xref: /linux/drivers/usb/host/xhci.c (revision 75305275a721d33ae9abfaeed2817cec8b2fee9a)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39 
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44 
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48 
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 	u32	result;
66 
67 	do {
68 		result = readl(ptr);
69 		if (result == ~(u32)0)		/* card removed */
70 			return -ENODEV;
71 		result &= mask;
72 		if (result == done)
73 			return 0;
74 		udelay(1);
75 		usec--;
76 	} while (usec > 0);
77 	return -ETIMEDOUT;
78 }
79 
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85 	u32 halted;
86 	u32 cmd;
87 	u32 mask;
88 
89 	mask = ~(XHCI_IRQS);
90 	halted = readl(&xhci->op_regs->status) & STS_HALT;
91 	if (!halted)
92 		mask &= ~CMD_RUN;
93 
94 	cmd = readl(&xhci->op_regs->command);
95 	cmd &= mask;
96 	writel(cmd, &xhci->op_regs->command);
97 }
98 
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109 	int ret;
110 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 	xhci_quiesce(xhci);
112 
113 	ret = xhci_handshake(&xhci->op_regs->status,
114 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 	if (!ret) {
116 		xhci->xhc_state |= XHCI_STATE_HALTED;
117 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 	} else
119 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 				XHCI_MAX_HALT_USEC);
121 	return ret;
122 }
123 
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129 	u32 temp;
130 	int ret;
131 
132 	temp = readl(&xhci->op_regs->command);
133 	temp |= (CMD_RUN);
134 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 			temp);
136 	writel(temp, &xhci->op_regs->command);
137 
138 	/*
139 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 	 * running.
141 	 */
142 	ret = xhci_handshake(&xhci->op_regs->status,
143 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 	if (ret == -ETIMEDOUT)
145 		xhci_err(xhci, "Host took too long to start, "
146 				"waited %u microseconds.\n",
147 				XHCI_MAX_HALT_USEC);
148 	if (!ret)
149 		xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
150 
151 	return ret;
152 }
153 
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163 	u32 command;
164 	u32 state;
165 	int ret, i;
166 
167 	state = readl(&xhci->op_regs->status);
168 	if ((state & STS_HALT) == 0) {
169 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170 		return 0;
171 	}
172 
173 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174 	command = readl(&xhci->op_regs->command);
175 	command |= CMD_RESET;
176 	writel(command, &xhci->op_regs->command);
177 
178 	/* Existing Intel xHCI controllers require a delay of 1 mS,
179 	 * after setting the CMD_RESET bit, and before accessing any
180 	 * HC registers. This allows the HC to complete the
181 	 * reset operation and be ready for HC register access.
182 	 * Without this delay, the subsequent HC register access,
183 	 * may result in a system hang very rarely.
184 	 */
185 	if (xhci->quirks & XHCI_INTEL_HOST)
186 		udelay(1000);
187 
188 	ret = xhci_handshake(&xhci->op_regs->command,
189 			CMD_RESET, 0, 10 * 1000 * 1000);
190 	if (ret)
191 		return ret;
192 
193 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
194 			 "Wait for controller to be ready for doorbell rings");
195 	/*
196 	 * xHCI cannot write to any doorbells or operational registers other
197 	 * than status until the "Controller Not Ready" flag is cleared.
198 	 */
199 	ret = xhci_handshake(&xhci->op_regs->status,
200 			STS_CNR, 0, 10 * 1000 * 1000);
201 
202 	for (i = 0; i < 2; ++i) {
203 		xhci->bus_state[i].port_c_suspend = 0;
204 		xhci->bus_state[i].suspended_ports = 0;
205 		xhci->bus_state[i].resuming_ports = 0;
206 	}
207 
208 	return ret;
209 }
210 
211 #ifdef CONFIG_PCI
212 static int xhci_free_msi(struct xhci_hcd *xhci)
213 {
214 	int i;
215 
216 	if (!xhci->msix_entries)
217 		return -EINVAL;
218 
219 	for (i = 0; i < xhci->msix_count; i++)
220 		if (xhci->msix_entries[i].vector)
221 			free_irq(xhci->msix_entries[i].vector,
222 					xhci_to_hcd(xhci));
223 	return 0;
224 }
225 
226 /*
227  * Set up MSI
228  */
229 static int xhci_setup_msi(struct xhci_hcd *xhci)
230 {
231 	int ret;
232 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
233 
234 	ret = pci_enable_msi(pdev);
235 	if (ret) {
236 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
237 				"failed to allocate MSI entry");
238 		return ret;
239 	}
240 
241 	ret = request_irq(pdev->irq, xhci_msi_irq,
242 				0, "xhci_hcd", xhci_to_hcd(xhci));
243 	if (ret) {
244 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 				"disable MSI interrupt");
246 		pci_disable_msi(pdev);
247 	}
248 
249 	return ret;
250 }
251 
252 /*
253  * Free IRQs
254  * free all IRQs request
255  */
256 static void xhci_free_irq(struct xhci_hcd *xhci)
257 {
258 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
259 	int ret;
260 
261 	/* return if using legacy interrupt */
262 	if (xhci_to_hcd(xhci)->irq > 0)
263 		return;
264 
265 	ret = xhci_free_msi(xhci);
266 	if (!ret)
267 		return;
268 	if (pdev->irq > 0)
269 		free_irq(pdev->irq, xhci_to_hcd(xhci));
270 
271 	return;
272 }
273 
274 /*
275  * Set up MSI-X
276  */
277 static int xhci_setup_msix(struct xhci_hcd *xhci)
278 {
279 	int i, ret = 0;
280 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
281 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
282 
283 	/*
284 	 * calculate number of msi-x vectors supported.
285 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
286 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
287 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
288 	 *   Add additional 1 vector to ensure always available interrupt.
289 	 */
290 	xhci->msix_count = min(num_online_cpus() + 1,
291 				HCS_MAX_INTRS(xhci->hcs_params1));
292 
293 	xhci->msix_entries =
294 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
295 				GFP_KERNEL);
296 	if (!xhci->msix_entries) {
297 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
298 		return -ENOMEM;
299 	}
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		xhci->msix_entries[i].entry = i;
303 		xhci->msix_entries[i].vector = 0;
304 	}
305 
306 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
307 	if (ret) {
308 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
309 				"Failed to enable MSI-X");
310 		goto free_entries;
311 	}
312 
313 	for (i = 0; i < xhci->msix_count; i++) {
314 		ret = request_irq(xhci->msix_entries[i].vector,
315 				xhci_msi_irq,
316 				0, "xhci_hcd", xhci_to_hcd(xhci));
317 		if (ret)
318 			goto disable_msix;
319 	}
320 
321 	hcd->msix_enabled = 1;
322 	return ret;
323 
324 disable_msix:
325 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
326 	xhci_free_irq(xhci);
327 	pci_disable_msix(pdev);
328 free_entries:
329 	kfree(xhci->msix_entries);
330 	xhci->msix_entries = NULL;
331 	return ret;
332 }
333 
334 /* Free any IRQs and disable MSI-X */
335 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
336 {
337 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
338 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
339 
340 	if (xhci->quirks & XHCI_PLAT)
341 		return;
342 
343 	xhci_free_irq(xhci);
344 
345 	if (xhci->msix_entries) {
346 		pci_disable_msix(pdev);
347 		kfree(xhci->msix_entries);
348 		xhci->msix_entries = NULL;
349 	} else {
350 		pci_disable_msi(pdev);
351 	}
352 
353 	hcd->msix_enabled = 0;
354 	return;
355 }
356 
357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
358 {
359 	int i;
360 
361 	if (xhci->msix_entries) {
362 		for (i = 0; i < xhci->msix_count; i++)
363 			synchronize_irq(xhci->msix_entries[i].vector);
364 	}
365 }
366 
367 static int xhci_try_enable_msi(struct usb_hcd *hcd)
368 {
369 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
370 	struct pci_dev  *pdev;
371 	int ret;
372 
373 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
374 	if (xhci->quirks & XHCI_PLAT)
375 		return 0;
376 
377 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
378 	/*
379 	 * Some Fresco Logic host controllers advertise MSI, but fail to
380 	 * generate interrupts.  Don't even try to enable MSI.
381 	 */
382 	if (xhci->quirks & XHCI_BROKEN_MSI)
383 		goto legacy_irq;
384 
385 	/* unregister the legacy interrupt */
386 	if (hcd->irq)
387 		free_irq(hcd->irq, hcd);
388 	hcd->irq = 0;
389 
390 	ret = xhci_setup_msix(xhci);
391 	if (ret)
392 		/* fall back to msi*/
393 		ret = xhci_setup_msi(xhci);
394 
395 	if (!ret)
396 		/* hcd->irq is 0, we have MSI */
397 		return 0;
398 
399 	if (!pdev->irq) {
400 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
401 		return -EINVAL;
402 	}
403 
404  legacy_irq:
405 	if (!strlen(hcd->irq_descr))
406 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
407 			 hcd->driver->description, hcd->self.busnum);
408 
409 	/* fall back to legacy interrupt*/
410 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
411 			hcd->irq_descr, hcd);
412 	if (ret) {
413 		xhci_err(xhci, "request interrupt %d failed\n",
414 				pdev->irq);
415 		return ret;
416 	}
417 	hcd->irq = pdev->irq;
418 	return 0;
419 }
420 
421 #else
422 
423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
424 {
425 	return 0;
426 }
427 
428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
429 {
430 }
431 
432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
433 {
434 }
435 
436 #endif
437 
438 static void compliance_mode_recovery(unsigned long arg)
439 {
440 	struct xhci_hcd *xhci;
441 	struct usb_hcd *hcd;
442 	u32 temp;
443 	int i;
444 
445 	xhci = (struct xhci_hcd *)arg;
446 
447 	for (i = 0; i < xhci->num_usb3_ports; i++) {
448 		temp = readl(xhci->usb3_ports[i]);
449 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
450 			/*
451 			 * Compliance Mode Detected. Letting USB Core
452 			 * handle the Warm Reset
453 			 */
454 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
455 					"Compliance mode detected->port %d",
456 					i + 1);
457 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458 					"Attempting compliance mode recovery");
459 			hcd = xhci->shared_hcd;
460 
461 			if (hcd->state == HC_STATE_SUSPENDED)
462 				usb_hcd_resume_root_hub(hcd);
463 
464 			usb_hcd_poll_rh_status(hcd);
465 		}
466 	}
467 
468 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
469 		mod_timer(&xhci->comp_mode_recovery_timer,
470 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
471 }
472 
473 /*
474  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
475  * that causes ports behind that hardware to enter compliance mode sometimes.
476  * The quirk creates a timer that polls every 2 seconds the link state of
477  * each host controller's port and recovers it by issuing a Warm reset
478  * if Compliance mode is detected, otherwise the port will become "dead" (no
479  * device connections or disconnections will be detected anymore). Becasue no
480  * status event is generated when entering compliance mode (per xhci spec),
481  * this quirk is needed on systems that have the failing hardware installed.
482  */
483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
484 {
485 	xhci->port_status_u0 = 0;
486 	setup_timer(&xhci->comp_mode_recovery_timer,
487 		    compliance_mode_recovery, (unsigned long)xhci);
488 	xhci->comp_mode_recovery_timer.expires = jiffies +
489 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
490 
491 	set_timer_slack(&xhci->comp_mode_recovery_timer,
492 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
493 	add_timer(&xhci->comp_mode_recovery_timer);
494 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 			"Compliance mode recovery timer initialized");
496 }
497 
498 /*
499  * This function identifies the systems that have installed the SN65LVPE502CP
500  * USB3.0 re-driver and that need the Compliance Mode Quirk.
501  * Systems:
502  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
503  */
504 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
505 {
506 	const char *dmi_product_name, *dmi_sys_vendor;
507 
508 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
509 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
510 	if (!dmi_product_name || !dmi_sys_vendor)
511 		return false;
512 
513 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
514 		return false;
515 
516 	if (strstr(dmi_product_name, "Z420") ||
517 			strstr(dmi_product_name, "Z620") ||
518 			strstr(dmi_product_name, "Z820") ||
519 			strstr(dmi_product_name, "Z1 Workstation"))
520 		return true;
521 
522 	return false;
523 }
524 
525 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
526 {
527 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
528 }
529 
530 
531 /*
532  * Initialize memory for HCD and xHC (one-time init).
533  *
534  * Program the PAGESIZE register, initialize the device context array, create
535  * device contexts (?), set up a command ring segment (or two?), create event
536  * ring (one for now).
537  */
538 int xhci_init(struct usb_hcd *hcd)
539 {
540 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
541 	int retval = 0;
542 
543 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
544 	spin_lock_init(&xhci->lock);
545 	if (xhci->hci_version == 0x95 && link_quirk) {
546 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
547 				"QUIRK: Not clearing Link TRB chain bits.");
548 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
549 	} else {
550 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551 				"xHCI doesn't need link TRB QUIRK");
552 	}
553 	retval = xhci_mem_init(xhci, GFP_KERNEL);
554 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
555 
556 	/* Initializing Compliance Mode Recovery Data If Needed */
557 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
558 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
559 		compliance_mode_recovery_timer_init(xhci);
560 	}
561 
562 	return retval;
563 }
564 
565 /*-------------------------------------------------------------------------*/
566 
567 
568 static int xhci_run_finished(struct xhci_hcd *xhci)
569 {
570 	if (xhci_start(xhci)) {
571 		xhci_halt(xhci);
572 		return -ENODEV;
573 	}
574 	xhci->shared_hcd->state = HC_STATE_RUNNING;
575 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
576 
577 	if (xhci->quirks & XHCI_NEC_HOST)
578 		xhci_ring_cmd_db(xhci);
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
581 			"Finished xhci_run for USB3 roothub");
582 	return 0;
583 }
584 
585 /*
586  * Start the HC after it was halted.
587  *
588  * This function is called by the USB core when the HC driver is added.
589  * Its opposite is xhci_stop().
590  *
591  * xhci_init() must be called once before this function can be called.
592  * Reset the HC, enable device slot contexts, program DCBAAP, and
593  * set command ring pointer and event ring pointer.
594  *
595  * Setup MSI-X vectors and enable interrupts.
596  */
597 int xhci_run(struct usb_hcd *hcd)
598 {
599 	u32 temp;
600 	u64 temp_64;
601 	int ret;
602 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
603 
604 	/* Start the xHCI host controller running only after the USB 2.0 roothub
605 	 * is setup.
606 	 */
607 
608 	hcd->uses_new_polling = 1;
609 	if (!usb_hcd_is_primary_hcd(hcd))
610 		return xhci_run_finished(xhci);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
613 
614 	ret = xhci_try_enable_msi(hcd);
615 	if (ret)
616 		return ret;
617 
618 	xhci_dbg(xhci, "Command ring memory map follows:\n");
619 	xhci_debug_ring(xhci, xhci->cmd_ring);
620 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
621 	xhci_dbg_cmd_ptrs(xhci);
622 
623 	xhci_dbg(xhci, "ERST memory map follows:\n");
624 	xhci_dbg_erst(xhci, &xhci->erst);
625 	xhci_dbg(xhci, "Event ring:\n");
626 	xhci_debug_ring(xhci, xhci->event_ring);
627 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
628 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
629 	temp_64 &= ~ERST_PTR_MASK;
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
632 
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"// Set the interrupt modulation register");
635 	temp = readl(&xhci->ir_set->irq_control);
636 	temp &= ~ER_IRQ_INTERVAL_MASK;
637 	temp |= (u32) 160;
638 	writel(temp, &xhci->ir_set->irq_control);
639 
640 	/* Set the HCD state before we enable the irqs */
641 	temp = readl(&xhci->op_regs->command);
642 	temp |= (CMD_EIE);
643 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
644 			"// Enable interrupts, cmd = 0x%x.", temp);
645 	writel(temp, &xhci->op_regs->command);
646 
647 	temp = readl(&xhci->ir_set->irq_pending);
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
650 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
651 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
652 	xhci_print_ir_set(xhci, 0);
653 
654 	if (xhci->quirks & XHCI_NEC_HOST) {
655 		struct xhci_command *command;
656 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
657 		if (!command)
658 			return -ENOMEM;
659 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
660 				TRB_TYPE(TRB_NEC_GET_FW));
661 	}
662 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 			"Finished xhci_run for USB2 roothub");
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(xhci_run);
667 
668 /*
669  * Stop xHCI driver.
670  *
671  * This function is called by the USB core when the HC driver is removed.
672  * Its opposite is xhci_run().
673  *
674  * Disable device contexts, disable IRQs, and quiesce the HC.
675  * Reset the HC, finish any completed transactions, and cleanup memory.
676  */
677 void xhci_stop(struct usb_hcd *hcd)
678 {
679 	u32 temp;
680 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681 
682 	if (xhci->xhc_state & XHCI_STATE_HALTED)
683 		return;
684 
685 	mutex_lock(&xhci->mutex);
686 	spin_lock_irq(&xhci->lock);
687 	xhci->xhc_state |= XHCI_STATE_HALTED;
688 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
689 
690 	/* Make sure the xHC is halted for a USB3 roothub
691 	 * (xhci_stop() could be called as part of failed init).
692 	 */
693 	xhci_halt(xhci);
694 	xhci_reset(xhci);
695 	spin_unlock_irq(&xhci->lock);
696 
697 	xhci_cleanup_msix(xhci);
698 
699 	/* Deleting Compliance Mode Recovery Timer */
700 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
701 			(!(xhci_all_ports_seen_u0(xhci)))) {
702 		del_timer_sync(&xhci->comp_mode_recovery_timer);
703 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
704 				"%s: compliance mode recovery timer deleted",
705 				__func__);
706 	}
707 
708 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
709 		usb_amd_dev_put();
710 
711 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
712 			"// Disabling event ring interrupts");
713 	temp = readl(&xhci->op_regs->status);
714 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
715 	temp = readl(&xhci->ir_set->irq_pending);
716 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
717 	xhci_print_ir_set(xhci, 0);
718 
719 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
720 	xhci_mem_cleanup(xhci);
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 			"xhci_stop completed - status = %x",
723 			readl(&xhci->op_regs->status));
724 	mutex_unlock(&xhci->mutex);
725 }
726 
727 /*
728  * Shutdown HC (not bus-specific)
729  *
730  * This is called when the machine is rebooting or halting.  We assume that the
731  * machine will be powered off, and the HC's internal state will be reset.
732  * Don't bother to free memory.
733  *
734  * This will only ever be called with the main usb_hcd (the USB3 roothub).
735  */
736 void xhci_shutdown(struct usb_hcd *hcd)
737 {
738 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
739 
740 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
741 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
742 
743 	spin_lock_irq(&xhci->lock);
744 	xhci_halt(xhci);
745 	/* Workaround for spurious wakeups at shutdown with HSW */
746 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
747 		xhci_reset(xhci);
748 	spin_unlock_irq(&xhci->lock);
749 
750 	xhci_cleanup_msix(xhci);
751 
752 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 			"xhci_shutdown completed - status = %x",
754 			readl(&xhci->op_regs->status));
755 
756 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
757 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
758 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
759 }
760 
761 #ifdef CONFIG_PM
762 static void xhci_save_registers(struct xhci_hcd *xhci)
763 {
764 	xhci->s3.command = readl(&xhci->op_regs->command);
765 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
766 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
767 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
768 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
769 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
770 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
771 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
772 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
773 }
774 
775 static void xhci_restore_registers(struct xhci_hcd *xhci)
776 {
777 	writel(xhci->s3.command, &xhci->op_regs->command);
778 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
779 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
780 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
781 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
782 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
783 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
784 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
785 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
786 }
787 
788 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
789 {
790 	u64	val_64;
791 
792 	/* step 2: initialize command ring buffer */
793 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
794 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
795 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
796 				      xhci->cmd_ring->dequeue) &
797 		 (u64) ~CMD_RING_RSVD_BITS) |
798 		xhci->cmd_ring->cycle_state;
799 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
800 			"// Setting command ring address to 0x%llx",
801 			(long unsigned long) val_64);
802 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
803 }
804 
805 /*
806  * The whole command ring must be cleared to zero when we suspend the host.
