xref: /linux/drivers/usb/core/message.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/config.h>
6 
7 #ifdef CONFIG_USB_DEBUG
8 	#define DEBUG
9 #else
10 	#undef DEBUG
11 #endif
12 
13 #include <linux/pci.h>	/* for scatterlist macros */
14 #include <linux/usb.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/mm.h>
19 #include <linux/timer.h>
20 #include <linux/ctype.h>
21 #include <linux/device.h>
22 #include <asm/byteorder.h>
23 
24 #include "hcd.h"	/* for usbcore internals */
25 #include "usb.h"
26 
27 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
28 {
29 	complete((struct completion *)urb->context);
30 }
31 
32 
33 static void timeout_kill(unsigned long data)
34 {
35 	struct urb	*urb = (struct urb *) data;
36 
37 	usb_unlink_urb(urb);
38 }
39 
40 // Starts urb and waits for completion or timeout
41 // note that this call is NOT interruptible, while
42 // many device driver i/o requests should be interruptible
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
44 {
45 	struct completion	done;
46 	struct timer_list	timer;
47 	int			status;
48 
49 	init_completion(&done);
50 	urb->context = &done;
51 	urb->actual_length = 0;
52 	status = usb_submit_urb(urb, GFP_NOIO);
53 
54 	if (status == 0) {
55 		if (timeout > 0) {
56 			init_timer(&timer);
57 			timer.expires = jiffies + msecs_to_jiffies(timeout);
58 			timer.data = (unsigned long)urb;
59 			timer.function = timeout_kill;
60 			/* grr.  timeout _should_ include submit delays. */
61 			add_timer(&timer);
62 		}
63 		wait_for_completion(&done);
64 		status = urb->status;
65 		/* note:  HCDs return ETIMEDOUT for other reasons too */
66 		if (status == -ECONNRESET) {
67 			dev_dbg(&urb->dev->dev,
68 				"%s timed out on ep%d%s len=%d/%d\n",
69 				current->comm,
70 				usb_pipeendpoint(urb->pipe),
71 				usb_pipein(urb->pipe) ? "in" : "out",
72 				urb->actual_length,
73 				urb->transfer_buffer_length
74 				);
75 			if (urb->actual_length > 0)
76 				status = 0;
77 			else
78 				status = -ETIMEDOUT;
79 		}
80 		if (timeout > 0)
81 			del_timer_sync(&timer);
82 	}
83 
84 	if (actual_length)
85 		*actual_length = urb->actual_length;
86 	usb_free_urb(urb);
87 	return status;
88 }
89 
90 /*-------------------------------------------------------------------*/
91 // returns status (negative) or length (positive)
92 static int usb_internal_control_msg(struct usb_device *usb_dev,
93 				    unsigned int pipe,
94 				    struct usb_ctrlrequest *cmd,
95 				    void *data, int len, int timeout)
96 {
97 	struct urb *urb;
98 	int retv;
99 	int length;
100 
101 	urb = usb_alloc_urb(0, GFP_NOIO);
102 	if (!urb)
103 		return -ENOMEM;
104 
105 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
106 			     len, usb_api_blocking_completion, NULL);
107 
108 	retv = usb_start_wait_urb(urb, timeout, &length);
109 	if (retv < 0)
110 		return retv;
111 	else
112 		return length;
113 }
114 
115 /**
116  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
117  *	@dev: pointer to the usb device to send the message to
118  *	@pipe: endpoint "pipe" to send the message to
119  *	@request: USB message request value
120  *	@requesttype: USB message request type value
121  *	@value: USB message value
122  *	@index: USB message index value
123  *	@data: pointer to the data to send
124  *	@size: length in bytes of the data to send
125  *	@timeout: time in msecs to wait for the message to complete before
126  *		timing out (if 0 the wait is forever)
127  *	Context: !in_interrupt ()
128  *
129  *	This function sends a simple control message to a specified endpoint
130  *	and waits for the message to complete, or timeout.
131  *
132  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
133  *
134  *	Don't use this function from within an interrupt context, like a
135  *	bottom half handler.  If you need an asynchronous message, or need to send
136  *	a message from within interrupt context, use usb_submit_urb()
137  *      If a thread in your driver uses this call, make sure your disconnect()
138  *      method can wait for it to complete.  Since you don't have a handle on
139  *      the URB used, you can't cancel the request.
140  */
141 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
142 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
143 {
144 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
145 	int ret;
146 
147 	if (!dr)
148 		return -ENOMEM;
149 
150 	dr->bRequestType= requesttype;
151 	dr->bRequest = request;
152 	dr->wValue = cpu_to_le16p(&value);
153 	dr->wIndex = cpu_to_le16p(&index);
154 	dr->wLength = cpu_to_le16p(&size);
155 
156 	//dbg("usb_control_msg");
157 
158 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
159 
160 	kfree(dr);
161 
162 	return ret;
163 }
164 
165 
166 /**
167  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
168  *	@usb_dev: pointer to the usb device to send the message to
169  *	@pipe: endpoint "pipe" to send the message to
170  *	@data: pointer to the data to send
171  *	@len: length in bytes of the data to send
172  *	@actual_length: pointer to a location to put the actual length transferred in bytes
173  *	@timeout: time in msecs to wait for the message to complete before
174  *		timing out (if 0 the wait is forever)
175  *	Context: !in_interrupt ()
176  *
177  *	This function sends a simple bulk message to a specified endpoint
178  *	and waits for the message to complete, or timeout.
179  *
180  *	If successful, it returns 0, otherwise a negative error number.
181  *	The number of actual bytes transferred will be stored in the
182  *	actual_length paramater.
183  *
184  *	Don't use this function from within an interrupt context, like a
185  *	bottom half handler.  If you need an asynchronous message, or need to
186  *	send a message from within interrupt context, use usb_submit_urb()
187  *      If a thread in your driver uses this call, make sure your disconnect()
188  *      method can wait for it to complete.  Since you don't have a handle on
189  *      the URB used, you can't cancel the request.
190  *
191  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
192  *	ioctl, users are forced to abuse this routine by using it to submit
193  *	URBs for interrupt endpoints.  We will take the liberty of creating
194  *	an interrupt URB (with the default interval) if the target is an
195  *	interrupt endpoint.
