1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/config.h> 6 7 #ifdef CONFIG_USB_DEBUG 8 #define DEBUG 9 #else 10 #undef DEBUG 11 #endif 12 13 #include <linux/pci.h> /* for scatterlist macros */ 14 #include <linux/usb.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/mm.h> 19 #include <linux/timer.h> 20 #include <linux/ctype.h> 21 #include <linux/device.h> 22 #include <asm/byteorder.h> 23 24 #include "hcd.h" /* for usbcore internals */ 25 #include "usb.h" 26 27 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs) 28 { 29 complete((struct completion *)urb->context); 30 } 31 32 33 static void timeout_kill(unsigned long data) 34 { 35 struct urb *urb = (struct urb *) data; 36 37 usb_unlink_urb(urb); 38 } 39 40 // Starts urb and waits for completion or timeout 41 // note that this call is NOT interruptible, while 42 // many device driver i/o requests should be interruptible 43 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length) 44 { 45 struct completion done; 46 struct timer_list timer; 47 int status; 48 49 init_completion(&done); 50 urb->context = &done; 51 urb->actual_length = 0; 52 status = usb_submit_urb(urb, GFP_NOIO); 53 54 if (status == 0) { 55 if (timeout > 0) { 56 init_timer(&timer); 57 timer.expires = jiffies + msecs_to_jiffies(timeout); 58 timer.data = (unsigned long)urb; 59 timer.function = timeout_kill; 60 /* grr. timeout _should_ include submit delays. */ 61 add_timer(&timer); 62 } 63 wait_for_completion(&done); 64 status = urb->status; 65 /* note: HCDs return ETIMEDOUT for other reasons too */ 66 if (status == -ECONNRESET) { 67 dev_dbg(&urb->dev->dev, 68 "%s timed out on ep%d%s len=%d/%d\n", 69 current->comm, 70 usb_pipeendpoint(urb->pipe), 71 usb_pipein(urb->pipe) ? "in" : "out", 72 urb->actual_length, 73 urb->transfer_buffer_length 74 ); 75 if (urb->actual_length > 0) 76 status = 0; 77 else 78 status = -ETIMEDOUT; 79 } 80 if (timeout > 0) 81 del_timer_sync(&timer); 82 } 83 84 if (actual_length) 85 *actual_length = urb->actual_length; 86 usb_free_urb(urb); 87 return status; 88 } 89 90 /*-------------------------------------------------------------------*/ 91 // returns status (negative) or length (positive) 92 static int usb_internal_control_msg(struct usb_device *usb_dev, 93 unsigned int pipe, 94 struct usb_ctrlrequest *cmd, 95 void *data, int len, int timeout) 96 { 97 struct urb *urb; 98 int retv; 99 int length; 100 101 urb = usb_alloc_urb(0, GFP_NOIO); 102 if (!urb) 103 return -ENOMEM; 104 105 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 106 len, usb_api_blocking_completion, NULL); 107 108 retv = usb_start_wait_urb(urb, timeout, &length); 109 if (retv < 0) 110 return retv; 111 else 112 return length; 113 } 114 115 /** 116 * usb_control_msg - Builds a control urb, sends it off and waits for completion 117 * @dev: pointer to the usb device to send the message to 118 * @pipe: endpoint "pipe" to send the message to 119 * @request: USB message request value 120 * @requesttype: USB message request type value 121 * @value: USB message value 122 * @index: USB message index value 123 * @data: pointer to the data to send 124 * @size: length in bytes of the data to send 125 * @timeout: time in msecs to wait for the message to complete before 126 * timing out (if 0 the wait is forever) 127 * Context: !in_interrupt () 128 * 129 * This function sends a simple control message to a specified endpoint 130 * and waits for the message to complete, or timeout. 131 * 132 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 133 * 134 * Don't use this function from within an interrupt context, like a 135 * bottom half handler. If you need an asynchronous message, or need to send 136 * a message from within interrupt context, use usb_submit_urb() 137 * If a thread in your driver uses this call, make sure your disconnect() 138 * method can wait for it to complete. Since you don't have a handle on 139 * the URB used, you can't cancel the request. 140 */ 141 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 142 __u16 value, __u16 index, void *data, __u16 size, int timeout) 143 { 144 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 145 int ret; 146 147 if (!dr) 148 return -ENOMEM; 149 150 dr->bRequestType= requesttype; 151 dr->bRequest = request; 152 dr->wValue = cpu_to_le16p(&value); 153 dr->wIndex = cpu_to_le16p(&index); 154 dr->wLength = cpu_to_le16p(&size); 155 156 //dbg("usb_control_msg"); 157 158 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 159 160 kfree(dr); 161 162 return ret; 163 } 164 165 166 /** 167 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 168 * @usb_dev: pointer to the usb device to send the message to 169 * @pipe: endpoint "pipe" to send the message to 170 * @data: pointer to the data to send 171 * @len: length in bytes of the data to send 172 * @actual_length: pointer to a location to put the actual length transferred in bytes 173 * @timeout: time in msecs to wait for the message to complete before 174 * timing out (if 0 the wait is forever) 175 * Context: !in_interrupt () 176 * 177 * This function sends a simple bulk message to a specified endpoint 178 * and waits for the message to complete, or timeout. 179 * 180 * If successful, it returns 0, otherwise a negative error number. 181 * The number of actual bytes transferred will be stored in the 182 * actual_length paramater. 183 * 184 * Don't use this function from within an interrupt context, like a 185 * bottom half handler. If you need an asynchronous message, or need to 186 * send a message from within interrupt context, use usb_submit_urb() 187 * If a thread in your driver uses this call, make sure your disconnect() 188 * method can wait for it to complete. Since you don't have a handle on 189 * the URB used, you can't cancel the request. 190 * 191 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 192 * ioctl, users are forced to abuse this routine by using it to submit 193 * URBs for interrupt endpoints. We will take the liberty of creating 194 * an interrupt URB (with the default interval) if the target is an 195 * interrupt endpoint. 