xref: /linux/drivers/ufs/core/ufshcd.c (revision 778e73d2411abc8f3a2d60dbf038acaec218792e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* UFSHC 4.0 compliant HC support this mode. */
103 static bool use_mcq_mode = true;
104 
105 static bool is_mcq_supported(struct ufs_hba *hba)
106 {
107 	return hba->mcq_sup && use_mcq_mode;
108 }
109 
110 module_param(use_mcq_mode, bool, 0644);
111 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
112 
113 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
114 	({                                                              \
115 		int _ret;                                               \
116 		if (_on)                                                \
117 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
118 		else                                                    \
119 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
120 		_ret;                                                   \
121 	})
122 
123 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
124 	size_t __len = (len);                                            \
125 	print_hex_dump(KERN_ERR, prefix_str,                             \
126 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
127 		       16, 4, buf, __len, false);                        \
128 } while (0)
129 
130 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
131 		     const char *prefix)
132 {
133 	u32 *regs;
134 	size_t pos;
135 
136 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
137 		return -EINVAL;
138 
139 	regs = kzalloc(len, GFP_ATOMIC);
140 	if (!regs)
141 		return -ENOMEM;
142 
143 	for (pos = 0; pos < len; pos += 4) {
144 		if (offset == 0 &&
145 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
146 		    pos <= REG_UIC_ERROR_CODE_DME)
147 			continue;
148 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
149 	}
150 
151 	ufshcd_hex_dump(prefix, regs, len);
152 	kfree(regs);
153 
154 	return 0;
155 }
156 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
157 
158 enum {
159 	UFSHCD_MAX_CHANNEL	= 0,
160 	UFSHCD_MAX_ID		= 1,
161 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
162 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
163 };
164 
165 static const char *const ufshcd_state_name[] = {
166 	[UFSHCD_STATE_RESET]			= "reset",
167 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
168 	[UFSHCD_STATE_ERROR]			= "error",
169 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
170 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
171 };
172 
173 /* UFSHCD error handling flags */
174 enum {
175 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
176 };
177 
178 /* UFSHCD UIC layer error flags */
179 enum {
180 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
181 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
182 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
183 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
184 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
185 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
186 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
187 };
188 
189 #define ufshcd_set_eh_in_progress(h) \
190 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
191 #define ufshcd_eh_in_progress(h) \
192 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
193 #define ufshcd_clear_eh_in_progress(h) \
194 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
195 
196 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
197 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
198 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
199 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
200 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
203 	/*
204 	 * For DeepSleep, the link is first put in hibern8 and then off.
205 	 * Leaving the link in hibern8 is not supported.
206 	 */
207 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
208 };
209 
210 static inline enum ufs_dev_pwr_mode
211 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
212 {
213 	return ufs_pm_lvl_states[lvl].dev_state;
214 }
215 
216 static inline enum uic_link_state
217 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
218 {
219 	return ufs_pm_lvl_states[lvl].link_state;
220 }
221 
222 static inline enum ufs_pm_level
223 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
224 					enum uic_link_state link_state)
225 {
226 	enum ufs_pm_level lvl;
227 
228 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
229 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
230 			(ufs_pm_lvl_states[lvl].link_state == link_state))
231 			return lvl;
232 	}
233 
234 	/* if no match found, return the level 0 */
235 	return UFS_PM_LVL_0;
236 }
237 
238 static const struct ufs_dev_quirk ufs_fixups[] = {
239 	/* UFS cards deviations table */
240 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
241 	  .model = UFS_ANY_MODEL,
242 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
243 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
244 	  .model = UFS_ANY_MODEL,
245 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
246 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
247 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
248 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
249 	  .model = UFS_ANY_MODEL,
250 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
251 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
252 	  .model = "hB8aL1" /*H28U62301AMR*/,
253 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
254 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
255 	  .model = UFS_ANY_MODEL,
256 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
257 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
258 	  .model = "THGLF2G9C8KBADG",
259 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
260 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
261 	  .model = "THGLF2G9D8KBADG",
262 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
263 	{}
264 };
265 
266 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
267 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
268 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
269 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
270 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
271 static void ufshcd_hba_exit(struct ufs_hba *hba);
272 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
273 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
274 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
275 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
276 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
277 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
279 			     bool scale_up);
280 static irqreturn_t ufshcd_intr(int irq, void *__hba);
281 static int ufshcd_change_power_mode(struct ufs_hba *hba,
282 			     struct ufs_pa_layer_attr *pwr_mode);
283 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
284 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
285 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
286 					 struct ufs_vreg *vreg);
287 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
288 						 bool enable);
289 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
290 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
291 
292 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
293 {
294 	if (!hba->is_irq_enabled) {
295 		enable_irq(hba->irq);
296 		hba->is_irq_enabled = true;
297 	}
298 }
299 
300 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
301 {
302 	if (hba->is_irq_enabled) {
303 		disable_irq(hba->irq);
304 		hba->is_irq_enabled = false;
305 	}
306 }
307 
308 static void ufshcd_configure_wb(struct ufs_hba *hba)
309 {
310 	if (!ufshcd_is_wb_allowed(hba))
311 		return;
312 
313 	ufshcd_wb_toggle(hba, true);
314 
315 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
316 
317 	if (ufshcd_is_wb_buf_flush_allowed(hba))
318 		ufshcd_wb_toggle_buf_flush(hba, true);
319 }
320 
321 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
322 {
323 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
324 		scsi_unblock_requests(hba->host);
325 }
326 
327 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
328 {
329 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
330 		scsi_block_requests(hba->host);
331 }
332 
333 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
334 				      enum ufs_trace_str_t str_t)
335 {
336 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
337 	struct utp_upiu_header *header;
338 
339 	if (!trace_ufshcd_upiu_enabled())
340 		return;
341 
342 	if (str_t == UFS_CMD_SEND)
343 		header = &rq->header;
344 	else
345 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
346 
347 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
348 			  UFS_TSF_CDB);
349 }
350 
351 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
352 					enum ufs_trace_str_t str_t,
353 					struct utp_upiu_req *rq_rsp)
354 {
355 	if (!trace_ufshcd_upiu_enabled())
356 		return;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
359 			  &rq_rsp->qr, UFS_TSF_OSF);
360 }
361 
362 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
363 				     enum ufs_trace_str_t str_t)
364 {
365 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
366 
367 	if (!trace_ufshcd_upiu_enabled())
368 		return;
369 
370 	if (str_t == UFS_TM_SEND)
371 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
372 				  &descp->upiu_req.req_header,
373 				  &descp->upiu_req.input_param1,
374 				  UFS_TSF_TM_INPUT);
375 	else
376 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
377 				  &descp->upiu_rsp.rsp_header,
378 				  &descp->upiu_rsp.output_param1,
379 				  UFS_TSF_TM_OUTPUT);
380 }
381 
382 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
383 					 const struct uic_command *ucmd,
384 					 enum ufs_trace_str_t str_t)
385 {
386 	u32 cmd;
387 
388 	if (!trace_ufshcd_uic_command_enabled())
389 		return;
390 
391 	if (str_t == UFS_CMD_SEND)
392 		cmd = ucmd->command;
393 	else
394 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
395 
396 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
399 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
400 }
401 
402 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
403 				     enum ufs_trace_str_t str_t)
404 {
405 	u64 lba = 0;
406 	u8 opcode = 0, group_id = 0;
407 	u32 doorbell = 0;
408 	u32 intr;
409 	int hwq_id = -1;
410 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
411 	struct scsi_cmnd *cmd = lrbp->cmd;
412 	struct request *rq = scsi_cmd_to_rq(cmd);
413 	int transfer_len = -1;
414 
415 	if (!cmd)
416 		return;
417 
418 	/* trace UPIU also */
419 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
420 	if (!trace_ufshcd_command_enabled())
421 		return;
422 
423 	opcode = cmd->cmnd[0];
424 
425 	if (opcode == READ_10 || opcode == WRITE_10) {
426 		/*
427 		 * Currently we only fully trace read(10) and write(10) commands
428 		 */
429 		transfer_len =
430 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
431 		lba = scsi_get_lba(cmd);
432 		if (opcode == WRITE_10)
433 			group_id = lrbp->cmd->cmnd[6];
434 	} else if (opcode == UNMAP) {
435 		/*
436 		 * The number of Bytes to be unmapped beginning with the lba.
437 		 */
438 		transfer_len = blk_rq_bytes(rq);
439 		lba = scsi_get_lba(cmd);
440 	}
441 
442 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
443 
444 	if (is_mcq_enabled(hba)) {
445 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
446 
447 		hwq_id = hwq->id;
448 	} else {
449 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
450 	}
451 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
452 			     transfer_len, intr, lba, opcode, group_id);
453 }
454 
455 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
456 {
457 	struct ufs_clk_info *clki;
458 	struct list_head *head = &hba->clk_list_head;
459 
460 	if (list_empty(head))
461 		return;
462 
463 	list_for_each_entry(clki, head, list) {
464 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
465 				clki->max_freq)
466 			dev_err(hba->dev, "clk: %s, rate: %u\n",
467 					clki->name, clki->curr_freq);
468 	}
469 }
470 
471 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
472 			     const char *err_name)
473 {
474 	int i;
475 	bool found = false;
476 	const struct ufs_event_hist *e;
477 
478 	if (id >= UFS_EVT_CNT)
479 		return;
480 
481 	e = &hba->ufs_stats.event[id];
482 
483 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
484 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
485 
486 		if (e->tstamp[p] == 0)
487 			continue;
488 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
489 			e->val[p], div_u64(e->tstamp[p], 1000));
490 		found = true;
491 	}
492 
493 	if (!found)
494 		dev_err(hba->dev, "No record of %s\n", err_name);
495 	else
496 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
497 }
498 
499 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
500 {
501 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
502 
503 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
504 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
507 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
508 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
509 			 "auto_hibern8_err");
510 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
511 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
512 			 "link_startup_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
514 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
515 			 "suspend_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
517 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
518 			 "wlun suspend_fail");
519 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
521 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
522 
523 	ufshcd_vops_dbg_register_dump(hba);
524 }
525 
526 static
527 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
528 {
529 	const struct ufshcd_lrb *lrbp;
530 	int prdt_length;
531 
532 	lrbp = &hba->lrb[tag];
533 
534 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
535 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
536 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
537 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
538 	dev_err(hba->dev,
539 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
540 		tag, (u64)lrbp->utrd_dma_addr);
541 
542 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
543 			sizeof(struct utp_transfer_req_desc));
544 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
545 		(u64)lrbp->ucd_req_dma_addr);
546 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
547 			sizeof(struct utp_upiu_req));
548 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
549 		(u64)lrbp->ucd_rsp_dma_addr);
550 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
551 			sizeof(struct utp_upiu_rsp));
552 
553 	prdt_length = le16_to_cpu(
554 		lrbp->utr_descriptor_ptr->prd_table_length);
555 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
556 		prdt_length /= ufshcd_sg_entry_size(hba);
557 
558 	dev_err(hba->dev,
559 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
560 		tag, prdt_length,
561 		(u64)lrbp->ucd_prdt_dma_addr);
562 
563 	if (pr_prdt)
564 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
565 			ufshcd_sg_entry_size(hba) * prdt_length);
566 }
567 
568 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
569 {
570 	struct scsi_device *sdev = req->q->queuedata;
571 	struct Scsi_Host *shost = sdev->host;
572 	struct ufs_hba *hba = shost_priv(shost);
573 
574 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
575 
576 	return true;
577 }
578 
579 /**
580  * ufshcd_print_trs_all - print trs for all started requests.
581  * @hba: per-adapter instance.
582  * @pr_prdt: need to print prdt or not.
583  */
584 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
585 {
586 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
587 }
588 
589 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
590 {
591 	int tag;
592 
593 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
594 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
595 
596 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
597 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
598 	}
599 }
600 
601 static void ufshcd_print_host_state(struct ufs_hba *hba)
602 {
603 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
604 
605 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
606 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
607 		hba->outstanding_reqs, hba->outstanding_tasks);
608 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
609 		hba->saved_err, hba->saved_uic_err);
610 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
611 		hba->curr_dev_pwr_mode, hba->uic_link_state);
612 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
613 		hba->pm_op_in_progress, hba->is_sys_suspended);
614 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
615 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
616 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
617 	dev_err(hba->dev,
618 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
619 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
620 		hba->ufs_stats.hibern8_exit_cnt);
621 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
622 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
623 		hba->ufs_stats.last_intr_status);
624 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
625 		hba->eh_flags, hba->req_abort_count);
626 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
627 		hba->ufs_version, hba->capabilities, hba->caps);
628 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
629 		hba->dev_quirks);
630 	if (sdev_ufs)
631 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
632 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
633 
634 	ufshcd_print_clk_freqs(hba);
635 }
636 
637 /**
638  * ufshcd_print_pwr_info - print power params as saved in hba
639  * power info
640  * @hba: per-adapter instance
641  */
642 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
643 {
644 	static const char * const names[] = {
645 		"INVALID MODE",
646 		"FAST MODE",
647 		"SLOW_MODE",
648 		"INVALID MODE",
649 		"FASTAUTO_MODE",
650 		"SLOWAUTO_MODE",
651 		"INVALID MODE",
652 	};
653 
654 	/*
655 	 * Using dev_dbg to avoid messages during runtime PM to avoid
656 	 * never-ending cycles of messages written back to storage by user space
657 	 * causing runtime resume, causing more messages and so on.
658 	 */
659 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
660 		 __func__,
661 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
662 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
663 		 names[hba->pwr_info.pwr_rx],
664 		 names[hba->pwr_info.pwr_tx],
665 		 hba->pwr_info.hs_rate);
666 }
667 
668 static void ufshcd_device_reset(struct ufs_hba *hba)
669 {
670 	int err;
671 
672 	err = ufshcd_vops_device_reset(hba);
673 
674 	if (!err) {
675 		ufshcd_set_ufs_dev_active(hba);
676 		if (ufshcd_is_wb_allowed(hba)) {
677 			hba->dev_info.wb_enabled = false;
678 			hba->dev_info.wb_buf_flush_enabled = false;
679 		}
680 	}
681 	if (err != -EOPNOTSUPP)
682 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
683 }
684 
685 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
686 {
687 	if (!us)
688 		return;
689 
690 	if (us < 10)
691 		udelay(us);
692 	else
693 		usleep_range(us, us + tolerance);
694 }
695 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
696 
697 /**
698  * ufshcd_wait_for_register - wait for register value to change
699  * @hba: per-adapter interface
700  * @reg: mmio register offset
701  * @mask: mask to apply to the read register value
702  * @val: value to wait for
703  * @interval_us: polling interval in microseconds
704  * @timeout_ms: timeout in milliseconds
705  *
706  * Return: -ETIMEDOUT on error, zero on success.
707  */
708 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
709 				u32 val, unsigned long interval_us,
710 				unsigned long timeout_ms)
711 {
712 	int err = 0;
713 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
714 
715 	/* ignore bits that we don't intend to wait on */
716 	val = val & mask;
717 
718 	while ((ufshcd_readl(hba, reg) & mask) != val) {
719 		usleep_range(interval_us, interval_us + 50);
720 		if (time_after(jiffies, timeout)) {
721 			if ((ufshcd_readl(hba, reg) & mask) != val)
722 				err = -ETIMEDOUT;
723 			break;
724 		}
725 	}
726 
727 	return err;
728 }
729 
730 /**
731  * ufshcd_get_intr_mask - Get the interrupt bit mask
732  * @hba: Pointer to adapter instance
733  *
734  * Return: interrupt bit mask per version
735  */
736 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
737 {
738 	if (hba->ufs_version == ufshci_version(1, 0))
739 		return INTERRUPT_MASK_ALL_VER_10;
740 	if (hba->ufs_version <= ufshci_version(2, 0))
741 		return INTERRUPT_MASK_ALL_VER_11;
742 
743 	return INTERRUPT_MASK_ALL_VER_21;
744 }
745 
746 /**
747  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
748  * @hba: Pointer to adapter instance
749  *
750  * Return: UFSHCI version supported by the controller
751  */
752 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
753 {
754 	u32 ufshci_ver;
755 
756 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
757 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
758 	else
759 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
760 
761 	/*
762 	 * UFSHCI v1.x uses a different version scheme, in order
763 	 * to allow the use of comparisons with the ufshci_version
764 	 * function, we convert it to the same scheme as ufs 2.0+.
765 	 */
766 	if (ufshci_ver & 0x00010000)
767 		return ufshci_version(1, ufshci_ver & 0x00000100);
768 
769 	return ufshci_ver;
770 }
771 
772 /**
773  * ufshcd_is_device_present - Check if any device connected to
774  *			      the host controller
775  * @hba: pointer to adapter instance
776  *
777  * Return: true if device present, false if no device detected
778  */
779 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
780 {
781 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
782 }
783 
784 /**
785  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
786  * @lrbp: pointer to local command reference block
787  * @cqe: pointer to the completion queue entry
788  *
789  * This function is used to get the OCS field from UTRD
790  *
791  * Return: the OCS field in the UTRD.
792  */
793 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
794 				      struct cq_entry *cqe)
795 {
796 	if (cqe)
797 		return le32_to_cpu(cqe->status) & MASK_OCS;
798 
799 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
800 }
801 
802 /**
803  * ufshcd_utrl_clear() - Clear requests from the controller request list.
804  * @hba: per adapter instance
805  * @mask: mask with one bit set for each request to be cleared
806  */
807 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
808 {
809 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
810 		mask = ~mask;
811 	/*
812 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
813 	 * Register (UTRLCLR): This field is bit significant. Each bit
814 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
815 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
816 	 * by host software to indicate to the host controller that a transfer
817 	 * request slot is cleared. The host controller
818 	 * shall free up any resources associated to the request slot
819 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
820 	 * host software indicates no change to request slots by setting the
821 	 * associated bits in this field to ‘1’. Bits in this field shall only
822 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
823 	 */
824 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
825 }
826 
827 /**
828  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
829  * @hba: per adapter instance
830  * @pos: position of the bit to be cleared
831  */
832 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
833 {
834 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
835 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
836 	else
837 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
842  * @reg: Register value of host controller status
843  *
844  * Return: 0 on success; a positive value if failed.
845  */
846 static inline int ufshcd_get_lists_status(u32 reg)
847 {
848 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
849 }
850 
851 /**
852  * ufshcd_get_uic_cmd_result - Get the UIC command result
853  * @hba: Pointer to adapter instance
854  *
855  * This function gets the result of UIC command completion
856  *
857  * Return: 0 on success; non-zero value on error.
858  */
859 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
860 {
861 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
862 	       MASK_UIC_COMMAND_RESULT;
863 }
864 
865 /**
866  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
867  * @hba: Pointer to adapter instance
868  *
869  * This function gets UIC command argument3
870  *
871  * Return: 0 on success; non-zero value on error.
872  */
873 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
874 {
875 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
876 }
877 
878 /**
879  * ufshcd_get_req_rsp - returns the TR response transaction type
880  * @ucd_rsp_ptr: pointer to response UPIU
881  *
882  * Return: UPIU type.
883  */
884 static inline enum upiu_response_transaction
885 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
886 {
887 	return ucd_rsp_ptr->header.transaction_code;
888 }
889 
890 /**
891  * ufshcd_is_exception_event - Check if the device raised an exception event
892  * @ucd_rsp_ptr: pointer to response UPIU
893  *
894  * The function checks if the device raised an exception event indicated in
895  * the Device Information field of response UPIU.
896  *
897  * Return: true if exception is raised, false otherwise.
898  */
899 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
900 {
901 	return ucd_rsp_ptr->header.device_information & 1;
902 }
903 
904 /**
905  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
906  * @hba: per adapter instance
907  */
908 static inline void
909 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
910 {
911 	ufshcd_writel(hba, INT_AGGR_ENABLE |
912 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
913 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
914 }
915 
916 /**
917  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
918  * @hba: per adapter instance
919  * @cnt: Interrupt aggregation counter threshold
920  * @tmout: Interrupt aggregation timeout value
921  */
922 static inline void
923 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
924 {
925 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
926 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
927 		      INT_AGGR_TIMEOUT_VAL(tmout),
928 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930 
931 /**
932  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
933  * @hba: per adapter instance
934  */
935 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
936 {
937 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
938 }
939 
940 /**
941  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
942  *			When run-stop registers are set to 1, it indicates the
943  *			host controller that it can process the requests
944  * @hba: per adapter instance
945  */
946 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
947 {
948 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
949 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
950 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
951 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
952 }
953 
954 /**
955  * ufshcd_hba_start - Start controller initialization sequence
956  * @hba: per adapter instance
957  */
958 static inline void ufshcd_hba_start(struct ufs_hba *hba)
959 {
960 	u32 val = CONTROLLER_ENABLE;
961 
962 	if (ufshcd_crypto_enable(hba))
963 		val |= CRYPTO_GENERAL_ENABLE;
964 
965 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
966 }
967 
968 /**
969  * ufshcd_is_hba_active - Get controller state
970  * @hba: per adapter instance
971  *
972  * Return: true if and only if the controller is active.
973  */
974 bool ufshcd_is_hba_active(struct ufs_hba *hba)
975 {
976 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
977 }
978 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
979 
980 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
981 {
982 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
983 	if (hba->ufs_version <= ufshci_version(1, 1))
984 		return UFS_UNIPRO_VER_1_41;
985 	else
986 		return UFS_UNIPRO_VER_1_6;
987 }
988 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
989 
990 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
991 {
992 	/*
993 	 * If both host and device support UniPro ver1.6 or later, PA layer
994 	 * parameters tuning happens during link startup itself.
995 	 *
996 	 * We can manually tune PA layer parameters if either host or device
997 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
998 	 * logic simple, we will only do manual tuning if local unipro version
999 	 * doesn't support ver1.6 or later.
1000 	 */
1001 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1002 }
1003 
1004 /**
1005  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1006  * @hba: per adapter instance
1007  * @scale_up: If True, set max possible frequency othewise set low frequency
1008  *
1009  * Return: 0 if successful; < 0 upon failure.
1010  */
1011 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1012 {
1013 	int ret = 0;
1014 	struct ufs_clk_info *clki;
1015 	struct list_head *head = &hba->clk_list_head;
1016 
1017 	if (list_empty(head))
1018 		goto out;
1019 
1020 	list_for_each_entry(clki, head, list) {
1021 		if (!IS_ERR_OR_NULL(clki->clk)) {
1022 			if (scale_up && clki->max_freq) {
1023 				if (clki->curr_freq == clki->max_freq)
1024 					continue;
1025 
1026 				ret = clk_set_rate(clki->clk, clki->max_freq);
1027 				if (ret) {
1028 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1029 						__func__, clki->name,
1030 						clki->max_freq, ret);
1031 					break;
1032 				}
1033 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1034 						"scaled up", clki->name,
1035 						clki->curr_freq,
1036 						clki->max_freq);
1037 
1038 				clki->curr_freq = clki->max_freq;
1039 
1040 			} else if (!scale_up && clki->min_freq) {
1041 				if (clki->curr_freq == clki->min_freq)
1042 					continue;
1043 
1044 				ret = clk_set_rate(clki->clk, clki->min_freq);
1045 				if (ret) {
1046 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1047 						__func__, clki->name,
1048 						clki->min_freq, ret);
1049 					break;
1050 				}
1051 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1052 						"scaled down", clki->name,
1053 						clki->curr_freq,
1054 						clki->min_freq);
1055 				clki->curr_freq = clki->min_freq;
1056 			}
1057 		}
1058 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1059 				clki->name, clk_get_rate(clki->clk));
1060 	}
1061 
1062 out:
1063 	return ret;
1064 }
1065 
1066 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1067 			   struct dev_pm_opp *opp, void *data,
1068 			   bool scaling_down)
1069 {
1070 	struct ufs_hba *hba = dev_get_drvdata(dev);
1071 	struct list_head *head = &hba->clk_list_head;
1072 	struct ufs_clk_info *clki;
1073 	unsigned long freq;
1074 	u8 idx = 0;
1075 	int ret;
1076 
1077 	list_for_each_entry(clki, head, list) {
1078 		if (!IS_ERR_OR_NULL(clki->clk)) {
1079 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1080 
1081 			/* Do not set rate for clocks having frequency as 0 */
1082 			if (!freq)
1083 				continue;
1084 
1085 			ret = clk_set_rate(clki->clk, freq);
1086 			if (ret) {
1087 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1088 					__func__, clki->name, freq, ret);
1089 				return ret;
1090 			}
1091 
1092 			trace_ufshcd_clk_scaling(dev_name(dev),
1093 				(scaling_down ? "scaled down" : "scaled up"),
1094 				clki->name, hba->clk_scaling.target_freq, freq);
1095 		}
1096 	}
1097 
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1101 
1102 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1103 {
1104 	struct dev_pm_opp *opp;
1105 	int ret;
1106 
1107 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1108 						 &freq, 0);
1109 	if (IS_ERR(opp))
1110 		return PTR_ERR(opp);
1111 
1112 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1113 	dev_pm_opp_put(opp);
1114 
1115 	return ret;
1116 }
1117 
1118 /**
1119  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1120  * @hba: per adapter instance
1121  * @freq: frequency to scale
1122  * @scale_up: True if scaling up and false if scaling down
1123  *
1124  * Return: 0 if successful; < 0 upon failure.
1125  */
1126 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1127 			     bool scale_up)
1128 {
1129 	int ret = 0;
1130 	ktime_t start = ktime_get();
1131 
1132 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1133 	if (ret)
1134 		goto out;
1135 
1136 	if (hba->use_pm_opp)
1137 		ret = ufshcd_opp_set_rate(hba, freq);
1138 	else
1139 		ret = ufshcd_set_clk_freq(hba, scale_up);
1140 	if (ret)
1141 		goto out;
1142 
1143 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1144 	if (ret) {
1145 		if (hba->use_pm_opp)
1146 			ufshcd_opp_set_rate(hba,
1147 					    hba->devfreq->previous_freq);
1148 		else
1149 			ufshcd_set_clk_freq(hba, !scale_up);
1150 	}
1151 
1152 out:
1153 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1154 			(scale_up ? "up" : "down"),
1155 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1156 	return ret;
1157 }
1158 
1159 /**
1160  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1161  * @hba: per adapter instance
1162  * @freq: frequency to scale
1163  * @scale_up: True if scaling up and false if scaling down
1164  *
1165  * Return: true if scaling is required, false otherwise.
1166  */
1167 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1168 					       unsigned long freq, bool scale_up)
1169 {
1170 	struct ufs_clk_info *clki;
1171 	struct list_head *head = &hba->clk_list_head;
1172 
1173 	if (list_empty(head))
1174 		return false;
1175 
1176 	if (hba->use_pm_opp)
1177 		return freq != hba->clk_scaling.target_freq;
1178 
1179 	list_for_each_entry(clki, head, list) {
1180 		if (!IS_ERR_OR_NULL(clki->clk)) {
1181 			if (scale_up && clki->max_freq) {
1182 				if (clki->curr_freq == clki->max_freq)
1183 					continue;
1184 				return true;
1185 			} else if (!scale_up && clki->min_freq) {
1186 				if (clki->curr_freq == clki->min_freq)
1187 					continue;
1188 				return true;
1189 			}
1190 		}
1191 	}
1192 
1193 	return false;
1194 }
1195 
1196 /*
1197  * Determine the number of pending commands by counting the bits in the SCSI
1198  * device budget maps. This approach has been selected because a bit is set in
1199  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1200  * flag. The host_self_blocked flag can be modified by calling
1201  * scsi_block_requests() or scsi_unblock_requests().
1202  */
1203 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1204 {
1205 	const struct scsi_device *sdev;
1206 	u32 pending = 0;
1207 
1208 	lockdep_assert_held(hba->host->host_lock);
1209 	__shost_for_each_device(sdev, hba->host)
1210 		pending += sbitmap_weight(&sdev->budget_map);
1211 
1212 	return pending;
1213 }
1214 
1215 /*
1216  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1217  * has expired.
1218  *
1219  * Return: 0 upon success; -EBUSY upon timeout.
1220  */
1221 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1222 					u64 wait_timeout_us)
1223 {
1224 	unsigned long flags;
1225 	int ret = 0;
1226 	u32 tm_doorbell;
1227 	u32 tr_pending;
1228 	bool timeout = false, do_last_check = false;
1229 	ktime_t start;
1230 
1231 	ufshcd_hold(hba);
1232 	spin_lock_irqsave(hba->host->host_lock, flags);
1233 	/*
1234 	 * Wait for all the outstanding tasks/transfer requests.
1235 	 * Verify by checking the doorbell registers are clear.
1236 	 */
1237 	start = ktime_get();
1238 	do {
1239 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1240 			ret = -EBUSY;
1241 			goto out;
1242 		}
1243 
1244 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1245 		tr_pending = ufshcd_pending_cmds(hba);
1246 		if (!tm_doorbell && !tr_pending) {
1247 			timeout = false;
1248 			break;
1249 		} else if (do_last_check) {
1250 			break;
1251 		}
1252 
1253 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1254 		io_schedule_timeout(msecs_to_jiffies(20));
1255 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1256 		    wait_timeout_us) {
1257 			timeout = true;
1258 			/*
1259 			 * We might have scheduled out for long time so make
1260 			 * sure to check if doorbells are cleared by this time
1261 			 * or not.
1262 			 */
1263 			do_last_check = true;
1264 		}
1265 		spin_lock_irqsave(hba->host->host_lock, flags);
1266 	} while (tm_doorbell || tr_pending);
1267 
1268 	if (timeout) {
1269 		dev_err(hba->dev,
1270 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1271 			__func__, tm_doorbell, tr_pending);
1272 		ret = -EBUSY;
1273 	}
1274 out:
1275 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1276 	ufshcd_release(hba);
1277 	return ret;
1278 }
1279 
1280 /**
1281  * ufshcd_scale_gear - scale up/down UFS gear
1282  * @hba: per adapter instance
1283  * @scale_up: True for scaling up gear and false for scaling down
1284  *
1285  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1286  * non-zero for any other errors.
1287  */
1288 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1289 {
1290 	int ret = 0;
1291 	struct ufs_pa_layer_attr new_pwr_info;
1292 
1293 	if (scale_up) {
1294 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1295 		       sizeof(struct ufs_pa_layer_attr));
1296 	} else {
1297 		memcpy(&new_pwr_info, &hba->pwr_info,
1298 		       sizeof(struct ufs_pa_layer_attr));
1299 
1300 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1301 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1302 			/* save the current power mode */
1303 			memcpy(&hba->clk_scaling.saved_pwr_info,
1304 				&hba->pwr_info,
1305 				sizeof(struct ufs_pa_layer_attr));
1306 
1307 			/* scale down gear */
1308 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1309 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1310 		}
1311 	}
1312 
1313 	/* check if the power mode needs to be changed or not? */
1314 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1315 	if (ret)
1316 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1317 			__func__, ret,
1318 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1319 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1320 
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1326  * has expired.
1327  *
1328  * Return: 0 upon success; -EBUSY upon timeout.
1329  */
1330 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1331 {
1332 	int ret = 0;
1333 	/*
1334 	 * make sure that there are no outstanding requests when
1335 	 * clock scaling is in progress
1336 	 */
1337 	ufshcd_scsi_block_requests(hba);
1338 	mutex_lock(&hba->wb_mutex);
1339 	down_write(&hba->clk_scaling_lock);
1340 
1341 	if (!hba->clk_scaling.is_allowed ||
1342 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1343 		ret = -EBUSY;
1344 		up_write(&hba->clk_scaling_lock);
1345 		mutex_unlock(&hba->wb_mutex);
1346 		ufshcd_scsi_unblock_requests(hba);
1347 		goto out;
1348 	}
1349 
1350 	/* let's not get into low power until clock scaling is completed */
1351 	ufshcd_hold(hba);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1358 {
1359 	up_write(&hba->clk_scaling_lock);
1360 
1361 	/* Enable Write Booster if we have scaled up else disable it */
1362 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1363 		ufshcd_wb_toggle(hba, scale_up);
1364 
1365 	mutex_unlock(&hba->wb_mutex);
1366 
1367 	ufshcd_scsi_unblock_requests(hba);
1368 	ufshcd_release(hba);
1369 }
1370 
1371 /**
1372  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1373  * @hba: per adapter instance
1374  * @freq: frequency to scale
1375  * @scale_up: True for scaling up and false for scalin down
1376  *
1377  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1378  * for any other errors.