196  */
197 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
198 			void *data, int len, int *actual_length, int timeout)
199 {
200 	struct urb *urb;
201 	struct usb_host_endpoint *ep;
202 
203 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
204 			[usb_pipeendpoint(pipe)];
205 	if (!ep || len < 0)
206 		return -EINVAL;
207 
208 	urb = usb_alloc_urb(0, GFP_KERNEL);
209 	if (!urb)
210 		return -ENOMEM;
211 
212 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
213 			USB_ENDPOINT_XFER_INT) {
214 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
215 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
216 				usb_api_blocking_completion, NULL,
217 				ep->desc.bInterval);
218 	} else
219 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
220 				usb_api_blocking_completion, NULL);
221 
222 	return usb_start_wait_urb(urb, timeout, actual_length);
223 }
224 
225 /*-------------------------------------------------------------------*/
226 
227 static void sg_clean (struct usb_sg_request *io)
228 {
229 	if (io->urbs) {
230 		while (io->entries--)
231 			usb_free_urb (io->urbs [io->entries]);
232 		kfree (io->urbs);
233 		io->urbs = NULL;
234 	}
235 	if (io->dev->dev.dma_mask != NULL)
236 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
237 	io->dev = NULL;
238 }
239 
240 static void sg_complete (struct urb *urb, struct pt_regs *regs)
241 {
242 	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;
243 
244 	spin_lock (&io->lock);
245 
246 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
247 	 * reports, until the completion callback (this!) returns.  That lets
248 	 * device driver code (like this routine) unlink queued urbs first,
249 	 * if it needs to, since the HC won't work on them at all.  So it's
250 	 * not possible for page N+1 to overwrite page N, and so on.
251 	 *
252 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
253 	 * complete before the HCD can get requests away from hardware,
254 	 * though never during cleanup after a hard fault.
255 	 */
256 	if (io->status
257 			&& (io->status != -ECONNRESET
258 				|| urb->status != -ECONNRESET)
259 			&& urb->actual_length) {
260 		dev_err (io->dev->bus->controller,
261 			"dev %s ep%d%s scatterlist error %d/%d\n",
262 			io->dev->devpath,
263 			usb_pipeendpoint (urb->pipe),
264 			usb_pipein (urb->pipe) ? "in" : "out",
265 			urb->status, io->status);
266 		// BUG ();
267 	}
268 
269 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
270 		int		i, found, status;
271 
272 		io->status = urb->status;
273 
274 		/* the previous urbs, and this one, completed already.
275 		 * unlink pending urbs so they won't rx/tx bad data.
276 		 * careful: unlink can sometimes be synchronous...
277 		 */
278 		spin_unlock (&io->lock);
279 		for (i = 0, found = 0; i < io->entries; i++) {
280 			if (!io->urbs [i] || !io->urbs [i]->dev)
281 				continue;
282 			if (found) {
283 				status = usb_unlink_urb (io->urbs [i]);
284 				if (status != -EINPROGRESS
285 						&& status != -ENODEV
286 						&& status != -EBUSY)
287 					dev_err (&io->dev->dev,
288 						"%s, unlink --> %d\n",
289 						__FUNCTION__, status);
290 			} else if (urb == io->urbs [i])
291 				found = 1;
292 		}
293 		spin_lock (&io->lock);
294 	}
295 	urb->dev = NULL;
296 
297 	/* on the last completion, signal usb_sg_wait() */
298 	io->bytes += urb->actual_length;
299 	io->count--;
300 	if (!io->count)
301 		complete (&io->complete);
302 
303 	spin_unlock (&io->lock);
304 }
305 
306 
307 /**
308  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
309  * @io: request block being initialized.  until usb_sg_wait() returns,
310  *	treat this as a pointer to an opaque block of memory,
311  * @dev: the usb device that will send or receive the data
312  * @pipe: endpoint "pipe" used to transfer the data
313  * @period: polling rate for interrupt endpoints, in frames or
314  * 	(for high speed endpoints) microframes; ignored for bulk
315  * @sg: scatterlist entries
316  * @nents: how many entries in the scatterlist
317  * @length: how many bytes to send from the scatterlist, or zero to
318  * 	send every byte identified in the list.
319  * @mem_flags: SLAB_* flags affecting memory allocations in this call
320  *
321  * Returns zero for success, else a negative errno value.  This initializes a
322  * scatter/gather request, allocating resources such as I/O mappings and urb
323  * memory (except maybe memory used by USB controller drivers).
324  *
325  * The request must be issued using usb_sg_wait(), which waits for the I/O to
326  * complete (or to be canceled) and then cleans up all resources allocated by
327  * usb_sg_init().
328  *
329  * The request may be canceled with usb_sg_cancel(), either before or after
330  * usb_sg_wait() is called.
331  */
332 int usb_sg_init (
333 	struct usb_sg_request	*io,
334 	struct usb_device	*dev,
335 	unsigned		pipe,
336 	unsigned		period,
337 	struct scatterlist	*sg,
338 	int			nents,
339 	size_t			length,
340 	gfp_t			mem_flags
341 )
342 {
343 	int			i;
344 	int			urb_flags;
345 	int			dma;
346 
347 	if (!io || !dev || !sg
348 			|| usb_pipecontrol (pipe)
349 			|| usb_pipeisoc (pipe)
350 			|| nents <= 0)
351 		return -EINVAL;
352 
353 	spin_lock_init (&io->lock);
354 	io->dev = dev;
355 	io->pipe = pipe;
356 	io->sg = sg;
357 	io->nents = nents;
358 
359 	/* not all host controllers use DMA (like the mainstream pci ones);
360 	 * they can use PIO (sl811) or be software over another transport.
