(&aio_nr_lock); 208 BUG_ON(aio_nr - nr_events > aio_nr); 209 aio_nr -= nr_events; 210 spin_unlock(&aio_nr_lock); 211 } 212 } 213 214 /* __put_ioctx 215 * Called when the last user of an aio context has gone away, 216 * and the struct needs to be freed. 217 */ 218 static void __put_ioctx(struct kioctx *ctx) 219 { 220 BUG_ON(ctx->reqs_active); 221 222 cancel_delayed_work(&ctx->wq); 223 cancel_work_sync(&ctx->wq.work); 224 aio_free_ring(ctx); 225 mmdrop(ctx->mm); 226 ctx->mm = NULL; 227 pr_debug("__put_ioctx: freeing %p\n", ctx); 228 call_rcu(&ctx->rcu_head, ctx_rcu_free); 229 } 230 231 static inline int try_get_ioctx(struct kioctx *kioctx) 232 { 233 return atomic_inc_not_zero(&kioctx->users); 234 } 235 236 static inline void put_ioctx(struct kioctx *kioctx) 237 { 238 BUG_ON(atomic_read(&kioctx->users) <= 0); 239 if (unlikely(atomic_dec_and_test(&kioctx->users))) 240 __put_ioctx(kioctx); 241 } 242 243 /* ioctx_alloc 244 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 245 */ 246 static struct kioctx *ioctx_alloc(unsigned nr_events) 247 { 248 struct mm_struct *mm; 249 struct kioctx *ctx; 250 int did_sync = 0; 251 252 /* Prevent overflows */ 253 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 254 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 255 pr_debug("ENOMEM: nr_events too high\n"); 256 return ERR_PTR(-EINVAL); 257 } 258 259 if ((unsigned long)nr_events > aio_max_nr) 260 return ERR_PTR(-EAGAIN); 261 262 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 263 if (!ctx) 264 return ERR_PTR(-ENOMEM); 265 266 ctx->max_reqs = nr_events; 267 mm = ctx->mm = current->mm; 268 atomic_inc(&mm->mm_count); 269 270 atomic_set(&ctx->users, 2); 271 spin_lock_init(&ctx->ctx_lock); 272 spin_lock_init(&ctx->ring_info.ring_lock); 273 init_waitqueue_head(&ctx->wait); 274 275 INIT_LIST_HEAD(&ctx->active_reqs); 276 INIT_LIST_HEAD(&ctx->run_list); 277 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 278 279 if (aio_setup_ring(ctx) < 0) 280 goto out_freectx; 281 282 /* limit the number of system wide aios */ 283 do { 284 spin_lock_bh(&aio_nr_lock); 285 if (aio_nr + nr_events > aio_max_nr || 286 aio_nr + nr_events < aio_nr) 287 ctx->max_reqs = 0; 288 else 289 aio_nr += ctx->max_reqs; 290 spin_unlock_bh(&aio_nr_lock); 291 if (ctx->max_reqs || did_sync) 292 break; 293 294 /* wait for rcu callbacks to have completed before giving up */ 295 synchronize_rcu(); 296 did_sync = 1; 297 ctx->max_reqs = nr_events; 298 } while (1); 299 300 if (ctx->max_reqs == 0) 301 goto out_cleanup; 302 303 /* now link into global list. */ 304 spin_lock(&mm->ioctx_lock); 305 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 306 spin_unlock(&mm->ioctx_lock); 307 308 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 309 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 310 return ctx; 311 312 out_cleanup: 313 __put_ioctx(ctx); 314 return ERR_PTR(-EAGAIN); 315 316 out_freectx: 317 mmdrop(mm); 318 kmem_cache_free(kioctx_cachep, ctx); 319 ctx = ERR_PTR(-ENOMEM); 320 321 dprintk("aio: error allocating ioctx %p\n", ctx); 322 return ctx; 323 } 324 325 /* aio_cancel_all 326 * Cancels all outstanding aio requests on an aio context. Used 327 * when the processes owning a context have all exited to encourage 328 * the rapid destruction of the kioctx. 329 */ 330 static void aio_cancel_all(struct kioctx *ctx) 331 { 332 int (*cancel)(struct kiocb *, struct io_event *); 333 struct io_event res; 334 spin_lock_irq(&ctx->ctx_lock); 335 ctx->dead = 1; 336 while (!list_empty(&ctx->active_reqs)) { 337 struct list_head *pos = ctx->active_reqs.next; 338 struct kiocb *iocb = list_kiocb(pos); 339 list_del_init(&iocb->ki_list); 340 cancel = iocb->ki_cancel; 341 kiocbSetCancelled(iocb); 342 if (cancel) { 343 iocb->ki_users++; 344 spin_unlock_irq(&ctx->ctx_lock); 345 cancel(iocb, &res); 346 spin_lock_irq(&ctx->ctx_lock); 347 } 348 } 349 spin_unlock_irq(&ctx->ctx_lock); 350 } 351 352 static void wait_for_all_aios(struct kioctx *ctx) 353 { 354 struct task_struct *tsk = current; 355 DECLARE_WAITQUEUE(wait, tsk); 356 357 spin_lock_irq(&ctx->ctx_lock); 358 if (!ctx->reqs_active) 359 goto out; 360 361 add_wait_queue(&ctx->wait, &wait); 362 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 363 while (ctx->reqs_active) { 364 spin_unlock_irq(&ctx->ctx_lock); 365 io_schedule(); 366 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 367 spin_lock_irq(&ctx->ctx_lock); 368 } 369 __set_task_state(tsk, TASK_RUNNING); 370 remove_wait_queue(&ctx->wait, &wait); 371 372 out: 373 spin_unlock_irq(&ctx->ctx_lock); 374 } 375 376 /* wait_on_sync_kiocb: 377 * Waits on the given sync kiocb to complete. 378 */ 379 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 380 { 381 while (iocb->ki_users) { 382 set_current_state(TASK_UNINTERRUPTIBLE); 383 if (!iocb->ki_users) 384 break; 385 io_schedule(); 386 } 387 __set_current_state(TASK_RUNNING); 388 return iocb->ki_user_data; 389 } 390 EXPORT_SYMBOL(wait_on_sync_kiocb); 391 392 /* exit_aio: called when the last user of mm goes away. At this point, 393 * there is no way for any new requests to be submited or any of the 394 * io_* syscalls to be called on the context. However, there may be 395 * outstanding requests which hold references to the context; as they 396 * go away, they will call put_ioctx and release any pinned memory 397 * associated with the request (held via struct page * references). 