1379  */
1380 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1381 				bool scale_up)
1382 {
1383 	int ret = 0;
1384 
1385 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1386 	if (ret)
1387 		return ret;
1388 
1389 	/* scale down the gear before scaling down clocks */
1390 	if (!scale_up) {
1391 		ret = ufshcd_scale_gear(hba, false);
1392 		if (ret)
1393 			goto out_unprepare;
1394 	}
1395 
1396 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1397 	if (ret) {
1398 		if (!scale_up)
1399 			ufshcd_scale_gear(hba, true);
1400 		goto out_unprepare;
1401 	}
1402 
1403 	/* scale up the gear after scaling up clocks */
1404 	if (scale_up) {
1405 		ret = ufshcd_scale_gear(hba, true);
1406 		if (ret) {
1407 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1408 					  false);
1409 			goto out_unprepare;
1410 		}
1411 	}
1412 
1413 out_unprepare:
1414 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1415 	return ret;
1416 }
1417 
1418 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1419 {
1420 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1421 					   clk_scaling.suspend_work);
1422 	unsigned long irq_flags;
1423 
1424 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1425 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1426 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1427 		return;
1428 	}
1429 	hba->clk_scaling.is_suspended = true;
1430 	hba->clk_scaling.window_start_t = 0;
1431 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1432 
1433 	devfreq_suspend_device(hba->devfreq);
1434 }
1435 
1436 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1437 {
1438 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1439 					   clk_scaling.resume_work);
1440 	unsigned long irq_flags;
1441 
1442 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1443 	if (!hba->clk_scaling.is_suspended) {
1444 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1445 		return;
1446 	}
1447 	hba->clk_scaling.is_suspended = false;
1448 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1449 
1450 	devfreq_resume_device(hba->devfreq);
1451 }
1452 
1453 static int ufshcd_devfreq_target(struct device *dev,
1454 				unsigned long *freq, u32 flags)
1455 {
1456 	int ret = 0;
1457 	struct ufs_hba *hba = dev_get_drvdata(dev);
1458 	ktime_t start;
1459 	bool scale_up, sched_clk_scaling_suspend_work = false;
1460 	struct list_head *clk_list = &hba->clk_list_head;
1461 	struct ufs_clk_info *clki;
1462 	unsigned long irq_flags;
1463 
1464 	if (!ufshcd_is_clkscaling_supported(hba))
1465 		return -EINVAL;
1466 
1467 	if (hba->use_pm_opp) {
1468 		struct dev_pm_opp *opp;
1469 
1470 		/* Get the recommended frequency from OPP framework */
1471 		opp = devfreq_recommended_opp(dev, freq, flags);
1472 		if (IS_ERR(opp))
1473 			return PTR_ERR(opp);
1474 
1475 		dev_pm_opp_put(opp);
1476 	} else {
1477 		/* Override with the closest supported frequency */
1478 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1479 					list);
1480 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1481 	}
1482 
1483 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1484 	if (ufshcd_eh_in_progress(hba)) {
1485 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1486 		return 0;
1487 	}
1488 
1489 	/* Skip scaling clock when clock scaling is suspended */
1490 	if (hba->clk_scaling.is_suspended) {
1491 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1492 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1493 		return 0;
1494 	}
1495 
1496 	if (!hba->clk_scaling.active_reqs)
1497 		sched_clk_scaling_suspend_work = true;
1498 
1499 	if (list_empty(clk_list)) {
1500 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1501 		goto out;
1502 	}
1503 
1504 	/* Decide based on the target or rounded-off frequency and update */
1505 	if (hba->use_pm_opp)
1506 		scale_up = *freq > hba->clk_scaling.target_freq;
1507 	else
1508 		scale_up = *freq == clki->max_freq;
1509 
1510 	if (!hba->use_pm_opp && !scale_up)
1511 		*freq = clki->min_freq;
1512 
1513 	/* Update the frequency */
1514 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1515 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1516 		ret = 0;
1517 		goto out; /* no state change required */
1518 	}
1519 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1520 
1521 	start = ktime_get();
1522 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1523 	if (!ret)
1524 		hba->clk_scaling.target_freq = *freq;
1525 
1526 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1527 		(scale_up ? "up" : "down"),
1528 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1529 
1530 out:
1531 	if (sched_clk_scaling_suspend_work && !scale_up)
1532 		queue_work(hba->clk_scaling.workq,
1533 			   &hba->clk_scaling.suspend_work);
1534 
1535 	return ret;
1536 }
1537 
1538 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1539 		struct devfreq_dev_status *stat)
1540 {
1541 	struct ufs_hba *hba = dev_get_drvdata(dev);
1542 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1543 	unsigned long flags;
1544 	ktime_t curr_t;
1545 
1546 	if (!ufshcd_is_clkscaling_supported(hba))
1547 		return -EINVAL;
1548 
1549 	memset(stat, 0, sizeof(*stat));
1550 
1551 	spin_lock_irqsave(hba->host->host_lock, flags);
1552 	curr_t = ktime_get();
1553 	if (!scaling->window_start_t)
1554 		goto start_window;
1555 
1556 	/*
1557 	 * If current frequency is 0, then the ondemand governor considers
1558 	 * there's no initial frequency set. And it always requests to set
1559 	 * to max. frequency.
1560 	 */
1561 	if (hba->use_pm_opp) {
1562 		stat->current_frequency = hba->clk_scaling.target_freq;
1563 	} else {
1564 		struct list_head *clk_list = &hba->clk_list_head;
1565 		struct ufs_clk_info *clki;
1566 
1567 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1568 		stat->current_frequency = clki->curr_freq;
1569 	}
1570 
1571 	if (scaling->is_busy_started)
1572 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1573 				scaling->busy_start_t);
1574 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1575 	stat->busy_time = scaling->tot_busy_t;
1576 start_window:
1577 	scaling->window_start_t = curr_t;
1578 	scaling->tot_busy_t = 0;
1579 
1580 	if (scaling->active_reqs) {
1581 		scaling->busy_start_t = curr_t;
1582 		scaling->is_busy_started = true;
1583 	} else {
1584 		scaling->busy_start_t = 0;
1585 		scaling->is_busy_started = false;
1586 	}
1587 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1588 	return 0;
1589 }
1590 
1591 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1592 {
1593 	struct list_head *clk_list = &hba->clk_list_head;
1594 	struct ufs_clk_info *clki;
1595 	struct devfreq *devfreq;
1596 	int ret;
1597 
1598 	/* Skip devfreq if we don't have any clocks in the list */
1599 	if (list_empty(clk_list))
1600 		return 0;
1601 
1602 	if (!hba->use_pm_opp) {
1603 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1604 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1605 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1606 	}
1607 
1608 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1609 					 &hba->vps->ondemand_data);
1610 	devfreq = devfreq_add_device(hba->dev,
1611 			&hba->vps->devfreq_profile,
1612 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1613 			&hba->vps->ondemand_data);
1614 	if (IS_ERR(devfreq)) {
1615 		ret = PTR_ERR(devfreq);
1616 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1617 
1618 		if (!hba->use_pm_opp) {
1619 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1620 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1621 		}
1622 		return ret;
1623 	}
1624 
1625 	hba->devfreq = devfreq;
1626 
1627 	return 0;
1628 }
1629 
1630 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1631 {
1632 	struct list_head *clk_list = &hba->clk_list_head;
1633 
1634 	if (!hba->devfreq)
1635 		return;
1636 
1637 	devfreq_remove_device(hba->devfreq);
1638 	hba->devfreq = NULL;
1639 
1640 	if (!hba->use_pm_opp) {
1641 		struct ufs_clk_info *clki;
1642 
1643 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1644 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1645 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1646 	}
1647 }
1648 
1649 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1650 {
1651 	unsigned long flags;
1652 	bool suspend = false;
1653 
1654 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1655 	cancel_work_sync(&hba->clk_scaling.resume_work);
1656 
1657 	spin_lock_irqsave(hba->host->host_lock, flags);
1658 	if (!hba->clk_scaling.is_suspended) {
1659 		suspend = true;
1660 		hba->clk_scaling.is_suspended = true;
1661 		hba->clk_scaling.window_start_t = 0;
1662 	}
1663 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1664 
1665 	if (suspend)
1666 		devfreq_suspend_device(hba->devfreq);
1667 }
1668 
1669 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1670 {
1671 	unsigned long flags;
1672 	bool resume = false;
1673 
1674 	spin_lock_irqsave(hba->host->host_lock, flags);
1675 	if (hba->clk_scaling.is_suspended) {
1676 		resume = true;
1677 		hba->clk_scaling.is_suspended = false;
1678 	}
1679 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1680 
1681 	if (resume)
1682 		devfreq_resume_device(hba->devfreq);
1683 }
1684 
1685 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1686 		struct device_attribute *attr, char *buf)
1687 {
1688 	struct ufs_hba *hba = dev_get_drvdata(dev);
1689 
1690 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1691 }
1692 
1693 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1694 		struct device_attribute *attr, const char *buf, size_t count)
1695 {
1696 	struct ufs_hba *hba = dev_get_drvdata(dev);
1697 	u32 value;
1698 	int err = 0;
1699 
1700 	if (kstrtou32(buf, 0, &value))
1701 		return -EINVAL;
1702 
1703 	down(&hba->host_sem);
1704 	if (!ufshcd_is_user_access_allowed(hba)) {
1705 		err = -EBUSY;
1706 		goto out;
1707 	}
1708 
1709 	value = !!value;
1710 	if (value == hba->clk_scaling.is_enabled)
1711 		goto out;
1712 
1713 	ufshcd_rpm_get_sync(hba);
1714 	ufshcd_hold(hba);
1715 
1716 	hba->clk_scaling.is_enabled = value;
1717 
1718 	if (value) {
1719 		ufshcd_resume_clkscaling(hba);
1720 	} else {
1721 		ufshcd_suspend_clkscaling(hba);
1722 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1723 		if (err)
1724 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1725 					__func__, err);
1726 	}
1727 
1728 	ufshcd_release(hba);
1729 	ufshcd_rpm_put_sync(hba);
1730 out:
1731 	up(&hba->host_sem);
1732 	return err ? err : count;
1733 }
1734 
1735 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1736 {
1737 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1738 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1739 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1740 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1741 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1742 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1743 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1744 }
1745 
1746 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1747 {
1748 	if (hba->clk_scaling.enable_attr.attr.name)
1749 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1750 }
1751 
1752 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1753 {
1754 	char wq_name[sizeof("ufs_clkscaling_00")];
1755 
1756 	if (!ufshcd_is_clkscaling_supported(hba))
1757 		return;
1758 
1759 	if (!hba->clk_scaling.min_gear)
1760 		hba->clk_scaling.min_gear = UFS_HS_G1;
1761 
1762 	INIT_WORK(&hba->clk_scaling.suspend_work,
1763 		  ufshcd_clk_scaling_suspend_work);
1764 	INIT_WORK(&hba->clk_scaling.resume_work,
1765 		  ufshcd_clk_scaling_resume_work);
1766 
1767 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1768 		 hba->host->host_no);
1769 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1770 
1771 	hba->clk_scaling.is_initialized = true;
1772 }
1773 
1774 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1775 {
1776 	if (!hba->clk_scaling.is_initialized)
1777 		return;
1778 
1779 	ufshcd_remove_clk_scaling_sysfs(hba);
1780 	destroy_workqueue(hba->clk_scaling.workq);
1781 	ufshcd_devfreq_remove(hba);
1782 	hba->clk_scaling.is_initialized = false;
1783 }
1784 
1785 static void ufshcd_ungate_work(struct work_struct *work)
1786 {
1787 	int ret;
1788 	unsigned long flags;
1789 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1790 			clk_gating.ungate_work);
1791 
1792 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1793 
1794 	spin_lock_irqsave(hba->host->host_lock, flags);
1795 	if (hba->clk_gating.state == CLKS_ON) {
1796 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1797 		return;
1798 	}
1799 
1800 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1801 	ufshcd_hba_vreg_set_hpm(hba);
1802 	ufshcd_setup_clocks(hba, true);
1803 
1804 	ufshcd_enable_irq(hba);
1805 
1806 	/* Exit from hibern8 */
1807 	if (ufshcd_can_hibern8_during_gating(hba)) {
1808 		/* Prevent gating in this path */
1809 		hba->clk_gating.is_suspended = true;
1810 		if (ufshcd_is_link_hibern8(hba)) {
1811 			ret = ufshcd_uic_hibern8_exit(hba);
1812 			if (ret)
1813 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1814 					__func__, ret);
1815 			else
1816 				ufshcd_set_link_active(hba);
1817 		}
1818 		hba->clk_gating.is_suspended = false;
1819 	}
1820 }
1821 
1822 /**
1823  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1824  * Also, exit from hibern8 mode and set the link as active.
1825  * @hba: per adapter instance
1826  */
1827 void ufshcd_hold(struct ufs_hba *hba)
1828 {
1829 	bool flush_result;
1830 	unsigned long flags;
1831 
1832 	if (!ufshcd_is_clkgating_allowed(hba) ||
1833 	    !hba->clk_gating.is_initialized)
1834 		return;
1835 	spin_lock_irqsave(hba->host->host_lock, flags);
1836 	hba->clk_gating.active_reqs++;
1837 
1838 start:
1839 	switch (hba->clk_gating.state) {
1840 	case CLKS_ON:
1841 		/*
1842 		 * Wait for the ungate work to complete if in progress.
1843 		 * Though the clocks may be in ON state, the link could
1844 		 * still be in hibner8 state if hibern8 is allowed
1845 		 * during clock gating.
1846 		 * Make sure we exit hibern8 state also in addition to
1847 		 * clocks being ON.
1848 		 */
1849 		if (ufshcd_can_hibern8_during_gating(hba) &&
1850 		    ufshcd_is_link_hibern8(hba)) {
1851 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1852 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1853 			if (hba->clk_gating.is_suspended && !flush_result)
1854 				return;
1855 			spin_lock_irqsave(hba->host->host_lock, flags);
1856 			goto start;
1857 		}
1858 		break;
1859 	case REQ_CLKS_OFF:
1860 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1861 			hba->clk_gating.state = CLKS_ON;
1862 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1863 						hba->clk_gating.state);
1864 			break;
1865 		}
1866 		/*
1867 		 * If we are here, it means gating work is either done or
1868 		 * currently running. Hence, fall through to cancel gating
1869 		 * work and to enable clocks.
1870 		 */
1871 		fallthrough;
1872 	case CLKS_OFF:
1873 		hba->clk_gating.state = REQ_CLKS_ON;
1874 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1875 					hba->clk_gating.state);
1876 		queue_work(hba->clk_gating.clk_gating_workq,
1877 			   &hba->clk_gating.ungate_work);
1878 		/*
1879 		 * fall through to check if we should wait for this
1880 		 * work to be done or not.
1881 		 */
1882 		fallthrough;
1883 	case REQ_CLKS_ON:
1884 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1885 		flush_work(&hba->clk_gating.ungate_work);
1886 		/* Make sure state is CLKS_ON before returning */
1887 		spin_lock_irqsave(hba->host->host_lock, flags);
1888 		goto start;
1889 	default:
1890 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1891 				__func__, hba->clk_gating.state);
1892 		break;
1893 	}
1894 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1895 }
1896 EXPORT_SYMBOL_GPL(ufshcd_hold);
1897 
1898 static void ufshcd_gate_work(struct work_struct *work)
1899 {
1900 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1901 			clk_gating.gate_work.work);
1902 	unsigned long flags;
1903 	int ret;
1904 
1905 	spin_lock_irqsave(hba->host->host_lock, flags);
1906 	/*
1907 	 * In case you are here to cancel this work the gating state
1908 	 * would be marked as REQ_CLKS_ON. In this case save time by
1909 	 * skipping the gating work and exit after changing the clock
1910 	 * state to CLKS_ON.
1911 	 */
1912 	if (hba->clk_gating.is_suspended ||
1913 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1914 		hba->clk_gating.state = CLKS_ON;
1915 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1916 					hba->clk_gating.state);
1917 		goto rel_lock;
1918 	}
1919 
1920 	if (hba->clk_gating.active_reqs
1921 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1922 		|| hba->outstanding_reqs || hba->outstanding_tasks
1923 		|| hba->active_uic_cmd || hba->uic_async_done)
1924 		goto rel_lock;
1925 
1926 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1927 
1928 	/* put the link into hibern8 mode before turning off clocks */
1929 	if (ufshcd_can_hibern8_during_gating(hba)) {
1930 		ret = ufshcd_uic_hibern8_enter(hba);
1931 		if (ret) {
1932 			hba->clk_gating.state = CLKS_ON;
1933 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1934 					__func__, ret);
1935 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1936 						hba->clk_gating.state);
1937 			goto out;
1938 		}
1939 		ufshcd_set_link_hibern8(hba);
1940 	}
1941 
1942 	ufshcd_disable_irq(hba);
1943 
1944 	ufshcd_setup_clocks(hba, false);
1945 
1946 	/* Put the host controller in low power mode if possible */
1947 	ufshcd_hba_vreg_set_lpm(hba);
1948 	/*
1949 	 * In case you are here to cancel this work the gating state
1950 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1951 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1952 	 * and a request to turn them on is pending. By doing this way,
1953 	 * we keep the state machine in tact and this would ultimately
1954 	 * prevent from doing cancel work multiple times when there are
1955 	 * new requests arriving before the current cancel work is done.
1956 	 */
1957 	spin_lock_irqsave(hba->host->host_lock, flags);
1958 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1959 		hba->clk_gating.state = CLKS_OFF;
1960 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1961 					hba->clk_gating.state);
1962 	}
1963 rel_lock:
1964 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1965 out:
1966 	return;
1967 }
1968 
1969 /* host lock must be held before calling this variant */
1970 static void __ufshcd_release(struct ufs_hba *hba)
1971 {
1972 	if (!ufshcd_is_clkgating_allowed(hba))
1973 		return;
1974 
1975 	hba->clk_gating.active_reqs--;
1976 
1977 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1978 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1979 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1980 	    hba->active_uic_cmd || hba->uic_async_done ||
1981 	    hba->clk_gating.state == CLKS_OFF)
1982 		return;
1983 
1984 	hba->clk_gating.state = REQ_CLKS_OFF;
1985 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1986 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1987 			   &hba->clk_gating.gate_work,
1988 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1989 }
1990 
1991 void ufshcd_release(struct ufs_hba *hba)
1992 {
1993 	unsigned long flags;
1994 
1995 	spin_lock_irqsave(hba->host->host_lock, flags);
1996 	__ufshcd_release(hba);
1997 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1998 }
1999 EXPORT_SYMBOL_GPL(ufshcd_release);
2000 
2001 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2002 		struct device_attribute *attr, char *buf)
2003 {
2004 	struct ufs_hba *hba = dev_get_drvdata(dev);
2005 
2006 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2007 }
2008 
2009 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2010 {
2011 	struct ufs_hba *hba = dev_get_drvdata(dev);
2012 	unsigned long flags;
2013 
2014 	spin_lock_irqsave(hba->host->host_lock, flags);
2015 	hba->clk_gating.delay_ms = value;
2016 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2017 }
2018 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2019 
2020 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2021 		struct device_attribute *attr, const char *buf, size_t count)
2022 {
2023 	unsigned long value;
2024 
2025 	if (kstrtoul(buf, 0, &value))
2026 		return -EINVAL;
2027 
2028 	ufshcd_clkgate_delay_set(dev, value);
2029 	return count;
2030 }
2031 
2032 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2033 		struct device_attribute *attr, char *buf)
2034 {
2035 	struct ufs_hba *hba = dev_get_drvdata(dev);
2036 
2037 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2038 }
2039 
2040 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2041 		struct device_attribute *attr, const char *buf, size_t count)
2042 {
2043 	struct ufs_hba *hba = dev_get_drvdata(dev);
2044 	unsigned long flags;
2045 	u32 value;
2046 
2047 	if (kstrtou32(buf, 0, &value))
2048 		return -EINVAL;
2049 
2050 	value = !!value;
2051 
2052 	spin_lock_irqsave(hba->host->host_lock, flags);
2053 	if (value == hba->clk_gating.is_enabled)
2054 		goto out;
2055 
2056 	if (value)
2057 		__ufshcd_release(hba);
2058 	else
2059 		hba->clk_gating.active_reqs++;
2060 
2061 	hba->clk_gating.is_enabled = value;
2062 out:
2063 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2064 	return count;
2065 }
2066 
2067 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2068 {
2069 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2070 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2071 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2072 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2073 	hba->clk_gating.delay_attr.attr.mode = 0644;
2074 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2075 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2076 
2077 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2078 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2079 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2080 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2081 	hba->clk_gating.enable_attr.attr.mode = 0644;
2082 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2083 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2084 }
2085 
2086 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2087 {
2088 	if (hba->clk_gating.delay_attr.attr.name)
2089 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2090 	if (hba->clk_gating.enable_attr.attr.name)
2091 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2092 }
2093 
2094 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2095 {
2096 	char wq_name[sizeof("ufs_clk_gating_00")];
2097 
2098 	if (!ufshcd_is_clkgating_allowed(hba))
2099 		return;
2100 
2101 	hba->clk_gating.state = CLKS_ON;
2102 
2103 	hba->clk_gating.delay_ms = 150;
2104 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2105 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2106 
2107 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2108 		 hba->host->host_no);
2109 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2110 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2111 
2112 	ufshcd_init_clk_gating_sysfs(hba);
2113 
2114 	hba->clk_gating.is_enabled = true;
2115 	hba->clk_gating.is_initialized = true;
2116 }
2117 
2118 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2119 {
2120 	if (!hba->clk_gating.is_initialized)
2121 		return;
2122 
2123 	ufshcd_remove_clk_gating_sysfs(hba);
2124 
2125 	/* Ungate the clock if necessary. */
2126 	ufshcd_hold(hba);
2127 	hba->clk_gating.is_initialized = false;
2128 	ufshcd_release(hba);
2129 
2130 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2131 }
2132 
2133 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2134 {
2135 	bool queue_resume_work = false;
2136 	ktime_t curr_t = ktime_get();
2137 	unsigned long flags;
2138 
2139 	if (!ufshcd_is_clkscaling_supported(hba))
2140 		return;
2141 
2142 	spin_lock_irqsave(hba->host->host_lock, flags);
2143 	if (!hba->clk_scaling.active_reqs++)
2144 		queue_resume_work = true;
2145 
2146 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2147 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 		return;
2149 	}
2150 
2151 	if (queue_resume_work)
2152 		queue_work(hba->clk_scaling.workq,
2153 			   &hba->clk_scaling.resume_work);
2154 
2155 	if (!hba->clk_scaling.window_start_t) {
2156 		hba->clk_scaling.window_start_t = curr_t;
2157 		hba->clk_scaling.tot_busy_t = 0;
2158 		hba->clk_scaling.is_busy_started = false;
2159 	}
2160 
2161 	if (!hba->clk_scaling.is_busy_started) {
2162 		hba->clk_scaling.busy_start_t = curr_t;
2163 		hba->clk_scaling.is_busy_started = true;
2164 	}
2165 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2166 }
2167 
2168 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2169 {
2170 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2171 	unsigned long flags;
2172 
2173 	if (!ufshcd_is_clkscaling_supported(hba))
2174 		return;
2175 
2176 	spin_lock_irqsave(hba->host->host_lock, flags);
2177 	hba->clk_scaling.active_reqs--;
2178 	if (!scaling->active_reqs && scaling->is_busy_started) {
2179 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2180 					scaling->busy_start_t));
2181 		scaling->busy_start_t = 0;
2182 		scaling->is_busy_started = false;
2183 	}
2184 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2185 }
2186 
2187 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2188 {
2189 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2190 		return READ;
2191 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2192 		return WRITE;
2193 	else
2194 		return -EINVAL;
2195 }
2196 
2197 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2198 						struct ufshcd_lrb *lrbp)
2199 {
2200 	const struct ufs_hba_monitor *m = &hba->monitor;
2201 
2202 	return (m->enabled && lrbp && lrbp->cmd &&
2203 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2204 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2205 }
2206 
2207 static void ufshcd_start_monitor(struct ufs_hba *hba,
2208 				 const struct ufshcd_lrb *lrbp)
2209 {
2210 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2211 	unsigned long flags;
2212 
2213 	spin_lock_irqsave(hba->host->host_lock, flags);
2214 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2215 		hba->monitor.busy_start_ts[dir] = ktime_get();
2216 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2217 }
2218 
2219 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2220 {
2221 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2222 	unsigned long flags;
2223 
2224 	spin_lock_irqsave(hba->host->host_lock, flags);
2225 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2226 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2227 		struct ufs_hba_monitor *m = &hba->monitor;
2228 		ktime_t now, inc, lat;
2229 
2230 		now = lrbp->compl_time_stamp;
2231 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2232 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2233 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2234 
2235 		/* Update latencies */
2236 		m->nr_req[dir]++;
2237 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2238 		m->lat_sum[dir] += lat;
2239 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2240 			m->lat_max[dir] = lat;
2241 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2242 			m->lat_min[dir] = lat;
2243 
2244 		m->nr_queued[dir]--;
2245 		/* Push forward the busy start of monitor */
2246 		m->busy_start_ts[dir] = now;
2247 	}
2248 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2249 }
2250 
2251 /**
2252  * ufshcd_send_command - Send SCSI or device management commands
2253  * @hba: per adapter instance
2254  * @task_tag: Task tag of the command
2255  * @hwq: pointer to hardware queue instance
2256  */
2257 static inline
2258 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2259 			 struct ufs_hw_queue *hwq)
2260 {
2261 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2262 	unsigned long flags;
2263 
2264 	lrbp->issue_time_stamp = ktime_get();
2265 	lrbp->issue_time_stamp_local_clock = local_clock();
2266 	lrbp->compl_time_stamp = ktime_set(0, 0);
2267 	lrbp->compl_time_stamp_local_clock = 0;
2268 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2269 	if (lrbp->cmd)
2270 		ufshcd_clk_scaling_start_busy(hba);
2271 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2272 		ufshcd_start_monitor(hba, lrbp);
2273 
2274 	if (is_mcq_enabled(hba)) {
2275 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2276 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2277 		struct utp_transfer_req_desc *dest;
2278 
2279 		spin_lock(&hwq->sq_lock);
2280 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2281 		memcpy(dest, src, utrd_size);
2282 		ufshcd_inc_sq_tail(hwq);
2283 		spin_unlock(&hwq->sq_lock);
2284 	} else {
2285 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2286 		if (hba->vops && hba->vops->setup_xfer_req)
2287 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2288 						  !!lrbp->cmd);
2289 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2290 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2291 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2292 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2293 	}
2294 }
2295 
2296 /**
2297  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2298  * @lrbp: pointer to local reference block
2299  */
2300 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2301 {
2302 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2303 	u16 resp_len;
2304 	int len;
2305 
2306 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2307 	if (sense_buffer && resp_len) {
2308 		int len_to_copy;
2309 
2310 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2311 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2312 
2313 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2314 		       len_to_copy);
2315 	}
2316 }
2317 
2318 /**
2319  * ufshcd_copy_query_response() - Copy the Query Response and the data
2320  * descriptor
2321  * @hba: per adapter instance
2322  * @lrbp: pointer to local reference block
2323  *
2324  * Return: 0 upon success; < 0 upon failure.
2325  */
2326 static
2327 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2328 {
2329 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2330 
2331 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2332 
2333 	/* Get the descriptor */
2334 	if (hba->dev_cmd.query.descriptor &&
2335 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2336 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2337 				GENERAL_UPIU_REQUEST_SIZE;
2338 		u16 resp_len;
2339 		u16 buf_len;
2340 
2341 		/* data segment length */
2342 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2343 				       .data_segment_length);
2344 		buf_len = be16_to_cpu(
2345 				hba->dev_cmd.query.request.upiu_req.length);
2346 		if (likely(buf_len >= resp_len)) {
2347 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2348 		} else {
2349 			dev_warn(hba->dev,
2350 				 "%s: rsp size %d is bigger than buffer size %d",
2351 				 __func__, resp_len, buf_len);
2352 			return -EINVAL;
2353 		}
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 /**
2360  * ufshcd_hba_capabilities - Read controller capabilities
2361  * @hba: per adapter instance
2362  *
2363  * Return: 0 on success, negative on error.
2364  */
2365 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2366 {
2367 	int err;
2368 
2369 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2370 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2371 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2372 
2373 	/* nutrs and nutmrs are 0 based values */
2374 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2375 	hba->nutmrs =
2376 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2377 	hba->reserved_slot = hba->nutrs - 1;
2378 
2379 	/* Read crypto capabilities */
2380 	err = ufshcd_hba_init_crypto_capabilities(hba);
2381 	if (err) {
2382 		dev_err(hba->dev, "crypto setup failed\n");
2383 		return err;
2384 	}
2385 
2386 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2387 	if (!hba->mcq_sup)
2388 		return 0;
2389 
2390 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2391 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2392 				     hba->mcq_capabilities);
2393 
2394 	return 0;
2395 }
2396 
2397 /**
2398  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2399  *                            to accept UIC commands
2400  * @hba: per adapter instance
2401  *
2402  * Return: true on success, else false.
2403  */
2404 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2405 {
2406 	u32 val;
2407 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2408 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2409 				    REG_CONTROLLER_STATUS);
2410 	return ret == 0;
2411 }
2412 
2413 /**
2414  * ufshcd_get_upmcrs - Get the power mode change request status
2415  * @hba: Pointer to adapter instance
2416  *
2417  * This function gets the UPMCRS field of HCS register
2418  *
2419  * Return: value of UPMCRS field.
2420  */
2421 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2422 {
2423 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2424 }
2425 
2426 /**
2427  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2428  * @hba: per adapter instance
2429  * @uic_cmd: UIC command
2430  */
2431 static inline void
2432 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2433 {
2434 	lockdep_assert_held(&hba->uic_cmd_mutex);
2435 
2436 	WARN_ON(hba->active_uic_cmd);
2437 
2438 	hba->active_uic_cmd = uic_cmd;
2439 
2440 	/* Write Args */
2441 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2442 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2443 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2444 
2445 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2446 
2447 	/* Write UIC Cmd */
2448 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2449 		      REG_UIC_COMMAND);
2450 }
2451 
2452 /**
2453  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2454  * @hba: per adapter instance
2455  * @uic_cmd: UIC command
2456  *
2457  * Return: 0 only if success.
2458  */
2459 static int
2460 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2461 {
2462 	int ret;
2463 	unsigned long flags;
2464 
2465 	lockdep_assert_held(&hba->uic_cmd_mutex);
2466 
2467 	if (wait_for_completion_timeout(&uic_cmd->done,
2468 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2469 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2470 	} else {
2471 		ret = -ETIMEDOUT;
2472 		dev_err(hba->dev,
2473 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2474 			uic_cmd->command, uic_cmd->argument3);
2475 
2476 		if (!uic_cmd->cmd_active) {
2477 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2478 				__func__);
2479 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2480 		}
2481 	}
2482 
2483 	spin_lock_irqsave(hba->host->host_lock, flags);
2484 	hba->active_uic_cmd = NULL;
2485 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2486 
2487 	return ret;
2488 }
2489 
2490 /**
2491  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2492  * @hba: per adapter instance
2493  * @uic_cmd: UIC command
2494  * @completion: initialize the completion only if this is set to true
2495  *
2496  * Return: 0 only if success.
2497  */
2498 static int
2499 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2500 		      bool completion)
2501 {
2502 	lockdep_assert_held(&hba->uic_cmd_mutex);
2503 
2504 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2505 		dev_err(hba->dev,
2506 			"Controller not ready to accept UIC commands\n");
2507 		return -EIO;
2508 	}
2509 
2510 	if (completion)
2511 		init_completion(&uic_cmd->done);
2512 
2513 	uic_cmd->cmd_active = 1;
2514 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2515 
2516 	return 0;
2517 }
2518 
2519 /**
2520  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2521  * @hba: per adapter instance
2522  * @uic_cmd: UIC command
2523  *
2524  * Return: 0 only if success.
2525  */
2526 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2527 {
2528 	int ret;
2529 
2530 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2531 		return 0;
2532 
2533 	ufshcd_hold(hba);
2534 	mutex_lock(&hba->uic_cmd_mutex);
2535 	ufshcd_add_delay_before_dme_cmd(hba);
2536 
2537 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2538 	if (!ret)
2539 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2540 
2541 	mutex_unlock(&hba->uic_cmd_mutex);
2542 
2543 	ufshcd_release(hba);
2544 	return ret;
2545 }
2546 
2547 /**
2548  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2549  * @hba:	per-adapter instance
2550  * @lrbp:	pointer to local reference block
2551  * @sg_entries:	The number of sg lists actually used
2552  * @sg_list:	Pointer to SG list
2553  */
2554 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2555 			       struct scatterlist *sg_list)
2556 {
2557 	struct ufshcd_sg_entry *prd;
2558 	struct scatterlist *sg;
2559 	int i;
2560 
2561 	if (sg_entries) {
2562 
2563 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2564 			lrbp->utr_descriptor_ptr->prd_table_length =
2565 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2566 		else
2567 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2568 
2569 		prd = lrbp->ucd_prdt_ptr;
2570 
2571 		for_each_sg(sg_list, sg, sg_entries, i) {
2572 			const unsigned int len = sg_dma_len(sg);
2573 
2574 			/*
2575 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2576 			 * based value that indicates the length, in bytes, of
2577 			 * the data block. A maximum of length of 256KB may
2578 			 * exist for any entry. Bits 1:0 of this field shall be
2579 			 * 11b to indicate Dword granularity. A value of '3'
2580 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2581 			 */
2582 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2583 			prd->size = cpu_to_le32(len - 1);
2584 			prd->addr = cpu_to_le64(sg->dma_address);
2585 			prd->reserved = 0;
2586 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2587 		}
2588 	} else {
2589 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2590 	}
2591 }
2592 
2593 /**
2594  * ufshcd_map_sg - Map scatter-gather list to prdt
2595  * @hba: per adapter instance
2596  * @lrbp: pointer to local reference block
2597  *
2598  * Return: 0 in case of success, non-zero value in case of failure.
2599  */
2600 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2601 {
2602 	struct scsi_cmnd *cmd = lrbp->cmd;
2603 	int sg_segments = scsi_dma_map(cmd);
2604 
2605 	if (sg_segments < 0)
2606 		return sg_segments;
2607 
2608 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2609 
2610 	return 0;
2611 }
2612 
2613 /**
2614  * ufshcd_enable_intr - enable interrupts
2615  * @hba: per adapter instance
2616  * @intrs: interrupt bits
2617  */
2618 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2619 {
2620 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2621 
2622 	if (hba->ufs_version == ufshci_version(1, 0)) {
2623 		u32 rw;
2624 		rw = set & INTERRUPT_MASK_RW_VER_10;
2625 		set = rw | ((set ^ intrs) & intrs);
2626 	} else {
2627 		set |= intrs;
2628 	}
2629 
2630 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2631 }
2632 
2633 /**
2634  * ufshcd_disable_intr - disable interrupts
2635  * @hba: per adapter instance
2636  * @intrs: interrupt bits
2637  */
2638 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2639 {
2640 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2641 
2642 	if (hba->ufs_version == ufshci_version(1, 0)) {
2643 		u32 rw;
2644 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2645 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2646 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2647 
2648 	} else {
2649 		set &= ~intrs;
2650 	}
2651 
2652 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2653 }
2654 
2655 /**
2656  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2657  * descriptor according to request
2658  * @lrbp: pointer to local reference block
2659  * @upiu_flags: flags required in the header
2660  * @cmd_dir: requests data direction
2661  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2662  */
2663 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2664 					enum dma_data_direction cmd_dir, int ehs_length)
2665 {
2666 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2667 	struct request_desc_header *h = &req_desc->header;
2668 	enum utp_data_direction data_direction;
2669 
2670 	*h = (typeof(*h)){ };
2671 
2672 	if (cmd_dir == DMA_FROM_DEVICE) {
2673 		data_direction = UTP_DEVICE_TO_HOST;
2674 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2675 	} else if (cmd_dir == DMA_TO_DEVICE) {
2676 		data_direction = UTP_HOST_TO_DEVICE;
2677 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2678 	} else {
2679 		data_direction = UTP_NO_DATA_TRANSFER;
2680 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2681 	}
2682 
2683 	h->command_type = lrbp->command_type;
2684 	h->data_direction = data_direction;
2685 	h->ehs_length = ehs_length;
2686 
2687 	if (lrbp->intr_cmd)
2688 		h->interrupt = 1;
2689 
2690 	/* Prepare crypto related dwords */
2691 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2692 
2693 	/*
2694 	 * assigning invalid value for command status. Controller
2695 	 * updates OCS on command completion, with the command
2696 	 * status
2697 	 */
2698 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2699 
2700 	req_desc->prd_table_length = 0;
2701 }
2702 
2703 /**
2704  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2705  * for scsi commands
2706  * @lrbp: local reference block pointer
2707  * @upiu_flags: flags
2708  */
2709 static
2710 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2711 {
2712 	struct scsi_cmnd *cmd = lrbp->cmd;
2713 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2714 	unsigned short cdb_len;
2715 
2716 	ucd_req_ptr->header = (struct utp_upiu_header){
2717 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2718 		.flags = upiu_flags,
2719 		.lun = lrbp->lun,
2720 		.task_tag = lrbp->task_tag,
2721 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2722 	};
2723 
2724 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2725 
2726 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2727 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2728 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2729 
2730 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2731 }
2732 
2733 /**
2734  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2735  * @hba: UFS hba
2736  * @lrbp: local reference block pointer
2737  * @upiu_flags: flags
2738  */
2739 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2740 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2741 {
2742 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2743 	struct ufs_query *query = &hba->dev_cmd.query;
2744 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2745 
2746 	/* Query request header */
2747 	ucd_req_ptr->header = (struct utp_upiu_header){
2748 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2749 		.flags = upiu_flags,
2750 		.lun = lrbp->lun,
2751 		.task_tag = lrbp->task_tag,
2752 		.query_function = query->request.query_func,
2753 		/* Data segment length only need for WRITE_DESC */
2754 		.data_segment_length =
2755 			query->request.upiu_req.opcode ==
2756 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2757 				cpu_to_be16(len) :
2758 				0,
2759 	};
2760 
2761 	/* Copy the Query Request buffer as is */
2762 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2763 			QUERY_OSF_SIZE);
2764 
2765 	/* Copy the Descriptor */
2766 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2767 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2768 
2769 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2770 }
2771 
2772 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2773 {
2774 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2775 
2776 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2777 
2778 	ucd_req_ptr->header = (struct utp_upiu_header){
2779 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2780 		.task_tag = lrbp->task_tag,
2781 	};
2782 
2783 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2784 }
2785 
2786 /**
2787  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2788  *			     for Device Management Purposes
2789  * @hba: per adapter instance
2790  * @lrbp: pointer to local reference block
2791  *
2792  * Return: 0 upon success; < 0 upon failure.