361 	 */
362 	dma = (dev->dev.dma_mask != NULL);
363 	if (dma)
364 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
365 	else
366 		io->entries = nents;
367 
368 	/* initialize all the urbs we'll use */
369 	if (io->entries <= 0)
370 		return io->entries;
371 
372 	io->count = io->entries;
373 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
374 	if (!io->urbs)
375 		goto nomem;
376 
377 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
378 	if (usb_pipein (pipe))
379 		urb_flags |= URB_SHORT_NOT_OK;
380 
381 	for (i = 0; i < io->entries; i++) {
382 		unsigned		len;
383 
384 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
385 		if (!io->urbs [i]) {
386 			io->entries = i;
387 			goto nomem;
388 		}
389 
390 		io->urbs [i]->dev = NULL;
391 		io->urbs [i]->pipe = pipe;
392 		io->urbs [i]->interval = period;
393 		io->urbs [i]->transfer_flags = urb_flags;
394 
395 		io->urbs [i]->complete = sg_complete;
396 		io->urbs [i]->context = io;
397 		io->urbs [i]->status = -EINPROGRESS;
398 		io->urbs [i]->actual_length = 0;
399 
400 		if (dma) {
401 			/* hc may use _only_ transfer_dma */
402 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
403 			len = sg_dma_len (sg + i);
404 		} else {
405 			/* hc may use _only_ transfer_buffer */
406 			io->urbs [i]->transfer_buffer =
407 				page_address (sg [i].page) + sg [i].offset;
408 			len = sg [i].length;
409 		}
410 
411 		if (length) {
412 			len = min_t (unsigned, len, length);
413 			length -= len;
414 			if (length == 0)
415 				io->entries = i + 1;
416 		}
417 		io->urbs [i]->transfer_buffer_length = len;
418 	}
419 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
420 
421 	/* transaction state */
422 	io->status = 0;
423 	io->bytes = 0;
424 	init_completion (&io->complete);
425 	return 0;
426 
427 nomem:
428 	sg_clean (io);
429 	return -ENOMEM;
430 }
431 
432 
433 /**
434  * usb_sg_wait - synchronously execute scatter/gather request
435  * @io: request block handle, as initialized with usb_sg_init().
436  * 	some fields become accessible when this call returns.
437  * Context: !in_interrupt ()
438  *
439  * This function blocks until the specified I/O operation completes.  It
440  * leverages the grouping of the related I/O requests to get good transfer
441  * rates, by queueing the requests.  At higher speeds, such queuing can
442  * significantly improve USB throughput.
443  *
444  * There are three kinds of completion for this function.
445  * (1) success, where io->status is zero.  The number of io->bytes
446  *     transferred is as requested.
447  * (2) error, where io->status is a negative errno value.  The number
448  *     of io->bytes transferred before the error is usually less
449  *     than requested, and can be nonzero.
450  * (3) cancellation, a type of error with status -ECONNRESET that
451  *     is initiated by usb_sg_cancel().
452  *
453  * When this function returns, all memory allocated through usb_sg_init() or
454  * this call will have been freed.  The request block parameter may still be
455  * passed to usb_sg_cancel(), or it may be freed.  It could also be
456  * reinitialized and then reused.
457  *
458  * Data Transfer Rates:
459  *
460  * Bulk transfers are valid for full or high speed endpoints.
461  * The best full speed data rate is 19 packets of 64 bytes each
462  * per frame, or 1216 bytes per millisecond.
463  * The best high speed data rate is 13 packets of 512 bytes each
464  * per microframe, or 52 KBytes per millisecond.
465  *
466  * The reason to use interrupt transfers through this API would most likely
467  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
468  * could be transferred.  That capability is less useful for low or full
469  * speed interrupt endpoints, which allow at most one packet per millisecond,
470  * of at most 8 or 64 bytes (respectively).
471  */
472 void usb_sg_wait (struct usb_sg_request *io)
473 {
474 	int		i, entries = io->entries;
475 
476 	/* queue the urbs.  */
477 	spin_lock_irq (&io->lock);
478 	for (i = 0; i < entries && !io->status; i++) {
479 		int	retval;
480 
481 		io->urbs [i]->dev = io->dev;
482 		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
483 
484 		/* after we submit, let completions or cancelations fire;
485 		 * we handshake using io->status.
486 		 */
487 		spin_unlock_irq (&io->lock);
488 		switch (retval) {
489 			/* maybe we retrying will recover */
490 		case -ENXIO:	// hc didn't queue this one
491 		case -EAGAIN:
492 		case -ENOMEM:
493 			io->urbs[i]->dev = NULL;
494 			retval = 0;
495 			i--;
496 			yield ();
497 			break;
498 
499 			/* no error? continue immediately.
500 			 *
501 			 * NOTE: to work better with UHCI (4K I/O buffer may
502 			 * need 3K of TDs) it may be good to limit how many
503 			 * URBs are queued at once; N milliseconds?
504 			 */
505 		case 0:
506 			cpu_relax ();
507 			break;
508 
509 			/* fail any uncompleted urbs */
510 		default:
511 			io->urbs [i]->dev = NULL;
512 			io->urbs [i]->status = retval;
513 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
514 				__FUNCTION__, retval);
515 			usb_sg_cancel (io);
516 		}
517 		spin_lock_irq (&io->lock);
518 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
519 			io->status = retval;
520 	}
521 	io->count -= entries - i;
522 	if (io->count == 0)
523 		complete (&io->complete);
524 	spin_unlock_irq (&io->lock);
525 
526 	/* OK, yes, this could be packaged as non-blocking.
527 	 * So could the submit loop above ... but it's easier to
528 	 * solve neither problem than to solve both!
529 	 */
530 	wait_for_completion (&io->complete);
531 
532 	sg_clean (io);
533 }
534 
535 /**
536  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
537  * @io: request block, initialized with usb_sg_init()
538  *
539  * This stops a request after it has been started by usb_sg_wait().
540  * It can also prevents one initialized by usb_sg_init() from starting,
541  * so that call just frees resources allocated to the request.
542  */
543 void usb_sg_cancel (struct usb_sg_request *io)
544 {
545 	unsigned long	flags;
546 
547 	spin_lock_irqsave (&io->lock, flags);
548 
549 	/* shut everything down, if it didn't already */
550 	if (!io->status) {
551 		int	i;
552 
553 		io->status = -ECONNRESET;
554 		spin_unlock (&io->lock);
555 		for (i = 0; i < io->entries; i++) {
556 			int	retval;
557 
558 			if (!io->urbs [i]->dev)
559 				continue;
560 			retval = usb_unlink_urb (io->urbs [i]);
561 			if (retval != -EINPROGRESS && retval != -EBUSY)
562 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
563 					__FUNCTION__, retval);
564 		}
565 		spin_lock (&io->lock);
566 	}
567 	spin_unlock_irqrestore (&io->lock, flags);
568 }
569 
570 /*-------------------------------------------------------------------*/
571 
572 /**
573  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
574  * @dev: the device whose descriptor is being retrieved
575  * @type: the descriptor type (USB_DT_*)
576  * @index: the number of the descriptor
577  * @buf: where to put the descriptor
578  * @size: how big is "buf"?
