1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/config.h> 6 #include <linux/pci.h> /* for scatterlist macros */ 7 #include <linux/usb.h> 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/timer.h> 13 #include <linux/ctype.h> 14 #include <linux/device.h> 15 #include <asm/byteorder.h> 16 17 #include "hcd.h" /* for usbcore internals */ 18 #include "usb.h" 19 20 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs) 21 { 22 complete((struct completion *)urb->context); 23 } 24 25 26 static void timeout_kill(unsigned long data) 27 { 28 struct urb *urb = (struct urb *) data; 29 30 usb_unlink_urb(urb); 31 } 32 33 // Starts urb and waits for completion or timeout 34 // note that this call is NOT interruptible, while 35 // many device driver i/o requests should be interruptible 36 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length) 37 { 38 struct completion done; 39 struct timer_list timer; 40 int status; 41 42 init_completion(&done); 43 urb->context = &done; 44 urb->actual_length = 0; 45 status = usb_submit_urb(urb, GFP_NOIO); 46 47 if (status == 0) { 48 if (timeout > 0) { 49 init_timer(&timer); 50 timer.expires = jiffies + msecs_to_jiffies(timeout); 51 timer.data = (unsigned long)urb; 52 timer.function = timeout_kill; 53 /* grr. timeout _should_ include submit delays. */ 54 add_timer(&timer); 55 } 56 wait_for_completion(&done); 57 status = urb->status; 58 /* note: HCDs return ETIMEDOUT for other reasons too */ 59 if (status == -ECONNRESET) { 60 dev_dbg(&urb->dev->dev, 61 "%s timed out on ep%d%s len=%d/%d\n", 62 current->comm, 63 usb_pipeendpoint(urb->pipe), 64 usb_pipein(urb->pipe) ? "in" : "out", 65 urb->actual_length, 66 urb->transfer_buffer_length 67 ); 68 if (urb->actual_length > 0) 69 status = 0; 70 else 71 status = -ETIMEDOUT; 72 } 73 if (timeout > 0) 74 del_timer_sync(&timer); 75 } 76 77 if (actual_length) 78 *actual_length = urb->actual_length; 79 usb_free_urb(urb); 80 return status; 81 } 82 83 /*-------------------------------------------------------------------*/ 84 // returns status (negative) or length (positive) 85 static int usb_internal_control_msg(struct usb_device *usb_dev, 86 unsigned int pipe, 87 struct usb_ctrlrequest *cmd, 88 void *data, int len, int timeout) 89 { 90 struct urb *urb; 91 int retv; 92 int length; 93 94 urb = usb_alloc_urb(0, GFP_NOIO); 95 if (!urb) 96 return -ENOMEM; 97 98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 99 len, usb_api_blocking_completion, NULL); 100 101 retv = usb_start_wait_urb(urb, timeout, &length); 102 if (retv < 0) 103 return retv; 104 else 105 return length; 106 } 107 108 /** 109 * usb_control_msg - Builds a control urb, sends it off and waits for completion 110 * @dev: pointer to the usb device to send the message to 111 * @pipe: endpoint "pipe" to send the message to 112 * @request: USB message request value 113 * @requesttype: USB message request type value 114 * @value: USB message value 115 * @index: USB message index value 116 * @data: pointer to the data to send 117 * @size: length in bytes of the data to send 118 * @timeout: time in msecs to wait for the message to complete before 119 * timing out (if 0 the wait is forever) 120 * Context: !in_interrupt () 121 * 122 * This function sends a simple control message to a specified endpoint 123 * and waits for the message to complete, or timeout. 124 * 125 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 126 * 127 * Don't use this function from within an interrupt context, like a 128 * bottom half handler. If you need an asynchronous message, or need to send 129 * a message from within interrupt context, use usb_submit_urb() 130 * If a thread in your driver uses this call, make sure your disconnect() 131 * method can wait for it to complete. Since you don't have a handle on 132 * the URB used, you can't cancel the request. 133 */ 134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 135 __u16 value, __u16 index, void *data, __u16 size, int timeout) 136 { 137 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 138 int ret; 139 140 if (!dr) 141 return -ENOMEM; 142 143 dr->bRequestType= requesttype; 144 dr->bRequest = request; 145 dr->wValue = cpu_to_le16p(&value); 146 dr->wIndex = cpu_to_le16p(&index); 147 dr->wLength = cpu_to_le16p(&size); 148 149 //dbg("usb_control_msg"); 150 151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 152 153 kfree(dr); 154 155 return ret; 156 } 157 158 159 /** 160 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 161 * @usb_dev: pointer to the usb device to send the message to 162 * @pipe: endpoint "pipe" to send the message to 163 * @data: pointer to the data to send 164 * @len: length in bytes of the data to send 165 * @actual_length: pointer to a location to put the actual length transferred in bytes 166 * @timeout: time in msecs to wait for the message to complete before 167 * timing out (if 0 the wait is forever) 168 * Context: !in_interrupt () 169 * 170 * This function sends a simple bulk message to a specified endpoint 171 * and waits for the message to complete, or timeout. 172 * 173 * If successful, it returns 0, otherwise a negative error number. 174 * The number of actual bytes transferred will be stored in the 175 * actual_length paramater. 176 * 177 * Don't use this function from within an interrupt context, like a 178 * bottom half handler. If you need an asynchronous message, or need to 179 * send a message from within interrupt context, use usb_submit_urb() 180 * If a thread in your driver uses this call, make sure your disconnect() 181 * method can wait for it to complete. Since you don't have a handle on 182 * the URB used, you can't cancel the request. 183 * 184 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 185 * ioctl, users are forced to abuse this routine by using it to submit 186 * URBs for interrupt endpoints. We will take the liberty of creating 187 * an interrupt URB (with the default interval) if the target is an 188 * interrupt endpoint. 