1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 28 #include "xhci.h" 29 30 /* 31 * Allocates a generic ring segment from the ring pool, sets the dma address, 32 * initializes the segment to zero, and sets the private next pointer to NULL. 33 * 34 * Section 4.11.1.1: 35 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 36 */ 37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags) 38 { 39 struct xhci_segment *seg; 40 dma_addr_t dma; 41 42 seg = kzalloc(sizeof *seg, flags); 43 if (!seg) 44 return NULL; 45 46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 47 if (!seg->trbs) { 48 kfree(seg); 49 return NULL; 50 } 51 52 memset(seg->trbs, 0, SEGMENT_SIZE); 53 seg->dma = dma; 54 seg->next = NULL; 55 56 return seg; 57 } 58 59 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 60 { 61 if (seg->trbs) { 62 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 63 seg->trbs = NULL; 64 } 65 kfree(seg); 66 } 67 68 /* 69 * Make the prev segment point to the next segment. 70 * 71 * Change the last TRB in the prev segment to be a Link TRB which points to the 72 * DMA address of the next segment. The caller needs to set any Link TRB 73 * related flags, such as End TRB, Toggle Cycle, and no snoop. 74 */ 75 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 76 struct xhci_segment *next, bool link_trbs, bool isoc) 77 { 78 u32 val; 79 80 if (!prev || !next) 81 return; 82 prev->next = next; 83 if (link_trbs) { 84 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 85 cpu_to_le64(next->dma); 86 87 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 88 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 89 val &= ~TRB_TYPE_BITMASK; 90 val |= TRB_TYPE(TRB_LINK); 91 /* Always set the chain bit with 0.95 hardware */ 92 /* Set chain bit for isoc rings on AMD 0.96 host */ 93 if (xhci_link_trb_quirk(xhci) || 94 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))) 95 val |= TRB_CHAIN; 96 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 97 } 98 } 99 100 /* XXX: Do we need the hcd structure in all these functions? */ 101 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 102 { 103 struct xhci_segment *seg; 104 struct xhci_segment *first_seg; 105 106 if (!ring) 107 return; 108 if (ring->first_seg) { 109 first_seg = ring->first_seg; 110 seg = first_seg->next; 111 while (seg != first_seg) { 112 struct xhci_segment *next = seg->next; 113 xhci_segment_free(xhci, seg); 114 seg = next; 115 } 116 xhci_segment_free(xhci, first_seg); 117 ring->first_seg = NULL; 118 } 119 kfree(ring); 120 } 121 122 static void xhci_initialize_ring_info(struct xhci_ring *ring) 123 { 124 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 125 ring->enqueue = ring->first_seg->trbs; 126 ring->enq_seg = ring->first_seg; 127 ring->dequeue = ring->enqueue; 128 ring->deq_seg = ring->first_seg; 129 /* The ring is initialized to 0. The producer must write 1 to the cycle 130 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 131 * compare CCS to the cycle bit to check ownership, so CCS = 1. 132 */ 133 ring->cycle_state = 1; 134 /* Not necessary for new rings, but needed for re-initialized rings */ 135 ring->enq_updates = 0; 136 ring->deq_updates = 0; 137 } 138 139 /** 140 * Create a new ring with zero or more segments. 141 * 142 * Link each segment together into a ring. 143 * Set the end flag and the cycle toggle bit on the last segment. 144 * See section 4.9.1 and figures 15 and 16. 145 */ 146 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 147 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags) 148 { 149 struct xhci_ring *ring; 150 struct xhci_segment *prev; 151 152 ring = kzalloc(sizeof *(ring), flags); 153 if (!ring) 154 return NULL; 155 156 INIT_LIST_HEAD(&ring->td_list); 157 if (num_segs == 0) 158 return ring; 159 160 ring->first_seg = xhci_segment_alloc(xhci, flags); 161 if (!ring->first_seg) 162 goto fail; 163 num_segs--; 164 165 prev = ring->first_seg; 166 while (num_segs > 0) { 167 struct xhci_segment *next; 168 169 next = xhci_segment_alloc(xhci, flags); 170 if (!next) 171 goto fail; 172 xhci_link_segments(xhci, prev, next, link_trbs, isoc); 173 174 prev = next; 175 num_segs--; 176 } 177 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc); 178 179 if (link_trbs) { 180 /* See section 4.9.2.1 and 6.4.4.1 */ 181 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= 182 cpu_to_le32(LINK_TOGGLE); 183 } 184 xhci_initialize_ring_info(ring); 185 return ring; 186 187 fail: 188 xhci_ring_free(xhci, ring); 189 return NULL; 190 } 191 192 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 193 struct xhci_virt_device *virt_dev, 194 unsigned int ep_index) 195 { 196 int rings_cached; 197 198 rings_cached = virt_dev->num_rings_cached; 199 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 200 virt_dev->ring_cache[rings_cached] = 201 virt_dev->eps[ep_index].ring; 202 virt_dev->num_rings_cached++; 203 xhci_dbg(xhci, "Cached old ring, " 204 "%d ring%s cached\n", 205 virt_dev->num_rings_cached, 206 (virt_dev->num_rings_cached > 1) ? "s" : ""); 207 } else { 208 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 209 xhci_dbg(xhci, "Ring cache full (%d rings), " 210 "freeing ring\n", 211 virt_dev->num_rings_cached); 212 } 213 virt_dev->eps[ep_index].ring = NULL; 214 } 215 216 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 217 * pointers to the beginning of the ring. 218 */ 219 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 220 struct xhci_ring *ring, bool isoc) 221 { 222 struct xhci_segment *seg = ring->first_seg; 223 do { 224 memset(seg->trbs, 0, 225 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 226 /* All endpoint rings have link TRBs */ 227 xhci_link_segments(xhci, seg, seg->next, 1, isoc); 228 seg = seg->next; 229 } while (seg != ring->first_seg); 230 xhci_initialize_ring_info(ring); 231 /* td list should be empty since all URBs have been cancelled, 232 * but just in case... 233 */ 234 INIT_LIST_HEAD(&ring->td_list); 235 } 236 237 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 238 239 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 240 int type, gfp_t flags) 241 { 242 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags); 243 if (!ctx) 244 return NULL; 245 246 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); 247 ctx->type = type; 248 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 249 if (type == XHCI_CTX_TYPE_INPUT) 250 ctx->size += CTX_SIZE(xhci->hcc_params); 251 252 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 253 memset(ctx->bytes, 0, ctx->size); 254 return ctx; 255 } 256 257 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 258 struct xhci_container_ctx *ctx) 259 { 260 if (!ctx) 261 return; 262 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 263 kfree(ctx); 264 } 265 266 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 267 struct xhci_container_ctx *ctx) 268 { 269 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); 270 return (struct xhci_input_control_ctx *)ctx->bytes; 271 } 272 273 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 274 struct xhci_container_ctx *ctx) 275 { 276 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 277 return (struct xhci_slot_ctx *)ctx->bytes; 278 279 return (struct xhci_slot_ctx *) 280 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 281 } 282 283 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 284 struct xhci_container_ctx *ctx, 285 unsigned int ep_index) 286 { 287 /* increment ep index by offset of start of ep ctx array */ 288 ep_index++; 289 if (ctx->type == XHCI_CTX_TYPE_INPUT) 290 ep_index++; 291 292 return (struct xhci_ep_ctx *) 293 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 294 } 295 296 297 /***************** Streams structures manipulation *************************/ 298 299 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 300 unsigned int num_stream_ctxs, 301 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 302 { 303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 304 305 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 306 dma_free_coherent(&pdev->dev, 307 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 308 stream_ctx, dma); 309 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 310 return dma_pool_free(xhci->small_streams_pool, 311 stream_ctx, dma); 312 else 313 return dma_pool_free(xhci->medium_streams_pool, 314 stream_ctx, dma); 315 } 316 317 /* 318 * The stream context array for each endpoint with bulk streams enabled can 319 * vary in size, based on: 320 * - how many streams the endpoint supports, 321 * - the maximum primary stream array size the host controller supports, 322 * - and how many streams the device driver asks for. 323 * 324 * The stream context array must be a power of 2, and can be as small as 325 * 64 bytes or as large as 1MB. 326 */ 327 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 328 unsigned int num_stream_ctxs, dma_addr_t *dma, 329 gfp_t mem_flags) 330 { 331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 332 333 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 334 return dma_alloc_coherent(&pdev->dev, 335 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 336 dma, mem_flags); 337 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 338 return dma_pool_alloc(xhci->small_streams_pool, 339 mem_flags, dma); 340 else 341 return dma_pool_alloc(xhci->medium_streams_pool, 342 mem_flags, dma); 343 } 344 345 struct xhci_ring *xhci_dma_to_transfer_ring( 346 struct xhci_virt_ep *ep, 347 u64 address) 348 { 349 if (ep->ep_state & EP_HAS_STREAMS) 350 