579  * Context: !in_interrupt ()
580  *
581  * Gets a USB descriptor.  Convenience functions exist to simplify
582  * getting some types of descriptors.  Use
583  * usb_get_string() or usb_string() for USB_DT_STRING.
584  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
585  * are part of the device structure.
586  * In addition to a number of USB-standard descriptors, some
587  * devices also use class-specific or vendor-specific descriptors.
588  *
589  * This call is synchronous, and may not be used in an interrupt context.
590  *
591  * Returns the number of bytes received on success, or else the status code
592  * returned by the underlying usb_control_msg() call.
593  */
594 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
595 {
596 	int i;
597 	int result;
598 
599 	memset(buf,0,size);	// Make sure we parse really received data
600 
601 	for (i = 0; i < 3; ++i) {
602 		/* retry on length 0 or stall; some devices are flakey */
603 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
604 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
605 				(type << 8) + index, 0, buf, size,
606 				USB_CTRL_GET_TIMEOUT);
607 		if (result == 0 || result == -EPIPE)
608 			continue;
609 		if (result > 1 && ((u8 *)buf)[1] != type) {
610 			result = -EPROTO;
611 			continue;
612 		}
613 		break;
614 	}
615 	return result;
616 }
617 
618 /**
619  * usb_get_string - gets a string descriptor
620  * @dev: the device whose string descriptor is being retrieved
621  * @langid: code for language chosen (from string descriptor zero)
622  * @index: the number of the descriptor
623  * @buf: where to put the string
624  * @size: how big is "buf"?
625  * Context: !in_interrupt ()
626  *
627  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
628  * in little-endian byte order).
629  * The usb_string() function will often be a convenient way to turn
630  * these strings into kernel-printable form.
631  *
632  * Strings may be referenced in device, configuration, interface, or other
633  * descriptors, and could also be used in vendor-specific ways.
634  *
635  * This call is synchronous, and may not be used in an interrupt context.
636  *
637  * Returns the number of bytes received on success, or else the status code
638  * returned by the underlying usb_control_msg() call.
639  */
640 int usb_get_string(struct usb_device *dev, unsigned short langid,
641 		unsigned char index, void *buf, int size)
642 {
643 	int i;
644 	int result;
645 
646 	for (i = 0; i < 3; ++i) {
647 		/* retry on length 0 or stall; some devices are flakey */
648 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
649 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
650 			(USB_DT_STRING << 8) + index, langid, buf, size,
651 			USB_CTRL_GET_TIMEOUT);
652 		if (!(result == 0 || result == -EPIPE))
653 			break;
654 	}
655 	return result;
656 }
657 
658 static void usb_try_string_workarounds(unsigned char *buf, int *length)
659 {
660 	int newlength, oldlength = *length;
661 
662 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
663 		if (!isprint(buf[newlength]) || buf[newlength + 1])
664 			break;
665 
666 	if (newlength > 2) {
667 		buf[0] = newlength;
668 		*length = newlength;
669 	}
670 }
671 
672 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
673 		unsigned int index, unsigned char *buf)
674 {
675 	int rc;
676 
677 	/* Try to read the string descriptor by asking for the maximum
678 	 * possible number of bytes */
679 	rc = usb_get_string(dev, langid, index, buf, 255);
680 
681 	/* If that failed try to read the descriptor length, then
682 	 * ask for just that many bytes */
683 	if (rc < 2) {
684 		rc = usb_get_string(dev, langid, index, buf, 2);
685 		if (rc == 2)
686 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
687 	}
688 
689 	if (rc >= 2) {
690 		if (!buf[0] && !buf[1])
691 			usb_try_string_workarounds(buf, &rc);
692 
693 		/* There might be extra junk at the end of the descriptor */
694 		if (buf[0] < rc)
695 			rc = buf[0];
696 
697 		rc = rc - (rc & 1); /* force a multiple of two */
698 	}
699 
700 	if (rc < 2)
701 		rc = (rc < 0 ? rc : -EINVAL);
702 
703 	return rc;
704 }
705 
706 /**
707  * usb_string - returns ISO 8859-1 version of a string descriptor
708  * @dev: the device whose string descriptor is being retrieved
709  * @index: the number of the descriptor
710  * @buf: where to put the string
711  * @size: how big is "buf"?
712  * Context: !in_interrupt ()
713  *
714  * This converts the UTF-16LE encoded strings returned by devices, from
715  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
716  * that are more usable in most kernel contexts.  Note that all characters
717  * in the chosen descriptor that can't be encoded using ISO-8859-1
718  * are converted to the question mark ("?") character, and this function
719  * chooses strings in the first language supported by the device.
720  *
721  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
722  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
723  * and is appropriate for use many uses of English and several other
724  * Western European languages.  (But it doesn't include the "Euro" symbol.)
725  *
726  * This call is synchronous, and may not be used in an interrupt context.
727  *
728  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
729  */
730 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
731 {
732 	unsigned char *tbuf;
733 	int err;
734 	unsigned int u, idx;
735 
736 	if (dev->state == USB_STATE_SUSPENDED)
737 		return -EHOSTUNREACH;
738 	if (size <= 0 || !buf || !index)
739 		return -EINVAL;
740 	buf[0] = 0;
741 	tbuf = kmalloc(256, GFP_KERNEL);
742 	if (!tbuf)
743 		return -ENOMEM;
744 
745 	/* get langid for strings if it's not yet known */
746 	if (!dev->have_langid) {
747 		err = usb_string_sub(dev, 0, 0, tbuf);
748 		if (err < 0) {
749 			dev_err (&dev->dev,
750 				"string descriptor 0 read error: %d\n",
751 				err);
752 			goto errout;
753 		} else if (err < 4) {
754 			dev_err (&dev->dev, "string descriptor 0 too short\n");
755 			err = -EINVAL;
756 			goto errout;
757 		} else {
758 			dev->have_langid = -1;
759 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
760 				/* always use the first langid listed */
761 			dev_dbg (&dev->dev, "default language 0x%04x\n",
762 				dev->string_langid);
763 		}
764 	}
765 
766 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
767 	if (err < 0)
768 		goto errout;
769 
770 	size--;		/* leave room for trailing NULL char in output buffer */
771 	for (idx = 0, u = 2; u < err; u += 2) {
772 		if (idx >= size)
773 			break;
774 		if (tbuf[u+1])			/* high byte */
775 			buf[idx++] = '?';  /* non ISO-8859-1 character */
776 		else
777 			buf[idx++] = tbuf[u];
778 	}
779 	buf[idx] = 0;
780 	err = idx;
781 
782 	if (tbuf[1] != USB_DT_STRING)
783 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
784 
785  errout:
786 	kfree(tbuf);
787 	return err;
788 }
789 
790 /**
791  * usb_cache_string - read a string descriptor and cache it for later use
792  * @udev: the device whose string descriptor is being read
793  * @index: the descriptor index
794  *
795  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
796  * or NULL if the index is 0 or the string could not be read.
