xref: /linux/drivers/usb/core/message.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/config.h>
6 #include <linux/pci.h>	/* for scatterlist macros */
7 #include <linux/usb.h>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/timer.h>
13 #include <linux/ctype.h>
14 #include <linux/device.h>
15 #include <asm/byteorder.h>
16 
17 #include "hcd.h"	/* for usbcore internals */
18 #include "usb.h"
19 
20 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
21 {
22 	complete((struct completion *)urb->context);
23 }
24 
25 
26 static void timeout_kill(unsigned long data)
27 {
28 	struct urb	*urb = (struct urb *) data;
29 
30 	usb_unlink_urb(urb);
31 }
32 
33 // Starts urb and waits for completion or timeout
34 // note that this call is NOT interruptible, while
35 // many device driver i/o requests should be interruptible
36 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
37 {
38 	struct completion	done;
39 	struct timer_list	timer;
40 	int			status;
41 
42 	init_completion(&done);
43 	urb->context = &done;
44 	urb->actual_length = 0;
45 	status = usb_submit_urb(urb, GFP_NOIO);
46 
47 	if (status == 0) {
48 		if (timeout > 0) {
49 			init_timer(&timer);
50 			timer.expires = jiffies + msecs_to_jiffies(timeout);
51 			timer.data = (unsigned long)urb;
52 			timer.function = timeout_kill;
53 			/* grr.  timeout _should_ include submit delays. */
54 			add_timer(&timer);
55 		}
56 		wait_for_completion(&done);
57 		status = urb->status;
58 		/* note:  HCDs return ETIMEDOUT for other reasons too */
59 		if (status == -ECONNRESET) {
60 			dev_dbg(&urb->dev->dev,
61 				"%s timed out on ep%d%s len=%d/%d\n",
62 				current->comm,
63 				usb_pipeendpoint(urb->pipe),
64 				usb_pipein(urb->pipe) ? "in" : "out",
65 				urb->actual_length,
66 				urb->transfer_buffer_length
67 				);
68 			if (urb->actual_length > 0)
69 				status = 0;
70 			else
71 				status = -ETIMEDOUT;
72 		}
73 		if (timeout > 0)
74 			del_timer_sync(&timer);
75 	}
76 
77 	if (actual_length)
78 		*actual_length = urb->actual_length;
79 	usb_free_urb(urb);
80 	return status;
81 }
82 
83 /*-------------------------------------------------------------------*/
84 // returns status (negative) or length (positive)
85 static int usb_internal_control_msg(struct usb_device *usb_dev,
86 				    unsigned int pipe,
87 				    struct usb_ctrlrequest *cmd,
88 				    void *data, int len, int timeout)
89 {
90 	struct urb *urb;
91 	int retv;
92 	int length;
93 
94 	urb = usb_alloc_urb(0, GFP_NOIO);
95 	if (!urb)
96 		return -ENOMEM;
97 
98 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 			     len, usb_api_blocking_completion, NULL);
100 
101 	retv = usb_start_wait_urb(urb, timeout, &length);
102 	if (retv < 0)
103 		return retv;
104 	else
105 		return length;
106 }
107 
108 /**
109  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
110  *	@dev: pointer to the usb device to send the message to
111  *	@pipe: endpoint "pipe" to send the message to
112  *	@request: USB message request value
113  *	@requesttype: USB message request type value
114  *	@value: USB message value
115  *	@index: USB message index value
116  *	@data: pointer to the data to send
117  *	@size: length in bytes of the data to send
118  *	@timeout: time in msecs to wait for the message to complete before
119  *		timing out (if 0 the wait is forever)
120  *	Context: !in_interrupt ()
121  *
122  *	This function sends a simple control message to a specified endpoint
123  *	and waits for the message to complete, or timeout.
124  *
125  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
126  *
127  *	Don't use this function from within an interrupt context, like a
128  *	bottom half handler.  If you need an asynchronous message, or need to send
129  *	a message from within interrupt context, use usb_submit_urb()
130  *      If a thread in your driver uses this call, make sure your disconnect()
131  *      method can wait for it to complete.  Since you don't have a handle on
132  *      the URB used, you can't cancel the request.
133  */
134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
135 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
136 {
137 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
138 	int ret;
139 
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType= requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16p(&value);
146 	dr->wIndex = cpu_to_le16p(&index);
147 	dr->wLength = cpu_to_le16p(&size);
148 
149 	//dbg("usb_control_msg");
150 
151 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 
153 	kfree(dr);
154 
155 	return ret;
156 }
157 
158 
159 /**
160  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
161  *	@usb_dev: pointer to the usb device to send the message to
162  *	@pipe: endpoint "pipe" to send the message to
163  *	@data: pointer to the data to send
164  *	@len: length in bytes of the data to send
165  *	@actual_length: pointer to a location to put the actual length transferred in bytes
166  *	@timeout: time in msecs to wait for the message to complete before
167  *		timing out (if 0 the wait is forever)
168  *	Context: !in_interrupt ()
169  *
170  *	This function sends a simple bulk message to a specified endpoint
171  *	and waits for the message to complete, or timeout.
172  *
173  *	If successful, it returns 0, otherwise a negative error number.
174  *	The number of actual bytes transferred will be stored in the
175  *	actual_length paramater.
176  *
177  *	Don't use this function from within an interrupt context, like a
178  *	bottom half handler.  If you need an asynchronous message, or need to
179  *	send a message from within interrupt context, use usb_submit_urb()
180  *      If a thread in your driver uses this call, make sure your disconnect()
181  *      method can wait for it to complete.  Since you don't have a handle on
182  *      the URB used, you can't cancel the request.
183  *
184  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
185  *	ioctl, users are forced to abuse this routine by using it to submit
186  *	URBs for interrupt endpoints.  We will take the liberty of creating
187  *	an interrupt URB (with the default interval) if the target is an
188  *	interrupt endpoint.