189 */ 190 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 191 void *data, int len, int *actual_length, int timeout) 192 { 193 struct urb *urb; 194 struct usb_host_endpoint *ep; 195 196 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 197 [usb_pipeendpoint(pipe)]; 198 if (!ep || len < 0) 199 return -EINVAL; 200 201 urb = usb_alloc_urb(0, GFP_KERNEL); 202 if (!urb) 203 return -ENOMEM; 204 205 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 206 USB_ENDPOINT_XFER_INT) { 207 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 208 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 209 usb_api_blocking_completion, NULL, 210 ep->desc.bInterval); 211 } else 212 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 213 usb_api_blocking_completion, NULL); 214 215 return usb_start_wait_urb(urb, timeout, actual_length); 216 } 217 218 /*-------------------------------------------------------------------*/ 219 220 static void sg_clean (struct usb_sg_request *io) 221 { 222 if (io->urbs) { 223 while (io->entries--) 224 usb_free_urb (io->urbs [io->entries]); 225 kfree (io->urbs); 226 io->urbs = NULL; 227 } 228 if (io->dev->dev.dma_mask != NULL) 229 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 230 io->dev = NULL; 231 } 232 233 static void sg_complete (struct urb *urb, struct pt_regs *regs) 234 { 235 struct usb_sg_request *io = (struct usb_sg_request *) urb->context; 236 237 spin_lock (&io->lock); 238 239 /* In 2.5 we require hcds' endpoint queues not to progress after fault 240 * reports, until the completion callback (this!) returns. That lets 241 * device driver code (like this routine) unlink queued urbs first, 242 * if it needs to, since the HC won't work on them at all. So it's 243 * not possible for page N+1 to overwrite page N, and so on. 244 * 245 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 246 * complete before the HCD can get requests away from hardware, 247 * though never during cleanup after a hard fault. 248 */ 249 if (io->status 250 && (io->status != -ECONNRESET 251 || urb->status != -ECONNRESET) 252 && urb->actual_length) { 253 dev_err (io->dev->bus->controller, 254 "dev %s ep%d%s scatterlist error %d/%d\n", 255 io->dev->devpath, 256 usb_pipeendpoint (urb->pipe), 257 usb_pipein (urb->pipe) ? "in" : "out", 258 urb->status, io->status); 259 // BUG (); 260 } 261 262 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 263 int i, found, status; 264 265 io->status = urb->status; 266 267 /* the previous urbs, and this one, completed already. 268 * unlink pending urbs so they won't rx/tx bad data. 269 * careful: unlink can sometimes be synchronous... 270 */ 271 spin_unlock (&io->lock); 272 for (i = 0, found = 0; i < io->entries; i++) { 273 if (!io->urbs [i] || !io->urbs [i]->dev) 274 continue; 275 if (found) { 276 status = usb_unlink_urb (io->urbs [i]); 277 if (status != -EINPROGRESS 278 && status != -ENODEV 279 && status != -EBUSY) 280 dev_err (&io->dev->dev, 281 "%s, unlink --> %d\n", 282 __FUNCTION__, status); 283 } else if (urb == io->urbs [i]) 284 found = 1; 285 } 286 spin_lock (&io->lock); 287 } 288 urb->dev = NULL; 289 290 /* on the last completion, signal usb_sg_wait() */ 291 io->bytes += urb->actual_length; 292 io->count--; 293 if (!io->count) 294 complete (&io->complete); 295 296 spin_unlock (&io->lock); 297 } 298 299 300 /** 301 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 302 * @io: request block being initialized. until usb_sg_wait() returns, 303 * treat this as a pointer to an opaque block of memory, 304 * @dev: the usb device that will send or receive the data 305 * @pipe: endpoint "pipe" used to transfer the data 306 * @period: polling rate for interrupt endpoints, in frames or 307 * (for high speed endpoints) microframes; ignored for bulk 308 * @sg: scatterlist entries 309 * @nents: how many entries in the scatterlist 310 * @length: how many bytes to send from the scatterlist, or zero to 311 * send every byte identified in the list. 312 * @mem_flags: SLAB_* flags affecting memory allocations in this call 313 * 314 * Returns zero for success, else a negative errno value. This initializes a 315 * scatter/gather request, allocating resources such as I/O mappings and urb 316 * memory (except maybe memory used by USB controller drivers). 317 * 318 * The request must be issued using usb_sg_wait(), which waits for the I/O to 319 * complete (or to be canceled) and then cleans up all resources allocated by 320 * usb_sg_init(). 321 * 322 * The request may be canceled with usb_sg_cancel(), either before or after 323 * usb_sg_wait() is called. 324 */ 325 int usb_sg_init ( 326 struct usb_sg_request *io, 327 struct usb_device *dev, 328 unsigned pipe, 329 unsigned period, 330 struct scatterlist *sg, 331 int nents, 332 size_t length, 333 gfp_t mem_flags 334 ) 335 { 336 int i; 337 int urb_flags; 338 int dma; 339 340 if (!io || !dev || !sg 341 || usb_pipecontrol (pipe) 342 || usb_pipeisoc (pipe) 343 || nents <= 0) 344 return -EINVAL; 345 346 spin_lock_init (&io->lock); 347 io->dev = dev; 348 io->pipe = pipe; 349 io->sg = sg; 350 io->nents = nents; 351 352 /* not all host controllers use DMA (like the mainstream pci ones); 353 * they can use PIO (sl811) or be software over another transport. 354 */ 355 dma = (dev->dev.dma_mask != NULL); 356 if (dma) 357 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 358 else 359 io->entries = nents; 360 361 /* initialize all the urbs we'll use */ 362 if (io->entries <= 0) 363 return io->entries; 364 365 io->count = io->entries; 366 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 367 if (!io->urbs) 368 goto nomem; 369 370 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 371 if (usb_pipein (pipe)) 372 urb_flags |= URB_SHORT_NOT_OK; 373 374 for (i = 0; i < io->entries; i++) { 375 unsigned len; 376 377 io->urbs [i] = usb_alloc_urb (0, mem_flags); 378 if (!io->urbs [i]) { 379 io->entries = i; 380 goto nomem; 381 } 382 383 io->urbs [i]->dev = NULL; 384 io->urbs [i]->pipe = pipe; 385 io->urbs [i]->interval = period; 386 io->urbs [i]->transfer_flags = urb_flags; 387 388 io->urbs [i]->complete = sg_complete; 389 io->urbs [i]->context = io; 390 io->urbs [i]->status = -EINPROGRESS; 391 io->urbs [i]->actual_length = 0; 392 393 if (dma) { 394 /* hc may use _only_ transfer_dma */ 395 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 396 len = sg_dma_len (sg + i); 397 } else { 398 /* hc may use _only_ transfer_buffer */ 399 io->urbs [i]->transfer_buffer = 400 page_address (sg [i].page) + sg [i].offset; 401 len = sg [i].length; 402 } 403 404 if (length) { 405 len = min_t (unsigned, len, length); 406 length -= len; 407 if (length == 0) 408 io->entries = i + 1; 409 } 410 io->urbs [i]->transfer_buffer_length = len; 411 } 412 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 413 414 /* transaction state */ 415 io->status = 0; 416 io->bytes = 0; 417 init_completion (&io->complete); 418 return 0; 419 420 nomem: 421 sg_clean (io); 422 return -ENOMEM; 423 } 424 425 426 /** 427 * usb_sg_wait - synchronously execute scatter/gather request 428 * @io: request block handle, as initialized with usb_sg_init(). 