196 */ 197 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 198 void *data, int len, int *actual_length, int timeout) 199 { 200 struct urb *urb; 201 struct usb_host_endpoint *ep; 202 203 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 204 [usb_pipeendpoint(pipe)]; 205 if (!ep || len < 0) 206 return -EINVAL; 207 208 urb = usb_alloc_urb(0, GFP_KERNEL); 209 if (!urb) 210 return -ENOMEM; 211 212 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 213 USB_ENDPOINT_XFER_INT) { 214 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 215 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 216 usb_api_blocking_completion, NULL, 217 ep->desc.bInterval); 218 } else 219 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 220 usb_api_blocking_completion, NULL); 221 222 return usb_start_wait_urb(urb, timeout, actual_length); 223 } 224 225 /*-------------------------------------------------------------------*/ 226 227 static void sg_clean (struct usb_sg_request *io) 228 { 229 if (io->urbs) { 230 while (io->entries--) 231 usb_free_urb (io->urbs [io->entries]); 232 kfree (io->urbs); 233 io->urbs = NULL; 234 } 235 if (io->dev->dev.dma_mask != NULL) 236 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 237 io->dev = NULL; 238 } 239 240 static void sg_complete (struct urb *urb, struct pt_regs *regs) 241 { 242 struct usb_sg_request *io = (struct usb_sg_request *) urb->context; 243 244 spin_lock (&io->lock); 245 246 /* In 2.5 we require hcds' endpoint queues not to progress after fault 247 * reports, until the completion callback (this!) returns. That lets 248 * device driver code (like this routine) unlink queued urbs first, 249 * if it needs to, since the HC won't work on them at all. So it's 250 * not possible for page N+1 to overwrite page N, and so on. 251 * 252 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 253 * complete before the HCD can get requests away from hardware, 254 * though never during cleanup after a hard fault. 255 */ 256 if (io->status 257 && (io->status != -ECONNRESET 258 || urb->status != -ECONNRESET) 259 && urb->actual_length) { 260 dev_err (io->dev->bus->controller, 261 "dev %s ep%d%s scatterlist error %d/%d\n", 262 io->dev->devpath, 263 usb_pipeendpoint (urb->pipe), 264 usb_pipein (urb->pipe) ? "in" : "out", 265 urb->status, io->status); 266 // BUG (); 267 } 268 269 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 270 int i, found, status; 271 272 io->status = urb->status; 273 274 /* the previous urbs, and this one, completed already. 275 * unlink pending urbs so they won't rx/tx bad data. 276 * careful: unlink can sometimes be synchronous... 277 */ 278 spin_unlock (&io->lock); 279 for (i = 0, found = 0; i < io->entries; i++) { 280 if (!io->urbs [i] || !io->urbs [i]->dev) 281 continue; 282 if (found) { 283 status = usb_unlink_urb (io->urbs [i]); 284 if (status != -EINPROGRESS 285 && status != -ENODEV 286 && status != -EBUSY) 287 dev_err (&io->dev->dev, 288 "%s, unlink --> %d\n", 289 __FUNCTION__, status); 290 } else if (urb == io->urbs [i]) 291 found = 1; 292 } 293 spin_lock (&io->lock); 294 } 295 urb->dev = NULL; 296 297 /* on the last completion, signal usb_sg_wait() */ 298 io->bytes += urb->actual_length; 299 io->count--; 300 if (!io->count) 301 complete (&io->complete); 302 303 spin_unlock (&io->lock); 304 } 305 306 307 /** 308 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 309 * @io: request block being initialized. until usb_sg_wait() returns, 310 * treat this as a pointer to an opaque block of memory, 311 * @dev: the usb device that will send or receive the data 312 * @pipe: endpoint "pipe" used to transfer the data 313 * @period: polling rate for interrupt endpoints, in frames or 314 * (for high speed endpoints) microframes; ignored for bulk 315 * @sg: scatterlist entries 316 * @nents: how many entries in the scatterlist 317 * @length: how many bytes to send from the scatterlist, or zero to 318 * send every byte identified in the list. 319 * @mem_flags: SLAB_* flags affecting memory allocations in this call 320 * 321 * Returns zero for success, else a negative errno value. This initializes a 322 * scatter/gather request, allocating resources such as I/O mappings and urb 323 * memory (except maybe memory used by USB controller drivers). 324 * 325 * The request must be issued using usb_sg_wait(), which waits for the I/O to 326 * complete (or to be canceled) and then cleans up all resources allocated by 327 * usb_sg_init(). 328 * 329 * The request may be canceled with usb_sg_cancel(), either before or after 330 * usb_sg_wait() is called. 331 */ 332 int usb_sg_init ( 333 struct usb_sg_request *io, 334 struct usb_device *dev, 335 unsigned pipe, 336 unsigned period, 337 struct scatterlist *sg, 338 int nents, 339 size_t length, 340 gfp_t mem_flags 341 ) 342 { 343 int i; 344 int urb_flags; 345 int dma; 346 347 if (!io || !dev || !sg 348 || usb_pipecontrol (pipe) 349 || usb_pipeisoc (pipe) 350 || nents <= 0) 351 return -EINVAL; 352 353 spin_lock_init (&io->lock); 354 io->dev = dev; 355 io->pipe = pipe; 356 io->sg = sg; 357 io->nents = nents; 358 359 /* not all host controllers use DMA (like the mainstream pci ones); 360 * they can use PIO (sl811) or be software over another transport. 361 */ 362 dma = (dev->dev.dma_mask != NULL); 363 if (dma) 364 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 365 else 366 io->entries = nents; 367 368 /* initialize all the urbs we'll use */ 369 if (io->entries <= 0) 370 return io->entries; 371 372 io->count = io->entries; 373 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 374 if (!io->urbs) 375 goto nomem; 376 377 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 378 if (usb_pipein (pipe)) 379 urb_flags |= URB_SHORT_NOT_OK; 380 381 for (i = 0; i < io->entries; i++) { 382 unsigned len; 383 384 io->urbs [i] = usb_alloc_urb (0, mem_flags); 385 if (!io->urbs [i]) { 386 io->entries = i; 387 goto nomem; 388 } 389 390 io->urbs [i]->dev = NULL; 391 io->urbs [i]->pipe = pipe; 392 io->urbs [i]->interval = period; 393 io->urbs [i]->transfer_flags = urb_flags; 394 395 io->urbs [i]->complete = sg_complete; 396 io->urbs [i]->context = io; 397 io->urbs [i]->status = -EINPROGRESS; 398 io->urbs [i]->actual_length = 0; 399 400 if (dma) { 401 /* hc may use _only_ transfer_dma */ 402 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 403 len = sg_dma_len (sg + i); 404 } else { 405 /* hc may use _only_ transfer_buffer */ 406 io->urbs [i]->transfer_buffer = 407 page_address (sg [i].page) + sg [i].offset; 408 len = sg [i].length; 409 } 410 411 if (length) { 412 len = min_t (unsigned, len, length); 413 length -= len; 414 if (length == 0) 415 io->entries = i + 1; 416 } 417 io->urbs [i]->transfer_buffer_length = len; 418 } 419 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 420 421 /* transaction state */ 422 io->status = 0; 423 io->bytes = 0; 424 init_completion (&io->complete); 425 return 0; 426 427 nomem: 428 sg_clean (io); 429 return -ENOMEM; 430 } 431 432 433 /** 434 * usb_sg_wait - synchronously execute scatter/gather request 435 * @io: request block handle, as initialized with usb_sg_init(). 