189  */
190 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
191 			void *data, int len, int *actual_length, int timeout)
192 {
193 	struct urb *urb;
194 	struct usb_host_endpoint *ep;
195 
196 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
197 			[usb_pipeendpoint(pipe)];
198 	if (!ep || len < 0)
199 		return -EINVAL;
200 
201 	urb = usb_alloc_urb(0, GFP_KERNEL);
202 	if (!urb)
203 		return -ENOMEM;
204 
205 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
206 			USB_ENDPOINT_XFER_INT) {
207 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
208 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
209 				usb_api_blocking_completion, NULL,
210 				ep->desc.bInterval);
211 	} else
212 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
213 				usb_api_blocking_completion, NULL);
214 
215 	return usb_start_wait_urb(urb, timeout, actual_length);
216 }
217 
218 /*-------------------------------------------------------------------*/
219 
220 static void sg_clean (struct usb_sg_request *io)
221 {
222 	if (io->urbs) {
223 		while (io->entries--)
224 			usb_free_urb (io->urbs [io->entries]);
225 		kfree (io->urbs);
226 		io->urbs = NULL;
227 	}
228 	if (io->dev->dev.dma_mask != NULL)
229 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
230 	io->dev = NULL;
231 }
232 
233 static void sg_complete (struct urb *urb, struct pt_regs *regs)
234 {
235 	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;
236 
237 	spin_lock (&io->lock);
238 
239 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
240 	 * reports, until the completion callback (this!) returns.  That lets
241 	 * device driver code (like this routine) unlink queued urbs first,
242 	 * if it needs to, since the HC won't work on them at all.  So it's
243 	 * not possible for page N+1 to overwrite page N, and so on.
244 	 *
245 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
246 	 * complete before the HCD can get requests away from hardware,
247 	 * though never during cleanup after a hard fault.
248 	 */
249 	if (io->status
250 			&& (io->status != -ECONNRESET
251 				|| urb->status != -ECONNRESET)
252 			&& urb->actual_length) {
253 		dev_err (io->dev->bus->controller,
254 			"dev %s ep%d%s scatterlist error %d/%d\n",
255 			io->dev->devpath,
256 			usb_pipeendpoint (urb->pipe),
257 			usb_pipein (urb->pipe) ? "in" : "out",
258 			urb->status, io->status);
259 		// BUG ();
260 	}
261 
262 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
263 		int		i, found, status;
264 
265 		io->status = urb->status;
266 
267 		/* the previous urbs, and this one, completed already.
268 		 * unlink pending urbs so they won't rx/tx bad data.
269 		 * careful: unlink can sometimes be synchronous...
270 		 */
271 		spin_unlock (&io->lock);
272 		for (i = 0, found = 0; i < io->entries; i++) {
273 			if (!io->urbs [i] || !io->urbs [i]->dev)
274 				continue;
275 			if (found) {
276 				status = usb_unlink_urb (io->urbs [i]);
277 				if (status != -EINPROGRESS
278 						&& status != -ENODEV
279 						&& status != -EBUSY)
280 					dev_err (&io->dev->dev,
281 						"%s, unlink --> %d\n",
282 						__FUNCTION__, status);
283 			} else if (urb == io->urbs [i])
284 				found = 1;
285 		}
286 		spin_lock (&io->lock);
287 	}
288 	urb->dev = NULL;
289 
290 	/* on the last completion, signal usb_sg_wait() */
291 	io->bytes += urb->actual_length;
292 	io->count--;
293 	if (!io->count)
294 		complete (&io->complete);
295 
296 	spin_unlock (&io->lock);
297 }
298 
299 
300 /**
301  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
302  * @io: request block being initialized.  until usb_sg_wait() returns,
303  *	treat this as a pointer to an opaque block of memory,
304  * @dev: the usb device that will send or receive the data
305  * @pipe: endpoint "pipe" used to transfer the data
306  * @period: polling rate for interrupt endpoints, in frames or
307  * 	(for high speed endpoints) microframes; ignored for bulk
308  * @sg: scatterlist entries
309  * @nents: how many entries in the scatterlist
310  * @length: how many bytes to send from the scatterlist, or zero to
311  * 	send every byte identified in the list.
312  * @mem_flags: SLAB_* flags affecting memory allocations in this call
313  *
314  * Returns zero for success, else a negative errno value.  This initializes a
315  * scatter/gather request, allocating resources such as I/O mappings and urb
316  * memory (except maybe memory used by USB controller drivers).
317  *
318  * The request must be issued using usb_sg_wait(), which waits for the I/O to
319  * complete (or to be canceled) and then cleans up all resources allocated by
320  * usb_sg_init().
321  *
322  * The request may be canceled with usb_sg_cancel(), either before or after
323  * usb_sg_wait() is called.
324  */
325 int usb_sg_init (
326 	struct usb_sg_request	*io,
327 	struct usb_device	*dev,
328 	unsigned		pipe,
329 	unsigned		period,
330 	struct scatterlist	*sg,
331 	int			nents,
332 	size_t			length,
333 	gfp_t			mem_flags
334 )
335 {
336 	int			i;
337 	int			urb_flags;
338 	int			dma;
339 
340 	if (!io || !dev || !sg
341 			|| usb_pipecontrol (pipe)
342 			|| usb_pipeisoc (pipe)
343 			|| nents <= 0)
344 		return -EINVAL;
345 
346 	spin_lock_init (&io->lock);
347 	io->dev = dev;
348 	io->pipe = pipe;
349 	io->sg = sg;
350 	io->nents = nents;
351 
352 	/* not all host controllers use DMA (like the mainstream pci ones);
353 	 * they can use PIO (sl811) or be software over another transport.
354 	 */
355 	dma = (dev->dev.dma_mask != NULL);
356 	if (dma)
357 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
358 	else
359 		io->entries = nents;
360 
361 	/* initialize all the urbs we'll use */
362 	if (io->entries <= 0)
363 		return io->entries;
364 
365 	io->count = io->entries;
366 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
367 	if (!io->urbs)
368 		goto nomem;
369 
370 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
371 	if (usb_pipein (pipe))
372 		urb_flags |= URB_SHORT_NOT_OK;
373 
374 	for (i = 0; i < io->entries; i++) {
375 		unsigned		len;
376 
377 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
378 		if (!io->urbs [i]) {
379 			io->entries = i;
380 			goto nomem;
381 		}
382 
383 		io->urbs [i]->dev = NULL;
384 		io->urbs [i]->pipe = pipe;
385 		io->urbs [i]->interval = period;
386 		io->urbs [i]->transfer_flags = urb_flags;
387 
388 		io->urbs [i]->complete = sg_complete;
389 		io->urbs [i]->context = io;
390 		io->urbs [i]->status = -EINPROGRESS;
391 		io->urbs [i]->actual_length = 0;
392 
393 		if (dma) {
394 			/* hc may use _only_ transfer_dma */
395 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
396 			len = sg_dma_len (sg + i);
397 		} else {
398 			/* hc may use _only_ transfer_buffer */
399 			io->urbs [i]->transfer_buffer =
400 				page_address (sg [i].page) + sg [i].offset;
401 			len = sg [i].length;
402 		}
403 
404 		if (length) {
405 			len = min_t (unsigned, len, length);
406 			length -= len;
407 			if (length == 0)
408 				io->entries = i + 1;
409 		}
410 		io->urbs [i]->transfer_buffer_length = len;
411 	}
412 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
413 
414 	/* transaction state */
415 	io->status = 0;
416 	io->bytes = 0;
417 	init_completion (&io->complete);
418 	return 0;
419 
420 nomem:
421 	sg_clean (io);
422 	return -ENOMEM;
423 }
424 
425 
426 /**
427  * usb_sg_wait - synchronously execute scatter/gather request
428  * @io: request block handle, as initialized with usb_sg_init().