return radix_tree_lookup(&ep->stream_info->trb_address_map, 351 address >> SEGMENT_SHIFT); 352 return ep->ring; 353 } 354 355 /* Only use this when you know stream_info is valid */ 356 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 357 static struct xhci_ring *dma_to_stream_ring( 358 struct xhci_stream_info *stream_info, 359 u64 address) 360 { 361 return radix_tree_lookup(&stream_info->trb_address_map, 362 address >> SEGMENT_SHIFT); 363 } 364 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 365 366 struct xhci_ring *xhci_stream_id_to_ring( 367 struct xhci_virt_device *dev, 368 unsigned int ep_index, 369 unsigned int stream_id) 370 { 371 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 372 373 if (stream_id == 0) 374 return ep->ring; 375 if (!ep->stream_info) 376 return NULL; 377 378 if (stream_id > ep->stream_info->num_streams) 379 return NULL; 380 return ep->stream_info->stream_rings[stream_id]; 381 } 382 383 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 384 static int xhci_test_radix_tree(struct xhci_hcd *xhci, 385 unsigned int num_streams, 386 struct xhci_stream_info *stream_info) 387 { 388 u32 cur_stream; 389 struct xhci_ring *cur_ring; 390 u64 addr; 391 392 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 393 struct xhci_ring *mapped_ring; 394 int trb_size = sizeof(union xhci_trb); 395 396 cur_ring = stream_info->stream_rings[cur_stream]; 397 for (addr = cur_ring->first_seg->dma; 398 addr < cur_ring->first_seg->dma + SEGMENT_SIZE; 399 addr += trb_size) { 400 mapped_ring = dma_to_stream_ring(stream_info, addr); 401 if (cur_ring != mapped_ring) { 402 xhci_warn(xhci, "WARN: DMA address 0x%08llx " 403 "didn't map to stream ID %u; " 404 "mapped to ring %p\n", 405 (unsigned long long) addr, 406 cur_stream, 407 mapped_ring); 408 return -EINVAL; 409 } 410 } 411 /* One TRB after the end of the ring segment shouldn't return a 412 * pointer to the current ring (although it may be a part of a 413 * different ring). 414 */ 415 mapped_ring = dma_to_stream_ring(stream_info, addr); 416 if (mapped_ring != cur_ring) { 417 /* One TRB before should also fail */ 418 addr = cur_ring->first_seg->dma - trb_size; 419 mapped_ring = dma_to_stream_ring(stream_info, addr); 420 } 421 if (mapped_ring == cur_ring) { 422 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " 423 "mapped to valid stream ID %u; " 424 "mapped ring = %p\n", 425 (unsigned long long) addr, 426 cur_stream, 427 mapped_ring); 428 return -EINVAL; 429 } 430 } 431 return 0; 432 } 433 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 434 435 /* 436 * Change an endpoint's internal structure so it supports stream IDs. The 437 * number of requested streams includes stream 0, which cannot be used by device 438 * drivers. 439 * 440 * The number of stream contexts in the stream context array may be bigger than 441 * the number of streams the driver wants to use. This is because the number of 442 * stream context array entries must be a power of two. 443 * 444 * We need a radix tree for mapping physical addresses of TRBs to which stream 445 * ID they belong to. We need to do this because the host controller won't tell 446 * us which stream ring the TRB came from. We could store the stream ID in an 447 * event data TRB, but that doesn't help us for the cancellation case, since the 448 * endpoint may stop before it reaches that event data TRB. 449 * 450 * The radix tree maps the upper portion of the TRB DMA address to a ring 451 * segment that has the same upper portion of DMA addresses. For example, say I 452 * have segments of size 1KB, that are always 64-byte aligned. A segment may 453 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 454 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 455 * pass the radix tree a key to get the right stream ID: 456 * 457 * 0x10c90fff >> 10 = 0x43243 458 * 0x10c912c0 >> 10 = 0x43244 459 * 0x10c91400 >> 10 = 0x43245 460 * 461 * Obviously, only those TRBs with DMA addresses that are within the segment 462 * will make the radix tree return the stream ID for that ring. 463 * 464 * Caveats for the radix tree: 465 * 466 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 467 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 468 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 469 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 470 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 471 * extended systems (where the DMA address can be bigger than 32-bits), 472 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 473 */ 474 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 475 unsigned int num_stream_ctxs, 476 unsigned int num_streams, gfp_t mem_flags) 477 { 478 struct xhci_stream_info *stream_info; 479 u32 cur_stream; 480 struct xhci_ring *cur_ring; 481 unsigned long key; 482 u64 addr; 483 int ret; 484 485 xhci_dbg(xhci, "Allocating %u streams and %u " 486 "stream context array entries.\n", 487 num_streams, num_stream_ctxs); 488 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 489 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 490 return NULL; 491 } 492 xhci->cmd_ring_reserved_trbs++; 493 494 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 495 if (!stream_info) 496 goto cleanup_trbs; 497 498 stream_info->num_streams = num_streams; 499 stream_info->num_stream_ctxs = num_stream_ctxs; 500 501 /* Initialize the array of virtual pointers to stream rings. */ 502 stream_info->stream_rings = kzalloc( 503 sizeof(struct xhci_ring *)*num_streams, 504 mem_flags); 505 if (!stream_info->stream_rings) 506 goto cleanup_info; 507 508 /* Initialize the array of DMA addresses for stream rings for the HW. */ 509 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 510 num_stream_ctxs, &stream_info->ctx_array_dma, 511 mem_flags); 512 if (!stream_info->stream_ctx_array) 513 goto cleanup_ctx; 514 memset(stream_info->stream_ctx_array, 0, 515 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 516 517 /* Allocate everything needed to free the stream rings later */ 518 stream_info->free_streams_command = 519 xhci_alloc_command(xhci, true, true, mem_flags); 520 if (!stream_info->free_streams_command) 521 goto cleanup_ctx; 522 523 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 524 525 /* Allocate rings for all the streams that the driver will use, 526 * and add their segment DMA addresses to the radix tree. 527 * Stream 0 is reserved. 528 */ 529 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 530 stream_info->stream_rings[cur_stream] = 531 xhci_ring_alloc(xhci, 1, true, false, mem_flags); 532 cur_ring = stream_info->stream_rings[cur_stream]; 533 if (!cur_ring) 534 goto cleanup_rings; 535 cur_ring->stream_id = cur_stream; 536 /* Set deq ptr, cycle bit, and stream context type */ 537 addr = cur_ring->first_seg->dma | 538 SCT_FOR_CTX(SCT_PRI_TR) | 539 cur_ring->cycle_state; 540 stream_info->stream_ctx_array[cur_stream].stream_ring = 541 cpu_to_le64(addr); 542 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 543 cur_stream, (unsigned long long) addr); 544 545 key = (unsigned long) 546 (cur_ring->first_seg->dma >> SEGMENT_SHIFT); 547 ret = radix_tree_insert(&stream_info->trb_address_map, 548 key, cur_ring); 549 if (ret) { 550 xhci_ring_free(xhci, cur_ring); 551 stream_info->stream_rings[cur_stream] = NULL; 552 goto cleanup_rings; 553 } 554 } 555 /* Leave the other unused stream ring pointers in the stream context 556 * array initialized to zero. This will cause the xHC to give us an 557 * error if the device asks for a stream ID we don't have setup (if it 558 * was any other way, the host controller would assume the ring is 559 * "empty" and wait forever for data to be queued to that stream ID). 560 */ 561 #if XHCI_DEBUG 562 /* Do a little test on the radix tree to make sure it returns the 563 * correct values. 564 */ 565 if (xhci_test_radix_tree(xhci, num_streams, stream_info)) 566 goto cleanup_rings; 567 #endif 568 569 return stream_info; 570 571 cleanup_rings: 572 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 573 cur_ring = stream_info->stream_rings[cur_stream]; 574 if (cur_ring) { 575 addr = cur_ring->first_seg->dma; 576 radix_tree_delete(&stream_info->trb_address_map, 577 addr >> SEGMENT_SHIFT); 578 xhci_ring_free(xhci, cur_ring); 579 stream_info->stream_rings[cur_stream] = NULL; 580 } 581 } 582 xhci_free_command(xhci, stream_info->free_streams_command); 583 cleanup_ctx: 584 kfree(stream_info->stream_rings); 585 cleanup_info: 586 kfree(stream_info); 587 cleanup_trbs: 588 xhci->cmd_ring_reserved_trbs--; 589 return NULL; 590 } 591 /* 592 * Sets the MaxPStreams field and the Linear Stream Array field. 593 * Sets the dequeue pointer to the stream context array. 594 */ 595 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 596 struct xhci_ep_ctx *ep_ctx, 597 struct xhci_stream_info *stream_info) 598 { 599 u32 max_primary_streams; 600 /* MaxPStreams is the number of stream context array entries, not the 601 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 602 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 603 */ 604 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 605 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", 606 1 << (max_primary_streams + 1)); 607 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 608 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 609 | EP_HAS_LSA); 610 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 611 } 612 613 /* 614 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 615 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 616 * not at the beginning of the ring). 