807  *
808  * The host doesn't save the command ring pointer in the suspend well, so we
809  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
810  * aligned, because of the reserved bits in the command ring dequeue pointer
811  * register.  Therefore, we can't just set the dequeue pointer back in the
812  * middle of the ring (TRBs are 16-byte aligned).
813  */
814 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
815 {
816 	struct xhci_ring *ring;
817 	struct xhci_segment *seg;
818 
819 	ring = xhci->cmd_ring;
820 	seg = ring->deq_seg;
821 	do {
822 		memset(seg->trbs, 0,
823 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
824 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
825 			cpu_to_le32(~TRB_CYCLE);
826 		seg = seg->next;
827 	} while (seg != ring->deq_seg);
828 
829 	/* Reset the software enqueue and dequeue pointers */
830 	ring->deq_seg = ring->first_seg;
831 	ring->dequeue = ring->first_seg->trbs;
832 	ring->enq_seg = ring->deq_seg;
833 	ring->enqueue = ring->dequeue;
834 
835 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
836 	/*
837 	 * Ring is now zeroed, so the HW should look for change of ownership
838 	 * when the cycle bit is set to 1.
839 	 */
840 	ring->cycle_state = 1;
841 
842 	/*
843 	 * Reset the hardware dequeue pointer.
844 	 * Yes, this will need to be re-written after resume, but we're paranoid
845 	 * and want to make sure the hardware doesn't access bogus memory
846 	 * because, say, the BIOS or an SMI started the host without changing
847 	 * the command ring pointers.
848 	 */
849 	xhci_set_cmd_ring_deq(xhci);
850 }
851 
852 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
853 {
854 	int port_index;
855 	__le32 __iomem **port_array;
856 	unsigned long flags;
857 	u32 t1, t2;
858 
859 	spin_lock_irqsave(&xhci->lock, flags);
860 
861 	/* disble usb3 ports Wake bits*/
862 	port_index = xhci->num_usb3_ports;
863 	port_array = xhci->usb3_ports;
864 	while (port_index--) {
865 		t1 = readl(port_array[port_index]);
866 		t1 = xhci_port_state_to_neutral(t1);
867 		t2 = t1 & ~PORT_WAKE_BITS;
868 		if (t1 != t2)
869 			writel(t2, port_array[port_index]);
870 	}
871 
872 	/* disble usb2 ports Wake bits*/
873 	port_index = xhci->num_usb2_ports;
874 	port_array = xhci->usb2_ports;
875 	while (port_index--) {
876 		t1 = readl(port_array[port_index]);
877 		t1 = xhci_port_state_to_neutral(t1);
878 		t2 = t1 & ~PORT_WAKE_BITS;
879 		if (t1 != t2)
880 			writel(t2, port_array[port_index]);
881 	}
882 
883 	spin_unlock_irqrestore(&xhci->lock, flags);
884 }
885 
886 /*
887  * Stop HC (not bus-specific)
888  *
889  * This is called when the machine transition into S3/S4 mode.
890  *
891  */
892 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
893 {
894 	int			rc = 0;
895 	unsigned int		delay = XHCI_MAX_HALT_USEC;
896 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
897 	u32			command;
898 
899 	if (!hcd->state)
900 		return 0;
901 
902 	if (hcd->state != HC_STATE_SUSPENDED ||
903 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
904 		return -EINVAL;
905 
906 	/* Clear root port wake on bits if wakeup not allowed. */
907 	if (!do_wakeup)
908 		xhci_disable_port_wake_on_bits(xhci);
909 
910 	/* Don't poll the roothubs on bus suspend. */
911 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
912 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
913 	del_timer_sync(&hcd->rh_timer);
914 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
915 	del_timer_sync(&xhci->shared_hcd->rh_timer);
916 
917 	spin_lock_irq(&xhci->lock);
918 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
919 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
920 	/* step 1: stop endpoint */
921 	/* skipped assuming that port suspend has done */
922 
923 	/* step 2: clear Run/Stop bit */
924 	command = readl(&xhci->op_regs->command);
925 	command &= ~CMD_RUN;
926 	writel(command, &xhci->op_regs->command);
927 
928 	/* Some chips from Fresco Logic need an extraordinary delay */
929 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
930 
931 	if (xhci_handshake(&xhci->op_regs->status,
932 		      STS_HALT, STS_HALT, delay)) {
933 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
934 		spin_unlock_irq(&xhci->lock);
935 		return -ETIMEDOUT;
936 	}
937 	xhci_clear_command_ring(xhci);
938 
939 	/* step 3: save registers */
940 	xhci_save_registers(xhci);
941 
942 	/* step 4: set CSS flag */
943 	command = readl(&xhci->op_regs->command);
944 	command |= CMD_CSS;
945 	writel(command, &xhci->op_regs->command);
946 	if (xhci_handshake(&xhci->op_regs->status,
947 				STS_SAVE, 0, 10 * 1000)) {
948 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
949 		spin_unlock_irq(&xhci->lock);
950 		return -ETIMEDOUT;
951 	}
952 	spin_unlock_irq(&xhci->lock);
953 
954 	/*
955 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
956 	 * is about to be suspended.
957 	 */
958 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
959 			(!(xhci_all_ports_seen_u0(xhci)))) {
960 		del_timer_sync(&xhci->comp_mode_recovery_timer);
961 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
962 				"%s: compliance mode recovery timer deleted",
963 				__func__);
964 	}
965 
966 	/* step 5: remove core well power */
967 	/* synchronize irq when using MSI-X */
968 	xhci_msix_sync_irqs(xhci);
969 
970 	return rc;
971 }
972 EXPORT_SYMBOL_GPL(xhci_suspend);
973 
974 /*
975  * start xHC (not bus-specific)
976  *
977  * This is called when the machine transition from S3/S4 mode.
978  *
979  */
980 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
981 {
982 	u32			command, temp = 0, status;
983 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
984 	struct usb_hcd		*secondary_hcd;
985 	int			retval = 0;
986 	bool			comp_timer_running = false;
987 
988 	if (!hcd->state)
989 		return 0;
990 
991 	/* Wait a bit if either of the roothubs need to settle from the
992 	 * transition into bus suspend.
993 	 */
994 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
995 			time_before(jiffies,
996 				xhci->bus_state[1].next_statechange))
997 		msleep(100);
998 
999 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1000 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1001 
1002 	spin_lock_irq(&xhci->lock);
1003 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1004 		hibernated = true;
1005 
1006 	if (!hibernated) {
1007 		/* step 1: restore register */
1008 		xhci_restore_registers(xhci);
1009 		/* step 2: initialize command ring buffer */
1010 		xhci_set_cmd_ring_deq(xhci);
1011 		/* step 3: restore state and start state*/
1012 		/* step 3: set CRS flag */
1013 		command = readl(&xhci->op_regs->command);
1014 		command |= CMD_CRS;
1015 		writel(command, &xhci->op_regs->command);
1016 		if (xhci_handshake(&xhci->op_regs->status,
1017 			      STS_RESTORE, 0, 10 * 1000)) {
1018 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1019 			spin_unlock_irq(&xhci->lock);
1020 			return -ETIMEDOUT;
1021 		}
1022 		temp = readl(&xhci->op_regs->status);
1023 	}
1024 
1025 	/* If restore operation fails, re-initialize the HC during resume */
1026 	if ((temp & STS_SRE) || hibernated) {
1027 
1028 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1029 				!(xhci_all_ports_seen_u0(xhci))) {
1030 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1031 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1032 				"Compliance Mode Recovery Timer deleted!");
1033 		}
1034 
1035 		/* Let the USB core know _both_ roothubs lost power. */
1036 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1037 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1038 
1039 		xhci_dbg(xhci, "Stop HCD\n");
1040 		xhci_halt(xhci);
1041 		xhci_reset(xhci);
1042 		spin_unlock_irq(&xhci->lock);
1043 		xhci_cleanup_msix(xhci);
1044 
1045 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1046 		temp = readl(&xhci->op_regs->status);
1047 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1048 		temp = readl(&xhci->ir_set->irq_pending);
1049 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1050 		xhci_print_ir_set(xhci, 0);
1051 
1052 		xhci_dbg(xhci, "cleaning up memory\n");
1053 		xhci_mem_cleanup(xhci);
1054 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1055 			    readl(&xhci->op_regs->status));
1056 
1057 		/* USB core calls the PCI reinit and start functions twice:
1058 		 * first with the primary HCD, and then with the secondary HCD.
1059 		 * If we don't do the same, the host will never be started.
1060 		 */
1061 		if (!usb_hcd_is_primary_hcd(hcd))
1062 			secondary_hcd = hcd;
1063 		else
1064 			secondary_hcd = xhci->shared_hcd;
1065 
1066 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1067 		retval = xhci_init(hcd->primary_hcd);
1068 		if (retval)
1069 			return retval;
1070 		comp_timer_running = true;
1071 
1072 		xhci_dbg(xhci, "Start the primary HCD\n");
1073 		retval = xhci_run(hcd->primary_hcd);
1074 		if (!retval) {
1075 			xhci_dbg(xhci, "Start the secondary HCD\n");
1076 			retval = xhci_run(secondary_hcd);
1077 		}
1078 		hcd->state = HC_STATE_SUSPENDED;
1079 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1080 		goto done;
1081 	}
1082 
1083 	/* step 4: set Run/Stop bit */
1084 	command = readl(&xhci->op_regs->command);
1085 	command |= CMD_RUN;
1086 	writel(command, &xhci->op_regs->command);
1087 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1088 		  0, 250 * 1000);
1089 
1090 	/* step 5: walk topology and initialize portsc,
1091 	 * portpmsc and portli
1092 	 */
1093 	/* this is done in bus_resume */
1094 
1095 	/* step 6: restart each of the previously
1096 	 * Running endpoints by ringing their doorbells
1097 	 */
1098 
1099 	spin_unlock_irq(&xhci->lock);
1100 
1101  done:
1102 	if (retval == 0) {
1103 		/* Resume root hubs only when have pending events. */
1104 		status = readl(&xhci->op_regs->status);
1105 		if (status & STS_EINT) {
1106 			usb_hcd_resume_root_hub(hcd);
1107 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1113 	 * be re-initialized Always after a system resume. Ports are subject
1114 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1115 	 * ports have entered previously to U0 before system's suspension.
1116 	 */
1117 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1118 		compliance_mode_recovery_timer_init(xhci);
1119 
1120 	/* Re-enable port polling. */
1121 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1122 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1123 	usb_hcd_poll_rh_status(hcd);
1124 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1125 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1126 
1127 	return retval;
1128 }
1129 EXPORT_SYMBOL_GPL(xhci_resume);
1130 #endif	/* CONFIG_PM */
1131 
1132 /*-------------------------------------------------------------------------*/
1133 
1134 /**
1135  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1136  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1137  * value to right shift 1 for the bitmask.
1138  *
1139  * Index  = (epnum * 2) + direction - 1,
1140  * where direction = 0 for OUT, 1 for IN.
1141  * For control endpoints, the IN index is used (OUT index is unused), so
1142  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1143  */
1144 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1145 {
1146 	unsigned int index;
1147 	if (usb_endpoint_xfer_control(desc))
1148 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1149 	else
1150 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1151 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1152 	return index;
1153 }
1154 
1155 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1156  * address from the XHCI endpoint index.
1157  */
1158 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1159 {
1160 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1161 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1162 	return direction | number;
1163 }
1164 
1165 /* Find the flag for this endpoint (for use in the control context).  Use the
1166  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1167  * bit 1, etc.
1168  */
1169 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1170 {
1171 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1172 }
1173 
1174 /* Find the flag for this endpoint (for use in the control context).  Use the
1175  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1176  * bit 1, etc.
1177  */
1178 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1179 {
1180 	return 1 << (ep_index + 1);
1181 }
1182 
1183 /* Compute the last valid endpoint context index.  Basically, this is the
1184  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1185  * we find the most significant bit set in the added contexts flags.
1186  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1187  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1188  */
1189 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1190 {
1191 	return fls(added_ctxs) - 1;
1192 }
1193 
1194 /* Returns 1 if the arguments are OK;
1195  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1196  */
1197 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1198 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1199 		const char *func) {
1200 	struct xhci_hcd	*xhci;
1201 	struct xhci_virt_device	*virt_dev;
1202 
1203 	if (!hcd || (check_ep && !ep) || !udev) {
1204 		pr_debug("xHCI %s called with invalid args\n", func);
1205 		return -EINVAL;
1206 	}
1207 	if (!udev->parent) {
1208 		pr_debug("xHCI %s called for root hub\n", func);
1209 		return 0;
1210 	}
1211 
1212 	xhci = hcd_to_xhci(hcd);
1213 	if (check_virt_dev) {
1214 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1215 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1216 					func);
1217 			return -EINVAL;
1218 		}
1219 
1220 		virt_dev = xhci->devs[udev->slot_id];
1221 		if (virt_dev->udev != udev) {
1222 			xhci_dbg(xhci, "xHCI %s called with udev and "
1223 					  "virt_dev does not match\n", func);
1224 			return -EINVAL;
1225 		}
1226 	}
1227 
1228 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1229 		return -ENODEV;
1230 
1231 	return 1;
1232 }
1233 
1234 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1235 		struct usb_device *udev, struct xhci_command *command,
1236 		bool ctx_change, bool must_succeed);
1237 
1238 /*
1239  * Full speed devices may have a max packet size greater than 8 bytes, but the
1240  * USB core doesn't know that until it reads the first 8 bytes of the
1241  * descriptor.  If the usb_device's max packet size changes after that point,
1242  * we need to issue an evaluate context command and wait on it.
1243  */
1244 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1245 		unsigned int ep_index, struct urb *urb)
1246 {
1247 	struct xhci_container_ctx *out_ctx;
1248 	struct xhci_input_control_ctx *ctrl_ctx;
1249 	struct xhci_ep_ctx *ep_ctx;
1250 	struct xhci_command *command;
1251 	int max_packet_size;
1252 	int hw_max_packet_size;
1253 	int ret = 0;
1254 
1255 	out_ctx = xhci->devs[slot_id]->out_ctx;
1256 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1257 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1258 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1259 	if (hw_max_packet_size != max_packet_size) {
1260 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1261 				"Max Packet Size for ep 0 changed.");
1262 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1263 				"Max packet size in usb_device = %d",
1264 				max_packet_size);
1265 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266 				"Max packet size in xHCI HW = %d",
1267 				hw_max_packet_size);
1268 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269 				"Issuing evaluate context command.");
1270 
1271 		/* Set up the input context flags for the command */
1272 		/* FIXME: This won't work if a non-default control endpoint
1273 		 * changes max packet sizes.
1274 		 */
1275 
1276 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1277 		if (!command)
1278 			return -ENOMEM;
1279 
1280 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1281 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1282 		if (!ctrl_ctx) {
1283 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1284 					__func__);
1285 			ret = -ENOMEM;
1286 			goto command_cleanup;
1287 		}
1288 		/* Set up the modified control endpoint 0 */
1289 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1290 				xhci->devs[slot_id]->out_ctx, ep_index);
1291 
1292 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1293 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1294 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1295 
1296 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1297 		ctrl_ctx->drop_flags = 0;
1298 
1299 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1300 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1301 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1302 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1303 
1304 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1305 				true, false);
1306 
1307 		/* Clean up the input context for later use by bandwidth
1308 		 * functions.
1309 		 */
1310 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1311 command_cleanup:
1312 		kfree(command->completion);
1313 		kfree(command);
1314 	}
1315 	return ret;
1316 }
1317 
1318 /*
1319  * non-error returns are a promise to giveback() the urb later
1320  * we drop ownership so next owner (or urb unlink) can get it
1321  */
1322 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1323 {
1324 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1325 	struct xhci_td *buffer;
1326 	unsigned long flags;
1327 	int ret = 0;
1328 	unsigned int slot_id, ep_index;
1329 	struct urb_priv	*urb_priv;
1330 	int size, i;
1331 
1332 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1333 					true, true, __func__) <= 0)
1334 		return -EINVAL;
1335 
1336 	slot_id = urb->dev->slot_id;
1337 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1338 
1339 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1340 		if (!in_interrupt())
1341 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1342 		ret = -ESHUTDOWN;
1343 		goto exit;
1344 	}
1345 
1346 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1347 		size = urb->number_of_packets;
1348 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1349 	    urb->transfer_buffer_length > 0 &&
1350 	    urb->transfer_flags & URB_ZERO_PACKET &&
1351 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1352 		size = 2;
1353 	else
1354 		size = 1;
1355 
1356 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1357 				  size * sizeof(struct xhci_td *), mem_flags);
1358 	if (!urb_priv)
1359 		return -ENOMEM;
1360 
1361 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1362 	if (!buffer) {
1363 		kfree(urb_priv);
1364 		return -ENOMEM;
1365 	}
1366 
1367 	for (i = 0; i < size; i++) {
1368 		urb_priv->td[i] = buffer;
1369 		buffer++;
1370 	}
1371 
1372 	urb_priv->length = size;
1373 	urb_priv->td_cnt = 0;
1374 	urb->hcpriv = urb_priv;
1375 
1376 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1377 		/* Check to see if the max packet size for the default control
1378 		 * endpoint changed during FS device enumeration
1379 		 */
1380 		if (urb->dev->speed == USB_SPEED_FULL) {
1381 			ret = xhci_check_maxpacket(xhci, slot_id,
1382 					ep_index, urb);
1383 			if (ret < 0) {
1384 				xhci_urb_free_priv(urb_priv);
1385 				urb->hcpriv = NULL;
1386 				return ret;
1387 			}
1388 		}
1389 
1390 		/* We have a spinlock and interrupts disabled, so we must pass
1391 		 * atomic context to this function, which may allocate memory.