429  * 	some fields become accessible when this call returns.
430  * Context: !in_interrupt ()
431  *
432  * This function blocks until the specified I/O operation completes.  It
433  * leverages the grouping of the related I/O requests to get good transfer
434  * rates, by queueing the requests.  At higher speeds, such queuing can
435  * significantly improve USB throughput.
436  *
437  * There are three kinds of completion for this function.
438  * (1) success, where io->status is zero.  The number of io->bytes
439  *     transferred is as requested.
440  * (2) error, where io->status is a negative errno value.  The number
441  *     of io->bytes transferred before the error is usually less
442  *     than requested, and can be nonzero.
443  * (3) cancellation, a type of error with status -ECONNRESET that
444  *     is initiated by usb_sg_cancel().
445  *
446  * When this function returns, all memory allocated through usb_sg_init() or
447  * this call will have been freed.  The request block parameter may still be
448  * passed to usb_sg_cancel(), or it may be freed.  It could also be
449  * reinitialized and then reused.
450  *
451  * Data Transfer Rates:
452  *
453  * Bulk transfers are valid for full or high speed endpoints.
454  * The best full speed data rate is 19 packets of 64 bytes each
455  * per frame, or 1216 bytes per millisecond.
456  * The best high speed data rate is 13 packets of 512 bytes each
457  * per microframe, or 52 KBytes per millisecond.
458  *
459  * The reason to use interrupt transfers through this API would most likely
460  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
461  * could be transferred.  That capability is less useful for low or full
462  * speed interrupt endpoints, which allow at most one packet per millisecond,
463  * of at most 8 or 64 bytes (respectively).
464  */
465 void usb_sg_wait (struct usb_sg_request *io)
466 {
467 	int		i, entries = io->entries;
468 
469 	/* queue the urbs.  */
470 	spin_lock_irq (&io->lock);
471 	for (i = 0; i < entries && !io->status; i++) {
472 		int	retval;
473 
474 		io->urbs [i]->dev = io->dev;
475 		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
476 
477 		/* after we submit, let completions or cancelations fire;
478 		 * we handshake using io->status.
479 		 */
480 		spin_unlock_irq (&io->lock);
481 		switch (retval) {
482 			/* maybe we retrying will recover */
483 		case -ENXIO:	// hc didn't queue this one
484 		case -EAGAIN:
485 		case -ENOMEM:
486 			io->urbs[i]->dev = NULL;
487 			retval = 0;
488 			i--;
489 			yield ();
490 			break;
491 
492 			/* no error? continue immediately.
493 			 *
494 			 * NOTE: to work better with UHCI (4K I/O buffer may
495 			 * need 3K of TDs) it may be good to limit how many
496 			 * URBs are queued at once; N milliseconds?
497 			 */
498 		case 0:
499 			cpu_relax ();
500 			break;
501 
502 			/* fail any uncompleted urbs */
503 		default:
504 			io->urbs [i]->dev = NULL;
505 			io->urbs [i]->status = retval;
506 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
507 				__FUNCTION__, retval);
508 			usb_sg_cancel (io);
509 		}
510 		spin_lock_irq (&io->lock);
511 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
512 			io->status = retval;
513 	}
514 	io->count -= entries - i;
515 	if (io->count == 0)
516 		complete (&io->complete);
517 	spin_unlock_irq (&io->lock);
518 
519 	/* OK, yes, this could be packaged as non-blocking.
520 	 * So could the submit loop above ... but it's easier to
521 	 * solve neither problem than to solve both!
522 	 */
523 	wait_for_completion (&io->complete);
524 
525 	sg_clean (io);
526 }
527 
528 /**
529  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
530  * @io: request block, initialized with usb_sg_init()
531  *
532  * This stops a request after it has been started by usb_sg_wait().
533  * It can also prevents one initialized by usb_sg_init() from starting,
534  * so that call just frees resources allocated to the request.
535  */
536 void usb_sg_cancel (struct usb_sg_request *io)
537 {
538 	unsigned long	flags;
539 
540 	spin_lock_irqsave (&io->lock, flags);
541 
542 	/* shut everything down, if it didn't already */
543 	if (!io->status) {
544 		int	i;
545 
546 		io->status = -ECONNRESET;
547 		spin_unlock (&io->lock);
548 		for (i = 0; i < io->entries; i++) {
549 			int	retval;
550 
551 			if (!io->urbs [i]->dev)
552 				continue;
553 			retval = usb_unlink_urb (io->urbs [i]);
554 			if (retval != -EINPROGRESS && retval != -EBUSY)
555 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
556 					__FUNCTION__, retval);
557 		}
558 		spin_lock (&io->lock);
559 	}
560 	spin_unlock_irqrestore (&io->lock, flags);
561 }
562 
563 /*-------------------------------------------------------------------*/
564 
565 /**
566  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
567  * @dev: the device whose descriptor is being retrieved
568  * @type: the descriptor type (USB_DT_*)
569  * @index: the number of the descriptor
570  * @buf: where to put the descriptor
571  * @size: how big is "buf"?
572  * Context: !in_interrupt ()
573  *
574  * Gets a USB descriptor.  Convenience functions exist to simplify
575  * getting some types of descriptors.  Use
576  * usb_get_string() or usb_string() for USB_DT_STRING.
577  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
578  * are part of the device structure.