398 */ 399 void exit_aio(struct mm_struct *mm) 400 { 401 struct kioctx *ctx; 402 403 while (!hlist_empty(&mm->ioctx_list)) { 404 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 405 hlist_del_rcu(&ctx->list); 406 407 aio_cancel_all(ctx); 408 409 wait_for_all_aios(ctx); 410 /* 411 * Ensure we don't leave the ctx on the aio_wq 412 */ 413 cancel_work_sync(&ctx->wq.work); 414 415 if (1 != atomic_read(&ctx->users)) 416 printk(KERN_DEBUG 417 "exit_aio:ioctx still alive: %d %d %d\n", 418 atomic_read(&ctx->users), ctx->dead, 419 ctx->reqs_active); 420 put_ioctx(ctx); 421 } 422 } 423 424 /* aio_get_req 425 * Allocate a slot for an aio request. Increments the users count 426 * of the kioctx so that the kioctx stays around until all requests are 427 * complete. Returns NULL if no requests are free. 428 * 429 * Returns with kiocb->users set to 2. The io submit code path holds 430 * an extra reference while submitting the i/o. 431 * This prevents races between the aio code path referencing the 432 * req (after submitting it) and aio_complete() freeing the req. 433 */ 434 static struct kiocb *__aio_get_req(struct kioctx *ctx) 435 { 436 struct kiocb *req = NULL; 437 438 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 439 if (unlikely(!req)) 440 return NULL; 441 442 req->ki_flags = 0; 443 req->ki_users = 2; 444 req->ki_key = 0; 445 req->ki_ctx = ctx; 446 req->ki_cancel = NULL; 447 req->ki_retry = NULL; 448 req->ki_dtor = NULL; 449 req->private = NULL; 450 req->ki_iovec = NULL; 451 INIT_LIST_HEAD(&req->ki_run_list); 452 req->ki_eventfd = NULL; 453 454 return req; 455 } 456 457 /* 458 * struct kiocb's are allocated in batches to reduce the number of 459 * times the ctx lock is acquired and released. 460 */ 461 #define KIOCB_BATCH_SIZE 32L 462 struct kiocb_batch { 463 struct list_head head; 464 long count; /* number of requests left to allocate */ 465 }; 466 467 static void kiocb_batch_init(struct kiocb_batch *batch, long total) 468 { 469 INIT_LIST_HEAD(&batch->head); 470 batch->count = total; 471 } 472 473 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch) 474 { 475 struct kiocb *req, *n; 476 477 if (list_empty(&batch->head)) 478 return; 479 480 spin_lock_irq(&ctx->ctx_lock); 481 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 482 list_del(&req->ki_batch); 483 list_del(&req->ki_list); 484 kmem_cache_free(kiocb_cachep, req); 485 ctx->reqs_active--; 486 } 487 if (unlikely(!ctx->reqs_active && ctx->dead)) 488 wake_up_all(&ctx->wait); 489 spin_unlock_irq(&ctx->ctx_lock); 490 } 491 492 /* 493 * Allocate a batch of kiocbs. This avoids taking and dropping the 494 * context lock a lot during setup. 495 */ 496 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) 497 { 498 unsigned short allocated, to_alloc; 499 long avail; 500 bool called_fput = false; 501 struct kiocb *req, *n; 502 struct aio_ring *ring; 503 504 to_alloc = min(batch->count, KIOCB_BATCH_SIZE); 505 for (allocated = 0; allocated < to_alloc; allocated++) { 506 req = __aio_get_req(ctx); 507 if (!req) 508 /* allocation failed, go with what we've got */ 509 break; 510 list_add(&req->ki_batch, &batch->head); 511 } 512 513 if (allocated == 0) 514 goto out; 515 516 retry: 517 spin_lock_irq(&ctx->ctx_lock); 518 ring = kmap_atomic(ctx->ring_info.ring_pages[0]); 519 520 avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active; 521 BUG_ON(avail < 0); 522 if (avail == 0 && !called_fput) { 523 /* 524 * Handle a potential starvation case. It is possible that 525 * we hold the last reference on a struct file, causing us 526 * to delay the final fput to non-irq context. In this case, 527 * ctx->reqs_active is artificially high. Calling the fput 528 * routine here may free up a slot in the event completion 529 * ring, allowing this allocation to succeed. 530 */ 531 kunmap_atomic(ring); 532 spin_unlock_irq(&ctx->ctx_lock); 533 aio_fput_routine(NULL); 534 called_fput = true; 535 goto retry; 536 } 537 538 if (avail < allocated) { 539 /* Trim back the number of requests. */ 540 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 541 list_del(&req->ki_batch); 542 kmem_cache_free(kiocb_cachep, req); 543 if (--allocated <= avail) 544 break; 545 } 546 } 547 548 batch->count -= allocated; 549 list_for_each_entry(req, &batch->head, ki_batch) { 550 list_add(&req->ki_list, &ctx->active_reqs); 551 ctx->reqs_active++; 552 } 553 554 kunmap_atomic(ring); 555 spin_unlock_irq(&ctx->ctx_lock); 556 557 out: 558 return allocated; 559 } 560 561 static inline struct kiocb *aio_get_req(struct kioctx *ctx, 562 struct kiocb_batch *batch) 563 { 564 struct kiocb *req; 565 566 if (list_empty(&batch->head)) 567 if (kiocb_batch_refill(ctx, batch) == 0) 568 return NULL; 569 req = list_first_entry(&batch->head, struct kiocb, ki_batch); 570 list_del(&req->ki_batch); 571 return req; 572 } 573 574 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 575 { 576 assert_spin_locked(&ctx->ctx_lock); 577 578 if (req->ki_eventfd != NULL) 579 eventfd_ctx_put(req->ki_eventfd); 580 if (req->ki_dtor) 581 req->ki_dtor(req); 582 if (req->ki_iovec != &req->ki_inline_vec) 583 kfree(req->ki_iovec); 584 kmem_cache_free(kiocb_cachep, req); 585 ctx->reqs_active--; 586 587 if (unlikely(!ctx->reqs_active && ctx->dead)) 588 wake_up_all(&ctx->wait); 589 } 590 591 static void aio_fput_routine(struct work_struct *data) 592 { 593 spin_lock_irq(&fput_lock); 594 while (likely(!list_empty(&fput_head))) { 595 struct kiocb *req = list_kiocb(fput_head.next); 596 struct kioctx *ctx = req->ki_ctx; 597 598 list_del(&req->ki_list); 599 spin_unlock_irq(&fput_lock); 600 601 /* Complete the fput(s) */ 602 if (req->ki_filp != NULL) 603 fput(req->ki_filp); 604 605 /* Link the iocb into the context's free list */ 606 rcu_read_lock(); 607 spin_lock_irq(&ctx->ctx_lock); 608 really_put_req(ctx, req); 609 /* 610 * at that point ctx might've been killed, but actual 611 * freeing is RCU'd 612 */ 613 spin_unlock_irq(&ctx->ctx_lock); 614 rcu_read_unlock(); 615 616 spin_lock_irq(&fput_lock); 617 } 618 spin_unlock_irq(&fput_lock); 619 } 620 621 /* __aio_put_req 622 * Returns true if this put was the last user of the request. 623 */ 624 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 625 { 626 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 627 req, atomic_long_read(&req->ki_filp->f_count)); 628 629 assert_spin_locked(&ctx->ctx_lock); 630 631 req->ki_users--; 632 BUG_ON(req->ki_users < 0); 633 if (likely(req->ki_users)) 634 return 0; 635 list_del(&req->ki_list); /* remove from active_reqs */ 636 req->ki_cancel = NULL; 637 req->ki_retry = NULL; 638 639 /* 640 * Try to optimize the aio and eventfd file* puts, by avoiding to 641 * schedule work in case it is not final fput() time. In normal cases, 642 * we would not be holding the last reference to the file*, so 643 * this function will be executed w/out any aio kthread wakeup. 