1392 		 */
1393 		spin_lock_irqsave(&xhci->lock, flags);
1394 		if (xhci->xhc_state & XHCI_STATE_DYING)
1395 			goto dying;
1396 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1397 				slot_id, ep_index);
1398 		if (ret)
1399 			goto free_priv;
1400 		spin_unlock_irqrestore(&xhci->lock, flags);
1401 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1402 		spin_lock_irqsave(&xhci->lock, flags);
1403 		if (xhci->xhc_state & XHCI_STATE_DYING)
1404 			goto dying;
1405 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1406 				EP_GETTING_STREAMS) {
1407 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1408 					"is transitioning to using streams.\n");
1409 			ret = -EINVAL;
1410 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 				EP_GETTING_NO_STREAMS) {
1412 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 					"is transitioning to "
1414 					"not having streams.\n");
1415 			ret = -EINVAL;
1416 		} else {
1417 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1418 					slot_id, ep_index);
1419 		}
1420 		if (ret)
1421 			goto free_priv;
1422 		spin_unlock_irqrestore(&xhci->lock, flags);
1423 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1424 		spin_lock_irqsave(&xhci->lock, flags);
1425 		if (xhci->xhc_state & XHCI_STATE_DYING)
1426 			goto dying;
1427 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1428 				slot_id, ep_index);
1429 		if (ret)
1430 			goto free_priv;
1431 		spin_unlock_irqrestore(&xhci->lock, flags);
1432 	} else {
1433 		spin_lock_irqsave(&xhci->lock, flags);
1434 		if (xhci->xhc_state & XHCI_STATE_DYING)
1435 			goto dying;
1436 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1437 				slot_id, ep_index);
1438 		if (ret)
1439 			goto free_priv;
1440 		spin_unlock_irqrestore(&xhci->lock, flags);
1441 	}
1442 exit:
1443 	return ret;
1444 dying:
1445 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1446 			"non-responsive xHCI host.\n",
1447 			urb->ep->desc.bEndpointAddress, urb);
1448 	ret = -ESHUTDOWN;
1449 free_priv:
1450 	xhci_urb_free_priv(urb_priv);
1451 	urb->hcpriv = NULL;
1452 	spin_unlock_irqrestore(&xhci->lock, flags);
1453 	return ret;
1454 }
1455 
1456 /* Get the right ring for the given URB.
1457  * If the endpoint supports streams, boundary check the URB's stream ID.
1458  * If the endpoint doesn't support streams, return the singular endpoint ring.
1459  */
1460 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1461 		struct urb *urb)
1462 {
1463 	unsigned int slot_id;
1464 	unsigned int ep_index;
1465 	unsigned int stream_id;
1466 	struct xhci_virt_ep *ep;
1467 
1468 	slot_id = urb->dev->slot_id;
1469 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1470 	stream_id = urb->stream_id;
1471 	ep = &xhci->devs[slot_id]->eps[ep_index];
1472 	/* Common case: no streams */
1473 	if (!(ep->ep_state & EP_HAS_STREAMS))
1474 		return ep->ring;
1475 
1476 	if (stream_id == 0) {
1477 		xhci_warn(xhci,
1478 				"WARN: Slot ID %u, ep index %u has streams, "
1479 				"but URB has no stream ID.\n",
1480 				slot_id, ep_index);
1481 		return NULL;
1482 	}
1483 
1484 	if (stream_id < ep->stream_info->num_streams)
1485 		return ep->stream_info->stream_rings[stream_id];
1486 
1487 	xhci_warn(xhci,
1488 			"WARN: Slot ID %u, ep index %u has "
1489 			"stream IDs 1 to %u allocated, "
1490 			"but stream ID %u is requested.\n",
1491 			slot_id, ep_index,
1492 			ep->stream_info->num_streams - 1,
1493 			stream_id);
1494 	return NULL;
1495 }
1496 
1497 /*
1498  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1499  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1500  * should pick up where it left off in the TD, unless a Set Transfer Ring
1501  * Dequeue Pointer is issued.
1502  *
1503  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1504  * the ring.  Since the ring is a contiguous structure, they can't be physically
1505  * removed.  Instead, there are two options:
1506  *
1507  *  1) If the HC is in the middle of processing the URB to be canceled, we
1508  *     simply move the ring's dequeue pointer past those TRBs using the Set
1509  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1510  *     when drivers timeout on the last submitted URB and attempt to cancel.
1511  *
1512  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1513  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1514  *     HC will need to invalidate the any TRBs it has cached after the stop
1515  *     endpoint command, as noted in the xHCI 0.95 errata.
1516  *
1517  *  3) The TD may have completed by the time the Stop Endpoint Command
1518  *     completes, so software needs to handle that case too.
1519  *
1520  * This function should protect against the TD enqueueing code ringing the
1521  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1522  * It also needs to account for multiple cancellations on happening at the same
1523  * time for the same endpoint.
1524  *
1525  * Note that this function can be called in any context, or so says
1526  * usb_hcd_unlink_urb()
1527  */
1528 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1529 {
1530 	unsigned long flags;
1531 	int ret, i;
1532 	u32 temp;
1533 	struct xhci_hcd *xhci;
1534 	struct urb_priv	*urb_priv;
1535 	struct xhci_td *td;
1536 	unsigned int ep_index;
1537 	struct xhci_ring *ep_ring;
1538 	struct xhci_virt_ep *ep;
1539 	struct xhci_command *command;
1540 
1541 	xhci = hcd_to_xhci(hcd);
1542 	spin_lock_irqsave(&xhci->lock, flags);
1543 	/* Make sure the URB hasn't completed or been unlinked already */
1544 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1545 	if (ret || !urb->hcpriv)
1546 		goto done;
1547 	temp = readl(&xhci->op_regs->status);
1548 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1549 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550 				"HW died, freeing TD.");
1551 		urb_priv = urb->hcpriv;
1552 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1553 			td = urb_priv->td[i];
1554 			if (!list_empty(&td->td_list))
1555 				list_del_init(&td->td_list);
1556 			if (!list_empty(&td->cancelled_td_list))
1557 				list_del_init(&td->cancelled_td_list);
1558 		}
1559 
1560 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1561 		spin_unlock_irqrestore(&xhci->lock, flags);
1562 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1563 		xhci_urb_free_priv(urb_priv);
1564 		return ret;
1565 	}
1566 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1567 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1568 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1569 				"Ep 0x%x: URB %p to be canceled on "
1570 				"non-responsive xHCI host.",
1571 				urb->ep->desc.bEndpointAddress, urb);
1572 		/* Let the stop endpoint command watchdog timer (which set this
1573 		 * state) finish cleaning up the endpoint TD lists.  We must
1574 		 * have caught it in the middle of dropping a lock and giving
1575 		 * back an URB.
1576 		 */
1577 		goto done;
1578 	}
1579 
1580 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1581 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1582 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1583 	if (!ep_ring) {
1584 		ret = -EINVAL;
1585 		goto done;
1586 	}
1587 
1588 	urb_priv = urb->hcpriv;
1589 	i = urb_priv->td_cnt;
1590 	if (i < urb_priv->length)
1591 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1592 				"Cancel URB %p, dev %s, ep 0x%x, "
1593 				"starting at offset 0x%llx",
1594 				urb, urb->dev->devpath,
1595 				urb->ep->desc.bEndpointAddress,
1596 				(unsigned long long) xhci_trb_virt_to_dma(
1597 					urb_priv->td[i]->start_seg,
1598 					urb_priv->td[i]->first_trb));
1599 
1600 	for (; i < urb_priv->length; i++) {
1601 		td = urb_priv->td[i];
1602 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1603 	}
1604 
1605 	/* Queue a stop endpoint command, but only if this is
1606 	 * the first cancellation to be handled.
1607 	 */
1608 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1609 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1610 		if (!command) {
1611 			ret = -ENOMEM;
1612 			goto done;
1613 		}
1614 		ep->ep_state |= EP_HALT_PENDING;
1615 		ep->stop_cmds_pending++;
1616 		ep->stop_cmd_timer.expires = jiffies +
1617 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1618 		add_timer(&ep->stop_cmd_timer);
1619 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1620 					 ep_index, 0);
1621 		xhci_ring_cmd_db(xhci);
1622 	}
1623 done:
1624 	spin_unlock_irqrestore(&xhci->lock, flags);
1625 	return ret;
1626 }
1627 
1628 /* Drop an endpoint from a new bandwidth configuration for this device.
1629  * Only one call to this function is allowed per endpoint before
1630  * check_bandwidth() or reset_bandwidth() must be called.
1631  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1632  * add the endpoint to the schedule with possibly new parameters denoted by a
1633  * different endpoint descriptor in usb_host_endpoint.
1634  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1635  * not allowed.
1636  *
1637  * The USB core will not allow URBs to be queued to an endpoint that is being
1638  * disabled, so there's no need for mutual exclusion to protect
1639  * the xhci->devs[slot_id] structure.
1640  */
1641 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1642 		struct usb_host_endpoint *ep)
1643 {
1644 	struct xhci_hcd *xhci;
1645 	struct xhci_container_ctx *in_ctx, *out_ctx;
1646 	struct xhci_input_control_ctx *ctrl_ctx;
1647 	unsigned int ep_index;
1648 	struct xhci_ep_ctx *ep_ctx;
1649 	u32 drop_flag;
1650 	u32 new_add_flags, new_drop_flags;
1651 	int ret;
1652 
1653 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1654 	if (ret <= 0)
1655 		return ret;
1656 	xhci = hcd_to_xhci(hcd);
1657 	if (xhci->xhc_state & XHCI_STATE_DYING)
1658 		return -ENODEV;
1659 
1660 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1661 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1662 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1663 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1664 				__func__, drop_flag);
1665 		return 0;
1666 	}
1667 
1668 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1669 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1670 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1671 	if (!ctrl_ctx) {
1672 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1673 				__func__);
1674 		return 0;
1675 	}
1676 
1677 	ep_index = xhci_get_endpoint_index(&ep->desc);
1678 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1679 	/* If the HC already knows the endpoint is disabled,
1680 	 * or the HCD has noted it is disabled, ignore this request
1681 	 */
1682 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1683 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1684 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1685 	    xhci_get_endpoint_flag(&ep->desc)) {
1686 		/* Do not warn when called after a usb_device_reset */
1687 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1688 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1689 				  __func__, ep);
1690 		return 0;
1691 	}
1692 
1693 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1694 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1695 
1696 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1697 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1698 
1699 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1700 
1701 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1702 			(unsigned int) ep->desc.bEndpointAddress,
1703 			udev->slot_id,
1704 			(unsigned int) new_drop_flags,
1705 			(unsigned int) new_add_flags);
1706 	return 0;
1707 }
1708 
1709 /* Add an endpoint to a new possible bandwidth configuration for this device.
1710  * Only one call to this function is allowed per endpoint before
1711  * check_bandwidth() or reset_bandwidth() must be called.
1712  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1713  * add the endpoint to the schedule with possibly new parameters denoted by a
1714  * different endpoint descriptor in usb_host_endpoint.
1715  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1716  * not allowed.
1717  *
1718  * The USB core will not allow URBs to be queued to an endpoint until the
1719  * configuration or alt setting is installed in the device, so there's no need
1720  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1721  */
1722 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1723 		struct usb_host_endpoint *ep)
1724 {
1725 	struct xhci_hcd *xhci;
1726 	struct xhci_container_ctx *in_ctx;
1727 	unsigned int ep_index;
1728 	struct xhci_input_control_ctx *ctrl_ctx;
1729 	u32 added_ctxs;
1730 	u32 new_add_flags, new_drop_flags;
1731 	struct xhci_virt_device *virt_dev;
1732 	int ret = 0;
1733 
1734 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1735 	if (ret <= 0) {
1736 		/* So we won't queue a reset ep command for a root hub */
1737 		ep->hcpriv = NULL;
1738 		return ret;
1739 	}
1740 	xhci = hcd_to_xhci(hcd);
1741 	if (xhci->xhc_state & XHCI_STATE_DYING)
1742 		return -ENODEV;
1743 
1744 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1745 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1746 		/* FIXME when we have to issue an evaluate endpoint command to
1747 		 * deal with ep0 max packet size changing once we get the
1748 		 * descriptors
1749 		 */
1750 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1751 				__func__, added_ctxs);
1752 		return 0;
1753 	}
1754 
1755 	virt_dev = xhci->devs[udev->slot_id];
1756 	in_ctx = virt_dev->in_ctx;
1757 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1758 	if (!ctrl_ctx) {
1759 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1760 				__func__);
1761 		return 0;
1762 	}
1763 
1764 	ep_index = xhci_get_endpoint_index(&ep->desc);
1765 	/* If this endpoint is already in use, and the upper layers are trying
1766 	 * to add it again without dropping it, reject the addition.
1767 	 */
1768 	if (virt_dev->eps[ep_index].ring &&
1769 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1770 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1771 				"without dropping it.\n",
1772 				(unsigned int) ep->desc.bEndpointAddress);
1773 		return -EINVAL;
1774 	}
1775 
1776 	/* If the HCD has already noted the endpoint is enabled,
1777 	 * ignore this request.
1778 	 */
1779 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1780 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1781 				__func__, ep);
1782 		return 0;
1783 	}
1784 
1785 	/*
1786 	 * Configuration and alternate setting changes must be done in
1787 	 * process context, not interrupt context (or so documenation
1788 	 * for usb_set_interface() and usb_set_configuration() claim).
1789 	 */
1790 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1791 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1792 				__func__, ep->desc.bEndpointAddress);
1793 		return -ENOMEM;
1794 	}
1795 
1796 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1797 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1798 
1799 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1800 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1801 	 * this re-adds a new state for the endpoint from the new endpoint
1802 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1803 	 * drop flags alone.
1804 	 */
1805 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1806 
1807 	/* Store the usb_device pointer for later use */
1808 	ep->hcpriv = udev;
1809 
1810 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1811 			(unsigned int) ep->desc.bEndpointAddress,
1812 			udev->slot_id,
1813 			(unsigned int) new_drop_flags,
1814 			(unsigned int) new_add_flags);
1815 	return 0;
1816 }
1817 
1818 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1819 {
1820 	struct xhci_input_control_ctx *ctrl_ctx;
1821 	struct xhci_ep_ctx *ep_ctx;
1822 	struct xhci_slot_ctx *slot_ctx;
1823 	int i;
1824 
1825 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1826 	if (!ctrl_ctx) {
1827 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1828 				__func__);
1829 		return;
1830 	}
1831 
1832 	/* When a device's add flag and drop flag are zero, any subsequent
1833 	 * configure endpoint command will leave that endpoint's state
1834 	 * untouched.  Make sure we don't leave any old state in the input
1835 	 * endpoint contexts.
1836 	 */
1837 	ctrl_ctx->drop_flags = 0;
1838 	ctrl_ctx->add_flags = 0;
1839 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1840 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1841 	/* Endpoint 0 is always valid */
1842 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1843 	for (i = 1; i < 31; ++i) {
1844 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1845 		ep_ctx->ep_info = 0;
1846 		ep_ctx->ep_info2 = 0;
1847 		ep_ctx->deq = 0;
1848 		ep_ctx->tx_info = 0;
1849 	}
1850 }
1851 
1852 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1853 		struct usb_device *udev, u32 *cmd_status)
1854 {
1855 	int ret;
1856 
1857 	switch (*cmd_status) {
1858 	case COMP_CMD_ABORT:
1859 	case COMP_CMD_STOP:
1860 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1861 		ret = -ETIME;
1862 		break;
1863 	case COMP_ENOMEM:
1864 		dev_warn(&udev->dev,
1865 			 "Not enough host controller resources for new device state.\n");
1866 		ret = -ENOMEM;
1867 		/* FIXME: can we allocate more resources for the HC? */
1868 		break;
1869 	case COMP_BW_ERR:
1870 	case COMP_2ND_BW_ERR:
1871 		dev_warn(&udev->dev,
1872 			 "Not enough bandwidth for new device state.\n");
1873 		ret = -ENOSPC;
1874 		/* FIXME: can we go back to the old state? */
1875 		break;
1876 	case COMP_TRB_ERR:
1877 		/* the HCD set up something wrong */
1878 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1879 				"add flag = 1, "
1880 				"and endpoint is not disabled.\n");
1881 		ret = -EINVAL;
1882 		break;
1883 	case COMP_DEV_ERR:
1884 		dev_warn(&udev->dev,
1885 			 "ERROR: Incompatible device for endpoint configure command.\n");
1886 		ret = -ENODEV;
1887 		break;
1888 	case COMP_SUCCESS:
1889 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1890 				"Successful Endpoint Configure command");
1891 		ret = 0;
1892 		break;
1893 	default:
1894 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1895 				*cmd_status);
1896 		ret = -EINVAL;
1897 		break;
1898 	}
1899 	return ret;
1900 }
1901 
1902 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1903 		struct usb_device *udev, u32 *cmd_status)
1904 {
1905 	int ret;
1906 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1907 
1908 	switch (*cmd_status) {
1909 	case COMP_CMD_ABORT:
1910 	case COMP_CMD_STOP:
1911 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1912 		ret = -ETIME;
1913 		break;
1914 	case COMP_EINVAL:
1915 		dev_warn(&udev->dev,
1916 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1917 		ret = -EINVAL;
1918 		break;
1919 	case COMP_EBADSLT:
1920 		dev_warn(&udev->dev,
1921 			"WARN: slot not enabled for evaluate context command.\n");
1922 		ret = -EINVAL;
1923 		break;
1924 	case COMP_CTX_STATE:
1925 		dev_warn(&udev->dev,
1926 			"WARN: invalid context state for evaluate context command.\n");
1927 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1928 		ret = -EINVAL;
1929 		break;
1930 	case COMP_DEV_ERR:
1931 		dev_warn(&udev->dev,
1932 			"ERROR: Incompatible device for evaluate context command.\n");
1933 		ret = -ENODEV;
1934 		break;
1935 	case COMP_MEL_ERR:
1936 		/* Max Exit Latency too large error */
1937 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1938 		ret = -EINVAL;
1939 		break;
1940 	case COMP_SUCCESS:
1941 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1942 				"Successful evaluate context command");
1943 		ret = 0;
1944 		break;
1945 	default:
1946 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1947 			*cmd_status);
1948 		ret = -EINVAL;
1949 		break;
1950 	}
1951 	return ret;
1952 }
1953 
1954 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1955 		struct xhci_input_control_ctx *ctrl_ctx)
1956 {
1957 	u32 valid_add_flags;
1958 	u32 valid_drop_flags;
1959 
1960 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1961 	 * (bit 1).  The default control endpoint is added during the Address
1962 	 * Device command and is never removed until the slot is disabled.
1963 	 */
1964 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1965 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1966 
1967 	/* Use hweight32 to count the number of ones in the add flags, or
1968 	 * number of endpoints added.  Don't count endpoints that are changed
1969 	 * (both added and dropped).
1970 	 */
1971 	return hweight32(valid_add_flags) -
1972 		hweight32(valid_add_flags & valid_drop_flags);
1973 }
1974 
1975 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1976 		struct xhci_input_control_ctx *ctrl_ctx)
1977 {
1978 	u32 valid_add_flags;
1979 	u32 valid_drop_flags;
1980 
1981 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1982 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1983 
1984 	return hweight32(valid_drop_flags) -
1985 		hweight32(valid_add_flags & valid_drop_flags);
1986 }
1987 
1988 /*
1989  * We need to reserve the new number of endpoints before the configure endpoint
1990  * command completes.  We can't subtract the dropped endpoints from the number
1991  * of active endpoints until the command completes because we can oversubscribe
1992  * the host in this case:
1993  *
1994  *  - the first configure endpoint command drops more endpoints than it adds
1995  *  - a second configure endpoint command that adds more endpoints is queued
1996  *  - the first configure endpoint command fails, so the config is unchanged
1997  *  - the second command may succeed, even though there isn't enough resources
1998  *
1999  * Must be called with xhci->lock held.
2000  */
2001 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2002 		struct xhci_input_control_ctx *ctrl_ctx)
2003 {
2004 	u32 added_eps;
2005 
2006 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2007 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2008 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2009 				"Not enough ep ctxs: "
2010 				"%u active, need to add %u, limit is %u.",
2011 				xhci->num_active_eps, added_eps,
2012 				xhci->limit_active_eps);
2013 		return -ENOMEM;
2014 	}
2015 	xhci->num_active_eps += added_eps;
2016 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2017 			"Adding %u ep ctxs, %u now active.", added_eps,
2018 			xhci->num_active_eps);
2019 	return 0;
2020 }
2021 
2022 /*
2023  * The configure endpoint was failed by the xHC for some other reason, so we
2024  * need to revert the resources that failed configuration would have used.