579  * In addition to a number of USB-standard descriptors, some
580  * devices also use class-specific or vendor-specific descriptors.
581  *
582  * This call is synchronous, and may not be used in an interrupt context.
583  *
584  * Returns the number of bytes received on success, or else the status code
585  * returned by the underlying usb_control_msg() call.
586  */
587 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
588 {
589 	int i;
590 	int result;
591 
592 	memset(buf,0,size);	// Make sure we parse really received data
593 
594 	for (i = 0; i < 3; ++i) {
595 		/* retry on length 0 or stall; some devices are flakey */
596 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
597 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
598 				(type << 8) + index, 0, buf, size,
599 				USB_CTRL_GET_TIMEOUT);
600 		if (result == 0 || result == -EPIPE)
601 			continue;
602 		if (result > 1 && ((u8 *)buf)[1] != type) {
603 			result = -EPROTO;
604 			continue;
605 		}
606 		break;
607 	}
608 	return result;
609 }
610 
611 /**
612  * usb_get_string - gets a string descriptor
613  * @dev: the device whose string descriptor is being retrieved
614  * @langid: code for language chosen (from string descriptor zero)
615  * @index: the number of the descriptor
616  * @buf: where to put the string
617  * @size: how big is "buf"?
618  * Context: !in_interrupt ()
619  *
620  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
621  * in little-endian byte order).
622  * The usb_string() function will often be a convenient way to turn
623  * these strings into kernel-printable form.
624  *
625  * Strings may be referenced in device, configuration, interface, or other
626  * descriptors, and could also be used in vendor-specific ways.
627  *
628  * This call is synchronous, and may not be used in an interrupt context.
629  *
630  * Returns the number of bytes received on success, or else the status code
631  * returned by the underlying usb_control_msg() call.
632  */
633 int usb_get_string(struct usb_device *dev, unsigned short langid,
634 		unsigned char index, void *buf, int size)
635 {
636 	int i;
637 	int result;
638 
639 	for (i = 0; i < 3; ++i) {
640 		/* retry on length 0 or stall; some devices are flakey */
641 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 			(USB_DT_STRING << 8) + index, langid, buf, size,
644 			USB_CTRL_GET_TIMEOUT);
645 		if (!(result == 0 || result == -EPIPE))
646 			break;
647 	}
648 	return result;
649 }
650 
651 static void usb_try_string_workarounds(unsigned char *buf, int *length)
652 {
653 	int newlength, oldlength = *length;
654 
655 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
656 		if (!isprint(buf[newlength]) || buf[newlength + 1])
657 			break;
658 
659 	if (newlength > 2) {
660 		buf[0] = newlength;
661 		*length = newlength;
662 	}
663 }
664 
665 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
666 		unsigned int index, unsigned char *buf)
667 {
668 	int rc;
669 
670 	/* Try to read the string descriptor by asking for the maximum
671 	 * possible number of bytes */
672 	rc = usb_get_string(dev, langid, index, buf, 255);
673 
674 	/* If that failed try to read the descriptor length, then
675 	 * ask for just that many bytes */
676 	if (rc < 2) {
677 		rc = usb_get_string(dev, langid, index, buf, 2);
678 		if (rc == 2)
679 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
680 	}
681 
682 	if (rc >= 2) {
683 		if (!buf[0] && !buf[1])
684 			usb_try_string_workarounds(buf, &rc);
685 
686 		/* There might be extra junk at the end of the descriptor */
687 		if (buf[0] < rc)
688 			rc = buf[0];
689 
690 		rc = rc - (rc & 1); /* force a multiple of two */
691 	}
692 
693 	if (rc < 2)
694 		rc = (rc < 0 ? rc : -EINVAL);
695 
696 	return rc;
697 }
698 
699 /**
700  * usb_string - returns ISO 8859-1 version of a string descriptor
701  * @dev: the device whose string descriptor is being retrieved
702  * @index: the number of the descriptor
703  * @buf: where to put the string
704  * @size: how big is "buf"?
705  * Context: !in_interrupt ()
706  *
707  * This converts the UTF-16LE encoded strings returned by devices, from
708  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
709  * that are more usable in most kernel contexts.  Note that all characters
710  * in the chosen descriptor that can't be encoded using ISO-8859-1
711  * are converted to the question mark ("?") character, and this function
712  * chooses strings in the first language supported by the device.
713  *
714  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
715  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
716  * and is appropriate for use many uses of English and several other
717  * Western European languages.  (But it doesn't include the "Euro" symbol.)
718  *
719  * This call is synchronous, and may not be used in an interrupt context.
720  *
721  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
722  */
723 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
724 {
725 	unsigned char *tbuf;
726 	int err;
727 	unsigned int u, idx;
728 
729 	if (dev->state == USB_STATE_SUSPENDED)
730 		return -EHOSTUNREACH;
731 	if (size <= 0 || !buf || !index)
732 		return -EINVAL;
733 	buf[0] = 0;
734 	tbuf = kmalloc(256, GFP_KERNEL);
735 	if (!tbuf)
736 		return -ENOMEM;
737 
738 	/* get langid for strings if it's not yet known */
739 	if (!dev->have_langid) {
740 		err = usb_string_sub(dev, 0, 0, tbuf);
741 		if (err < 0) {
742 			dev_err (&dev->dev,
743 				"string descriptor 0 read error: %d\n",
744 				err);
745 			goto errout;
746 		} else if (err < 4) {
747 			dev_err (&dev->dev, "string descriptor 0 too short\n");
748 			err = -EINVAL;
749 			goto errout;
750 		} else {
751 			dev->have_langid = -1;
752 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
753 				/* always use the first langid listed */
754 			dev_dbg (&dev->dev, "default language 0x%04x\n",
755 				dev->string_langid);
756 		}
757 	}
758 
759 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
760 	if (err < 0)
761 		goto errout;
762 
763 	size--;		/* leave room for trailing NULL char in output buffer */
764 	for (idx = 0, u = 2; u < err; u += 2) {
765 		if (idx >= size)
766 			break;
767 		if (tbuf[u+1])			/* high byte */
768 			buf[idx++] = '?';  /* non ISO-8859-1 character */
769 		else
770 			buf[idx++] = tbuf[u];
771 	}
772 	buf[idx] = 0;
773 	err = idx;
774 
775 	if (tbuf[1] != USB_DT_STRING)
776 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
777 
778  errout:
779 	kfree(tbuf);
780 	return err;
781 }
782 
783 /**
784  * usb_cache_string - read a string descriptor and cache it for later use
785  * @udev: the device whose string descriptor is being read
786  * @index: the descriptor index
787  *
788  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
789  * or NULL if the index is 0 or the string could not be read.