617 */ 618 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 619 struct xhci_ep_ctx *ep_ctx, 620 struct xhci_virt_ep *ep) 621 { 622 dma_addr_t addr; 623 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 624 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 625 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 626 } 627 628 /* Frees all stream contexts associated with the endpoint, 629 * 630 * Caller should fix the endpoint context streams fields. 631 */ 632 void xhci_free_stream_info(struct xhci_hcd *xhci, 633 struct xhci_stream_info *stream_info) 634 { 635 int cur_stream; 636 struct xhci_ring *cur_ring; 637 dma_addr_t addr; 638 639 if (!stream_info) 640 return; 641 642 for (cur_stream = 1; cur_stream < stream_info->num_streams; 643 cur_stream++) { 644 cur_ring = stream_info->stream_rings[cur_stream]; 645 if (cur_ring) { 646 addr = cur_ring->first_seg->dma; 647 radix_tree_delete(&stream_info->trb_address_map, 648 addr >> SEGMENT_SHIFT); 649 xhci_ring_free(xhci, cur_ring); 650 stream_info->stream_rings[cur_stream] = NULL; 651 } 652 } 653 xhci_free_command(xhci, stream_info->free_streams_command); 654 xhci->cmd_ring_reserved_trbs--; 655 if (stream_info->stream_ctx_array) 656 xhci_free_stream_ctx(xhci, 657 stream_info->num_stream_ctxs, 658 stream_info->stream_ctx_array, 659 stream_info->ctx_array_dma); 660 661 if (stream_info) 662 kfree(stream_info->stream_rings); 663 kfree(stream_info); 664 } 665 666 667 /***************** Device context manipulation *************************/ 668 669 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 670 struct xhci_virt_ep *ep) 671 { 672 init_timer(&ep->stop_cmd_timer); 673 ep->stop_cmd_timer.data = (unsigned long) ep; 674 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 675 ep->xhci = xhci; 676 } 677 678 static void xhci_free_tt_info(struct xhci_hcd *xhci, 679 struct xhci_virt_device *virt_dev, 680 int slot_id) 681 { 682 struct list_head *tt; 683 struct list_head *tt_list_head; 684 struct list_head *tt_next; 685 struct xhci_tt_bw_info *tt_info; 686 687 /* If the device never made it past the Set Address stage, 688 * it may not have the real_port set correctly. 689 */ 690 if (virt_dev->real_port == 0 || 691 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 692 xhci_dbg(xhci, "Bad real port.\n"); 693 return; 694 } 695 696 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 697 if (list_empty(tt_list_head)) 698 return; 699 700 list_for_each(tt, tt_list_head) { 701 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list); 702 if (tt_info->slot_id == slot_id) 703 break; 704 } 705 /* Cautionary measure in case the hub was disconnected before we 706 * stored the TT information. 707 */ 708 if (tt_info->slot_id != slot_id) 709 return; 710 711 tt_next = tt->next; 712 tt_info = list_entry(tt, struct xhci_tt_bw_info, 713 tt_list); 714 /* Multi-TT hubs will have more than one entry */ 715 do { 716 list_del(tt); 717 kfree(tt_info); 718 tt = tt_next; 719 if (list_empty(tt_list_head)) 720 break; 721 tt_next = tt->next; 722 tt_info = list_entry(tt, struct xhci_tt_bw_info, 723 tt_list); 724 } while (tt_info->slot_id == slot_id); 725 } 726 727 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 728 struct xhci_virt_device *virt_dev, 729 struct usb_device *hdev, 730 struct usb_tt *tt, gfp_t mem_flags) 731 { 732 struct xhci_tt_bw_info *tt_info; 733 unsigned int num_ports; 734 int i, j; 735 736 if (!tt->multi) 737 num_ports = 1; 738 else 739 num_ports = hdev->maxchild; 740 741 for (i = 0; i < num_ports; i++, tt_info++) { 742 struct xhci_interval_bw_table *bw_table; 743 744 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 745 if (!tt_info) 746 goto free_tts; 747 INIT_LIST_HEAD(&tt_info->tt_list); 748 list_add(&tt_info->tt_list, 749 &xhci->rh_bw[virt_dev->real_port - 1].tts); 750 tt_info->slot_id = virt_dev->udev->slot_id; 751 if (tt->multi) 752 tt_info->ttport = i+1; 753 bw_table = &tt_info->bw_table; 754 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 755 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 756 } 757 return 0; 758 759 free_tts: 760 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 761 return -ENOMEM; 762 } 763 764 765 /* All the xhci_tds in the ring's TD list should be freed at this point. 766 * Should be called with xhci->lock held if there is any chance the TT lists 767 * will be manipulated by the configure endpoint, allocate device, or update 768 * hub functions while this function is removing the TT entries from the list. 769 */ 770 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 771 { 772 struct xhci_virt_device *dev; 773 int i; 774 int old_active_eps = 0; 775 776 /* Slot ID 0 is reserved */ 777 if (slot_id == 0 || !xhci->devs[slot_id]) 778 return; 779 780 dev = xhci->devs[slot_id]; 781 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 782 if (!dev) 783 return; 784 785 if (dev->tt_info) 786 old_active_eps = dev->tt_info->active_eps; 787 788 for (i = 0; i < 31; ++i) { 789 if (dev->eps[i].ring) 790 xhci_ring_free(xhci, dev->eps[i].ring); 791 if (dev->eps[i].stream_info) 792 xhci_free_stream_info(xhci, 793 dev->eps[i].stream_info); 794 /* Endpoints on the TT/root port lists should have been removed 795 * when usb_disable_device() was called for the device. 796 * We can't drop them anyway, because the udev might have gone 797 * away by this point, and we can't tell what speed it was. 798 */ 799 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 800 xhci_warn(xhci, "Slot %u endpoint %u " 801 "not removed from BW list!\n", 802 slot_id, i); 803 } 804 /* If this is a hub, free the TT(s) from the TT list */ 805 xhci_free_tt_info(xhci, dev, slot_id); 806 /* If necessary, update the number of active TTs on this root port */ 807 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 808 809 if (dev->ring_cache) { 810 for (i = 0; i < dev->num_rings_cached; i++) 811 xhci_ring_free(xhci, dev->ring_cache[i]); 812 kfree(dev->ring_cache); 813 } 814 815 if (dev->in_ctx) 816 xhci_free_container_ctx(xhci, dev->in_ctx); 817 if (dev->out_ctx) 818 xhci_free_container_ctx(xhci, dev->out_ctx); 819 820 kfree(xhci->devs[slot_id]); 821 xhci->devs[slot_id] = NULL; 822 } 823 824 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 825 struct usb_device *udev, gfp_t flags) 826 { 827 struct xhci_virt_device *dev; 828 int i; 829 830 /* Slot ID 0 is reserved */ 831 if (slot_id == 0 || xhci->devs[slot_id]) { 832 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 833 return 0; 834 } 835 836 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 837 if (!xhci->devs[slot_id]) 838 return 0; 839 dev = xhci->devs[slot_id]; 840 841 /* Allocate the (output) device context that will be used in the HC. */ 842 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 843 if (!dev->out_ctx) 844 goto fail; 845 846 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 847 (unsigned long long)dev->out_ctx->dma); 848 849 /* Allocate the (input) device context for address device command */ 850 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 851 if (!dev->in_ctx) 852 goto fail; 853 854 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 855 (unsigned long long)dev->in_ctx->dma); 856 857 /* Initialize the cancellation list and watchdog timers for each ep */ 858 for (i = 0; i < 31; i++) { 859 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 860 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 861 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 862 } 863 864 /* Allocate endpoint 0 ring */ 865 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags); 866 if (!dev->eps[0].ring) 867 goto fail; 868 869 /* Allocate pointers to the ring cache */ 870 dev->ring_cache = kzalloc( 871 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 872 flags); 873 if (!dev->ring_cache) 874 goto fail; 875 dev->num_rings_cached = 0; 876 877 init_completion(&dev->cmd_completion); 878 INIT_LIST_HEAD(&dev->cmd_list); 879 dev->udev = udev; 880 881 /* Point to output device context in dcbaa. */ 882 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 883 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 884 slot_id, 885 &xhci->dcbaa->dev_context_ptrs[slot_id], 886 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 887 888 return 1; 889 fail: 890 xhci_free_virt_device(xhci, slot_id); 891 return 0; 892 } 893 894 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 895 struct usb_device *udev) 896 { 897 struct xhci_virt_device *virt_dev; 898 struct xhci_ep_ctx *ep0_ctx; 899 struct xhci_ring *ep_ring; 900 901 virt_dev = xhci->devs[udev->slot_id]; 902 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 903 ep_ring = virt_dev->eps[0].ring; 904 /* 905 * FIXME we don't keep track of the dequeue pointer very well after a 906 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 907 * host to our enqueue pointer. This should only be called after a 908 * configured device has reset, so all control transfers should have 909 * been completed or cancelled before the reset. 910 */ 911 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 912 ep_ring->enqueue) 913 | ep_ring->cycle_state); 914 } 915 916 /* 917 * The xHCI roothub may have ports of differing speeds in any order in the port 918 * status registers. xhci->port_array provides an array of the port speed for 919 * each offset into the port status registers. 