2025  *
2026  * Must be called with xhci->lock held.
2027  */
2028 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2029 		struct xhci_input_control_ctx *ctrl_ctx)
2030 {
2031 	u32 num_failed_eps;
2032 
2033 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2034 	xhci->num_active_eps -= num_failed_eps;
2035 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036 			"Removing %u failed ep ctxs, %u now active.",
2037 			num_failed_eps,
2038 			xhci->num_active_eps);
2039 }
2040 
2041 /*
2042  * Now that the command has completed, clean up the active endpoint count by
2043  * subtracting out the endpoints that were dropped (but not changed).
2044  *
2045  * Must be called with xhci->lock held.
2046  */
2047 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2048 		struct xhci_input_control_ctx *ctrl_ctx)
2049 {
2050 	u32 num_dropped_eps;
2051 
2052 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2053 	xhci->num_active_eps -= num_dropped_eps;
2054 	if (num_dropped_eps)
2055 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056 				"Removing %u dropped ep ctxs, %u now active.",
2057 				num_dropped_eps,
2058 				xhci->num_active_eps);
2059 }
2060 
2061 static unsigned int xhci_get_block_size(struct usb_device *udev)
2062 {
2063 	switch (udev->speed) {
2064 	case USB_SPEED_LOW:
2065 	case USB_SPEED_FULL:
2066 		return FS_BLOCK;
2067 	case USB_SPEED_HIGH:
2068 		return HS_BLOCK;
2069 	case USB_SPEED_SUPER:
2070 		return SS_BLOCK;
2071 	case USB_SPEED_UNKNOWN:
2072 	case USB_SPEED_WIRELESS:
2073 	default:
2074 		/* Should never happen */
2075 		return 1;
2076 	}
2077 }
2078 
2079 static unsigned int
2080 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2081 {
2082 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2083 		return LS_OVERHEAD;
2084 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2085 		return FS_OVERHEAD;
2086 	return HS_OVERHEAD;
2087 }
2088 
2089 /* If we are changing a LS/FS device under a HS hub,
2090  * make sure (if we are activating a new TT) that the HS bus has enough
2091  * bandwidth for this new TT.
2092  */
2093 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2094 		struct xhci_virt_device *virt_dev,
2095 		int old_active_eps)
2096 {
2097 	struct xhci_interval_bw_table *bw_table;
2098 	struct xhci_tt_bw_info *tt_info;
2099 
2100 	/* Find the bandwidth table for the root port this TT is attached to. */
2101 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2102 	tt_info = virt_dev->tt_info;
2103 	/* If this TT already had active endpoints, the bandwidth for this TT
2104 	 * has already been added.  Removing all periodic endpoints (and thus
2105 	 * making the TT enactive) will only decrease the bandwidth used.
2106 	 */
2107 	if (old_active_eps)
2108 		return 0;
2109 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2110 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2111 			return -ENOMEM;
2112 		return 0;
2113 	}
2114 	/* Not sure why we would have no new active endpoints...
2115 	 *
2116 	 * Maybe because of an Evaluate Context change for a hub update or a
2117 	 * control endpoint 0 max packet size change?
2118 	 * FIXME: skip the bandwidth calculation in that case.
2119 	 */
2120 	return 0;
2121 }
2122 
2123 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2124 		struct xhci_virt_device *virt_dev)
2125 {
2126 	unsigned int bw_reserved;
2127 
2128 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2129 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2130 		return -ENOMEM;
2131 
2132 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2133 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2134 		return -ENOMEM;
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * This algorithm is a very conservative estimate of the worst-case scheduling
2141  * scenario for any one interval.  The hardware dynamically schedules the
2142  * packets, so we can't tell which microframe could be the limiting factor in
2143  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2144  *
2145  * Obviously, we can't solve an NP complete problem to find the minimum worst
2146  * case scenario.  Instead, we come up with an estimate that is no less than
2147  * the worst case bandwidth used for any one microframe, but may be an
2148  * over-estimate.
2149  *
2150  * We walk the requirements for each endpoint by interval, starting with the
2151  * smallest interval, and place packets in the schedule where there is only one
2152  * possible way to schedule packets for that interval.  In order to simplify
2153  * this algorithm, we record the largest max packet size for each interval, and
2154  * assume all packets will be that size.
2155  *
2156  * For interval 0, we obviously must schedule all packets for each interval.
2157  * The bandwidth for interval 0 is just the amount of data to be transmitted
2158  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2159  * the number of packets).
2160  *
2161  * For interval 1, we have two possible microframes to schedule those packets
2162  * in.  For this algorithm, if we can schedule the same number of packets for
2163  * each possible scheduling opportunity (each microframe), we will do so.  The
2164  * remaining number of packets will be saved to be transmitted in the gaps in
2165  * the next interval's scheduling sequence.
2166  *
2167  * As we move those remaining packets to be scheduled with interval 2 packets,
2168  * we have to double the number of remaining packets to transmit.  This is
2169  * because the intervals are actually powers of 2, and we would be transmitting
2170  * the previous interval's packets twice in this interval.  We also have to be
2171  * sure that when we look at the largest max packet size for this interval, we
2172  * also look at the largest max packet size for the remaining packets and take
2173  * the greater of the two.
2174  *
2175  * The algorithm continues to evenly distribute packets in each scheduling
2176  * opportunity, and push the remaining packets out, until we get to the last
2177  * interval.  Then those packets and their associated overhead are just added
2178  * to the bandwidth used.
2179  */
2180 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2181 		struct xhci_virt_device *virt_dev,
2182 		int old_active_eps)
2183 {
2184 	unsigned int bw_reserved;
2185 	unsigned int max_bandwidth;
2186 	unsigned int bw_used;
2187 	unsigned int block_size;
2188 	struct xhci_interval_bw_table *bw_table;
2189 	unsigned int packet_size = 0;
2190 	unsigned int overhead = 0;
2191 	unsigned int packets_transmitted = 0;
2192 	unsigned int packets_remaining = 0;
2193 	unsigned int i;
2194 
2195 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2196 		return xhci_check_ss_bw(xhci, virt_dev);
2197 
2198 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2199 		max_bandwidth = HS_BW_LIMIT;
2200 		/* Convert percent of bus BW reserved to blocks reserved */
2201 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2202 	} else {
2203 		max_bandwidth = FS_BW_LIMIT;
2204 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2205 	}
2206 
2207 	bw_table = virt_dev->bw_table;
2208 	/* We need to translate the max packet size and max ESIT payloads into
2209 	 * the units the hardware uses.
2210 	 */
2211 	block_size = xhci_get_block_size(virt_dev->udev);
2212 
2213 	/* If we are manipulating a LS/FS device under a HS hub, double check
2214 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2215 	 */
2216 	if (virt_dev->tt_info) {
2217 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2218 				"Recalculating BW for rootport %u",
2219 				virt_dev->real_port);
2220 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2221 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2222 					"newly activated TT.\n");
2223 			return -ENOMEM;
2224 		}
2225 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2226 				"Recalculating BW for TT slot %u port %u",
2227 				virt_dev->tt_info->slot_id,
2228 				virt_dev->tt_info->ttport);
2229 	} else {
2230 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 				"Recalculating BW for rootport %u",
2232 				virt_dev->real_port);
2233 	}
2234 
2235 	/* Add in how much bandwidth will be used for interval zero, or the
2236 	 * rounded max ESIT payload + number of packets * largest overhead.
2237 	 */
2238 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2239 		bw_table->interval_bw[0].num_packets *
2240 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2241 
2242 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2243 		unsigned int bw_added;
2244 		unsigned int largest_mps;
2245 		unsigned int interval_overhead;
2246 
2247 		/*
2248 		 * How many packets could we transmit in this interval?
2249 		 * If packets didn't fit in the previous interval, we will need
2250 		 * to transmit that many packets twice within this interval.
2251 		 */
2252 		packets_remaining = 2 * packets_remaining +
2253 			bw_table->interval_bw[i].num_packets;
2254 
2255 		/* Find the largest max packet size of this or the previous
2256 		 * interval.
2257 		 */
2258 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2259 			largest_mps = 0;
2260 		else {
2261 			struct xhci_virt_ep *virt_ep;
2262 			struct list_head *ep_entry;
2263 
2264 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2265 			virt_ep = list_entry(ep_entry,
2266 					struct xhci_virt_ep, bw_endpoint_list);
2267 			/* Convert to blocks, rounding up */
2268 			largest_mps = DIV_ROUND_UP(
2269 					virt_ep->bw_info.max_packet_size,
2270 					block_size);
2271 		}
2272 		if (largest_mps > packet_size)
2273 			packet_size = largest_mps;
2274 
2275 		/* Use the larger overhead of this or the previous interval. */
2276 		interval_overhead = xhci_get_largest_overhead(
2277 				&bw_table->interval_bw[i]);
2278 		if (interval_overhead > overhead)
2279 			overhead = interval_overhead;
2280 
2281 		/* How many packets can we evenly distribute across
2282 		 * (1 << (i + 1)) possible scheduling opportunities?
2283 		 */
2284 		packets_transmitted = packets_remaining >> (i + 1);
2285 
2286 		/* Add in the bandwidth used for those scheduled packets */
2287 		bw_added = packets_transmitted * (overhead + packet_size);
2288 
2289 		/* How many packets do we have remaining to transmit? */
2290 		packets_remaining = packets_remaining % (1 << (i + 1));
2291 
2292 		/* What largest max packet size should those packets have? */
2293 		/* If we've transmitted all packets, don't carry over the
2294 		 * largest packet size.
2295 		 */
2296 		if (packets_remaining == 0) {
2297 			packet_size = 0;
2298 			overhead = 0;
2299 		} else if (packets_transmitted > 0) {
2300 			/* Otherwise if we do have remaining packets, and we've
2301 			 * scheduled some packets in this interval, take the
2302 			 * largest max packet size from endpoints with this
2303 			 * interval.
2304 			 */
2305 			packet_size = largest_mps;
2306 			overhead = interval_overhead;
2307 		}
2308 		/* Otherwise carry over packet_size and overhead from the last
2309 		 * time we had a remainder.
2310 		 */
2311 		bw_used += bw_added;
2312 		if (bw_used > max_bandwidth) {
2313 			xhci_warn(xhci, "Not enough bandwidth. "
2314 					"Proposed: %u, Max: %u\n",
2315 				bw_used, max_bandwidth);
2316 			return -ENOMEM;
2317 		}
2318 	}
2319 	/*
2320 	 * Ok, we know we have some packets left over after even-handedly
2321 	 * scheduling interval 15.  We don't know which microframes they will
2322 	 * fit into, so we over-schedule and say they will be scheduled every
2323 	 * microframe.
2324 	 */
2325 	if (packets_remaining > 0)
2326 		bw_used += overhead + packet_size;
2327 
2328 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2329 		unsigned int port_index = virt_dev->real_port - 1;
2330 
2331 		/* OK, we're manipulating a HS device attached to a
2332 		 * root port bandwidth domain.  Include the number of active TTs
2333 		 * in the bandwidth used.
2334 		 */
2335 		bw_used += TT_HS_OVERHEAD *
2336 			xhci->rh_bw[port_index].num_active_tts;
2337 	}
2338 
2339 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2341 		"Available: %u " "percent",
2342 		bw_used, max_bandwidth, bw_reserved,
2343 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2344 		max_bandwidth);
2345 
2346 	bw_used += bw_reserved;
2347 	if (bw_used > max_bandwidth) {
2348 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2349 				bw_used, max_bandwidth);
2350 		return -ENOMEM;
2351 	}
2352 
2353 	bw_table->bw_used = bw_used;
2354 	return 0;
2355 }
2356 
2357 static bool xhci_is_async_ep(unsigned int ep_type)
2358 {
2359 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2360 					ep_type != ISOC_IN_EP &&
2361 					ep_type != INT_IN_EP);
2362 }
2363 
2364 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2365 {
2366 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2367 }
2368 
2369 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2370 {
2371 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2372 
2373 	if (ep_bw->ep_interval == 0)
2374 		return SS_OVERHEAD_BURST +
2375 			(ep_bw->mult * ep_bw->num_packets *
2376 					(SS_OVERHEAD + mps));
2377 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2378 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2379 				1 << ep_bw->ep_interval);
2380 
2381 }
2382 
2383 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2384 		struct xhci_bw_info *ep_bw,
2385 		struct xhci_interval_bw_table *bw_table,
2386 		struct usb_device *udev,
2387 		struct xhci_virt_ep *virt_ep,
2388 		struct xhci_tt_bw_info *tt_info)
2389 {
2390 	struct xhci_interval_bw	*interval_bw;
2391 	int normalized_interval;
2392 
2393 	if (xhci_is_async_ep(ep_bw->type))
2394 		return;
2395 
2396 	if (udev->speed == USB_SPEED_SUPER) {
2397 		if (xhci_is_sync_in_ep(ep_bw->type))
2398 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2399 				xhci_get_ss_bw_consumed(ep_bw);
2400 		else
2401 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2402 				xhci_get_ss_bw_consumed(ep_bw);
2403 		return;
2404 	}
2405 
2406 	/* SuperSpeed endpoints never get added to intervals in the table, so
2407 	 * this check is only valid for HS/FS/LS devices.
2408 	 */
2409 	if (list_empty(&virt_ep->bw_endpoint_list))
2410 		return;
2411 	/* For LS/FS devices, we need to translate the interval expressed in
2412 	 * microframes to frames.
2413 	 */
2414 	if (udev->speed == USB_SPEED_HIGH)
2415 		normalized_interval = ep_bw->ep_interval;
2416 	else
2417 		normalized_interval = ep_bw->ep_interval - 3;
2418 
2419 	if (normalized_interval == 0)
2420 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2421 	interval_bw = &bw_table->interval_bw[normalized_interval];
2422 	interval_bw->num_packets -= ep_bw->num_packets;
2423 	switch (udev->speed) {
2424 	case USB_SPEED_LOW:
2425 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2426 		break;
2427 	case USB_SPEED_FULL:
2428 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2429 		break;
2430 	case USB_SPEED_HIGH:
2431 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2432 		break;
2433 	case USB_SPEED_SUPER:
2434 	case USB_SPEED_UNKNOWN:
2435 	case USB_SPEED_WIRELESS:
2436 		/* Should never happen because only LS/FS/HS endpoints will get
2437 		 * added to the endpoint list.
2438 		 */
2439 		return;
2440 	}
2441 	if (tt_info)
2442 		tt_info->active_eps -= 1;
2443 	list_del_init(&virt_ep->bw_endpoint_list);
2444 }
2445 
2446 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2447 		struct xhci_bw_info *ep_bw,
2448 		struct xhci_interval_bw_table *bw_table,
2449 		struct usb_device *udev,
2450 		struct xhci_virt_ep *virt_ep,
2451 		struct xhci_tt_bw_info *tt_info)
2452 {
2453 	struct xhci_interval_bw	*interval_bw;
2454 	struct xhci_virt_ep *smaller_ep;
2455 	int normalized_interval;
2456 
2457 	if (xhci_is_async_ep(ep_bw->type))
2458 		return;
2459 
2460 	if (udev->speed == USB_SPEED_SUPER) {
2461 		if (xhci_is_sync_in_ep(ep_bw->type))
2462 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2463 				xhci_get_ss_bw_consumed(ep_bw);
2464 		else
2465 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2466 				xhci_get_ss_bw_consumed(ep_bw);
2467 		return;
2468 	}
2469 
2470 	/* For LS/FS devices, we need to translate the interval expressed in
2471 	 * microframes to frames.
2472 	 */
2473 	if (udev->speed == USB_SPEED_HIGH)
2474 		normalized_interval = ep_bw->ep_interval;
2475 	else
2476 		normalized_interval = ep_bw->ep_interval - 3;
2477 
2478 	if (normalized_interval == 0)
2479 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2480 	interval_bw = &bw_table->interval_bw[normalized_interval];
2481 	interval_bw->num_packets += ep_bw->num_packets;
2482 	switch (udev->speed) {
2483 	case USB_SPEED_LOW:
2484 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2485 		break;
2486 	case USB_SPEED_FULL:
2487 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2488 		break;
2489 	case USB_SPEED_HIGH:
2490 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2491 		break;
2492 	case USB_SPEED_SUPER:
2493 	case USB_SPEED_UNKNOWN:
2494 	case USB_SPEED_WIRELESS:
2495 		/* Should never happen because only LS/FS/HS endpoints will get
2496 		 * added to the endpoint list.
2497 		 */
2498 		return;
2499 	}
2500 
2501 	if (tt_info)
2502 		tt_info->active_eps += 1;
2503 	/* Insert the endpoint into the list, largest max packet size first. */
2504 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2505 			bw_endpoint_list) {
2506 		if (ep_bw->max_packet_size >=
2507 				smaller_ep->bw_info.max_packet_size) {
2508 			/* Add the new ep before the smaller endpoint */
2509 			list_add_tail(&virt_ep->bw_endpoint_list,
2510 					&smaller_ep->bw_endpoint_list);
2511 			return;
2512 		}
2513 	}
2514 	/* Add the new endpoint at the end of the list. */
2515 	list_add_tail(&virt_ep->bw_endpoint_list,
2516 			&interval_bw->endpoints);
2517 }
2518 
2519 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2520 		struct xhci_virt_device *virt_dev,
2521 		int old_active_eps)
2522 {
2523 	struct xhci_root_port_bw_info *rh_bw_info;
2524 	if (!virt_dev->tt_info)
2525 		return;
2526 
2527 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2528 	if (old_active_eps == 0 &&
2529 				virt_dev->tt_info->active_eps != 0) {
2530 		rh_bw_info->num_active_tts += 1;
2531 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2532 	} else if (old_active_eps != 0 &&
2533 				virt_dev->tt_info->active_eps == 0) {
2534 		rh_bw_info->num_active_tts -= 1;
2535 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2536 	}
2537 }
2538 
2539 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2540 		struct xhci_virt_device *virt_dev,
2541 		struct xhci_container_ctx *in_ctx)
2542 {
2543 	struct xhci_bw_info ep_bw_info[31];
2544 	int i;
2545 	struct xhci_input_control_ctx *ctrl_ctx;
2546 	int old_active_eps = 0;
2547 
2548 	if (virt_dev->tt_info)
2549 		old_active_eps = virt_dev->tt_info->active_eps;
2550 
2551 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2552 	if (!ctrl_ctx) {
2553 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2554 				__func__);
2555 		return -ENOMEM;
2556 	}
2557 
2558 	for (i = 0; i < 31; i++) {
2559 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2560 			continue;
2561 
2562 		/* Make a copy of the BW info in case we need to revert this */
2563 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2564 				sizeof(ep_bw_info[i]));
2565 		/* Drop the endpoint from the interval table if the endpoint is
2566 		 * being dropped or changed.