436 * some fields become accessible when this call returns. 437 * Context: !in_interrupt () 438 * 439 * This function blocks until the specified I/O operation completes. It 440 * leverages the grouping of the related I/O requests to get good transfer 441 * rates, by queueing the requests. At higher speeds, such queuing can 442 * significantly improve USB throughput. 443 * 444 * There are three kinds of completion for this function. 445 * (1) success, where io->status is zero. The number of io->bytes 446 * transferred is as requested. 447 * (2) error, where io->status is a negative errno value. The number 448 * of io->bytes transferred before the error is usually less 449 * than requested, and can be nonzero. 450 * (3) cancellation, a type of error with status -ECONNRESET that 451 * is initiated by usb_sg_cancel(). 452 * 453 * When this function returns, all memory allocated through usb_sg_init() or 454 * this call will have been freed. The request block parameter may still be 455 * passed to usb_sg_cancel(), or it may be freed. It could also be 456 * reinitialized and then reused. 457 * 458 * Data Transfer Rates: 459 * 460 * Bulk transfers are valid for full or high speed endpoints. 461 * The best full speed data rate is 19 packets of 64 bytes each 462 * per frame, or 1216 bytes per millisecond. 463 * The best high speed data rate is 13 packets of 512 bytes each 464 * per microframe, or 52 KBytes per millisecond. 465 * 466 * The reason to use interrupt transfers through this API would most likely 467 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 468 * could be transferred. That capability is less useful for low or full 469 * speed interrupt endpoints, which allow at most one packet per millisecond, 470 * of at most 8 or 64 bytes (respectively). 471 */ 472 void usb_sg_wait (struct usb_sg_request *io) 473 { 474 int i, entries = io->entries; 475 476 /* queue the urbs. */ 477 spin_lock_irq (&io->lock); 478 for (i = 0; i < entries && !io->status; i++) { 479 int retval; 480 481 io->urbs [i]->dev = io->dev; 482 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC); 483 484 /* after we submit, let completions or cancelations fire; 485 * we handshake using io->status. 486 */ 487 spin_unlock_irq (&io->lock); 488 switch (retval) { 489 /* maybe we retrying will recover */ 490 case -ENXIO: // hc didn't queue this one 491 case -EAGAIN: 492 case -ENOMEM: 493 io->urbs[i]->dev = NULL; 494 retval = 0; 495 i--; 496 yield (); 497 break; 498 499 /* no error? continue immediately. 500 * 501 * NOTE: to work better with UHCI (4K I/O buffer may 502 * need 3K of TDs) it may be good to limit how many 503 * URBs are queued at once; N milliseconds? 504 */ 505 case 0: 506 cpu_relax (); 507 break; 508 509 /* fail any uncompleted urbs */ 510 default: 511 io->urbs [i]->dev = NULL; 512 io->urbs [i]->status = retval; 513 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 514 __FUNCTION__, retval); 515 usb_sg_cancel (io); 516 } 517 spin_lock_irq (&io->lock); 518 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 519 io->status = retval; 520 } 521 io->count -= entries - i; 522 if (io->count == 0) 523 complete (&io->complete); 524 spin_unlock_irq (&io->lock); 525 526 /* OK, yes, this could be packaged as non-blocking. 527 * So could the submit loop above ... but it's easier to 528 * solve neither problem than to solve both! 529 */ 530 wait_for_completion (&io->complete); 531 532 sg_clean (io); 533 } 534 535 /** 536 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 537 * @io: request block, initialized with usb_sg_init() 538 * 539 * This stops a request after it has been started by usb_sg_wait(). 540 * It can also prevents one initialized by usb_sg_init() from starting, 541 * so that call just frees resources allocated to the request. 542 */ 543 void usb_sg_cancel (struct usb_sg_request *io) 544 { 545 unsigned long flags; 546 547 spin_lock_irqsave (&io->lock, flags); 548 549 /* shut everything down, if it didn't already */ 550 if (!io->status) { 551 int i; 552 553 io->status = -ECONNRESET; 554 spin_unlock (&io->lock); 555 for (i = 0; i < io->entries; i++) { 556 int retval; 557 558 if (!io->urbs [i]->dev) 559 continue; 560 retval = usb_unlink_urb (io->urbs [i]); 561 if (retval != -EINPROGRESS && retval != -EBUSY) 562 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 563 __FUNCTION__, retval); 564 } 565 spin_lock (&io->lock); 566 } 567 spin_unlock_irqrestore (&io->lock, flags); 568 } 569 570 /*-------------------------------------------------------------------*/ 571 572 /** 573 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 574 * @dev: the device whose descriptor is being retrieved 575 * @type: the descriptor type (USB_DT_*) 576 * @index: the number of the descriptor 577 * @buf: where to put the descriptor 578 * @size: how big is "buf"? 579 * Context: !in_interrupt () 580 * 581 * Gets a USB descriptor. Convenience functions exist to simplify 582 * getting some types of descriptors. Use 583 * usb_get_string() or usb_string() for USB_DT_STRING. 584 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 585 * are part of the device structure. 586 * In addition to a number of USB-standard descriptors, some 587 * devices also use class-specific or vendor-specific descriptors. 588 * 589 * This call is synchronous, and may not be used in an interrupt context. 