644 */ 645 if (unlikely(!fput_atomic(req->ki_filp))) { 646 spin_lock(&fput_lock); 647 list_add(&req->ki_list, &fput_head); 648 spin_unlock(&fput_lock); 649 schedule_work(&fput_work); 650 } else { 651 req->ki_filp = NULL; 652 really_put_req(ctx, req); 653 } 654 return 1; 655 } 656 657 /* aio_put_req 658 * Returns true if this put was the last user of the kiocb, 659 * false if the request is still in use. 660 */ 661 int aio_put_req(struct kiocb *req) 662 { 663 struct kioctx *ctx = req->ki_ctx; 664 int ret; 665 spin_lock_irq(&ctx->ctx_lock); 666 ret = __aio_put_req(ctx, req); 667 spin_unlock_irq(&ctx->ctx_lock); 668 return ret; 669 } 670 EXPORT_SYMBOL(aio_put_req); 671 672 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 673 { 674 struct mm_struct *mm = current->mm; 675 struct kioctx *ctx, *ret = NULL; 676 struct hlist_node *n; 677 678 rcu_read_lock(); 679 680 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 681 /* 682 * RCU protects us against accessing freed memory but 683 * we have to be careful not to get a reference when the 684 * reference count already dropped to 0 (ctx->dead test 685 * is unreliable because of races). 686 */ 687 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ 688 ret = ctx; 689 break; 690 } 691 } 692 693 rcu_read_unlock(); 694 return ret; 695 } 696 697 /* 698 * Queue up a kiocb to be retried. Assumes that the kiocb 699 * has already been marked as kicked, and places it on 700 * the retry run list for the corresponding ioctx, if it 701 * isn't already queued. Returns 1 if it actually queued 702 * the kiocb (to tell the caller to activate the work 703 * queue to process it), or 0, if it found that it was 704 * already queued. 705 */ 706 static inline int __queue_kicked_iocb(struct kiocb *iocb) 707 { 708 struct kioctx *ctx = iocb->ki_ctx; 709 710 assert_spin_locked(&ctx->ctx_lock); 711 712 if (list_empty(&iocb->ki_run_list)) { 713 list_add_tail(&iocb->ki_run_list, 714 &ctx->run_list); 715 return 1; 716 } 717 return 0; 718 } 719 720 /* aio_run_iocb 721 * This is the core aio execution routine. It is 722 * invoked both for initial i/o submission and 723 * subsequent retries via the aio_kick_handler. 724 * Expects to be invoked with iocb->ki_ctx->lock 725 * already held. The lock is released and reacquired 726 * as needed during processing. 727 * 728 * Calls the iocb retry method (already setup for the 729 * iocb on initial submission) for operation specific 730 * handling, but takes care of most of common retry 731 * execution details for a given iocb. The retry method 732 * needs to be non-blocking as far as possible, to avoid 733 * holding up other iocbs waiting to be serviced by the 734 * retry kernel thread. 735 * 736 * The trickier parts in this code have to do with 737 * ensuring that only one retry instance is in progress 738 * for a given iocb at any time. Providing that guarantee 739 * simplifies the coding of individual aio operations as 740 * it avoids various potential races. 741 */ 742 static ssize_t aio_run_iocb(struct kiocb *iocb) 743 { 744 struct kioctx *ctx = iocb->ki_ctx; 745 ssize_t (*retry)(struct kiocb *); 746 ssize_t ret; 747 748 if (!(retry = iocb->ki_retry)) { 749 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 750 return 0; 751 } 752 753 /* 754 * We don't want the next retry iteration for this 755 * operation to start until this one has returned and 756 * updated the iocb state. However, wait_queue functions 757 * can trigger a kick_iocb from interrupt context in the 758 * meantime, indicating that data is available for the next 759 * iteration. We want to remember that and enable the 760 * next retry iteration _after_ we are through with 761 * this one. 762 * 763 * So, in order to be able to register a "kick", but 764 * prevent it from being queued now, we clear the kick 765 * flag, but make the kick code *think* that the iocb is 766 * still on the run list until we are actually done. 767 * When we are done with this iteration, we check if 768 * the iocb was kicked in the meantime and if so, queue 769 * it up afresh. 770 */ 771 772 kiocbClearKicked(iocb); 773 774 /* 775 * This is so that aio_complete knows it doesn't need to 776 * pull the iocb off the run list (We can't just call 777 * INIT_LIST_HEAD because we don't want a kick_iocb to 778 * queue this on the run list yet) 779 */ 780 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 781 spin_unlock_irq(&ctx->ctx_lock); 782 783 /* Quit retrying if the i/o has been cancelled */ 784 if (kiocbIsCancelled(iocb)) { 785 ret = -EINTR; 786 aio_complete(iocb, ret, 0); 787 /* must not access the iocb after this */ 788 goto out; 789 } 790 791 /* 792 * Now we are all set to call the retry method in async 793 * context. 794 */ 795 ret = retry(iocb); 796 797 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 798 /* 799 * There's no easy way to restart the syscall since other AIO's 800 * may be already running. Just fail this IO with EINTR. 801 */ 802 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 803 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) 804 ret = -EINTR; 805 aio_complete(iocb, ret, 0); 806 } 807 out: 808 spin_lock_irq(&ctx->ctx_lock); 809 810 if (-EIOCBRETRY == ret) { 811 /* 812 * OK, now that we are done with this iteration 813 * and know that there is more left to go, 814 * this is where we let go so that a subsequent 815 * "kick" can start the next iteration 816 */ 817 818 /* will make __queue_kicked_iocb succeed from here on */ 819 INIT_LIST_HEAD(&iocb->ki_run_list); 820 /* we must queue the next iteration ourselves, if it 821 * has already been kicked */ 822 if (kiocbIsKicked(iocb)) { 823 __queue_kicked_iocb(iocb); 824 825 /* 826 * __queue_kicked_iocb will always return 1 here, because 827 * iocb->ki_run_list is empty at this point so it should 828 * be safe to unconditionally queue the context into the 829 * work queue. 