2793  */
2794 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2795 				      struct ufshcd_lrb *lrbp)
2796 {
2797 	u8 upiu_flags;
2798 	int ret = 0;
2799 
2800 	if (hba->ufs_version <= ufshci_version(1, 1))
2801 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2802 	else
2803 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2804 
2805 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2806 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2807 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2808 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2809 		ufshcd_prepare_utp_nop_upiu(lrbp);
2810 	else
2811 		ret = -EINVAL;
2812 
2813 	return ret;
2814 }
2815 
2816 /**
2817  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2818  *			   for SCSI Purposes
2819  * @hba: per adapter instance
2820  * @lrbp: pointer to local reference block
2821  */
2822 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2823 {
2824 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2825 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2826 	u8 upiu_flags;
2827 
2828 	if (hba->ufs_version <= ufshci_version(1, 1))
2829 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2830 	else
2831 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2832 
2833 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2834 				    lrbp->cmd->sc_data_direction, 0);
2835 	if (ioprio_class == IOPRIO_CLASS_RT)
2836 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2837 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2838 }
2839 
2840 /**
2841  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2842  * @upiu_wlun_id: UPIU W-LUN id
2843  *
2844  * Return: SCSI W-LUN id.
2845  */
2846 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2847 {
2848 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2849 }
2850 
2851 static inline bool is_device_wlun(struct scsi_device *sdev)
2852 {
2853 	return sdev->lun ==
2854 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2855 }
2856 
2857 /*
2858  * Associate the UFS controller queue with the default and poll HCTX types.
2859  * Initialize the mq_map[] arrays.
2860  */
2861 static void ufshcd_map_queues(struct Scsi_Host *shost)
2862 {
2863 	struct ufs_hba *hba = shost_priv(shost);
2864 	int i, queue_offset = 0;
2865 
2866 	if (!is_mcq_supported(hba)) {
2867 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2868 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2869 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2870 		hba->nr_hw_queues = 1;
2871 	}
2872 
2873 	for (i = 0; i < shost->nr_maps; i++) {
2874 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2875 
2876 		map->nr_queues = hba->nr_queues[i];
2877 		if (!map->nr_queues)
2878 			continue;
2879 		map->queue_offset = queue_offset;
2880 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2881 			map->queue_offset = 0;
2882 
2883 		blk_mq_map_queues(map);
2884 		queue_offset += map->nr_queues;
2885 	}
2886 }
2887 
2888 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2889 {
2890 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2891 		i * ufshcd_get_ucd_size(hba);
2892 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2893 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2894 		i * ufshcd_get_ucd_size(hba);
2895 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2896 				       response_upiu);
2897 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2898 
2899 	lrb->utr_descriptor_ptr = utrdlp + i;
2900 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2901 		i * sizeof(struct utp_transfer_req_desc);
2902 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2903 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2904 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2905 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2906 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2907 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2908 }
2909 
2910 /**
2911  * ufshcd_queuecommand - main entry point for SCSI requests
2912  * @host: SCSI host pointer
2913  * @cmd: command from SCSI Midlayer
2914  *
2915  * Return: 0 for success, non-zero in case of failure.
2916  */
2917 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2918 {
2919 	struct ufs_hba *hba = shost_priv(host);
2920 	int tag = scsi_cmd_to_rq(cmd)->tag;
2921 	struct ufshcd_lrb *lrbp;
2922 	int err = 0;
2923 	struct ufs_hw_queue *hwq = NULL;
2924 
2925 	switch (hba->ufshcd_state) {
2926 	case UFSHCD_STATE_OPERATIONAL:
2927 		break;
2928 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2929 		/*
2930 		 * SCSI error handler can call ->queuecommand() while UFS error
2931 		 * handler is in progress. Error interrupts could change the
2932 		 * state from UFSHCD_STATE_RESET to
2933 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2934 		 * being issued in that case.
2935 		 */
2936 		if (ufshcd_eh_in_progress(hba)) {
2937 			err = SCSI_MLQUEUE_HOST_BUSY;
2938 			goto out;
2939 		}
2940 		break;
2941 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2942 		/*
2943 		 * pm_runtime_get_sync() is used at error handling preparation
2944 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2945 		 * PM ops, it can never be finished if we let SCSI layer keep
2946 		 * retrying it, which gets err handler stuck forever. Neither
2947 		 * can we let the scsi cmd pass through, because UFS is in bad
2948 		 * state, the scsi cmd may eventually time out, which will get
2949 		 * err handler blocked for too long. So, just fail the scsi cmd
2950 		 * sent from PM ops, err handler can recover PM error anyways.
2951 		 */
2952 		if (hba->pm_op_in_progress) {
2953 			hba->force_reset = true;
2954 			set_host_byte(cmd, DID_BAD_TARGET);
2955 			scsi_done(cmd);
2956 			goto out;
2957 		}
2958 		fallthrough;
2959 	case UFSHCD_STATE_RESET:
2960 		err = SCSI_MLQUEUE_HOST_BUSY;
2961 		goto out;
2962 	case UFSHCD_STATE_ERROR:
2963 		set_host_byte(cmd, DID_ERROR);
2964 		scsi_done(cmd);
2965 		goto out;
2966 	}
2967 
2968 	hba->req_abort_count = 0;
2969 
2970 	ufshcd_hold(hba);
2971 
2972 	lrbp = &hba->lrb[tag];
2973 	lrbp->cmd = cmd;
2974 	lrbp->task_tag = tag;
2975 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2976 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2977 
2978 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2979 
2980 	lrbp->req_abort_skip = false;
2981 
2982 	ufshcd_comp_scsi_upiu(hba, lrbp);
2983 
2984 	err = ufshcd_map_sg(hba, lrbp);
2985 	if (err) {
2986 		ufshcd_release(hba);
2987 		goto out;
2988 	}
2989 
2990 	if (is_mcq_enabled(hba))
2991 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2992 
2993 	ufshcd_send_command(hba, tag, hwq);
2994 
2995 out:
2996 	if (ufs_trigger_eh()) {
2997 		unsigned long flags;
2998 
2999 		spin_lock_irqsave(hba->host->host_lock, flags);
3000 		ufshcd_schedule_eh_work(hba);
3001 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3002 	}
3003 
3004 	return err;
3005 }
3006 
3007 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3008 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3009 {
3010 	lrbp->cmd = NULL;
3011 	lrbp->task_tag = tag;
3012 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3013 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3014 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3015 	hba->dev_cmd.type = cmd_type;
3016 
3017 	return ufshcd_compose_devman_upiu(hba, lrbp);
3018 }
3019 
3020 /*
3021  * Check with the block layer if the command is inflight
3022  * @cmd: command to check.
3023  *
3024  * Return: true if command is inflight; false if not.
3025  */
3026 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3027 {
3028 	struct request *rq;
3029 
3030 	if (!cmd)
3031 		return false;
3032 
3033 	rq = scsi_cmd_to_rq(cmd);
3034 	if (!blk_mq_request_started(rq))
3035 		return false;
3036 
3037 	return true;
3038 }
3039 
3040 /*
3041  * Clear the pending command in the controller and wait until
3042  * the controller confirms that the command has been cleared.
3043  * @hba: per adapter instance
3044  * @task_tag: The tag number of the command to be cleared.
3045  */
3046 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3047 {
3048 	u32 mask = 1U << task_tag;
3049 	unsigned long flags;
3050 	int err;
3051 
3052 	if (is_mcq_enabled(hba)) {
3053 		/*
3054 		 * MCQ mode. Clean up the MCQ resources similar to
3055 		 * what the ufshcd_utrl_clear() does for SDB mode.
3056 		 */
3057 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3058 		if (err) {
3059 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3060 				__func__, task_tag, err);
3061 			return err;
3062 		}
3063 		return 0;
3064 	}
3065 
3066 	/* clear outstanding transaction before retry */
3067 	spin_lock_irqsave(hba->host->host_lock, flags);
3068 	ufshcd_utrl_clear(hba, mask);
3069 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3070 
3071 	/*
3072 	 * wait for h/w to clear corresponding bit in door-bell.
3073 	 * max. wait is 1 sec.
3074 	 */
3075 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3076 					mask, ~mask, 1000, 1000);
3077 }
3078 
3079 /**
3080  * ufshcd_dev_cmd_completion() - handles device management command responses
3081  * @hba: per adapter instance
3082  * @lrbp: pointer to local reference block
3083  *
3084  * Return: 0 upon success; < 0 upon failure.
3085  */
3086 static int
3087 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3088 {
3089 	enum upiu_response_transaction resp;
3090 	int err = 0;
3091 
3092 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3093 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3094 
3095 	switch (resp) {
3096 	case UPIU_TRANSACTION_NOP_IN:
3097 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3098 			err = -EINVAL;
3099 			dev_err(hba->dev, "%s: unexpected response %x\n",
3100 					__func__, resp);
3101 		}
3102 		break;
3103 	case UPIU_TRANSACTION_QUERY_RSP: {
3104 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3105 
3106 		if (response == 0)
3107 			err = ufshcd_copy_query_response(hba, lrbp);
3108 		break;
3109 	}
3110 	case UPIU_TRANSACTION_REJECT_UPIU:
3111 		/* TODO: handle Reject UPIU Response */
3112 		err = -EPERM;
3113 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3114 				__func__);
3115 		break;
3116 	case UPIU_TRANSACTION_RESPONSE:
3117 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3118 			err = -EINVAL;
3119 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3120 		}
3121 		break;
3122 	default:
3123 		err = -EINVAL;
3124 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3125 				__func__, resp);
3126 		break;
3127 	}
3128 
3129 	return err;
3130 }
3131 
3132 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3133 		struct ufshcd_lrb *lrbp, int max_timeout)
3134 {
3135 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3136 	unsigned long flags;
3137 	bool pending;
3138 	int err;
3139 
3140 retry:
3141 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3142 						time_left);
3143 
3144 	if (likely(time_left)) {
3145 		/*
3146 		 * The completion handler called complete() and the caller of
3147 		 * this function still owns the @lrbp tag so the code below does
3148 		 * not trigger any race conditions.
3149 		 */
3150 		hba->dev_cmd.complete = NULL;
3151 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3152 		if (!err)
3153 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3154 	} else {
3155 		err = -ETIMEDOUT;
3156 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3157 			__func__, lrbp->task_tag);
3158 
3159 		/* MCQ mode */
3160 		if (is_mcq_enabled(hba)) {
3161 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3162 			hba->dev_cmd.complete = NULL;
3163 			return err;
3164 		}
3165 
3166 		/* SDB mode */
3167 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3168 			/* successfully cleared the command, retry if needed */
3169 			err = -EAGAIN;
3170 			/*
3171 			 * Since clearing the command succeeded we also need to
3172 			 * clear the task tag bit from the outstanding_reqs
3173 			 * variable.
3174 			 */
3175 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3176 			pending = test_bit(lrbp->task_tag,
3177 					   &hba->outstanding_reqs);
3178 			if (pending) {
3179 				hba->dev_cmd.complete = NULL;
3180 				__clear_bit(lrbp->task_tag,
3181 					    &hba->outstanding_reqs);
3182 			}
3183 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3184 
3185 			if (!pending) {
3186 				/*
3187 				 * The completion handler ran while we tried to
3188 				 * clear the command.
3189 				 */
3190 				time_left = 1;
3191 				goto retry;
3192 			}
3193 		} else {
3194 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3195 				__func__, lrbp->task_tag);
3196 
3197 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3198 			pending = test_bit(lrbp->task_tag,
3199 					   &hba->outstanding_reqs);
3200 			if (pending)
3201 				hba->dev_cmd.complete = NULL;
3202 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3203 
3204 			if (!pending) {
3205 				/*
3206 				 * The completion handler ran while we tried to
3207 				 * clear the command.
3208 				 */
3209 				time_left = 1;
3210 				goto retry;
3211 			}
3212 		}
3213 	}
3214 
3215 	return err;
3216 }
3217 
3218 /**
3219  * ufshcd_exec_dev_cmd - API for sending device management requests
3220  * @hba: UFS hba
3221  * @cmd_type: specifies the type (NOP, Query...)
3222  * @timeout: timeout in milliseconds
3223  *
3224  * Return: 0 upon success; < 0 upon failure.
3225  *
3226  * NOTE: Since there is only one available tag for device management commands,
3227  * it is expected you hold the hba->dev_cmd.lock mutex.
3228  */
3229 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3230 		enum dev_cmd_type cmd_type, int timeout)
3231 {
3232 	DECLARE_COMPLETION_ONSTACK(wait);
3233 	const u32 tag = hba->reserved_slot;
3234 	struct ufshcd_lrb *lrbp;
3235 	int err;
3236 
3237 	/* Protects use of hba->reserved_slot. */
3238 	lockdep_assert_held(&hba->dev_cmd.lock);
3239 
3240 	down_read(&hba->clk_scaling_lock);
3241 
3242 	lrbp = &hba->lrb[tag];
3243 	lrbp->cmd = NULL;
3244 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3245 	if (unlikely(err))
3246 		goto out;
3247 
3248 	hba->dev_cmd.complete = &wait;
3249 
3250 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3251 
3252 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3253 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3254 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3255 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3256 
3257 out:
3258 	up_read(&hba->clk_scaling_lock);
3259 	return err;
3260 }
3261 
3262 /**
3263  * ufshcd_init_query() - init the query response and request parameters
3264  * @hba: per-adapter instance
3265  * @request: address of the request pointer to be initialized
3266  * @response: address of the response pointer to be initialized
3267  * @opcode: operation to perform
3268  * @idn: flag idn to access
3269  * @index: LU number to access
3270  * @selector: query/flag/descriptor further identification
3271  */
3272 static inline void ufshcd_init_query(struct ufs_hba *hba,
3273 		struct ufs_query_req **request, struct ufs_query_res **response,
3274 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3275 {
3276 	*request = &hba->dev_cmd.query.request;
3277 	*response = &hba->dev_cmd.query.response;
3278 	memset(*request, 0, sizeof(struct ufs_query_req));
3279 	memset(*response, 0, sizeof(struct ufs_query_res));
3280 	(*request)->upiu_req.opcode = opcode;
3281 	(*request)->upiu_req.idn = idn;
3282 	(*request)->upiu_req.index = index;
3283 	(*request)->upiu_req.selector = selector;
3284 }
3285 
3286 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3287 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3288 {
3289 	int ret;
3290 	int retries;
3291 
3292 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3293 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3294 		if (ret)
3295 			dev_dbg(hba->dev,
3296 				"%s: failed with error %d, retries %d\n",
3297 				__func__, ret, retries);
3298 		else
3299 			break;
3300 	}
3301 
3302 	if (ret)
3303 		dev_err(hba->dev,
3304 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3305 			__func__, opcode, idn, ret, retries);
3306 	return ret;
3307 }
3308 
3309 /**
3310  * ufshcd_query_flag() - API function for sending flag query requests
3311  * @hba: per-adapter instance
3312  * @opcode: flag query to perform
3313  * @idn: flag idn to access
3314  * @index: flag index to access
3315  * @flag_res: the flag value after the query request completes
3316  *
3317  * Return: 0 for success, non-zero in case of failure.
3318  */
3319 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3320 			enum flag_idn idn, u8 index, bool *flag_res)
3321 {
3322 	struct ufs_query_req *request = NULL;
3323 	struct ufs_query_res *response = NULL;
3324 	int err, selector = 0;
3325 	int timeout = QUERY_REQ_TIMEOUT;
3326 
3327 	BUG_ON(!hba);
3328 
3329 	ufshcd_hold(hba);
3330 	mutex_lock(&hba->dev_cmd.lock);
3331 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3332 			selector);
3333 
3334 	switch (opcode) {
3335 	case UPIU_QUERY_OPCODE_SET_FLAG:
3336 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3337 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3338 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3339 		break;
3340 	case UPIU_QUERY_OPCODE_READ_FLAG:
3341 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3342 		if (!flag_res) {
3343 			/* No dummy reads */
3344 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3345 					__func__);
3346 			err = -EINVAL;
3347 			goto out_unlock;
3348 		}
3349 		break;
3350 	default:
3351 		dev_err(hba->dev,
3352 			"%s: Expected query flag opcode but got = %d\n",
3353 			__func__, opcode);
3354 		err = -EINVAL;
3355 		goto out_unlock;
3356 	}
3357 
3358 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3359 
3360 	if (err) {
3361 		dev_err(hba->dev,
3362 			"%s: Sending flag query for idn %d failed, err = %d\n",
3363 			__func__, idn, err);
3364 		goto out_unlock;
3365 	}
3366 
3367 	if (flag_res)
3368 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3369 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3370 
3371 out_unlock:
3372 	mutex_unlock(&hba->dev_cmd.lock);
3373 	ufshcd_release(hba);
3374 	return err;
3375 }
3376 
3377 /**
3378  * ufshcd_query_attr - API function for sending attribute requests
3379  * @hba: per-adapter instance
3380  * @opcode: attribute opcode
3381  * @idn: attribute idn to access
3382  * @index: index field
3383  * @selector: selector field
3384  * @attr_val: the attribute value after the query request completes
3385  *
3386  * Return: 0 for success, non-zero in case of failure.
3387 */
3388 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3389 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3390 {
3391 	struct ufs_query_req *request = NULL;
3392 	struct ufs_query_res *response = NULL;
3393 	int err;
3394 
3395 	BUG_ON(!hba);
3396 
3397 	if (!attr_val) {
3398 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3399 				__func__, opcode);
3400 		return -EINVAL;
3401 	}
3402 
3403 	ufshcd_hold(hba);
3404 
3405 	mutex_lock(&hba->dev_cmd.lock);
3406 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3407 			selector);
3408 
3409 	switch (opcode) {
3410 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3411 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3412 		request->upiu_req.value = cpu_to_be32(*attr_val);
3413 		break;
3414 	case UPIU_QUERY_OPCODE_READ_ATTR:
3415 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3416 		break;
3417 	default:
3418 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3419 				__func__, opcode);
3420 		err = -EINVAL;
3421 		goto out_unlock;
3422 	}
3423 
3424 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3425 
3426 	if (err) {
3427 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3428 				__func__, opcode, idn, index, err);
3429 		goto out_unlock;
3430 	}
3431 
3432 	*attr_val = be32_to_cpu(response->upiu_res.value);
3433 
3434 out_unlock:
3435 	mutex_unlock(&hba->dev_cmd.lock);
3436 	ufshcd_release(hba);
3437 	return err;
3438 }
3439 
3440 /**
3441  * ufshcd_query_attr_retry() - API function for sending query
3442  * attribute with retries
3443  * @hba: per-adapter instance
3444  * @opcode: attribute opcode
3445  * @idn: attribute idn to access
3446  * @index: index field
3447  * @selector: selector field
3448  * @attr_val: the attribute value after the query request
3449  * completes
3450  *
3451  * Return: 0 for success, non-zero in case of failure.
3452 */
3453 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3454 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3455 	u32 *attr_val)
3456 {
3457 	int ret = 0;
3458 	u32 retries;
3459 
3460 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3461 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3462 						selector, attr_val);
3463 		if (ret)
3464 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3465 				__func__, ret, retries);
3466 		else
3467 			break;
3468 	}
3469 
3470 	if (ret)
3471 		dev_err(hba->dev,
3472 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3473 			__func__, idn, ret, QUERY_REQ_RETRIES);
3474 	return ret;
3475 }
3476 
3477 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3478 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3479 			u8 selector, u8 *desc_buf, int *buf_len)
3480 {
3481 	struct ufs_query_req *request = NULL;
3482 	struct ufs_query_res *response = NULL;
3483 	int err;
3484 
3485 	BUG_ON(!hba);
3486 
3487 	if (!desc_buf) {
3488 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3489 				__func__, opcode);
3490 		return -EINVAL;
3491 	}
3492 
3493 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3494 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3495 				__func__, *buf_len);
3496 		return -EINVAL;
3497 	}
3498 
3499 	ufshcd_hold(hba);
3500 
3501 	mutex_lock(&hba->dev_cmd.lock);
3502 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3503 			selector);
3504 	hba->dev_cmd.query.descriptor = desc_buf;
3505 	request->upiu_req.length = cpu_to_be16(*buf_len);
3506 
3507 	switch (opcode) {
3508 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3509 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3510 		break;
3511 	case UPIU_QUERY_OPCODE_READ_DESC:
3512 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3513 		break;
3514 	default:
3515 		dev_err(hba->dev,
3516 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3517 				__func__, opcode);
3518 		err = -EINVAL;
3519 		goto out_unlock;
3520 	}
3521 
3522 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3523 
3524 	if (err) {
3525 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3526 				__func__, opcode, idn, index, err);
3527 		goto out_unlock;
3528 	}
3529 
3530 	*buf_len = be16_to_cpu(response->upiu_res.length);
3531 
3532 out_unlock:
3533 	hba->dev_cmd.query.descriptor = NULL;
3534 	mutex_unlock(&hba->dev_cmd.lock);
3535 	ufshcd_release(hba);
3536 	return err;
3537 }
3538 
3539 /**
3540  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3541  * @hba: per-adapter instance
3542  * @opcode: attribute opcode
3543  * @idn: attribute idn to access
3544  * @index: index field
3545  * @selector: selector field
3546  * @desc_buf: the buffer that contains the descriptor
3547  * @buf_len: length parameter passed to the device
3548  *
3549  * The buf_len parameter will contain, on return, the length parameter
3550  * received on the response.
3551  *
3552  * Return: 0 for success, non-zero in case of failure.
3553  */
3554 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3555 				  enum query_opcode opcode,
3556 				  enum desc_idn idn, u8 index,
3557 				  u8 selector,
3558 				  u8 *desc_buf, int *buf_len)
3559 {
3560 	int err;
3561 	int retries;
3562 
3563 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3564 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3565 						selector, desc_buf, buf_len);
3566 		if (!err || err == -EINVAL)
3567 			break;
3568 	}
3569 
3570 	return err;
3571 }
3572 
3573 /**
3574  * ufshcd_read_desc_param - read the specified descriptor parameter
3575  * @hba: Pointer to adapter instance
3576  * @desc_id: descriptor idn value
3577  * @desc_index: descriptor index
3578  * @param_offset: offset of the parameter to read
3579  * @param_read_buf: pointer to buffer where parameter would be read
3580  * @param_size: sizeof(param_read_buf)
3581  *
3582  * Return: 0 in case of success, non-zero otherwise.
3583  */
3584 int ufshcd_read_desc_param(struct ufs_hba *hba,
3585 			   enum desc_idn desc_id,
3586 			   int desc_index,
3587 			   u8 param_offset,
3588 			   u8 *param_read_buf,
3589 			   u8 param_size)
3590 {
3591 	int ret;
3592 	u8 *desc_buf;
3593 	int buff_len = QUERY_DESC_MAX_SIZE;
3594 	bool is_kmalloc = true;
3595 
3596 	/* Safety check */
3597 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3598 		return -EINVAL;
3599 
3600 	/* Check whether we need temp memory */
3601 	if (param_offset != 0 || param_size < buff_len) {
3602 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3603 		if (!desc_buf)
3604 			return -ENOMEM;
3605 	} else {
3606 		desc_buf = param_read_buf;
3607 		is_kmalloc = false;
3608 	}
3609 
3610 	/* Request for full descriptor */
3611 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3612 					    desc_id, desc_index, 0,
3613 					    desc_buf, &buff_len);
3614 	if (ret) {
3615 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3616 			__func__, desc_id, desc_index, param_offset, ret);
3617 		goto out;
3618 	}
3619 
3620 	/* Update descriptor length */
3621 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3622 
3623 	if (param_offset >= buff_len) {
3624 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3625 			__func__, param_offset, desc_id, buff_len);
3626 		ret = -EINVAL;
3627 		goto out;
3628 	}
3629 
3630 	/* Sanity check */
3631 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3632 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3633 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3634 		ret = -EINVAL;
3635 		goto out;
3636 	}
3637 
3638 	if (is_kmalloc) {
3639 		/* Make sure we don't copy more data than available */
3640 		if (param_offset >= buff_len)
3641 			ret = -EINVAL;
3642 		else
3643 			memcpy(param_read_buf, &desc_buf[param_offset],
3644 			       min_t(u32, param_size, buff_len - param_offset));
3645 	}
3646 out:
3647 	if (is_kmalloc)
3648 		kfree(desc_buf);
3649 	return ret;
3650 }
3651 
3652 /**
3653  * struct uc_string_id - unicode string
3654  *
3655  * @len: size of this descriptor inclusive
3656  * @type: descriptor type
3657  * @uc: unicode string character
3658  */
3659 struct uc_string_id {
3660 	u8 len;
3661 	u8 type;
3662 	wchar_t uc[];
3663 } __packed;
3664 
3665 /* replace non-printable or non-ASCII characters with spaces */
3666 static inline char ufshcd_remove_non_printable(u8 ch)
3667 {
3668 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3669 }
3670 
3671 /**
3672  * ufshcd_read_string_desc - read string descriptor
3673  * @hba: pointer to adapter instance
3674  * @desc_index: descriptor index
3675  * @buf: pointer to buffer where descriptor would be read,
3676  *       the caller should free the memory.
3677  * @ascii: if true convert from unicode to ascii characters
3678  *         null terminated string.
3679  *
3680  * Return:
3681  * *      string size on success.
3682  * *      -ENOMEM: on allocation failure
3683  * *      -EINVAL: on a wrong parameter
3684  */
3685 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3686 			    u8 **buf, bool ascii)
3687 {
3688 	struct uc_string_id *uc_str;
3689 	u8 *str;
3690 	int ret;
3691 
3692 	if (!buf)
3693 		return -EINVAL;
3694 
3695 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3696 	if (!uc_str)
3697 		return -ENOMEM;
3698 
3699 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3700 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3701 	if (ret < 0) {
3702 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3703 			QUERY_REQ_RETRIES, ret);
3704 		str = NULL;
3705 		goto out;
3706 	}
3707 
3708 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3709 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3710 		str = NULL;
3711 		ret = 0;
3712 		goto out;
3713 	}
3714 
3715 	if (ascii) {
3716 		ssize_t ascii_len;
3717 		int i;
3718 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3719 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3720 		str = kzalloc(ascii_len, GFP_KERNEL);
3721 		if (!str) {
3722 			ret = -ENOMEM;
3723 			goto out;
3724 		}
3725 
3726 		/*
3727 		 * the descriptor contains string in UTF16 format
3728 		 * we need to convert to utf-8 so it can be displayed
3729 		 */
3730 		ret = utf16s_to_utf8s(uc_str->uc,
3731 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3732 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3733 
3734 		/* replace non-printable or non-ASCII characters with spaces */
3735 		for (i = 0; i < ret; i++)
3736 			str[i] = ufshcd_remove_non_printable(str[i]);
3737 
3738 		str[ret++] = '\0';
3739 
3740 	} else {
3741 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3742 		if (!str) {
3743 			ret = -ENOMEM;
3744 			goto out;
3745 		}
3746 		ret = uc_str->len;
3747 	}
3748 out:
3749 	*buf = str;
3750 	kfree(uc_str);
3751 	return ret;
3752 }
3753 
3754 /**
3755  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3756  * @hba: Pointer to adapter instance
3757  * @lun: lun id
3758  * @param_offset: offset of the parameter to read
3759  * @param_read_buf: pointer to buffer where parameter would be read
3760  * @param_size: sizeof(param_read_buf)
3761  *
3762  * Return: 0 in case of success, non-zero otherwise.
3763  */
3764 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3765 					      int lun,
3766 					      enum unit_desc_param param_offset,
3767 					      u8 *param_read_buf,
3768 					      u32 param_size)
3769 {
3770 	/*
3771 	 * Unit descriptors are only available for general purpose LUs (LUN id
3772 	 * from 0 to 7) and RPMB Well known LU.
3773 	 */
3774 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3775 		return -EOPNOTSUPP;
3776 
3777 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3778 				      param_offset, param_read_buf, param_size);
3779 }
3780 
3781 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3782 {
3783 	int err = 0;
3784 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3785 
3786 	if (hba->dev_info.wspecversion >= 0x300) {
3787 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3788 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3789 				&gating_wait);
3790 		if (err)
3791 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3792 					 err, gating_wait);
3793 
3794 		if (gating_wait == 0) {
3795 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3796 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3797 					 gating_wait);
3798 		}
3799 
3800 		hba->dev_info.clk_gating_wait_us = gating_wait;
3801 	}
3802 
3803 	return err;
3804 }
3805 
3806 /**
3807  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3808  * @hba: per adapter instance
3809  *
3810  * 1. Allocate DMA memory for Command Descriptor array
3811  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3812  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3813  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3814  *	(UTMRDL)
3815  * 4. Allocate memory for local reference block(lrb).
3816  *
3817  * Return: 0 for success, non-zero in case of failure.
3818  */
3819 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3820 {
3821 	size_t utmrdl_size, utrdl_size, ucdl_size;
3822 
3823 	/* Allocate memory for UTP command descriptors */
3824 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3825 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3826 						  ucdl_size,
3827 						  &hba->ucdl_dma_addr,
3828 						  GFP_KERNEL);
3829 
3830 	/*
3831 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3832 	 */
3833 	if (!hba->ucdl_base_addr ||
3834 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3835 		dev_err(hba->dev,
3836 			"Command Descriptor Memory allocation failed\n");
3837 		goto out;
3838 	}
3839 
3840 	/*
3841 	 * Allocate memory for UTP Transfer descriptors
3842 	 * UFSHCI requires 1KB alignment of UTRD
3843 	 */
3844 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3845 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3846 						   utrdl_size,
3847 						   &hba->utrdl_dma_addr,
3848 						   GFP_KERNEL);
3849 	if (!hba->utrdl_base_addr ||
3850 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3851 		dev_err(hba->dev,
3852 			"Transfer Descriptor Memory allocation failed\n");
3853 		goto out;
3854 	}
3855 
3856 	/*
3857 	 * Skip utmrdl allocation; it may have been
3858 	 * allocated during first pass and not released during
3859 	 * MCQ memory allocation.
3860 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3861 	 */
3862 	if (hba->utmrdl_base_addr)
3863 		goto skip_utmrdl;
3864 	/*
3865 	 * Allocate memory for UTP Task Management descriptors
3866 	 * UFSHCI requires 1KB alignment of UTMRD
3867 	 */
3868 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3869 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3870 						    utmrdl_size,
3871 						    &hba->utmrdl_dma_addr,
3872 						    GFP_KERNEL);
3873 	if (!hba->utmrdl_base_addr ||
3874 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3875 		dev_err(hba->dev,
3876 		"Task Management Descriptor Memory allocation failed\n");
3877 		goto out;
3878 	}
3879 
3880 skip_utmrdl:
3881 	/* Allocate memory for local reference block */
3882 	hba->lrb = devm_kcalloc(hba->dev,
3883 				hba->nutrs, sizeof(struct ufshcd_lrb),
3884 				GFP_KERNEL);
3885 	if (!hba->lrb) {
3886 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3887 		goto out;
3888 	}
3889 	return 0;
3890 out:
3891 	return -ENOMEM;
3892 }
3893 
3894 /**
3895  * ufshcd_host_memory_configure - configure local reference block with
3896  *				memory offsets
3897  * @hba: per adapter instance
3898  *
3899  * Configure Host memory space
3900  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3901  * address.
3902  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3903  * and PRDT offset.
3904  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3905  * into local reference block.
3906  */
3907 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3908 {
3909 	struct utp_transfer_req_desc *utrdlp;
3910 	dma_addr_t cmd_desc_dma_addr;
3911 	dma_addr_t cmd_desc_element_addr;
3912 	u16 response_offset;
3913 	u16 prdt_offset;
3914 	int cmd_desc_size;
3915 	int i;
3916 
3917 	utrdlp = hba->utrdl_base_addr;
3918 
3919 	response_offset =
3920 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3921 	prdt_offset =
3922 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3923 
3924 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3925 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3926 
3927 	for (i = 0; i < hba->nutrs; i++) {
3928 		/* Configure UTRD with command descriptor base address */
3929 		cmd_desc_element_addr =
3930 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3931 		utrdlp[i].command_desc_base_addr =
3932 				cpu_to_le64(cmd_desc_element_addr);
3933 
3934 		/* Response upiu and prdt offset should be in double words */
3935 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3936 			utrdlp[i].response_upiu_offset =
3937 				cpu_to_le16(response_offset);
3938 			utrdlp[i].prd_table_offset =
3939 				cpu_to_le16(prdt_offset);
3940 			utrdlp[i].response_upiu_length =
3941 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3942 		} else {
3943 			utrdlp[i].response_upiu_offset =
3944 				cpu_to_le16(response_offset >> 2);
3945 			utrdlp[i].prd_table_offset =
3946 				cpu_to_le16(prdt_offset >> 2);
3947 			utrdlp[i].response_upiu_length =
3948 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3949 		}
3950 
3951 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3952 	}
3953 }
3954 
3955 /**
3956  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3957  * @hba: per adapter instance
3958  *
3959  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3960  * in order to initialize the Unipro link startup procedure.
3961  * Once the Unipro links are up, the device connected to the controller
3962  * is detected.
3963  *
3964  * Return: 0 on success, non-zero value on failure.