790  */
791 char *usb_cache_string(struct usb_device *udev, int index)
792 {
793 	char *buf;
794 	char *smallbuf = NULL;
795 	int len;
796 
797 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
798 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
799 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
800 				return buf;
801 			memcpy(smallbuf, buf, len);
802 		}
803 		kfree(buf);
804 	}
805 	return smallbuf;
806 }
807 
808 /*
809  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
810  * @dev: the device whose device descriptor is being updated
811  * @size: how much of the descriptor to read
812  * Context: !in_interrupt ()
813  *
814  * Updates the copy of the device descriptor stored in the device structure,
815  * which dedicates space for this purpose.  Note that several fields are
816  * converted to the host CPU's byte order:  the USB version (bcdUSB), and
817  * vendors product and version fields (idVendor, idProduct, and bcdDevice).
818  * That lets device drivers compare against non-byteswapped constants.
819  *
820  * Not exported, only for use by the core.  If drivers really want to read
821  * the device descriptor directly, they can call usb_get_descriptor() with
822  * type = USB_DT_DEVICE and index = 0.
823  *
824  * This call is synchronous, and may not be used in an interrupt context.
825  *
826  * Returns the number of bytes received on success, or else the status code
827  * returned by the underlying usb_control_msg() call.
828  */
829 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
830 {
831 	struct usb_device_descriptor *desc;
832 	int ret;
833 
834 	if (size > sizeof(*desc))
835 		return -EINVAL;
836 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
837 	if (!desc)
838 		return -ENOMEM;
839 
840 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
841 	if (ret >= 0)
842 		memcpy(&dev->descriptor, desc, size);
843 	kfree(desc);
844 	return ret;
845 }
846 
847 /**
848  * usb_get_status - issues a GET_STATUS call
849  * @dev: the device whose status is being checked
850  * @type: USB_RECIP_*; for device, interface, or endpoint
851  * @target: zero (for device), else interface or endpoint number
852  * @data: pointer to two bytes of bitmap data
853  * Context: !in_interrupt ()
854  *
855  * Returns device, interface, or endpoint status.  Normally only of
856  * interest to see if the device is self powered, or has enabled the
857  * remote wakeup facility; or whether a bulk or interrupt endpoint
858  * is halted ("stalled").
859  *
860  * Bits in these status bitmaps are set using the SET_FEATURE request,
861  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
862  * function should be used to clear halt ("stall") status.
863  *
864  * This call is synchronous, and may not be used in an interrupt context.
865  *
866  * Returns the number of bytes received on success, or else the status code
867  * returned by the underlying usb_control_msg() call.
868  */
869 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
870 {
871 	int ret;
872 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
873 
874 	if (!status)
875 		return -ENOMEM;
876 
877 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
878 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
879 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
880 
881 	*(u16 *)data = *status;
882 	kfree(status);
883 	return ret;
884 }
885 
886 /**
887  * usb_clear_halt - tells device to clear endpoint halt/stall condition
888  * @dev: device whose endpoint is halted
889  * @pipe: endpoint "pipe" being cleared
890  * Context: !in_interrupt ()
891  *
892  * This is used to clear halt conditions for bulk and interrupt endpoints,
893  * as reported by URB completion status.  Endpoints that are halted are
894  * sometimes referred to as being "stalled".  Such endpoints are unable
895  * to transmit or receive data until the halt status is cleared.  Any URBs
896  * queued for such an endpoint should normally be unlinked by the driver
897  * before clearing the halt condition, as described in sections 5.7.5
898  * and 5.8.5 of the USB 2.0 spec.
899  *
900  * Note that control and isochronous endpoints don't halt, although control
901  * endpoints report "protocol stall" (for unsupported requests) using the
902  * same status code used to report a true stall.
903  *
904  * This call is synchronous, and may not be used in an interrupt context.
905  *
906  * Returns zero on success, or else the status code returned by the
907  * underlying usb_control_msg() call.
908  */
909 int usb_clear_halt(struct usb_device *dev, int pipe)
910 {
911 	int result;
912 	int endp = usb_pipeendpoint(pipe);
913 
914 	if (usb_pipein (pipe))
915 		endp |= USB_DIR_IN;
916 
917 	/* we don't care if it wasn't halted first. in fact some devices
918 	 * (like some ibmcam model 1 units) seem to expect hosts to make
919 	 * this request for iso endpoints, which can't halt!
920 	 */
921 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
922 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
923 		USB_ENDPOINT_HALT, endp, NULL, 0,
924 		USB_CTRL_SET_TIMEOUT);
925 
926 	/* don't un-halt or force to DATA0 except on success */
927 	if (result < 0)
928 		return result;
929 
930 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
931 	 * the clear "took", so some devices could lock up if you check...
932 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
933 	 *
934 	 * NOTE:  make sure the logic here doesn't diverge much from
935 	 * the copy in usb-storage, for as long as we need two copies.
936 	 */
937 
938 	/* toggle was reset by the clear */
939 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
940 
941 	return 0;
942 }
943 
944 /**
945  * usb_disable_endpoint -- Disable an endpoint by address
946  * @dev: the device whose endpoint is being disabled
947  * @epaddr: the endpoint's address.  Endpoint number for output,
948  *	endpoint number + USB_DIR_IN for input
949  *
950  * Deallocates hcd/hardware state for this endpoint ... and nukes all
951  * pending urbs.
952  *
953  * If the HCD hasn't registered a disable() function, this sets the
954  * endpoint's maxpacket size to 0 to prevent further submissions.
955  */
956 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
957 {
958 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
959 	struct usb_host_endpoint *ep;
960 
961 	if (!dev)
962 		return;
963 
964 	if (usb_endpoint_out(epaddr)) {
965 		ep = dev->ep_out[epnum];
966 		dev->ep_out[epnum] = NULL;
967 	} else {
968 		ep = dev->ep_in[epnum];
969 		dev->ep_in[epnum] = NULL;
970 	}
971 	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
972 		dev->bus->op->disable(dev, ep);
973 }
974 
975 /**
976  * usb_disable_interface -- Disable all endpoints for an interface
977  * @dev: the device whose interface is being disabled
978  * @intf: pointer to the interface descriptor
979  *
980  * Disables all the endpoints for the interface's current altsetting.