797  */
798 char *usb_cache_string(struct usb_device *udev, int index)
799 {
800 	char *buf;
801 	char *smallbuf = NULL;
802 	int len;
803 
804 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
805 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
806 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
807 				return buf;
808 			memcpy(smallbuf, buf, len);
809 		}
810 		kfree(buf);
811 	}
812 	return smallbuf;
813 }
814 
815 /*
816  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
817  * @dev: the device whose device descriptor is being updated
818  * @size: how much of the descriptor to read
819  * Context: !in_interrupt ()
820  *
821  * Updates the copy of the device descriptor stored in the device structure,
822  * which dedicates space for this purpose.  Note that several fields are
823  * converted to the host CPU's byte order:  the USB version (bcdUSB), and
824  * vendors product and version fields (idVendor, idProduct, and bcdDevice).
825  * That lets device drivers compare against non-byteswapped constants.
826  *
827  * Not exported, only for use by the core.  If drivers really want to read
828  * the device descriptor directly, they can call usb_get_descriptor() with
829  * type = USB_DT_DEVICE and index = 0.
830  *
831  * This call is synchronous, and may not be used in an interrupt context.
832  *
833  * Returns the number of bytes received on success, or else the status code
834  * returned by the underlying usb_control_msg() call.
835  */
836 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
837 {
838 	struct usb_device_descriptor *desc;
839 	int ret;
840 
841 	if (size > sizeof(*desc))
842 		return -EINVAL;
843 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
844 	if (!desc)
845 		return -ENOMEM;
846 
847 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
848 	if (ret >= 0)
849 		memcpy(&dev->descriptor, desc, size);
850 	kfree(desc);
851 	return ret;
852 }
853 
854 /**
855  * usb_get_status - issues a GET_STATUS call
856  * @dev: the device whose status is being checked
857  * @type: USB_RECIP_*; for device, interface, or endpoint
858  * @target: zero (for device), else interface or endpoint number
859  * @data: pointer to two bytes of bitmap data
860  * Context: !in_interrupt ()
861  *
862  * Returns device, interface, or endpoint status.  Normally only of
863  * interest to see if the device is self powered, or has enabled the
864  * remote wakeup facility; or whether a bulk or interrupt endpoint
865  * is halted ("stalled").
866  *
867  * Bits in these status bitmaps are set using the SET_FEATURE request,
868  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
869  * function should be used to clear halt ("stall") status.
870  *
871  * This call is synchronous, and may not be used in an interrupt context.
872  *
873  * Returns the number of bytes received on success, or else the status code
874  * returned by the underlying usb_control_msg() call.
875  */
876 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
877 {
878 	int ret;
879 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
880 
881 	if (!status)
882 		return -ENOMEM;
883 
884 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
885 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
886 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
887 
888 	*(u16 *)data = *status;
889 	kfree(status);
890 	return ret;
891 }
892 
893 /**
894  * usb_clear_halt - tells device to clear endpoint halt/stall condition
895  * @dev: device whose endpoint is halted
896  * @pipe: endpoint "pipe" being cleared
897  * Context: !in_interrupt ()
898  *
899  * This is used to clear halt conditions for bulk and interrupt endpoints,
900  * as reported by URB completion status.  Endpoints that are halted are
901  * sometimes referred to as being "stalled".  Such endpoints are unable
902  * to transmit or receive data until the halt status is cleared.  Any URBs
903  * queued for such an endpoint should normally be unlinked by the driver
904  * before clearing the halt condition, as described in sections 5.7.5
905  * and 5.8.5 of the USB 2.0 spec.
906  *
907  * Note that control and isochronous endpoints don't halt, although control
908  * endpoints report "protocol stall" (for unsupported requests) using the
909  * same status code used to report a true stall.
910  *
911  * This call is synchronous, and may not be used in an interrupt context.
912  *
913  * Returns zero on success, or else the status code returned by the
914  * underlying usb_control_msg() call.
915  */
916 int usb_clear_halt(struct usb_device *dev, int pipe)
917 {
918 	int result;
919 	int endp = usb_pipeendpoint(pipe);
920 
921 	if (usb_pipein (pipe))
922 		endp |= USB_DIR_IN;
923 
924 	/* we don't care if it wasn't halted first. in fact some devices
925 	 * (like some ibmcam model 1 units) seem to expect hosts to make
926 	 * this request for iso endpoints, which can't halt!
927 	 */
928 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
929 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
930 		USB_ENDPOINT_HALT, endp, NULL, 0,
931 		USB_CTRL_SET_TIMEOUT);
932 
933 	/* don't un-halt or force to DATA0 except on success */
934 	if (result < 0)
935 		return result;
936 
937 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
938 	 * the clear "took", so some devices could lock up if you check...
939 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
940 	 *
941 	 * NOTE:  make sure the logic here doesn't diverge much from
942 	 * the copy in usb-storage, for as long as we need two copies.
943 	 */
944 
945 	/* toggle was reset by the clear */
946 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
947 
948 	return 0;
949 }
950 
951 /**
952  * usb_disable_endpoint -- Disable an endpoint by address
953  * @dev: the device whose endpoint is being disabled
954  * @epaddr: the endpoint's address.  Endpoint number for output,
955  *	endpoint number + USB_DIR_IN for input
956  *
957  * Deallocates hcd/hardware state for this endpoint ... and nukes all
958  * pending urbs.
959  *
960  * If the HCD hasn't registered a disable() function, this sets the
961  * endpoint's maxpacket size to 0 to prevent further submissions.
962  */
963 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
964 {
965 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
966 	struct usb_host_endpoint *ep;
967 
968 	if (!dev)
969 		return;
970 
971 	if (usb_endpoint_out(epaddr)) {
972 		ep = dev->ep_out[epnum];
973 		dev->ep_out[epnum] = NULL;
974 	} else {
975 		ep = dev->ep_in[epnum];
976 		dev->ep_in[epnum] = NULL;
977 	}
978 	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
979 		dev->bus->op->disable(dev, ep);
980 }
981 
982 /**
983  * usb_disable_interface -- Disable all endpoints for an interface
984  * @dev: the device whose interface is being disabled
985  * @intf: pointer to the interface descriptor
986  *
987  * Disables all the endpoints for the interface's current altsetting.