429 * some fields become accessible when this call returns. 430 * Context: !in_interrupt () 431 * 432 * This function blocks until the specified I/O operation completes. It 433 * leverages the grouping of the related I/O requests to get good transfer 434 * rates, by queueing the requests. At higher speeds, such queuing can 435 * significantly improve USB throughput. 436 * 437 * There are three kinds of completion for this function. 438 * (1) success, where io->status is zero. The number of io->bytes 439 * transferred is as requested. 440 * (2) error, where io->status is a negative errno value. The number 441 * of io->bytes transferred before the error is usually less 442 * than requested, and can be nonzero. 443 * (3) cancellation, a type of error with status -ECONNRESET that 444 * is initiated by usb_sg_cancel(). 445 * 446 * When this function returns, all memory allocated through usb_sg_init() or 447 * this call will have been freed. The request block parameter may still be 448 * passed to usb_sg_cancel(), or it may be freed. It could also be 449 * reinitialized and then reused. 450 * 451 * Data Transfer Rates: 452 * 453 * Bulk transfers are valid for full or high speed endpoints. 454 * The best full speed data rate is 19 packets of 64 bytes each 455 * per frame, or 1216 bytes per millisecond. 456 * The best high speed data rate is 13 packets of 512 bytes each 457 * per microframe, or 52 KBytes per millisecond. 458 * 459 * The reason to use interrupt transfers through this API would most likely 460 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 461 * could be transferred. That capability is less useful for low or full 462 * speed interrupt endpoints, which allow at most one packet per millisecond, 463 * of at most 8 or 64 bytes (respectively). 464 */ 465 void usb_sg_wait (struct usb_sg_request *io) 466 { 467 int i, entries = io->entries; 468 469 /* queue the urbs. */ 470 spin_lock_irq (&io->lock); 471 for (i = 0; i < entries && !io->status; i++) { 472 int retval; 473 474 io->urbs [i]->dev = io->dev; 475 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC); 476 477 /* after we submit, let completions or cancelations fire; 478 * we handshake using io->status. 479 */ 480 spin_unlock_irq (&io->lock); 481 switch (retval) { 482 /* maybe we retrying will recover */ 483 case -ENXIO: // hc didn't queue this one 484 case -EAGAIN: 485 case -ENOMEM: 486 io->urbs[i]->dev = NULL; 487 retval = 0; 488 i--; 489 yield (); 490 break; 491 492 /* no error? continue immediately. 493 * 494 * NOTE: to work better with UHCI (4K I/O buffer may 495 * need 3K of TDs) it may be good to limit how many 496 * URBs are queued at once; N milliseconds? 497 */ 498 case 0: 499 cpu_relax (); 500 break; 501 502 /* fail any uncompleted urbs */ 503 default: 504 io->urbs [i]->dev = NULL; 505 io->urbs [i]->status = retval; 506 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 507 __FUNCTION__, retval); 508 usb_sg_cancel (io); 509 } 510 spin_lock_irq (&io->lock); 511 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 512 io->status = retval; 513 } 514 io->count -= entries - i; 515 if (io->count == 0) 516 complete (&io->complete); 517 spin_unlock_irq (&io->lock); 518 519 /* OK, yes, this could be packaged as non-blocking. 520 * So could the submit loop above ... but it's easier to 521 * solve neither problem than to solve both! 522 */ 523 wait_for_completion (&io->complete); 524 525 sg_clean (io); 526 } 527 528 /** 529 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 530 * @io: request block, initialized with usb_sg_init() 531 * 532 * This stops a request after it has been started by usb_sg_wait(). 533 * It can also prevents one initialized by usb_sg_init() from starting, 534 * so that call just frees resources allocated to the request. 535 */ 536 void usb_sg_cancel (struct usb_sg_request *io) 537 { 538 unsigned long flags; 539 540 spin_lock_irqsave (&io->lock, flags); 541 542 /* shut everything down, if it didn't already */ 543 if (!io->status) { 544 int i; 545 546 io->status = -ECONNRESET; 547 spin_unlock (&io->lock); 548 for (i = 0; i < io->entries; i++) { 549 int retval; 550 551 if (!io->urbs [i]->dev) 552 continue; 553 retval = usb_unlink_urb (io->urbs [i]); 554 if (retval != -EINPROGRESS && retval != -EBUSY) 555 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 556 __FUNCTION__, retval); 557 } 558 spin_lock (&io->lock); 559 } 560 spin_unlock_irqrestore (&io->lock, flags); 561 } 562 563 /*-------------------------------------------------------------------*/ 564 565 /** 566 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 567 * @dev: the device whose descriptor is being retrieved 568 * @type: the descriptor type (USB_DT_*) 569 * @index: the number of the descriptor 570 * @buf: where to put the descriptor 571 * @size: how big is "buf"? 572 * Context: !in_interrupt () 573 * 574 * Gets a USB descriptor. Convenience functions exist to simplify 575 * getting some types of descriptors. Use 576 * usb_get_string() or usb_string() for USB_DT_STRING. 577 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 578 * are part of the device structure. 579 * In addition to a number of USB-standard descriptors, some 580 * devices also use class-specific or vendor-specific descriptors. 581 * 582 * This call is synchronous, and may not be used in an interrupt context. 