590 * 591 * Returns the number of bytes received on success, or else the status code 592 * returned by the underlying usb_control_msg() call. 593 */ 594 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 595 { 596 int i; 597 int result; 598 599 memset(buf,0,size); // Make sure we parse really received data 600 601 for (i = 0; i < 3; ++i) { 602 /* retry on length 0 or stall; some devices are flakey */ 603 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 604 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 605 (type << 8) + index, 0, buf, size, 606 USB_CTRL_GET_TIMEOUT); 607 if (result == 0 || result == -EPIPE) 608 continue; 609 if (result > 1 && ((u8 *)buf)[1] != type) { 610 result = -EPROTO; 611 continue; 612 } 613 break; 614 } 615 return result; 616 } 617 618 /** 619 * usb_get_string - gets a string descriptor 620 * @dev: the device whose string descriptor is being retrieved 621 * @langid: code for language chosen (from string descriptor zero) 622 * @index: the number of the descriptor 623 * @buf: where to put the string 624 * @size: how big is "buf"? 625 * Context: !in_interrupt () 626 * 627 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 628 * in little-endian byte order). 629 * The usb_string() function will often be a convenient way to turn 630 * these strings into kernel-printable form. 631 * 632 * Strings may be referenced in device, configuration, interface, or other 633 * descriptors, and could also be used in vendor-specific ways. 634 * 635 * This call is synchronous, and may not be used in an interrupt context. 636 * 637 * Returns the number of bytes received on success, or else the status code 638 * returned by the underlying usb_control_msg() call. 639 */ 640 int usb_get_string(struct usb_device *dev, unsigned short langid, 641 unsigned char index, void *buf, int size) 642 { 643 int i; 644 int result; 645 646 for (i = 0; i < 3; ++i) { 647 /* retry on length 0 or stall; some devices are flakey */ 648 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 649 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 650 (USB_DT_STRING << 8) + index, langid, buf, size, 651 USB_CTRL_GET_TIMEOUT); 652 if (!(result == 0 || result == -EPIPE)) 653 break; 654 } 655 return result; 656 } 657 658 static void usb_try_string_workarounds(unsigned char *buf, int *length) 659 { 660 int newlength, oldlength = *length; 661 662 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 663 if (!isprint(buf[newlength]) || buf[newlength + 1]) 664 break; 665 666 if (newlength > 2) { 667 buf[0] = newlength; 668 *length = newlength; 669 } 670 } 671 672 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 673 unsigned int index, unsigned char *buf) 674 { 675 int rc; 676 677 /* Try to read the string descriptor by asking for the maximum 678 * possible number of bytes */ 679 rc = usb_get_string(dev, langid, index, buf, 255); 680 681 /* If that failed try to read the descriptor length, then 682 * ask for just that many bytes */ 683 if (rc < 2) { 684 rc = usb_get_string(dev, langid, index, buf, 2); 685 if (rc == 2) 686 rc = usb_get_string(dev, langid, index, buf, buf[0]); 687 } 688 689 if (rc >= 2) { 690 if (!buf[0] && !buf[1]) 691 usb_try_string_workarounds(buf, &rc); 692 693 /* There might be extra junk at the end of the descriptor */ 694 if (buf[0] < rc) 695 rc = buf[0]; 696 697 rc = rc - (rc & 1); /* force a multiple of two */ 698 } 699 700 if (rc < 2) 701 rc = (rc < 0 ? rc : -EINVAL); 702 703 return rc; 704 } 705 706 /** 707 * usb_string - returns ISO 8859-1 version of a string descriptor 708 * @dev: the device whose string descriptor is being retrieved 709 * @index: the number of the descriptor 710 * @buf: where to put the string 711 * @size: how big is "buf"? 712 * Context: !in_interrupt () 713 * 714 * This converts the UTF-16LE encoded strings returned by devices, from 715 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 716 * that are more usable in most kernel contexts. Note that all characters 717 * in the chosen descriptor that can't be encoded using ISO-8859-1 718 * are converted to the question mark ("?") character, and this function 719 * chooses strings in the first language supported by the device. 720 * 721 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 722 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 723 * and is appropriate for use many uses of English and several other 724 * Western European languages. (But it doesn't include the "Euro" symbol.) 725 * 726 * This call is synchronous, and may not be used in an interrupt context. 727 * 728 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 729 */ 730 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 731 { 732 unsigned char *tbuf; 733 int err; 734 unsigned int u, idx; 735 736 if (dev->state == USB_STATE_SUSPENDED) 737 return -EHOSTUNREACH; 738 if (size <= 0 || !buf || !index) 739 return -EINVAL; 740 buf[0] = 0; 741 tbuf = kmalloc(256, GFP_KERNEL); 742 if (!tbuf) 743 return -ENOMEM; 744 745 /* get langid for strings if it's not yet known */ 746 if (!dev->have_langid) { 747 err = usb_string_sub(dev, 0, 0, tbuf); 748 if (err < 0) { 749 dev_err (&dev->dev, 750 "string descriptor 0 read error: %d\n", 751 err); 752 goto errout; 753 } else if (err < 4) { 754 dev_err (&dev->dev, "string descriptor 0 too short\n"); 755 err = -EINVAL; 756 goto errout; 757 } else { 758 dev->have_langid = -1; 759 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 760 /* always use the first langid listed */ 761 dev_dbg (&dev->dev, "default language 0x%04x\n", 762 dev->string_langid); 763 } 764 } 765 766 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 767 if (err < 0) 768 goto errout; 769 770 size--; /* leave room for trailing NULL char in output buffer */ 771 for (idx = 0, u = 2; u < err; u += 2) { 772 if (idx >= size) 773 break; 774 if (tbuf[u+1]) /* high byte */ 775 buf[idx++] = '?'; /* non ISO-8859-1 character */ 776 else 777 buf[idx++] = tbuf[u]; 778 } 779 buf[idx] = 0; 780 err = idx; 781 782 if (tbuf[1] != USB_DT_STRING) 783 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 784 785 errout: 786 kfree(tbuf); 787 return err; 788 } 789 790 /** 791 * usb_cache_string - read a string descriptor and cache it for later use 792 * @udev: the device whose string descriptor is being read 793 * @index: the descriptor index 794 * 795 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 796 * or NULL if the index is 0 or the string could not be read. 797 */ 798 char *usb_cache_string(struct usb_device *udev, int index) 799 { 800 char *buf; 801 char *smallbuf = NULL; 802 int len; 803 804 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 805 if ((len = usb_string(udev, index, buf, 256)) > 0) { 806 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 807 return buf; 808 memcpy(smallbuf, buf, len); 809 } 810 kfree(buf); 811 } 812 return smallbuf; 813 } 814 815 /* 816 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 817 * @dev: the device whose device descriptor is being updated 818 * @size: how much of the descriptor to read 819 * Context: !in_interrupt () 820 * 821 * Updates the copy of the device descriptor stored in the device structure, 822 * which dedicates space for this purpose. Note that several fields are 823 * converted to the host CPU's byte order: the USB version (bcdUSB), and 824 * vendors product and version fields (idVendor, idProduct, and bcdDevice). 