830 */ 831 aio_queue_work(ctx); 832 } 833 } 834 return ret; 835 } 836 837 /* 838 * __aio_run_iocbs: 839 * Process all pending retries queued on the ioctx 840 * run list. 841 * Assumes it is operating within the aio issuer's mm 842 * context. 843 */ 844 static int __aio_run_iocbs(struct kioctx *ctx) 845 { 846 struct kiocb *iocb; 847 struct list_head run_list; 848 849 assert_spin_locked(&ctx->ctx_lock); 850 851 list_replace_init(&ctx->run_list, &run_list); 852 while (!list_empty(&run_list)) { 853 iocb = list_entry(run_list.next, struct kiocb, 854 ki_run_list); 855 list_del(&iocb->ki_run_list); 856 /* 857 * Hold an extra reference while retrying i/o. 858 */ 859 iocb->ki_users++; /* grab extra reference */ 860 aio_run_iocb(iocb); 861 __aio_put_req(ctx, iocb); 862 } 863 if (!list_empty(&ctx->run_list)) 864 return 1; 865 return 0; 866 } 867 868 static void aio_queue_work(struct kioctx * ctx) 869 { 870 unsigned long timeout; 871 /* 872 * if someone is waiting, get the work started right 873 * away, otherwise, use a longer delay 874 */ 875 smp_mb(); 876 if (waitqueue_active(&ctx->wait)) 877 timeout = 1; 878 else 879 timeout = HZ/10; 880 queue_delayed_work(aio_wq, &ctx->wq, timeout); 881 } 882 883 /* 884 * aio_run_all_iocbs: 885 * Process all pending retries queued on the ioctx 886 * run list, and keep running them until the list 887 * stays empty. 888 * Assumes it is operating within the aio issuer's mm context. 889 */ 890 static inline void aio_run_all_iocbs(struct kioctx *ctx) 891 { 892 spin_lock_irq(&ctx->ctx_lock); 893 while (__aio_run_iocbs(ctx)) 894 ; 895 spin_unlock_irq(&ctx->ctx_lock); 896 } 897 898 /* 899 * aio_kick_handler: 900 * Work queue handler triggered to process pending 901 * retries on an ioctx. Takes on the aio issuer's 902 * mm context before running the iocbs, so that 903 * copy_xxx_user operates on the issuer's address 904 * space. 905 * Run on aiod's context. 906 */ 907 static void aio_kick_handler(struct work_struct *work) 908 { 909 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 910 mm_segment_t oldfs = get_fs(); 911 struct mm_struct *mm; 912 int requeue; 913 914 set_fs(USER_DS); 915 use_mm(ctx->mm); 916 spin_lock_irq(&ctx->ctx_lock); 917 requeue =__aio_run_iocbs(ctx); 918 mm = ctx->mm; 919 spin_unlock_irq(&ctx->ctx_lock); 920 unuse_mm(mm); 921 set_fs(oldfs); 922 /* 923 * we're in a worker thread already, don't use queue_delayed_work, 924 */ 925 if (requeue) 926 queue_delayed_work(aio_wq, &ctx->wq, 0); 927 } 928 929 930 /* 931 * Called by kick_iocb to queue the kiocb for retry 932 * and if required activate the aio work queue to process 933 * it 934 */ 935 static void try_queue_kicked_iocb(struct kiocb *iocb) 936 { 937 struct kioctx *ctx = iocb->ki_ctx; 938 unsigned long flags; 939 int run = 0; 940 941 spin_lock_irqsave(&ctx->ctx_lock, flags); 942 /* set this inside the lock so that we can't race with aio_run_iocb() 943 * testing it and putting the iocb on the run list under the lock */ 944 if (!kiocbTryKick(iocb)) 945 run = __queue_kicked_iocb(iocb); 946 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 947 if (run) 948 aio_queue_work(ctx); 949 } 950 951 /* 952 * kick_iocb: 953 * Called typically from a wait queue callback context 954 * to trigger a retry of the iocb. 955 * The retry is usually executed by aio workqueue 956 * threads (See aio_kick_handler). 957 */ 958 void kick_iocb(struct kiocb *iocb) 959 { 960 /* sync iocbs are easy: they can only ever be executing from a 961 * single context. */ 962 if (is_sync_kiocb(iocb)) { 963 kiocbSetKicked(iocb); 964 wake_up_process(iocb->ki_obj.tsk); 965 return; 966 } 967 968 try_queue_kicked_iocb(iocb); 969 } 970 EXPORT_SYMBOL(kick_iocb); 971 972 /* aio_complete 973 * Called when the io request on the given iocb is complete. 974 * Returns true if this is the last user of the request. The 975 * only other user of the request can be the cancellation code. 976 */ 977 int aio_complete(struct kiocb *iocb, long res, long res2) 978 { 979 struct kioctx *ctx = iocb->ki_ctx; 980 struct aio_ring_info *info; 981 struct aio_ring *ring; 982 struct io_event *event; 983 unsigned long flags; 984 unsigned long tail; 985 int ret; 986 987 /* 988 * Special case handling for sync iocbs: 989 * - events go directly into the iocb for fast handling 990 * - the sync task with the iocb in its stack holds the single iocb 991 * ref, no other paths have a way to get another ref 992 * - the sync task helpfully left a reference to itself in the iocb 993 */ 994 if (is_sync_kiocb(iocb)) { 995 BUG_ON(iocb->ki_users != 1); 996 iocb->ki_user_data = res; 997 iocb->ki_users = 0; 998 wake_up_process(iocb->ki_obj.tsk); 999 return 1; 1000 } 1001 1002 info = &ctx->ring_info; 1003 1004 /* add a completion event to the ring buffer. 1005 * must be done holding ctx->ctx_lock to prevent 1006 * other code from messing with the tail 1007 * pointer since we might be called from irq 1008 * context. 1009 */ 1010 spin_lock_irqsave(&ctx->ctx_lock, flags); 1011 1012 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 1013 list_del_init(&iocb->ki_run_list); 1014 1015 /* 1016 * cancelled requests don't get events, userland was given one 1017 * when the event got cancelled. 1018 */ 1019 if (kiocbIsCancelled(iocb)) 1020 goto put_rq; 1021 1022 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 1023 1024 tail = info->tail; 1025 event = aio_ring_event(info, tail, KM_IRQ0); 1026 if (++tail >= info->nr) 1027 tail = 0; 1028 1029 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 1030 event->data = iocb->ki_user_data; 1031 event->res = res; 1032 event->res2 = res2; 1033 1034 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 1035 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 1036 res, res2); 1037 1038 /* after flagging the request as done, we 1039 * must never even look at it again 1040 */ 1041 smp_wmb(); /* make event visible before updating tail */ 1042 1043 info->tail = tail; 1044 ring->tail = tail; 1045 1046 put_aio_ring_event(event, KM_IRQ0); 1047 kunmap_atomic(ring, KM_IRQ1); 1048 1049 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1050 1051 /* 1052 * Check if the user asked us to deliver the result through an 1053 * eventfd. The eventfd_signal() function is safe to be called 1054 * from IRQ context. 