583 * 584 * Returns the number of bytes received on success, or else the status code 585 * returned by the underlying usb_control_msg() call. 586 */ 587 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 588 { 589 int i; 590 int result; 591 592 memset(buf,0,size); // Make sure we parse really received data 593 594 for (i = 0; i < 3; ++i) { 595 /* retry on length 0 or stall; some devices are flakey */ 596 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 597 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 598 (type << 8) + index, 0, buf, size, 599 USB_CTRL_GET_TIMEOUT); 600 if (result == 0 || result == -EPIPE) 601 continue; 602 if (result > 1 && ((u8 *)buf)[1] != type) { 603 result = -EPROTO; 604 continue; 605 } 606 break; 607 } 608 return result; 609 } 610 611 /** 612 * usb_get_string - gets a string descriptor 613 * @dev: the device whose string descriptor is being retrieved 614 * @langid: code for language chosen (from string descriptor zero) 615 * @index: the number of the descriptor 616 * @buf: where to put the string 617 * @size: how big is "buf"? 618 * Context: !in_interrupt () 619 * 620 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 621 * in little-endian byte order). 622 * The usb_string() function will often be a convenient way to turn 623 * these strings into kernel-printable form. 624 * 625 * Strings may be referenced in device, configuration, interface, or other 626 * descriptors, and could also be used in vendor-specific ways. 627 * 628 * This call is synchronous, and may not be used in an interrupt context. 629 * 630 * Returns the number of bytes received on success, or else the status code 631 * returned by the underlying usb_control_msg() call. 632 */ 633 int usb_get_string(struct usb_device *dev, unsigned short langid, 634 unsigned char index, void *buf, int size) 635 { 636 int i; 637 int result; 638 639 for (i = 0; i < 3; ++i) { 640 /* retry on length 0 or stall; some devices are flakey */ 641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 643 (USB_DT_STRING << 8) + index, langid, buf, size, 644 USB_CTRL_GET_TIMEOUT); 645 if (!(result == 0 || result == -EPIPE)) 646 break; 647 } 648 return result; 649 } 650 651 static void usb_try_string_workarounds(unsigned char *buf, int *length) 652 { 653 int newlength, oldlength = *length; 654 655 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 656 if (!isprint(buf[newlength]) || buf[newlength + 1]) 657 break; 658 659 if (newlength > 2) { 660 buf[0] = newlength; 661 *length = newlength; 662 } 663 } 664 665 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 666 unsigned int index, unsigned char *buf) 667 { 668 int rc; 669 670 /* Try to read the string descriptor by asking for the maximum 671 * possible number of bytes */ 672 rc = usb_get_string(dev, langid, index, buf, 255); 673 674 /* If that failed try to read the descriptor length, then 675 * ask for just that many bytes */ 676 if (rc < 2) { 677 rc = usb_get_string(dev, langid, index, buf, 2); 678 if (rc == 2) 679 rc = usb_get_string(dev, langid, index, buf, buf[0]); 680 } 681 682 if (rc >= 2) { 683 if (!buf[0] && !buf[1]) 684 usb_try_string_workarounds(buf, &rc); 685 686 /* There might be extra junk at the end of the descriptor */ 687 if (buf[0] < rc) 688 rc = buf[0]; 689 690 rc = rc - (rc & 1); /* force a multiple of two */ 691 } 692 693 if (rc < 2) 694 rc = (rc < 0 ? rc : -EINVAL); 695 696 return rc; 697 } 698 699 /** 700 * usb_string - returns ISO 8859-1 version of a string descriptor 701 * @dev: the device whose string descriptor is being retrieved 702 * @index: the number of the descriptor 703 * @buf: where to put the string 704 * @size: how big is "buf"? 705 * Context: !in_interrupt () 706 * 707 * This converts the UTF-16LE encoded strings returned by devices, from 708 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 709 * that are more usable in most kernel contexts. Note that all characters 710 * in the chosen descriptor that can't be encoded using ISO-8859-1 711 * are converted to the question mark ("?") character, and this function 712 * chooses strings in the first language supported by the device. 713 * 714 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 715 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 716 * and is appropriate for use many uses of English and several other 717 * Western European languages. (But it doesn't include the "Euro" symbol.) 718 * 719 * This call is synchronous, and may not be used in an interrupt context. 720 * 721 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 722 */ 723 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 724 { 725 unsigned char *tbuf; 726 int err; 727 unsigned int u, idx; 728 729 if (dev->state == USB_STATE_SUSPENDED) 730 return -EHOSTUNREACH; 731 if (size <= 0 || !buf || !index) 732 return -EINVAL; 733 buf[0] = 0; 734 tbuf = kmalloc(256, GFP_KERNEL); 735 if (!tbuf) 736 return -ENOMEM; 737 738 /* get langid for strings if it's not yet known */ 739 if (!dev->have_langid) { 740 err = usb_string_sub(dev, 0, 0, tbuf); 741 if (err < 0) { 742 dev_err (&dev->dev, 743 "string descriptor 0 read error: %d\n", 744 err); 745 goto errout; 746 } else if (err < 4) { 747 dev_err (&dev->dev, "string descriptor 0 too short\n"); 748 err = -EINVAL; 749 goto errout; 750 } else { 751 dev->have_langid = -1; 752 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 753 /* always use the first langid listed */ 754 dev_dbg (&dev->dev, "default language 0x%04x\n", 755 dev->string_langid); 756 } 757 } 758 759 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 760 if (err < 0) 761 goto errout; 762 763 size--; /* leave room for trailing NULL char in output buffer */ 764 for (idx = 0, u = 2; u < err; u += 2) { 765 if (idx >= size) 766 break; 767 if (tbuf[u+1]) /* high byte */ 768 buf[idx++] = '?'; /* non ISO-8859-1 character */ 769 else 770 buf[idx++] = tbuf[u]; 771 } 772 buf[idx] = 0; 773 err = idx; 774 775 if (tbuf[1] != USB_DT_STRING) 776 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 777 778 errout: 779 kfree(tbuf); 780 return err; 781 } 782 783 /** 784 * usb_cache_string - read a string descriptor and cache it for later use 785 * @udev: the device whose string descriptor is being read 786 * @index: the descriptor index 787 * 788 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 789 * or NULL if the index is 0 or the string could not be read. 790 */ 791 char *usb_cache_string(struct usb_device *udev, int index) 792 { 793 char *buf; 794 char *smallbuf = NULL; 795 int len; 796 797 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 798 if ((len = usb_string(udev, index, buf, 256)) > 0) { 799 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 800 return buf; 801 memcpy(smallbuf, buf, len); 802 } 803 kfree(buf); 804 } 805 return smallbuf; 806 } 807 808 /* 809 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 810 * @dev: the device whose device descriptor is being updated 811 * @size: how much of the descriptor to read 812 * Context: !in_interrupt () 813 * 814 * Updates the copy of the device descriptor stored in the device structure, 815 * which dedicates space for this purpose. Note that several fields are 816 * converted to the host CPU's byte order: the USB version (bcdUSB), and 817 * vendors product and version fields (idVendor, idProduct, and bcdDevice). 