825 * That lets device drivers compare against non-byteswapped constants. 826 * 827 * Not exported, only for use by the core. If drivers really want to read 828 * the device descriptor directly, they can call usb_get_descriptor() with 829 * type = USB_DT_DEVICE and index = 0. 830 * 831 * This call is synchronous, and may not be used in an interrupt context. 832 * 833 * Returns the number of bytes received on success, or else the status code 834 * returned by the underlying usb_control_msg() call. 835 */ 836 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 837 { 838 struct usb_device_descriptor *desc; 839 int ret; 840 841 if (size > sizeof(*desc)) 842 return -EINVAL; 843 desc = kmalloc(sizeof(*desc), GFP_NOIO); 844 if (!desc) 845 return -ENOMEM; 846 847 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 848 if (ret >= 0) 849 memcpy(&dev->descriptor, desc, size); 850 kfree(desc); 851 return ret; 852 } 853 854 /** 855 * usb_get_status - issues a GET_STATUS call 856 * @dev: the device whose status is being checked 857 * @type: USB_RECIP_*; for device, interface, or endpoint 858 * @target: zero (for device), else interface or endpoint number 859 * @data: pointer to two bytes of bitmap data 860 * Context: !in_interrupt () 861 * 862 * Returns device, interface, or endpoint status. Normally only of 863 * interest to see if the device is self powered, or has enabled the 864 * remote wakeup facility; or whether a bulk or interrupt endpoint 865 * is halted ("stalled"). 866 * 867 * Bits in these status bitmaps are set using the SET_FEATURE request, 868 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 869 * function should be used to clear halt ("stall") status. 870 * 871 * This call is synchronous, and may not be used in an interrupt context. 872 * 873 * Returns the number of bytes received on success, or else the status code 874 * returned by the underlying usb_control_msg() call. 875 */ 876 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 877 { 878 int ret; 879 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 880 881 if (!status) 882 return -ENOMEM; 883 884 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 885 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 886 sizeof(*status), USB_CTRL_GET_TIMEOUT); 887 888 *(u16 *)data = *status; 889 kfree(status); 890 return ret; 891 } 892 893 /** 894 * usb_clear_halt - tells device to clear endpoint halt/stall condition 895 * @dev: device whose endpoint is halted 896 * @pipe: endpoint "pipe" being cleared 897 * Context: !in_interrupt () 898 * 899 * This is used to clear halt conditions for bulk and interrupt endpoints, 900 * as reported by URB completion status. Endpoints that are halted are 901 * sometimes referred to as being "stalled". Such endpoints are unable 902 * to transmit or receive data until the halt status is cleared. Any URBs 903 * queued for such an endpoint should normally be unlinked by the driver 904 * before clearing the halt condition, as described in sections 5.7.5 905 * and 5.8.5 of the USB 2.0 spec. 906 * 907 * Note that control and isochronous endpoints don't halt, although control 908 * endpoints report "protocol stall" (for unsupported requests) using the 909 * same status code used to report a true stall. 910 * 911 * This call is synchronous, and may not be used in an interrupt context. 912 * 913 * Returns zero on success, or else the status code returned by the 914 * underlying usb_control_msg() call. 915 */ 916 int usb_clear_halt(struct usb_device *dev, int pipe) 917 { 918 int result; 919 int endp = usb_pipeendpoint(pipe); 920 921 if (usb_pipein (pipe)) 922 endp |= USB_DIR_IN; 923 924 /* we don't care if it wasn't halted first. in fact some devices 925 * (like some ibmcam model 1 units) seem to expect hosts to make 926 * this request for iso endpoints, which can't halt! 927 */ 928 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 929 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 930 USB_ENDPOINT_HALT, endp, NULL, 0, 931 USB_CTRL_SET_TIMEOUT); 932 933 /* don't un-halt or force to DATA0 except on success */ 934 if (result < 0) 935 return result; 936 937 /* NOTE: seems like Microsoft and Apple don't bother verifying 938 * the clear "took", so some devices could lock up if you check... 939 * such as the Hagiwara FlashGate DUAL. So we won't bother. 940 * 941 * NOTE: make sure the logic here doesn't diverge much from 942 * the copy in usb-storage, for as long as we need two copies. 943 */ 944 945 /* toggle was reset by the clear */ 946 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 947 948 return 0; 949 } 950 951 /** 952 * usb_disable_endpoint -- Disable an endpoint by address 953 * @dev: the device whose endpoint is being disabled 954 * @epaddr: the endpoint's address. Endpoint number for output, 955 * endpoint number + USB_DIR_IN for input 956 * 957 * Deallocates hcd/hardware state for this endpoint ... and nukes all 958 * pending urbs. 959 * 960 * If the HCD hasn't registered a disable() function, this sets the 961 * endpoint's maxpacket size to 0 to prevent further submissions. 