2567 		 */
2568 		if (EP_IS_DROPPED(ctrl_ctx, i))
2569 			xhci_drop_ep_from_interval_table(xhci,
2570 					&virt_dev->eps[i].bw_info,
2571 					virt_dev->bw_table,
2572 					virt_dev->udev,
2573 					&virt_dev->eps[i],
2574 					virt_dev->tt_info);
2575 	}
2576 	/* Overwrite the information stored in the endpoints' bw_info */
2577 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2578 	for (i = 0; i < 31; i++) {
2579 		/* Add any changed or added endpoints to the interval table */
2580 		if (EP_IS_ADDED(ctrl_ctx, i))
2581 			xhci_add_ep_to_interval_table(xhci,
2582 					&virt_dev->eps[i].bw_info,
2583 					virt_dev->bw_table,
2584 					virt_dev->udev,
2585 					&virt_dev->eps[i],
2586 					virt_dev->tt_info);
2587 	}
2588 
2589 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2590 		/* Ok, this fits in the bandwidth we have.
2591 		 * Update the number of active TTs.
2592 		 */
2593 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2594 		return 0;
2595 	}
2596 
2597 	/* We don't have enough bandwidth for this, revert the stored info. */
2598 	for (i = 0; i < 31; i++) {
2599 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2600 			continue;
2601 
2602 		/* Drop the new copies of any added or changed endpoints from
2603 		 * the interval table.
2604 		 */
2605 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2606 			xhci_drop_ep_from_interval_table(xhci,
2607 					&virt_dev->eps[i].bw_info,
2608 					virt_dev->bw_table,
2609 					virt_dev->udev,
2610 					&virt_dev->eps[i],
2611 					virt_dev->tt_info);
2612 		}
2613 		/* Revert the endpoint back to its old information */
2614 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2615 				sizeof(ep_bw_info[i]));
2616 		/* Add any changed or dropped endpoints back into the table */
2617 		if (EP_IS_DROPPED(ctrl_ctx, i))
2618 			xhci_add_ep_to_interval_table(xhci,
2619 					&virt_dev->eps[i].bw_info,
2620 					virt_dev->bw_table,
2621 					virt_dev->udev,
2622 					&virt_dev->eps[i],
2623 					virt_dev->tt_info);
2624 	}
2625 	return -ENOMEM;
2626 }
2627 
2628 
2629 /* Issue a configure endpoint command or evaluate context command
2630  * and wait for it to finish.
2631  */
2632 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2633 		struct usb_device *udev,
2634 		struct xhci_command *command,
2635 		bool ctx_change, bool must_succeed)
2636 {
2637 	int ret;
2638 	unsigned long flags;
2639 	struct xhci_input_control_ctx *ctrl_ctx;
2640 	struct xhci_virt_device *virt_dev;
2641 
2642 	if (!command)
2643 		return -EINVAL;
2644 
2645 	spin_lock_irqsave(&xhci->lock, flags);
2646 	virt_dev = xhci->devs[udev->slot_id];
2647 
2648 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2649 	if (!ctrl_ctx) {
2650 		spin_unlock_irqrestore(&xhci->lock, flags);
2651 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2652 				__func__);
2653 		return -ENOMEM;
2654 	}
2655 
2656 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2657 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2658 		spin_unlock_irqrestore(&xhci->lock, flags);
2659 		xhci_warn(xhci, "Not enough host resources, "
2660 				"active endpoint contexts = %u\n",
2661 				xhci->num_active_eps);
2662 		return -ENOMEM;
2663 	}
2664 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2665 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2666 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2667 			xhci_free_host_resources(xhci, ctrl_ctx);
2668 		spin_unlock_irqrestore(&xhci->lock, flags);
2669 		xhci_warn(xhci, "Not enough bandwidth\n");
2670 		return -ENOMEM;
2671 	}
2672 
2673 	if (!ctx_change)
2674 		ret = xhci_queue_configure_endpoint(xhci, command,
2675 				command->in_ctx->dma,
2676 				udev->slot_id, must_succeed);
2677 	else
2678 		ret = xhci_queue_evaluate_context(xhci, command,
2679 				command->in_ctx->dma,
2680 				udev->slot_id, must_succeed);
2681 	if (ret < 0) {
2682 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2683 			xhci_free_host_resources(xhci, ctrl_ctx);
2684 		spin_unlock_irqrestore(&xhci->lock, flags);
2685 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2686 				"FIXME allocate a new ring segment");
2687 		return -ENOMEM;
2688 	}
2689 	xhci_ring_cmd_db(xhci);
2690 	spin_unlock_irqrestore(&xhci->lock, flags);
2691 
2692 	/* Wait for the configure endpoint command to complete */
2693 	wait_for_completion(command->completion);
2694 
2695 	if (!ctx_change)
2696 		ret = xhci_configure_endpoint_result(xhci, udev,
2697 						     &command->status);
2698 	else
2699 		ret = xhci_evaluate_context_result(xhci, udev,
2700 						   &command->status);
2701 
2702 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2703 		spin_lock_irqsave(&xhci->lock, flags);
2704 		/* If the command failed, remove the reserved resources.
2705 		 * Otherwise, clean up the estimate to include dropped eps.
2706 		 */
2707 		if (ret)
2708 			xhci_free_host_resources(xhci, ctrl_ctx);
2709 		else
2710 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2711 		spin_unlock_irqrestore(&xhci->lock, flags);
2712 	}
2713 	return ret;
2714 }
2715 
2716 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2717 	struct xhci_virt_device *vdev, int i)
2718 {
2719 	struct xhci_virt_ep *ep = &vdev->eps[i];
2720 
2721 	if (ep->ep_state & EP_HAS_STREAMS) {
2722 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2723 				xhci_get_endpoint_address(i));
2724 		xhci_free_stream_info(xhci, ep->stream_info);
2725 		ep->stream_info = NULL;
2726 		ep->ep_state &= ~EP_HAS_STREAMS;
2727 	}
2728 }
2729 
2730 /* Called after one or more calls to xhci_add_endpoint() or
2731  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2732  * to call xhci_reset_bandwidth().
2733  *
2734  * Since we are in the middle of changing either configuration or
2735  * installing a new alt setting, the USB core won't allow URBs to be
2736  * enqueued for any endpoint on the old config or interface.  Nothing
2737  * else should be touching the xhci->devs[slot_id] structure, so we
2738  * don't need to take the xhci->lock for manipulating that.
2739  */
2740 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2741 {
2742 	int i;
2743 	int ret = 0;
2744 	struct xhci_hcd *xhci;
2745 	struct xhci_virt_device	*virt_dev;
2746 	struct xhci_input_control_ctx *ctrl_ctx;
2747 	struct xhci_slot_ctx *slot_ctx;
2748 	struct xhci_command *command;
2749 
2750 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2751 	if (ret <= 0)
2752 		return ret;
2753 	xhci = hcd_to_xhci(hcd);
2754 	if (xhci->xhc_state & XHCI_STATE_DYING)
2755 		return -ENODEV;
2756 
2757 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2758 	virt_dev = xhci->devs[udev->slot_id];
2759 
2760 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2761 	if (!command)
2762 		return -ENOMEM;
2763 
2764 	command->in_ctx = virt_dev->in_ctx;
2765 
2766 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2767 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2768 	if (!ctrl_ctx) {
2769 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770 				__func__);
2771 		ret = -ENOMEM;
2772 		goto command_cleanup;
2773 	}
2774 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2775 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2776 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2777 
2778 	/* Don't issue the command if there's no endpoints to update. */
2779 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2780 	    ctrl_ctx->drop_flags == 0) {
2781 		ret = 0;
2782 		goto command_cleanup;
2783 	}
2784 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2785 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2786 	for (i = 31; i >= 1; i--) {
2787 		__le32 le32 = cpu_to_le32(BIT(i));
2788 
2789 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2790 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2791 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2792 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2793 			break;
2794 		}
2795 	}
2796 	xhci_dbg(xhci, "New Input Control Context:\n");
2797 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2798 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2799 
2800 	ret = xhci_configure_endpoint(xhci, udev, command,
2801 			false, false);
2802 	if (ret)
2803 		/* Callee should call reset_bandwidth() */
2804 		goto command_cleanup;
2805 
2806 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2807 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2808 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2809 
2810 	/* Free any rings that were dropped, but not changed. */
2811 	for (i = 1; i < 31; ++i) {
2812 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2813 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2814 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2815 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2816 		}
2817 	}
2818 	xhci_zero_in_ctx(xhci, virt_dev);
2819 	/*
2820 	 * Install any rings for completely new endpoints or changed endpoints,
2821 	 * and free or cache any old rings from changed endpoints.
2822 	 */
2823 	for (i = 1; i < 31; ++i) {
2824 		if (!virt_dev->eps[i].new_ring)
2825 			continue;
2826 		/* Only cache or free the old ring if it exists.
2827 		 * It may not if this is the first add of an endpoint.
2828 		 */
2829 		if (virt_dev->eps[i].ring) {
2830 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2831 		}
2832 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2833 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2834 		virt_dev->eps[i].new_ring = NULL;
2835 	}
2836 command_cleanup:
2837 	kfree(command->completion);
2838 	kfree(command);
2839 
2840 	return ret;
2841 }
2842 
2843 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2844 {
2845 	struct xhci_hcd *xhci;
2846 	struct xhci_virt_device	*virt_dev;
2847 	int i, ret;
2848 
2849 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2850 	if (ret <= 0)
2851 		return;
2852 	xhci = hcd_to_xhci(hcd);
2853 
2854 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2855 	virt_dev = xhci->devs[udev->slot_id];
2856 	/* Free any rings allocated for added endpoints */
2857 	for (i = 0; i < 31; ++i) {
2858 		if (virt_dev->eps[i].new_ring) {
2859 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2860 			virt_dev->eps[i].new_ring = NULL;
2861 		}
2862 	}
2863 	xhci_zero_in_ctx(xhci, virt_dev);
2864 }
2865 
2866 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2867 		struct xhci_container_ctx *in_ctx,
2868 		struct xhci_container_ctx *out_ctx,
2869 		struct xhci_input_control_ctx *ctrl_ctx,
2870 		u32 add_flags, u32 drop_flags)
2871 {
2872 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2873 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2874 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2875 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2876 
2877 	xhci_dbg(xhci, "Input Context:\n");
2878 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2879 }
2880 
2881 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2882 		unsigned int slot_id, unsigned int ep_index,
2883 		struct xhci_dequeue_state *deq_state)
2884 {
2885 	struct xhci_input_control_ctx *ctrl_ctx;
2886 	struct xhci_container_ctx *in_ctx;
2887 	struct xhci_ep_ctx *ep_ctx;
2888 	u32 added_ctxs;
2889 	dma_addr_t addr;
2890 
2891 	in_ctx = xhci->devs[slot_id]->in_ctx;
2892 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2893 	if (!ctrl_ctx) {
2894 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895 				__func__);
2896 		return;
2897 	}
2898 
2899 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2900 			xhci->devs[slot_id]->out_ctx, ep_index);
2901 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2902 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2903 			deq_state->new_deq_ptr);
2904 	if (addr == 0) {
2905 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2906 				"reset ep command\n");
2907 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2908 				deq_state->new_deq_seg,
2909 				deq_state->new_deq_ptr);
2910 		return;
2911 	}
2912 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2913 
2914 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2915 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2916 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2917 			added_ctxs, added_ctxs);
2918 }
2919 
2920 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2921 			unsigned int ep_index, struct xhci_td *td)
2922 {
2923 	struct xhci_dequeue_state deq_state;
2924 	struct xhci_virt_ep *ep;
2925 	struct usb_device *udev = td->urb->dev;
2926 
2927 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2928 			"Cleaning up stalled endpoint ring");
2929 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930 	/* We need to move the HW's dequeue pointer past this TD,
2931 	 * or it will attempt to resend it on the next doorbell ring.
2932 	 */
2933 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2934 			ep_index, ep->stopped_stream, td, &deq_state);
2935 
2936 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2937 		return;
2938 
2939 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2940 	 * issue a configure endpoint command later.
2941 	 */
2942 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2943 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2944 				"Queueing new dequeue state");
2945 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2946 				ep_index, ep->stopped_stream, &deq_state);
2947 	} else {
2948 		/* Better hope no one uses the input context between now and the
2949 		 * reset endpoint completion!
2950 		 * XXX: No idea how this hardware will react when stream rings
2951 		 * are enabled.
2952 		 */
2953 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2954 				"Setting up input context for "
2955 				"configure endpoint command");
2956 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2957 				ep_index, &deq_state);
2958 	}
2959 }
2960 
2961 /* Called when clearing halted device. The core should have sent the control
2962  * message to clear the device halt condition. The host side of the halt should
2963  * already be cleared with a reset endpoint command issued when the STALL tx
2964  * event was received.
2965  *
2966  * Context: in_interrupt
2967  */
2968 
2969 void xhci_endpoint_reset(struct usb_hcd *hcd,
2970 		struct usb_host_endpoint *ep)
2971 {
2972 	struct xhci_hcd *xhci;
2973 
2974 	xhci = hcd_to_xhci(hcd);
2975 
2976 	/*
2977 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2978 	 * The Reset Endpoint Command may only be issued to endpoints in the
2979 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2980 	 * Number of an endpoint that isn't in the Halted state, then software
2981 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2982 	 * for the target endpoint. that is in the Stopped state.
2983 	 */
2984 
2985 	/* For now just print debug to follow the situation */
2986 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2987 		 ep->desc.bEndpointAddress);
2988 }
2989 
2990 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2991 		struct usb_device *udev, struct usb_host_endpoint *ep,
2992 		unsigned int slot_id)
2993 {
2994 	int ret;
2995 	unsigned int ep_index;
2996 	unsigned int ep_state;
2997 
2998 	if (!ep)
2999 		return -EINVAL;
3000 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3001 	if (ret <= 0)
3002 		return -EINVAL;
3003 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3004 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3005 				" descriptor for ep 0x%x does not support streams\n",
3006 				ep->desc.bEndpointAddress);
3007 		return -EINVAL;
3008 	}
3009 
3010 	ep_index = xhci_get_endpoint_index(&ep->desc);
3011 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3012 	if (ep_state & EP_HAS_STREAMS ||
3013 			ep_state & EP_GETTING_STREAMS) {
3014 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3015 				"already has streams set up.\n",
3016 				ep->desc.bEndpointAddress);
3017 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3018 				"dynamic stream context array reallocation.\n");
3019 		return -EINVAL;
3020 	}
3021 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3022 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3023 				"endpoint 0x%x; URBs are pending.\n",
3024 				ep->desc.bEndpointAddress);
3025 		return -EINVAL;
3026 	}
3027 	return 0;
3028 }
3029 
3030 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3031 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3032 {
3033 	unsigned int max_streams;
3034 
3035 	/* The stream context array size must be a power of two */
3036 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3037 	/*
3038 	 * Find out how many primary stream array entries the host controller
3039 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3040 	 * level page entries), but that's an optional feature for xHCI host
3041 	 * controllers. xHCs must support at least 4 stream IDs.
3042 	 */
3043 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3044 	if (*num_stream_ctxs > max_streams) {
3045 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3046 				max_streams);
3047 		*num_stream_ctxs = max_streams;
3048 		*num_streams = max_streams;
3049 	}
3050 }
3051 
3052 /* Returns an error code if one of the endpoint already has streams.
3053  * This does not change any data structures, it only checks and gathers
3054  * information.
3055  */
3056 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3057 		struct usb_device *udev,
3058 		struct usb_host_endpoint **eps, unsigned int num_eps,
3059 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3060 {
3061 	unsigned int max_streams;
3062 	unsigned int endpoint_flag;
3063 	int i;
3064 	int ret;
3065 
3066 	for (i = 0; i < num_eps; i++) {
3067 		ret = xhci_check_streams_endpoint(xhci, udev,
3068 				eps[i], udev->slot_id);
3069 		if (ret < 0)
3070 			return ret;
3071 
3072 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3073 		if (max_streams < (*num_streams - 1)) {
3074 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3075 					eps[i]->desc.bEndpointAddress,
3076 					max_streams);
3077 			*num_streams = max_streams+1;
3078 		}
3079 
3080 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3081 		if (*changed_ep_bitmask & endpoint_flag)
3082 			return -EINVAL;
3083 		*changed_ep_bitmask |= endpoint_flag;
3084 	}
3085 	return 0;
3086 }
3087 
3088 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3089 		struct usb_device *udev,
3090 		struct usb_host_endpoint **eps, unsigned int num_eps)
3091 {
3092 	u32 changed_ep_bitmask = 0;
3093 	unsigned int slot_id;
3094 	unsigned int ep_index;
3095 	unsigned int ep_state;
3096 	int i;
3097 
3098 	slot_id = udev->slot_id;
3099 	if (!xhci->devs[slot_id])
3100 		return 0;
3101 
3102 	for (i = 0; i < num_eps; i++) {
3103 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3104 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3105 		/* Are streams already being freed for the endpoint? */
3106 		if (ep_state & EP_GETTING_NO_STREAMS) {
3107 			xhci_warn(xhci, "WARN Can't disable streams for "
3108 					"endpoint 0x%x, "
3109 					"streams are being disabled already\n",
3110 					eps[i]->desc.bEndpointAddress);
3111 			return 0;
3112 		}
3113 		/* Are there actually any streams to free? */
3114 		if (!(ep_state & EP_HAS_STREAMS) &&
3115 				!(ep_state & EP_GETTING_STREAMS)) {
3116 			xhci_warn(xhci, "WARN Can't disable streams for "
3117 					"endpoint 0x%x, "
3118 					"streams are already disabled!\n",
3119 					eps[i]->desc.bEndpointAddress);
3120 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3121 					"with non-streams endpoint\n");
3122 			return 0;
3123 		}
3124 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3125 	}
3126 	return changed_ep_bitmask;
3127 }
3128 
3129 /*
3130  * The USB device drivers use this function (through the HCD interface in USB
3131  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3132  * coordinate mass storage command queueing across multiple endpoints (basically
3133  * a stream ID == a task ID).
3134  *
3135  * Setting up streams involves allocating the same size stream context array
3136  * for each endpoint and issuing a configure endpoint command for all endpoints.
3137  *
3138  * Don't allow the call to succeed if one endpoint only supports one stream
3139  * (which means it doesn't support streams at all).
3140  *
3141  * Drivers may get less stream IDs than they asked for, if the host controller
3142  * hardware or endpoints claim they can't support the number of requested
3143  * stream IDs.
3144  */
3145 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3146 		struct usb_host_endpoint **eps, unsigned int num_eps,
3147 		unsigned int num_streams, gfp_t mem_flags)
3148 {
3149 	int i, ret;
3150 	struct xhci_hcd *xhci;
3151 	struct xhci_virt_device *vdev;
3152 	struct xhci_command *config_cmd;
3153 	struct xhci_input_control_ctx *ctrl_ctx;
3154 	unsigned int ep_index;
3155 	unsigned int num_stream_ctxs;
3156 	unsigned long flags;
3157 	u32 changed_ep_bitmask = 0;
3158 
3159 	if (!eps)
3160 		return -EINVAL;
3161 
3162 	/* Add one to the number of streams requested to account for
3163 	 * stream 0 that is reserved for xHCI usage.
3164 	 */
3165 	num_streams += 1;
3166 	xhci = hcd_to_xhci(hcd);
3167 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3168 			num_streams);
3169 
3170 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3171 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3172 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3173 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3174 		return -ENOSYS;
3175 	}
3176 
3177 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3178 	if (!config_cmd) {
3179 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3180 		return -ENOMEM;
3181 	}
3182 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3183 	if (!ctrl_ctx) {
3184 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3185 				__func__);
3186 		xhci_free_command(xhci, config_cmd);
3187 		return -ENOMEM;
3188 	}
3189 
3190 	/* Check to make sure all endpoints are not already configured for
3191 	 * streams.  While we're at it, find the maximum number of streams that
3192 	 * all the endpoints will support and check for duplicate endpoints.