818 * That lets device drivers compare against non-byteswapped constants. 819 * 820 * Not exported, only for use by the core. If drivers really want to read 821 * the device descriptor directly, they can call usb_get_descriptor() with 822 * type = USB_DT_DEVICE and index = 0. 823 * 824 * This call is synchronous, and may not be used in an interrupt context. 825 * 826 * Returns the number of bytes received on success, or else the status code 827 * returned by the underlying usb_control_msg() call. 828 */ 829 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 830 { 831 struct usb_device_descriptor *desc; 832 int ret; 833 834 if (size > sizeof(*desc)) 835 return -EINVAL; 836 desc = kmalloc(sizeof(*desc), GFP_NOIO); 837 if (!desc) 838 return -ENOMEM; 839 840 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 841 if (ret >= 0) 842 memcpy(&dev->descriptor, desc, size); 843 kfree(desc); 844 return ret; 845 } 846 847 /** 848 * usb_get_status - issues a GET_STATUS call 849 * @dev: the device whose status is being checked 850 * @type: USB_RECIP_*; for device, interface, or endpoint 851 * @target: zero (for device), else interface or endpoint number 852 * @data: pointer to two bytes of bitmap data 853 * Context: !in_interrupt () 854 * 855 * Returns device, interface, or endpoint status. Normally only of 856 * interest to see if the device is self powered, or has enabled the 857 * remote wakeup facility; or whether a bulk or interrupt endpoint 858 * is halted ("stalled"). 859 * 860 * Bits in these status bitmaps are set using the SET_FEATURE request, 861 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 862 * function should be used to clear halt ("stall") status. 863 * 864 * This call is synchronous, and may not be used in an interrupt context. 865 * 866 * Returns the number of bytes received on success, or else the status code 867 * returned by the underlying usb_control_msg() call. 868 */ 869 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 870 { 871 int ret; 872 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 873 874 if (!status) 875 return -ENOMEM; 876 877 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 878 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 879 sizeof(*status), USB_CTRL_GET_TIMEOUT); 880 881 *(u16 *)data = *status; 882 kfree(status); 883 return ret; 884 } 885 886 /** 887 * usb_clear_halt - tells device to clear endpoint halt/stall condition 888 * @dev: device whose endpoint is halted 889 * @pipe: endpoint "pipe" being cleared 890 * Context: !in_interrupt () 891 * 892 * This is used to clear halt conditions for bulk and interrupt endpoints, 893 * as reported by URB completion status. Endpoints that are halted are 894 * sometimes referred to as being "stalled". Such endpoints are unable 895 * to transmit or receive data until the halt status is cleared. Any URBs 896 * queued for such an endpoint should normally be unlinked by the driver 897 * before clearing the halt condition, as described in sections 5.7.5 898 * and 5.8.5 of the USB 2.0 spec. 899 * 900 * Note that control and isochronous endpoints don't halt, although control 901 * endpoints report "protocol stall" (for unsupported requests) using the 902 * same status code used to report a true stall. 903 * 904 * This call is synchronous, and may not be used in an interrupt context. 905 * 906 * Returns zero on success, or else the status code returned by the 907 * underlying usb_control_msg() call. 908 */ 909 int usb_clear_halt(struct usb_device *dev, int pipe) 910 { 911 int result; 912 int endp = usb_pipeendpoint(pipe); 913 914 if (usb_pipein (pipe)) 915 endp |= USB_DIR_IN; 916 917 /* we don't care if it wasn't halted first. in fact some devices 918 * (like some ibmcam model 1 units) seem to expect hosts to make 919 * this request for iso endpoints, which can't halt! 920 */ 921 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 922 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 923 USB_ENDPOINT_HALT, endp, NULL, 0, 924 USB_CTRL_SET_TIMEOUT); 925 926 /* don't un-halt or force to DATA0 except on success */ 927 if (result < 0) 928 return result; 929 930 /* NOTE: seems like Microsoft and Apple don't bother verifying 931 * the clear "took", so some devices could lock up if you check... 932 * such as the Hagiwara FlashGate DUAL. So we won't bother. 933 * 934 * NOTE: make sure the logic here doesn't diverge much from 935 * the copy in usb-storage, for as long as we need two copies. 936 */ 937 938 /* toggle was reset by the clear */ 939 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 940 941 return 0; 942 } 943 944 /** 945 * usb_disable_endpoint -- Disable an endpoint by address 946 * @dev: the device whose endpoint is being disabled 947 * @epaddr: the endpoint's address. Endpoint number for output, 948 * endpoint number + USB_DIR_IN for input 949 * 950 * Deallocates hcd/hardware state for this endpoint ... and nukes all 951 * pending urbs. 952 * 953 * If the HCD hasn't registered a disable() function, this sets the 954 * endpoint's maxpacket size to 0 to prevent further submissions. 