3965  */
3966 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3967 {
3968 	struct uic_command uic_cmd = {0};
3969 	int ret;
3970 
3971 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3972 
3973 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3974 	if (ret)
3975 		dev_dbg(hba->dev,
3976 			"dme-link-startup: error code %d\n", ret);
3977 	return ret;
3978 }
3979 /**
3980  * ufshcd_dme_reset - UIC command for DME_RESET
3981  * @hba: per adapter instance
3982  *
3983  * DME_RESET command is issued in order to reset UniPro stack.
3984  * This function now deals with cold reset.
3985  *
3986  * Return: 0 on success, non-zero value on failure.
3987  */
3988 static int ufshcd_dme_reset(struct ufs_hba *hba)
3989 {
3990 	struct uic_command uic_cmd = {0};
3991 	int ret;
3992 
3993 	uic_cmd.command = UIC_CMD_DME_RESET;
3994 
3995 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3996 	if (ret)
3997 		dev_err(hba->dev,
3998 			"dme-reset: error code %d\n", ret);
3999 
4000 	return ret;
4001 }
4002 
4003 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4004 			       int agreed_gear,
4005 			       int adapt_val)
4006 {
4007 	int ret;
4008 
4009 	if (agreed_gear < UFS_HS_G4)
4010 		adapt_val = PA_NO_ADAPT;
4011 
4012 	ret = ufshcd_dme_set(hba,
4013 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4014 			     adapt_val);
4015 	return ret;
4016 }
4017 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4018 
4019 /**
4020  * ufshcd_dme_enable - UIC command for DME_ENABLE
4021  * @hba: per adapter instance
4022  *
4023  * DME_ENABLE command is issued in order to enable UniPro stack.
4024  *
4025  * Return: 0 on success, non-zero value on failure.
4026  */
4027 static int ufshcd_dme_enable(struct ufs_hba *hba)
4028 {
4029 	struct uic_command uic_cmd = {0};
4030 	int ret;
4031 
4032 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4033 
4034 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4035 	if (ret)
4036 		dev_err(hba->dev,
4037 			"dme-enable: error code %d\n", ret);
4038 
4039 	return ret;
4040 }
4041 
4042 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4043 {
4044 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4045 	unsigned long min_sleep_time_us;
4046 
4047 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4048 		return;
4049 
4050 	/*
4051 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4052 	 * this function
4053 	 */
4054 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4055 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4056 	} else {
4057 		unsigned long delta =
4058 			(unsigned long) ktime_to_us(
4059 				ktime_sub(ktime_get(),
4060 				hba->last_dme_cmd_tstamp));
4061 
4062 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4063 			min_sleep_time_us =
4064 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4065 		else
4066 			return; /* no more delay required */
4067 	}
4068 
4069 	/* allow sleep for extra 50us if needed */
4070 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4071 }
4072 
4073 /**
4074  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4075  * @hba: per adapter instance
4076  * @attr_sel: uic command argument1
4077  * @attr_set: attribute set type as uic command argument2
4078  * @mib_val: setting value as uic command argument3
4079  * @peer: indicate whether peer or local
4080  *
4081  * Return: 0 on success, non-zero value on failure.
4082  */
4083 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4084 			u8 attr_set, u32 mib_val, u8 peer)
4085 {
4086 	struct uic_command uic_cmd = {0};
4087 	static const char *const action[] = {
4088 		"dme-set",
4089 		"dme-peer-set"
4090 	};
4091 	const char *set = action[!!peer];
4092 	int ret;
4093 	int retries = UFS_UIC_COMMAND_RETRIES;
4094 
4095 	uic_cmd.command = peer ?
4096 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4097 	uic_cmd.argument1 = attr_sel;
4098 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4099 	uic_cmd.argument3 = mib_val;
4100 
4101 	do {
4102 		/* for peer attributes we retry upon failure */
4103 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4104 		if (ret)
4105 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4106 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4107 	} while (ret && peer && --retries);
4108 
4109 	if (ret)
4110 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4111 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4112 			UFS_UIC_COMMAND_RETRIES - retries);
4113 
4114 	return ret;
4115 }
4116 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4117 
4118 /**
4119  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4120  * @hba: per adapter instance
4121  * @attr_sel: uic command argument1
4122  * @mib_val: the value of the attribute as returned by the UIC command
4123  * @peer: indicate whether peer or local
4124  *
4125  * Return: 0 on success, non-zero value on failure.
4126  */
4127 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4128 			u32 *mib_val, u8 peer)
4129 {
4130 	struct uic_command uic_cmd = {0};
4131 	static const char *const action[] = {
4132 		"dme-get",
4133 		"dme-peer-get"
4134 	};
4135 	const char *get = action[!!peer];
4136 	int ret;
4137 	int retries = UFS_UIC_COMMAND_RETRIES;
4138 	struct ufs_pa_layer_attr orig_pwr_info;
4139 	struct ufs_pa_layer_attr temp_pwr_info;
4140 	bool pwr_mode_change = false;
4141 
4142 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4143 		orig_pwr_info = hba->pwr_info;
4144 		temp_pwr_info = orig_pwr_info;
4145 
4146 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4147 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4148 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4149 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4150 			pwr_mode_change = true;
4151 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4152 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4153 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4154 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4155 			pwr_mode_change = true;
4156 		}
4157 		if (pwr_mode_change) {
4158 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4159 			if (ret)
4160 				goto out;
4161 		}
4162 	}
4163 
4164 	uic_cmd.command = peer ?
4165 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4166 	uic_cmd.argument1 = attr_sel;
4167 
4168 	do {
4169 		/* for peer attributes we retry upon failure */
4170 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4171 		if (ret)
4172 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4173 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4174 	} while (ret && peer && --retries);
4175 
4176 	if (ret)
4177 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4178 			get, UIC_GET_ATTR_ID(attr_sel),
4179 			UFS_UIC_COMMAND_RETRIES - retries);
4180 
4181 	if (mib_val && !ret)
4182 		*mib_val = uic_cmd.argument3;
4183 
4184 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4185 	    && pwr_mode_change)
4186 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4187 out:
4188 	return ret;
4189 }
4190 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4191 
4192 /**
4193  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4194  * state) and waits for it to take effect.
4195  *
4196  * @hba: per adapter instance
4197  * @cmd: UIC command to execute
4198  *
4199  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4200  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4201  * and device UniPro link and hence it's final completion would be indicated by
4202  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4203  * addition to normal UIC command completion Status (UCCS). This function only
4204  * returns after the relevant status bits indicate the completion.
4205  *
4206  * Return: 0 on success, non-zero value on failure.
4207  */
4208 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4209 {
4210 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4211 	unsigned long flags;
4212 	u8 status;
4213 	int ret;
4214 	bool reenable_intr = false;
4215 
4216 	mutex_lock(&hba->uic_cmd_mutex);
4217 	ufshcd_add_delay_before_dme_cmd(hba);
4218 
4219 	spin_lock_irqsave(hba->host->host_lock, flags);
4220 	if (ufshcd_is_link_broken(hba)) {
4221 		ret = -ENOLINK;
4222 		goto out_unlock;
4223 	}
4224 	hba->uic_async_done = &uic_async_done;
4225 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4226 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4227 		/*
4228 		 * Make sure UIC command completion interrupt is disabled before
4229 		 * issuing UIC command.
4230 		 */
4231 		wmb();
4232 		reenable_intr = true;
4233 	}
4234 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4235 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4236 	if (ret) {
4237 		dev_err(hba->dev,
4238 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4239 			cmd->command, cmd->argument3, ret);
4240 		goto out;
4241 	}
4242 
4243 	if (!wait_for_completion_timeout(hba->uic_async_done,
4244 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4245 		dev_err(hba->dev,
4246 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4247 			cmd->command, cmd->argument3);
4248 
4249 		if (!cmd->cmd_active) {
4250 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4251 				__func__);
4252 			goto check_upmcrs;
4253 		}
4254 
4255 		ret = -ETIMEDOUT;
4256 		goto out;
4257 	}
4258 
4259 check_upmcrs:
4260 	status = ufshcd_get_upmcrs(hba);
4261 	if (status != PWR_LOCAL) {
4262 		dev_err(hba->dev,
4263 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4264 			cmd->command, status);
4265 		ret = (status != PWR_OK) ? status : -1;
4266 	}
4267 out:
4268 	if (ret) {
4269 		ufshcd_print_host_state(hba);
4270 		ufshcd_print_pwr_info(hba);
4271 		ufshcd_print_evt_hist(hba);
4272 	}
4273 
4274 	spin_lock_irqsave(hba->host->host_lock, flags);
4275 	hba->active_uic_cmd = NULL;
4276 	hba->uic_async_done = NULL;
4277 	if (reenable_intr)
4278 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4279 	if (ret) {
4280 		ufshcd_set_link_broken(hba);
4281 		ufshcd_schedule_eh_work(hba);
4282 	}
4283 out_unlock:
4284 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4285 	mutex_unlock(&hba->uic_cmd_mutex);
4286 
4287 	return ret;
4288 }
4289 
4290 /**
4291  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4292  *				using DME_SET primitives.
4293  * @hba: per adapter instance
4294  * @mode: powr mode value
4295  *
4296  * Return: 0 on success, non-zero value on failure.
4297  */
4298 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4299 {
4300 	struct uic_command uic_cmd = {0};
4301 	int ret;
4302 
4303 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4304 		ret = ufshcd_dme_set(hba,
4305 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4306 		if (ret) {
4307 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4308 						__func__, ret);
4309 			goto out;
4310 		}
4311 	}
4312 
4313 	uic_cmd.command = UIC_CMD_DME_SET;
4314 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4315 	uic_cmd.argument3 = mode;
4316 	ufshcd_hold(hba);
4317 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4318 	ufshcd_release(hba);
4319 
4320 out:
4321 	return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4324 
4325 int ufshcd_link_recovery(struct ufs_hba *hba)
4326 {
4327 	int ret;
4328 	unsigned long flags;
4329 
4330 	spin_lock_irqsave(hba->host->host_lock, flags);
4331 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4332 	ufshcd_set_eh_in_progress(hba);
4333 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4334 
4335 	/* Reset the attached device */
4336 	ufshcd_device_reset(hba);
4337 
4338 	ret = ufshcd_host_reset_and_restore(hba);
4339 
4340 	spin_lock_irqsave(hba->host->host_lock, flags);
4341 	if (ret)
4342 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4343 	ufshcd_clear_eh_in_progress(hba);
4344 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4345 
4346 	if (ret)
4347 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4348 			__func__, ret);
4349 
4350 	return ret;
4351 }
4352 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4353 
4354 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4355 {
4356 	int ret;
4357 	struct uic_command uic_cmd = {0};
4358 	ktime_t start = ktime_get();
4359 
4360 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4361 
4362 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4363 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4364 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4365 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4366 
4367 	if (ret)
4368 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4369 			__func__, ret);
4370 	else
4371 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4372 								POST_CHANGE);
4373 
4374 	return ret;
4375 }
4376 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4377 
4378 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4379 {
4380 	struct uic_command uic_cmd = {0};
4381 	int ret;
4382 	ktime_t start = ktime_get();
4383 
4384 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4385 
4386 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4387 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4388 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4389 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4390 
4391 	if (ret) {
4392 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4393 			__func__, ret);
4394 	} else {
4395 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4396 								POST_CHANGE);
4397 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4398 		hba->ufs_stats.hibern8_exit_cnt++;
4399 	}
4400 
4401 	return ret;
4402 }
4403 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4404 
4405 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4406 {
4407 	unsigned long flags;
4408 	bool update = false;
4409 
4410 	if (!ufshcd_is_auto_hibern8_supported(hba))
4411 		return;
4412 
4413 	spin_lock_irqsave(hba->host->host_lock, flags);
4414 	if (hba->ahit != ahit) {
4415 		hba->ahit = ahit;
4416 		update = true;
4417 	}
4418 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4419 
4420 	if (update &&
4421 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4422 		ufshcd_rpm_get_sync(hba);
4423 		ufshcd_hold(hba);
4424 		ufshcd_auto_hibern8_enable(hba);
4425 		ufshcd_release(hba);
4426 		ufshcd_rpm_put_sync(hba);
4427 	}
4428 }
4429 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4430 
4431 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4432 {
4433 	if (!ufshcd_is_auto_hibern8_supported(hba))
4434 		return;
4435 
4436 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4437 }
4438 
4439  /**
4440  * ufshcd_init_pwr_info - setting the POR (power on reset)
4441  * values in hba power info
4442  * @hba: per-adapter instance
4443  */
4444 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4445 {
4446 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4447 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4448 	hba->pwr_info.lane_rx = UFS_LANE_1;
4449 	hba->pwr_info.lane_tx = UFS_LANE_1;
4450 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4451 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4452 	hba->pwr_info.hs_rate = 0;
4453 }
4454 
4455 /**
4456  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4457  * @hba: per-adapter instance
4458  *
4459  * Return: 0 upon success; < 0 upon failure.
4460  */
4461 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4462 {
4463 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4464 
4465 	if (hba->max_pwr_info.is_valid)
4466 		return 0;
4467 
4468 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4469 		pwr_info->pwr_tx = FASTAUTO_MODE;
4470 		pwr_info->pwr_rx = FASTAUTO_MODE;
4471 	} else {
4472 		pwr_info->pwr_tx = FAST_MODE;
4473 		pwr_info->pwr_rx = FAST_MODE;
4474 	}
4475 	pwr_info->hs_rate = PA_HS_MODE_B;
4476 
4477 	/* Get the connected lane count */
4478 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4479 			&pwr_info->lane_rx);
4480 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4481 			&pwr_info->lane_tx);
4482 
4483 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4484 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4485 				__func__,
4486 				pwr_info->lane_rx,
4487 				pwr_info->lane_tx);
4488 		return -EINVAL;
4489 	}
4490 
4491 	/*
4492 	 * First, get the maximum gears of HS speed.
4493 	 * If a zero value, it means there is no HSGEAR capability.
4494 	 * Then, get the maximum gears of PWM speed.
4495 	 */
4496 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4497 	if (!pwr_info->gear_rx) {
4498 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4499 				&pwr_info->gear_rx);
4500 		if (!pwr_info->gear_rx) {
4501 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4502 				__func__, pwr_info->gear_rx);
4503 			return -EINVAL;
4504 		}
4505 		pwr_info->pwr_rx = SLOW_MODE;
4506 	}
4507 
4508 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4509 			&pwr_info->gear_tx);
4510 	if (!pwr_info->gear_tx) {
4511 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4512 				&pwr_info->gear_tx);
4513 		if (!pwr_info->gear_tx) {
4514 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4515 				__func__, pwr_info->gear_tx);
4516 			return -EINVAL;
4517 		}
4518 		pwr_info->pwr_tx = SLOW_MODE;
4519 	}
4520 
4521 	hba->max_pwr_info.is_valid = true;
4522 	return 0;
4523 }
4524 
4525 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4526 			     struct ufs_pa_layer_attr *pwr_mode)
4527 {
4528 	int ret;
4529 
4530 	/* if already configured to the requested pwr_mode */
4531 	if (!hba->force_pmc &&
4532 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4533 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4534 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4535 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4536 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4537 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4538 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4539 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4540 		return 0;
4541 	}
4542 
4543 	/*
4544 	 * Configure attributes for power mode change with below.
4545 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4546 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4547 	 * - PA_HSSERIES
4548 	 */
4549 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4550 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4551 			pwr_mode->lane_rx);
4552 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4553 			pwr_mode->pwr_rx == FAST_MODE)
4554 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4555 	else
4556 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4557 
4558 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4559 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4560 			pwr_mode->lane_tx);
4561 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4562 			pwr_mode->pwr_tx == FAST_MODE)
4563 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4564 	else
4565 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4566 
4567 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4568 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4569 	    pwr_mode->pwr_rx == FAST_MODE ||
4570 	    pwr_mode->pwr_tx == FAST_MODE)
4571 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4572 						pwr_mode->hs_rate);
4573 
4574 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4575 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4576 				DL_FC0ProtectionTimeOutVal_Default);
4577 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4578 				DL_TC0ReplayTimeOutVal_Default);
4579 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4580 				DL_AFC0ReqTimeOutVal_Default);
4581 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4582 				DL_FC1ProtectionTimeOutVal_Default);
4583 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4584 				DL_TC1ReplayTimeOutVal_Default);
4585 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4586 				DL_AFC1ReqTimeOutVal_Default);
4587 
4588 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4589 				DL_FC0ProtectionTimeOutVal_Default);
4590 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4591 				DL_TC0ReplayTimeOutVal_Default);
4592 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4593 				DL_AFC0ReqTimeOutVal_Default);
4594 	}
4595 
4596 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4597 			| pwr_mode->pwr_tx);
4598 
4599 	if (ret) {
4600 		dev_err(hba->dev,
4601 			"%s: power mode change failed %d\n", __func__, ret);
4602 	} else {
4603 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4604 								pwr_mode);
4605 
4606 		memcpy(&hba->pwr_info, pwr_mode,
4607 			sizeof(struct ufs_pa_layer_attr));
4608 	}
4609 
4610 	return ret;
4611 }
4612 
4613 /**
4614  * ufshcd_config_pwr_mode - configure a new power mode
4615  * @hba: per-adapter instance
4616  * @desired_pwr_mode: desired power configuration
4617  *
4618  * Return: 0 upon success; < 0 upon failure.
4619  */
4620 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4621 		struct ufs_pa_layer_attr *desired_pwr_mode)
4622 {
4623 	struct ufs_pa_layer_attr final_params = { 0 };
4624 	int ret;
4625 
4626 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4627 					desired_pwr_mode, &final_params);
4628 
4629 	if (ret)
4630 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4631 
4632 	ret = ufshcd_change_power_mode(hba, &final_params);
4633 
4634 	return ret;
4635 }
4636 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4637 
4638 /**
4639  * ufshcd_complete_dev_init() - checks device readiness
4640  * @hba: per-adapter instance
4641  *
4642  * Set fDeviceInit flag and poll until device toggles it.
4643  *
4644  * Return: 0 upon success; < 0 upon failure.
4645  */
4646 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4647 {
4648 	int err;
4649 	bool flag_res = true;
4650 	ktime_t timeout;
4651 
4652 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4653 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4654 	if (err) {
4655 		dev_err(hba->dev,
4656 			"%s: setting fDeviceInit flag failed with error %d\n",
4657 			__func__, err);
4658 		goto out;
4659 	}
4660 
4661 	/* Poll fDeviceInit flag to be cleared */
4662 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4663 	do {
4664 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4665 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4666 		if (!flag_res)
4667 			break;
4668 		usleep_range(500, 1000);
4669 	} while (ktime_before(ktime_get(), timeout));
4670 
4671 	if (err) {
4672 		dev_err(hba->dev,
4673 				"%s: reading fDeviceInit flag failed with error %d\n",
4674 				__func__, err);
4675 	} else if (flag_res) {
4676 		dev_err(hba->dev,
4677 				"%s: fDeviceInit was not cleared by the device\n",
4678 				__func__);
4679 		err = -EBUSY;
4680 	}
4681 out:
4682 	return err;
4683 }
4684 
4685 /**
4686  * ufshcd_make_hba_operational - Make UFS controller operational
4687  * @hba: per adapter instance
4688  *
4689  * To bring UFS host controller to operational state,
4690  * 1. Enable required interrupts
4691  * 2. Configure interrupt aggregation
4692  * 3. Program UTRL and UTMRL base address
4693  * 4. Configure run-stop-registers
4694  *
4695  * Return: 0 on success, non-zero value on failure.
4696  */
4697 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4698 {
4699 	int err = 0;
4700 	u32 reg;
4701 
4702 	/* Enable required interrupts */
4703 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4704 
4705 	/* Configure interrupt aggregation */
4706 	if (ufshcd_is_intr_aggr_allowed(hba))
4707 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4708 	else
4709 		ufshcd_disable_intr_aggr(hba);
4710 
4711 	/* Configure UTRL and UTMRL base address registers */
4712 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4713 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4714 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4715 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4716 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4717 			REG_UTP_TASK_REQ_LIST_BASE_L);
4718 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4719 			REG_UTP_TASK_REQ_LIST_BASE_H);
4720 
4721 	/*
4722 	 * Make sure base address and interrupt setup are updated before
4723 	 * enabling the run/stop registers below.
4724 	 */
4725 	wmb();
4726 
4727 	/*
4728 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4729 	 */
4730 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4731 	if (!(ufshcd_get_lists_status(reg))) {
4732 		ufshcd_enable_run_stop_reg(hba);
4733 	} else {
4734 		dev_err(hba->dev,
4735 			"Host controller not ready to process requests");
4736 		err = -EIO;
4737 	}
4738 
4739 	return err;
4740 }
4741 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4742 
4743 /**
4744  * ufshcd_hba_stop - Send controller to reset state
4745  * @hba: per adapter instance
4746  */
4747 void ufshcd_hba_stop(struct ufs_hba *hba)
4748 {
4749 	unsigned long flags;
4750 	int err;
4751 
4752 	/*
4753 	 * Obtain the host lock to prevent that the controller is disabled
4754 	 * while the UFS interrupt handler is active on another CPU.
4755 	 */
4756 	spin_lock_irqsave(hba->host->host_lock, flags);
4757 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4758 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4759 
4760 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4761 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4762 					10, 1);
4763 	if (err)
4764 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4765 }
4766 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4767 
4768 /**
4769  * ufshcd_hba_execute_hce - initialize the controller
4770  * @hba: per adapter instance
4771  *
4772  * The controller resets itself and controller firmware initialization
4773  * sequence kicks off. When controller is ready it will set
4774  * the Host Controller Enable bit to 1.
4775  *
4776  * Return: 0 on success, non-zero value on failure.
4777  */
4778 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4779 {
4780 	int retry_outer = 3;
4781 	int retry_inner;
4782 
4783 start:
4784 	if (ufshcd_is_hba_active(hba))
4785 		/* change controller state to "reset state" */
4786 		ufshcd_hba_stop(hba);
4787 
4788 	/* UniPro link is disabled at this point */
4789 	ufshcd_set_link_off(hba);
4790 
4791 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4792 
4793 	/* start controller initialization sequence */
4794 	ufshcd_hba_start(hba);
4795 
4796 	/*
4797 	 * To initialize a UFS host controller HCE bit must be set to 1.
4798 	 * During initialization the HCE bit value changes from 1->0->1.
4799 	 * When the host controller completes initialization sequence
4800 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4801 	 * to check if the controller has completed initialization sequence.
4802 	 * So without this delay the value HCE = 1, set in the previous
4803 	 * instruction might be read back.
4804 	 * This delay can be changed based on the controller.
4805 	 */
4806 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4807 
4808 	/* wait for the host controller to complete initialization */
4809 	retry_inner = 50;
4810 	while (!ufshcd_is_hba_active(hba)) {
4811 		if (retry_inner) {
4812 			retry_inner--;
4813 		} else {
4814 			dev_err(hba->dev,
4815 				"Controller enable failed\n");
4816 			if (retry_outer) {
4817 				retry_outer--;
4818 				goto start;
4819 			}
4820 			return -EIO;
4821 		}
4822 		usleep_range(1000, 1100);
4823 	}
4824 
4825 	/* enable UIC related interrupts */
4826 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4827 
4828 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4829 
4830 	return 0;
4831 }
4832 
4833 int ufshcd_hba_enable(struct ufs_hba *hba)
4834 {
4835 	int ret;
4836 
4837 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4838 		ufshcd_set_link_off(hba);
4839 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4840 
4841 		/* enable UIC related interrupts */
4842 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4843 		ret = ufshcd_dme_reset(hba);
4844 		if (ret) {
4845 			dev_err(hba->dev, "DME_RESET failed\n");
4846 			return ret;
4847 		}
4848 
4849 		ret = ufshcd_dme_enable(hba);
4850 		if (ret) {
4851 			dev_err(hba->dev, "Enabling DME failed\n");
4852 			return ret;
4853 		}
4854 
4855 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4856 	} else {
4857 		ret = ufshcd_hba_execute_hce(hba);
4858 	}
4859 
4860 	return ret;
4861 }
4862 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4863 
4864 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4865 {
4866 	int tx_lanes = 0, i, err = 0;
4867 
4868 	if (!peer)
4869 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4870 			       &tx_lanes);
4871 	else
4872 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4873 				    &tx_lanes);
4874 	for (i = 0; i < tx_lanes; i++) {
4875 		if (!peer)
4876 			err = ufshcd_dme_set(hba,
4877 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4878 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4879 					0);
4880 		else
4881 			err = ufshcd_dme_peer_set(hba,
4882 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4883 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4884 					0);
4885 		if (err) {
4886 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4887 				__func__, peer, i, err);
4888 			break;
4889 		}
4890 	}
4891 
4892 	return err;
4893 }
4894 
4895 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4896 {
4897 	return ufshcd_disable_tx_lcc(hba, true);
4898 }
4899 
4900 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4901 {
4902 	struct ufs_event_hist *e;
4903 
4904 	if (id >= UFS_EVT_CNT)
4905 		return;
4906 
4907 	e = &hba->ufs_stats.event[id];
4908 	e->val[e->pos] = val;
4909 	e->tstamp[e->pos] = local_clock();
4910 	e->cnt += 1;
4911 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4912 
4913 	ufshcd_vops_event_notify(hba, id, &val);
4914 }
4915 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4916 
4917 /**
4918  * ufshcd_link_startup - Initialize unipro link startup
4919  * @hba: per adapter instance
4920  *
4921  * Return: 0 for success, non-zero in case of failure.
4922  */
4923 static int ufshcd_link_startup(struct ufs_hba *hba)
4924 {
4925 	int ret;
4926 	int retries = DME_LINKSTARTUP_RETRIES;
4927 	bool link_startup_again = false;
4928 
4929 	/*
4930 	 * If UFS device isn't active then we will have to issue link startup
4931 	 * 2 times to make sure the device state move to active.
4932 	 */
4933 	if (!ufshcd_is_ufs_dev_active(hba))
4934 		link_startup_again = true;
4935 
4936 link_startup:
4937 	do {
4938 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4939 
4940 		ret = ufshcd_dme_link_startup(hba);
4941 
4942 		/* check if device is detected by inter-connect layer */
4943 		if (!ret && !ufshcd_is_device_present(hba)) {
4944 			ufshcd_update_evt_hist(hba,
4945 					       UFS_EVT_LINK_STARTUP_FAIL,
4946 					       0);
4947 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4948 			ret = -ENXIO;
4949 			goto out;
4950 		}
4951 
4952 		/*
4953 		 * DME link lost indication is only received when link is up,
4954 		 * but we can't be sure if the link is up until link startup
4955 		 * succeeds. So reset the local Uni-Pro and try again.
4956 		 */
4957 		if (ret && retries && ufshcd_hba_enable(hba)) {
4958 			ufshcd_update_evt_hist(hba,
4959 					       UFS_EVT_LINK_STARTUP_FAIL,
4960 					       (u32)ret);
4961 			goto out;
4962 		}
4963 	} while (ret && retries--);
4964 
4965 	if (ret) {
4966 		/* failed to get the link up... retire */
4967 		ufshcd_update_evt_hist(hba,
4968 				       UFS_EVT_LINK_STARTUP_FAIL,
4969 				       (u32)ret);
4970 		goto out;
4971 	}
4972 
4973 	if (link_startup_again) {
4974 		link_startup_again = false;
4975 		retries = DME_LINKSTARTUP_RETRIES;
4976 		goto link_startup;
4977 	}
4978 
4979 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4980 	ufshcd_init_pwr_info(hba);
4981 	ufshcd_print_pwr_info(hba);
4982 
4983 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4984 		ret = ufshcd_disable_device_tx_lcc(hba);
4985 		if (ret)
4986 			goto out;
4987 	}
4988 
4989 	/* Include any host controller configuration via UIC commands */
4990 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4991 	if (ret)
4992 		goto out;
4993 
4994 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4995 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4996 	ret = ufshcd_make_hba_operational(hba);
4997 out:
4998 	if (ret) {
4999 		dev_err(hba->dev, "link startup failed %d\n", ret);
5000 		ufshcd_print_host_state(hba);
5001 		ufshcd_print_pwr_info(hba);
5002 		ufshcd_print_evt_hist(hba);
5003 	}
5004 	return ret;
5005 }
5006 
5007 /**
5008  * ufshcd_verify_dev_init() - Verify device initialization
5009  * @hba: per-adapter instance
5010  *
5011  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5012  * device Transport Protocol (UTP) layer is ready after a reset.
5013  * If the UTP layer at the device side is not initialized, it may
5014  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5015  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5016  *
5017  * Return: 0 upon success; < 0 upon failure.
5018  */
5019 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5020 {
5021 	int err = 0;
5022 	int retries;
5023 
5024 	ufshcd_hold(hba);
5025 	mutex_lock(&hba->dev_cmd.lock);
5026 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5027 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5028 					  hba->nop_out_timeout);
5029 
5030 		if (!err || err == -ETIMEDOUT)
5031 			break;
5032 
5033 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5034 	}
5035 	mutex_unlock(&hba->dev_cmd.lock);
5036 	ufshcd_release(hba);
5037 
5038 	if (err)
5039 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5040 	return err;
5041 }
5042 
5043 /**
5044  * ufshcd_setup_links - associate link b/w device wlun and other luns
5045  * @sdev: pointer to SCSI device
5046  * @hba: pointer to ufs hba
5047  */
5048 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5049 {
5050 	struct device_link *link;
5051 
5052 	/*
5053 	 * Device wlun is the supplier & rest of the luns are consumers.
5054 	 * This ensures that device wlun suspends after all other luns.
5055 	 */
5056 	if (hba->ufs_device_wlun) {
5057 		link = device_link_add(&sdev->sdev_gendev,
5058 				       &hba->ufs_device_wlun->sdev_gendev,
5059 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5060 		if (!link) {
5061 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5062 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5063 			return;
5064 		}
5065 		hba->luns_avail--;
5066 		/* Ignore REPORT_LUN wlun probing */
5067 		if (hba->luns_avail == 1) {
5068 			ufshcd_rpm_put(hba);
5069 			return;
5070 		}
5071 	} else {
5072 		/*
5073 		 * Device wlun is probed. The assumption is that WLUNs are
5074 		 * scanned before other LUNs.
5075 		 */
5076 		hba->luns_avail--;
5077 	}
5078 }
5079 
5080 /**
5081  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5082  * @hba: per-adapter instance
5083  * @sdev: pointer to SCSI device
5084  */
5085 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5086 {
5087 	int len = QUERY_DESC_MAX_SIZE;
5088 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5089 	u8 lun_qdepth = hba->nutrs;
5090 	u8 *desc_buf;
5091 	int ret;
5092 
5093 	desc_buf = kzalloc(len, GFP_KERNEL);
5094 	if (!desc_buf)
5095 		goto set_qdepth;
5096 
5097 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5098 	if (ret < 0) {
5099 		if (ret == -EOPNOTSUPP)
5100 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5101 			lun_qdepth = 1;
5102 		kfree(desc_buf);
5103 		goto set_qdepth;
5104 	}
5105 
5106 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5107 		/*
5108 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5109 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5110 		 */
5111 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5112 	}
5113 	/*
5114 	 * According to UFS device specification, the write protection mode is only supported by
5115 	 * normal LU, not supported by WLUN.
5116 	 */
5117 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5118 	    !hba->dev_info.is_lu_power_on_wp &&
5119 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5120 		hba->dev_info.is_lu_power_on_wp = true;
5121 
5122 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5123 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5124 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5125 		hba->dev_info.b_advanced_rpmb_en = true;
5126 
5127 
5128 	kfree(desc_buf);
5129 set_qdepth:
5130 	/*
5131 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5132 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5133 	 */
5134 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5135 	scsi_change_queue_depth(sdev, lun_qdepth);
5136 }
5137 
5138 /**
5139  * ufshcd_slave_alloc - handle initial SCSI device configurations
5140  * @sdev: pointer to SCSI device
5141  *
5142  * Return: success.
5143  */
5144 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5145 {
5146 	struct ufs_hba *hba;
5147 
5148 	hba = shost_priv(sdev->host);
5149 
5150 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5151 	sdev->use_10_for_ms = 1;
5152 
5153 	/* DBD field should be set to 1 in mode sense(10) */
5154 	sdev->set_dbd_for_ms = 1;
5155 
5156 	/* allow SCSI layer to restart the device in case of errors */
5157 	sdev->allow_restart = 1;
5158 
5159 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5160 	sdev->no_report_opcodes = 1;
5161 
5162 	/* WRITE_SAME command is not supported */
5163 	sdev->no_write_same = 1;
5164 
5165 	ufshcd_lu_init(hba, sdev);
5166 
5167 	ufshcd_setup_links(hba, sdev);
5168 
5169 	return 0;
5170 }
5171 
5172 /**
5173  * ufshcd_change_queue_depth - change queue depth
5174  * @sdev: pointer to SCSI device
5175  * @depth: required depth to set
5176  *
5177  * Change queue depth and make sure the max. limits are not crossed.
5178  *
5179  * Return: new queue depth.
5180  */
5181 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5182 {
5183 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5184 }
5185 
5186 /**
5187  * ufshcd_slave_configure - adjust SCSI device configurations
5188  * @sdev: pointer to SCSI device
5189  *
5190  * Return: 0 (success).
5191  */
5192 static int ufshcd_slave_configure(struct scsi_device *sdev)
5193 {
5194 	struct ufs_hba *hba = shost_priv(sdev->host);
5195 	struct request_queue *q = sdev->request_queue;
5196 
5197 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5198 
5199 	/*
5200 	 * Block runtime-pm until all consumers are added.
5201 	 * Refer ufshcd_setup_links().
5202 	 */
5203 	if (is_device_wlun(sdev))
5204 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5205 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5206 		sdev->rpm_autosuspend = 1;
5207 	/*
5208 	 * Do not print messages during runtime PM to avoid never-ending cycles
5209 	 * of messages written back to storage by user space causing runtime
5210 	 * resume, causing more messages and so on.
5211 	 */
5212 	sdev->silence_suspend = 1;
5213 
5214 	if (hba->vops && hba->vops->config_scsi_dev)
5215 		hba->vops->config_scsi_dev(sdev);
5216 
5217 	ufshcd_crypto_register(hba, q);
5218 
5219 	return 0;
5220 }
5221 
5222 /**
5223  * ufshcd_slave_destroy - remove SCSI device configurations
5224  * @sdev: pointer to SCSI device
5225  */
5226 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5227 {
5228 	struct ufs_hba *hba;
5229 	unsigned long flags;
5230 
5231 	hba = shost_priv(sdev->host);
5232 
5233 	/* Drop the reference as it won't be needed anymore */
5234 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5235 		spin_lock_irqsave(hba->host->host_lock, flags);
5236 		hba->ufs_device_wlun = NULL;
5237 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5238 	} else if (hba->ufs_device_wlun) {
5239 		struct device *supplier = NULL;
5240 
5241 		/* Ensure UFS Device WLUN exists and does not disappear */
5242 		spin_lock_irqsave(hba->host->host_lock, flags);
5243 		if (hba->ufs_device_wlun) {
5244 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5245 			get_device(supplier);
5246 		}
5247 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5248 
5249 		if (supplier) {
5250 			/*
5251 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5252 			 * device will not have been registered but can still
5253 			 * have a device link holding a reference to the device.