920 * 921 * The xHCI hardware wants to know the roothub port number that the USB device 922 * is attached to (or the roothub port its ancestor hub is attached to). All we 923 * know is the index of that port under either the USB 2.0 or the USB 3.0 924 * roothub, but that doesn't give us the real index into the HW port status 925 * registers. Scan through the xHCI roothub port array, looking for the Nth 926 * entry of the correct port speed. Return the port number of that entry. 927 */ 928 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 929 struct usb_device *udev) 930 { 931 struct usb_device *top_dev; 932 unsigned int num_similar_speed_ports; 933 unsigned int faked_port_num; 934 int i; 935 936 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 937 top_dev = top_dev->parent) 938 /* Found device below root hub */; 939 faked_port_num = top_dev->portnum; 940 for (i = 0, num_similar_speed_ports = 0; 941 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 942 u8 port_speed = xhci->port_array[i]; 943 944 /* 945 * Skip ports that don't have known speeds, or have duplicate 946 * Extended Capabilities port speed entries. 947 */ 948 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 949 continue; 950 951 /* 952 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 953 * 1.1 ports are under the USB 2.0 hub. If the port speed 954 * matches the device speed, it's a similar speed port. 955 */ 956 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER)) 957 num_similar_speed_ports++; 958 if (num_similar_speed_ports == faked_port_num) 959 /* Roothub ports are numbered from 1 to N */ 960 return i+1; 961 } 962 return 0; 963 } 964 965 /* Setup an xHCI virtual device for a Set Address command */ 966 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 967 { 968 struct xhci_virt_device *dev; 969 struct xhci_ep_ctx *ep0_ctx; 970 struct xhci_slot_ctx *slot_ctx; 971 u32 port_num; 972 struct usb_device *top_dev; 973 974 dev = xhci->devs[udev->slot_id]; 975 /* Slot ID 0 is reserved */ 976 if (udev->slot_id == 0 || !dev) { 977 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 978 udev->slot_id); 979 return -EINVAL; 980 } 981 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 982 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 983 984 /* 3) Only the control endpoint is valid - one endpoint context */ 985 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 986 switch (udev->speed) { 987 case USB_SPEED_SUPER: 988 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 989 break; 990 case USB_SPEED_HIGH: 991 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 992 break; 993 case USB_SPEED_FULL: 994 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 995 break; 996 case USB_SPEED_LOW: 997 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 998 break; 999 case USB_SPEED_WIRELESS: 1000 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1001 return -EINVAL; 1002 break; 1003 default: 1004 /* Speed was set earlier, this shouldn't happen. */ 1005 BUG(); 1006 } 1007 /* Find the root hub port this device is under */ 1008 port_num = xhci_find_real_port_number(xhci, udev); 1009 if (!port_num) 1010 return -EINVAL; 1011 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1012 /* Set the port number in the virtual_device to the faked port number */ 1013 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1014 top_dev = top_dev->parent) 1015 /* Found device below root hub */; 1016 dev->fake_port = top_dev->portnum; 1017 dev->real_port = port_num; 1018 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1019 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1020 1021 /* Find the right bandwidth table that this device will be a part of. 1022 * If this is a full speed device attached directly to a root port (or a 1023 * decendent of one), it counts as a primary bandwidth domain, not a 1024 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1025 * will never be created for the HS root hub. 1026 */ 1027 if (!udev->tt || !udev->tt->hub->parent) { 1028 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1029 } else { 1030 struct xhci_root_port_bw_info *rh_bw; 1031 struct xhci_tt_bw_info *tt_bw; 1032 1033 rh_bw = &xhci->rh_bw[port_num - 1]; 1034 /* Find the right TT. */ 1035 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1036 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1037 continue; 1038 1039 if (!dev->udev->tt->multi || 1040 (udev->tt->multi && 1041 tt_bw->ttport == dev->udev->ttport)) { 1042 dev->bw_table = &tt_bw->bw_table; 1043 dev->tt_info = tt_bw; 1044 break; 1045 } 1046 } 1047 if (!dev->tt_info) 1048 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1049 } 1050 1051 /* Is this a LS/FS device under an external HS hub? */ 1052 if (udev->tt && udev->tt->hub->parent) { 1053 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1054 (udev->ttport << 8)); 1055 if (udev->tt->multi) 1056 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1057 } 1058 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1059 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1060 1061 /* Step 4 - ring already allocated */ 1062 /* Step 5 */ 1063 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1064 /* 1065 * XXX: Not sure about wireless USB devices. 1066 */ 1067 switch (udev->speed) { 1068 case USB_SPEED_SUPER: 1069 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512)); 1070 break; 1071 case USB_SPEED_HIGH: 1072 /* USB core guesses at a 64-byte max packet first for FS devices */ 1073 case USB_SPEED_FULL: 1074 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64)); 1075 break; 1076 case USB_SPEED_LOW: 1077 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8)); 1078 break; 1079 case USB_SPEED_WIRELESS: 1080 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1081 return -EINVAL; 1082 break; 1083 default: 1084 /* New speed? */ 1085 BUG(); 1086 } 1087 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1088 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3)); 1089 1090 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1091 dev->eps[0].ring->cycle_state); 1092 1093 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * Convert interval expressed as 2^(bInterval - 1) == interval into 1100 * straight exponent value 2^n == interval. 1101 * 1102 */ 1103 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1104 struct usb_host_endpoint *ep) 1105 { 1106 unsigned int interval; 1107 1108 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1109 if (interval != ep->desc.bInterval - 1) 1110 dev_warn(&udev->dev, 1111 "ep %#x - rounding interval to %d %sframes\n", 1112 ep->desc.bEndpointAddress, 1113 1 << interval, 1114 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1115 1116 if (udev->speed == USB_SPEED_FULL) { 1117 /* 1118 * Full speed isoc endpoints specify interval in frames, 1119 * not microframes. We are using microframes everywhere, 1120 * so adjust accordingly. 1121 */ 1122 interval += 3; /* 1 frame = 2^3 uframes */ 1123 } 1124 1125 return interval; 1126 } 1127 1128 /* 1129 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1130 * microframes, rounded down to nearest power of 2. 1131 */ 1132 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1133 struct usb_host_endpoint *ep, unsigned int desc_interval, 1134 unsigned int min_exponent, unsigned int max_exponent) 1135 { 1136 unsigned int interval; 1137 1138 interval = fls(desc_interval) - 1; 1139 interval = clamp_val(interval, min_exponent, max_exponent); 1140 if ((1 << interval) != desc_interval) 1141 dev_warn(&udev->dev, 1142 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1143 ep->desc.bEndpointAddress, 1144 1 << interval, 1145 desc_interval); 1146 1147 return interval; 1148 } 1149 1150 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1151 struct usb_host_endpoint *ep) 1152 { 1153 return xhci_microframes_to_exponent(udev, ep, 1154 ep->desc.bInterval, 0, 15); 1155 } 1156 1157 1158 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1159 struct usb_host_endpoint *ep) 1160 { 1161 return xhci_microframes_to_exponent(udev, ep, 1162 ep->desc.bInterval * 8, 3, 10); 1163 } 1164 1165 /* Return the polling or NAK interval. 1166 * 1167 * The polling interval is expressed in "microframes". If xHCI's Interval field 1168 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1169 * 1170 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1171 * is set to 0. 1172 */ 1173 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1174 struct usb_host_endpoint *ep) 1175 { 1176 unsigned int interval = 0; 1177 1178 switch (udev->speed) { 1179 case USB_SPEED_HIGH: 1180 /* Max NAK rate */ 1181 if (usb_endpoint_xfer_control(&ep->desc) || 1182 usb_endpoint_xfer_bulk(&ep->desc)) { 1183 interval = xhci_parse_microframe_interval(udev, ep); 1184 break; 1185 } 1186 /* Fall through - SS and HS isoc/int have same decoding */ 1187 1188 case USB_SPEED_SUPER: 1189 if (usb_endpoint_xfer_int(&ep->desc) || 1190 usb_endpoint_xfer_isoc(&ep->desc)) { 1191 interval = xhci_parse_exponent_interval(udev, ep); 1192 } 1193 break; 1194 1195 case USB_SPEED_FULL: 1196 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1197 interval = xhci_parse_exponent_interval(udev, ep); 1198 break; 1199 } 1200 /* 1201 * Fall through for interrupt endpoint interval decoding 1202 * since it uses the same rules as low speed interrupt 1203 * endpoints. 1204 */ 1205 1206 case USB_SPEED_LOW: 1207 if (usb_endpoint_xfer_int(&ep->desc) || 1208 usb_endpoint_xfer_isoc(&ep->desc)) { 1209 1210 interval = xhci_parse_frame_interval(udev, ep); 1211 } 1212 break; 1213 1214 default: 1215 BUG(); 1216 } 1217 return EP_INTERVAL(interval); 1218 } 1219 1220 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1221 * High speed endpoint descriptors can define "the number of additional 1222 * transaction opportunities per microframe", but that goes in the Max Burst 1223 * endpoint context field. 