1055 */ 1056 if (iocb->ki_eventfd != NULL) 1057 eventfd_signal(iocb->ki_eventfd, 1); 1058 1059 put_rq: 1060 /* everything turned out well, dispose of the aiocb. */ 1061 ret = __aio_put_req(ctx, iocb); 1062 1063 /* 1064 * We have to order our ring_info tail store above and test 1065 * of the wait list below outside the wait lock. This is 1066 * like in wake_up_bit() where clearing a bit has to be 1067 * ordered with the unlocked test. 1068 */ 1069 smp_mb(); 1070 1071 if (waitqueue_active(&ctx->wait)) 1072 wake_up(&ctx->wait); 1073 1074 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1075 return ret; 1076 } 1077 EXPORT_SYMBOL(aio_complete); 1078 1079 /* aio_read_evt 1080 * Pull an event off of the ioctx's event ring. Returns the number of 1081 * events fetched (0 or 1 ;-) 1082 * FIXME: make this use cmpxchg. 1083 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1084 */ 1085 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1086 { 1087 struct aio_ring_info *info = &ioctx->ring_info; 1088 struct aio_ring *ring; 1089 unsigned long head; 1090 int ret = 0; 1091 1092 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1093 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1094 (unsigned long)ring->head, (unsigned long)ring->tail, 1095 (unsigned long)ring->nr); 1096 1097 if (ring->head == ring->tail) 1098 goto out; 1099 1100 spin_lock(&info->ring_lock); 1101 1102 head = ring->head % info->nr; 1103 if (head != ring->tail) { 1104 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1105 *ent = *evp; 1106 head = (head + 1) % info->nr; 1107 smp_mb(); /* finish reading the event before updatng the head */ 1108 ring->head = head; 1109 ret = 1; 1110 put_aio_ring_event(evp, KM_USER1); 1111 } 1112 spin_unlock(&info->ring_lock); 1113 1114 out: 1115 kunmap_atomic(ring, KM_USER0); 1116 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1117 (unsigned long)ring->head, (unsigned long)ring->tail); 1118 return ret; 1119 } 1120 1121 struct aio_timeout { 1122 struct timer_list timer; 1123 int timed_out; 1124 struct task_struct *p; 1125 }; 1126 1127 static void timeout_func(unsigned long data) 1128 { 1129 struct aio_timeout *to = (struct aio_timeout *)data; 1130 1131 to->timed_out = 1; 1132 wake_up_process(to->p); 1133 } 1134 1135 static inline void init_timeout(struct aio_timeout *to) 1136 { 1137 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1138 to->timed_out = 0; 1139 to->p = current; 1140 } 1141 1142 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1143 const struct timespec *ts) 1144 { 1145 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1146 if (time_after(to->timer.expires, jiffies)) 1147 add_timer(&to->timer); 1148 else 1149 to->timed_out = 1; 1150 } 1151 1152 static inline void clear_timeout(struct aio_timeout *to) 1153 { 1154 del_singleshot_timer_sync(&to->timer); 1155 } 1156 1157 static int read_events(struct kioctx *ctx, 1158 long min_nr, long nr, 1159 struct io_event __user *event, 1160 struct timespec __user *timeout) 1161 { 1162 long start_jiffies = jiffies; 1163 struct task_struct *tsk = current; 1164 DECLARE_WAITQUEUE(wait, tsk); 1165 int ret; 1166 int i = 0; 1167 struct io_event ent; 1168 struct aio_timeout to; 1169 int retry = 0; 1170 1171 /* needed to zero any padding within an entry (there shouldn't be 1172 * any, but C is fun! 1173 */ 1174 memset(&ent, 0, sizeof(ent)); 1175 retry: 1176 ret = 0; 1177 while (likely(i < nr)) { 1178 ret = aio_read_evt(ctx, &ent); 1179 if (unlikely(ret <= 0)) 1180 break; 1181 1182 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1183 ent.data, ent.obj, ent.res, ent.res2); 1184 1185 /* Could we split the check in two? */ 1186 ret = -EFAULT; 1187 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1188 dprintk("aio: lost an event due to EFAULT.\n"); 1189 break; 1190 } 1191 ret = 0; 1192 1193 /* Good, event copied to userland, update counts. */ 1194 event ++; 1195 i ++; 1196 } 1197 1198 if (min_nr <= i) 1199 return i; 1200 if (ret) 1201 return ret; 1202 1203 /* End fast path */ 1204 1205 /* racey check, but it gets redone */ 1206 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1207 retry = 1; 1208 aio_run_all_iocbs(ctx); 1209 goto retry; 1210 } 1211 1212 init_timeout(&to); 1213 if (timeout) { 1214 struct timespec ts; 1215 ret = -EFAULT; 1216 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1217 goto out; 1218 1219 set_timeout(start_jiffies, &to, &ts); 1220 } 1221 1222 while (likely(i < nr)) { 1223 add_wait_queue_exclusive(&ctx->wait, &wait); 1224 do { 1225 set_task_state(tsk, TASK_INTERRUPTIBLE); 1226 ret = aio_read_evt(ctx, &ent); 1227 if (ret) 1228 break; 1229 if (min_nr <= i) 1230 break; 1231 if (unlikely(ctx->dead)) { 1232 ret = -EINVAL; 1233 break; 1234 } 1235 if (to.timed_out) /* Only check after read evt */ 1236 break; 1237 /* Try to only show up in io wait if there are ops 1238 * in flight */ 1239 if (ctx->reqs_active) 1240 io_schedule(); 1241 else 1242 schedule(); 1243 if (signal_pending(tsk)) { 1244 ret = -EINTR; 1245 break; 1246 } 1247 /*ret = aio_read_evt(ctx, &ent);*/ 1248 } while (1) ; 1249 1250 set_task_state(tsk, TASK_RUNNING); 1251 remove_wait_queue(&ctx->wait, &wait); 1252 1253 if (unlikely(ret <= 0)) 1254 break; 1255 1256 ret = -EFAULT; 1257 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1258 dprintk("aio: lost an event due to EFAULT.