988  */
989 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
990 {
991 	struct usb_host_interface *alt = intf->cur_altsetting;
992 	int i;
993 
994 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
995 		usb_disable_endpoint(dev,
996 				alt->endpoint[i].desc.bEndpointAddress);
997 	}
998 }
999 
1000 /*
1001  * usb_disable_device - Disable all the endpoints for a USB device
1002  * @dev: the device whose endpoints are being disabled
1003  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1004  *
1005  * Disables all the device's endpoints, potentially including endpoint 0.
1006  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1007  * pending urbs) and usbcore state for the interfaces, so that usbcore
1008  * must usb_set_configuration() before any interfaces could be used.
1009  */
1010 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1011 {
1012 	int i;
1013 
1014 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1015 			skip_ep0 ? "non-ep0" : "all");
1016 	for (i = skip_ep0; i < 16; ++i) {
1017 		usb_disable_endpoint(dev, i);
1018 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1019 	}
1020 	dev->toggle[0] = dev->toggle[1] = 0;
1021 
1022 	/* getting rid of interfaces will disconnect
1023 	 * any drivers bound to them (a key side effect)
1024 	 */
1025 	if (dev->actconfig) {
1026 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1027 			struct usb_interface	*interface;
1028 
1029 			/* remove this interface if it has been registered */
1030 			interface = dev->actconfig->interface[i];
1031 			if (!device_is_registered(&interface->dev))
1032 				continue;
1033 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1034 				interface->dev.bus_id);
1035 			usb_remove_sysfs_intf_files(interface);
1036 			device_del (&interface->dev);
1037 		}
1038 
1039 		/* Now that the interfaces are unbound, nobody should
1040 		 * try to access them.
1041 		 */
1042 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1043 			put_device (&dev->actconfig->interface[i]->dev);
1044 			dev->actconfig->interface[i] = NULL;
1045 		}
1046 		dev->actconfig = NULL;
1047 		if (dev->state == USB_STATE_CONFIGURED)
1048 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1049 	}
1050 }
1051 
1052 
1053 /*
1054  * usb_enable_endpoint - Enable an endpoint for USB communications
1055  * @dev: the device whose interface is being enabled
1056  * @ep: the endpoint
1057  *
1058  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1059  * For control endpoints, both the input and output sides are handled.
1060  */
1061 static void
1062 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1063 {
1064 	unsigned int epaddr = ep->desc.bEndpointAddress;
1065 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1066 	int is_control;
1067 
1068 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1069 			== USB_ENDPOINT_XFER_CONTROL);
1070 	if (usb_endpoint_out(epaddr) || is_control) {
1071 		usb_settoggle(dev, epnum, 1, 0);
1072 		dev->ep_out[epnum] = ep;
1073 	}
1074 	if (!usb_endpoint_out(epaddr) || is_control) {
1075 		usb_settoggle(dev, epnum, 0, 0);
1076 		dev->ep_in[epnum] = ep;
1077 	}
1078 }
1079 
1080 /*
1081  * usb_enable_interface - Enable all the endpoints for an interface
1082  * @dev: the device whose interface is being enabled
1083  * @intf: pointer to the interface descriptor
1084  *
1085  * Enables all the endpoints for the interface's current altsetting.
1086  */
1087 static void usb_enable_interface(struct usb_device *dev,
1088 				 struct usb_interface *intf)
1089 {
1090 	struct usb_host_interface *alt = intf->cur_altsetting;
1091 	int i;
1092 
1093 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1094 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1095 }
1096 
1097 /**
1098  * usb_set_interface - Makes a particular alternate setting be current
1099  * @dev: the device whose interface is being updated
1100  * @interface: the interface being updated
1101  * @alternate: the setting being chosen.
1102  * Context: !in_interrupt ()
1103  *
1104  * This is used to enable data transfers on interfaces that may not
1105  * be enabled by default.  Not all devices support such configurability.
1106  * Only the driver bound to an interface may change its setting.
1107  *
1108  * Within any given configuration, each interface may have several
1109  * alternative settings.  These are often used to control levels of
1110  * bandwidth consumption.  For example, the default setting for a high
1111  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1112  * while interrupt transfers of up to 3KBytes per microframe are legal.
1113  * Also, isochronous endpoints may never be part of an
1114  * interface's default setting.  To access such bandwidth, alternate
1115  * interface settings must be made current.
1116  *
1117  * Note that in the Linux USB subsystem, bandwidth associated with
1118  * an endpoint in a given alternate setting is not reserved until an URB
1119  * is submitted that needs that bandwidth.  Some other operating systems
1120  * allocate bandwidth early, when a configuration is chosen.
1121  *
1122  * This call is synchronous, and may not be used in an interrupt context.
1123  * Also, drivers must not change altsettings while urbs are scheduled for
1124  * endpoints in that interface; all such urbs must first be completed
1125  * (perhaps forced by unlinking).
1126  *
1127  * Returns zero on success, or else the status code returned by the
1128  * underlying usb_control_msg() call.
1129  */
1130 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1131 {
1132 	struct usb_interface *iface;
1133 	struct usb_host_interface *alt;
1134 	int ret;
1135 	int manual = 0;
1136 
1137 	if (dev->state == USB_STATE_SUSPENDED)
1138 		return -EHOSTUNREACH;
1139 
1140 	iface = usb_ifnum_to_if(dev, interface);
1141 	if (!iface) {
1142 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1143 			interface);
1144 		return -EINVAL;
1145 	}
1146 
1147 	alt = usb_altnum_to_altsetting(iface, alternate);
1148 	if (!alt) {
1149 		warn("selecting invalid altsetting %d", alternate);
1150 		return -EINVAL;
1151 	}
1152 
1153 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1154 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1155 				   alternate, interface, NULL, 0, 5000);
1156 
1157 	/* 9.4.10 says devices don't need this and are free to STALL the
1158 	 * request if the interface only has one alternate setting.
1159 	 */
1160 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1161 		dev_dbg(&dev->dev,
1162 			"manual set_interface for iface %d, alt %d\n",
1163 			interface, alternate);
1164 		manual = 1;
1165 	} else if (ret < 0)
1166 		return ret;
1167 
1168 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1169 	 * when they implement async or easily-killable versions of this or
1170 	 * other "should-be-internal" functions (like clear_halt).