962 */ 963 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 964 { 965 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 966 struct usb_host_endpoint *ep; 967 968 if (!dev) 969 return; 970 971 if (usb_endpoint_out(epaddr)) { 972 ep = dev->ep_out[epnum]; 973 dev->ep_out[epnum] = NULL; 974 } else { 975 ep = dev->ep_in[epnum]; 976 dev->ep_in[epnum] = NULL; 977 } 978 if (ep && dev->bus && dev->bus->op && dev->bus->op->disable) 979 dev->bus->op->disable(dev, ep); 980 } 981 982 /** 983 * usb_disable_interface -- Disable all endpoints for an interface 984 * @dev: the device whose interface is being disabled 985 * @intf: pointer to the interface descriptor 986 * 987 * Disables all the endpoints for the interface's current altsetting. 988 */ 989 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 990 { 991 struct usb_host_interface *alt = intf->cur_altsetting; 992 int i; 993 994 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 995 usb_disable_endpoint(dev, 996 alt->endpoint[i].desc.bEndpointAddress); 997 } 998 } 999 1000 /* 1001 * usb_disable_device - Disable all the endpoints for a USB device 1002 * @dev: the device whose endpoints are being disabled 1003 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1004 * 1005 * Disables all the device's endpoints, potentially including endpoint 0. 1006 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1007 * pending urbs) and usbcore state for the interfaces, so that usbcore 1008 * must usb_set_configuration() before any interfaces could be used. 1009 */ 1010 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1011 { 1012 int i; 1013 1014 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1015 skip_ep0 ? "non-ep0" : "all"); 1016 for (i = skip_ep0; i < 16; ++i) { 1017 usb_disable_endpoint(dev, i); 1018 usb_disable_endpoint(dev, i + USB_DIR_IN); 1019 } 1020 dev->toggle[0] = dev->toggle[1] = 0; 1021 1022 /* getting rid of interfaces will disconnect 1023 * any drivers bound to them (a key side effect) 1024 */ 1025 if (dev->actconfig) { 1026 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1027 struct usb_interface *interface; 1028 1029 /* remove this interface if it has been registered */ 1030 interface = dev->actconfig->interface[i]; 1031 if (!device_is_registered(&interface->dev)) 1032 continue; 1033 dev_dbg (&dev->dev, "unregistering interface %s\n", 1034 interface->dev.bus_id); 1035 usb_remove_sysfs_intf_files(interface); 1036 device_del (&interface->dev); 1037 } 1038 1039 /* Now that the interfaces are unbound, nobody should 1040 * try to access them. 1041 */ 1042 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1043 put_device (&dev->actconfig->interface[i]->dev); 1044 dev->actconfig->interface[i] = NULL; 1045 } 1046 dev->actconfig = NULL; 1047 if (dev->state == USB_STATE_CONFIGURED) 1048 usb_set_device_state(dev, USB_STATE_ADDRESS); 1049 } 1050 } 1051 1052 1053 /* 1054 * usb_enable_endpoint - Enable an endpoint for USB communications 1055 * @dev: the device whose interface is being enabled 1056 * @ep: the endpoint 1057 * 1058 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1059 * For control endpoints, both the input and output sides are handled. 1060 */ 1061 static void 1062 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1063 { 1064 unsigned int epaddr = ep->desc.bEndpointAddress; 1065 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1066 int is_control; 1067 1068 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1069 == USB_ENDPOINT_XFER_CONTROL); 1070 if (usb_endpoint_out(epaddr) || is_control) { 1071 usb_settoggle(dev, epnum, 1, 0); 1072 dev->ep_out[epnum] = ep; 1073 } 1074 if (!usb_endpoint_out(epaddr) || is_control) { 1075 usb_settoggle(dev, epnum, 0, 0); 1076 dev->ep_in[epnum] = ep; 1077 } 1078 } 1079 1080 /* 1081 * usb_enable_interface - Enable all the endpoints for an interface 1082 * @dev: the device whose interface is being enabled 1083 * @intf: pointer to the interface descriptor 1084 * 1085 * Enables all the endpoints for the interface's current altsetting. 1086 */ 1087 static void usb_enable_interface(struct usb_device *dev, 1088 struct usb_interface *intf) 1089 { 1090 struct usb_host_interface *alt = intf->cur_altsetting; 1091 int i; 1092 1093 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1094 usb_enable_endpoint(dev, &alt->endpoint[i]); 1095 } 1096 1097 /** 1098 * usb_set_interface - Makes a particular alternate setting be current 1099 * @dev: the device whose interface is being updated 1100 * @interface: the interface being updated 1101 * @alternate: the setting being chosen. 1102 * Context: !in_interrupt () 1103 * 1104 * This is used to enable data transfers on interfaces that may not 1105 * be enabled by default. Not all devices support such configurability. 1106 * Only the driver bound to an interface may change its setting. 1107 * 1108 * Within any given configuration, each interface may have several 1109 * alternative settings. These are often used to control levels of 1110 * bandwidth consumption. For example, the default setting for a high 1111 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1112 * while interrupt transfers of up to 3KBytes per microframe are legal. 1113 * Also, isochronous endpoints may never be part of an 1114 * interface's default setting. To access such bandwidth, alternate 1115 * interface settings must be made current. 1116 * 1117 * Note that in the Linux USB subsystem, bandwidth associated with 1118 * an endpoint in a given alternate setting is not reserved until an URB 1119 * is submitted that needs that bandwidth. Some other operating systems 1120 * allocate bandwidth early, when a configuration is chosen. 1121 * 1122 * This call is synchronous, and may not be used in an interrupt context. 1123 * Also, drivers must not change altsettings while urbs are scheduled for 1124 * endpoints in that interface; all such urbs must first be completed 1125 * (perhaps forced by unlinking). 1126 * 1127 * Returns zero on success, or else the status code returned by the 1128 * underlying usb_control_msg() call. 1129 */ 1130 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1131 { 1132 struct usb_interface *iface; 1133 struct usb_host_interface *alt; 1134 int ret; 1135 int manual = 0; 1136 1137 if (dev->state == USB_STATE_SUSPENDED) 1138 return -EHOSTUNREACH; 1139 1140 iface = usb_ifnum_to_if(dev, interface); 1141 if (!iface) { 1142 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1143 interface); 1144 return -EINVAL; 1145 } 1146 1147 alt = usb_altnum_to_altsetting(iface, alternate); 1148 if (!alt) { 1149 warn("selecting invalid altsetting %d", alternate); 1150 return -EINVAL; 1151 } 1152 1153 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1154 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1155 alternate, interface, NULL, 0, 5000); 1156 1157 /* 9.4.10 says devices don't need this and are free to STALL the 1158 * request if the interface only has one alternate setting. 