\n"); 1259 break; 1260 } 1261 1262 /* Good, event copied to userland, update counts. */ 1263 event ++; 1264 i ++; 1265 } 1266 1267 if (timeout) 1268 clear_timeout(&to); 1269 out: 1270 destroy_timer_on_stack(&to.timer); 1271 return i ? i : ret; 1272 } 1273 1274 /* Take an ioctx and remove it from the list of ioctx's. Protects 1275 * against races with itself via ->dead. 1276 */ 1277 static void io_destroy(struct kioctx *ioctx) 1278 { 1279 struct mm_struct *mm = current->mm; 1280 int was_dead; 1281 1282 /* delete the entry from the list is someone else hasn't already */ 1283 spin_lock(&mm->ioctx_lock); 1284 was_dead = ioctx->dead; 1285 ioctx->dead = 1; 1286 hlist_del_rcu(&ioctx->list); 1287 spin_unlock(&mm->ioctx_lock); 1288 1289 dprintk("aio_release(%p)\n", ioctx); 1290 if (likely(!was_dead)) 1291 put_ioctx(ioctx); /* twice for the list */ 1292 1293 aio_cancel_all(ioctx); 1294 wait_for_all_aios(ioctx); 1295 1296 /* 1297 * Wake up any waiters. The setting of ctx->dead must be seen 1298 * by other CPUs at this point. Right now, we rely on the 1299 * locking done by the above calls to ensure this consistency. 1300 */ 1301 wake_up_all(&ioctx->wait); 1302 put_ioctx(ioctx); /* once for the lookup */ 1303 } 1304 1305 /* sys_io_setup: 1306 * Create an aio_context capable of receiving at least nr_events. 1307 * ctxp must not point to an aio_context that already exists, and 1308 * must be initialized to 0 prior to the call. On successful 1309 * creation of the aio_context, *ctxp is filled in with the resulting 1310 * handle. May fail with -EINVAL if *ctxp is not initialized, 1311 * if the specified nr_events exceeds internal limits. May fail 1312 * with -EAGAIN if the specified nr_events exceeds the user's limit 1313 * of available events. May fail with -ENOMEM if insufficient kernel 1314 * resources are available. May fail with -EFAULT if an invalid 1315 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1316 * implemented. 1317 */ 1318 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1319 { 1320 struct kioctx *ioctx = NULL; 1321 unsigned long ctx; 1322 long ret; 1323 1324 ret = get_user(ctx, ctxp); 1325 if (unlikely(ret)) 1326 goto out; 1327 1328 ret = -EINVAL; 1329 if (unlikely(ctx || nr_events == 0)) { 1330 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1331 ctx, nr_events); 1332 goto out; 1333 } 1334 1335 ioctx = ioctx_alloc(nr_events); 1336 ret = PTR_ERR(ioctx); 1337 if (!IS_ERR(ioctx)) { 1338 ret = put_user(ioctx->user_id, ctxp); 1339 if (!ret) { 1340 put_ioctx(ioctx); 1341 return 0; 1342 } 1343 io_destroy(ioctx); 1344 } 1345 1346 out: 1347 return ret; 1348 } 1349 1350 /* sys_io_destroy: 1351 * Destroy the aio_context specified. May cancel any outstanding 1352 * AIOs and block on completion. Will fail with -ENOSYS if not 1353 * implemented. May fail with -EINVAL if the context pointed to 1354 * is invalid. 1355 */ 1356 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1357 { 1358 struct kioctx *ioctx = lookup_ioctx(ctx); 1359 if (likely(NULL != ioctx)) { 1360 io_destroy(ioctx); 1361 return 0; 1362 } 1363 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1364 return -EINVAL; 1365 } 1366 1367 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1368 { 1369 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1370 1371 BUG_ON(ret <= 0); 1372 1373 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1374 ssize_t this = min((ssize_t)iov->iov_len, ret); 1375 iov->iov_base += this; 1376 iov->iov_len -= this; 1377 iocb->ki_left -= this; 1378 ret -= this; 1379 if (iov->iov_len == 0) { 1380 iocb->ki_cur_seg++; 1381 iov++; 1382 } 1383 } 1384 1385 /* the caller should not have done more io than what fit in 1386 * the remaining iovecs */ 1387 BUG_ON(ret > 0 && iocb->ki_left == 0); 1388 } 1389 1390 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1391 { 1392 struct file *file = iocb->ki_filp; 1393 struct address_space *mapping = file->f_mapping; 1394 struct inode *inode = mapping->host; 1395 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1396 unsigned long, loff_t); 1397 ssize_t ret = 0; 1398 unsigned short opcode; 1399 1400 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1401 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1402 rw_op = file->f_op->aio_read; 1403 opcode = IOCB_CMD_PREADV; 1404 } else { 1405 rw_op = file->f_op->aio_write; 1406 opcode = IOCB_CMD_PWRITEV; 1407 } 1408 1409 /* This matches the pread()/pwrite() logic */ 1410 if (iocb->ki_pos < 0) 1411 return -EINVAL; 1412 1413 do { 1414 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1415 iocb->ki_nr_segs - iocb->ki_cur_seg, 1416 iocb->ki_pos); 1417 if (ret > 0) 1418 aio_advance_iovec(iocb, ret); 1419 1420 /* retry all partial writes. retry partial reads as long as its a 1421 * regular file. */ 1422 } while (ret > 0 && iocb->ki_left > 0 && 1423 (opcode == IOCB_CMD_PWRITEV || 1424 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1425 1426 /* This means we must have transferred all that we could */ 1427 /* No need to retry anymore */ 1428 if ((ret == 0) || (iocb->ki_left == 0)) 1429 ret = iocb->ki_nbytes - iocb->ki_left; 1430 1431 /* If we managed to write some out we return that, rather than 1432 * the eventual error. */ 1433 if (opcode == IOCB_CMD_PWRITEV 1434 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1435 && iocb->ki_nbytes - iocb->ki_left) 1436 ret = iocb->ki_nbytes - iocb->ki_left; 1437 1438 return ret; 1439 } 1440 1441 static ssize_t aio_fdsync(struct kiocb *iocb) 1442 { 1443 struct file *file = iocb->ki_filp; 1444 ssize_t ret = -EINVAL; 1445 1446 if (file->f_op->aio_fsync) 1447 ret = file->f_op->aio_fsync(iocb, 1); 1448 return ret; 1449 } 1450 1451 static ssize_t aio_fsync(struct kiocb *iocb) 1452 { 1453 struct file *file = iocb->ki_filp; 1454 ssize_t ret = -EINVAL; 1455 1456 if (file->f_op->aio_fsync) 1457 ret = file->f_op->aio_fsync(iocb, 0); 1458 return ret; 1459 } 1460 1461 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) 1462 { 1463 ssize_t ret; 1464 1465 #ifdef CONFIG_COMPAT 1466 if (compat) 1467 ret = compat_rw_copy_check_uvector(type, 1468 (struct compat_iovec __user *)kiocb->ki_buf, 1469 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1470 &kiocb->ki_iovec, 1); 1471 else 1472 #endif 1473 ret = rw_copy_check_uvector(type, 1474 (struct iovec __user *)kiocb->ki_buf, 1475 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1476 &kiocb->ki_iovec, 1); 1477 if (ret < 0) 1478 goto out; 1479 1480 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1481 kiocb->ki_cur_seg = 0; 1482 /* ki_nbytes/left now reflect bytes instead of segs */ 1483 kiocb->ki_nbytes = ret; 1484 kiocb->ki_left = ret; 1485 1486 ret = 0; 1487 out: 1488 return ret; 1489 } 1490 1491 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1492 { 1493 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1494 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1495 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1496 kiocb->ki_nr_segs = 1; 1497 kiocb->ki_cur_seg = 0; 1498 return 0; 1499 } 1500 1501 /* 1502 * aio_setup_iocb: 1503 * Performs the initial checks and aio retry method 1504 * setup for the kiocb at the time of io submission. 