955 */ 956 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 957 { 958 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 959 struct usb_host_endpoint *ep; 960 961 if (!dev) 962 return; 963 964 if (usb_endpoint_out(epaddr)) { 965 ep = dev->ep_out[epnum]; 966 dev->ep_out[epnum] = NULL; 967 } else { 968 ep = dev->ep_in[epnum]; 969 dev->ep_in[epnum] = NULL; 970 } 971 if (ep && dev->bus && dev->bus->op && dev->bus->op->disable) 972 dev->bus->op->disable(dev, ep); 973 } 974 975 /** 976 * usb_disable_interface -- Disable all endpoints for an interface 977 * @dev: the device whose interface is being disabled 978 * @intf: pointer to the interface descriptor 979 * 980 * Disables all the endpoints for the interface's current altsetting. 981 */ 982 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 983 { 984 struct usb_host_interface *alt = intf->cur_altsetting; 985 int i; 986 987 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 988 usb_disable_endpoint(dev, 989 alt->endpoint[i].desc.bEndpointAddress); 990 } 991 } 992 993 /* 994 * usb_disable_device - Disable all the endpoints for a USB device 995 * @dev: the device whose endpoints are being disabled 996 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 997 * 998 * Disables all the device's endpoints, potentially including endpoint 0. 999 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1000 * pending urbs) and usbcore state for the interfaces, so that usbcore 1001 * must usb_set_configuration() before any interfaces could be used. 1002 */ 1003 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1004 { 1005 int i; 1006 1007 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1008 skip_ep0 ? "non-ep0" : "all"); 1009 for (i = skip_ep0; i < 16; ++i) { 1010 usb_disable_endpoint(dev, i); 1011 usb_disable_endpoint(dev, i + USB_DIR_IN); 1012 } 1013 dev->toggle[0] = dev->toggle[1] = 0; 1014 1015 /* getting rid of interfaces will disconnect 1016 * any drivers bound to them (a key side effect) 1017 */ 1018 if (dev->actconfig) { 1019 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1020 struct usb_interface *interface; 1021 1022 /* remove this interface if it has been registered */ 1023 interface = dev->actconfig->interface[i]; 1024 if (!device_is_registered(&interface->dev)) 1025 continue; 1026 dev_dbg (&dev->dev, "unregistering interface %s\n", 1027 interface->dev.bus_id); 1028 usb_remove_sysfs_intf_files(interface); 1029 device_del (&interface->dev); 1030 } 1031 1032 /* Now that the interfaces are unbound, nobody should 1033 * try to access them. 1034 */ 1035 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1036 put_device (&dev->actconfig->interface[i]->dev); 1037 dev->actconfig->interface[i] = NULL; 1038 } 1039 dev->actconfig = NULL; 1040 if (dev->state == USB_STATE_CONFIGURED) 1041 usb_set_device_state(dev, USB_STATE_ADDRESS); 1042 } 1043 } 1044 1045 1046 /* 1047 * usb_enable_endpoint - Enable an endpoint for USB communications 1048 * @dev: the device whose interface is being enabled 1049 * @ep: the endpoint 1050 * 1051 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1052 * For control endpoints, both the input and output sides are handled. 1053 */ 1054 static void 1055 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1056 { 1057 unsigned int epaddr = ep->desc.bEndpointAddress; 1058 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1059 int is_control; 1060 1061 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1062 == USB_ENDPOINT_XFER_CONTROL); 1063 if (usb_endpoint_out(epaddr) || is_control) { 1064 usb_settoggle(dev, epnum, 1, 0); 1065 dev->ep_out[epnum] = ep; 1066 } 1067 if (!usb_endpoint_out(epaddr) || is_control) { 1068 usb_settoggle(dev, epnum, 0, 0); 1069 dev->ep_in[epnum] = ep; 1070 } 1071 } 1072 1073 /* 1074 * usb_enable_interface - Enable all the endpoints for an interface 1075 * @dev: the device whose interface is being enabled 1076 * @intf: pointer to the interface descriptor 1077 * 1078 * Enables all the endpoints for the interface's current altsetting. 1079 */ 1080 static void usb_enable_interface(struct usb_device *dev, 1081 struct usb_interface *intf) 1082 { 1083 struct usb_host_interface *alt = intf->cur_altsetting; 1084 int i; 1085 1086 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1087 usb_enable_endpoint(dev, &alt->endpoint[i]); 1088 } 1089 1090 /** 1091 * usb_set_interface - Makes a particular alternate setting be current 1092 * @dev: the device whose interface is being updated 1093 * @interface: the interface being updated 1094 * @alternate: the setting being chosen. 1095 * Context: !in_interrupt () 1096 * 1097 * This is used to enable data transfers on interfaces that may not 1098 * be enabled by default. Not all devices support such configurability. 1099 * Only the driver bound to an interface may change its setting. 1100 * 1101 * Within any given configuration, each interface may have several 1102 * alternative settings. These are often used to control levels of 1103 * bandwidth consumption. For example, the default setting for a high 1104 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1105 * while interrupt transfers of up to 3KBytes per microframe are legal. 1106 * Also, isochronous endpoints may never be part of an 1107 * interface's default setting. To access such bandwidth, alternate 1108 * interface settings must be made current. 1109 * 1110 * Note that in the Linux USB subsystem, bandwidth associated with 1111 * an endpoint in a given alternate setting is not reserved until an URB 1112 * is submitted that needs that bandwidth. Some other operating systems 1113 * allocate bandwidth early, when a configuration is chosen. 1114 * 1115 * This call is synchronous, and may not be used in an interrupt context. 1116 * Also, drivers must not change altsettings while urbs are scheduled for 1117 * endpoints in that interface; all such urbs must first be completed 1118 * (perhaps forced by unlinking). 1119 * 1120 * Returns zero on success, or else the status code returned by the 1121 * underlying usb_control_msg() call. 1122 */ 1123 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1124 { 1125 struct usb_interface *iface; 1126 struct usb_host_interface *alt; 1127 int ret; 1128 int manual = 0; 1129 1130 if (dev->state == USB_STATE_SUSPENDED) 1131 return -EHOSTUNREACH; 1132 1133 iface = usb_ifnum_to_if(dev, interface); 1134 if (!iface) { 1135 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1136 interface); 1137 return -EINVAL; 1138 } 1139 1140 alt = usb_altnum_to_altsetting(iface, alternate); 1141 if (!alt) { 1142 warn("selecting invalid altsetting %d", alternate); 1143 return -EINVAL; 1144 } 1145 1146 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1147 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1148 alternate, interface, NULL, 0, 5000); 1149 1150 /* 9.4.10 says devices don't need this and are free to STALL the 1151 * request if the interface only has one alternate setting. 