1159 */ 1160 if (ret == -EPIPE && iface->num_altsetting == 1) { 1161 dev_dbg(&dev->dev, 1162 "manual set_interface for iface %d, alt %d\n", 1163 interface, alternate); 1164 manual = 1; 1165 } else if (ret < 0) 1166 return ret; 1167 1168 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1169 * when they implement async or easily-killable versions of this or 1170 * other "should-be-internal" functions (like clear_halt). 1171 * should hcd+usbcore postprocess control requests? 1172 */ 1173 1174 /* prevent submissions using previous endpoint settings */ 1175 if (device_is_registered(&iface->dev)) 1176 usb_remove_sysfs_intf_files(iface); 1177 usb_disable_interface(dev, iface); 1178 1179 iface->cur_altsetting = alt; 1180 1181 /* If the interface only has one altsetting and the device didn't 1182 * accept the request, we attempt to carry out the equivalent action 1183 * by manually clearing the HALT feature for each endpoint in the 1184 * new altsetting. 1185 */ 1186 if (manual) { 1187 int i; 1188 1189 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1190 unsigned int epaddr = 1191 alt->endpoint[i].desc.bEndpointAddress; 1192 unsigned int pipe = 1193 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1194 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1195 1196 usb_clear_halt(dev, pipe); 1197 } 1198 } 1199 1200 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1201 * 1202 * Note: 1203 * Despite EP0 is always present in all interfaces/AS, the list of 1204 * endpoints from the descriptor does not contain EP0. Due to its 1205 * omnipresence one might expect EP0 being considered "affected" by 1206 * any SetInterface request and hence assume toggles need to be reset. 1207 * However, EP0 toggles are re-synced for every individual transfer 1208 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1209 * (Likewise, EP0 never "halts" on well designed devices.) 1210 */ 1211 usb_enable_interface(dev, iface); 1212 if (device_is_registered(&iface->dev)) 1213 usb_create_sysfs_intf_files(iface); 1214 1215 return 0; 1216 } 1217 1218 /** 1219 * usb_reset_configuration - lightweight device reset 1220 * @dev: the device whose configuration is being reset 1221 * 1222 * This issues a standard SET_CONFIGURATION request to the device using 1223 * the current configuration. The effect is to reset most USB-related 1224 * state in the device, including interface altsettings (reset to zero), 1225 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1226 * endpoints). Other usbcore state is unchanged, including bindings of 1227 * usb device drivers to interfaces. 1228 * 1229 * Because this affects multiple interfaces, avoid using this with composite 1230 * (multi-interface) devices. Instead, the driver for each interface may 1231 * use usb_set_interface() on the interfaces it claims. Be careful though; 1232 * some devices don't support the SET_INTERFACE request, and others won't 1233 * reset all the interface state (notably data toggles). Resetting the whole 1234 * configuration would affect other drivers' interfaces. 1235 * 1236 * The caller must own the device lock. 1237 * 1238 * Returns zero on success, else a negative error code. 1239 */ 1240 int usb_reset_configuration(struct usb_device *dev) 1241 { 1242 int i, retval; 1243 struct usb_host_config *config; 1244 1245 if (dev->state == USB_STATE_SUSPENDED) 1246 return -EHOSTUNREACH; 1247 1248 /* caller must have locked the device and must own 1249 * the usb bus readlock (so driver bindings are stable); 1250 * calls during probe() are fine 1251 */ 1252 1253 for (i = 1; i < 16; ++i) { 1254 usb_disable_endpoint(dev, i); 1255 usb_disable_endpoint(dev, i + USB_DIR_IN); 1256 } 1257 1258 config = dev->actconfig; 1259 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1260 USB_REQ_SET_CONFIGURATION, 0, 1261 config->desc.bConfigurationValue, 0, 1262 NULL, 0, USB_CTRL_SET_TIMEOUT); 1263 if (retval < 0) 1264 return retval; 1265 1266 dev->toggle[0] = dev->toggle[1] = 0; 1267 1268 /* re-init hc/hcd interface/endpoint state */ 1269 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1270 struct usb_interface *intf = config->interface[i]; 1271 struct usb_host_interface *alt; 1272 1273 if (device_is_registered(&intf->dev)) 1274 usb_remove_sysfs_intf_files(intf); 1275 alt = usb_altnum_to_altsetting(intf, 0); 1276 1277 /* No altsetting 0? We'll assume the first altsetting. 1278 * We could use a GetInterface call, but if a device is 1279 * so non-compliant that it doesn't have altsetting 0 1280 * then I wouldn't trust its reply anyway. 1281 */ 1282 if (!alt) 1283 alt = &intf->altsetting[0]; 1284 1285 intf->cur_altsetting = alt; 1286 usb_enable_interface(dev, intf); 1287 if (device_is_registered(&intf->dev)) 1288 usb_create_sysfs_intf_files(intf); 1289 } 1290 return 0; 1291 } 1292 1293 static void release_interface(struct device *dev) 1294 { 1295 struct usb_interface *intf = to_usb_interface(dev); 1296 struct usb_interface_cache *intfc = 1297 altsetting_to_usb_interface_cache(intf->altsetting); 1298 1299 kref_put(&intfc->ref, usb_release_interface_cache); 1300 kfree(intf); 1301 } 1302 1303 /* 1304 * usb_set_configuration - Makes a particular device setting be current 1305 * @dev: the device whose configuration is being updated 1306 * @configuration: the configuration being chosen. 1307 * Context: !in_interrupt(), caller owns the device lock 1308 * 1309 * This is used to enable non-default device modes. Not all devices 1310 * use this kind of configurability; many devices only have one 1311 * configuration. 