1505 */ 1506 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) 1507 { 1508 struct file *file = kiocb->ki_filp; 1509 ssize_t ret = 0; 1510 1511 switch (kiocb->ki_opcode) { 1512 case IOCB_CMD_PREAD: 1513 ret = -EBADF; 1514 if (unlikely(!(file->f_mode & FMODE_READ))) 1515 break; 1516 ret = -EFAULT; 1517 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1518 kiocb->ki_left))) 1519 break; 1520 ret = security_file_permission(file, MAY_READ); 1521 if (unlikely(ret)) 1522 break; 1523 ret = aio_setup_single_vector(kiocb); 1524 if (ret) 1525 break; 1526 ret = -EINVAL; 1527 if (file->f_op->aio_read) 1528 kiocb->ki_retry = aio_rw_vect_retry; 1529 break; 1530 case IOCB_CMD_PWRITE: 1531 ret = -EBADF; 1532 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1533 break; 1534 ret = -EFAULT; 1535 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1536 kiocb->ki_left))) 1537 break; 1538 ret = security_file_permission(file, MAY_WRITE); 1539 if (unlikely(ret)) 1540 break; 1541 ret = aio_setup_single_vector(kiocb); 1542 if (ret) 1543 break; 1544 ret = -EINVAL; 1545 if (file->f_op->aio_write) 1546 kiocb->ki_retry = aio_rw_vect_retry; 1547 break; 1548 case IOCB_CMD_PREADV: 1549 ret = -EBADF; 1550 if (unlikely(!(file->f_mode & FMODE_READ))) 1551 break; 1552 ret = security_file_permission(file, MAY_READ); 1553 if (unlikely(ret)) 1554 break; 1555 ret = aio_setup_vectored_rw(READ, kiocb, compat); 1556 if (ret) 1557 break; 1558 ret = -EINVAL; 1559 if (file->f_op->aio_read) 1560 kiocb->ki_retry = aio_rw_vect_retry; 1561 break; 1562 case IOCB_CMD_PWRITEV: 1563 ret = -EBADF; 1564 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1565 break; 1566 ret = security_file_permission(file, MAY_WRITE); 1567 if (unlikely(ret)) 1568 break; 1569 ret = aio_setup_vectored_rw(WRITE, kiocb, compat); 1570 if (ret) 1571 break; 1572 ret = -EINVAL; 1573 if (file->f_op->aio_write) 1574 kiocb->ki_retry = aio_rw_vect_retry; 1575 break; 1576 case IOCB_CMD_FDSYNC: 1577 ret = -EINVAL; 1578 if (file->f_op->aio_fsync) 1579 kiocb->ki_retry = aio_fdsync; 1580 break; 1581 case IOCB_CMD_FSYNC: 1582 ret = -EINVAL; 1583 if (file->f_op->aio_fsync) 1584 kiocb->ki_retry = aio_fsync; 1585 break; 1586 default: 1587 dprintk("EINVAL: io_submit: no operation provided\n"); 1588 ret = -EINVAL; 1589 } 1590 1591 if (!kiocb->ki_retry) 1592 return ret; 1593 1594 return 0; 1595 } 1596 1597 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1598 struct iocb *iocb, struct kiocb_batch *batch, 1599 bool compat) 1600 { 1601 struct kiocb *req; 1602 struct file *file; 1603 ssize_t ret; 1604 1605 /* enforce forwards compatibility on users */ 1606 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1607 pr_debug("EINVAL: io_submit: reserve field set\n"); 1608 return -EINVAL; 1609 } 1610 1611 /* prevent overflows */ 1612 if (unlikely( 1613 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1614 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1615 ((ssize_t)iocb->aio_nbytes < 0) 1616 )) { 1617 pr_debug("EINVAL: io_submit: overflow check\n"); 1618 return -EINVAL; 1619 } 1620 1621 file = fget(iocb->aio_fildes); 1622 if (unlikely(!file)) 1623 return -EBADF; 1624 1625 req = aio_get_req(ctx, batch); /* returns with 2 references to req */ 1626 if (unlikely(!req)) { 1627 fput(file); 1628 return -EAGAIN; 1629 } 1630 req->ki_filp = file; 1631 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1632 /* 1633 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1634 * instance of the file* now. The file descriptor must be 1635 * an eventfd() fd, and will be signaled for each completed 1636 * event using the eventfd_signal() function. 1637 */ 1638 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1639 if (IS_ERR(req->ki_eventfd)) { 1640 ret = PTR_ERR(req->ki_eventfd); 1641 req->ki_eventfd = NULL; 1642 goto out_put_req; 1643 } 1644 } 1645 1646 ret = put_user(req->ki_key, &user_iocb->aio_key); 1647 if (unlikely(ret)) { 1648 dprintk("EFAULT: aio_key\n"); 1649 goto out_put_req; 1650 } 1651 1652 req->ki_obj.user = user_iocb; 1653 req->ki_user_data = iocb->aio_data; 1654 req->ki_pos = iocb->aio_offset; 1655 1656 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1657 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1658 req->ki_opcode = iocb->aio_lio_opcode; 1659 1660 ret = aio_setup_iocb(req, compat); 1661 1662 if (ret) 1663 goto out_put_req; 1664 1665 spin_lock_irq(&ctx->ctx_lock); 1666 /* 1667 * We could have raced with io_destroy() and are currently holding a 1668 * reference to ctx which should be destroyed. We cannot submit IO 1669 * since ctx gets freed as soon as io_submit() puts its reference. The 1670 * check here is reliable: io_destroy() sets ctx->dead before waiting 1671 * for outstanding IO and the barrier between these two is realized by 1672 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we 1673 * increment ctx->reqs_active before checking for ctx->dead and the 1674 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we 1675 * don't see ctx->dead set here, io_destroy() waits for our IO to 1676 * finish. 