1224 */ 1225 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1226 struct usb_host_endpoint *ep) 1227 { 1228 if (udev->speed != USB_SPEED_SUPER || 1229 !usb_endpoint_xfer_isoc(&ep->desc)) 1230 return 0; 1231 return ep->ss_ep_comp.bmAttributes; 1232 } 1233 1234 static u32 xhci_get_endpoint_type(struct usb_device *udev, 1235 struct usb_host_endpoint *ep) 1236 { 1237 int in; 1238 u32 type; 1239 1240 in = usb_endpoint_dir_in(&ep->desc); 1241 if (usb_endpoint_xfer_control(&ep->desc)) { 1242 type = EP_TYPE(CTRL_EP); 1243 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1244 if (in) 1245 type = EP_TYPE(BULK_IN_EP); 1246 else 1247 type = EP_TYPE(BULK_OUT_EP); 1248 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1249 if (in) 1250 type = EP_TYPE(ISOC_IN_EP); 1251 else 1252 type = EP_TYPE(ISOC_OUT_EP); 1253 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1254 if (in) 1255 type = EP_TYPE(INT_IN_EP); 1256 else 1257 type = EP_TYPE(INT_OUT_EP); 1258 } else { 1259 BUG(); 1260 } 1261 return type; 1262 } 1263 1264 /* Return the maximum endpoint service interval time (ESIT) payload. 1265 * Basically, this is the maxpacket size, multiplied by the burst size 1266 * and mult size. 1267 */ 1268 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1269 struct usb_device *udev, 1270 struct usb_host_endpoint *ep) 1271 { 1272 int max_burst; 1273 int max_packet; 1274 1275 /* Only applies for interrupt or isochronous endpoints */ 1276 if (usb_endpoint_xfer_control(&ep->desc) || 1277 usb_endpoint_xfer_bulk(&ep->desc)) 1278 return 0; 1279 1280 if (udev->speed == USB_SPEED_SUPER) 1281 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1282 1283 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1284 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1285 /* A 0 in max burst means 1 transfer per ESIT */ 1286 return max_packet * (max_burst + 1); 1287 } 1288 1289 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1290 * Drivers will have to call usb_alloc_streams() to do that. 1291 */ 1292 int xhci_endpoint_init(struct xhci_hcd *xhci, 1293 struct xhci_virt_device *virt_dev, 1294 struct usb_device *udev, 1295 struct usb_host_endpoint *ep, 1296 gfp_t mem_flags) 1297 { 1298 unsigned int ep_index; 1299 struct xhci_ep_ctx *ep_ctx; 1300 struct xhci_ring *ep_ring; 1301 unsigned int max_packet; 1302 unsigned int max_burst; 1303 u32 max_esit_payload; 1304 1305 ep_index = xhci_get_endpoint_index(&ep->desc); 1306 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1307 1308 /* Set up the endpoint ring */ 1309 /* 1310 * Isochronous endpoint ring needs bigger size because one isoc URB 1311 * carries multiple packets and it will insert multiple tds to the 1312 * ring. 1313 * This should be replaced with dynamic ring resizing in the future. 1314 */ 1315 if (usb_endpoint_xfer_isoc(&ep->desc)) 1316 virt_dev->eps[ep_index].new_ring = 1317 xhci_ring_alloc(xhci, 8, true, true, mem_flags); 1318 else 1319 virt_dev->eps[ep_index].new_ring = 1320 xhci_ring_alloc(xhci, 1, true, false, mem_flags); 1321 if (!virt_dev->eps[ep_index].new_ring) { 1322 /* Attempt to use the ring cache */ 1323 if (virt_dev->num_rings_cached == 0) 1324 return -ENOMEM; 1325 virt_dev->eps[ep_index].new_ring = 1326 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1327 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1328 virt_dev->num_rings_cached--; 1329 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1330 usb_endpoint_xfer_isoc(&ep->desc) ? true : false); 1331 } 1332 virt_dev->eps[ep_index].skip = false; 1333 ep_ring = virt_dev->eps[ep_index].new_ring; 1334 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); 1335 1336 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) 1337 | EP_MULT(xhci_get_endpoint_mult(udev, ep))); 1338 1339 /* FIXME dig Mult and streams info out of ep companion desc */ 1340 1341 /* Allow 3 retries for everything but isoc; 1342 * CErr shall be set to 0 for Isoch endpoints. 1343 */ 1344 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1345 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3)); 1346 else 1347 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0)); 1348 1349 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep)); 1350 1351 /* Set the max packet size and max burst */ 1352 switch (udev->speed) { 1353 case USB_SPEED_SUPER: 1354 max_packet = usb_endpoint_maxp(&ep->desc); 1355 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet)); 1356 /* dig out max burst from ep companion desc */ 1357 max_packet = ep->ss_ep_comp.bMaxBurst; 1358 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet)); 1359 break; 1360 case USB_SPEED_HIGH: 1361 /* bits 11:12 specify the number of additional transaction 1362 * opportunities per microframe (USB 2.0, section 9.6.6) 1363 */ 1364 if (usb_endpoint_xfer_isoc(&ep->desc) || 1365 usb_endpoint_xfer_int(&ep->desc)) { 1366 max_burst = (usb_endpoint_maxp(&ep->desc) 1367 & 0x1800) >> 11; 1368 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst)); 1369 } 1370 /* Fall through */ 1371 case USB_SPEED_FULL: 1372 case USB_SPEED_LOW: 1373 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1374 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet)); 1375 break; 1376 default: 1377 BUG(); 1378 } 1379 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1380 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); 1381 1382 /* 1383 * XXX no idea how to calculate the average TRB buffer length for bulk 1384 * endpoints, as the driver gives us no clue how big each scatter gather 1385 * list entry (or buffer) is going to be. 1386 * 1387 * For isochronous and interrupt endpoints, we set it to the max 1388 * available, until we have new API in the USB core to allow drivers to 1389 * declare how much bandwidth they actually need. 1390 * 1391 * Normally, it would be calculated by taking the total of the buffer 1392 * lengths in the TD and then dividing by the number of TRBs in a TD, 1393 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1394 * use Event Data TRBs, and we don't chain in a link TRB on short 1395 * transfers, we're basically dividing by 1. 1396 * 1397 * xHCI 1.0 specification indicates that the Average TRB Length should 1398 * be set to 8 for control endpoints. 1399 */ 1400 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) 1401 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); 1402 else 1403 ep_ctx->tx_info |= 1404 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); 1405 1406 /* FIXME Debug endpoint context */ 1407 return 0; 1408 } 1409 1410 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1411 struct xhci_virt_device *virt_dev, 1412 struct usb_host_endpoint *ep) 1413 { 1414 unsigned int ep_index; 1415 struct xhci_ep_ctx *ep_ctx; 1416 1417 ep_index = xhci_get_endpoint_index(&ep->desc); 1418 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1419 1420 ep_ctx->ep_info = 0; 1421 ep_ctx->ep_info2 = 0; 1422 ep_ctx->deq = 0; 1423 ep_ctx->tx_info = 0; 1424 /* Don't free the endpoint ring until the set interface or configuration 1425 * request succeeds. 1426 */ 1427 } 1428 1429 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1430 { 1431 bw_info->ep_interval = 0; 1432 bw_info->mult = 0; 1433 bw_info->num_packets = 0; 1434 bw_info->max_packet_size = 0; 1435 bw_info->type = 0; 1436 bw_info->max_esit_payload = 0; 1437 } 1438 1439 void xhci_update_bw_info(struct xhci_hcd *xhci, 1440 struct xhci_container_ctx *in_ctx, 1441 struct xhci_input_control_ctx *ctrl_ctx, 1442 struct xhci_virt_device *virt_dev) 1443 { 1444 struct xhci_bw_info *bw_info; 1445 struct xhci_ep_ctx *ep_ctx; 1446 unsigned int ep_type; 1447 int i; 1448 1449 for (i = 1; i < 31; ++i) { 1450 bw_info = &virt_dev->eps[i].bw_info; 1451 1452 /* We can't tell what endpoint type is being dropped, but 1453 * unconditionally clearing the bandwidth info for non-periodic 1454 * endpoints should be harmless because the info will never be 1455 * set in the first place. 1456 */ 1457 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1458 /* Dropped endpoint */ 1459 xhci_clear_endpoint_bw_info(bw_info); 1460 continue; 1461 } 1462 1463 if (EP_IS_ADDED(ctrl_ctx, i)) { 1464 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1465 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1466 1467 /* Ignore non-periodic endpoints */ 1468 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1469 ep_type != ISOC_IN_EP && 1470 ep_type != INT_IN_EP) 1471 continue; 1472 1473 /* Added or changed endpoint */ 1474 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1475 le32_to_cpu(ep_ctx->ep_info)); 1476 /* Number of packets and mult are zero-based in the 1477 * input context, but we want one-based for the 1478 * interval table. 1479 */ 1480 bw_info->mult = CTX_TO_EP_MULT( 1481 le32_to_cpu(ep_ctx->ep_info)) + 1; 1482 bw_info->num_packets = CTX_TO_MAX_BURST( 1483 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1484 bw_info->max_packet_size = MAX_PACKET_DECODED( 1485 le32_to_cpu(ep_ctx->ep_info2)); 1486 bw_info->type = ep_type; 1487 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1488 le32_to_cpu(ep_ctx->tx_info)); 1489 } 1490 } 1491 } 1492 1493 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1494 * Useful when you want to change one particular aspect of the endpoint and then 1495 * issue a configure endpoint command. 