1152 */ 1153 if (ret == -EPIPE && iface->num_altsetting == 1) { 1154 dev_dbg(&dev->dev, 1155 "manual set_interface for iface %d, alt %d\n", 1156 interface, alternate); 1157 manual = 1; 1158 } else if (ret < 0) 1159 return ret; 1160 1161 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1162 * when they implement async or easily-killable versions of this or 1163 * other "should-be-internal" functions (like clear_halt). 1164 * should hcd+usbcore postprocess control requests? 1165 */ 1166 1167 /* prevent submissions using previous endpoint settings */ 1168 if (device_is_registered(&iface->dev)) 1169 usb_remove_sysfs_intf_files(iface); 1170 usb_disable_interface(dev, iface); 1171 1172 iface->cur_altsetting = alt; 1173 1174 /* If the interface only has one altsetting and the device didn't 1175 * accept the request, we attempt to carry out the equivalent action 1176 * by manually clearing the HALT feature for each endpoint in the 1177 * new altsetting. 1178 */ 1179 if (manual) { 1180 int i; 1181 1182 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1183 unsigned int epaddr = 1184 alt->endpoint[i].desc.bEndpointAddress; 1185 unsigned int pipe = 1186 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1187 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1188 1189 usb_clear_halt(dev, pipe); 1190 } 1191 } 1192 1193 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1194 * 1195 * Note: 1196 * Despite EP0 is always present in all interfaces/AS, the list of 1197 * endpoints from the descriptor does not contain EP0. Due to its 1198 * omnipresence one might expect EP0 being considered "affected" by 1199 * any SetInterface request and hence assume toggles need to be reset. 1200 * However, EP0 toggles are re-synced for every individual transfer 1201 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1202 * (Likewise, EP0 never "halts" on well designed devices.) 1203 */ 1204 usb_enable_interface(dev, iface); 1205 if (device_is_registered(&iface->dev)) 1206 usb_create_sysfs_intf_files(iface); 1207 1208 return 0; 1209 } 1210 1211 /** 1212 * usb_reset_configuration - lightweight device reset 1213 * @dev: the device whose configuration is being reset 1214 * 1215 * This issues a standard SET_CONFIGURATION request to the device using 1216 * the current configuration. The effect is to reset most USB-related 1217 * state in the device, including interface altsettings (reset to zero), 1218 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1219 * endpoints). Other usbcore state is unchanged, including bindings of 1220 * usb device drivers to interfaces. 1221 * 1222 * Because this affects multiple interfaces, avoid using this with composite 1223 * (multi-interface) devices. Instead, the driver for each interface may 1224 * use usb_set_interface() on the interfaces it claims. Be careful though; 1225 * some devices don't support the SET_INTERFACE request, and others won't 1226 * reset all the interface state (notably data toggles). Resetting the whole 1227 * configuration would affect other drivers' interfaces. 1228 * 1229 * The caller must own the device lock. 1230 * 1231 * Returns zero on success, else a negative error code. 1232 */ 1233 int usb_reset_configuration(struct usb_device *dev) 1234 { 1235 int i, retval; 1236 struct usb_host_config *config; 1237 1238 if (dev->state == USB_STATE_SUSPENDED) 1239 return -EHOSTUNREACH; 1240 1241 /* caller must have locked the device and must own 1242 * the usb bus readlock (so driver bindings are stable); 1243 * calls during probe() are fine 1244 */ 1245 1246 for (i = 1; i < 16; ++i) { 1247 usb_disable_endpoint(dev, i); 1248 usb_disable_endpoint(dev, i + USB_DIR_IN); 1249 } 1250 1251 config = dev->actconfig; 1252 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1253 USB_REQ_SET_CONFIGURATION, 0, 1254 config->desc.bConfigurationValue, 0, 1255 NULL, 0, USB_CTRL_SET_TIMEOUT); 1256 if (retval < 0) 1257 return retval; 1258 1259 dev->toggle[0] = dev->toggle[1] = 0; 1260 1261 /* re-init hc/hcd interface/endpoint state */ 1262 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1263 struct usb_interface *intf = config->interface[i]; 1264 struct usb_host_interface *alt; 1265 1266 if (device_is_registered(&intf->dev)) 1267 usb_remove_sysfs_intf_files(intf); 1268 alt = usb_altnum_to_altsetting(intf, 0); 1269 1270 /* No altsetting 0? We'll assume the first altsetting. 1271 * We could use a GetInterface call, but if a device is 1272 * so non-compliant that it doesn't have altsetting 0 1273 * then I wouldn't trust its reply anyway. 1274 */ 1275 if (!alt) 1276 alt = &intf->altsetting[0]; 1277 1278 intf->cur_altsetting = alt; 1279 usb_enable_interface(dev, intf); 1280 if (device_is_registered(&intf->dev)) 1281 usb_create_sysfs_intf_files(intf); 1282 } 1283 return 0; 1284 } 1285 1286 static void release_interface(struct device *dev) 1287 { 1288 struct usb_interface *intf = to_usb_interface(dev); 1289 struct usb_interface_cache *intfc = 1290 altsetting_to_usb_interface_cache(intf->altsetting); 1291 1292 kref_put(&intfc->ref, usb_release_interface_cache); 1293 kfree(intf); 1294 } 1295 1296 /* 1297 * usb_set_configuration - Makes a particular device setting be current 1298 * @dev: the device whose configuration is being updated 1299 * @configuration: the configuration being chosen. 1300 * Context: !in_interrupt(), caller owns the device lock 1301 * 1302 * This is used to enable non-default device modes. Not all devices 1303 * use this kind of configurability; many devices only have one 1304 * configuration. 