3193 	 */
3194 	spin_lock_irqsave(&xhci->lock, flags);
3195 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3196 			num_eps, &num_streams, &changed_ep_bitmask);
3197 	if (ret < 0) {
3198 		xhci_free_command(xhci, config_cmd);
3199 		spin_unlock_irqrestore(&xhci->lock, flags);
3200 		return ret;
3201 	}
3202 	if (num_streams <= 1) {
3203 		xhci_warn(xhci, "WARN: endpoints can't handle "
3204 				"more than one stream.\n");
3205 		xhci_free_command(xhci, config_cmd);
3206 		spin_unlock_irqrestore(&xhci->lock, flags);
3207 		return -EINVAL;
3208 	}
3209 	vdev = xhci->devs[udev->slot_id];
3210 	/* Mark each endpoint as being in transition, so
3211 	 * xhci_urb_enqueue() will reject all URBs.
3212 	 */
3213 	for (i = 0; i < num_eps; i++) {
3214 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3216 	}
3217 	spin_unlock_irqrestore(&xhci->lock, flags);
3218 
3219 	/* Setup internal data structures and allocate HW data structures for
3220 	 * streams (but don't install the HW structures in the input context
3221 	 * until we're sure all memory allocation succeeded).
3222 	 */
3223 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3224 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3225 			num_stream_ctxs, num_streams);
3226 
3227 	for (i = 0; i < num_eps; i++) {
3228 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3230 				num_stream_ctxs,
3231 				num_streams, mem_flags);
3232 		if (!vdev->eps[ep_index].stream_info)
3233 			goto cleanup;
3234 		/* Set maxPstreams in endpoint context and update deq ptr to
3235 		 * point to stream context array. FIXME
3236 		 */
3237 	}
3238 
3239 	/* Set up the input context for a configure endpoint command. */
3240 	for (i = 0; i < num_eps; i++) {
3241 		struct xhci_ep_ctx *ep_ctx;
3242 
3243 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3244 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3245 
3246 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3247 				vdev->out_ctx, ep_index);
3248 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3249 				vdev->eps[ep_index].stream_info);
3250 	}
3251 	/* Tell the HW to drop its old copy of the endpoint context info
3252 	 * and add the updated copy from the input context.
3253 	 */
3254 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3255 			vdev->out_ctx, ctrl_ctx,
3256 			changed_ep_bitmask, changed_ep_bitmask);
3257 
3258 	/* Issue and wait for the configure endpoint command */
3259 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3260 			false, false);
3261 
3262 	/* xHC rejected the configure endpoint command for some reason, so we
3263 	 * leave the old ring intact and free our internal streams data
3264 	 * structure.
3265 	 */
3266 	if (ret < 0)
3267 		goto cleanup;
3268 
3269 	spin_lock_irqsave(&xhci->lock, flags);
3270 	for (i = 0; i < num_eps; i++) {
3271 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3273 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3274 			 udev->slot_id, ep_index);
3275 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3276 	}
3277 	xhci_free_command(xhci, config_cmd);
3278 	spin_unlock_irqrestore(&xhci->lock, flags);
3279 
3280 	/* Subtract 1 for stream 0, which drivers can't use */
3281 	return num_streams - 1;
3282 
3283 cleanup:
3284 	/* If it didn't work, free the streams! */
3285 	for (i = 0; i < num_eps; i++) {
3286 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3287 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3288 		vdev->eps[ep_index].stream_info = NULL;
3289 		/* FIXME Unset maxPstreams in endpoint context and
3290 		 * update deq ptr to point to normal string ring.
3291 		 */
3292 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3293 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3294 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3295 	}
3296 	xhci_free_command(xhci, config_cmd);
3297 	return -ENOMEM;
3298 }
3299 
3300 /* Transition the endpoint from using streams to being a "normal" endpoint
3301  * without streams.
3302  *
3303  * Modify the endpoint context state, submit a configure endpoint command,
3304  * and free all endpoint rings for streams if that completes successfully.
3305  */
3306 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3307 		struct usb_host_endpoint **eps, unsigned int num_eps,
3308 		gfp_t mem_flags)
3309 {
3310 	int i, ret;
3311 	struct xhci_hcd *xhci;
3312 	struct xhci_virt_device *vdev;
3313 	struct xhci_command *command;
3314 	struct xhci_input_control_ctx *ctrl_ctx;
3315 	unsigned int ep_index;
3316 	unsigned long flags;
3317 	u32 changed_ep_bitmask;
3318 
3319 	xhci = hcd_to_xhci(hcd);
3320 	vdev = xhci->devs[udev->slot_id];
3321 
3322 	/* Set up a configure endpoint command to remove the streams rings */
3323 	spin_lock_irqsave(&xhci->lock, flags);
3324 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3325 			udev, eps, num_eps);
3326 	if (changed_ep_bitmask == 0) {
3327 		spin_unlock_irqrestore(&xhci->lock, flags);
3328 		return -EINVAL;
3329 	}
3330 
3331 	/* Use the xhci_command structure from the first endpoint.  We may have
3332 	 * allocated too many, but the driver may call xhci_free_streams() for
3333 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3334 	 */
3335 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3336 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3337 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3338 	if (!ctrl_ctx) {
3339 		spin_unlock_irqrestore(&xhci->lock, flags);
3340 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3341 				__func__);
3342 		return -EINVAL;
3343 	}
3344 
3345 	for (i = 0; i < num_eps; i++) {
3346 		struct xhci_ep_ctx *ep_ctx;
3347 
3348 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3349 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3350 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3351 			EP_GETTING_NO_STREAMS;
3352 
3353 		xhci_endpoint_copy(xhci, command->in_ctx,
3354 				vdev->out_ctx, ep_index);
3355 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3356 				&vdev->eps[ep_index]);
3357 	}
3358 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3359 			vdev->out_ctx, ctrl_ctx,
3360 			changed_ep_bitmask, changed_ep_bitmask);
3361 	spin_unlock_irqrestore(&xhci->lock, flags);
3362 
3363 	/* Issue and wait for the configure endpoint command,
3364 	 * which must succeed.
3365 	 */
3366 	ret = xhci_configure_endpoint(xhci, udev, command,
3367 			false, true);
3368 
3369 	/* xHC rejected the configure endpoint command for some reason, so we
3370 	 * leave the streams rings intact.
3371 	 */
3372 	if (ret < 0)
3373 		return ret;
3374 
3375 	spin_lock_irqsave(&xhci->lock, flags);
3376 	for (i = 0; i < num_eps; i++) {
3377 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3378 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3379 		vdev->eps[ep_index].stream_info = NULL;
3380 		/* FIXME Unset maxPstreams in endpoint context and
3381 		 * update deq ptr to point to normal string ring.
3382 		 */
3383 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3384 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3385 	}
3386 	spin_unlock_irqrestore(&xhci->lock, flags);
3387 
3388 	return 0;
3389 }
3390 
3391 /*
3392  * Deletes endpoint resources for endpoints that were active before a Reset
3393  * Device command, or a Disable Slot command.  The Reset Device command leaves
3394  * the control endpoint intact, whereas the Disable Slot command deletes it.
3395  *
3396  * Must be called with xhci->lock held.
3397  */
3398 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3399 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3400 {
3401 	int i;
3402 	unsigned int num_dropped_eps = 0;
3403 	unsigned int drop_flags = 0;
3404 
3405 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3406 		if (virt_dev->eps[i].ring) {
3407 			drop_flags |= 1 << i;
3408 			num_dropped_eps++;
3409 		}
3410 	}
3411 	xhci->num_active_eps -= num_dropped_eps;
3412 	if (num_dropped_eps)
3413 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3414 				"Dropped %u ep ctxs, flags = 0x%x, "
3415 				"%u now active.",
3416 				num_dropped_eps, drop_flags,
3417 				xhci->num_active_eps);
3418 }
3419 
3420 /*
3421  * This submits a Reset Device Command, which will set the device state to 0,
3422  * set the device address to 0, and disable all the endpoints except the default
3423  * control endpoint.  The USB core should come back and call
3424  * xhci_address_device(), and then re-set up the configuration.  If this is
3425  * called because of a usb_reset_and_verify_device(), then the old alternate
3426  * settings will be re-installed through the normal bandwidth allocation
3427  * functions.
3428  *
3429  * Wait for the Reset Device command to finish.  Remove all structures
3430  * associated with the endpoints that were disabled.  Clear the input device
3431  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3432  *
3433  * If the virt_dev to be reset does not exist or does not match the udev,
3434  * it means the device is lost, possibly due to the xHC restore error and
3435  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3436  * re-allocate the device.
3437  */
3438 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3439 {
3440 	int ret, i;
3441 	unsigned long flags;
3442 	struct xhci_hcd *xhci;
3443 	unsigned int slot_id;
3444 	struct xhci_virt_device *virt_dev;
3445 	struct xhci_command *reset_device_cmd;
3446 	int last_freed_endpoint;
3447 	struct xhci_slot_ctx *slot_ctx;
3448 	int old_active_eps = 0;
3449 
3450 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3451 	if (ret <= 0)
3452 		return ret;
3453 	xhci = hcd_to_xhci(hcd);
3454 	slot_id = udev->slot_id;
3455 	virt_dev = xhci->devs[slot_id];
3456 	if (!virt_dev) {
3457 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3458 				"not exist. Re-allocate the device\n", slot_id);
3459 		ret = xhci_alloc_dev(hcd, udev);
3460 		if (ret == 1)
3461 			return 0;
3462 		else
3463 			return -EINVAL;
3464 	}
3465 
3466 	if (virt_dev->tt_info)
3467 		old_active_eps = virt_dev->tt_info->active_eps;
3468 
3469 	if (virt_dev->udev != udev) {
3470 		/* If the virt_dev and the udev does not match, this virt_dev
3471 		 * may belong to another udev.
3472 		 * Re-allocate the device.
3473 		 */
3474 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3475 				"not match the udev. Re-allocate the device\n",
3476 				slot_id);
3477 		ret = xhci_alloc_dev(hcd, udev);
3478 		if (ret == 1)
3479 			return 0;
3480 		else
3481 			return -EINVAL;
3482 	}
3483 
3484 	/* If device is not setup, there is no point in resetting it */
3485 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3486 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3487 						SLOT_STATE_DISABLED)
3488 		return 0;
3489 
3490 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3491 	/* Allocate the command structure that holds the struct completion.
3492 	 * Assume we're in process context, since the normal device reset
3493 	 * process has to wait for the device anyway.  Storage devices are
3494 	 * reset as part of error handling, so use GFP_NOIO instead of
3495 	 * GFP_KERNEL.
3496 	 */
3497 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3498 	if (!reset_device_cmd) {
3499 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3500 		return -ENOMEM;
3501 	}
3502 
3503 	/* Attempt to submit the Reset Device command to the command ring */
3504 	spin_lock_irqsave(&xhci->lock, flags);
3505 
3506 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3507 	if (ret) {
3508 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3509 		spin_unlock_irqrestore(&xhci->lock, flags);
3510 		goto command_cleanup;
3511 	}
3512 	xhci_ring_cmd_db(xhci);
3513 	spin_unlock_irqrestore(&xhci->lock, flags);
3514 
3515 	/* Wait for the Reset Device command to finish */
3516 	wait_for_completion(reset_device_cmd->completion);
3517 
3518 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3519 	 * unless we tried to reset a slot ID that wasn't enabled,
3520 	 * or the device wasn't in the addressed or configured state.
3521 	 */
3522 	ret = reset_device_cmd->status;
3523 	switch (ret) {
3524 	case COMP_CMD_ABORT:
3525 	case COMP_CMD_STOP:
3526 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3527 		ret = -ETIME;
3528 		goto command_cleanup;
3529 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3530 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3531 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3532 				slot_id,
3533 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3534 		xhci_dbg(xhci, "Not freeing device rings.\n");
3535 		/* Don't treat this as an error.  May change my mind later. */
3536 		ret = 0;
3537 		goto command_cleanup;
3538 	case COMP_SUCCESS:
3539 		xhci_dbg(xhci, "Successful reset device command.\n");
3540 		break;
3541 	default:
3542 		if (xhci_is_vendor_info_code(xhci, ret))
3543 			break;
3544 		xhci_warn(xhci, "Unknown completion code %u for "
3545 				"reset device command.\n", ret);
3546 		ret = -EINVAL;
3547 		goto command_cleanup;
3548 	}
3549 
3550 	/* Free up host controller endpoint resources */
3551 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3552 		spin_lock_irqsave(&xhci->lock, flags);
3553 		/* Don't delete the default control endpoint resources */
3554 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3555 		spin_unlock_irqrestore(&xhci->lock, flags);
3556 	}
3557 
3558 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3559 	last_freed_endpoint = 1;
3560 	for (i = 1; i < 31; ++i) {
3561 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3562 
3563 		if (ep->ep_state & EP_HAS_STREAMS) {
3564 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3565 					xhci_get_endpoint_address(i));
3566 			xhci_free_stream_info(xhci, ep->stream_info);
3567 			ep->stream_info = NULL;
3568 			ep->ep_state &= ~EP_HAS_STREAMS;
3569 		}
3570 
3571 		if (ep->ring) {
3572 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3573 			last_freed_endpoint = i;
3574 		}
3575 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3576 			xhci_drop_ep_from_interval_table(xhci,
3577 					&virt_dev->eps[i].bw_info,
3578 					virt_dev->bw_table,
3579 					udev,
3580 					&virt_dev->eps[i],
3581 					virt_dev->tt_info);
3582 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3583 	}
3584 	/* If necessary, update the number of active TTs on this root port */
3585 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3586 
3587 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3588 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3589 	ret = 0;
3590 
3591 command_cleanup:
3592 	xhci_free_command(xhci, reset_device_cmd);
3593 	return ret;
3594 }
3595 
3596 /*
3597  * At this point, the struct usb_device is about to go away, the device has
3598  * disconnected, and all traffic has been stopped and the endpoints have been
3599  * disabled.  Free any HC data structures associated with that device.
3600  */
3601 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3602 {
3603 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3604 	struct xhci_virt_device *virt_dev;
3605 	unsigned long flags;
3606 	u32 state;
3607 	int i, ret;
3608 	struct xhci_command *command;
3609 
3610 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3611 	if (!command)
3612 		return;
3613 
3614 #ifndef CONFIG_USB_DEFAULT_PERSIST
3615 	/*
3616 	 * We called pm_runtime_get_noresume when the device was attached.
3617 	 * Decrement the counter here to allow controller to runtime suspend
3618 	 * if no devices remain.
3619 	 */
3620 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3621 		pm_runtime_put_noidle(hcd->self.controller);
3622 #endif
3623 
3624 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3625 	/* If the host is halted due to driver unload, we still need to free the
3626 	 * device.
3627 	 */
3628 	if (ret <= 0 && ret != -ENODEV) {
3629 		kfree(command);
3630 		return;
3631 	}
3632 
3633 	virt_dev = xhci->devs[udev->slot_id];
3634 
3635 	/* Stop any wayward timer functions (which may grab the lock) */
3636 	for (i = 0; i < 31; ++i) {
3637 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3638 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3639 	}
3640 
3641 	spin_lock_irqsave(&xhci->lock, flags);
3642 	/* Don't disable the slot if the host controller is dead. */
3643 	state = readl(&xhci->op_regs->status);
3644 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3646 		xhci_free_virt_device(xhci, udev->slot_id);
3647 		spin_unlock_irqrestore(&xhci->lock, flags);
3648 		kfree(command);
3649 		return;
3650 	}
3651 
3652 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3653 				    udev->slot_id)) {
3654 		spin_unlock_irqrestore(&xhci->lock, flags);
3655 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3656 		return;
3657 	}
3658 	xhci_ring_cmd_db(xhci);
3659 	spin_unlock_irqrestore(&xhci->lock, flags);
3660 
3661 	/*
3662 	 * Event command completion handler will free any data structures
3663 	 * associated with the slot.  XXX Can free sleep?
3664 	 */
3665 }
3666 
3667 /*
3668  * Checks if we have enough host controller resources for the default control
3669  * endpoint.
3670  *
3671  * Must be called with xhci->lock held.
3672  */
3673 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3674 {
3675 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3676 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677 				"Not enough ep ctxs: "
3678 				"%u active, need to add 1, limit is %u.",
3679 				xhci->num_active_eps, xhci->limit_active_eps);
3680 		return -ENOMEM;
3681 	}
3682 	xhci->num_active_eps += 1;
3683 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3684 			"Adding 1 ep ctx, %u now active.",
3685 			xhci->num_active_eps);
3686 	return 0;
3687 }
3688 
3689 
3690 /*
3691  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3692  * timed out, or allocating memory failed.  Returns 1 on success.
3693  */
3694 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3695 {
3696 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3697 	unsigned long flags;
3698 	int ret, slot_id;
3699 	struct xhci_command *command;
3700 
3701 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3702 	if (!command)
3703 		return 0;
3704 
3705 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3706 	mutex_lock(&xhci->mutex);
3707 	spin_lock_irqsave(&xhci->lock, flags);
3708 	command->completion = &xhci->addr_dev;
3709 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3710 	if (ret) {
3711 		spin_unlock_irqrestore(&xhci->lock, flags);
3712 		mutex_unlock(&xhci->mutex);
3713 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3714 		kfree(command);
3715 		return 0;
3716 	}
3717 	xhci_ring_cmd_db(xhci);
3718 	spin_unlock_irqrestore(&xhci->lock, flags);
3719 
3720 	wait_for_completion(command->completion);
3721 	slot_id = xhci->slot_id;
3722 	mutex_unlock(&xhci->mutex);
3723 
3724 	if (!slot_id || command->status != COMP_SUCCESS) {
3725 		xhci_err(xhci, "Error while assigning device slot ID\n");
3726 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3727 				HCS_MAX_SLOTS(
3728 					readl(&xhci->cap_regs->hcs_params1)));
3729 		kfree(command);
3730 		return 0;
3731 	}
3732 
3733 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3734 		spin_lock_irqsave(&xhci->lock, flags);
3735 		ret = xhci_reserve_host_control_ep_resources(xhci);
3736 		if (ret) {
3737 			spin_unlock_irqrestore(&xhci->lock, flags);
3738 			xhci_warn(xhci, "Not enough host resources, "
3739 					"active endpoint contexts = %u\n",
3740 					xhci->num_active_eps);
3741 			goto disable_slot;
3742 		}
3743 		spin_unlock_irqrestore(&xhci->lock, flags);
3744 	}
3745 	/* Use GFP_NOIO, since this function can be called from
3746 	 * xhci_discover_or_reset_device(), which may be called as part of
3747 	 * mass storage driver error handling.
3748 	 */
3749 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3750 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3751 		goto disable_slot;
3752 	}
3753 	udev->slot_id = slot_id;
3754 
3755 #ifndef CONFIG_USB_DEFAULT_PERSIST
3756 	/*
3757 	 * If resetting upon resume, we can't put the controller into runtime
3758 	 * suspend if there is a device attached.