1496 */ 1497 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1498 struct xhci_container_ctx *in_ctx, 1499 struct xhci_container_ctx *out_ctx, 1500 unsigned int ep_index) 1501 { 1502 struct xhci_ep_ctx *out_ep_ctx; 1503 struct xhci_ep_ctx *in_ep_ctx; 1504 1505 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1506 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1507 1508 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1509 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1510 in_ep_ctx->deq = out_ep_ctx->deq; 1511 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1512 } 1513 1514 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1515 * Useful when you want to change one particular aspect of the endpoint and then 1516 * issue a configure endpoint command. Only the context entries field matters, 1517 * but we'll copy the whole thing anyway. 1518 */ 1519 void xhci_slot_copy(struct xhci_hcd *xhci, 1520 struct xhci_container_ctx *in_ctx, 1521 struct xhci_container_ctx *out_ctx) 1522 { 1523 struct xhci_slot_ctx *in_slot_ctx; 1524 struct xhci_slot_ctx *out_slot_ctx; 1525 1526 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1527 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1528 1529 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1530 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1531 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1532 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1533 } 1534 1535 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1536 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1537 { 1538 int i; 1539 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1540 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1541 1542 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); 1543 1544 if (!num_sp) 1545 return 0; 1546 1547 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1548 if (!xhci->scratchpad) 1549 goto fail_sp; 1550 1551 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1552 num_sp * sizeof(u64), 1553 &xhci->scratchpad->sp_dma, flags); 1554 if (!xhci->scratchpad->sp_array) 1555 goto fail_sp2; 1556 1557 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1558 if (!xhci->scratchpad->sp_buffers) 1559 goto fail_sp3; 1560 1561 xhci->scratchpad->sp_dma_buffers = 1562 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1563 1564 if (!xhci->scratchpad->sp_dma_buffers) 1565 goto fail_sp4; 1566 1567 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1568 for (i = 0; i < num_sp; i++) { 1569 dma_addr_t dma; 1570 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1571 flags); 1572 if (!buf) 1573 goto fail_sp5; 1574 1575 xhci->scratchpad->sp_array[i] = dma; 1576 xhci->scratchpad->sp_buffers[i] = buf; 1577 xhci->scratchpad->sp_dma_buffers[i] = dma; 1578 } 1579 1580 return 0; 1581 1582 fail_sp5: 1583 for (i = i - 1; i >= 0; i--) { 1584 dma_free_coherent(dev, xhci->page_size, 1585 xhci->scratchpad->sp_buffers[i], 1586 xhci->scratchpad->sp_dma_buffers[i]); 1587 } 1588 kfree(xhci->scratchpad->sp_dma_buffers); 1589 1590 fail_sp4: 1591 kfree(xhci->scratchpad->sp_buffers); 1592 1593 fail_sp3: 1594 dma_free_coherent(dev, num_sp * sizeof(u64), 1595 xhci->scratchpad->sp_array, 1596 xhci->scratchpad->sp_dma); 1597 1598 fail_sp2: 1599 kfree(xhci->scratchpad); 1600 xhci->scratchpad = NULL; 1601 1602 fail_sp: 1603 return -ENOMEM; 1604 } 1605 1606 static void scratchpad_free(struct xhci_hcd *xhci) 1607 { 1608 int num_sp; 1609 int i; 1610 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1611 1612 if (!xhci->scratchpad) 1613 return; 1614 1615 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1616 1617 for (i = 0; i < num_sp; i++) { 1618 dma_free_coherent(&pdev->dev, xhci->page_size, 1619 xhci->scratchpad->sp_buffers[i], 1620 xhci->scratchpad->sp_dma_buffers[i]); 1621 } 1622 kfree(xhci->scratchpad->sp_dma_buffers); 1623 kfree(xhci->scratchpad->sp_buffers); 1624 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64), 1625 xhci->scratchpad->sp_array, 1626 xhci->scratchpad->sp_dma); 1627 kfree(xhci->scratchpad); 1628 xhci->scratchpad = NULL; 1629 } 1630 1631 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1632 bool allocate_in_ctx, bool allocate_completion, 1633 gfp_t mem_flags) 1634 { 1635 struct xhci_command *command; 1636 1637 command = kzalloc(sizeof(*command), mem_flags); 1638 if (!command) 1639 return NULL; 1640 1641 if (allocate_in_ctx) { 1642 command->in_ctx = 1643 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1644 mem_flags); 1645 if (!command->in_ctx) { 1646 kfree(command); 1647 return NULL; 1648 } 1649 } 1650 1651 if (allocate_completion) { 1652 command->completion = 1653 kzalloc(sizeof(struct completion), mem_flags); 1654 if (!command->completion) { 1655 xhci_free_container_ctx(xhci, command->in_ctx); 1656 kfree(command); 1657 return NULL; 1658 } 1659 init_completion(command->completion); 1660 } 1661 1662 command->status = 0; 1663 INIT_LIST_HEAD(&command->cmd_list); 1664 return command; 1665 } 1666 1667 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1668 { 1669 if (urb_priv) { 1670 kfree(urb_priv->td[0]); 1671 kfree(urb_priv); 1672 } 1673 } 1674 1675 void xhci_free_command(struct xhci_hcd *xhci, 1676 struct xhci_command *command) 1677 { 1678 xhci_free_container_ctx(xhci, 1679 command->in_ctx); 1680 kfree(command->completion); 1681 kfree(command); 1682 } 1683 1684 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1685 { 1686 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1687 struct dev_info *dev_info, *next; 1688 unsigned long flags; 1689 int size; 1690 int i; 1691 1692 /* Free the Event Ring Segment Table and the actual Event Ring */ 1693 if (xhci->ir_set) { 1694 xhci_writel(xhci, 0, &xhci->ir_set->erst_size); 1695 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base); 1696 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue); 1697 } 1698 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1699 if (xhci->erst.entries) 1700 dma_free_coherent(&pdev->dev, size, 1701 xhci->erst.entries, xhci->erst.erst_dma_addr); 1702 xhci->erst.entries = NULL; 1703 xhci_dbg(xhci, "Freed ERST\n"); 1704 if (xhci->event_ring) 1705 xhci_ring_free(xhci, xhci->event_ring); 1706 xhci->event_ring = NULL; 1707 xhci_dbg(xhci, "Freed event ring\n"); 1708 1709 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 1710 if (xhci->cmd_ring) 1711 xhci_ring_free(xhci, xhci->cmd_ring); 1712 xhci->cmd_ring = NULL; 1713 xhci_dbg(xhci, "Freed command ring\n"); 1714 1715 for (i = 1; i < MAX_HC_SLOTS; ++i) 1716 xhci_free_virt_device(xhci, i); 1717 1718 if (xhci->segment_pool) 1719 dma_pool_destroy(xhci->segment_pool); 1720 xhci->segment_pool = NULL; 1721 xhci_dbg(xhci, "Freed segment pool\n"); 1722 1723 if (xhci->device_pool) 1724 dma_pool_destroy(xhci->device_pool); 1725 xhci->device_pool = NULL; 1726 xhci_dbg(xhci, "Freed device context pool\n"); 1727 1728 if (xhci->small_streams_pool) 1729 dma_pool_destroy(xhci->small_streams_pool); 1730 xhci->small_streams_pool = NULL; 1731 xhci_dbg(xhci, "Freed small stream array pool\n"); 1732 1733 if (xhci->medium_streams_pool) 1734 dma_pool_destroy(xhci->medium_streams_pool); 1735 xhci->medium_streams_pool = NULL; 1736 xhci_dbg(xhci, "Freed medium stream array pool\n"); 1737 1738 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 1739 if (xhci->dcbaa) 1740 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa), 1741 xhci->dcbaa, xhci->dcbaa->dma); 1742 xhci->dcbaa = NULL; 1743 1744 scratchpad_free(xhci); 1745 1746 spin_lock_irqsave(&xhci->lock, flags); 1747 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) { 1748 list_del(&dev_info->list); 1749 kfree(dev_info); 1750 } 1751 spin_unlock_irqrestore(&xhci->lock, flags); 1752 1753 xhci->num_usb2_ports = 0; 1754 xhci->num_usb3_ports = 0; 1755 kfree(xhci->usb2_ports); 1756 kfree(xhci->usb3_ports); 1757 kfree(xhci->port_array); 1758 kfree(xhci->rh_bw); 1759 1760 xhci->page_size = 0; 1761 xhci->page_shift = 0; 1762 xhci->bus_state[0].bus_suspended = 0; 1763 xhci->bus_state[1].bus_suspended = 0; 1764 } 1765 1766 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1767 struct xhci_segment *input_seg, 1768 union xhci_trb *start_trb, 1769 union xhci_trb *end_trb, 1770 dma_addr_t input_dma, 1771 struct xhci_segment *result_seg, 1772 char *test_name, int test_number) 1773 { 1774 unsigned long long start_dma; 1775 unsigned long long end_dma; 1776 struct xhci_segment *seg; 1777 1778 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1779 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1780 1781 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1782 if (seg != result_seg) { 1783 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1784 test_name, test_number); 1785 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1786 "input DMA 0x%llx\n", 1787 input_seg, 1788 (unsigned long long) input_dma); 1789 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1790 "ending TRB %p (0x%llx DMA)\n", 1791 start_trb, start_dma, 1792 end_trb, end_dma); 1793 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1794 result_seg, seg); 1795 return -1; 1796 } 1797 return 0; 1798 } 1799 1800 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1801 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1802 { 1803 struct { 1804 dma_addr_t input_dma; 1805 struct xhci_segment *result_seg; 1806 } simple_test_vector [] = { 1807 /* A zeroed DMA field should fail */ 1808 { 0, NULL }, 1809 /* One TRB before the ring start should fail */ 1810 { xhci->event_ring->first_seg->dma - 16, NULL }, 1811 /* One byte before the ring start should fail */ 1812 { xhci->event_ring->first_seg->dma - 1, NULL }, 1813 /* Starting