5254 			 */
5255 			device_link_remove(&sdev->sdev_gendev, supplier);
5256 			put_device(supplier);
5257 		}
5258 	}
5259 }
5260 
5261 /**
5262  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5263  * @lrbp: pointer to local reference block of completed command
5264  * @scsi_status: SCSI command status
5265  *
5266  * Return: value base on SCSI command status.
5267  */
5268 static inline int
5269 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5270 {
5271 	int result = 0;
5272 
5273 	switch (scsi_status) {
5274 	case SAM_STAT_CHECK_CONDITION:
5275 		ufshcd_copy_sense_data(lrbp);
5276 		fallthrough;
5277 	case SAM_STAT_GOOD:
5278 		result |= DID_OK << 16 | scsi_status;
5279 		break;
5280 	case SAM_STAT_TASK_SET_FULL:
5281 	case SAM_STAT_BUSY:
5282 	case SAM_STAT_TASK_ABORTED:
5283 		ufshcd_copy_sense_data(lrbp);
5284 		result |= scsi_status;
5285 		break;
5286 	default:
5287 		result |= DID_ERROR << 16;
5288 		break;
5289 	} /* end of switch */
5290 
5291 	return result;
5292 }
5293 
5294 /**
5295  * ufshcd_transfer_rsp_status - Get overall status of the response
5296  * @hba: per adapter instance
5297  * @lrbp: pointer to local reference block of completed command
5298  * @cqe: pointer to the completion queue entry
5299  *
5300  * Return: result of the command to notify SCSI midlayer.
5301  */
5302 static inline int
5303 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5304 			   struct cq_entry *cqe)
5305 {
5306 	int result = 0;
5307 	int scsi_status;
5308 	enum utp_ocs ocs;
5309 	u8 upiu_flags;
5310 	u32 resid;
5311 
5312 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5313 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5314 	/*
5315 	 * Test !overflow instead of underflow to support UFS devices that do
5316 	 * not set either flag.
5317 	 */
5318 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5319 		scsi_set_resid(lrbp->cmd, resid);
5320 
5321 	/* overall command status of utrd */
5322 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5323 
5324 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5325 		if (lrbp->ucd_rsp_ptr->header.response ||
5326 		    lrbp->ucd_rsp_ptr->header.status)
5327 			ocs = OCS_SUCCESS;
5328 	}
5329 
5330 	switch (ocs) {
5331 	case OCS_SUCCESS:
5332 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5333 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5334 		case UPIU_TRANSACTION_RESPONSE:
5335 			/*
5336 			 * get the result based on SCSI status response
5337 			 * to notify the SCSI midlayer of the command status
5338 			 */
5339 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5340 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5341 
5342 			/*
5343 			 * Currently we are only supporting BKOPs exception
5344 			 * events hence we can ignore BKOPs exception event
5345 			 * during power management callbacks. BKOPs exception
5346 			 * event is not expected to be raised in runtime suspend
5347 			 * callback as it allows the urgent bkops.
5348 			 * During system suspend, we are anyway forcefully
5349 			 * disabling the bkops and if urgent bkops is needed
5350 			 * it will be enabled on system resume. Long term
5351 			 * solution could be to abort the system suspend if
5352 			 * UFS device needs urgent BKOPs.
5353 			 */
5354 			if (!hba->pm_op_in_progress &&
5355 			    !ufshcd_eh_in_progress(hba) &&
5356 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5357 				/* Flushed in suspend */
5358 				schedule_work(&hba->eeh_work);
5359 			break;
5360 		case UPIU_TRANSACTION_REJECT_UPIU:
5361 			/* TODO: handle Reject UPIU Response */
5362 			result = DID_ERROR << 16;
5363 			dev_err(hba->dev,
5364 				"Reject UPIU not fully implemented\n");
5365 			break;
5366 		default:
5367 			dev_err(hba->dev,
5368 				"Unexpected request response code = %x\n",
5369 				result);
5370 			result = DID_ERROR << 16;
5371 			break;
5372 		}
5373 		break;
5374 	case OCS_ABORTED:
5375 		result |= DID_ABORT << 16;
5376 		break;
5377 	case OCS_INVALID_COMMAND_STATUS:
5378 		result |= DID_REQUEUE << 16;
5379 		break;
5380 	case OCS_INVALID_CMD_TABLE_ATTR:
5381 	case OCS_INVALID_PRDT_ATTR:
5382 	case OCS_MISMATCH_DATA_BUF_SIZE:
5383 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5384 	case OCS_PEER_COMM_FAILURE:
5385 	case OCS_FATAL_ERROR:
5386 	case OCS_DEVICE_FATAL_ERROR:
5387 	case OCS_INVALID_CRYPTO_CONFIG:
5388 	case OCS_GENERAL_CRYPTO_ERROR:
5389 	default:
5390 		result |= DID_ERROR << 16;
5391 		dev_err(hba->dev,
5392 				"OCS error from controller = %x for tag %d\n",
5393 				ocs, lrbp->task_tag);
5394 		ufshcd_print_evt_hist(hba);
5395 		ufshcd_print_host_state(hba);
5396 		break;
5397 	} /* end of switch */
5398 
5399 	if ((host_byte(result) != DID_OK) &&
5400 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5401 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5402 	return result;
5403 }
5404 
5405 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5406 					 u32 intr_mask)
5407 {
5408 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5409 	    !ufshcd_is_auto_hibern8_enabled(hba))
5410 		return false;
5411 
5412 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5413 		return false;
5414 
5415 	if (hba->active_uic_cmd &&
5416 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5417 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5418 		return false;
5419 
5420 	return true;
5421 }
5422 
5423 /**
5424  * ufshcd_uic_cmd_compl - handle completion of uic command
5425  * @hba: per adapter instance
5426  * @intr_status: interrupt status generated by the controller
5427  *
5428  * Return:
5429  *  IRQ_HANDLED - If interrupt is valid
5430  *  IRQ_NONE    - If invalid interrupt
5431  */
5432 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5433 {
5434 	irqreturn_t retval = IRQ_NONE;
5435 
5436 	spin_lock(hba->host->host_lock);
5437 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5438 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5439 
5440 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5441 		hba->active_uic_cmd->argument2 |=
5442 			ufshcd_get_uic_cmd_result(hba);
5443 		hba->active_uic_cmd->argument3 =
5444 			ufshcd_get_dme_attr_val(hba);
5445 		if (!hba->uic_async_done)
5446 			hba->active_uic_cmd->cmd_active = 0;
5447 		complete(&hba->active_uic_cmd->done);
5448 		retval = IRQ_HANDLED;
5449 	}
5450 
5451 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5452 		hba->active_uic_cmd->cmd_active = 0;
5453 		complete(hba->uic_async_done);
5454 		retval = IRQ_HANDLED;
5455 	}
5456 
5457 	if (retval == IRQ_HANDLED)
5458 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5459 					     UFS_CMD_COMP);
5460 	spin_unlock(hba->host->host_lock);
5461 	return retval;
5462 }
5463 
5464 /* Release the resources allocated for processing a SCSI command. */
5465 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5466 			     struct ufshcd_lrb *lrbp)
5467 {
5468 	struct scsi_cmnd *cmd = lrbp->cmd;
5469 
5470 	scsi_dma_unmap(cmd);
5471 	ufshcd_release(hba);
5472 	ufshcd_clk_scaling_update_busy(hba);
5473 }
5474 
5475 /**
5476  * ufshcd_compl_one_cqe - handle a completion queue entry
5477  * @hba: per adapter instance
5478  * @task_tag: the task tag of the request to be completed
5479  * @cqe: pointer to the completion queue entry
5480  */
5481 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5482 			  struct cq_entry *cqe)
5483 {
5484 	struct ufshcd_lrb *lrbp;
5485 	struct scsi_cmnd *cmd;
5486 	enum utp_ocs ocs;
5487 
5488 	lrbp = &hba->lrb[task_tag];
5489 	lrbp->compl_time_stamp = ktime_get();
5490 	cmd = lrbp->cmd;
5491 	if (cmd) {
5492 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5493 			ufshcd_update_monitor(hba, lrbp);
5494 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5495 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5496 		ufshcd_release_scsi_cmd(hba, lrbp);
5497 		/* Do not touch lrbp after scsi done */
5498 		scsi_done(cmd);
5499 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5500 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5501 		if (hba->dev_cmd.complete) {
5502 			if (cqe) {
5503 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5504 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5505 			}
5506 			complete(hba->dev_cmd.complete);
5507 		}
5508 	}
5509 }
5510 
5511 /**
5512  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5513  * @hba: per adapter instance
5514  * @completed_reqs: bitmask that indicates which requests to complete
5515  */
5516 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5517 					unsigned long completed_reqs)
5518 {
5519 	int tag;
5520 
5521 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5522 		ufshcd_compl_one_cqe(hba, tag, NULL);
5523 }
5524 
5525 /* Any value that is not an existing queue number is fine for this constant. */
5526 enum {
5527 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5528 };
5529 
5530 static void ufshcd_clear_polled(struct ufs_hba *hba,
5531 				unsigned long *completed_reqs)
5532 {
5533 	int tag;
5534 
5535 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5536 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5537 
5538 		if (!cmd)
5539 			continue;
5540 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5541 			__clear_bit(tag, completed_reqs);
5542 	}
5543 }
5544 
5545 /*
5546  * Return: > 0 if one or more commands have been completed or 0 if no
5547  * requests have been completed.
5548  */
5549 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5550 {
5551 	struct ufs_hba *hba = shost_priv(shost);
5552 	unsigned long completed_reqs, flags;
5553 	u32 tr_doorbell;
5554 	struct ufs_hw_queue *hwq;
5555 
5556 	if (is_mcq_enabled(hba)) {
5557 		hwq = &hba->uhq[queue_num];
5558 
5559 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5560 	}
5561 
5562 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5563 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5564 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5565 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5566 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5567 		  hba->outstanding_reqs);
5568 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5569 		/* Do not complete polled requests from interrupt context. */
5570 		ufshcd_clear_polled(hba, &completed_reqs);
5571 	}
5572 	hba->outstanding_reqs &= ~completed_reqs;
5573 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5574 
5575 	if (completed_reqs)
5576 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5577 
5578 	return completed_reqs != 0;
5579 }
5580 
5581 /**
5582  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5583  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5584  * to complete the pending transfers and free the resources associated with
5585  * the scsi command.
5586  *
5587  * @hba: per adapter instance
5588  * @force_compl: This flag is set to true when invoked
5589  * from ufshcd_host_reset_and_restore() in which case it requires special
5590  * handling because the host controller has been reset by ufshcd_hba_stop().
5591  */
5592 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5593 					      bool force_compl)
5594 {
5595 	struct ufs_hw_queue *hwq;
5596 	struct ufshcd_lrb *lrbp;
5597 	struct scsi_cmnd *cmd;
5598 	unsigned long flags;
5599 	u32 hwq_num, utag;
5600 	int tag;
5601 
5602 	for (tag = 0; tag < hba->nutrs; tag++) {
5603 		lrbp = &hba->lrb[tag];
5604 		cmd = lrbp->cmd;
5605 		if (!ufshcd_cmd_inflight(cmd) ||
5606 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5607 			continue;
5608 
5609 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5610 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5611 		hwq = &hba->uhq[hwq_num];
5612 
5613 		if (force_compl) {
5614 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5615 			/*
5616 			 * For those cmds of which the cqes are not present
5617 			 * in the cq, complete them explicitly.
5618 			 */
5619 			spin_lock_irqsave(&hwq->cq_lock, flags);
5620 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5621 				set_host_byte(cmd, DID_REQUEUE);
5622 				ufshcd_release_scsi_cmd(hba, lrbp);
5623 				scsi_done(cmd);
5624 			}
5625 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5626 		} else {
5627 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5628 		}
5629 	}
5630 }
5631 
5632 /**
5633  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5634  * @hba: per adapter instance
5635  *
5636  * Return:
5637  *  IRQ_HANDLED - If interrupt is valid
5638  *  IRQ_NONE    - If invalid interrupt
5639  */
5640 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5641 {
5642 	/* Resetting interrupt aggregation counters first and reading the
5643 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5644 	 * In order to prevent other interrupts starvation the DB is read once
5645 	 * after reset. The down side of this solution is the possibility of
5646 	 * false interrupt if device completes another request after resetting
5647 	 * aggregation and before reading the DB.
5648 	 */
5649 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5650 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5651 		ufshcd_reset_intr_aggr(hba);
5652 
5653 	if (ufs_fail_completion())
5654 		return IRQ_HANDLED;
5655 
5656 	/*
5657 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5658 	 * do not want polling to trigger spurious interrupt complaints.
5659 	 */
5660 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5661 
5662 	return IRQ_HANDLED;
5663 }
5664 
5665 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5666 {
5667 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5668 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5669 				       &ee_ctrl_mask);
5670 }
5671 
5672 int ufshcd_write_ee_control(struct ufs_hba *hba)
5673 {
5674 	int err;
5675 
5676 	mutex_lock(&hba->ee_ctrl_mutex);
5677 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5678 	mutex_unlock(&hba->ee_ctrl_mutex);
5679 	if (err)
5680 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5681 			__func__, err);
5682 	return err;
5683 }
5684 
5685 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5686 			     const u16 *other_mask, u16 set, u16 clr)
5687 {
5688 	u16 new_mask, ee_ctrl_mask;
5689 	int err = 0;
5690 
5691 	mutex_lock(&hba->ee_ctrl_mutex);
5692 	new_mask = (*mask & ~clr) | set;
5693 	ee_ctrl_mask = new_mask | *other_mask;
5694 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5695 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5696 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5697 	if (!err) {
5698 		hba->ee_ctrl_mask = ee_ctrl_mask;
5699 		*mask = new_mask;
5700 	}
5701 	mutex_unlock(&hba->ee_ctrl_mutex);
5702 	return err;
5703 }
5704 
5705 /**
5706  * ufshcd_disable_ee - disable exception event
5707  * @hba: per-adapter instance
5708  * @mask: exception event to disable
5709  *
5710  * Disables exception event in the device so that the EVENT_ALERT
5711  * bit is not set.
5712  *
5713  * Return: zero on success, non-zero error value on failure.
5714  */
5715 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5716 {
5717 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5718 }
5719 
5720 /**
5721  * ufshcd_enable_ee - enable exception event
5722  * @hba: per-adapter instance
5723  * @mask: exception event to enable
5724  *
5725  * Enable corresponding exception event in the device to allow
5726  * device to alert host in critical scenarios.
5727  *
5728  * Return: zero on success, non-zero error value on failure.
5729  */
5730 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5731 {
5732 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5733 }
5734 
5735 /**
5736  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5737  * @hba: per-adapter instance
5738  *
5739  * Allow device to manage background operations on its own. Enabling
5740  * this might lead to inconsistent latencies during normal data transfers
5741  * as the device is allowed to manage its own way of handling background
5742  * operations.
5743  *
5744  * Return: zero on success, non-zero on failure.
5745  */
5746 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5747 {
5748 	int err = 0;
5749 
5750 	if (hba->auto_bkops_enabled)
5751 		goto out;
5752 
5753 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5754 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5755 	if (err) {
5756 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5757 				__func__, err);
5758 		goto out;
5759 	}
5760 
5761 	hba->auto_bkops_enabled = true;
5762 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5763 
5764 	/* No need of URGENT_BKOPS exception from the device */
5765 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5766 	if (err)
5767 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5768 				__func__, err);
5769 out:
5770 	return err;
5771 }
5772 
5773 /**
5774  * ufshcd_disable_auto_bkops - block device in doing background operations
5775  * @hba: per-adapter instance
5776  *
5777  * Disabling background operations improves command response latency but
5778  * has drawback of device moving into critical state where the device is
5779  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5780  * host is idle so that BKOPS are managed effectively without any negative
5781  * impacts.
5782  *
5783  * Return: zero on success, non-zero on failure.
5784  */
5785 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5786 {
5787 	int err = 0;
5788 
5789 	if (!hba->auto_bkops_enabled)
5790 		goto out;
5791 
5792 	/*
5793 	 * If host assisted BKOPs is to be enabled, make sure
5794 	 * urgent bkops exception is allowed.
5795 	 */
5796 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5797 	if (err) {
5798 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5799 				__func__, err);
5800 		goto out;
5801 	}
5802 
5803 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5804 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5805 	if (err) {
5806 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5807 				__func__, err);
5808 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5809 		goto out;
5810 	}
5811 
5812 	hba->auto_bkops_enabled = false;
5813 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5814 	hba->is_urgent_bkops_lvl_checked = false;
5815 out:
5816 	return err;
5817 }
5818 
5819 /**
5820  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5821  * @hba: per adapter instance
5822  *
5823  * After a device reset the device may toggle the BKOPS_EN flag
5824  * to default value. The s/w tracking variables should be updated
5825  * as well. This function would change the auto-bkops state based on
5826  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5827  */
5828 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5829 {
5830 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5831 		hba->auto_bkops_enabled = false;
5832 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5833 		ufshcd_enable_auto_bkops(hba);
5834 	} else {
5835 		hba->auto_bkops_enabled = true;
5836 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5837 		ufshcd_disable_auto_bkops(hba);
5838 	}
5839 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5840 	hba->is_urgent_bkops_lvl_checked = false;
5841 }
5842 
5843 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5844 {
5845 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5846 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5847 }
5848 
5849 /**
5850  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5851  * @hba: per-adapter instance
5852  * @status: bkops_status value
5853  *
5854  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5855  * flag in the device to permit background operations if the device
5856  * bkops_status is greater than or equal to "status" argument passed to
5857  * this function, disable otherwise.
5858  *
5859  * Return: 0 for success, non-zero in case of failure.
5860  *
5861  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5862  * to know whether auto bkops is enabled or disabled after this function
5863  * returns control to it.
5864  */
5865 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5866 			     enum bkops_status status)
5867 {
5868 	int err;
5869 	u32 curr_status = 0;
5870 
5871 	err = ufshcd_get_bkops_status(hba, &curr_status);
5872 	if (err) {
5873 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5874 				__func__, err);
5875 		goto out;
5876 	} else if (curr_status > BKOPS_STATUS_MAX) {
5877 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5878 				__func__, curr_status);
5879 		err = -EINVAL;
5880 		goto out;
5881 	}
5882 
5883 	if (curr_status >= status)
5884 		err = ufshcd_enable_auto_bkops(hba);
5885 	else
5886 		err = ufshcd_disable_auto_bkops(hba);
5887 out:
5888 	return err;
5889 }
5890 
5891 /**
5892  * ufshcd_urgent_bkops - handle urgent bkops exception event
5893  * @hba: per-adapter instance
5894  *
5895  * Enable fBackgroundOpsEn flag in the device to permit background
5896  * operations.
5897  *
5898  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5899  * and negative error value for any other failure.
5900  *
5901  * Return: 0 upon success; < 0 upon failure.
5902  */
5903 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5904 {
5905 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5906 }
5907 
5908 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5909 {
5910 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5911 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5912 }
5913 
5914 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5915 {
5916 	int err;
5917 	u32 curr_status = 0;
5918 
5919 	if (hba->is_urgent_bkops_lvl_checked)
5920 		goto enable_auto_bkops;
5921 
5922 	err = ufshcd_get_bkops_status(hba, &curr_status);
5923 	if (err) {
5924 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5925 				__func__, err);
5926 		goto out;
5927 	}
5928 
5929 	/*
5930 	 * We are seeing that some devices are raising the urgent bkops
5931 	 * exception events even when BKOPS status doesn't indicate performace
5932 	 * impacted or critical. Handle these device by determining their urgent
5933 	 * bkops status at runtime.
5934 	 */
5935 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5936 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5937 				__func__, curr_status);
5938 		/* update the current status as the urgent bkops level */
5939 		hba->urgent_bkops_lvl = curr_status;
5940 		hba->is_urgent_bkops_lvl_checked = true;
5941 	}
5942 
5943 enable_auto_bkops:
5944 	err = ufshcd_enable_auto_bkops(hba);
5945 out:
5946 	if (err < 0)
5947 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5948 				__func__, err);
5949 }
5950 
5951 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5952 {
5953 	u32 value;
5954 
5955 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5956 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5957 		return;
5958 
5959 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5960 
5961 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5962 
5963 	/*
5964 	 * A placeholder for the platform vendors to add whatever additional
5965 	 * steps required
5966 	 */
5967 }
5968 
5969 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5970 {
5971 	u8 index;
5972 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5973 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5974 
5975 	index = ufshcd_wb_get_query_index(hba);
5976 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5977 }
5978 
5979 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5980 {
5981 	int ret;
5982 
5983 	if (!ufshcd_is_wb_allowed(hba) ||
5984 	    hba->dev_info.wb_enabled == enable)
5985 		return 0;
5986 
5987 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5988 	if (ret) {
5989 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5990 			__func__, enable ? "enabling" : "disabling", ret);
5991 		return ret;
5992 	}
5993 
5994 	hba->dev_info.wb_enabled = enable;
5995 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5996 			__func__, enable ? "enabled" : "disabled");
5997 
5998 	return ret;
5999 }
6000 
6001 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6002 						 bool enable)
6003 {
6004 	int ret;
6005 
6006 	ret = __ufshcd_wb_toggle(hba, enable,
6007 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6008 	if (ret) {
6009 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6010 			__func__, enable ? "enabling" : "disabling", ret);
6011 		return;
6012 	}
6013 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6014 			__func__, enable ? "enabled" : "disabled");
6015 }
6016 
6017 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6018 {
6019 	int ret;
6020 
6021 	if (!ufshcd_is_wb_allowed(hba) ||
6022 	    hba->dev_info.wb_buf_flush_enabled == enable)
6023 		return 0;
6024 
6025 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6026 	if (ret) {
6027 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6028 			__func__, enable ? "enabling" : "disabling", ret);
6029 		return ret;
6030 	}
6031 
6032 	hba->dev_info.wb_buf_flush_enabled = enable;
6033 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6034 			__func__, enable ? "enabled" : "disabled");
6035 
6036 	return ret;
6037 }
6038 
6039 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6040 						u32 avail_buf)
6041 {
6042 	u32 cur_buf;
6043 	int ret;
6044 	u8 index;
6045 
6046 	index = ufshcd_wb_get_query_index(hba);
6047 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6048 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6049 					      index, 0, &cur_buf);
6050 	if (ret) {
6051 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6052 			__func__, ret);
6053 		return false;
6054 	}
6055 
6056 	if (!cur_buf) {
6057 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6058 			 cur_buf);
6059 		return false;
6060 	}
6061 	/* Let it continue to flush when available buffer exceeds threshold */
6062 	return avail_buf < hba->vps->wb_flush_threshold;
6063 }
6064 
6065 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6066 {
6067 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6068 		ufshcd_wb_toggle_buf_flush(hba, false);
6069 
6070 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6071 	ufshcd_wb_toggle(hba, false);
6072 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6073 
6074 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6075 }
6076 
6077 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6078 {
6079 	u32 lifetime;
6080 	int ret;
6081 	u8 index;
6082 
6083 	index = ufshcd_wb_get_query_index(hba);
6084 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6085 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6086 				      index, 0, &lifetime);
6087 	if (ret) {
6088 		dev_err(hba->dev,
6089 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6090 			__func__, ret);
6091 		return false;
6092 	}
6093 
6094 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6095 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6096 			__func__, lifetime);
6097 		return false;
6098 	}
6099 
6100 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6101 		__func__, lifetime);
6102 
6103 	return true;
6104 }
6105 
6106 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6107 {
6108 	int ret;
6109 	u32 avail_buf;
6110 	u8 index;
6111 
6112 	if (!ufshcd_is_wb_allowed(hba))
6113 		return false;
6114 
6115 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6116 		ufshcd_wb_force_disable(hba);
6117 		return false;
6118 	}
6119 
6120 	/*
6121 	 * The ufs device needs the vcc to be ON to flush.
6122 	 * With user-space reduction enabled, it's enough to enable flush
6123 	 * by checking only the available buffer. The threshold
6124 	 * defined here is > 90% full.
6125 	 * With user-space preserved enabled, the current-buffer
6126 	 * should be checked too because the wb buffer size can reduce
6127 	 * when disk tends to be full. This info is provided by current
6128 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6129 	 * keeping vcc on when current buffer is empty.
6130 	 */
6131 	index = ufshcd_wb_get_query_index(hba);
6132 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6133 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6134 				      index, 0, &avail_buf);
6135 	if (ret) {
6136 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6137 			 __func__, ret);
6138 		return false;
6139 	}
6140 
6141 	if (!hba->dev_info.b_presrv_uspc_en)
6142 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6143 
6144 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6145 }
6146 
6147 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6148 {
6149 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6150 					   struct ufs_hba,
6151 					   rpm_dev_flush_recheck_work);
6152 	/*
6153 	 * To prevent unnecessary VCC power drain after device finishes
6154 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6155 	 * after a certain delay to recheck the threshold by next runtime
6156 	 * suspend.
6157 	 */
6158 	ufshcd_rpm_get_sync(hba);
6159 	ufshcd_rpm_put_sync(hba);
6160 }
6161 
6162 /**
6163  * ufshcd_exception_event_handler - handle exceptions raised by device
6164  * @work: pointer to work data
6165  *
6166  * Read bExceptionEventStatus attribute from the device and handle the
6167  * exception event accordingly.
6168  */
6169 static void ufshcd_exception_event_handler(struct work_struct *work)
6170 {
6171 	struct ufs_hba *hba;
6172 	int err;
6173 	u32 status = 0;
6174 	hba = container_of(work, struct ufs_hba, eeh_work);
6175 
6176 	ufshcd_scsi_block_requests(hba);
6177 	err = ufshcd_get_ee_status(hba, &status);
6178 	if (err) {
6179 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6180 				__func__, err);
6181 		goto out;
6182 	}
6183 
6184 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6185 
6186 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6187 		ufshcd_bkops_exception_event_handler(hba);
6188 
6189 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6190 		ufshcd_temp_exception_event_handler(hba, status);
6191 
6192 	ufs_debugfs_exception_event(hba, status);
6193 out:
6194 	ufshcd_scsi_unblock_requests(hba);
6195 }
6196 
6197 /* Complete requests that have door-bell cleared */
6198 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6199 {
6200 	if (is_mcq_enabled(hba))
6201 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6202 	else
6203 		ufshcd_transfer_req_compl(hba);
6204 
6205 	ufshcd_tmc_handler(hba);
6206 }
6207 
6208 /**
6209  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6210  *				to recover from the DL NAC errors or not.
6211  * @hba: per-adapter instance
6212  *
6213  * Return: true if error handling is required, false otherwise.
6214  */
6215 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6216 {
6217 	unsigned long flags;
6218 	bool err_handling = true;
6219 
6220 	spin_lock_irqsave(hba->host->host_lock, flags);
6221 	/*
6222 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6223 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6224 	 */
6225 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6226 		goto out;
6227 
6228 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6229 	    ((hba->saved_err & UIC_ERROR) &&
6230 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6231 		goto out;
6232 
6233 	if ((hba->saved_err & UIC_ERROR) &&
6234 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6235 		int err;
6236 		/*
6237 		 * wait for 50ms to see if we can get any other errors or not.
6238 		 */
6239 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6240 		msleep(50);
6241 		spin_lock_irqsave(hba->host->host_lock, flags);
6242 
6243 		/*
6244 		 * now check if we have got any other severe errors other than
6245 		 * DL NAC error?
6246 		 */
6247 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6248 		    ((hba->saved_err & UIC_ERROR) &&
6249 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6250 			goto out;
6251 
6252 		/*
6253 		 * As DL NAC is the only error received so far, send out NOP
6254 		 * command to confirm if link is still active or not.
6255 		 *   - If we don't get any response then do error recovery.
6256 		 *   - If we get response then clear the DL NAC error bit.
6257 		 */
6258 
6259 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6260 		err = ufshcd_verify_dev_init(hba);
6261 		spin_lock_irqsave(hba->host->host_lock, flags);
6262 
6263 		if (err)
6264 			goto out;
6265 
6266 		/* Link seems to be alive hence ignore the DL NAC errors */
6267 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6268 			hba->saved_err &= ~UIC_ERROR;
6269 		/* clear NAC error */
6270 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6271 		if (!hba->saved_uic_err)
6272 			err_handling = false;
6273 	}
6274 out:
6275 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6276 	return err_handling;
6277 }
6278 
6279 /* host lock must be held before calling this func */
6280 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6281 {
6282 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6283 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6284 }
6285 
6286 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6287 {
6288 	lockdep_assert_held(hba->host->host_lock);
6289 
6290 	/* handle fatal errors only when link is not in error state */
6291 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6292 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6293 		    ufshcd_is_saved_err_fatal(hba))
6294 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6295 		else
6296 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6297 		queue_work(hba->eh_wq, &hba->eh_work);
6298 	}
6299 }
6300 
6301 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6302 {
6303 	spin_lock_irq(hba->host->host_lock);
6304 	hba->force_reset = true;
6305 	ufshcd_schedule_eh_work(hba);
6306 	spin_unlock_irq(hba->host->host_lock);
6307 }
6308 
6309 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6310 {
6311 	mutex_lock(&hba->wb_mutex);
6312 	down_write(&hba->clk_scaling_lock);
6313 	hba->clk_scaling.is_allowed = allow;
6314 	up_write(&hba->clk_scaling_lock);
6315 	mutex_unlock(&hba->wb_mutex);
6316 }
6317 
6318 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6319 {
6320 	if (suspend) {
6321 		if (hba->clk_scaling.is_enabled)
6322 			ufshcd_suspend_clkscaling(hba);
6323 		ufshcd_clk_scaling_allow(hba, false);
6324 	} else {
6325 		ufshcd_clk_scaling_allow(hba, true);
6326 		if (hba->clk_scaling.is_enabled)
6327 			ufshcd_resume_clkscaling(hba);
6328 	}
6329 }
6330 
6331 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6332 {
6333 	ufshcd_rpm_get_sync(hba);
6334 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6335 	    hba->is_sys_suspended) {
6336 		enum ufs_pm_op pm_op;
6337 
6338 		/*
6339 		 * Don't assume anything of resume, if
6340 		 * resume fails, irq and clocks can be OFF, and powers
6341 		 * can be OFF or in LPM.
6342 		 */
6343 		ufshcd_setup_hba_vreg(hba, true);
6344 		ufshcd_enable_irq(hba);
6345 		ufshcd_setup_vreg(hba, true);
6346 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6347 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6348 		ufshcd_hold(hba);
6349 		if (!ufshcd_is_clkgating_allowed(hba))
6350 			ufshcd_setup_clocks(hba, true);
6351 		ufshcd_release(hba);
6352 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6353 		ufshcd_vops_resume(hba, pm_op);
6354 	} else {
6355 		ufshcd_hold(hba);
6356 		if (ufshcd_is_clkscaling_supported(hba) &&
6357 		    hba->clk_scaling.is_enabled)
6358 			ufshcd_suspend_clkscaling(hba);
6359 		ufshcd_clk_scaling_allow(hba, false);
6360 	}
6361 	ufshcd_scsi_block_requests(hba);
6362 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6363 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6364 	cancel_work_sync(&hba->eeh_work);
6365 }
6366 
6367 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6368 {
6369 	ufshcd_scsi_unblock_requests(hba);
6370 	ufshcd_release(hba);
6371 	if (ufshcd_is_clkscaling_supported(hba))
6372 		ufshcd_clk_scaling_suspend(hba, false);
6373 	ufshcd_rpm_put(hba);
6374 }
6375 
6376 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6377 {
6378 	return (!hba->is_powered || hba->shutting_down ||
6379 		!hba->ufs_device_wlun ||
6380 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6381 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6382 		   ufshcd_is_link_broken(hba))));
6383 }
6384 
6385 #ifdef CONFIG_PM
6386 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6387 {
6388 	struct Scsi_Host *shost = hba->host;
6389 	struct scsi_device *sdev;
6390 	struct request_queue *q;
6391 	int ret;
6392 
6393 	hba->is_sys_suspended = false;
6394 	/*
6395 	 * Set RPM status of wlun device to RPM_ACTIVE,
6396 	 * this also clears its runtime error.
6397 	 */
6398 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6399 
6400 	/* hba device might have a runtime error otherwise */
6401 	if (ret)
6402 		ret = pm_runtime_set_active(hba->dev);
6403 	/*
6404 	 * If wlun device had runtime error, we also need to resume those
6405 	 * consumer scsi devices in case any of them has failed to be
6406 	 * resumed due to supplier runtime resume failure. This is to unblock
6407 	 * blk_queue_enter in case there are bios waiting inside it.
6408 	 */
6409 	if (!ret) {
6410 		shost_for_each_device(sdev, shost) {
6411 			q = sdev->request_queue;
6412 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6413 				       q->rpm_status == RPM_SUSPENDING))
6414 				pm_request_resume(q->dev);
6415 		}
6416 	}
6417 }
6418 #else
6419 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6420 {
6421 }
6422 #endif
6423 
6424 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6425 {
6426 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6427 	u32 mode;
6428 
6429 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6430 
6431 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6432 		return true;
6433 
6434 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6435 		return true;
6436 
6437 	return false;
6438 }
6439 
6440 static bool ufshcd_abort_one(struct request *rq, void *priv)
6441 {
6442 	int *ret = priv;
6443 	u32 tag = rq->tag;
6444 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6445 	struct scsi_device *sdev = cmd->device;
6446 	struct Scsi_Host *shost = sdev->host;
6447 	struct ufs_hba *hba = shost_priv(shost);
6448 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6449 	struct ufs_hw_queue *hwq;
6450 	unsigned long flags;
6451 
6452 	*ret = ufshcd_try_to_abort_task(hba, tag);
6453 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6454 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6455 		*ret ? "failed" : "succeeded");
6456 
6457 	/* Release cmd in MCQ mode if abort succeeds */
6458 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6459 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6460 		spin_lock_irqsave(&hwq->cq_lock, flags);
6461 		if (ufshcd_cmd_inflight(lrbp->cmd))
6462 			ufshcd_release_scsi_cmd(hba, lrbp);
6463 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6464 	}
6465 
6466 	return *ret == 0;
6467 }
6468 
6469 /**
6470  * ufshcd_abort_all - Abort all pending commands.
6471  * @hba: Host bus adapter pointer.
6472  *
6473  * Return: true if and only if the host controller needs to be reset.