1305 * 1306 * USB device configurations may affect Linux interoperability, 1307 * power consumption and the functionality available. For example, 1308 * the default configuration is limited to using 100mA of bus power, 1309 * so that when certain device functionality requires more power, 1310 * and the device is bus powered, that functionality should be in some 1311 * non-default device configuration. Other device modes may also be 1312 * reflected as configuration options, such as whether two ISDN 1313 * channels are available independently; and choosing between open 1314 * standard device protocols (like CDC) or proprietary ones. 1315 * 1316 * Note that USB has an additional level of device configurability, 1317 * associated with interfaces. That configurability is accessed using 1318 * usb_set_interface(). 1319 * 1320 * This call is synchronous. The calling context must be able to sleep, 1321 * must own the device lock, and must not hold the driver model's USB 1322 * bus rwsem; usb device driver probe() methods cannot use this routine. 1323 * 1324 * Returns zero on success, or else the status code returned by the 1325 * underlying call that failed. On successful completion, each interface 1326 * in the original device configuration has been destroyed, and each one 1327 * in the new configuration has been probed by all relevant usb device 1328 * drivers currently known to the kernel. 1329 */ 1330 int usb_set_configuration(struct usb_device *dev, int configuration) 1331 { 1332 int i, ret; 1333 struct usb_host_config *cp = NULL; 1334 struct usb_interface **new_interfaces = NULL; 1335 int n, nintf; 1336 1337 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1338 if (dev->config[i].desc.bConfigurationValue == configuration) { 1339 cp = &dev->config[i]; 1340 break; 1341 } 1342 } 1343 if ((!cp && configuration != 0)) 1344 return -EINVAL; 1345 1346 /* The USB spec says configuration 0 means unconfigured. 1347 * But if a device includes a configuration numbered 0, 1348 * we will accept it as a correctly configured state. 1349 */ 1350 if (cp && configuration == 0) 1351 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1352 1353 if (dev->state == USB_STATE_SUSPENDED) 1354 return -EHOSTUNREACH; 1355 1356 /* Allocate memory for new interfaces before doing anything else, 1357 * so that if we run out then nothing will have changed. */ 1358 n = nintf = 0; 1359 if (cp) { 1360 nintf = cp->desc.bNumInterfaces; 1361 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1362 GFP_KERNEL); 1363 if (!new_interfaces) { 1364 dev_err(&dev->dev, "Out of memory"); 1365 return -ENOMEM; 1366 } 1367 1368 for (; n < nintf; ++n) { 1369 new_interfaces[n] = kzalloc( 1370 sizeof(struct usb_interface), 1371 GFP_KERNEL); 1372 if (!new_interfaces[n]) { 1373 dev_err(&dev->dev, "Out of memory"); 1374 ret = -ENOMEM; 1375 free_interfaces: 1376 while (--n >= 0) 1377 kfree(new_interfaces[n]); 1378 kfree(new_interfaces); 1379 return ret; 1380 } 1381 } 1382 } 1383 1384 /* if it's already configured, clear out old state first. 1385 * getting rid of old interfaces means unbinding their drivers. 1386 */ 1387 if (dev->state != USB_STATE_ADDRESS) 1388 usb_disable_device (dev, 1); // Skip ep0 1389 1390 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1391 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1392 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) 1393 goto free_interfaces; 1394 1395 dev->actconfig = cp; 1396 if (!cp) 1397 usb_set_device_state(dev, USB_STATE_ADDRESS); 1398 else { 1399 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1400 1401 /* Initialize the new interface structures and the 1402 * hc/hcd/usbcore interface/endpoint state. 1403 */ 1404 for (i = 0; i < nintf; ++i) { 1405 struct usb_interface_cache *intfc; 1406 struct usb_interface *intf; 1407 struct usb_host_interface *alt; 1408 1409 cp->interface[i] = intf = new_interfaces[i]; 1410 intfc = cp->intf_cache[i]; 1411 intf->altsetting = intfc->altsetting; 1412 intf->num_altsetting = intfc->num_altsetting; 1413 kref_get(&intfc->ref); 1414 1415 alt = usb_altnum_to_altsetting(intf, 0); 1416 1417 /* No altsetting 0? We'll assume the first altsetting. 1418 * We could use a GetInterface call, but if a device is 1419 * so non-compliant that it doesn't have altsetting 0 1420 * then I wouldn't trust its reply anyway. 1421 */ 1422 if (!alt) 1423 alt = &intf->altsetting[0]; 1424 1425 intf->cur_altsetting = alt; 1426 usb_enable_interface(dev, intf); 1427 intf->dev.parent = &dev->dev; 1428 intf->dev.driver = NULL; 1429 intf->dev.bus = &usb_bus_type; 1430 intf->dev.dma_mask = dev->dev.dma_mask; 1431 intf->dev.release = release_interface; 1432 device_initialize (&intf->dev); 1433 mark_quiesced(intf); 1434 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1435 dev->bus->busnum, dev->devpath, 1436 configuration, 1437 alt->desc.bInterfaceNumber); 1438 } 1439 kfree(new_interfaces); 1440 1441 if (cp->string == NULL) 1442 cp->string = usb_cache_string(dev, 1443 cp->desc.iConfiguration); 1444 1445 /* Now that all the interfaces are set up, register them 1446 * to trigger binding of drivers to interfaces. probe() 1447 * routines may install different altsettings and may 1448 * claim() any interfaces not yet bound. Many class drivers 1449 * need that: CDC, audio, video, etc. 1450 */ 1451 for (i = 0; i < nintf; ++i) { 1452 struct usb_interface *intf = cp->interface[i]; 1453 1454 dev_dbg (&dev->dev, 1455 "adding %s (config #%d, interface %d)\n", 1456 intf->dev.bus_id, configuration, 1457 intf->cur_altsetting->desc.bInterfaceNumber); 1458 ret = device_add (&intf->dev); 1459 if (ret != 0) { 1460 dev_err(&dev->dev, 1461 "device_add(%s) --> %d\n", 1462 intf->dev.bus_id, 1463 ret); 1464 continue; 1465 } 1466 usb_create_sysfs_intf_files (intf); 1467 } 1468 } 1469 1470 return 0; 1471 } 1472 1473 // synchronous request completion model 1474 EXPORT_SYMBOL(usb_control_msg); 1475 EXPORT_SYMBOL(usb_bulk_msg); 1476 1477 EXPORT_SYMBOL(usb_sg_init); 1478 EXPORT_SYMBOL(usb_sg_cancel); 1479 EXPORT_SYMBOL(usb_sg_wait); 1480 1481 // synchronous control message convenience routines 1482 EXPORT_SYMBOL(usb_get_descriptor); 1483 EXPORT_SYMBOL(usb_get_status); 1484 EXPORT_SYMBOL(usb_get_string); 1485 EXPORT_SYMBOL(usb_string); 1486 1487 // synchronous calls that also maintain usbcore state 1488 EXPORT_SYMBOL(usb_clear_halt); 1489 EXPORT_SYMBOL(usb_reset_configuration); 1490 EXPORT_SYMBOL(usb_set_interface); 1491 1492