981  */
982 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
983 {
984 	struct usb_host_interface *alt = intf->cur_altsetting;
985 	int i;
986 
987 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
988 		usb_disable_endpoint(dev,
989 				alt->endpoint[i].desc.bEndpointAddress);
990 	}
991 }
992 
993 /*
994  * usb_disable_device - Disable all the endpoints for a USB device
995  * @dev: the device whose endpoints are being disabled
996  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
997  *
998  * Disables all the device's endpoints, potentially including endpoint 0.
999  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1000  * pending urbs) and usbcore state for the interfaces, so that usbcore
1001  * must usb_set_configuration() before any interfaces could be used.
1002  */
1003 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1004 {
1005 	int i;
1006 
1007 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1008 			skip_ep0 ? "non-ep0" : "all");
1009 	for (i = skip_ep0; i < 16; ++i) {
1010 		usb_disable_endpoint(dev, i);
1011 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1012 	}
1013 	dev->toggle[0] = dev->toggle[1] = 0;
1014 
1015 	/* getting rid of interfaces will disconnect
1016 	 * any drivers bound to them (a key side effect)
1017 	 */
1018 	if (dev->actconfig) {
1019 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1020 			struct usb_interface	*interface;
1021 
1022 			/* remove this interface if it has been registered */
1023 			interface = dev->actconfig->interface[i];
1024 			if (!device_is_registered(&interface->dev))
1025 				continue;
1026 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1027 				interface->dev.bus_id);
1028 			usb_remove_sysfs_intf_files(interface);
1029 			device_del (&interface->dev);
1030 		}
1031 
1032 		/* Now that the interfaces are unbound, nobody should
1033 		 * try to access them.
1034 		 */
1035 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1036 			put_device (&dev->actconfig->interface[i]->dev);
1037 			dev->actconfig->interface[i] = NULL;
1038 		}
1039 		dev->actconfig = NULL;
1040 		if (dev->state == USB_STATE_CONFIGURED)
1041 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1042 	}
1043 }
1044 
1045 
1046 /*
1047  * usb_enable_endpoint - Enable an endpoint for USB communications
1048  * @dev: the device whose interface is being enabled
1049  * @ep: the endpoint
1050  *
1051  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1052  * For control endpoints, both the input and output sides are handled.
1053  */
1054 static void
1055 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1056 {
1057 	unsigned int epaddr = ep->desc.bEndpointAddress;
1058 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1059 	int is_control;
1060 
1061 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1062 			== USB_ENDPOINT_XFER_CONTROL);
1063 	if (usb_endpoint_out(epaddr) || is_control) {
1064 		usb_settoggle(dev, epnum, 1, 0);
1065 		dev->ep_out[epnum] = ep;
1066 	}
1067 	if (!usb_endpoint_out(epaddr) || is_control) {
1068 		usb_settoggle(dev, epnum, 0, 0);
1069 		dev->ep_in[epnum] = ep;
1070 	}
1071 }
1072 
1073 /*
1074  * usb_enable_interface - Enable all the endpoints for an interface
1075  * @dev: the device whose interface is being enabled
1076  * @intf: pointer to the interface descriptor
1077  *
1078  * Enables all the endpoints for the interface's current altsetting.
1079  */
1080 static void usb_enable_interface(struct usb_device *dev,
1081 				 struct usb_interface *intf)
1082 {
1083 	struct usb_host_interface *alt = intf->cur_altsetting;
1084 	int i;
1085 
1086 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1087 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1088 }
1089 
1090 /**
1091  * usb_set_interface - Makes a particular alternate setting be current
1092  * @dev: the device whose interface is being updated
1093  * @interface: the interface being updated
1094  * @alternate: the setting being chosen.
1095  * Context: !in_interrupt ()
1096  *
1097  * This is used to enable data transfers on interfaces that may not
1098  * be enabled by default.  Not all devices support such configurability.
1099  * Only the driver bound to an interface may change its setting.
1100  *
1101  * Within any given configuration, each interface may have several
1102  * alternative settings.  These are often used to control levels of
1103  * bandwidth consumption.  For example, the default setting for a high
1104  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1105  * while interrupt transfers of up to 3KBytes per microframe are legal.
1106  * Also, isochronous endpoints may never be part of an
1107  * interface's default setting.  To access such bandwidth, alternate
1108  * interface settings must be made current.
1109  *
1110  * Note that in the Linux USB subsystem, bandwidth associated with
1111  * an endpoint in a given alternate setting is not reserved until an URB
1112  * is submitted that needs that bandwidth.  Some other operating systems
1113  * allocate bandwidth early, when a configuration is chosen.
1114  *
1115  * This call is synchronous, and may not be used in an interrupt context.
1116  * Also, drivers must not change altsettings while urbs are scheduled for
1117  * endpoints in that interface; all such urbs must first be completed
1118  * (perhaps forced by unlinking).
1119  *
1120  * Returns zero on success, or else the status code returned by the
1121  * underlying usb_control_msg() call.
1122  */
1123 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1124 {
1125 	struct usb_interface *iface;
1126 	struct usb_host_interface *alt;
1127 	int ret;
1128 	int manual = 0;
1129 
1130 	if (dev->state == USB_STATE_SUSPENDED)
1131 		return -EHOSTUNREACH;
1132 
1133 	iface = usb_ifnum_to_if(dev, interface);
1134 	if (!iface) {
1135 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1136 			interface);
1137 		return -EINVAL;
1138 	}
1139 
1140 	alt = usb_altnum_to_altsetting(iface, alternate);
1141 	if (!alt) {
1142 		warn("selecting invalid altsetting %d", alternate);
1143 		return -EINVAL;
1144 	}
1145 
1146 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1147 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1148 				   alternate, interface, NULL, 0, 5000);
1149 
1150 	/* 9.4.10 says devices don't need this and are free to STALL the
1151 	 * request if the interface only has one alternate setting.
1152 	 */
1153 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1154 		dev_dbg(&dev->dev,
1155 			"manual set_interface for iface %d, alt %d\n",
1156 			interface, alternate);
1157 		manual = 1;
1158 	} else if (ret < 0)
1159 		return ret;
1160 
1161 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1162 	 * when they implement async or easily-killable versions of this or
1163 	 * other "should-be-internal" functions (like clear_halt).