1171 	 * should hcd+usbcore postprocess control requests?
1172 	 */
1173 
1174 	/* prevent submissions using previous endpoint settings */
1175 	if (device_is_registered(&iface->dev))
1176 		usb_remove_sysfs_intf_files(iface);
1177 	usb_disable_interface(dev, iface);
1178 
1179 	iface->cur_altsetting = alt;
1180 
1181 	/* If the interface only has one altsetting and the device didn't
1182 	 * accept the request, we attempt to carry out the equivalent action
1183 	 * by manually clearing the HALT feature for each endpoint in the
1184 	 * new altsetting.
1185 	 */
1186 	if (manual) {
1187 		int i;
1188 
1189 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1190 			unsigned int epaddr =
1191 				alt->endpoint[i].desc.bEndpointAddress;
1192 			unsigned int pipe =
1193 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1194 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1195 
1196 			usb_clear_halt(dev, pipe);
1197 		}
1198 	}
1199 
1200 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1201 	 *
1202 	 * Note:
1203 	 * Despite EP0 is always present in all interfaces/AS, the list of
1204 	 * endpoints from the descriptor does not contain EP0. Due to its
1205 	 * omnipresence one might expect EP0 being considered "affected" by
1206 	 * any SetInterface request and hence assume toggles need to be reset.
1207 	 * However, EP0 toggles are re-synced for every individual transfer
1208 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1209 	 * (Likewise, EP0 never "halts" on well designed devices.)
1210 	 */
1211 	usb_enable_interface(dev, iface);
1212 	if (device_is_registered(&iface->dev))
1213 		usb_create_sysfs_intf_files(iface);
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  * usb_reset_configuration - lightweight device reset
1220  * @dev: the device whose configuration is being reset
1221  *
1222  * This issues a standard SET_CONFIGURATION request to the device using
1223  * the current configuration.  The effect is to reset most USB-related
1224  * state in the device, including interface altsettings (reset to zero),
1225  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1226  * endpoints).  Other usbcore state is unchanged, including bindings of
1227  * usb device drivers to interfaces.
1228  *
1229  * Because this affects multiple interfaces, avoid using this with composite
1230  * (multi-interface) devices.  Instead, the driver for each interface may
1231  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1232  * some devices don't support the SET_INTERFACE request, and others won't
1233  * reset all the interface state (notably data toggles).  Resetting the whole
1234  * configuration would affect other drivers' interfaces.
1235  *
1236  * The caller must own the device lock.
1237  *
1238  * Returns zero on success, else a negative error code.
1239  */
1240 int usb_reset_configuration(struct usb_device *dev)
1241 {
1242 	int			i, retval;
1243 	struct usb_host_config	*config;
1244 
1245 	if (dev->state == USB_STATE_SUSPENDED)
1246 		return -EHOSTUNREACH;
1247 
1248 	/* caller must have locked the device and must own
1249 	 * the usb bus readlock (so driver bindings are stable);
1250 	 * calls during probe() are fine
1251 	 */
1252 
1253 	for (i = 1; i < 16; ++i) {
1254 		usb_disable_endpoint(dev, i);
1255 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1256 	}
1257 
1258 	config = dev->actconfig;
1259 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1260 			USB_REQ_SET_CONFIGURATION, 0,
1261 			config->desc.bConfigurationValue, 0,
1262 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1263 	if (retval < 0)
1264 		return retval;
1265 
1266 	dev->toggle[0] = dev->toggle[1] = 0;
1267 
1268 	/* re-init hc/hcd interface/endpoint state */
1269 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1270 		struct usb_interface *intf = config->interface[i];
1271 		struct usb_host_interface *alt;
1272 
1273 		if (device_is_registered(&intf->dev))
1274 			usb_remove_sysfs_intf_files(intf);
1275 		alt = usb_altnum_to_altsetting(intf, 0);
1276 
1277 		/* No altsetting 0?  We'll assume the first altsetting.
1278 		 * We could use a GetInterface call, but if a device is
1279 		 * so non-compliant that it doesn't have altsetting 0
1280 		 * then I wouldn't trust its reply anyway.
1281 		 */
1282 		if (!alt)
1283 			alt = &intf->altsetting[0];
1284 
1285 		intf->cur_altsetting = alt;
1286 		usb_enable_interface(dev, intf);
1287 		if (device_is_registered(&intf->dev))
1288 			usb_create_sysfs_intf_files(intf);
1289 	}
1290 	return 0;
1291 }
1292 
1293 static void release_interface(struct device *dev)
1294 {
1295 	struct usb_interface *intf = to_usb_interface(dev);
1296 	struct usb_interface_cache *intfc =
1297 			altsetting_to_usb_interface_cache(intf->altsetting);
1298 
1299 	kref_put(&intfc->ref, usb_release_interface_cache);
1300 	kfree(intf);
1301 }
1302 
1303 /*
1304  * usb_set_configuration - Makes a particular device setting be current
1305  * @dev: the device whose configuration is being updated
1306  * @configuration: the configuration being chosen.
1307  * Context: !in_interrupt(), caller owns the device lock
1308  *
1309  * This is used to enable non-default device modes.  Not all devices
1310  * use this kind of configurability; many devices only have one
1311  * configuration.
1312  *
1313  * USB device configurations may affect Linux interoperability,
1314  * power consumption and the functionality available.  For example,
1315  * the default configuration is limited to using 100mA of bus power,
1316  * so that when certain device functionality requires more power,
1317  * and the device is bus powered, that functionality should be in some
1318  * non-default device configuration.  Other device modes may also be
1319  * reflected as configuration options, such as whether two ISDN
1320  * channels are available independently; and choosing between open
1321  * standard device protocols (like CDC) or proprietary ones.
1322  *
1323  * Note that USB has an additional level of device configurability,
1324  * associated with interfaces.  That configurability is accessed using
1325  * usb_set_interface().
1326  *
1327  * This call is synchronous. The calling context must be able to sleep,
1328  * must own the device lock, and must not hold the driver model's USB
1329  * bus rwsem; usb device driver probe() methods cannot use this routine.
1330  *
1331  * Returns zero on success, or else the status code returned by the
1332  * underlying call that failed.  On successful completion, each interface
1333  * in the original device configuration has been destroyed, and each one
1334  * in the new configuration has been probed by all relevant usb device
1335  * drivers currently known to the kernel.