TRB should succeed */ 1814 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1815 /* Ending TRB should succeed */ 1816 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1817 xhci->event_ring->first_seg }, 1818 /* One byte after the ring end should fail */ 1819 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1820 /* One TRB after the ring end should fail */ 1821 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1822 /* An address of all ones should fail */ 1823 { (dma_addr_t) (~0), NULL }, 1824 }; 1825 struct { 1826 struct xhci_segment *input_seg; 1827 union xhci_trb *start_trb; 1828 union xhci_trb *end_trb; 1829 dma_addr_t input_dma; 1830 struct xhci_segment *result_seg; 1831 } complex_test_vector [] = { 1832 /* Test feeding a valid DMA address from a different ring */ 1833 { .input_seg = xhci->event_ring->first_seg, 1834 .start_trb = xhci->event_ring->first_seg->trbs, 1835 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1836 .input_dma = xhci->cmd_ring->first_seg->dma, 1837 .result_seg = NULL, 1838 }, 1839 /* Test feeding a valid end TRB from a different ring */ 1840 { .input_seg = xhci->event_ring->first_seg, 1841 .start_trb = xhci->event_ring->first_seg->trbs, 1842 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1843 .input_dma = xhci->cmd_ring->first_seg->dma, 1844 .result_seg = NULL, 1845 }, 1846 /* Test feeding a valid start and end TRB from a different ring */ 1847 { .input_seg = xhci->event_ring->first_seg, 1848 .start_trb = xhci->cmd_ring->first_seg->trbs, 1849 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1850 .input_dma = xhci->cmd_ring->first_seg->dma, 1851 .result_seg = NULL, 1852 }, 1853 /* TRB in this ring, but after this TD */ 1854 { .input_seg = xhci->event_ring->first_seg, 1855 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1856 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1857 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1858 .result_seg = NULL, 1859 }, 1860 /* TRB in this ring, but before this TD */ 1861 { .input_seg = xhci->event_ring->first_seg, 1862 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1863 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1864 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1865 .result_seg = NULL, 1866 }, 1867 /* TRB in this ring, but after this wrapped TD */ 1868 { .input_seg = xhci->event_ring->first_seg, 1869 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1870 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1871 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1872 .result_seg = NULL, 1873 }, 1874 /* TRB in this ring, but before this wrapped TD */ 1875 { .input_seg = xhci->event_ring->first_seg, 1876 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1877 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1878 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1879 .result_seg = NULL, 1880 }, 1881 /* TRB not in this ring, and we have a wrapped TD */ 1882 { .input_seg = xhci->event_ring->first_seg, 1883 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1884 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1885 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1886 .result_seg = NULL, 1887 }, 1888 }; 1889 1890 unsigned int num_tests; 1891 int i, ret; 1892 1893 num_tests = ARRAY_SIZE(simple_test_vector); 1894 for (i = 0; i < num_tests; i++) { 1895 ret = xhci_test_trb_in_td(xhci, 1896 xhci->event_ring->first_seg, 1897 xhci->event_ring->first_seg->trbs, 1898 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1899 simple_test_vector[i].input_dma, 1900 simple_test_vector[i].result_seg, 1901 "Simple", i); 1902 if (ret < 0) 1903 return ret; 1904 } 1905 1906 num_tests = ARRAY_SIZE(complex_test_vector); 1907 for (i = 0; i < num_tests; i++) { 1908 ret = xhci_test_trb_in_td(xhci, 1909 complex_test_vector[i].input_seg, 1910 complex_test_vector[i].start_trb, 1911 complex_test_vector[i].end_trb, 1912 complex_test_vector[i].input_dma, 1913 complex_test_vector[i].result_seg, 1914 "Complex", i); 1915 if (ret < 0) 1916 return ret; 1917 } 1918 xhci_dbg(xhci, "TRB math tests passed.\n"); 1919 return 0; 1920 } 1921 1922 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 1923 { 1924 u64 temp; 1925 dma_addr_t deq; 1926 1927 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 1928 xhci->event_ring->dequeue); 1929 if (deq == 0 && !in_interrupt()) 1930 xhci_warn(xhci, "WARN something wrong with SW event ring " 1931 "dequeue ptr.\n"); 1932 /* Update HC event ring dequeue pointer */ 1933 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 1934 temp &= ERST_PTR_MASK; 1935 /* Don't clear the EHB bit (which is RW1C) because 1936 * there might be more events to service. 1937 */ 1938 temp &= ~ERST_EHB; 1939 xhci_dbg(xhci, "// Write event ring dequeue pointer, " 1940 "preserving EHB bit\n"); 1941 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 1942 &xhci->ir_set->erst_dequeue); 1943 } 1944 1945 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1946 __le32 __iomem *addr, u8 major_revision) 1947 { 1948 u32 temp, port_offset, port_count; 1949 int i; 1950 1951 if (major_revision > 0x03) { 1952 xhci_warn(xhci, "Ignoring unknown port speed, " 1953 "Ext Cap %p, revision = 0x%x\n", 1954 addr, major_revision); 1955 /* Ignoring port protocol we can't understand. FIXME */ 1956 return; 1957 } 1958 1959 /* Port offset and count in the third dword, see section 7.2 */ 1960 temp = xhci_readl(xhci, addr + 2); 1961 port_offset = XHCI_EXT_PORT_OFF(temp); 1962 port_count = XHCI_EXT_PORT_COUNT(temp); 1963 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " 1964 "count = %u, revision = 0x%x\n", 1965 addr, port_offset, port_count, major_revision); 1966 /* Port count includes the current port offset */ 1967 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 1968 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 1969 return; 1970 1971 /* Check the host's USB2 LPM capability */ 1972 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 1973 (temp & XHCI_L1C)) { 1974 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n"); 1975 xhci->sw_lpm_support = 1; 1976 } 1977 1978 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 1979 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n"); 1980 xhci->sw_lpm_support = 1; 1981 if (temp & XHCI_HLC) { 1982 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n"); 1983 xhci->hw_lpm_support = 1; 1984 } 1985 } 1986 1987 port_offset--; 1988 for (i = port_offset; i < (port_offset + port_count); i++) { 1989 /* Duplicate entry. Ignore the port if the revisions differ. */ 1990 if (xhci->port_array[i] != 0) { 1991 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 1992 " port %u\n", addr, i); 1993 xhci_warn(xhci, "Port was marked as USB %u, " 1994 "duplicated as USB %u\n", 1995 xhci->port_array[i], major_revision); 1996 /* Only adjust the roothub port counts if we haven't 1997 * found a similar duplicate. 1998 */ 1999 if (xhci->port_array[i] != major_revision && 2000 xhci->port_array[i] != DUPLICATE_ENTRY) { 2001 if (xhci->port_array[i] == 0x03) 2002 xhci->num_usb3_ports--; 2003 else 2004 xhci->num_usb2_ports--; 2005 xhci->port_array[i] = DUPLICATE_ENTRY; 2006 } 2007 /* FIXME: Should we disable the port? */ 2008 continue; 2009 } 2010 xhci->port_array[i] = major_revision; 2011 if (major_revision == 0x03) 2012 xhci->num_usb3_ports++; 2013 else 2014 xhci->num_usb2_ports++; 2015 } 2016 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2017 } 2018 2019 /* 2020 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2021 * specify what speeds each port is supposed to be. We can't count on the port 2022 * speed bits in the PORTSC register being correct until a device is connected, 2023 * but we need to set up the two fake roothubs with the correct number of USB 2024 * 3.0 and USB 2.0 ports at host controller initialization time. 2025 */ 2026 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2027 { 2028 __le32 __iomem *addr; 2029 u32 offset; 2030 unsigned int num_ports; 2031 int i, j, port_index; 2032 2033 addr = &xhci->cap_regs->hcc_params; 2034 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); 2035 if (offset == 0) { 2036 xhci_err(xhci, "No Extended Capability registers, " 2037 "unable to set up roothub.\n"); 2038 return -ENODEV; 2039 } 2040 2041 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2042 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2043 if (!xhci->port_array) 2044 return -ENOMEM; 2045 2046 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2047 if (!xhci->rh_bw) 2048 return -ENOMEM; 2049 for (i = 0; i < num_ports; i++) { 2050 struct xhci_interval_bw_table *bw_table; 2051 2052 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2053 bw_table = &xhci->rh_bw[i].bw_table; 2054 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2055 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2056 } 2057 2058 /* 2059 * For whatever reason, the first capability offset is from the 2060 * capability register base, not from the HCCPARAMS register. 2061 * See section 5.3.6 for offset calculation. 2062 */ 2063 addr = &xhci->cap_regs->hc_capbase + offset; 2064 while (1) { 2065 u32 cap_id; 2066 2067 cap_id = xhci_readl(xhci, addr); 2068 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2069 xhci_add_in_port(xhci, num_ports, addr, 2070 (u8) XHCI_EXT_PORT_MAJOR(cap_id)); 2071 offset = XHCI_EXT_CAPS_NEXT(cap_id); 2072 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 2073 == num_ports) 2074 break; 2075 /* 2076 * Once you're into the Extended Capabilities, the offset is 2077 * always relative to the register holding the offset. 