1164 	 * should hcd+usbcore postprocess control requests?
1165 	 */
1166 
1167 	/* prevent submissions using previous endpoint settings */
1168 	if (device_is_registered(&iface->dev))
1169 		usb_remove_sysfs_intf_files(iface);
1170 	usb_disable_interface(dev, iface);
1171 
1172 	iface->cur_altsetting = alt;
1173 
1174 	/* If the interface only has one altsetting and the device didn't
1175 	 * accept the request, we attempt to carry out the equivalent action
1176 	 * by manually clearing the HALT feature for each endpoint in the
1177 	 * new altsetting.
1178 	 */
1179 	if (manual) {
1180 		int i;
1181 
1182 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1183 			unsigned int epaddr =
1184 				alt->endpoint[i].desc.bEndpointAddress;
1185 			unsigned int pipe =
1186 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1187 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1188 
1189 			usb_clear_halt(dev, pipe);
1190 		}
1191 	}
1192 
1193 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1194 	 *
1195 	 * Note:
1196 	 * Despite EP0 is always present in all interfaces/AS, the list of
1197 	 * endpoints from the descriptor does not contain EP0. Due to its
1198 	 * omnipresence one might expect EP0 being considered "affected" by
1199 	 * any SetInterface request and hence assume toggles need to be reset.
1200 	 * However, EP0 toggles are re-synced for every individual transfer
1201 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1202 	 * (Likewise, EP0 never "halts" on well designed devices.)
1203 	 */
1204 	usb_enable_interface(dev, iface);
1205 	if (device_is_registered(&iface->dev))
1206 		usb_create_sysfs_intf_files(iface);
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * usb_reset_configuration - lightweight device reset
1213  * @dev: the device whose configuration is being reset
1214  *
1215  * This issues a standard SET_CONFIGURATION request to the device using
1216  * the current configuration.  The effect is to reset most USB-related
1217  * state in the device, including interface altsettings (reset to zero),
1218  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1219  * endpoints).  Other usbcore state is unchanged, including bindings of
1220  * usb device drivers to interfaces.
1221  *
1222  * Because this affects multiple interfaces, avoid using this with composite
1223  * (multi-interface) devices.  Instead, the driver for each interface may
1224  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1225  * some devices don't support the SET_INTERFACE request, and others won't
1226  * reset all the interface state (notably data toggles).  Resetting the whole
1227  * configuration would affect other drivers' interfaces.
1228  *
1229  * The caller must own the device lock.
1230  *
1231  * Returns zero on success, else a negative error code.
1232  */
1233 int usb_reset_configuration(struct usb_device *dev)
1234 {
1235 	int			i, retval;
1236 	struct usb_host_config	*config;
1237 
1238 	if (dev->state == USB_STATE_SUSPENDED)
1239 		return -EHOSTUNREACH;
1240 
1241 	/* caller must have locked the device and must own
1242 	 * the usb bus readlock (so driver bindings are stable);
1243 	 * calls during probe() are fine
1244 	 */
1245 
1246 	for (i = 1; i < 16; ++i) {
1247 		usb_disable_endpoint(dev, i);
1248 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1249 	}
1250 
1251 	config = dev->actconfig;
1252 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1253 			USB_REQ_SET_CONFIGURATION, 0,
1254 			config->desc.bConfigurationValue, 0,
1255 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1256 	if (retval < 0)
1257 		return retval;
1258 
1259 	dev->toggle[0] = dev->toggle[1] = 0;
1260 
1261 	/* re-init hc/hcd interface/endpoint state */
1262 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1263 		struct usb_interface *intf = config->interface[i];
1264 		struct usb_host_interface *alt;
1265 
1266 		if (device_is_registered(&intf->dev))
1267 			usb_remove_sysfs_intf_files(intf);
1268 		alt = usb_altnum_to_altsetting(intf, 0);
1269 
1270 		/* No altsetting 0?  We'll assume the first altsetting.
1271 		 * We could use a GetInterface call, but if a device is
1272 		 * so non-compliant that it doesn't have altsetting 0
1273 		 * then I wouldn't trust its reply anyway.
1274 		 */
1275 		if (!alt)
1276 			alt = &intf->altsetting[0];
1277 
1278 		intf->cur_altsetting = alt;
1279 		usb_enable_interface(dev, intf);
1280 		if (device_is_registered(&intf->dev))
1281 			usb_create_sysfs_intf_files(intf);
1282 	}
1283 	return 0;
1284 }
1285 
1286 static void release_interface(struct device *dev)
1287 {
1288 	struct usb_interface *intf = to_usb_interface(dev);
1289 	struct usb_interface_cache *intfc =
1290 			altsetting_to_usb_interface_cache(intf->altsetting);
1291 
1292 	kref_put(&intfc->ref, usb_release_interface_cache);
1293 	kfree(intf);
1294 }
1295 
1296 /*
1297  * usb_set_configuration - Makes a particular device setting be current
1298  * @dev: the device whose configuration is being updated
1299  * @configuration: the configuration being chosen.
1300  * Context: !in_interrupt(), caller owns the device lock
1301  *
1302  * This is used to enable non-default device modes.  Not all devices
1303  * use this kind of configurability; many devices only have one
1304  * configuration.
1305  *
1306  * USB device configurations may affect Linux interoperability,
1307  * power consumption and the functionality available.  For example,
1308  * the default configuration is limited to using 100mA of bus power,
1309  * so that when certain device functionality requires more power,
1310  * and the device is bus powered, that functionality should be in some
1311  * non-default device configuration.  Other device modes may also be
1312  * reflected as configuration options, such as whether two ISDN
1313  * channels are available independently; and choosing between open
1314  * standard device protocols (like CDC) or proprietary ones.
1315  *
1316  * Note that USB has an additional level of device configurability,
1317  * associated with interfaces.  That configurability is accessed using
1318  * usb_set_interface().
1319  *
1320  * This call is synchronous. The calling context must be able to sleep,
1321  * must own the device lock, and must not hold the driver model's USB
1322  * bus rwsem; usb device driver probe() methods cannot use this routine.
1323  *
1324  * Returns zero on success, or else the status code returned by the
1325  * underlying call that failed.  On successful completion, each interface
1326  * in the original device configuration has been destroyed, and each one
1327  * in the new configuration has been probed by all relevant usb device
1328  * drivers currently known to the kernel.