1312 * 1313 * USB device configurations may affect Linux interoperability, 1314 * power consumption and the functionality available. For example, 1315 * the default configuration is limited to using 100mA of bus power, 1316 * so that when certain device functionality requires more power, 1317 * and the device is bus powered, that functionality should be in some 1318 * non-default device configuration. Other device modes may also be 1319 * reflected as configuration options, such as whether two ISDN 1320 * channels are available independently; and choosing between open 1321 * standard device protocols (like CDC) or proprietary ones. 1322 * 1323 * Note that USB has an additional level of device configurability, 1324 * associated with interfaces. That configurability is accessed using 1325 * usb_set_interface(). 1326 * 1327 * This call is synchronous. The calling context must be able to sleep, 1328 * must own the device lock, and must not hold the driver model's USB 1329 * bus rwsem; usb device driver probe() methods cannot use this routine. 1330 * 1331 * Returns zero on success, or else the status code returned by the 1332 * underlying call that failed. On successful completion, each interface 1333 * in the original device configuration has been destroyed, and each one 1334 * in the new configuration has been probed by all relevant usb device 1335 * drivers currently known to the kernel. 1336 */ 1337 int usb_set_configuration(struct usb_device *dev, int configuration) 1338 { 1339 int i, ret; 1340 struct usb_host_config *cp = NULL; 1341 struct usb_interface **new_interfaces = NULL; 1342 int n, nintf; 1343 1344 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1345 if (dev->config[i].desc.bConfigurationValue == configuration) { 1346 cp = &dev->config[i]; 1347 break; 1348 } 1349 } 1350 if ((!cp && configuration != 0)) 1351 return -EINVAL; 1352 1353 /* The USB spec says configuration 0 means unconfigured. 1354 * But if a device includes a configuration numbered 0, 1355 * we will accept it as a correctly configured state. 1356 */ 1357 if (cp && configuration == 0) 1358 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1359 1360 if (dev->state == USB_STATE_SUSPENDED) 1361 return -EHOSTUNREACH; 1362 1363 /* Allocate memory for new interfaces before doing anything else, 1364 * so that if we run out then nothing will have changed. */ 1365 n = nintf = 0; 1366 if (cp) { 1367 nintf = cp->desc.bNumInterfaces; 1368 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1369 GFP_KERNEL); 1370 if (!new_interfaces) { 1371 dev_err(&dev->dev, "Out of memory"); 1372 return -ENOMEM; 1373 } 1374 1375 for (; n < nintf; ++n) { 1376 new_interfaces[n] = kzalloc( 1377 sizeof(struct usb_interface), 1378 GFP_KERNEL); 1379 if (!new_interfaces[n]) { 1380 dev_err(&dev->dev, "Out of memory"); 1381 ret = -ENOMEM; 1382 free_interfaces: 1383 while (--n >= 0) 1384 kfree(new_interfaces[n]); 1385 kfree(new_interfaces); 1386 return ret; 1387 } 1388 } 1389 } 1390 1391 /* if it's already configured, clear out old state first. 1392 * getting rid of old interfaces means unbinding their drivers. 1393 */ 1394 if (dev->state != USB_STATE_ADDRESS) 1395 usb_disable_device (dev, 1); // Skip ep0 1396 1397 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1398 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1399 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) 1400 goto free_interfaces; 1401 1402 dev->actconfig = cp; 1403 if (!cp) 1404 usb_set_device_state(dev, USB_STATE_ADDRESS); 1405 else { 1406 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1407 1408 /* Initialize the new interface structures and the 1409 * hc/hcd/usbcore interface/endpoint state. 1410 */ 1411 for (i = 0; i < nintf; ++i) { 1412 struct usb_interface_cache *intfc; 1413 struct usb_interface *intf; 1414 struct usb_host_interface *alt; 1415 1416 cp->interface[i] = intf = new_interfaces[i]; 1417 intfc = cp->intf_cache[i]; 1418 intf->altsetting = intfc->altsetting; 1419 intf->num_altsetting = intfc->num_altsetting; 1420 kref_get(&intfc->ref); 1421 1422 alt = usb_altnum_to_altsetting(intf, 0); 1423 1424 /* No altsetting 0? We'll assume the first altsetting. 1425 * We could use a GetInterface call, but if a device is 1426 * so non-compliant that it doesn't have altsetting 0 1427 * then I wouldn't trust its reply anyway. 1428 */ 1429 if (!alt) 1430 alt = &intf->altsetting[0]; 1431 1432 intf->cur_altsetting = alt; 1433 usb_enable_interface(dev, intf); 1434 intf->dev.parent = &dev->dev; 1435 intf->dev.driver = NULL; 1436 intf->dev.bus = &usb_bus_type; 1437 intf->dev.dma_mask = dev->dev.dma_mask; 1438 intf->dev.release = release_interface; 1439 device_initialize (&intf->dev); 1440 mark_quiesced(intf); 1441 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1442 dev->bus->busnum, dev->devpath, 1443 configuration, 1444 alt->desc.bInterfaceNumber); 1445 } 1446 kfree(new_interfaces); 1447 1448 if (cp->string == NULL) 1449 cp->string = usb_cache_string(dev, 1450 cp->desc.iConfiguration); 1451 1452 /* Now that all the interfaces are set up, register them 1453 * to trigger binding of drivers to interfaces. probe() 1454 * routines may install different altsettings and may 1455 * claim() any interfaces not yet bound. Many class drivers 1456 * need that: CDC, audio, video, etc. 1457 */ 1458 for (i = 0; i < nintf; ++i) { 1459 struct usb_interface *intf = cp->interface[i]; 1460 struct usb_host_interface *alt = intf->cur_altsetting; 1461 1462 dev_dbg (&dev->dev, 1463 "adding %s (config #%d, interface %d)\n", 1464 intf->dev.bus_id, configuration, 1465 alt->desc.bInterfaceNumber); 1466 ret = device_add (&intf->dev); 1467 if (ret != 0) { 1468 dev_err(&dev->dev, 1469 "device_add(%s) --> %d\n", 1470 intf->dev.bus_id, 1471 ret); 1472 continue; 1473 } 1474 usb_create_sysfs_intf_files (intf); 1475 } 1476 } 1477 1478 return 0; 1479 } 1480 1481 // synchronous request completion model 1482 EXPORT_SYMBOL(usb_control_msg); 1483 EXPORT_SYMBOL(usb_bulk_msg); 1484 1485 EXPORT_SYMBOL(usb_sg_init); 1486 EXPORT_SYMBOL(usb_sg_cancel); 1487 EXPORT_SYMBOL(usb_sg_wait); 1488 1489 // synchronous control message convenience routines 1490 EXPORT_SYMBOL(usb_get_descriptor); 1491 EXPORT_SYMBOL(usb_get_status); 1492 EXPORT_SYMBOL(usb_get_string); 1493 EXPORT_SYMBOL(usb_string); 1494 1495 // synchronous calls that also maintain usbcore state 1496 EXPORT_SYMBOL(usb_clear_halt); 1497 EXPORT_SYMBOL(usb_reset_configuration); 1498 EXPORT_SYMBOL(usb_set_interface); 1499 1500