1677 */ 1678 if (ctx->dead) { 1679 spin_unlock_irq(&ctx->ctx_lock); 1680 ret = -EINVAL; 1681 goto out_put_req; 1682 } 1683 aio_run_iocb(req); 1684 if (!list_empty(&ctx->run_list)) { 1685 /* drain the run list */ 1686 while (__aio_run_iocbs(ctx)) 1687 ; 1688 } 1689 spin_unlock_irq(&ctx->ctx_lock); 1690 1691 aio_put_req(req); /* drop extra ref to req */ 1692 return 0; 1693 1694 out_put_req: 1695 aio_put_req(req); /* drop extra ref to req */ 1696 aio_put_req(req); /* drop i/o ref to req */ 1697 return ret; 1698 } 1699 1700 long do_io_submit(aio_context_t ctx_id, long nr, 1701 struct iocb __user *__user *iocbpp, bool compat) 1702 { 1703 struct kioctx *ctx; 1704 long ret = 0; 1705 int i = 0; 1706 struct blk_plug plug; 1707 struct kiocb_batch batch; 1708 1709 if (unlikely(nr < 0)) 1710 return -EINVAL; 1711 1712 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1713 nr = LONG_MAX/sizeof(*iocbpp); 1714 1715 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1716 return -EFAULT; 1717 1718 ctx = lookup_ioctx(ctx_id); 1719 if (unlikely(!ctx)) { 1720 pr_debug("EINVAL: io_submit: invalid context id\n"); 1721 return -EINVAL; 1722 } 1723 1724 kiocb_batch_init(&batch, nr); 1725 1726 blk_start_plug(&plug); 1727 1728 /* 1729 * AKPM: should this return a partial result if some of the IOs were 1730 * successfully submitted? 1731 */ 1732 for (i=0; i<nr; i++) { 1733 struct iocb __user *user_iocb; 1734 struct iocb tmp; 1735 1736 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1737 ret = -EFAULT; 1738 break; 1739 } 1740 1741 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1742 ret = -EFAULT; 1743 break; 1744 } 1745 1746 ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); 1747 if (ret) 1748 break; 1749 } 1750 blk_finish_plug(&plug); 1751 1752 kiocb_batch_free(ctx, &batch); 1753 put_ioctx(ctx); 1754 return i ? i : ret; 1755 } 1756 1757 /* sys_io_submit: 1758 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1759 * the number of iocbs queued. May return -EINVAL if the aio_context 1760 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1761 * *iocbpp[0] is not properly initialized, if the operation specified 1762 * is invalid for the file descriptor in the iocb. May fail with 1763 * -EFAULT if any of the data structures point to invalid data. May 1764 * fail with -EBADF if the file descriptor specified in the first 1765 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1766 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1767 * fail with -ENOSYS if not implemented. 1768 */ 1769 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1770 struct iocb __user * __user *, iocbpp) 1771 { 1772 return do_io_submit(ctx_id, nr, iocbpp, 0); 1773 } 1774 1775 /* lookup_kiocb 1776 * Finds a given iocb for cancellation. 1777 */ 1778 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1779 u32 key) 1780 { 1781 struct list_head *pos; 1782 1783 assert_spin_locked(&ctx->ctx_lock); 1784 1785 /* TODO: use a hash or array, this sucks. */ 1786 list_for_each(pos, &ctx->active_reqs) { 1787 struct kiocb *kiocb = list_kiocb(pos); 1788 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1789 return kiocb; 1790 } 1791 return NULL; 1792 } 1793 1794 /* sys_io_cancel: 1795 * Attempts to cancel an iocb previously passed to io_submit. If 1796 * the operation is successfully cancelled, the resulting event is 1797 * copied into the memory pointed to by result without being placed 1798 * into the completion queue and 0 is returned. May fail with 1799 * -EFAULT if any of the data structures pointed to are invalid. 1800 * May fail with -EINVAL if aio_context specified by ctx_id is 1801 * invalid. May fail with -EAGAIN if the iocb specified was not 1802 * cancelled. Will fail with -ENOSYS if not implemented. 1803 */ 1804 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1805 struct io_event __user *, result) 1806 { 1807 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1808 struct kioctx *ctx; 1809 struct kiocb *kiocb; 1810 u32 key; 1811 int ret; 1812 1813 ret = get_user(key, &iocb->aio_key); 1814 if (unlikely(ret)) 1815 return -EFAULT; 1816 1817 ctx = lookup_ioctx(ctx_id); 1818 if (unlikely(!ctx)) 1819 return -EINVAL; 1820 1821 spin_lock_irq(&ctx->ctx_lock); 1822 ret = -EAGAIN; 1823 kiocb = lookup_kiocb(ctx, iocb, key); 1824 if (kiocb && kiocb->ki_cancel) { 1825 cancel = kiocb->ki_cancel; 1826 kiocb->ki_users ++; 1827 kiocbSetCancelled(kiocb); 1828 } else 1829 cancel = NULL; 1830 spin_unlock_irq(&ctx->ctx_lock); 1831 1832 if (NULL != cancel) { 1833 struct io_event tmp; 1834 pr_debug("calling cancel\n"); 1835 memset(&tmp, 0, sizeof(tmp)); 1836 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1837 tmp.data = kiocb->ki_user_data; 1838 ret = cancel(kiocb, &tmp); 1839 if (!ret) { 1840 /* Cancellation succeeded -- copy the result 1841 * into the user's buffer. 1842 */ 1843 if (copy_to_user(result, &tmp, sizeof(tmp))) 1844 ret = -EFAULT; 1845 } 1846 } else 1847 ret = -EINVAL; 1848 1849 put_ioctx(ctx); 1850 1851 return ret; 1852 } 1853 1854 /* io_getevents: 1855 * Attempts to read at least min_nr events and up to nr events from 1856 * the completion queue for the aio_context specified by ctx_id. If 1857 * it succeeds, the number of read events is returned. May fail with 1858 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1859 * out of range, if timeout is out of range. May fail with -EFAULT 1860 * if any of the memory specified is invalid. May return 0 or 1861 * < min_nr if the timeout specified by timeout has elapsed 1862 * before sufficient events are available, where timeout == NULL 1863 * specifies an infinite timeout. Note that the timeout pointed to by 1864 * timeout is relative and will be updated if not NULL and the 1865 * operation blocks. Will fail with -ENOSYS if not implemented. 1866 */ 1867 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1868 long, min_nr, 1869 long, nr, 1870 struct io_event __user *, events, 1871 struct timespec __user *, timeout) 1872 { 1873 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1874 long ret = -EINVAL; 1875 1876 if (likely(ioctx)) { 1877 if (likely(min_nr <= nr && min_nr >= 0)) 1878 ret = read_events(ioctx, min_nr, nr, events, timeout); 1879 put_ioctx(ioctx); 1880 } 1881 1882 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1883 return ret; 1884 } 1885