6474  */
6475 static bool ufshcd_abort_all(struct ufs_hba *hba)
6476 {
6477 	int tag, ret = 0;
6478 
6479 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6480 	if (ret)
6481 		goto out;
6482 
6483 	/* Clear pending task management requests */
6484 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6485 		ret = ufshcd_clear_tm_cmd(hba, tag);
6486 		if (ret)
6487 			goto out;
6488 	}
6489 
6490 out:
6491 	/* Complete the requests that are cleared by s/w */
6492 	ufshcd_complete_requests(hba, false);
6493 
6494 	return ret != 0;
6495 }
6496 
6497 /**
6498  * ufshcd_err_handler - handle UFS errors that require s/w attention
6499  * @work: pointer to work structure
6500  */
6501 static void ufshcd_err_handler(struct work_struct *work)
6502 {
6503 	int retries = MAX_ERR_HANDLER_RETRIES;
6504 	struct ufs_hba *hba;
6505 	unsigned long flags;
6506 	bool needs_restore;
6507 	bool needs_reset;
6508 	int pmc_err;
6509 
6510 	hba = container_of(work, struct ufs_hba, eh_work);
6511 
6512 	dev_info(hba->dev,
6513 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6514 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6515 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6516 		 hba->saved_uic_err, hba->force_reset,
6517 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6518 
6519 	down(&hba->host_sem);
6520 	spin_lock_irqsave(hba->host->host_lock, flags);
6521 	if (ufshcd_err_handling_should_stop(hba)) {
6522 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6523 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6524 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6525 		up(&hba->host_sem);
6526 		return;
6527 	}
6528 	ufshcd_set_eh_in_progress(hba);
6529 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6530 	ufshcd_err_handling_prepare(hba);
6531 	/* Complete requests that have door-bell cleared by h/w */
6532 	ufshcd_complete_requests(hba, false);
6533 	spin_lock_irqsave(hba->host->host_lock, flags);
6534 again:
6535 	needs_restore = false;
6536 	needs_reset = false;
6537 
6538 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6539 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6540 	/*
6541 	 * A full reset and restore might have happened after preparation
6542 	 * is finished, double check whether we should stop.
6543 	 */
6544 	if (ufshcd_err_handling_should_stop(hba))
6545 		goto skip_err_handling;
6546 
6547 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6548 		bool ret;
6549 
6550 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6551 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6552 		ret = ufshcd_quirk_dl_nac_errors(hba);
6553 		spin_lock_irqsave(hba->host->host_lock, flags);
6554 		if (!ret && ufshcd_err_handling_should_stop(hba))
6555 			goto skip_err_handling;
6556 	}
6557 
6558 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6559 	    (hba->saved_uic_err &&
6560 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6561 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6562 
6563 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6564 		ufshcd_print_host_state(hba);
6565 		ufshcd_print_pwr_info(hba);
6566 		ufshcd_print_evt_hist(hba);
6567 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6568 		ufshcd_print_trs_all(hba, pr_prdt);
6569 		spin_lock_irqsave(hba->host->host_lock, flags);
6570 	}
6571 
6572 	/*
6573 	 * if host reset is required then skip clearing the pending
6574 	 * transfers forcefully because they will get cleared during
6575 	 * host reset and restore
6576 	 */
6577 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6578 	    ufshcd_is_saved_err_fatal(hba) ||
6579 	    ((hba->saved_err & UIC_ERROR) &&
6580 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6581 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6582 		needs_reset = true;
6583 		goto do_reset;
6584 	}
6585 
6586 	/*
6587 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6588 	 * check if power mode restore is needed.
6589 	 */
6590 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6591 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6592 		if (!hba->saved_uic_err)
6593 			hba->saved_err &= ~UIC_ERROR;
6594 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6595 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6596 			needs_restore = true;
6597 		spin_lock_irqsave(hba->host->host_lock, flags);
6598 		if (!hba->saved_err && !needs_restore)
6599 			goto skip_err_handling;
6600 	}
6601 
6602 	hba->silence_err_logs = true;
6603 	/* release lock as clear command might sleep */
6604 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6605 
6606 	needs_reset = ufshcd_abort_all(hba);
6607 
6608 	spin_lock_irqsave(hba->host->host_lock, flags);
6609 	hba->silence_err_logs = false;
6610 	if (needs_reset)
6611 		goto do_reset;
6612 
6613 	/*
6614 	 * After all reqs and tasks are cleared from doorbell,
6615 	 * now it is safe to retore power mode.
6616 	 */
6617 	if (needs_restore) {
6618 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6619 		/*
6620 		 * Hold the scaling lock just in case dev cmds
6621 		 * are sent via bsg and/or sysfs.
6622 		 */
6623 		down_write(&hba->clk_scaling_lock);
6624 		hba->force_pmc = true;
6625 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6626 		if (pmc_err) {
6627 			needs_reset = true;
6628 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6629 					__func__, pmc_err);
6630 		}
6631 		hba->force_pmc = false;
6632 		ufshcd_print_pwr_info(hba);
6633 		up_write(&hba->clk_scaling_lock);
6634 		spin_lock_irqsave(hba->host->host_lock, flags);
6635 	}
6636 
6637 do_reset:
6638 	/* Fatal errors need reset */
6639 	if (needs_reset) {
6640 		int err;
6641 
6642 		hba->force_reset = false;
6643 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6644 		err = ufshcd_reset_and_restore(hba);
6645 		if (err)
6646 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6647 					__func__, err);
6648 		else
6649 			ufshcd_recover_pm_error(hba);
6650 		spin_lock_irqsave(hba->host->host_lock, flags);
6651 	}
6652 
6653 skip_err_handling:
6654 	if (!needs_reset) {
6655 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6656 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6657 		if (hba->saved_err || hba->saved_uic_err)
6658 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6659 			    __func__, hba->saved_err, hba->saved_uic_err);
6660 	}
6661 	/* Exit in an operational state or dead */
6662 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6663 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6664 		if (--retries)
6665 			goto again;
6666 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6667 	}
6668 	ufshcd_clear_eh_in_progress(hba);
6669 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6670 	ufshcd_err_handling_unprepare(hba);
6671 	up(&hba->host_sem);
6672 
6673 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6674 		 ufshcd_state_name[hba->ufshcd_state]);
6675 }
6676 
6677 /**
6678  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6679  * @hba: per-adapter instance
6680  *
6681  * Return:
6682  *  IRQ_HANDLED - If interrupt is valid
6683  *  IRQ_NONE    - If invalid interrupt
6684  */
6685 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6686 {
6687 	u32 reg;
6688 	irqreturn_t retval = IRQ_NONE;
6689 
6690 	/* PHY layer error */
6691 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6692 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6693 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6694 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6695 		/*
6696 		 * To know whether this error is fatal or not, DB timeout
6697 		 * must be checked but this error is handled separately.
6698 		 */
6699 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6700 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6701 					__func__);
6702 
6703 		/* Got a LINERESET indication. */
6704 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6705 			struct uic_command *cmd = NULL;
6706 
6707 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6708 			if (hba->uic_async_done && hba->active_uic_cmd)
6709 				cmd = hba->active_uic_cmd;
6710 			/*
6711 			 * Ignore the LINERESET during power mode change
6712 			 * operation via DME_SET command.
6713 			 */
6714 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6715 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6716 		}
6717 		retval |= IRQ_HANDLED;
6718 	}
6719 
6720 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6721 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6722 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6723 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6724 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6725 
6726 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6727 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6728 		else if (hba->dev_quirks &
6729 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6730 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6731 				hba->uic_error |=
6732 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6733 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6734 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6735 		}
6736 		retval |= IRQ_HANDLED;
6737 	}
6738 
6739 	/* UIC NL/TL/DME errors needs software retry */
6740 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6741 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6742 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6743 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6744 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6745 		retval |= IRQ_HANDLED;
6746 	}
6747 
6748 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6749 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6750 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6751 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6752 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6753 		retval |= IRQ_HANDLED;
6754 	}
6755 
6756 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6757 	if ((reg & UIC_DME_ERROR) &&
6758 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6759 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6760 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6761 		retval |= IRQ_HANDLED;
6762 	}
6763 
6764 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6765 			__func__, hba->uic_error);
6766 	return retval;
6767 }
6768 
6769 /**
6770  * ufshcd_check_errors - Check for errors that need s/w attention
6771  * @hba: per-adapter instance
6772  * @intr_status: interrupt status generated by the controller
6773  *
6774  * Return:
6775  *  IRQ_HANDLED - If interrupt is valid
6776  *  IRQ_NONE    - If invalid interrupt
6777  */
6778 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6779 {
6780 	bool queue_eh_work = false;
6781 	irqreturn_t retval = IRQ_NONE;
6782 
6783 	spin_lock(hba->host->host_lock);
6784 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6785 
6786 	if (hba->errors & INT_FATAL_ERRORS) {
6787 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6788 				       hba->errors);
6789 		queue_eh_work = true;
6790 	}
6791 
6792 	if (hba->errors & UIC_ERROR) {
6793 		hba->uic_error = 0;
6794 		retval = ufshcd_update_uic_error(hba);
6795 		if (hba->uic_error)
6796 			queue_eh_work = true;
6797 	}
6798 
6799 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6800 		dev_err(hba->dev,
6801 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6802 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6803 			"Enter" : "Exit",
6804 			hba->errors, ufshcd_get_upmcrs(hba));
6805 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6806 				       hba->errors);
6807 		ufshcd_set_link_broken(hba);
6808 		queue_eh_work = true;
6809 	}
6810 
6811 	if (queue_eh_work) {
6812 		/*
6813 		 * update the transfer error masks to sticky bits, let's do this
6814 		 * irrespective of current ufshcd_state.
6815 		 */
6816 		hba->saved_err |= hba->errors;
6817 		hba->saved_uic_err |= hba->uic_error;
6818 
6819 		/* dump controller state before resetting */
6820 		if ((hba->saved_err &
6821 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6822 		    (hba->saved_uic_err &&
6823 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6824 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6825 					__func__, hba->saved_err,
6826 					hba->saved_uic_err);
6827 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6828 					 "host_regs: ");
6829 			ufshcd_print_pwr_info(hba);
6830 		}
6831 		ufshcd_schedule_eh_work(hba);
6832 		retval |= IRQ_HANDLED;
6833 	}
6834 	/*
6835 	 * if (!queue_eh_work) -
6836 	 * Other errors are either non-fatal where host recovers
6837 	 * itself without s/w intervention or errors that will be
6838 	 * handled by the SCSI core layer.
6839 	 */
6840 	hba->errors = 0;
6841 	hba->uic_error = 0;
6842 	spin_unlock(hba->host->host_lock);
6843 	return retval;
6844 }
6845 
6846 /**
6847  * ufshcd_tmc_handler - handle task management function completion
6848  * @hba: per adapter instance
6849  *
6850  * Return:
6851  *  IRQ_HANDLED - If interrupt is valid
6852  *  IRQ_NONE    - If invalid interrupt
6853  */
6854 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6855 {
6856 	unsigned long flags, pending, issued;
6857 	irqreturn_t ret = IRQ_NONE;
6858 	int tag;
6859 
6860 	spin_lock_irqsave(hba->host->host_lock, flags);
6861 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6862 	issued = hba->outstanding_tasks & ~pending;
6863 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6864 		struct request *req = hba->tmf_rqs[tag];
6865 		struct completion *c = req->end_io_data;
6866 
6867 		complete(c);
6868 		ret = IRQ_HANDLED;
6869 	}
6870 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6871 
6872 	return ret;
6873 }
6874 
6875 /**
6876  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6877  * @hba: per adapter instance
6878  *
6879  * Return: IRQ_HANDLED if interrupt is handled.
6880  */
6881 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6882 {
6883 	struct ufs_hw_queue *hwq;
6884 	unsigned long outstanding_cqs;
6885 	unsigned int nr_queues;
6886 	int i, ret;
6887 	u32 events;
6888 
6889 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6890 	if (ret)
6891 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6892 
6893 	/* Exclude the poll queues */
6894 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6895 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6896 		hwq = &hba->uhq[i];
6897 
6898 		events = ufshcd_mcq_read_cqis(hba, i);
6899 		if (events)
6900 			ufshcd_mcq_write_cqis(hba, events, i);
6901 
6902 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6903 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6904 	}
6905 
6906 	return IRQ_HANDLED;
6907 }
6908 
6909 /**
6910  * ufshcd_sl_intr - Interrupt service routine
6911  * @hba: per adapter instance
6912  * @intr_status: contains interrupts generated by the controller
6913  *
6914  * Return:
6915  *  IRQ_HANDLED - If interrupt is valid
6916  *  IRQ_NONE    - If invalid interrupt
6917  */
6918 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6919 {
6920 	irqreturn_t retval = IRQ_NONE;
6921 
6922 	if (intr_status & UFSHCD_UIC_MASK)
6923 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6924 
6925 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6926 		retval |= ufshcd_check_errors(hba, intr_status);
6927 
6928 	if (intr_status & UTP_TASK_REQ_COMPL)
6929 		retval |= ufshcd_tmc_handler(hba);
6930 
6931 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6932 		retval |= ufshcd_transfer_req_compl(hba);
6933 
6934 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6935 		retval |= ufshcd_handle_mcq_cq_events(hba);
6936 
6937 	return retval;
6938 }
6939 
6940 /**
6941  * ufshcd_intr - Main interrupt service routine
6942  * @irq: irq number
6943  * @__hba: pointer to adapter instance
6944  *
6945  * Return:
6946  *  IRQ_HANDLED - If interrupt is valid
6947  *  IRQ_NONE    - If invalid interrupt
6948  */
6949 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6950 {
6951 	u32 intr_status, enabled_intr_status = 0;
6952 	irqreturn_t retval = IRQ_NONE;
6953 	struct ufs_hba *hba = __hba;
6954 	int retries = hba->nutrs;
6955 
6956 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6957 	hba->ufs_stats.last_intr_status = intr_status;
6958 	hba->ufs_stats.last_intr_ts = local_clock();
6959 
6960 	/*
6961 	 * There could be max of hba->nutrs reqs in flight and in worst case
6962 	 * if the reqs get finished 1 by 1 after the interrupt status is
6963 	 * read, make sure we handle them by checking the interrupt status
6964 	 * again in a loop until we process all of the reqs before returning.
6965 	 */
6966 	while (intr_status && retries--) {
6967 		enabled_intr_status =
6968 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6969 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6970 		if (enabled_intr_status)
6971 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6972 
6973 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6974 	}
6975 
6976 	if (enabled_intr_status && retval == IRQ_NONE &&
6977 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6978 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6979 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6980 					__func__,
6981 					intr_status,
6982 					hba->ufs_stats.last_intr_status,
6983 					enabled_intr_status);
6984 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6985 	}
6986 
6987 	return retval;
6988 }
6989 
6990 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6991 {
6992 	int err = 0;
6993 	u32 mask = 1 << tag;
6994 	unsigned long flags;
6995 
6996 	if (!test_bit(tag, &hba->outstanding_tasks))
6997 		goto out;
6998 
6999 	spin_lock_irqsave(hba->host->host_lock, flags);
7000 	ufshcd_utmrl_clear(hba, tag);
7001 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7002 
7003 	/* poll for max. 1 sec to clear door bell register by h/w */
7004 	err = ufshcd_wait_for_register(hba,
7005 			REG_UTP_TASK_REQ_DOOR_BELL,
7006 			mask, 0, 1000, 1000);
7007 
7008 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7009 		tag, err < 0 ? "failed" : "succeeded");
7010 
7011 out:
7012 	return err;
7013 }
7014 
7015 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7016 		struct utp_task_req_desc *treq, u8 tm_function)
7017 {
7018 	struct request_queue *q = hba->tmf_queue;
7019 	struct Scsi_Host *host = hba->host;
7020 	DECLARE_COMPLETION_ONSTACK(wait);
7021 	struct request *req;
7022 	unsigned long flags;
7023 	int task_tag, err;
7024 
7025 	/*
7026 	 * blk_mq_alloc_request() is used here only to get a free tag.
7027 	 */
7028 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7029 	if (IS_ERR(req))
7030 		return PTR_ERR(req);
7031 
7032 	req->end_io_data = &wait;
7033 	ufshcd_hold(hba);
7034 
7035 	spin_lock_irqsave(host->host_lock, flags);
7036 
7037 	task_tag = req->tag;
7038 	hba->tmf_rqs[req->tag] = req;
7039 	treq->upiu_req.req_header.task_tag = task_tag;
7040 
7041 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7042 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7043 
7044 	/* send command to the controller */
7045 	__set_bit(task_tag, &hba->outstanding_tasks);
7046 
7047 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7048 	/* Make sure that doorbell is committed immediately */
7049 	wmb();
7050 
7051 	spin_unlock_irqrestore(host->host_lock, flags);
7052 
7053 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7054 
7055 	/* wait until the task management command is completed */
7056 	err = wait_for_completion_io_timeout(&wait,
7057 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7058 	if (!err) {
7059 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7060 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7061 				__func__, tm_function);
7062 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7063 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7064 					__func__, task_tag);
7065 		err = -ETIMEDOUT;
7066 	} else {
7067 		err = 0;
7068 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7069 
7070 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7071 	}
7072 
7073 	spin_lock_irqsave(hba->host->host_lock, flags);
7074 	hba->tmf_rqs[req->tag] = NULL;
7075 	__clear_bit(task_tag, &hba->outstanding_tasks);
7076 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7077 
7078 	ufshcd_release(hba);
7079 	blk_mq_free_request(req);
7080 
7081 	return err;
7082 }
7083 
7084 /**
7085  * ufshcd_issue_tm_cmd - issues task management commands to controller
7086  * @hba: per adapter instance
7087  * @lun_id: LUN ID to which TM command is sent
7088  * @task_id: task ID to which the TM command is applicable
7089  * @tm_function: task management function opcode
7090  * @tm_response: task management service response return value
7091  *
7092  * Return: non-zero value on error, zero on success.
7093  */
7094 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7095 		u8 tm_function, u8 *tm_response)
7096 {
7097 	struct utp_task_req_desc treq = { };
7098 	enum utp_ocs ocs_value;
7099 	int err;
7100 
7101 	/* Configure task request descriptor */
7102 	treq.header.interrupt = 1;
7103 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7104 
7105 	/* Configure task request UPIU */
7106 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7107 	treq.upiu_req.req_header.lun = lun_id;
7108 	treq.upiu_req.req_header.tm_function = tm_function;
7109 
7110 	/*
7111 	 * The host shall provide the same value for LUN field in the basic
7112 	 * header and for Input Parameter.
7113 	 */
7114 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7115 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7116 
7117 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7118 	if (err == -ETIMEDOUT)
7119 		return err;
7120 
7121 	ocs_value = treq.header.ocs & MASK_OCS;
7122 	if (ocs_value != OCS_SUCCESS)
7123 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7124 				__func__, ocs_value);
7125 	else if (tm_response)
7126 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7127 				MASK_TM_SERVICE_RESP;
7128 	return err;
7129 }
7130 
7131 /**
7132  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7133  * @hba:	per-adapter instance
7134  * @req_upiu:	upiu request
7135  * @rsp_upiu:	upiu reply
7136  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7137  * @buff_len:	descriptor size, 0 if NA
7138  * @cmd_type:	specifies the type (NOP, Query...)
7139  * @desc_op:	descriptor operation
7140  *
7141  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7142  * Therefore, it "rides" the device management infrastructure: uses its tag and
7143  * tasks work queues.
7144  *
7145  * Since there is only one available tag for device management commands,
7146  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7147  *
7148  * Return: 0 upon success; < 0 upon failure.
7149  */
7150 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7151 					struct utp_upiu_req *req_upiu,
7152 					struct utp_upiu_req *rsp_upiu,
7153 					u8 *desc_buff, int *buff_len,
7154 					enum dev_cmd_type cmd_type,
7155 					enum query_opcode desc_op)
7156 {
7157 	DECLARE_COMPLETION_ONSTACK(wait);
7158 	const u32 tag = hba->reserved_slot;
7159 	struct ufshcd_lrb *lrbp;
7160 	int err = 0;
7161 	u8 upiu_flags;
7162 
7163 	/* Protects use of hba->reserved_slot. */
7164 	lockdep_assert_held(&hba->dev_cmd.lock);
7165 
7166 	down_read(&hba->clk_scaling_lock);
7167 
7168 	lrbp = &hba->lrb[tag];
7169 	lrbp->cmd = NULL;
7170 	lrbp->task_tag = tag;
7171 	lrbp->lun = 0;
7172 	lrbp->intr_cmd = true;
7173 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7174 	hba->dev_cmd.type = cmd_type;
7175 
7176 	if (hba->ufs_version <= ufshci_version(1, 1))
7177 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7178 	else
7179 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7180 
7181 	/* update the task tag in the request upiu */
7182 	req_upiu->header.task_tag = tag;
7183 
7184 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7185 
7186 	/* just copy the upiu request as it is */
7187 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7188 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7189 		/* The Data Segment Area is optional depending upon the query
7190 		 * function value. for WRITE DESCRIPTOR, the data segment
7191 		 * follows right after the tsf.
7192 		 */
7193 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7194 		*buff_len = 0;
7195 	}
7196 
7197 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7198 
7199 	hba->dev_cmd.complete = &wait;
7200 
7201 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7202 
7203 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7204 	/*
7205 	 * ignore the returning value here - ufshcd_check_query_response is
7206 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7207 	 * read the response directly ignoring all errors.
7208 	 */
7209 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7210 
7211 	/* just copy the upiu response as it is */
7212 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7213 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7214 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7215 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7216 					   .data_segment_length);
7217 
7218 		if (*buff_len >= resp_len) {
7219 			memcpy(desc_buff, descp, resp_len);
7220 			*buff_len = resp_len;
7221 		} else {
7222 			dev_warn(hba->dev,
7223 				 "%s: rsp size %d is bigger than buffer size %d",
7224 				 __func__, resp_len, *buff_len);
7225 			*buff_len = 0;
7226 			err = -EINVAL;
7227 		}
7228 	}
7229 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7230 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7231 
7232 	up_read(&hba->clk_scaling_lock);
7233 	return err;
7234 }
7235 
7236 /**
7237  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7238  * @hba:	per-adapter instance
7239  * @req_upiu:	upiu request
7240  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7241  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7242  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7243  * @buff_len:	descriptor size, 0 if NA
7244  * @desc_op:	descriptor operation
7245  *
7246  * Supports UTP Transfer requests (nop and query), and UTP Task
7247  * Management requests.
7248  * It is up to the caller to fill the upiu conent properly, as it will
7249  * be copied without any further input validations.
7250  *
7251  * Return: 0 upon success; < 0 upon failure.
7252  */
7253 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7254 			     struct utp_upiu_req *req_upiu,
7255 			     struct utp_upiu_req *rsp_upiu,
7256 			     enum upiu_request_transaction msgcode,
7257 			     u8 *desc_buff, int *buff_len,
7258 			     enum query_opcode desc_op)
7259 {
7260 	int err;
7261 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7262 	struct utp_task_req_desc treq = { };
7263 	enum utp_ocs ocs_value;
7264 	u8 tm_f = req_upiu->header.tm_function;
7265 
7266 	switch (msgcode) {
7267 	case UPIU_TRANSACTION_NOP_OUT:
7268 		cmd_type = DEV_CMD_TYPE_NOP;
7269 		fallthrough;
7270 	case UPIU_TRANSACTION_QUERY_REQ:
7271 		ufshcd_hold(hba);
7272 		mutex_lock(&hba->dev_cmd.lock);
7273 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7274 						   desc_buff, buff_len,
7275 						   cmd_type, desc_op);
7276 		mutex_unlock(&hba->dev_cmd.lock);
7277 		ufshcd_release(hba);
7278 
7279 		break;
7280 	case UPIU_TRANSACTION_TASK_REQ:
7281 		treq.header.interrupt = 1;
7282 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7283 
7284 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7285 
7286 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7287 		if (err == -ETIMEDOUT)
7288 			break;
7289 
7290 		ocs_value = treq.header.ocs & MASK_OCS;
7291 		if (ocs_value != OCS_SUCCESS) {
7292 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7293 				ocs_value);
7294 			break;
7295 		}
7296 
7297 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7298 
7299 		break;
7300 	default:
7301 		err = -EINVAL;
7302 
7303 		break;
7304 	}
7305 
7306 	return err;
7307 }
7308 
7309 /**
7310  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7311  * @hba:	per adapter instance
7312  * @req_upiu:	upiu request
7313  * @rsp_upiu:	upiu reply
7314  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7315  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7316  * @sg_cnt:	The number of sg lists actually used
7317  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7318  * @dir:	DMA direction
7319  *
7320  * Return: zero on success, non-zero on failure.
7321  */
7322 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7323 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7324 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7325 			 enum dma_data_direction dir)
7326 {
7327 	DECLARE_COMPLETION_ONSTACK(wait);
7328 	const u32 tag = hba->reserved_slot;
7329 	struct ufshcd_lrb *lrbp;
7330 	int err = 0;
7331 	int result;
7332 	u8 upiu_flags;
7333 	u8 *ehs_data;
7334 	u16 ehs_len;
7335 
7336 	/* Protects use of hba->reserved_slot. */
7337 	ufshcd_hold(hba);
7338 	mutex_lock(&hba->dev_cmd.lock);
7339 	down_read(&hba->clk_scaling_lock);
7340 
7341 	lrbp = &hba->lrb[tag];
7342 	lrbp->cmd = NULL;
7343 	lrbp->task_tag = tag;
7344 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7345 
7346 	lrbp->intr_cmd = true;
7347 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7348 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7349 
7350 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7351 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7352 
7353 	/*
7354 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7355 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7356 	 * HW controller takes EHS length from UTRD.
7357 	 */
7358 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7359 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7360 	else
7361 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7362 
7363 	/* update the task tag */
7364 	req_upiu->header.task_tag = tag;
7365 
7366 	/* copy the UPIU(contains CDB) request as it is */
7367 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7368 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7369 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7370 
7371 	if (dir != DMA_NONE && sg_list)
7372 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7373 
7374 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7375 
7376 	hba->dev_cmd.complete = &wait;
7377 
7378 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7379 
7380 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7381 
7382 	if (!err) {
7383 		/* Just copy the upiu response as it is */
7384 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7385 		/* Get the response UPIU result */
7386 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7387 			lrbp->ucd_rsp_ptr->header.status;
7388 
7389 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7390 		/*
7391 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7392 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7393 		 * Message is 02h
7394 		 */
7395 		if (ehs_len == 2 && rsp_ehs) {
7396 			/*
7397 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7398 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7399 			 */
7400 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7401 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7402 		}
7403 	}
7404 
7405 	up_read(&hba->clk_scaling_lock);
7406 	mutex_unlock(&hba->dev_cmd.lock);
7407 	ufshcd_release(hba);
7408 	return err ? : result;
7409 }
7410 
7411 /**
7412  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7413  * @cmd: SCSI command pointer
7414  *
7415  * Return: SUCCESS or FAILED.
7416  */
7417 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7418 {
7419 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7420 	struct Scsi_Host *host;
7421 	struct ufs_hba *hba;
7422 	struct ufs_hw_queue *hwq;
7423 	struct ufshcd_lrb *lrbp;
7424 	u32 pos, not_cleared_mask = 0;
7425 	int err;
7426 	u8 resp = 0xF, lun;
7427 
7428 	host = cmd->device->host;
7429 	hba = shost_priv(host);
7430 
7431 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7432 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7433 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7434 		if (!err)
7435 			err = resp;
7436 		goto out;
7437 	}
7438 
7439 	if (is_mcq_enabled(hba)) {
7440 		for (pos = 0; pos < hba->nutrs; pos++) {
7441 			lrbp = &hba->lrb[pos];
7442 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7443 			    lrbp->lun == lun) {
7444 				ufshcd_clear_cmd(hba, pos);
7445 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7446 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7447 			}
7448 		}
7449 		err = 0;
7450 		goto out;
7451 	}
7452 
7453 	/* clear the commands that were pending for corresponding LUN */
7454 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7455 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7456 		if (hba->lrb[pos].lun == lun)
7457 			__set_bit(pos, &pending_reqs);
7458 	hba->outstanding_reqs &= ~pending_reqs;
7459 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7460 
7461 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7462 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7463 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7464 			not_cleared = 1U << pos &
7465 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7466 			hba->outstanding_reqs |= not_cleared;
7467 			not_cleared_mask |= not_cleared;
7468 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7469 
7470 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7471 				__func__, pos);
7472 		}
7473 	}
7474 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7475 
7476 out:
7477 	hba->req_abort_count = 0;
7478 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7479 	if (!err) {
7480 		err = SUCCESS;
7481 	} else {
7482 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7483 		err = FAILED;
7484 	}
7485 	return err;
7486 }
7487 
7488 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7489 {
7490 	struct ufshcd_lrb *lrbp;
7491 	int tag;
7492 
7493 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7494 		lrbp = &hba->lrb[tag];
7495 		lrbp->req_abort_skip = true;
7496 	}
7497 }
7498 
7499 /**
7500  * ufshcd_try_to_abort_task - abort a specific task
7501  * @hba: Pointer to adapter instance
7502  * @tag: Task tag/index to be aborted
7503  *
7504  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7505  * command, and in host controller by clearing the door-bell register. There can
7506  * be race between controller sending the command to the device while abort is
7507  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7508  * really issued and then try to abort it.
7509  *
7510  * Return: zero on success, non-zero on failure.
7511  */
7512 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7513 {
7514 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7515 	int err = 0;
7516 	int poll_cnt;
7517 	u8 resp = 0xF;
7518 	u32 reg;
7519 
7520 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7521 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7522 				UFS_QUERY_TASK, &resp);
7523 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7524 			/* cmd pending in the device */
7525 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7526 				__func__, tag);
7527 			break;
7528 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7529 			/*
7530 			 * cmd not pending in the device, check if it is
7531 			 * in transition.
7532 			 */
7533 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7534 				__func__, tag);
7535 			if (is_mcq_enabled(hba)) {
7536 				/* MCQ mode */
7537 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7538 					/* sleep for max. 200us same delay as in SDB mode */
7539 					usleep_range(100, 200);
7540 					continue;
7541 				}
7542 				/* command completed already */
7543 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7544 					__func__, tag);
7545 				goto out;
7546 			}
7547 
7548 			/* Single Doorbell Mode */
7549 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7550 			if (reg & (1 << tag)) {
7551 				/* sleep for max. 200us to stabilize */
7552 				usleep_range(100, 200);
7553 				continue;
7554 			}
7555 			/* command completed already */
7556 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7557 				__func__, tag);
7558 			goto out;
7559 		} else {
7560 			dev_err(hba->dev,
7561 				"%s: no response from device. tag = %d, err %d\n",
7562 				__func__, tag, err);
7563 			if (!err)
7564 				err = resp; /* service response error */
7565 			goto out;
7566 		}
7567 	}
7568 
7569 	if (!poll_cnt) {
7570 		err = -EBUSY;
7571 		goto out;
7572 	}
7573 
7574 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7575 			UFS_ABORT_TASK, &resp);
7576 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7577 		if (!err) {
7578 			err = resp; /* service response error */
7579 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7580 				__func__, tag, err);
7581 		}
7582 		goto out;
7583 	}
7584 
7585 	err = ufshcd_clear_cmd(hba, tag);
7586 	if (err)
7587 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7588 			__func__, tag, err);
7589 
7590 out:
7591 	return err;
7592 }
7593 
7594 /**
7595  * ufshcd_abort - scsi host template eh_abort_handler callback
7596  * @cmd: SCSI command pointer
7597  *
7598  * Return: SUCCESS or FAILED.
7599  */
7600 static int ufshcd_abort(struct scsi_cmnd *cmd)
7601 {
7602 	struct Scsi_Host *host = cmd->device->host;
7603 	struct ufs_hba *hba = shost_priv(host);
7604 	int tag = scsi_cmd_to_rq(cmd)->tag;
7605 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7606 	unsigned long flags;
7607 	int err = FAILED;
7608 	bool outstanding;
7609 	u32 reg;
7610 
7611 	ufshcd_hold(hba);
7612 
7613 	if (!is_mcq_enabled(hba)) {
7614 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7615 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7616 			/* If command is already aborted/completed, return FAILED. */
7617 			dev_err(hba->dev,
7618 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7619 				__func__, tag, hba->outstanding_reqs, reg);
7620 			goto release;
7621 		}
7622 	}
7623 
7624 	/* Print Transfer Request of aborted task */
7625 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7626 
7627 	/*
7628 	 * Print detailed info about aborted request.
7629 	 * As more than one request might get aborted at the same time,
7630 	 * print full information only for the first aborted request in order
7631 	 * to reduce repeated printouts. For other aborted requests only print
7632 	 * basic details.
7633 	 */
7634 	scsi_print_command(cmd);
7635 	if (!hba->req_abort_count) {
7636 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7637 		ufshcd_print_evt_hist(hba);
7638 		ufshcd_print_host_state(hba);
7639 		ufshcd_print_pwr_info(hba);
7640 		ufshcd_print_tr(hba, tag, true);
7641 	} else {
7642 		ufshcd_print_tr(hba, tag, false);
7643 	}
7644 	hba->req_abort_count++;
7645 
7646 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7647 		/* only execute this code in single doorbell mode */
7648 		dev_err(hba->dev,
7649 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7650 		__func__, tag);
7651 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7652 		goto release;
7653 	}
7654 
7655 	/*
7656 	 * Task abort to the device W-LUN is illegal. When this command
7657 	 * will fail, due to spec violation, scsi err handling next step
7658 	 * will be to send LU reset which, again, is a spec violation.
7659 	 * To avoid these unnecessary/illegal steps, first we clean up
7660 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7661 	 * then queue the eh_work and bail.
7662 	 */
7663 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7664 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7665 
7666 		spin_lock_irqsave(host->host_lock, flags);
7667 		hba->force_reset = true;
7668 		ufshcd_schedule_eh_work(hba);
7669 		spin_unlock_irqrestore(host->host_lock, flags);
7670 		goto release;
7671 	}
7672 
7673 	if (is_mcq_enabled(hba)) {
7674 		/* MCQ mode. Branch off to handle abort for mcq mode */
7675 		err = ufshcd_mcq_abort(cmd);
7676 		goto release;
7677 	}
7678 
7679 	/* Skip task abort in case previous aborts failed and report failure */
7680 	if (lrbp->req_abort_skip) {
7681 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7682 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7683 		goto release;
7684 	}
7685 
7686 	err = ufshcd_try_to_abort_task(hba, tag);
7687 	if (err) {
7688 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7689 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7690 		err = FAILED;
7691 		goto release;
7692 	}
7693 
7694 	/*
7695 	 * Clear the corresponding bit from outstanding_reqs since the command
7696 	 * has been aborted successfully.
7697 	 */
7698 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7699 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7700 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7701 
7702 	if (outstanding)
7703 		ufshcd_release_scsi_cmd(hba, lrbp);
7704 
7705 	err = SUCCESS;
7706 
7707 release:
7708 	/* Matches the ufshcd_hold() call at the start of this function. */
7709 	ufshcd_release(hba);
7710 	return err;
7711 }
7712 
7713 /**
7714  * ufshcd_host_reset_and_restore - reset and restore host controller
7715  * @hba: per-adapter instance
7716  *
7717  * Note that host controller reset may issue DME_RESET to
7718  * local and remote (device) Uni-Pro stack and the attributes
7719  * are reset to default state.