2078 */ 2079 addr += offset; 2080 } 2081 2082 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2083 xhci_warn(xhci, "No ports on the roothubs?\n"); 2084 return -ENODEV; 2085 } 2086 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", 2087 xhci->num_usb2_ports, xhci->num_usb3_ports); 2088 2089 /* Place limits on the number of roothub ports so that the hub 2090 * descriptors aren't longer than the USB core will allocate. 2091 */ 2092 if (xhci->num_usb3_ports > 15) { 2093 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); 2094 xhci->num_usb3_ports = 15; 2095 } 2096 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2097 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", 2098 USB_MAXCHILDREN); 2099 xhci->num_usb2_ports = USB_MAXCHILDREN; 2100 } 2101 2102 /* 2103 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2104 * Not sure how the USB core will handle a hub with no ports... 2105 */ 2106 if (xhci->num_usb2_ports) { 2107 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2108 xhci->num_usb2_ports, flags); 2109 if (!xhci->usb2_ports) 2110 return -ENOMEM; 2111 2112 port_index = 0; 2113 for (i = 0; i < num_ports; i++) { 2114 if (xhci->port_array[i] == 0x03 || 2115 xhci->port_array[i] == 0 || 2116 xhci->port_array[i] == DUPLICATE_ENTRY) 2117 continue; 2118 2119 xhci->usb2_ports[port_index] = 2120 &xhci->op_regs->port_status_base + 2121 NUM_PORT_REGS*i; 2122 xhci_dbg(xhci, "USB 2.0 port at index %u, " 2123 "addr = %p\n", i, 2124 xhci->usb2_ports[port_index]); 2125 port_index++; 2126 if (port_index == xhci->num_usb2_ports) 2127 break; 2128 } 2129 } 2130 if (xhci->num_usb3_ports) { 2131 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2132 xhci->num_usb3_ports, flags); 2133 if (!xhci->usb3_ports) 2134 return -ENOMEM; 2135 2136 port_index = 0; 2137 for (i = 0; i < num_ports; i++) 2138 if (xhci->port_array[i] == 0x03) { 2139 xhci->usb3_ports[port_index] = 2140 &xhci->op_regs->port_status_base + 2141 NUM_PORT_REGS*i; 2142 xhci_dbg(xhci, "USB 3.0 port at index %u, " 2143 "addr = %p\n", i, 2144 xhci->usb3_ports[port_index]); 2145 port_index++; 2146 if (port_index == xhci->num_usb3_ports) 2147 break; 2148 } 2149 } 2150 return 0; 2151 } 2152 2153 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2154 { 2155 dma_addr_t dma; 2156 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2157 unsigned int val, val2; 2158 u64 val_64; 2159 struct xhci_segment *seg; 2160 u32 page_size; 2161 int i; 2162 2163 page_size = xhci_readl(xhci, &xhci->op_regs->page_size); 2164 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); 2165 for (i = 0; i < 16; i++) { 2166 if ((0x1 & page_size) != 0) 2167 break; 2168 page_size = page_size >> 1; 2169 } 2170 if (i < 16) 2171 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); 2172 else 2173 xhci_warn(xhci, "WARN: no supported page size\n"); 2174 /* Use 4K pages, since that's common and the minimum the HC supports */ 2175 xhci->page_shift = 12; 2176 xhci->page_size = 1 << xhci->page_shift; 2177 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); 2178 2179 /* 2180 * Program the Number of Device Slots Enabled field in the CONFIG 2181 * register with the max value of slots the HC can handle. 2182 */ 2183 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); 2184 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", 2185 (unsigned int) val); 2186 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); 2187 val |= (val2 & ~HCS_SLOTS_MASK); 2188 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", 2189 (unsigned int) val); 2190 xhci_writel(xhci, val, &xhci->op_regs->config_reg); 2191 2192 /* 2193 * Section 5.4.8 - doorbell array must be 2194 * "physically contiguous and 64-byte (cache line) aligned". 2195 */ 2196 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2197 GFP_KERNEL); 2198 if (!xhci->dcbaa) 2199 goto fail; 2200 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2201 xhci->dcbaa->dma = dma; 2202 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", 2203 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2204 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2205 2206 /* 2207 * Initialize the ring segment pool. The ring must be a contiguous 2208 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2209 * however, the command ring segment needs 64-byte aligned segments, 2210 * so we pick the greater alignment need. 2211 */ 2212 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2213 SEGMENT_SIZE, 64, xhci->page_size); 2214 2215 /* See Table 46 and Note on Figure 55 */ 2216 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2217 2112, 64, xhci->page_size); 2218 if (!xhci->segment_pool || !xhci->device_pool) 2219 goto fail; 2220 2221 /* Linear stream context arrays don't have any boundary restrictions, 2222 * and only need to be 16-byte aligned. 2223 */ 2224 xhci->small_streams_pool = 2225 dma_pool_create("xHCI 256 byte stream ctx arrays", 2226 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2227 xhci->medium_streams_pool = 2228 dma_pool_create("xHCI 1KB stream ctx arrays", 2229 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2230 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2231 * will be allocated with dma_alloc_coherent() 2232 */ 2233 2234 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2235 goto fail; 2236 2237 /* Set up the command ring to have one segments for now. */ 2238 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags); 2239 if (!xhci->cmd_ring) 2240 goto fail; 2241 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); 2242 xhci_dbg(xhci, "First segment DMA is 0x%llx\n", 2243 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2244 2245 /* Set the address in the Command Ring Control register */ 2246 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2247 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2248 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2249 xhci->cmd_ring->cycle_state; 2250 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); 2251 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2252 xhci_dbg_cmd_ptrs(xhci); 2253 2254 val = xhci_readl(xhci, &xhci->cap_regs->db_off); 2255 val &= DBOFF_MASK; 2256 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" 2257 " from cap regs base addr\n", val); 2258 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2259 xhci_dbg_regs(xhci); 2260 xhci_print_run_regs(xhci); 2261 /* Set ir_set to interrupt register set 0 */ 2262 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2263 2264 /* 2265 * Event ring setup: Allocate a normal ring, but also setup 2266 * the event ring segment table (ERST). Section 4.9.3. 2267 */ 2268 xhci_dbg(xhci, "// Allocating event ring\n"); 2269 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false, 2270 flags); 2271 if (!xhci->event_ring) 2272 goto fail; 2273 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 2274 goto fail; 2275 2276 xhci->erst.entries = dma_alloc_coherent(dev, 2277 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2278 GFP_KERNEL); 2279 if (!xhci->erst.entries) 2280 goto fail; 2281 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", 2282 (unsigned long long)dma); 2283 2284 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2285 xhci->erst.num_entries = ERST_NUM_SEGS; 2286 xhci->erst.erst_dma_addr = dma; 2287 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", 2288 xhci->erst.num_entries, 2289 xhci->erst.entries, 2290 (unsigned long long)xhci->erst.erst_dma_addr); 2291 2292 /* set ring base address and size for each segment table entry */ 2293 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2294 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2295 entry->seg_addr = cpu_to_le64(seg->dma); 2296 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2297 entry->rsvd = 0; 2298 seg = seg->next; 2299 } 2300 2301 /* set ERST count with the number of entries in the segment table */ 2302 val = xhci_readl(xhci, &xhci->ir_set->erst_size); 2303 val &= ERST_SIZE_MASK; 2304 val |= ERST_NUM_SEGS; 2305 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", 2306 val); 2307 xhci_writel(xhci, val, &xhci->ir_set->erst_size); 2308 2309 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); 2310 /* set the segment table base address */ 2311 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", 2312 (unsigned long long)xhci->erst.erst_dma_addr); 2313 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2314 val_64 &= ERST_PTR_MASK; 2315 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2316 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2317 2318 /* Set the event ring dequeue address */ 2319 xhci_set_hc_event_deq(xhci); 2320 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); 2321 xhci_print_ir_set(xhci, 0); 2322 2323 /* 2324 * XXX: Might need to set the Interrupter Moderation Register to 2325 * something other than the default (~1ms minimum between interrupts). 2326 * See section 5.5.1.2. 2327 */ 2328 init_completion(&xhci->addr_dev); 2329 for (i = 0; i < MAX_HC_SLOTS; ++i) 2330 xhci->devs[i] = NULL; 2331 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2332 xhci->bus_state[0].resume_done[i] = 0; 2333 xhci->bus_state[1].resume_done[i] = 0; 2334 } 2335 2336 if (scratchpad_alloc(xhci, flags)) 2337 goto fail; 2338 if (xhci_setup_port_arrays(xhci, flags)) 2339 goto fail; 2340 2341 INIT_LIST_HEAD(&xhci->lpm_failed_devs); 2342 2343 return 0; 2344 2345 fail: 2346 xhci_warn(xhci, "Couldn't initialize memory\n"); 2347 xhci_mem_cleanup(xhci); 2348 return -ENOMEM; 2349 } 2350