3759 	 */
3760 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3761 		pm_runtime_get_noresume(hcd->self.controller);
3762 #endif
3763 
3764 
3765 	kfree(command);
3766 	/* Is this a LS or FS device under a HS hub? */
3767 	/* Hub or peripherial? */
3768 	return 1;
3769 
3770 disable_slot:
3771 	/* Disable slot, if we can do it without mem alloc */
3772 	spin_lock_irqsave(&xhci->lock, flags);
3773 	command->completion = NULL;
3774 	command->status = 0;
3775 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3776 				     udev->slot_id))
3777 		xhci_ring_cmd_db(xhci);
3778 	spin_unlock_irqrestore(&xhci->lock, flags);
3779 	return 0;
3780 }
3781 
3782 /*
3783  * Issue an Address Device command and optionally send a corresponding
3784  * SetAddress request to the device.
3785  */
3786 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3787 			     enum xhci_setup_dev setup)
3788 {
3789 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3790 	unsigned long flags;
3791 	struct xhci_virt_device *virt_dev;
3792 	int ret = 0;
3793 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3794 	struct xhci_slot_ctx *slot_ctx;
3795 	struct xhci_input_control_ctx *ctrl_ctx;
3796 	u64 temp_64;
3797 	struct xhci_command *command = NULL;
3798 
3799 	mutex_lock(&xhci->mutex);
3800 
3801 	if (xhci->xhc_state)	/* dying or halted */
3802 		goto out;
3803 
3804 	if (!udev->slot_id) {
3805 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3806 				"Bad Slot ID %d", udev->slot_id);
3807 		ret = -EINVAL;
3808 		goto out;
3809 	}
3810 
3811 	virt_dev = xhci->devs[udev->slot_id];
3812 
3813 	if (WARN_ON(!virt_dev)) {
3814 		/*
3815 		 * In plug/unplug torture test with an NEC controller,
3816 		 * a zero-dereference was observed once due to virt_dev = 0.
3817 		 * Print useful debug rather than crash if it is observed again!
3818 		 */
3819 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3820 			udev->slot_id);
3821 		ret = -EINVAL;
3822 		goto out;
3823 	}
3824 
3825 	if (setup == SETUP_CONTEXT_ONLY) {
3826 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3827 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3828 		    SLOT_STATE_DEFAULT) {
3829 			xhci_dbg(xhci, "Slot already in default state\n");
3830 			goto out;
3831 		}
3832 	}
3833 
3834 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3835 	if (!command) {
3836 		ret = -ENOMEM;
3837 		goto out;
3838 	}
3839 
3840 	command->in_ctx = virt_dev->in_ctx;
3841 	command->completion = &xhci->addr_dev;
3842 
3843 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3844 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3845 	if (!ctrl_ctx) {
3846 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3847 				__func__);
3848 		ret = -EINVAL;
3849 		goto out;
3850 	}
3851 	/*
3852 	 * If this is the first Set Address since device plug-in or
3853 	 * virt_device realloaction after a resume with an xHCI power loss,
3854 	 * then set up the slot context.
3855 	 */
3856 	if (!slot_ctx->dev_info)
3857 		xhci_setup_addressable_virt_dev(xhci, udev);
3858 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3859 	else
3860 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3861 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3862 	ctrl_ctx->drop_flags = 0;
3863 
3864 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3865 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3866 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3867 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3868 
3869 	spin_lock_irqsave(&xhci->lock, flags);
3870 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3871 					udev->slot_id, setup);
3872 	if (ret) {
3873 		spin_unlock_irqrestore(&xhci->lock, flags);
3874 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875 				"FIXME: allocate a command ring segment");
3876 		goto out;
3877 	}
3878 	xhci_ring_cmd_db(xhci);
3879 	spin_unlock_irqrestore(&xhci->lock, flags);
3880 
3881 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3882 	wait_for_completion(command->completion);
3883 
3884 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3885 	 * the SetAddress() "recovery interval" required by USB and aborting the
3886 	 * command on a timeout.
3887 	 */
3888 	switch (command->status) {
3889 	case COMP_CMD_ABORT:
3890 	case COMP_CMD_STOP:
3891 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3892 		ret = -ETIME;
3893 		break;
3894 	case COMP_CTX_STATE:
3895 	case COMP_EBADSLT:
3896 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3897 			 act, udev->slot_id);
3898 		ret = -EINVAL;
3899 		break;
3900 	case COMP_TX_ERR:
3901 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3902 		ret = -EPROTO;
3903 		break;
3904 	case COMP_DEV_ERR:
3905 		dev_warn(&udev->dev,
3906 			 "ERROR: Incompatible device for setup %s command\n", act);
3907 		ret = -ENODEV;
3908 		break;
3909 	case COMP_SUCCESS:
3910 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911 			       "Successful setup %s command", act);
3912 		break;
3913 	default:
3914 		xhci_err(xhci,
3915 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3916 			 act, command->status);
3917 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3918 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3919 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920 		ret = -EINVAL;
3921 		break;
3922 	}
3923 	if (ret)
3924 		goto out;
3925 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927 			"Op regs DCBAA ptr = %#016llx", temp_64);
3928 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929 		"Slot ID %d dcbaa entry @%p = %#016llx",
3930 		udev->slot_id,
3931 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932 		(unsigned long long)
3933 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935 			"Output Context DMA address = %#08llx",
3936 			(unsigned long long)virt_dev->out_ctx->dma);
3937 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3938 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3939 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3940 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3941 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943 	/*
3944 	 * USB core uses address 1 for the roothubs, so we add one to the
3945 	 * address given back to us by the HC.
3946 	 */
3947 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3948 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3949 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3950 	/* Zero the input context control for later use */
3951 	ctrl_ctx->add_flags = 0;
3952 	ctrl_ctx->drop_flags = 0;
3953 
3954 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3955 		       "Internal device address = %d",
3956 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3957 out:
3958 	mutex_unlock(&xhci->mutex);
3959 	kfree(command);
3960 	return ret;
3961 }
3962 
3963 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3964 {
3965 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3966 }
3967 
3968 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3969 {
3970 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3971 }
3972 
3973 /*
3974  * Transfer the port index into real index in the HW port status
3975  * registers. Caculate offset between the port's PORTSC register
3976  * and port status base. Divide the number of per port register
3977  * to get the real index. The raw port number bases 1.
3978  */
3979 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3980 {
3981 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3982 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3983 	__le32 __iomem *addr;
3984 	int raw_port;
3985 
3986 	if (hcd->speed < HCD_USB3)
3987 		addr = xhci->usb2_ports[port1 - 1];
3988 	else
3989 		addr = xhci->usb3_ports[port1 - 1];
3990 
3991 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3992 	return raw_port;
3993 }
3994 
3995 /*
3996  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3997  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3998  */
3999 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4000 			struct usb_device *udev, u16 max_exit_latency)
4001 {
4002 	struct xhci_virt_device *virt_dev;
4003 	struct xhci_command *command;
4004 	struct xhci_input_control_ctx *ctrl_ctx;
4005 	struct xhci_slot_ctx *slot_ctx;
4006 	unsigned long flags;
4007 	int ret;
4008 
4009 	spin_lock_irqsave(&xhci->lock, flags);
4010 
4011 	virt_dev = xhci->devs[udev->slot_id];
4012 
4013 	/*
4014 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4015 	 * xHC was re-initialized. Exit latency will be set later after
4016 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4017 	 */
4018 
4019 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4020 		spin_unlock_irqrestore(&xhci->lock, flags);
4021 		return 0;
4022 	}
4023 
4024 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4025 	command = xhci->lpm_command;
4026 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4027 	if (!ctrl_ctx) {
4028 		spin_unlock_irqrestore(&xhci->lock, flags);
4029 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4030 				__func__);
4031 		return -ENOMEM;
4032 	}
4033 
4034 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4035 	spin_unlock_irqrestore(&xhci->lock, flags);
4036 
4037 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4038 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4039 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4040 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4041 	slot_ctx->dev_state = 0;
4042 
4043 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4044 			"Set up evaluate context for LPM MEL change.");
4045 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4046 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4047 
4048 	/* Issue and wait for the evaluate context command. */
4049 	ret = xhci_configure_endpoint(xhci, udev, command,
4050 			true, true);
4051 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4052 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4053 
4054 	if (!ret) {
4055 		spin_lock_irqsave(&xhci->lock, flags);
4056 		virt_dev->current_mel = max_exit_latency;
4057 		spin_unlock_irqrestore(&xhci->lock, flags);
4058 	}
4059 	return ret;
4060 }
4061 
4062 #ifdef CONFIG_PM
4063 
4064 /* BESL to HIRD Encoding array for USB2 LPM */
4065 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4066 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4067 
4068 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4069 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4070 					struct usb_device *udev)
4071 {
4072 	int u2del, besl, besl_host;
4073 	int besl_device = 0;
4074 	u32 field;
4075 
4076 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4077 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4078 
4079 	if (field & USB_BESL_SUPPORT) {
4080 		for (besl_host = 0; besl_host < 16; besl_host++) {
4081 			if (xhci_besl_encoding[besl_host] >= u2del)
4082 				break;
4083 		}
4084 		/* Use baseline BESL value as default */
4085 		if (field & USB_BESL_BASELINE_VALID)
4086 			besl_device = USB_GET_BESL_BASELINE(field);
4087 		else if (field & USB_BESL_DEEP_VALID)
4088 			besl_device = USB_GET_BESL_DEEP(field);
4089 	} else {
4090 		if (u2del <= 50)
4091 			besl_host = 0;
4092 		else
4093 			besl_host = (u2del - 51) / 75 + 1;
4094 	}
4095 
4096 	besl = besl_host + besl_device;
4097 	if (besl > 15)
4098 		besl = 15;
4099 
4100 	return besl;
4101 }
4102 
4103 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4104 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4105 {
4106 	u32 field;
4107 	int l1;
4108 	int besld = 0;
4109 	int hirdm = 0;
4110 
4111 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4112 
4113 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4114 	l1 = udev->l1_params.timeout / 256;
4115 
4116 	/* device has preferred BESLD */
4117 	if (field & USB_BESL_DEEP_VALID) {
4118 		besld = USB_GET_BESL_DEEP(field);
4119 		hirdm = 1;
4120 	}
4121 
4122 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4123 }
4124 
4125 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4126 			struct usb_device *udev, int enable)
4127 {
4128 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4129 	__le32 __iomem	**port_array;
4130 	__le32 __iomem	*pm_addr, *hlpm_addr;
4131 	u32		pm_val, hlpm_val, field;
4132 	unsigned int	port_num;
4133 	unsigned long	flags;
4134 	int		hird, exit_latency;
4135 	int		ret;
4136 
4137 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4138 			!udev->lpm_capable)
4139 		return -EPERM;
4140 
4141 	if (!udev->parent || udev->parent->parent ||
4142 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4143 		return -EPERM;
4144 
4145 	if (udev->usb2_hw_lpm_capable != 1)
4146 		return -EPERM;
4147 
4148 	spin_lock_irqsave(&xhci->lock, flags);
4149 
4150 	port_array = xhci->usb2_ports;
4151 	port_num = udev->portnum - 1;
4152 	pm_addr = port_array[port_num] + PORTPMSC;
4153 	pm_val = readl(pm_addr);
4154 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4155 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4156 
4157 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4158 			enable ? "enable" : "disable", port_num + 1);
4159 
4160 	if (enable) {
4161 		/* Host supports BESL timeout instead of HIRD */
4162 		if (udev->usb2_hw_lpm_besl_capable) {
4163 			/* if device doesn't have a preferred BESL value use a
4164 			 * default one which works with mixed HIRD and BESL
4165 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4166 			 */
4167 			if ((field & USB_BESL_SUPPORT) &&
4168 			    (field & USB_BESL_BASELINE_VALID))
4169 				hird = USB_GET_BESL_BASELINE(field);
4170 			else
4171 				hird = udev->l1_params.besl;
4172 
4173 			exit_latency = xhci_besl_encoding[hird];
4174 			spin_unlock_irqrestore(&xhci->lock, flags);
4175 
4176 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4177 			 * input context for link powermanagement evaluate
4178 			 * context commands. It is protected by hcd->bandwidth
4179 			 * mutex and is shared by all devices. We need to set
4180 			 * the max ext latency in USB 2 BESL LPM as well, so
4181 			 * use the same mutex and xhci_change_max_exit_latency()
4182 			 */
4183 			mutex_lock(hcd->bandwidth_mutex);
4184 			ret = xhci_change_max_exit_latency(xhci, udev,
4185 							   exit_latency);
4186 			mutex_unlock(hcd->bandwidth_mutex);
4187 
4188 			if (ret < 0)
4189 				return ret;
4190 			spin_lock_irqsave(&xhci->lock, flags);
4191 
4192 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4193 			writel(hlpm_val, hlpm_addr);
4194 			/* flush write */
4195 			readl(hlpm_addr);
4196 		} else {
4197 			hird = xhci_calculate_hird_besl(xhci, udev);
4198 		}
4199 
4200 		pm_val &= ~PORT_HIRD_MASK;
4201 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4202 		writel(pm_val, pm_addr);
4203 		pm_val = readl(pm_addr);
4204 		pm_val |= PORT_HLE;
4205 		writel(pm_val, pm_addr);
4206 		/* flush write */
4207 		readl(pm_addr);
4208 	} else {
4209 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4210 		writel(pm_val, pm_addr);
4211 		/* flush write */
4212 		readl(pm_addr);
4213 		if (udev->usb2_hw_lpm_besl_capable) {
4214 			spin_unlock_irqrestore(&xhci->lock, flags);
4215 			mutex_lock(hcd->bandwidth_mutex);
4216 			xhci_change_max_exit_latency(xhci, udev, 0);
4217 			mutex_unlock(hcd->bandwidth_mutex);
4218 			return 0;
4219 		}
4220 	}
4221 
4222 	spin_unlock_irqrestore(&xhci->lock, flags);
4223 	return 0;
4224 }
4225 
4226 /* check if a usb2 port supports a given extened capability protocol
4227  * only USB2 ports extended protocol capability values are cached.
4228  * Return 1 if capability is supported
4229  */
4230 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4231 					   unsigned capability)
4232 {
4233 	u32 port_offset, port_count;
4234 	int i;
4235 
4236 	for (i = 0; i < xhci->num_ext_caps; i++) {
4237 		if (xhci->ext_caps[i] & capability) {
4238 			/* port offsets starts at 1 */
4239 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4240 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4241 			if (port >= port_offset &&
4242 			    port < port_offset + port_count)
4243 				return 1;
4244 		}
4245 	}
4246 	return 0;
4247 }
4248 
4249 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4250 {
4251 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4252 	int		portnum = udev->portnum - 1;
4253 
4254 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4255 			!udev->lpm_capable)
4256 		return 0;
4257 
4258 	/* we only support lpm for non-hub device connected to root hub yet */
4259 	if (!udev->parent || udev->parent->parent ||
4260 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4261 		return 0;
4262 
4263 	if (xhci->hw_lpm_support == 1 &&
4264 			xhci_check_usb2_port_capability(
4265 				xhci, portnum, XHCI_HLC)) {
4266 		udev->usb2_hw_lpm_capable = 1;
4267 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4268 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4269 		if (xhci_check_usb2_port_capability(xhci, portnum,
4270 					XHCI_BLC))
4271 			udev->usb2_hw_lpm_besl_capable = 1;
4272 	}
4273 
4274 	return 0;
4275 }
4276 
4277 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4278 
4279 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4280 static unsigned long long xhci_service_interval_to_ns(
4281 		struct usb_endpoint_descriptor *desc)
4282 {
4283 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4284 }
4285 
4286 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4287 		enum usb3_link_state state)
4288 {
4289 	unsigned long long sel;
4290 	unsigned long long pel;
4291 	unsigned int max_sel_pel;
4292 	char *state_name;
4293 
4294 	switch (state) {
4295 	case USB3_LPM_U1:
4296 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4297 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4298 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4299 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4300 		state_name = "U1";
4301 		break;
4302 	case USB3_LPM_U2:
4303 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4304 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4305 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4306 		state_name = "U2";
4307 		break;
4308 	default:
4309 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4310 				__func__);
4311 		return USB3_LPM_DISABLED;
4312 	}
4313 
4314 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4315 		return USB3_LPM_DEVICE_INITIATED;
4316 
4317 	if (sel > max_sel_pel)
4318 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4319 				"due to long SEL %llu ms\n",
4320 				state_name, sel);
4321 	else
4322 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4323 				"due to long PEL %llu ms\n",
4324 				state_name, pel);
4325 	return USB3_LPM_DISABLED;
4326 }
4327 
4328 /* The U1 timeout should be the maximum of the following values:
4329  *  - For control endpoints, U1 system exit latency (SEL) * 3
4330  *  - For bulk endpoints, U1 SEL * 5
4331  *  - For interrupt endpoints:
4332  *    - Notification EPs, U1 SEL * 3
4333  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4334  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4335  */
4336 static unsigned long long xhci_calculate_intel_u1_timeout(
4337 		struct usb_device *udev,
4338 		struct usb_endpoint_descriptor *desc)
4339 {
4340 	unsigned long long timeout_ns;
4341 	int ep_type;
4342 	int intr_type;
4343 
4344 	ep_type = usb_endpoint_type(desc);
4345 	switch (ep_type) {
4346 	case USB_ENDPOINT_XFER_CONTROL:
4347 		timeout_ns = udev->u1_params.sel * 3;
4348 		break;
4349 	case USB_ENDPOINT_XFER_BULK:
4350 		timeout_ns = udev->u1_params.sel * 5;
4351 		break;
4352 	case USB_ENDPOINT_XFER_INT:
4353 		intr_type = usb_endpoint_interrupt_type(desc);
4354 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4355 			timeout_ns = udev->u1_params.sel * 3;
4356 			break;
4357 		}
4358 		/* Otherwise the calculation is the same as isoc eps */
4359 	case USB_ENDPOINT_XFER_ISOC:
4360 		timeout_ns = xhci_service_interval_to_ns(desc);
4361 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4362 		if (timeout_ns < udev->u1_params.sel * 2)
4363 			timeout_ns = udev->u1_params.sel * 2;
4364 		break;
4365 	default:
4366 		return 0;
4367 	}
4368 
4369 	return timeout_ns;
4370 }
4371 
4372 /* Returns the hub-encoded U1 timeout value. */
4373 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4374 		struct usb_device *udev,
4375 		struct usb_endpoint_descriptor *desc)
4376 {
4377 	unsigned long long timeout_ns;
4378 
4379 	if (xhci->quirks & XHCI_INTEL_HOST)
4380 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4381 	else
4382 		timeout_ns = udev->u1_params.sel;
4383 
4384 	/* The U1 timeout is encoded in 1us intervals.
4385 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4386 	 */
4387 	if (timeout_ns == USB3_LPM_DISABLED)
4388 		timeout_ns = 1;
4389 	else
4390 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4391 
4392 	/* If the necessary timeout value is bigger than what we can set in the
4393 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4394 	 */
4395 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4396 		return timeout_ns;
4397 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4398 			"due to long timeout %llu ms\n", timeout_ns);
4399 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4400 }
4401 
4402 /* The U2 timeout should be the maximum of:
4403  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4404  *  - largest bInterval of any active periodic endpoint (to avoid going
4405  *    into lower power link states between intervals).