1329  */
1330 int usb_set_configuration(struct usb_device *dev, int configuration)
1331 {
1332 	int i, ret;
1333 	struct usb_host_config *cp = NULL;
1334 	struct usb_interface **new_interfaces = NULL;
1335 	int n, nintf;
1336 
1337 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1338 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1339 			cp = &dev->config[i];
1340 			break;
1341 		}
1342 	}
1343 	if ((!cp && configuration != 0))
1344 		return -EINVAL;
1345 
1346 	/* The USB spec says configuration 0 means unconfigured.
1347 	 * But if a device includes a configuration numbered 0,
1348 	 * we will accept it as a correctly configured state.
1349 	 */
1350 	if (cp && configuration == 0)
1351 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1352 
1353 	if (dev->state == USB_STATE_SUSPENDED)
1354 		return -EHOSTUNREACH;
1355 
1356 	/* Allocate memory for new interfaces before doing anything else,
1357 	 * so that if we run out then nothing will have changed. */
1358 	n = nintf = 0;
1359 	if (cp) {
1360 		nintf = cp->desc.bNumInterfaces;
1361 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1362 				GFP_KERNEL);
1363 		if (!new_interfaces) {
1364 			dev_err(&dev->dev, "Out of memory");
1365 			return -ENOMEM;
1366 		}
1367 
1368 		for (; n < nintf; ++n) {
1369 			new_interfaces[n] = kzalloc(
1370 					sizeof(struct usb_interface),
1371 					GFP_KERNEL);
1372 			if (!new_interfaces[n]) {
1373 				dev_err(&dev->dev, "Out of memory");
1374 				ret = -ENOMEM;
1375 free_interfaces:
1376 				while (--n >= 0)
1377 					kfree(new_interfaces[n]);
1378 				kfree(new_interfaces);
1379 				return ret;
1380 			}
1381 		}
1382 	}
1383 
1384 	/* if it's already configured, clear out old state first.
1385 	 * getting rid of old interfaces means unbinding their drivers.
1386 	 */
1387 	if (dev->state != USB_STATE_ADDRESS)
1388 		usb_disable_device (dev, 1);	// Skip ep0
1389 
1390 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1391 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1392 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0)
1393 		goto free_interfaces;
1394 
1395 	dev->actconfig = cp;
1396 	if (!cp)
1397 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1398 	else {
1399 		usb_set_device_state(dev, USB_STATE_CONFIGURED);
1400 
1401 		/* Initialize the new interface structures and the
1402 		 * hc/hcd/usbcore interface/endpoint state.
1403 		 */
1404 		for (i = 0; i < nintf; ++i) {
1405 			struct usb_interface_cache *intfc;
1406 			struct usb_interface *intf;
1407 			struct usb_host_interface *alt;
1408 
1409 			cp->interface[i] = intf = new_interfaces[i];
1410 			intfc = cp->intf_cache[i];
1411 			intf->altsetting = intfc->altsetting;
1412 			intf->num_altsetting = intfc->num_altsetting;
1413 			kref_get(&intfc->ref);
1414 
1415 			alt = usb_altnum_to_altsetting(intf, 0);
1416 
1417 			/* No altsetting 0?  We'll assume the first altsetting.
1418 			 * We could use a GetInterface call, but if a device is
1419 			 * so non-compliant that it doesn't have altsetting 0
1420 			 * then I wouldn't trust its reply anyway.
1421 			 */
1422 			if (!alt)
1423 				alt = &intf->altsetting[0];
1424 
1425 			intf->cur_altsetting = alt;
1426 			usb_enable_interface(dev, intf);
1427 			intf->dev.parent = &dev->dev;
1428 			intf->dev.driver = NULL;
1429 			intf->dev.bus = &usb_bus_type;
1430 			intf->dev.dma_mask = dev->dev.dma_mask;
1431 			intf->dev.release = release_interface;
1432 			device_initialize (&intf->dev);
1433 			mark_quiesced(intf);
1434 			sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1435 				 dev->bus->busnum, dev->devpath,
1436 				 configuration,
1437 				 alt->desc.bInterfaceNumber);
1438 		}
1439 		kfree(new_interfaces);
1440 
1441 		if (cp->string == NULL)
1442 			cp->string = usb_cache_string(dev,
1443 					cp->desc.iConfiguration);
1444 
1445 		/* Now that all the interfaces are set up, register them
1446 		 * to trigger binding of drivers to interfaces.  probe()
1447 		 * routines may install different altsettings and may
1448 		 * claim() any interfaces not yet bound.  Many class drivers
1449 		 * need that: CDC, audio, video, etc.
1450 		 */
1451 		for (i = 0; i < nintf; ++i) {
1452 			struct usb_interface *intf = cp->interface[i];
1453 
1454 			dev_dbg (&dev->dev,
1455 				"adding %s (config #%d, interface %d)\n",
1456 				intf->dev.bus_id, configuration,
1457 				intf->cur_altsetting->desc.bInterfaceNumber);
1458 			ret = device_add (&intf->dev);
1459 			if (ret != 0) {
1460 				dev_err(&dev->dev,
1461 					"device_add(%s) --> %d\n",
1462 					intf->dev.bus_id,
1463 					ret);
1464 				continue;
1465 			}
1466 			usb_create_sysfs_intf_files (intf);
1467 		}
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 // synchronous request completion model
1474 EXPORT_SYMBOL(usb_control_msg);
1475 EXPORT_SYMBOL(usb_bulk_msg);
1476 
1477 EXPORT_SYMBOL(usb_sg_init);
1478 EXPORT_SYMBOL(usb_sg_cancel);
1479 EXPORT_SYMBOL(usb_sg_wait);
1480 
1481 // synchronous control message convenience routines
1482 EXPORT_SYMBOL(usb_get_descriptor);
1483 EXPORT_SYMBOL(usb_get_status);
1484 EXPORT_SYMBOL(usb_get_string);
1485 EXPORT_SYMBOL(usb_string);
1486 
1487 // synchronous calls that also maintain usbcore state
1488 EXPORT_SYMBOL(usb_clear_halt);
1489 EXPORT_SYMBOL(usb_reset_configuration);
1490 EXPORT_SYMBOL(usb_set_interface);
1491 
1492