1336  */
1337 int usb_set_configuration(struct usb_device *dev, int configuration)
1338 {
1339 	int i, ret;
1340 	struct usb_host_config *cp = NULL;
1341 	struct usb_interface **new_interfaces = NULL;
1342 	int n, nintf;
1343 
1344 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1345 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1346 			cp = &dev->config[i];
1347 			break;
1348 		}
1349 	}
1350 	if ((!cp && configuration != 0))
1351 		return -EINVAL;
1352 
1353 	/* The USB spec says configuration 0 means unconfigured.
1354 	 * But if a device includes a configuration numbered 0,
1355 	 * we will accept it as a correctly configured state.
1356 	 */
1357 	if (cp && configuration == 0)
1358 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1359 
1360 	if (dev->state == USB_STATE_SUSPENDED)
1361 		return -EHOSTUNREACH;
1362 
1363 	/* Allocate memory for new interfaces before doing anything else,
1364 	 * so that if we run out then nothing will have changed. */
1365 	n = nintf = 0;
1366 	if (cp) {
1367 		nintf = cp->desc.bNumInterfaces;
1368 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1369 				GFP_KERNEL);
1370 		if (!new_interfaces) {
1371 			dev_err(&dev->dev, "Out of memory");
1372 			return -ENOMEM;
1373 		}
1374 
1375 		for (; n < nintf; ++n) {
1376 			new_interfaces[n] = kzalloc(
1377 					sizeof(struct usb_interface),
1378 					GFP_KERNEL);
1379 			if (!new_interfaces[n]) {
1380 				dev_err(&dev->dev, "Out of memory");
1381 				ret = -ENOMEM;
1382 free_interfaces:
1383 				while (--n >= 0)
1384 					kfree(new_interfaces[n]);
1385 				kfree(new_interfaces);
1386 				return ret;
1387 			}
1388 		}
1389 	}
1390 
1391 	/* if it's already configured, clear out old state first.
1392 	 * getting rid of old interfaces means unbinding their drivers.
1393 	 */
1394 	if (dev->state != USB_STATE_ADDRESS)
1395 		usb_disable_device (dev, 1);	// Skip ep0
1396 
1397 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1398 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1399 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0)
1400 		goto free_interfaces;
1401 
1402 	dev->actconfig = cp;
1403 	if (!cp)
1404 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1405 	else {
1406 		usb_set_device_state(dev, USB_STATE_CONFIGURED);
1407 
1408 		/* Initialize the new interface structures and the
1409 		 * hc/hcd/usbcore interface/endpoint state.
1410 		 */
1411 		for (i = 0; i < nintf; ++i) {
1412 			struct usb_interface_cache *intfc;
1413 			struct usb_interface *intf;
1414 			struct usb_host_interface *alt;
1415 
1416 			cp->interface[i] = intf = new_interfaces[i];
1417 			intfc = cp->intf_cache[i];
1418 			intf->altsetting = intfc->altsetting;
1419 			intf->num_altsetting = intfc->num_altsetting;
1420 			kref_get(&intfc->ref);
1421 
1422 			alt = usb_altnum_to_altsetting(intf, 0);
1423 
1424 			/* No altsetting 0?  We'll assume the first altsetting.
1425 			 * We could use a GetInterface call, but if a device is
1426 			 * so non-compliant that it doesn't have altsetting 0
1427 			 * then I wouldn't trust its reply anyway.
1428 			 */
1429 			if (!alt)
1430 				alt = &intf->altsetting[0];
1431 
1432 			intf->cur_altsetting = alt;
1433 			usb_enable_interface(dev, intf);
1434 			intf->dev.parent = &dev->dev;
1435 			intf->dev.driver = NULL;
1436 			intf->dev.bus = &usb_bus_type;
1437 			intf->dev.dma_mask = dev->dev.dma_mask;
1438 			intf->dev.release = release_interface;
1439 			device_initialize (&intf->dev);
1440 			mark_quiesced(intf);
1441 			sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1442 				 dev->bus->busnum, dev->devpath,
1443 				 configuration,
1444 				 alt->desc.bInterfaceNumber);
1445 		}
1446 		kfree(new_interfaces);
1447 
1448 		if (cp->string == NULL)
1449 			cp->string = usb_cache_string(dev,
1450 					cp->desc.iConfiguration);
1451 
1452 		/* Now that all the interfaces are set up, register them
1453 		 * to trigger binding of drivers to interfaces.  probe()
1454 		 * routines may install different altsettings and may
1455 		 * claim() any interfaces not yet bound.  Many class drivers
1456 		 * need that: CDC, audio, video, etc.
1457 		 */
1458 		for (i = 0; i < nintf; ++i) {
1459 			struct usb_interface *intf = cp->interface[i];
1460 			struct usb_host_interface *alt = intf->cur_altsetting;
1461 
1462 			dev_dbg (&dev->dev,
1463 				"adding %s (config #%d, interface %d)\n",
1464 				intf->dev.bus_id, configuration,
1465 				alt->desc.bInterfaceNumber);
1466 			ret = device_add (&intf->dev);
1467 			if (ret != 0) {
1468 				dev_err(&dev->dev,
1469 					"device_add(%s) --> %d\n",
1470 					intf->dev.bus_id,
1471 					ret);
1472 				continue;
1473 			}
1474 			usb_create_sysfs_intf_files (intf);
1475 		}
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 // synchronous request completion model
1482 EXPORT_SYMBOL(usb_control_msg);
1483 EXPORT_SYMBOL(usb_bulk_msg);
1484 
1485 EXPORT_SYMBOL(usb_sg_init);
1486 EXPORT_SYMBOL(usb_sg_cancel);
1487 EXPORT_SYMBOL(usb_sg_wait);
1488 
1489 // synchronous control message convenience routines
1490 EXPORT_SYMBOL(usb_get_descriptor);
1491 EXPORT_SYMBOL(usb_get_status);
1492 EXPORT_SYMBOL(usb_get_string);
1493 EXPORT_SYMBOL(usb_string);
1494 
1495 // synchronous calls that also maintain usbcore state
1496 EXPORT_SYMBOL(usb_clear_halt);
1497 EXPORT_SYMBOL(usb_reset_configuration);
1498 EXPORT_SYMBOL(usb_set_interface);
1499 
1500