4406  *  - the U2 Exit Latency of the device
4407  */
4408 static unsigned long long xhci_calculate_intel_u2_timeout(
4409 		struct usb_device *udev,
4410 		struct usb_endpoint_descriptor *desc)
4411 {
4412 	unsigned long long timeout_ns;
4413 	unsigned long long u2_del_ns;
4414 
4415 	timeout_ns = 10 * 1000 * 1000;
4416 
4417 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4418 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4419 		timeout_ns = xhci_service_interval_to_ns(desc);
4420 
4421 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4422 	if (u2_del_ns > timeout_ns)
4423 		timeout_ns = u2_del_ns;
4424 
4425 	return timeout_ns;
4426 }
4427 
4428 /* Returns the hub-encoded U2 timeout value. */
4429 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4430 		struct usb_device *udev,
4431 		struct usb_endpoint_descriptor *desc)
4432 {
4433 	unsigned long long timeout_ns;
4434 
4435 	if (xhci->quirks & XHCI_INTEL_HOST)
4436 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4437 	else
4438 		timeout_ns = udev->u2_params.sel;
4439 
4440 	/* The U2 timeout is encoded in 256us intervals */
4441 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4442 	/* If the necessary timeout value is bigger than what we can set in the
4443 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4444 	 */
4445 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4446 		return timeout_ns;
4447 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4448 			"due to long timeout %llu ms\n", timeout_ns);
4449 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4450 }
4451 
4452 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4453 		struct usb_device *udev,
4454 		struct usb_endpoint_descriptor *desc,
4455 		enum usb3_link_state state,
4456 		u16 *timeout)
4457 {
4458 	if (state == USB3_LPM_U1)
4459 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4460 	else if (state == USB3_LPM_U2)
4461 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4462 
4463 	return USB3_LPM_DISABLED;
4464 }
4465 
4466 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4467 		struct usb_device *udev,
4468 		struct usb_endpoint_descriptor *desc,
4469 		enum usb3_link_state state,
4470 		u16 *timeout)
4471 {
4472 	u16 alt_timeout;
4473 
4474 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4475 		desc, state, timeout);
4476 
4477 	/* If we found we can't enable hub-initiated LPM, or
4478 	 * the U1 or U2 exit latency was too high to allow
4479 	 * device-initiated LPM as well, just stop searching.
4480 	 */
4481 	if (alt_timeout == USB3_LPM_DISABLED ||
4482 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4483 		*timeout = alt_timeout;
4484 		return -E2BIG;
4485 	}
4486 	if (alt_timeout > *timeout)
4487 		*timeout = alt_timeout;
4488 	return 0;
4489 }
4490 
4491 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4492 		struct usb_device *udev,
4493 		struct usb_host_interface *alt,
4494 		enum usb3_link_state state,
4495 		u16 *timeout)
4496 {
4497 	int j;
4498 
4499 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4500 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4501 					&alt->endpoint[j].desc, state, timeout))
4502 			return -E2BIG;
4503 		continue;
4504 	}
4505 	return 0;
4506 }
4507 
4508 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4509 		enum usb3_link_state state)
4510 {
4511 	struct usb_device *parent;
4512 	unsigned int num_hubs;
4513 
4514 	if (state == USB3_LPM_U2)
4515 		return 0;
4516 
4517 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4518 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4519 			parent = parent->parent)
4520 		num_hubs++;
4521 
4522 	if (num_hubs < 2)
4523 		return 0;
4524 
4525 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4526 			" below second-tier hub.\n");
4527 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4528 			"to decrease power consumption.\n");
4529 	return -E2BIG;
4530 }
4531 
4532 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4533 		struct usb_device *udev,
4534 		enum usb3_link_state state)
4535 {
4536 	if (xhci->quirks & XHCI_INTEL_HOST)
4537 		return xhci_check_intel_tier_policy(udev, state);
4538 	else
4539 		return 0;
4540 }
4541 
4542 /* Returns the U1 or U2 timeout that should be enabled.
4543  * If the tier check or timeout setting functions return with a non-zero exit
4544  * code, that means the timeout value has been finalized and we shouldn't look
4545  * at any more endpoints.
4546  */
4547 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4548 			struct usb_device *udev, enum usb3_link_state state)
4549 {
4550 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4551 	struct usb_host_config *config;
4552 	char *state_name;
4553 	int i;
4554 	u16 timeout = USB3_LPM_DISABLED;
4555 
4556 	if (state == USB3_LPM_U1)
4557 		state_name = "U1";
4558 	else if (state == USB3_LPM_U2)
4559 		state_name = "U2";
4560 	else {
4561 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4562 				state);
4563 		return timeout;
4564 	}
4565 
4566 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4567 		return timeout;
4568 
4569 	/* Gather some information about the currently installed configuration
4570 	 * and alternate interface settings.
4571 	 */
4572 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4573 			state, &timeout))
4574 		return timeout;
4575 
4576 	config = udev->actconfig;
4577 	if (!config)
4578 		return timeout;
4579 
4580 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4581 		struct usb_driver *driver;
4582 		struct usb_interface *intf = config->interface[i];
4583 
4584 		if (!intf)
4585 			continue;
4586 
4587 		/* Check if any currently bound drivers want hub-initiated LPM
4588 		 * disabled.
4589 		 */
4590 		if (intf->dev.driver) {
4591 			driver = to_usb_driver(intf->dev.driver);
4592 			if (driver && driver->disable_hub_initiated_lpm) {
4593 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4594 						"at request of driver %s\n",
4595 						state_name, driver->name);
4596 				return xhci_get_timeout_no_hub_lpm(udev, state);
4597 			}
4598 		}
4599 
4600 		/* Not sure how this could happen... */
4601 		if (!intf->cur_altsetting)
4602 			continue;
4603 
4604 		if (xhci_update_timeout_for_interface(xhci, udev,
4605 					intf->cur_altsetting,
4606 					state, &timeout))
4607 			return timeout;
4608 	}
4609 	return timeout;
4610 }
4611 
4612 static int calculate_max_exit_latency(struct usb_device *udev,
4613 		enum usb3_link_state state_changed,
4614 		u16 hub_encoded_timeout)
4615 {
4616 	unsigned long long u1_mel_us = 0;
4617 	unsigned long long u2_mel_us = 0;
4618 	unsigned long long mel_us = 0;
4619 	bool disabling_u1;
4620 	bool disabling_u2;
4621 	bool enabling_u1;
4622 	bool enabling_u2;
4623 
4624 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4625 			hub_encoded_timeout == USB3_LPM_DISABLED);
4626 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4627 			hub_encoded_timeout == USB3_LPM_DISABLED);
4628 
4629 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4630 			hub_encoded_timeout != USB3_LPM_DISABLED);
4631 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4632 			hub_encoded_timeout != USB3_LPM_DISABLED);
4633 
4634 	/* If U1 was already enabled and we're not disabling it,
4635 	 * or we're going to enable U1, account for the U1 max exit latency.
4636 	 */
4637 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4638 			enabling_u1)
4639 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4640 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4641 			enabling_u2)
4642 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4643 
4644 	if (u1_mel_us > u2_mel_us)
4645 		mel_us = u1_mel_us;
4646 	else
4647 		mel_us = u2_mel_us;
4648 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4649 	if (mel_us > MAX_EXIT) {
4650 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4651 				"is too big.\n", mel_us);
4652 		return -E2BIG;
4653 	}
4654 	return mel_us;
4655 }
4656 
4657 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4658 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4659 			struct usb_device *udev, enum usb3_link_state state)
4660 {
4661 	struct xhci_hcd	*xhci;
4662 	u16 hub_encoded_timeout;
4663 	int mel;
4664 	int ret;
4665 
4666 	xhci = hcd_to_xhci(hcd);
4667 	/* The LPM timeout values are pretty host-controller specific, so don't
4668 	 * enable hub-initiated timeouts unless the vendor has provided
4669 	 * information about their timeout algorithm.
4670 	 */
4671 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4672 			!xhci->devs[udev->slot_id])
4673 		return USB3_LPM_DISABLED;
4674 
4675 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4676 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4677 	if (mel < 0) {
4678 		/* Max Exit Latency is too big, disable LPM. */
4679 		hub_encoded_timeout = USB3_LPM_DISABLED;
4680 		mel = 0;
4681 	}
4682 
4683 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4684 	if (ret)
4685 		return ret;
4686 	return hub_encoded_timeout;
4687 }
4688 
4689 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4690 			struct usb_device *udev, enum usb3_link_state state)
4691 {
4692 	struct xhci_hcd	*xhci;
4693 	u16 mel;
4694 
4695 	xhci = hcd_to_xhci(hcd);
4696 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4697 			!xhci->devs[udev->slot_id])
4698 		return 0;
4699 
4700 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4701 	return xhci_change_max_exit_latency(xhci, udev, mel);
4702 }
4703 #else /* CONFIG_PM */
4704 
4705 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4706 				struct usb_device *udev, int enable)
4707 {
4708 	return 0;
4709 }
4710 
4711 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4712 {
4713 	return 0;
4714 }
4715 
4716 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4717 			struct usb_device *udev, enum usb3_link_state state)
4718 {
4719 	return USB3_LPM_DISABLED;
4720 }
4721 
4722 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4723 			struct usb_device *udev, enum usb3_link_state state)
4724 {
4725 	return 0;
4726 }
4727 #endif	/* CONFIG_PM */
4728 
4729 /*-------------------------------------------------------------------------*/
4730 
4731 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4732  * internal data structures for the device.
4733  */
4734 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4735 			struct usb_tt *tt, gfp_t mem_flags)
4736 {
4737 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4738 	struct xhci_virt_device *vdev;
4739 	struct xhci_command *config_cmd;
4740 	struct xhci_input_control_ctx *ctrl_ctx;
4741 	struct xhci_slot_ctx *slot_ctx;
4742 	unsigned long flags;
4743 	unsigned think_time;
4744 	int ret;
4745 
4746 	/* Ignore root hubs */
4747 	if (!hdev->parent)
4748 		return 0;
4749 
4750 	vdev = xhci->devs[hdev->slot_id];
4751 	if (!vdev) {
4752 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4753 		return -EINVAL;
4754 	}
4755 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4756 	if (!config_cmd) {
4757 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4758 		return -ENOMEM;
4759 	}
4760 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4761 	if (!ctrl_ctx) {
4762 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4763 				__func__);
4764 		xhci_free_command(xhci, config_cmd);
4765 		return -ENOMEM;
4766 	}
4767 
4768 	spin_lock_irqsave(&xhci->lock, flags);
4769 	if (hdev->speed == USB_SPEED_HIGH &&
4770 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4771 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4772 		xhci_free_command(xhci, config_cmd);
4773 		spin_unlock_irqrestore(&xhci->lock, flags);
4774 		return -ENOMEM;
4775 	}
4776 
4777 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4778 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4779 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4780 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4781 	if (tt->multi)
4782 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4783 	if (xhci->hci_version > 0x95) {
4784 		xhci_dbg(xhci, "xHCI version %x needs hub "
4785 				"TT think time and number of ports\n",
4786 				(unsigned int) xhci->hci_version);
4787 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4788 		/* Set TT think time - convert from ns to FS bit times.
4789 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4790 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4791 		 *
4792 		 * xHCI 1.0: this field shall be 0 if the device is not a
4793 		 * High-spped hub.
4794 		 */
4795 		think_time = tt->think_time;
4796 		if (think_time != 0)
4797 			think_time = (think_time / 666) - 1;
4798 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4799 			slot_ctx->tt_info |=
4800 				cpu_to_le32(TT_THINK_TIME(think_time));
4801 	} else {
4802 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4803 				"TT think time or number of ports\n",
4804 				(unsigned int) xhci->hci_version);
4805 	}
4806 	slot_ctx->dev_state = 0;
4807 	spin_unlock_irqrestore(&xhci->lock, flags);
4808 
4809 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4810 			(xhci->hci_version > 0x95) ?
4811 			"configure endpoint" : "evaluate context");
4812 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4813 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4814 
4815 	/* Issue and wait for the configure endpoint or
4816 	 * evaluate context command.
4817 	 */
4818 	if (xhci->hci_version > 0x95)
4819 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4820 				false, false);
4821 	else
4822 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4823 				true, false);
4824 
4825 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4826 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4827 
4828 	xhci_free_command(xhci, config_cmd);
4829 	return ret;
4830 }
4831 
4832 int xhci_get_frame(struct usb_hcd *hcd)
4833 {
4834 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4835 	/* EHCI mods by the periodic size.  Why? */
4836 	return readl(&xhci->run_regs->microframe_index) >> 3;
4837 }
4838 
4839 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4840 {
4841 	struct xhci_hcd		*xhci;
4842 	struct device		*dev = hcd->self.controller;
4843 	int			retval;
4844 
4845 	/* Accept arbitrarily long scatter-gather lists */
4846 	hcd->self.sg_tablesize = ~0;
4847 
4848 	/* support to build packet from discontinuous buffers */
4849 	hcd->self.no_sg_constraint = 1;
4850 
4851 	/* XHCI controllers don't stop the ep queue on short packets :| */
4852 	hcd->self.no_stop_on_short = 1;
4853 
4854 	xhci = hcd_to_xhci(hcd);
4855 
4856 	if (usb_hcd_is_primary_hcd(hcd)) {
4857 		xhci->main_hcd = hcd;
4858 		/* Mark the first roothub as being USB 2.0.
4859 		 * The xHCI driver will register the USB 3.0 roothub.
4860 		 */
4861 		hcd->speed = HCD_USB2;
4862 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4863 		/*
4864 		 * USB 2.0 roothub under xHCI has an integrated TT,
4865 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4866 		 * companion controller.
4867 		 */
4868 		hcd->has_tt = 1;
4869 	} else {
4870 		if (xhci->sbrn == 0x31) {
4871 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4872 			hcd->speed = HCD_USB31;
4873 		}
4874 		/* xHCI private pointer was set in xhci_pci_probe for the second
4875 		 * registered roothub.
4876 		 */
4877 		return 0;
4878 	}
4879 
4880 	mutex_init(&xhci->mutex);
4881 	xhci->cap_regs = hcd->regs;
4882 	xhci->op_regs = hcd->regs +
4883 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4884 	xhci->run_regs = hcd->regs +
4885 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4886 	/* Cache read-only capability registers */
4887 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4888 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4889 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4890 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4891 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4892 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4893 	if (xhci->hci_version > 0x100)
4894 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4895 	xhci_print_registers(xhci);
4896 
4897 	xhci->quirks = quirks;
4898 
4899 	get_quirks(dev, xhci);
4900 
4901 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4902 	 * success event after a short transfer. This quirk will ignore such
4903 	 * spurious event.
4904 	 */
4905 	if (xhci->hci_version > 0x96)
4906 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4907 
4908 	/* Make sure the HC is halted. */
4909 	retval = xhci_halt(xhci);
4910 	if (retval)
4911 		return retval;
4912 
4913 	xhci_dbg(xhci, "Resetting HCD\n");
4914 	/* Reset the internal HC memory state and registers. */
4915 	retval = xhci_reset(xhci);
4916 	if (retval)
4917 		return retval;
4918 	xhci_dbg(xhci, "Reset complete\n");
4919 
4920 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4921 	 * if xHC supports 64-bit addressing */
4922 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4923 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4924 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4925 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4926 	} else {
4927 		/*
4928 		 * This is to avoid error in cases where a 32-bit USB
4929 		 * controller is used on a 64-bit capable system.
4930 		 */
4931 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4932 		if (retval)
4933 			return retval;
4934 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4935 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4936 	}
4937 
4938 	xhci_dbg(xhci, "Calling HCD init\n");
4939 	/* Initialize HCD and host controller data structures. */
4940 	retval = xhci_init(hcd);
4941 	if (retval)
4942 		return retval;
4943 	xhci_dbg(xhci, "Called HCD init\n");
4944 
4945 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4946 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4947 
4948 	return 0;
4949 }
4950 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4951 
4952 static const struct hc_driver xhci_hc_driver = {
4953 	.description =		"xhci-hcd",
4954 	.product_desc =		"xHCI Host Controller",
4955 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4956 
4957 	/*
4958 	 * generic hardware linkage
4959 	 */
4960 	.irq =			xhci_irq,
4961 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4962 
4963 	/*
4964 	 * basic lifecycle operations
4965 	 */
4966 	.reset =		NULL, /* set in xhci_init_driver() */
4967 	.start =		xhci_run,
4968 	.stop =			xhci_stop,
4969 	.shutdown =		xhci_shutdown,
4970 
4971 	/*
4972 	 * managing i/o requests and associated device resources
4973 	 */
4974 	.urb_enqueue =		xhci_urb_enqueue,
4975 	.urb_dequeue =		xhci_urb_dequeue,
4976 	.alloc_dev =		xhci_alloc_dev,
4977 	.free_dev =		xhci_free_dev,
4978 	.alloc_streams =	xhci_alloc_streams,
4979 	.free_streams =		xhci_free_streams,
4980 	.add_endpoint =		xhci_add_endpoint,
4981 	.drop_endpoint =	xhci_drop_endpoint,
4982 	.endpoint_reset =	xhci_endpoint_reset,
4983 	.check_bandwidth =	xhci_check_bandwidth,
4984 	.reset_bandwidth =	xhci_reset_bandwidth,
4985 	.address_device =	xhci_address_device,
4986 	.enable_device =	xhci_enable_device,
4987 	.update_hub_device =	xhci_update_hub_device,
4988 	.reset_device =		xhci_discover_or_reset_device,
4989 
4990 	/*
4991 	 * scheduling support
4992 	 */
4993 	.get_frame_number =	xhci_get_frame,
4994 
4995 	/*
4996 	 * root hub support
4997 	 */
4998 	.hub_control =		xhci_hub_control,
4999 	.hub_status_data =	xhci_hub_status_data,
5000 	.bus_suspend =		xhci_bus_suspend,
5001 	.bus_resume =		xhci_bus_resume,
5002 
5003 	/*
5004 	 * call back when device connected and addressed
5005 	 */
5006 	.update_device =        xhci_update_device,
5007 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5008 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5009 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5010 	.find_raw_port_number =	xhci_find_raw_port_number,
5011 };
5012 
5013 void xhci_init_driver(struct hc_driver *drv,
5014 		      const struct xhci_driver_overrides *over)
5015 {
5016 	BUG_ON(!over);
5017 
5018 	/* Copy the generic table to drv then apply the overrides */
5019 	*drv = xhci_hc_driver;
5020 
5021 	if (over) {
5022 		drv->hcd_priv_size += over->extra_priv_size;
5023 		if (over->reset)
5024 			drv->reset = over->reset;
5025 		if (over->start)
5026 			drv->start = over->start;
5027 	}
5028 }
5029 EXPORT_SYMBOL_GPL(xhci_init_driver);
5030 
5031 MODULE_DESCRIPTION(DRIVER_DESC);
5032 MODULE_AUTHOR(DRIVER_AUTHOR);
5033 MODULE_LICENSE("GPL");
5034 
5035 static int __init xhci_hcd_init(void)
5036 {
5037 	/*
5038 	 * Check the compiler generated sizes of structures that must be laid
5039 	 * out in specific ways for hardware access.
5040 	 */
5041 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5042 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5043 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5044 	/* xhci_device_control has eight fields, and also
5045 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5046 	 */
5047 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5048 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5049 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5050 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5051 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5052 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5053 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5054 	return 0;
5055 }
5056 
5057 /*
5058  * If an init function is provided, an exit function must also be provided
5059  * to allow module unload.
5060  */
5061 static void __exit xhci_hcd_fini(void) { }
5062 
5063 module_init(xhci_hcd_init);
5064 module_exit(xhci_hcd_fini);
5065