7720  *
7721  * Return: zero on success, non-zero on failure.
7722  */
7723 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7724 {
7725 	int err;
7726 
7727 	/*
7728 	 * Stop the host controller and complete the requests
7729 	 * cleared by h/w
7730 	 */
7731 	ufshcd_hba_stop(hba);
7732 	hba->silence_err_logs = true;
7733 	ufshcd_complete_requests(hba, true);
7734 	hba->silence_err_logs = false;
7735 
7736 	/* scale up clocks to max frequency before full reinitialization */
7737 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7738 
7739 	err = ufshcd_hba_enable(hba);
7740 
7741 	/* Establish the link again and restore the device */
7742 	if (!err)
7743 		err = ufshcd_probe_hba(hba, false);
7744 
7745 	if (err)
7746 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7747 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7748 	return err;
7749 }
7750 
7751 /**
7752  * ufshcd_reset_and_restore - reset and re-initialize host/device
7753  * @hba: per-adapter instance
7754  *
7755  * Reset and recover device, host and re-establish link. This
7756  * is helpful to recover the communication in fatal error conditions.
7757  *
7758  * Return: zero on success, non-zero on failure.
7759  */
7760 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7761 {
7762 	u32 saved_err = 0;
7763 	u32 saved_uic_err = 0;
7764 	int err = 0;
7765 	unsigned long flags;
7766 	int retries = MAX_HOST_RESET_RETRIES;
7767 
7768 	spin_lock_irqsave(hba->host->host_lock, flags);
7769 	do {
7770 		/*
7771 		 * This is a fresh start, cache and clear saved error first,
7772 		 * in case new error generated during reset and restore.
7773 		 */
7774 		saved_err |= hba->saved_err;
7775 		saved_uic_err |= hba->saved_uic_err;
7776 		hba->saved_err = 0;
7777 		hba->saved_uic_err = 0;
7778 		hba->force_reset = false;
7779 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7780 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7781 
7782 		/* Reset the attached device */
7783 		ufshcd_device_reset(hba);
7784 
7785 		err = ufshcd_host_reset_and_restore(hba);
7786 
7787 		spin_lock_irqsave(hba->host->host_lock, flags);
7788 		if (err)
7789 			continue;
7790 		/* Do not exit unless operational or dead */
7791 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7792 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7793 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7794 			err = -EAGAIN;
7795 	} while (err && --retries);
7796 
7797 	/*
7798 	 * Inform scsi mid-layer that we did reset and allow to handle
7799 	 * Unit Attention properly.
7800 	 */
7801 	scsi_report_bus_reset(hba->host, 0);
7802 	if (err) {
7803 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7804 		hba->saved_err |= saved_err;
7805 		hba->saved_uic_err |= saved_uic_err;
7806 	}
7807 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7808 
7809 	return err;
7810 }
7811 
7812 /**
7813  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7814  * @cmd: SCSI command pointer
7815  *
7816  * Return: SUCCESS or FAILED.
7817  */
7818 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7819 {
7820 	int err = SUCCESS;
7821 	unsigned long flags;
7822 	struct ufs_hba *hba;
7823 
7824 	hba = shost_priv(cmd->device->host);
7825 
7826 	/*
7827 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7828 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7829 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7830 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7831 	 */
7832 	if (hba->pm_op_in_progress) {
7833 		if (ufshcd_link_recovery(hba))
7834 			err = FAILED;
7835 
7836 		return err;
7837 	}
7838 
7839 	spin_lock_irqsave(hba->host->host_lock, flags);
7840 	hba->force_reset = true;
7841 	ufshcd_schedule_eh_work(hba);
7842 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7843 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7844 
7845 	flush_work(&hba->eh_work);
7846 
7847 	spin_lock_irqsave(hba->host->host_lock, flags);
7848 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7849 		err = FAILED;
7850 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7851 
7852 	return err;
7853 }
7854 
7855 /**
7856  * ufshcd_get_max_icc_level - calculate the ICC level
7857  * @sup_curr_uA: max. current supported by the regulator
7858  * @start_scan: row at the desc table to start scan from
7859  * @buff: power descriptor buffer
7860  *
7861  * Return: calculated max ICC level for specific regulator.
7862  */
7863 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7864 				    const char *buff)
7865 {
7866 	int i;
7867 	int curr_uA;
7868 	u16 data;
7869 	u16 unit;
7870 
7871 	for (i = start_scan; i >= 0; i--) {
7872 		data = get_unaligned_be16(&buff[2 * i]);
7873 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7874 						ATTR_ICC_LVL_UNIT_OFFSET;
7875 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7876 		switch (unit) {
7877 		case UFSHCD_NANO_AMP:
7878 			curr_uA = curr_uA / 1000;
7879 			break;
7880 		case UFSHCD_MILI_AMP:
7881 			curr_uA = curr_uA * 1000;
7882 			break;
7883 		case UFSHCD_AMP:
7884 			curr_uA = curr_uA * 1000 * 1000;
7885 			break;
7886 		case UFSHCD_MICRO_AMP:
7887 		default:
7888 			break;
7889 		}
7890 		if (sup_curr_uA >= curr_uA)
7891 			break;
7892 	}
7893 	if (i < 0) {
7894 		i = 0;
7895 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7896 	}
7897 
7898 	return (u32)i;
7899 }
7900 
7901 /**
7902  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7903  * In case regulators are not initialized we'll return 0
7904  * @hba: per-adapter instance
7905  * @desc_buf: power descriptor buffer to extract ICC levels from.
7906  *
7907  * Return: calculated ICC level.
7908  */
7909 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7910 						const u8 *desc_buf)
7911 {
7912 	u32 icc_level = 0;
7913 
7914 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7915 						!hba->vreg_info.vccq2) {
7916 		/*
7917 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7918 		 * never-ending cycles of messages written back to storage by
7919 		 * user space causing runtime resume, causing more messages and
7920 		 * so on.
7921 		 */
7922 		dev_dbg(hba->dev,
7923 			"%s: Regulator capability was not set, actvIccLevel=%d",
7924 							__func__, icc_level);
7925 		goto out;
7926 	}
7927 
7928 	if (hba->vreg_info.vcc->max_uA)
7929 		icc_level = ufshcd_get_max_icc_level(
7930 				hba->vreg_info.vcc->max_uA,
7931 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7932 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7933 
7934 	if (hba->vreg_info.vccq->max_uA)
7935 		icc_level = ufshcd_get_max_icc_level(
7936 				hba->vreg_info.vccq->max_uA,
7937 				icc_level,
7938 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7939 
7940 	if (hba->vreg_info.vccq2->max_uA)
7941 		icc_level = ufshcd_get_max_icc_level(
7942 				hba->vreg_info.vccq2->max_uA,
7943 				icc_level,
7944 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7945 out:
7946 	return icc_level;
7947 }
7948 
7949 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7950 {
7951 	int ret;
7952 	u8 *desc_buf;
7953 	u32 icc_level;
7954 
7955 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7956 	if (!desc_buf)
7957 		return;
7958 
7959 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7960 				     desc_buf, QUERY_DESC_MAX_SIZE);
7961 	if (ret) {
7962 		dev_err(hba->dev,
7963 			"%s: Failed reading power descriptor ret = %d",
7964 			__func__, ret);
7965 		goto out;
7966 	}
7967 
7968 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7969 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7970 
7971 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7972 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7973 
7974 	if (ret)
7975 		dev_err(hba->dev,
7976 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7977 			__func__, icc_level, ret);
7978 
7979 out:
7980 	kfree(desc_buf);
7981 }
7982 
7983 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7984 {
7985 	scsi_autopm_get_device(sdev);
7986 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7987 	if (sdev->rpm_autosuspend)
7988 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7989 						 RPM_AUTOSUSPEND_DELAY_MS);
7990 	scsi_autopm_put_device(sdev);
7991 }
7992 
7993 /**
7994  * ufshcd_scsi_add_wlus - Adds required W-LUs
7995  * @hba: per-adapter instance
7996  *
7997  * UFS device specification requires the UFS devices to support 4 well known
7998  * logical units:
7999  *	"REPORT_LUNS" (address: 01h)
8000  *	"UFS Device" (address: 50h)
8001  *	"RPMB" (address: 44h)
8002  *	"BOOT" (address: 30h)
8003  * UFS device's power management needs to be controlled by "POWER CONDITION"
8004  * field of SSU (START STOP UNIT) command. But this "power condition" field
8005  * will take effect only when its sent to "UFS device" well known logical unit
8006  * hence we require the scsi_device instance to represent this logical unit in
8007  * order for the UFS host driver to send the SSU command for power management.
8008  *
8009  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8010  * Block) LU so user space process can control this LU. User space may also
8011  * want to have access to BOOT LU.
8012  *
8013  * This function adds scsi device instances for each of all well known LUs
8014  * (except "REPORT LUNS" LU).
8015  *
8016  * Return: zero on success (all required W-LUs are added successfully),
8017  * non-zero error value on failure (if failed to add any of the required W-LU).
8018  */
8019 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8020 {
8021 	int ret = 0;
8022 	struct scsi_device *sdev_boot, *sdev_rpmb;
8023 
8024 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8025 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8026 	if (IS_ERR(hba->ufs_device_wlun)) {
8027 		ret = PTR_ERR(hba->ufs_device_wlun);
8028 		hba->ufs_device_wlun = NULL;
8029 		goto out;
8030 	}
8031 	scsi_device_put(hba->ufs_device_wlun);
8032 
8033 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8034 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8035 	if (IS_ERR(sdev_rpmb)) {
8036 		ret = PTR_ERR(sdev_rpmb);
8037 		goto remove_ufs_device_wlun;
8038 	}
8039 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8040 	scsi_device_put(sdev_rpmb);
8041 
8042 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8043 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8044 	if (IS_ERR(sdev_boot)) {
8045 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8046 	} else {
8047 		ufshcd_blk_pm_runtime_init(sdev_boot);
8048 		scsi_device_put(sdev_boot);
8049 	}
8050 	goto out;
8051 
8052 remove_ufs_device_wlun:
8053 	scsi_remove_device(hba->ufs_device_wlun);
8054 out:
8055 	return ret;
8056 }
8057 
8058 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8059 {
8060 	struct ufs_dev_info *dev_info = &hba->dev_info;
8061 	u8 lun;
8062 	u32 d_lu_wb_buf_alloc;
8063 	u32 ext_ufs_feature;
8064 
8065 	if (!ufshcd_is_wb_allowed(hba))
8066 		return;
8067 
8068 	/*
8069 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8070 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8071 	 * enabled
8072 	 */
8073 	if (!(dev_info->wspecversion >= 0x310 ||
8074 	      dev_info->wspecversion == 0x220 ||
8075 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8076 		goto wb_disabled;
8077 
8078 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8079 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8080 
8081 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8082 		goto wb_disabled;
8083 
8084 	/*
8085 	 * WB may be supported but not configured while provisioning. The spec
8086 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8087 	 * buffer configured.
8088 	 */
8089 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8090 
8091 	dev_info->b_presrv_uspc_en =
8092 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8093 
8094 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8095 		if (!get_unaligned_be32(desc_buf +
8096 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8097 			goto wb_disabled;
8098 	} else {
8099 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8100 			d_lu_wb_buf_alloc = 0;
8101 			ufshcd_read_unit_desc_param(hba,
8102 					lun,
8103 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8104 					(u8 *)&d_lu_wb_buf_alloc,
8105 					sizeof(d_lu_wb_buf_alloc));
8106 			if (d_lu_wb_buf_alloc) {
8107 				dev_info->wb_dedicated_lu = lun;
8108 				break;
8109 			}
8110 		}
8111 
8112 		if (!d_lu_wb_buf_alloc)
8113 			goto wb_disabled;
8114 	}
8115 
8116 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8117 		goto wb_disabled;
8118 
8119 	return;
8120 
8121 wb_disabled:
8122 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8123 }
8124 
8125 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8126 {
8127 	struct ufs_dev_info *dev_info = &hba->dev_info;
8128 	u32 ext_ufs_feature;
8129 	u8 mask = 0;
8130 
8131 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8132 		return;
8133 
8134 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8135 
8136 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8137 		mask |= MASK_EE_TOO_LOW_TEMP;
8138 
8139 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8140 		mask |= MASK_EE_TOO_HIGH_TEMP;
8141 
8142 	if (mask) {
8143 		ufshcd_enable_ee(hba, mask);
8144 		ufs_hwmon_probe(hba, mask);
8145 	}
8146 }
8147 
8148 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8149 {
8150 	struct ufs_dev_info *dev_info = &hba->dev_info;
8151 	u32 ext_ufs_feature;
8152 	u32 ext_iid_en = 0;
8153 	int err;
8154 
8155 	/* Only UFS-4.0 and above may support EXT_IID */
8156 	if (dev_info->wspecversion < 0x400)
8157 		goto out;
8158 
8159 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8160 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8161 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8162 		goto out;
8163 
8164 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8165 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8166 	if (err)
8167 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8168 
8169 out:
8170 	dev_info->b_ext_iid_en = ext_iid_en;
8171 }
8172 
8173 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8174 			     const struct ufs_dev_quirk *fixups)
8175 {
8176 	const struct ufs_dev_quirk *f;
8177 	struct ufs_dev_info *dev_info = &hba->dev_info;
8178 
8179 	if (!fixups)
8180 		return;
8181 
8182 	for (f = fixups; f->quirk; f++) {
8183 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8184 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8185 		     ((dev_info->model &&
8186 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8187 		      !strcmp(f->model, UFS_ANY_MODEL)))
8188 			hba->dev_quirks |= f->quirk;
8189 	}
8190 }
8191 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8192 
8193 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8194 {
8195 	/* fix by general quirk table */
8196 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8197 
8198 	/* allow vendors to fix quirks */
8199 	ufshcd_vops_fixup_dev_quirks(hba);
8200 }
8201 
8202 static int ufs_get_device_desc(struct ufs_hba *hba)
8203 {
8204 	int err;
8205 	u8 model_index;
8206 	u8 *desc_buf;
8207 	struct ufs_dev_info *dev_info = &hba->dev_info;
8208 
8209 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8210 	if (!desc_buf) {
8211 		err = -ENOMEM;
8212 		goto out;
8213 	}
8214 
8215 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8216 				     QUERY_DESC_MAX_SIZE);
8217 	if (err) {
8218 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8219 			__func__, err);
8220 		goto out;
8221 	}
8222 
8223 	/*
8224 	 * getting vendor (manufacturerID) and Bank Index in big endian
8225 	 * format
8226 	 */
8227 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8228 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8229 
8230 	/* getting Specification Version in big endian format */
8231 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8232 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8233 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8234 
8235 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8236 
8237 	err = ufshcd_read_string_desc(hba, model_index,
8238 				      &dev_info->model, SD_ASCII_STD);
8239 	if (err < 0) {
8240 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8241 			__func__, err);
8242 		goto out;
8243 	}
8244 
8245 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8246 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8247 
8248 	ufs_fixup_device_setup(hba);
8249 
8250 	ufshcd_wb_probe(hba, desc_buf);
8251 
8252 	ufshcd_temp_notif_probe(hba, desc_buf);
8253 
8254 	if (hba->ext_iid_sup)
8255 		ufshcd_ext_iid_probe(hba, desc_buf);
8256 
8257 	/*
8258 	 * ufshcd_read_string_desc returns size of the string
8259 	 * reset the error value
8260 	 */
8261 	err = 0;
8262 
8263 out:
8264 	kfree(desc_buf);
8265 	return err;
8266 }
8267 
8268 static void ufs_put_device_desc(struct ufs_hba *hba)
8269 {
8270 	struct ufs_dev_info *dev_info = &hba->dev_info;
8271 
8272 	kfree(dev_info->model);
8273 	dev_info->model = NULL;
8274 }
8275 
8276 /**
8277  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8278  * @hba: per-adapter instance
8279  *
8280  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8281  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8282  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8283  * the hibern8 exit latency.
8284  *
8285  * Return: zero on success, non-zero error value on failure.
8286  */
8287 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8288 {
8289 	int ret = 0;
8290 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8291 
8292 	ret = ufshcd_dme_peer_get(hba,
8293 				  UIC_ARG_MIB_SEL(
8294 					RX_MIN_ACTIVATETIME_CAPABILITY,
8295 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8296 				  &peer_rx_min_activatetime);
8297 	if (ret)
8298 		goto out;
8299 
8300 	/* make sure proper unit conversion is applied */
8301 	tuned_pa_tactivate =
8302 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8303 		 / PA_TACTIVATE_TIME_UNIT_US);
8304 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8305 			     tuned_pa_tactivate);
8306 
8307 out:
8308 	return ret;
8309 }
8310 
8311 /**
8312  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8313  * @hba: per-adapter instance
8314  *
8315  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8316  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8317  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8318  * This optimal value can help reduce the hibern8 exit latency.
8319  *
8320  * Return: zero on success, non-zero error value on failure.
8321  */
8322 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8323 {
8324 	int ret = 0;
8325 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8326 	u32 max_hibern8_time, tuned_pa_hibern8time;
8327 
8328 	ret = ufshcd_dme_get(hba,
8329 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8330 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8331 				  &local_tx_hibern8_time_cap);
8332 	if (ret)
8333 		goto out;
8334 
8335 	ret = ufshcd_dme_peer_get(hba,
8336 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8337 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8338 				  &peer_rx_hibern8_time_cap);
8339 	if (ret)
8340 		goto out;
8341 
8342 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8343 			       peer_rx_hibern8_time_cap);
8344 	/* make sure proper unit conversion is applied */
8345 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8346 				/ PA_HIBERN8_TIME_UNIT_US);
8347 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8348 			     tuned_pa_hibern8time);
8349 out:
8350 	return ret;
8351 }
8352 
8353 /**
8354  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8355  * less than device PA_TACTIVATE time.
8356  * @hba: per-adapter instance
8357  *
8358  * Some UFS devices require host PA_TACTIVATE to be lower than device
8359  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8360  * for such devices.
8361  *
8362  * Return: zero on success, non-zero error value on failure.
8363  */
8364 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8365 {
8366 	int ret = 0;
8367 	u32 granularity, peer_granularity;
8368 	u32 pa_tactivate, peer_pa_tactivate;
8369 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8370 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8371 
8372 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8373 				  &granularity);
8374 	if (ret)
8375 		goto out;
8376 
8377 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8378 				  &peer_granularity);
8379 	if (ret)
8380 		goto out;
8381 
8382 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8383 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8384 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8385 			__func__, granularity);
8386 		return -EINVAL;
8387 	}
8388 
8389 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8390 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8391 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8392 			__func__, peer_granularity);
8393 		return -EINVAL;
8394 	}
8395 
8396 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8397 	if (ret)
8398 		goto out;
8399 
8400 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8401 				  &peer_pa_tactivate);
8402 	if (ret)
8403 		goto out;
8404 
8405 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8406 	peer_pa_tactivate_us = peer_pa_tactivate *
8407 			     gran_to_us_table[peer_granularity - 1];
8408 
8409 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8410 		u32 new_peer_pa_tactivate;
8411 
8412 		new_peer_pa_tactivate = pa_tactivate_us /
8413 				      gran_to_us_table[peer_granularity - 1];
8414 		new_peer_pa_tactivate++;
8415 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8416 					  new_peer_pa_tactivate);
8417 	}
8418 
8419 out:
8420 	return ret;
8421 }
8422 
8423 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8424 {
8425 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8426 		ufshcd_tune_pa_tactivate(hba);
8427 		ufshcd_tune_pa_hibern8time(hba);
8428 	}
8429 
8430 	ufshcd_vops_apply_dev_quirks(hba);
8431 
8432 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8433 		/* set 1ms timeout for PA_TACTIVATE */
8434 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8435 
8436 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8437 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8438 }
8439 
8440 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8441 {
8442 	hba->ufs_stats.hibern8_exit_cnt = 0;
8443 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8444 	hba->req_abort_count = 0;
8445 }
8446 
8447 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8448 {
8449 	int err;
8450 	u8 *desc_buf;
8451 
8452 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8453 	if (!desc_buf) {
8454 		err = -ENOMEM;
8455 		goto out;
8456 	}
8457 
8458 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8459 				     desc_buf, QUERY_DESC_MAX_SIZE);
8460 	if (err) {
8461 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8462 				__func__, err);
8463 		goto out;
8464 	}
8465 
8466 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8467 		hba->dev_info.max_lu_supported = 32;
8468 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8469 		hba->dev_info.max_lu_supported = 8;
8470 
8471 out:
8472 	kfree(desc_buf);
8473 	return err;
8474 }
8475 
8476 struct ufs_ref_clk {
8477 	unsigned long freq_hz;
8478 	enum ufs_ref_clk_freq val;
8479 };
8480 
8481 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8482 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8483 	{26000000, REF_CLK_FREQ_26_MHZ},
8484 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8485 	{52000000, REF_CLK_FREQ_52_MHZ},
8486 	{0, REF_CLK_FREQ_INVAL},
8487 };
8488 
8489 static enum ufs_ref_clk_freq
8490 ufs_get_bref_clk_from_hz(unsigned long freq)
8491 {
8492 	int i;
8493 
8494 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8495 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8496 			return ufs_ref_clk_freqs[i].val;
8497 
8498 	return REF_CLK_FREQ_INVAL;
8499 }
8500 
8501 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8502 {
8503 	unsigned long freq;
8504 
8505 	freq = clk_get_rate(refclk);
8506 
8507 	hba->dev_ref_clk_freq =
8508 		ufs_get_bref_clk_from_hz(freq);
8509 
8510 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8511 		dev_err(hba->dev,
8512 		"invalid ref_clk setting = %ld\n", freq);
8513 }
8514 
8515 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8516 {
8517 	int err;
8518 	u32 ref_clk;
8519 	u32 freq = hba->dev_ref_clk_freq;
8520 
8521 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8522 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8523 
8524 	if (err) {
8525 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8526 			err);
8527 		goto out;
8528 	}
8529 
8530 	if (ref_clk == freq)
8531 		goto out; /* nothing to update */
8532 
8533 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8534 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8535 
8536 	if (err) {
8537 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8538 			ufs_ref_clk_freqs[freq].freq_hz);
8539 		goto out;
8540 	}
8541 
8542 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8543 			ufs_ref_clk_freqs[freq].freq_hz);
8544 
8545 out:
8546 	return err;
8547 }
8548 
8549 static int ufshcd_device_params_init(struct ufs_hba *hba)
8550 {
8551 	bool flag;
8552 	int ret;
8553 
8554 	/* Init UFS geometry descriptor related parameters */
8555 	ret = ufshcd_device_geo_params_init(hba);
8556 	if (ret)
8557 		goto out;
8558 
8559 	/* Check and apply UFS device quirks */
8560 	ret = ufs_get_device_desc(hba);
8561 	if (ret) {
8562 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8563 			__func__, ret);
8564 		goto out;
8565 	}
8566 
8567 	ufshcd_get_ref_clk_gating_wait(hba);
8568 
8569 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8570 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8571 		hba->dev_info.f_power_on_wp_en = flag;
8572 
8573 	/* Probe maximum power mode co-supported by both UFS host and device */
8574 	if (ufshcd_get_max_pwr_mode(hba))
8575 		dev_err(hba->dev,
8576 			"%s: Failed getting max supported power mode\n",
8577 			__func__);
8578 out:
8579 	return ret;
8580 }
8581 
8582 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8583 {
8584 	int err;
8585 	struct ufs_query_req *request = NULL;
8586 	struct ufs_query_res *response = NULL;
8587 	struct ufs_dev_info *dev_info = &hba->dev_info;
8588 	struct utp_upiu_query_v4_0 *upiu_data;
8589 
8590 	if (dev_info->wspecversion < 0x400)
8591 		return;
8592 
8593 	ufshcd_hold(hba);
8594 
8595 	mutex_lock(&hba->dev_cmd.lock);
8596 
8597 	ufshcd_init_query(hba, &request, &response,
8598 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8599 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8600 
8601 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8602 
8603 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8604 
8605 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8606 
8607 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8608 
8609 	if (err)
8610 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8611 			__func__, err);
8612 
8613 	mutex_unlock(&hba->dev_cmd.lock);
8614 	ufshcd_release(hba);
8615 }
8616 
8617 /**
8618  * ufshcd_add_lus - probe and add UFS logical units
8619  * @hba: per-adapter instance
8620  *
8621  * Return: 0 upon success; < 0 upon failure.
8622  */
8623 static int ufshcd_add_lus(struct ufs_hba *hba)
8624 {
8625 	int ret;
8626 
8627 	/* Add required well known logical units to scsi mid layer */
8628 	ret = ufshcd_scsi_add_wlus(hba);
8629 	if (ret)
8630 		goto out;
8631 
8632 	/* Initialize devfreq after UFS device is detected */
8633 	if (ufshcd_is_clkscaling_supported(hba)) {
8634 		memcpy(&hba->clk_scaling.saved_pwr_info,
8635 			&hba->pwr_info,
8636 			sizeof(struct ufs_pa_layer_attr));
8637 		hba->clk_scaling.is_allowed = true;
8638 
8639 		ret = ufshcd_devfreq_init(hba);
8640 		if (ret)
8641 			goto out;
8642 
8643 		hba->clk_scaling.is_enabled = true;
8644 		ufshcd_init_clk_scaling_sysfs(hba);
8645 	}
8646 
8647 	ufs_bsg_probe(hba);
8648 	scsi_scan_host(hba->host);
8649 	pm_runtime_put_sync(hba->dev);
8650 
8651 out:
8652 	return ret;
8653 }
8654 
8655 /* SDB - Single Doorbell */
8656 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8657 {
8658 	size_t ucdl_size, utrdl_size;
8659 
8660 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8661 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8662 			   hba->ucdl_dma_addr);
8663 
8664 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8665 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8666 			   hba->utrdl_dma_addr);
8667 
8668 	devm_kfree(hba->dev, hba->lrb);
8669 }
8670 
8671 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8672 {
8673 	int ret;
8674 	int old_nutrs = hba->nutrs;
8675 
8676 	ret = ufshcd_mcq_decide_queue_depth(hba);
8677 	if (ret < 0)
8678 		return ret;
8679 
8680 	hba->nutrs = ret;
8681 	ret = ufshcd_mcq_init(hba);
8682 	if (ret)
8683 		goto err;
8684 
8685 	/*
8686 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8687 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8688 	 */
8689 	if (hba->nutrs != old_nutrs) {
8690 		ufshcd_release_sdb_queue(hba, old_nutrs);
8691 		ret = ufshcd_memory_alloc(hba);
8692 		if (ret)
8693 			goto err;
8694 		ufshcd_host_memory_configure(hba);
8695 	}
8696 
8697 	ret = ufshcd_mcq_memory_alloc(hba);
8698 	if (ret)
8699 		goto err;
8700 
8701 	return 0;
8702 err:
8703 	hba->nutrs = old_nutrs;
8704 	return ret;
8705 }
8706 
8707 static void ufshcd_config_mcq(struct ufs_hba *hba)
8708 {
8709 	int ret;
8710 	u32 intrs;
8711 
8712 	ret = ufshcd_mcq_vops_config_esi(hba);
8713 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8714 
8715 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8716 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8717 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8718 	ufshcd_enable_intr(hba, intrs);
8719 	ufshcd_mcq_make_queues_operational(hba);
8720 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8721 
8722 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8723 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8724 
8725 	/* Select MCQ mode */
8726 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8727 		      REG_UFS_MEM_CFG);
8728 	hba->mcq_enabled = true;
8729 
8730 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8731 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8732 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8733 		 hba->nutrs);
8734 }
8735 
8736 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8737 {
8738 	int ret;
8739 	struct Scsi_Host *host = hba->host;
8740 
8741 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8742 
8743 	ret = ufshcd_link_startup(hba);
8744 	if (ret)
8745 		return ret;
8746 
8747 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8748 		return ret;
8749 
8750 	/* Debug counters initialization */
8751 	ufshcd_clear_dbg_ufs_stats(hba);
8752 
8753 	/* UniPro link is active now */
8754 	ufshcd_set_link_active(hba);
8755 
8756 	/* Reconfigure MCQ upon reset */
8757 	if (is_mcq_enabled(hba) && !init_dev_params)
8758 		ufshcd_config_mcq(hba);
8759 
8760 	/* Verify device initialization by sending NOP OUT UPIU */
8761 	ret = ufshcd_verify_dev_init(hba);
8762 	if (ret)
8763 		return ret;
8764 
8765 	/* Initiate UFS initialization, and waiting until completion */
8766 	ret = ufshcd_complete_dev_init(hba);
8767 	if (ret)
8768 		return ret;
8769 
8770 	/*
8771 	 * Initialize UFS device parameters used by driver, these
8772 	 * parameters are associated with UFS descriptors.
8773 	 */
8774 	if (init_dev_params) {
8775 		ret = ufshcd_device_params_init(hba);
8776 		if (ret)
8777 			return ret;
8778 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8779 			ret = ufshcd_alloc_mcq(hba);
8780 			if (!ret) {
8781 				ufshcd_config_mcq(hba);
8782 			} else {
8783 				/* Continue with SDB mode */
8784 				use_mcq_mode = false;
8785 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8786 					 ret);
8787 			}
8788 			ret = scsi_add_host(host, hba->dev);
8789 			if (ret) {
8790 				dev_err(hba->dev, "scsi_add_host failed\n");
8791 				return ret;
8792 			}
8793 			hba->scsi_host_added = true;
8794 		} else if (is_mcq_supported(hba)) {
8795 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8796 			ufshcd_config_mcq(hba);
8797 		}
8798 	}
8799 
8800 	ufshcd_tune_unipro_params(hba);
8801 
8802 	/* UFS device is also active now */
8803 	ufshcd_set_ufs_dev_active(hba);
8804 	ufshcd_force_reset_auto_bkops(hba);
8805 
8806 	ufshcd_set_timestamp_attr(hba);
8807 
8808 	/* Gear up to HS gear if supported */
8809 	if (hba->max_pwr_info.is_valid) {
8810 		/*
8811 		 * Set the right value to bRefClkFreq before attempting to
8812 		 * switch to HS gears.
8813 		 */
8814 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8815 			ufshcd_set_dev_ref_clk(hba);
8816 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8817 		if (ret) {
8818 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8819 					__func__, ret);
8820 			return ret;
8821 		}
8822 	}
8823 
8824 	return 0;
8825 }
8826 
8827 /**
8828  * ufshcd_probe_hba - probe hba to detect device and initialize it
8829  * @hba: per-adapter instance
8830  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8831  *
8832  * Execute link-startup and verify device initialization
8833  *
8834  * Return: 0 upon success; < 0 upon failure.
8835  */
8836 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8837 {
8838 	ktime_t start = ktime_get();
8839 	unsigned long flags;
8840 	int ret;
8841 
8842 	ret = ufshcd_device_init(hba, init_dev_params);
8843 	if (ret)
8844 		goto out;
8845 
8846 	if (!hba->pm_op_in_progress &&
8847 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8848 		/* Reset the device and controller before doing reinit */
8849 		ufshcd_device_reset(hba);
8850 		ufshcd_hba_stop(hba);
8851 		ufshcd_vops_reinit_notify(hba);
8852 		ret = ufshcd_hba_enable(hba);
8853 		if (ret) {
8854 			dev_err(hba->dev, "Host controller enable failed\n");
8855 			ufshcd_print_evt_hist(hba);
8856 			ufshcd_print_host_state(hba);
8857 			goto out;
8858 		}
8859 
8860 		/* Reinit the device */
8861 		ret = ufshcd_device_init(hba, init_dev_params);
8862 		if (ret)
8863 			goto out;
8864 	}
8865 
8866 	ufshcd_print_pwr_info(hba);
8867 
8868 	/*
8869 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8870 	 * and for removable UFS card as well, hence always set the parameter.
8871 	 * Note: Error handler may issue the device reset hence resetting
8872 	 * bActiveICCLevel as well so it is always safe to set this here.
8873 	 */
8874 	ufshcd_set_active_icc_lvl(hba);
8875 
8876 	/* Enable UFS Write Booster if supported */
8877 	ufshcd_configure_wb(hba);
8878 
8879 	if (hba->ee_usr_mask)
8880 		ufshcd_write_ee_control(hba);
8881 	/* Enable Auto-Hibernate if configured */
8882 	ufshcd_auto_hibern8_enable(hba);
8883 
8884 out:
8885 	spin_lock_irqsave(hba->host->host_lock, flags);
8886 	if (ret)
8887 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8888 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8889 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8890 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8891 
8892 	trace_ufshcd_init(dev_name(hba->dev), ret,
8893 		ktime_to_us(ktime_sub(ktime_get(), start)),
8894 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8895 	return ret;
8896 }
8897 
8898 /**
8899  * ufshcd_async_scan - asynchronous execution for probing hba
8900  * @data: data pointer to pass to this function
8901  * @cookie: cookie data
8902  */
8903 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8904 {
8905 	struct ufs_hba *hba = (struct ufs_hba *)data;
8906 	int ret;
8907 
8908 	down(&hba->host_sem);
8909 	/* Initialize hba, detect and initialize UFS device */
8910 	ret = ufshcd_probe_hba(hba, true);
8911 	up(&hba->host_sem);
8912 	if (ret)
8913 		goto out;
8914 
8915 	/* Probe and add UFS logical units  */
8916 	ret = ufshcd_add_lus(hba);
8917 out:
8918 	/*
8919 	 * If we failed to initialize the device or the device is not
8920 	 * present, turn off the power/clocks etc.
8921 	 */
8922 	if (ret) {
8923 		pm_runtime_put_sync(hba->dev);
8924 		ufshcd_hba_exit(hba);
8925 	}
8926 }
8927 
8928 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8929 {
8930 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8931 
8932 	if (!hba->system_suspending) {
8933 		/* Activate the error handler in the SCSI core. */
8934 		return SCSI_EH_NOT_HANDLED;
8935 	}
8936 
8937 	/*
8938 	 * If we get here we know that no TMFs are outstanding and also that
8939 	 * the only pending command is a START STOP UNIT command. Handle the
8940 	 * timeout of that command directly to prevent a deadlock between
8941 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8942 	 */
8943 	ufshcd_link_recovery(hba);
8944 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8945 		 __func__, hba->outstanding_tasks);
8946 
8947 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8948 }
8949 
8950 static const struct attribute_group *ufshcd_driver_groups[] = {
8951 	&ufs_sysfs_unit_descriptor_group,
8952 	&ufs_sysfs_lun_attributes_group,
8953 	NULL,
8954 };
8955 
8956 static struct ufs_hba_variant_params ufs_hba_vps = {
8957 	.hba_enable_delay_us		= 1000,
8958 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8959 	.devfreq_profile.polling_ms	= 100,
8960 	.devfreq_profile.target		= ufshcd_devfreq_target,
8961 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8962 	.ondemand_data.upthreshold	= 70,
8963 	.ondemand_data.downdifferential	= 5,
8964 };
8965 
8966 static const struct scsi_host_template ufshcd_driver_template = {
8967 	.module			= THIS_MODULE,
8968 	.name			= UFSHCD,
8969 	.proc_name		= UFSHCD,
8970 	.map_queues		= ufshcd_map_queues,
8971 	.queuecommand		= ufshcd_queuecommand,
8972 	.mq_poll		= ufshcd_poll,
8973 	.slave_alloc		= ufshcd_slave_alloc,
8974 	.slave_configure	= ufshcd_slave_configure,
8975 	.slave_destroy		= ufshcd_slave_destroy,
8976 	.change_queue_depth	= ufshcd_change_queue_depth,
8977 	.eh_abort_handler	= ufshcd_abort,
8978 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8979 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8980 	.eh_timed_out		= ufshcd_eh_timed_out,
8981 	.this_id		= -1,
8982 	.sg_tablesize		= SG_ALL,
8983 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8984 	.can_queue		= UFSHCD_CAN_QUEUE,
8985 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8986 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8987 	.max_host_blocked	= 1,
8988 	.track_queue_depth	= 1,
8989 	.skip_settle_delay	= 1,
8990 	.sdev_groups		= ufshcd_driver_groups,
8991 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8992 };
8993 
8994 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8995 				   int ua)
8996 {
8997 	int ret;
8998 
8999 	if (!vreg)
9000 		return 0;
9001 
9002 	/*
9003 	 * "set_load" operation shall be required on those regulators
9004 	 * which specifically configured current limitation. Otherwise
9005 	 * zero max_uA may cause unexpected behavior when regulator is
9006 	 * enabled or set as high power mode.
9007 	 */
9008 	if (!vreg->max_uA)
9009 		return 0;
9010 
9011 	ret = regulator_set_load(vreg->reg, ua);
9012 	if (ret < 0) {
9013 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9014 				__func__, vreg->name, ua, ret);
9015 	}
9016 
9017 	return ret;
9018 }
9019 
9020 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9021 					 struct ufs_vreg *vreg)
9022 {
9023 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9024 }
9025 
9026 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9027 					 struct ufs_vreg *vreg)
9028 {
9029 	if (!vreg)
9030 		return 0;
9031 
9032 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9033 }
9034 
9035 static int ufshcd_config_vreg(struct device *dev,
9036 		struct ufs_vreg *vreg, bool on)
9037 {
9038 	if (regulator_count_voltages(vreg->reg) <= 0)
9039 		return 0;
9040 
9041 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9042 }
9043 
9044 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9045 {
9046 	int ret = 0;
9047 
9048 	if (!vreg || vreg->enabled)
9049 		goto out;
9050 
9051 	ret = ufshcd_config_vreg(dev, vreg, true);
9052 	if (!ret)
9053 		ret = regulator_enable(vreg->reg);
9054 
9055 	if (!ret)
9056 		vreg->enabled = true;
9057 	else
9058 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9059 				__func__, vreg->name, ret);
9060 out:
9061 	return ret;
9062 }
9063 
9064 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9065 {
9066 	int ret = 0;
9067 
9068 	if (!vreg || !vreg->enabled || vreg->always_on)
9069 		goto out;
9070 
9071 	ret = regulator_disable(vreg->reg);
9072 
9073 	if (!ret) {
9074 		/* ignore errors on applying disable config */
9075 		ufshcd_config_vreg(dev, vreg, false);
9076 		vreg->enabled = false;
9077 	} else {
9078 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9079 				__func__, vreg->name, ret);
9080 	}
9081 out:
9082 	return ret;
9083 }
9084 
9085 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9086 {
9087 	int ret = 0;
9088 	struct device *dev = hba->dev;
9089 	struct ufs_vreg_info *info = &hba->vreg_info;
9090 
9091 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9092 	if (ret)
9093 		goto out;
9094 
9095 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9096 	if (ret)
9097 		goto out;
9098 
9099 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9100 
9101 out:
9102 	if (ret) {
9103 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9104 		ufshcd_toggle_vreg(dev, info->vccq, false);
9105 		ufshcd_toggle_vreg(dev, info->vcc, false);
9106 	}
9107 	return ret;
9108 }
9109 
9110 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9111 {
9112 	struct ufs_vreg_info *info = &hba->vreg_info;
9113 
9114 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9115 }
9116 
9117 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9118 {
9119 	int ret = 0;
9120 
9121 	if (!vreg)
9122 		goto out;
9123 
9124 	vreg->reg = devm_regulator_get(dev, vreg->name);
9125 	if (IS_ERR(vreg->reg)) {
9126 		ret = PTR_ERR(vreg->reg);
9127 		dev_err(dev, "%s: %s get failed, err=%d\n",
9128 				__func__, vreg->name, ret);
9129 	}
9130 out:
9131 	return ret;
9132 }
9133 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9134 
9135 static int ufshcd_init_vreg(struct ufs_hba *hba)
9136 {
9137 	int ret = 0;
9138 	struct device *dev = hba->dev;
9139 	struct ufs_vreg_info *info = &hba->vreg_info;
9140 
9141 	ret = ufshcd_get_vreg(dev, info->vcc);
9142 	if (ret)
9143 		goto out;
9144 
9145 	ret = ufshcd_get_vreg(dev, info->vccq);
9146 	if (!ret)
9147 		ret = ufshcd_get_vreg(dev, info->vccq2);
9148 out:
9149 	return ret;
9150 }
9151 
9152 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9153 {
9154 	struct ufs_vreg_info *info = &hba->vreg_info;
9155 
9156 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9157 }
9158 
9159 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9160 {
9161 	int ret = 0;
9162 	struct ufs_clk_info *clki;
9163 	struct list_head *head = &hba->clk_list_head;
9164 	unsigned long flags;
9165 	ktime_t start = ktime_get();
9166 	bool clk_state_changed = false;
9167 
9168 	if (list_empty(head))
9169 		goto out;
9170 
9171 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9172 	if (ret)
9173 		return ret;
9174 
9175 	list_for_each_entry(clki, head, list) {
9176 		if (!IS_ERR_OR_NULL(clki->clk)) {
9177 			/*
9178 			 * Don't disable clocks which are needed
9179 			 * to keep the link active.
9180 			 */
9181 			if (ufshcd_is_link_active(hba) &&
9182 			    clki->keep_link_active)
9183 				continue;
9184 
9185 			clk_state_changed = on ^ clki->enabled;
9186 			if (on && !clki->enabled) {
9187 				ret = clk_prepare_enable(clki->clk);
9188 				if (ret) {
9189 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9190 						__func__, clki->name, ret);
9191 					goto out;
9192 				}
9193 			} else if (!on && clki->enabled) {
9194 				clk_disable_unprepare(clki->clk);
9195 			}
9196 			clki->enabled = on;
9197 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9198 					clki->name, on ? "en" : "dis");
9199 		}
9200 	}
9201 
9202 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9203 	if (ret)
9204 		return ret;
9205 
9206 out:
9207 	if (ret) {
9208 		list_for_each_entry(clki, head, list) {
9209 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9210 				clk_disable_unprepare(clki->clk);
9211 		}
9212 	} else if (!ret && on) {
9213 		spin_lock_irqsave(hba->host->host_lock, flags);
9214 		hba->clk_gating.state = CLKS_ON;
9215 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9216 					hba->clk_gating.state);
9217 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9218 	}
9219 
9220 	if (clk_state_changed)
9221 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9222 			(on ? "on" : "off"),
9223 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9224 	return ret;
9225 }
9226 
9227 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9228 {
9229 	u32 freq;
9230 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9231 
9232 	if (ret) {
9233 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9234 		return REF_CLK_FREQ_INVAL;
9235 	}
9236 
9237 	return ufs_get_bref_clk_from_hz(freq);
9238 }
9239 
9240 static int ufshcd_init_clocks(struct ufs_hba *hba)
9241 {
9242 	int ret = 0;
9243 	struct ufs_clk_info *clki;
9244 	struct device *dev = hba->dev;
9245 	struct list_head *head = &hba->clk_list_head;
9246 
9247 	if (list_empty(head))
9248 		goto out;
9249 
9250 	list_for_each_entry(clki, head, list) {
9251 		if (!clki->name)
9252 			continue;
9253 
9254 		clki->clk = devm_clk_get(dev, clki->name);
9255 		if (IS_ERR(clki->clk)) {
9256 			ret = PTR_ERR(clki->clk);
9257 			dev_err(dev, "%s: %s clk get failed, %d\n",
9258 					__func__, clki->name, ret);
9259 			goto out;
9260 		}
9261 
9262 		/*
9263 		 * Parse device ref clk freq as per device tree "ref_clk".
9264 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9265 		 * in ufshcd_alloc_host().
9266 		 */
9267 		if (!strcmp(clki->name, "ref_clk"))
9268 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9269 
9270 		if (clki->max_freq) {
9271 			ret = clk_set_rate(clki->clk, clki->max_freq);
9272 			if (ret) {
9273 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9274 					__func__, clki->name,
9275 					clki->max_freq, ret);
9276 				goto out;
9277 			}
9278 			clki->curr_freq = clki->max_freq;
9279 		}
9280 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9281 				clki->name, clk_get_rate(clki->clk));
9282 	}
9283 
9284 	/* Set Max. frequency for all clocks */
9285 	if (hba->use_pm_opp) {
9286 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9287 		if (ret) {
9288 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9289 				ret);
9290 			goto out;
9291 		}
9292 	}
9293 
9294 out:
9295 	return ret;
9296 }
9297 
9298 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9299 {
9300 	int err = 0;
9301 
9302 	if (!hba->vops)
9303 		goto out;
9304 
9305 	err = ufshcd_vops_init(hba);
9306 	if (err)
9307 		dev_err_probe(hba->dev, err,
9308 			      "%s: variant %s init failed with err %d\n",
9309 			      __func__, ufshcd_get_var_name(hba), err);
9310 out:
9311 	return err;
9312 }
9313 
9314 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9315 {
9316 	if (!hba->vops)
9317 		return;
9318 
9319 	ufshcd_vops_exit(hba);
9320 }
9321 
9322 static int ufshcd_hba_init(struct ufs_hba *hba)
9323 {
9324 	int err;
9325 
9326 	/*
9327 	 * Handle host controller power separately from the UFS device power
9328 	 * rails as it will help controlling the UFS host controller power
9329 	 * collapse easily which is different than UFS device power collapse.
9330 	 * Also, enable the host controller power before we go ahead with rest
9331 	 * of the initialization here.
9332 	 */
9333 	err = ufshcd_init_hba_vreg(hba);
9334 	if (err)
9335 		goto out;
9336 
9337 	err = ufshcd_setup_hba_vreg(hba, true);
9338 	if (err)
9339 		goto out;
9340 
9341 	err = ufshcd_init_clocks(hba);
9342 	if (err)
9343 		goto out_disable_hba_vreg;
9344 
9345 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9346 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9347 
9348 	err = ufshcd_setup_clocks(hba, true);
9349 	if (err)
9350 		goto out_disable_hba_vreg;
9351 
9352 	err = ufshcd_init_vreg(hba);
9353 	if (err)
9354 		goto out_disable_clks;
9355 
9356 	err = ufshcd_setup_vreg(hba, true);
9357 	if (err)
9358 		goto out_disable_clks;
9359 
9360 	err = ufshcd_variant_hba_init(hba);
9361 	if (err)
9362 		goto out_disable_vreg;
9363 
9364 	ufs_debugfs_hba_init(hba);
9365 
9366 	hba->is_powered = true;
9367 	goto out;
9368 
9369 out_disable_vreg:
9370 	ufshcd_setup_vreg(hba, false);
9371 out_disable_clks:
9372 	ufshcd_setup_clocks(hba, false);
9373 out_disable_hba_vreg:
9374 	ufshcd_setup_hba_vreg(hba, false);
9375 out:
9376 	return err;
9377 }
9378 
9379 static void ufshcd_hba_exit(struct ufs_hba *hba)
9380 {
9381 	if (hba->is_powered) {
9382 		ufshcd_exit_clk_scaling(hba);
9383 		ufshcd_exit_clk_gating(hba);
9384 		if (hba->eh_wq)
9385 			destroy_workqueue(hba->eh_wq);
9386 		ufs_debugfs_hba_exit(hba);
9387 		ufshcd_variant_hba_exit(hba);
9388 		ufshcd_setup_vreg(hba, false);
9389 		ufshcd_setup_clocks(hba, false);
9390 		ufshcd_setup_hba_vreg(hba, false);
9391 		hba->is_powered = false;
9392 		ufs_put_device_desc(hba);
9393 	}
9394 }
9395 
9396 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9397 				     enum ufs_dev_pwr_mode pwr_mode,
9398 				     struct scsi_sense_hdr *sshdr)
9399 {
9400 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9401 	const struct scsi_exec_args args = {
9402 		.sshdr = sshdr,
9403 		.req_flags = BLK_MQ_REQ_PM,
9404 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9405 	};
9406 
9407 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9408 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9409 			&args);
9410 }
9411 
9412 /**
9413  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9414  *			     power mode
9415  * @hba: per adapter instance
9416  * @pwr_mode: device power mode to set
9417  *
9418  * Return: 0 if requested power mode is set successfully;
9419  *         < 0 if failed to set the requested power mode.
9420  */
9421 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9422 				     enum ufs_dev_pwr_mode pwr_mode)
9423 {
9424 	struct scsi_sense_hdr sshdr;
9425 	struct scsi_device *sdp;
9426 	unsigned long flags;
9427 	int ret, retries;
9428 
9429 	spin_lock_irqsave(hba->host->host_lock, flags);
9430 	sdp = hba->ufs_device_wlun;
9431 	if (sdp && scsi_device_online(sdp))
9432 		ret = scsi_device_get(sdp);
9433 	else
9434 		ret = -ENODEV;
9435 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9436 
9437 	if (ret)
9438 		return ret;
9439 
9440 	/*
9441 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9442 	 * handling, which would wait for host to be resumed. Since we know
9443 	 * we are functional while we are here, skip host resume in error
9444 	 * handling context.
9445 	 */
9446 	hba->host->eh_noresume = 1;
9447 
9448 	/*
9449 	 * Current function would be generally called from the power management
9450 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9451 	 * already suspended childs.
9452 	 */
9453 	for (retries = 3; retries > 0; --retries) {
9454 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9455 		/*
9456 		 * scsi_execute() only returns a negative value if the request
9457 		 * queue is dying.
9458 		 */
9459 		if (ret <= 0)
9460 			break;
9461 	}
9462 	if (ret) {
9463 		sdev_printk(KERN_WARNING, sdp,
9464 			    "START_STOP failed for power mode: %d, result %x\n",
9465 			    pwr_mode, ret);
9466 		if (ret > 0) {
9467 			if (scsi_sense_valid(&sshdr))
9468 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9469 			ret = -EIO;
9470 		}
9471 	} else {
9472 		hba->curr_dev_pwr_mode = pwr_mode;
9473 	}
9474 
9475 	scsi_device_put(sdp);
9476 	hba->host->eh_noresume = 0;
9477 	return ret;
9478 }
9479 
9480 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9481 					enum uic_link_state req_link_state,
9482 					bool check_for_bkops)
9483 {
9484 	int ret = 0;
9485 
9486 	if (req_link_state == hba->uic_link_state)
9487 		return 0;
9488 
9489 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9490 		ret = ufshcd_uic_hibern8_enter(hba);
9491 		if (!ret) {
9492 			ufshcd_set_link_hibern8(hba);
9493 		} else {
9494 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9495 					__func__, ret);
9496 			goto out;
9497 		}
9498 	}
9499 	/*
9500 	 * If autobkops is enabled, link can't be turned off because
9501 	 * turning off the link would also turn off the device, except in the
9502 	 * case of DeepSleep where the device is expected to remain powered.
9503 	 */
9504 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9505 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9506 		/*
9507 		 * Let's make sure that link is in low power mode, we are doing
9508 		 * this currently by putting the link in Hibern8. Otherway to
9509 		 * put the link in low power mode is to send the DME end point
9510 		 * to device and then send the DME reset command to local
9511 		 * unipro. But putting the link in hibern8 is much faster.
9512 		 *
9513 		 * Note also that putting the link in Hibern8 is a requirement
9514 		 * for entering DeepSleep.
9515 		 */
9516 		ret = ufshcd_uic_hibern8_enter(hba);
9517 		if (ret) {
9518 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9519 					__func__, ret);
9520 			goto out;
9521 		}
9522 		/*
9523 		 * Change controller state to "reset state" which
9524 		 * should also put the link in off/reset state
9525 		 */
9526 		ufshcd_hba_stop(hba);
9527 		/*
9528 		 * TODO: Check if we need any delay to make sure that
9529 		 * controller is reset
9530 		 */
9531 		ufshcd_set_link_off(hba);
9532 	}
9533 
9534 out:
9535 	return ret;
9536 }
9537 
9538 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9539 {
9540 	bool vcc_off = false;
9541 
9542 	/*
9543 	 * It seems some UFS devices may keep drawing more than sleep current
9544 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9545 	 * To avoid this situation, add 2ms delay before putting these UFS
9546 	 * rails in LPM mode.
9547 	 */
9548 	if (!ufshcd_is_link_active(hba) &&
9549 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9550 		usleep_range(2000, 2100);
9551 
9552 	/*
9553 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9554 	 * power.
9555 	 *
9556 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9557 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9558 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9559 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9560 	 *
9561 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9562 	 * in low power state which would save some power.
9563 	 *
9564 	 * If Write Booster is enabled and the device needs to flush the WB
9565 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9566 	 */
9567 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9568 	    !hba->dev_info.is_lu_power_on_wp) {
9569 		ufshcd_setup_vreg(hba, false);
9570 		vcc_off = true;
9571 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9572 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9573 		vcc_off = true;
9574 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9575 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9576 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9577 		}
9578 	}
9579 
9580 	/*
9581 	 * Some UFS devices require delay after VCC power rail is turned-off.
9582 	 */
9583 	if (vcc_off && hba->vreg_info.vcc &&
9584 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9585 		usleep_range(5000, 5100);
9586 }
9587 
9588 #ifdef CONFIG_PM
9589 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9590 {
9591 	int ret = 0;
9592 
9593 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9594 	    !hba->dev_info.is_lu_power_on_wp) {
9595 		ret = ufshcd_setup_vreg(hba, true);
9596 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9597 		if (!ufshcd_is_link_active(hba)) {
9598 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9599 			if (ret)
9600 				goto vcc_disable;
9601 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9602 			if (ret)
9603 				goto vccq_lpm;
9604 		}
9605 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9606 	}
9607 	goto out;
9608 
9609 vccq_lpm:
9610 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9611 vcc_disable:
9612 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9613 out:
9614 	return ret;
9615 }
9616 #endif /* CONFIG_PM */
9617 
9618 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9619 {
9620 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9621 		ufshcd_setup_hba_vreg(hba, false);
9622 }
9623 
9624 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9625 {
9626 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9627 		ufshcd_setup_hba_vreg(hba, true);
9628 }
9629 
9630 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9631 {
9632 	int ret = 0;
9633 	bool check_for_bkops;
9634 	enum ufs_pm_level pm_lvl;
9635 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9636 	enum uic_link_state req_link_state;
9637 
9638 	hba->pm_op_in_progress = true;
9639 	if (pm_op != UFS_SHUTDOWN_PM) {
9640 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9641 			 hba->rpm_lvl : hba->spm_lvl;
9642 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9643 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9644 	} else {
9645 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9646 		req_link_state = UIC_LINK_OFF_STATE;
9647 	}
9648 
9649 	/*
9650 	 * If we can't transition into any of the low power modes
9651 	 * just gate the clocks.
9652 	 */
9653 	ufshcd_hold(hba);
9654 	hba->clk_gating.is_suspended = true;
9655 
9656 	if (ufshcd_is_clkscaling_supported(hba))
9657 		ufshcd_clk_scaling_suspend(hba, true);
9658 
9659 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9660 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9661 		goto vops_suspend;
9662 	}
9663 
9664 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9665 	    (req_link_state == hba->uic_link_state))
9666 		goto enable_scaling;
9667 
9668 	/* UFS device & link must be active before we enter in this function */
9669 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9670 		ret = -EINVAL;
9671 		goto enable_scaling;
9672 	}
9673 
9674 	if (pm_op == UFS_RUNTIME_PM) {
9675 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9676 			/*
9677 			 * The device is idle with no requests in the queue,
9678 			 * allow background operations if bkops status shows
9679 			 * that performance might be impacted.
9680 			 */
9681 			ret = ufshcd_urgent_bkops(hba);
9682 			if (ret) {
9683 				/*
9684 				 * If return err in suspend flow, IO will hang.
9685 				 * Trigger error handler and break suspend for
9686 				 * error recovery.
9687 				 */
9688 				ufshcd_force_error_recovery(hba);
9689 				ret = -EBUSY;
9690 				goto enable_scaling;
9691 			}
9692 		} else {
9693 			/* make sure that auto bkops is disabled */
9694 			ufshcd_disable_auto_bkops(hba);
9695 		}
9696 		/*
9697 		 * If device needs to do BKOP or WB buffer flush during
9698 		 * Hibern8, keep device power mode as "active power mode"
9699 		 * and VCC supply.
9700 		 */
9701 		hba->dev_info.b_rpm_dev_flush_capable =
9702 			hba->auto_bkops_enabled ||
9703 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9704 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9705 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9706 			ufshcd_wb_need_flush(hba));
9707 	}
9708 
9709 	flush_work(&hba->eeh_work);
9710 
9711 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9712 	if (ret)
9713 		goto enable_scaling;
9714 
9715 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9716 		if (pm_op != UFS_RUNTIME_PM)
9717 			/* ensure that bkops is disabled */
9718 			ufshcd_disable_auto_bkops(hba);
9719 
9720 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9721 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9722 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9723 				/*
9724 				 * If return err in suspend flow, IO will hang.
9725 				 * Trigger error handler and break suspend for
9726 				 * error recovery.
9727 				 */
9728 				ufshcd_force_error_recovery(hba);
9729 				ret = -EBUSY;
9730 			}
9731 			if (ret)
9732 				goto enable_scaling;
9733 		}
9734 	}
9735 
9736 	/*
9737 	 * In the case of DeepSleep, the device is expected to remain powered
9738 	 * with the link off, so do not check for bkops.
9739 	 */
9740 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9741 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9742 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9743 		/*
9744 		 * If return err in suspend flow, IO will hang.
9745 		 * Trigger error handler and break suspend for
9746 		 * error recovery.
9747 		 */
9748 		ufshcd_force_error_recovery(hba);
9749 		ret = -EBUSY;
9750 	}
9751 	if (ret)
9752 		goto set_dev_active;
9753 
9754 vops_suspend:
9755 	/*
9756 	 * Call vendor specific suspend callback. As these callbacks may access
9757 	 * vendor specific host controller register space call them before the
9758 	 * host clocks are ON.
9759 	 */
9760 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9761 	if (ret)
9762 		goto set_link_active;
9763 	goto out;
9764 
9765 set_link_active:
9766 	/*
9767 	 * Device hardware reset is required to exit DeepSleep. Also, for
9768 	 * DeepSleep, the link is off so host reset and restore will be done
9769 	 * further below.
9770 	 */
9771 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9772 		ufshcd_device_reset(hba);
9773 		WARN_ON(!ufshcd_is_link_off(hba));
9774 	}
9775 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9776 		ufshcd_set_link_active(hba);
9777 	else if (ufshcd_is_link_off(hba))
9778 		ufshcd_host_reset_and_restore(hba);
9779 set_dev_active:
9780 	/* Can also get here needing to exit DeepSleep */
9781 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9782 		ufshcd_device_reset(hba);
9783 		ufshcd_host_reset_and_restore(hba);
9784 	}
9785 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9786 		ufshcd_disable_auto_bkops(hba);
9787 enable_scaling:
9788 	if (ufshcd_is_clkscaling_supported(hba))
9789 		ufshcd_clk_scaling_suspend(hba, false);
9790 
9791 	hba->dev_info.b_rpm_dev_flush_capable = false;
9792 out:
9793 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9794 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9795 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9796 	}
9797 
9798 	if (ret) {
9799 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9800 		hba->clk_gating.is_suspended = false;
9801 		ufshcd_release(hba);
9802 	}
9803 	hba->pm_op_in_progress = false;
9804 	return ret;
9805 }
9806 
9807 #ifdef CONFIG_PM
9808 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9809 {
9810 	int ret;
9811 	enum uic_link_state old_link_state = hba->uic_link_state;
9812 
9813 	hba->pm_op_in_progress = true;
9814 
9815 	/*
9816 	 * Call vendor specific resume callback. As these callbacks may access
9817 	 * vendor specific host controller register space call them when the
9818 	 * host clocks are ON.
9819 	 */
9820 	ret = ufshcd_vops_resume(hba, pm_op);
9821 	if (ret)
9822 		goto out;
9823 
9824 	/* For DeepSleep, the only supported option is to have the link off */
9825 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9826 
9827 	if (ufshcd_is_link_hibern8(hba)) {
9828 		ret = ufshcd_uic_hibern8_exit(hba);
9829 		if (!ret) {
9830 			ufshcd_set_link_active(hba);
9831 		} else {
9832 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9833 					__func__, ret);
9834 			goto vendor_suspend;
9835 		}
9836 	} else if (ufshcd_is_link_off(hba)) {
9837 		/*
9838 		 * A full initialization of the host and the device is
9839 		 * required since the link was put to off during suspend.
9840 		 * Note, in the case of DeepSleep, the device will exit
9841 		 * DeepSleep due to device reset.
9842 		 */
9843 		ret = ufshcd_reset_and_restore(hba);
9844 		/*
9845 		 * ufshcd_reset_and_restore() should have already
9846 		 * set the link state as active
9847 		 */
9848 		if (ret || !ufshcd_is_link_active(hba))
9849 			goto vendor_suspend;
9850 	}
9851 
9852 	if (!ufshcd_is_ufs_dev_active(hba)) {
9853 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9854 		if (ret)
9855 			goto set_old_link_state;
9856 		ufshcd_set_timestamp_attr(hba);
9857 	}
9858 
9859 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9860 		ufshcd_enable_auto_bkops(hba);
9861 	else
9862 		/*
9863 		 * If BKOPs operations are urgently needed at this moment then
9864 		 * keep auto-bkops enabled or else disable it.
9865 		 */
9866 		ufshcd_urgent_bkops(hba);
9867 
9868 	if (hba->ee_usr_mask)
9869 		ufshcd_write_ee_control(hba);
9870 
9871 	if (ufshcd_is_clkscaling_supported(hba))
9872 		ufshcd_clk_scaling_suspend(hba, false);
9873 
9874 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9875 		hba->dev_info.b_rpm_dev_flush_capable = false;
9876 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9877 	}
9878 
9879 	/* Enable Auto-Hibernate if configured */
9880 	ufshcd_auto_hibern8_enable(hba);
9881 
9882 	goto out;
9883 
9884 set_old_link_state:
9885 	ufshcd_link_state_transition(hba, old_link_state, 0);
9886 vendor_suspend:
9887 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9888 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9889 out:
9890 	if (ret)
9891 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9892 	hba->clk_gating.is_suspended = false;
9893 	ufshcd_release(hba);
9894 	hba->pm_op_in_progress = false;
9895 	return ret;
9896 }
9897 
9898 static int ufshcd_wl_runtime_suspend(struct device *dev)
9899 {
9900 	struct scsi_device *sdev = to_scsi_device(dev);
9901 	struct ufs_hba *hba;
9902 	int ret;
9903 	ktime_t start = ktime_get();
9904 
9905 	hba = shost_priv(sdev->host);
9906 
9907 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9908 	if (ret)
9909 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9910 
9911 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9912 		ktime_to_us(ktime_sub(ktime_get(), start)),
9913 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9914 
9915 	return ret;
9916 }
9917 
9918 static int ufshcd_wl_runtime_resume(struct device *dev)
9919 {
9920 	struct scsi_device *sdev = to_scsi_device(dev);
9921 	struct ufs_hba *hba;
9922 	int ret = 0;
9923 	ktime_t start = ktime_get();
9924 
9925 	hba = shost_priv(sdev->host);
9926 
9927 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9928 	if (ret)
9929 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9930 
9931 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9932 		ktime_to_us(ktime_sub(ktime_get(), start)),
9933 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9934 
9935 	return ret;
9936 }
9937 #endif
9938 
9939 #ifdef CONFIG_PM_SLEEP
9940 static int ufshcd_wl_suspend(struct device *dev)
9941 {
9942 	struct scsi_device *sdev = to_scsi_device(dev);
9943 	struct ufs_hba *hba;
9944 	int ret = 0;
9945 	ktime_t start = ktime_get();
9946 
9947 	hba = shost_priv(sdev->host);
9948 	down(&hba->host_sem);
9949 	hba->system_suspending = true;
9950 
9951 	if (pm_runtime_suspended(dev))
9952 		goto out;
9953 
9954 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9955 	if (ret) {
9956 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9957 		up(&hba->host_sem);
9958 	}
9959 
9960 out:
9961 	if (!ret)
9962 		hba->is_sys_suspended = true;
9963 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9964 		ktime_to_us(ktime_sub(ktime_get(), start)),
9965 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9966 
9967 	return ret;
9968 }
9969 
9970 static int ufshcd_wl_resume(struct device *dev)
9971 {
9972 	struct scsi_device *sdev = to_scsi_device(dev);
9973 	struct ufs_hba *hba;
9974 	int ret = 0;
9975 	ktime_t start = ktime_get();
9976 
9977 	hba = shost_priv(sdev->host);
9978 
9979 	if (pm_runtime_suspended(dev))
9980 		goto out;
9981 
9982 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9983 	if (ret)
9984 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9985 out:
9986 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9987 		ktime_to_us(ktime_sub(ktime_get(), start)),
9988 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9989 	if (!ret)
9990 		hba->is_sys_suspended = false;
9991 	hba->system_suspending = false;
9992 	up(&hba->host_sem);
9993 	return ret;
9994 }
9995 #endif
9996 
9997 /**
9998  * ufshcd_suspend - helper function for suspend operations
9999  * @hba: per adapter instance
10000  *
10001  * This function will put disable irqs, turn off clocks
10002  * and set vreg and hba-vreg in lpm mode.
10003  *
10004  * Return: 0 upon success; < 0 upon failure.
10005  */
10006 static int ufshcd_suspend(struct ufs_hba *hba)
10007 {
10008 	int ret;
10009 
10010 	if (!hba->is_powered)
10011 		return 0;
10012 	/*
10013 	 * Disable the host irq as host controller as there won't be any
10014 	 * host controller transaction expected till resume.
10015 	 */
10016 	ufshcd_disable_irq(hba);
10017 	ret = ufshcd_setup_clocks(hba, false);
10018 	if (ret) {
10019 		ufshcd_enable_irq(hba);
10020 		return ret;
10021 	}
10022 	if (ufshcd_is_clkgating_allowed(hba)) {
10023 		hba->clk_gating.state = CLKS_OFF;
10024 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10025 					hba->clk_gating.state);
10026 	}
10027 
10028 	ufshcd_vreg_set_lpm(hba);
10029 	/* Put the host controller in low power mode if possible */
10030 	ufshcd_hba_vreg_set_lpm(hba);
10031 	return ret;
10032 }
10033 
10034 #ifdef CONFIG_PM
10035 /**
10036  * ufshcd_resume - helper function for resume operations
10037  * @hba: per adapter instance
10038  *
10039  * This function basically turns on the regulators, clocks and
10040  * irqs of the hba.
10041  *
10042  * Return: 0 for success and non-zero for failure.
10043  */
10044 static int ufshcd_resume(struct ufs_hba *hba)
10045 {
10046 	int ret;
10047 
10048 	if (!hba->is_powered)
10049 		return 0;
10050 
10051 	ufshcd_hba_vreg_set_hpm(hba);
10052 	ret = ufshcd_vreg_set_hpm(hba);
10053 	if (ret)
10054 		goto out;
10055 
10056 	/* Make sure clocks are enabled before accessing controller */
10057 	ret = ufshcd_setup_clocks(hba, true);
10058 	if (ret)
10059 		goto disable_vreg;
10060 
10061 	/* enable the host irq as host controller would be active soon */
10062 	ufshcd_enable_irq(hba);
10063 
10064 	goto out;
10065 
10066 disable_vreg:
10067 	ufshcd_vreg_set_lpm(hba);
10068 out:
10069 	if (ret)
10070 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10071 	return ret;
10072 }
10073 #endif /* CONFIG_PM */
10074 
10075 #ifdef CONFIG_PM_SLEEP
10076 /**
10077  * ufshcd_system_suspend - system suspend callback
10078  * @dev: Device associated with the UFS controller.
10079  *
10080  * Executed before putting the system into a sleep state in which the contents
10081  * of main memory are preserved.
10082  *
10083  * Return: 0 for success and non-zero for failure.
10084  */
10085 int ufshcd_system_suspend(struct device *dev)
10086 {
10087 	struct ufs_hba *hba = dev_get_drvdata(dev);
10088 	int ret = 0;
10089 	ktime_t start = ktime_get();
10090 
10091 	if (pm_runtime_suspended(hba->dev))
10092 		goto out;
10093 
10094 	ret = ufshcd_suspend(hba);
10095 out:
10096 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10097 		ktime_to_us(ktime_sub(ktime_get(), start)),
10098 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10099 	return ret;
10100 }
10101 EXPORT_SYMBOL(ufshcd_system_suspend);
10102 
10103 /**
10104  * ufshcd_system_resume - system resume callback
10105  * @dev: Device associated with the UFS controller.
10106  *
10107  * Executed after waking the system up from a sleep state in which the contents
10108  * of main memory were preserved.
10109  *
10110  * Return: 0 for success and non-zero for failure.
10111  */
10112 int ufshcd_system_resume(struct device *dev)
10113 {
10114 	struct ufs_hba *hba = dev_get_drvdata(dev);
10115 	ktime_t start = ktime_get();
10116 	int ret = 0;
10117 
10118 	if (pm_runtime_suspended(hba->dev))
10119 		goto out;
10120 
10121 	ret = ufshcd_resume(hba);
10122 
10123 out:
10124 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10125 		ktime_to_us(ktime_sub(ktime_get(), start)),
10126 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10127 
10128 	return ret;
10129 }
10130 EXPORT_SYMBOL(ufshcd_system_resume);
10131 #endif /* CONFIG_PM_SLEEP */
10132 
10133 #ifdef CONFIG_PM
10134 /**
10135  * ufshcd_runtime_suspend - runtime suspend callback
10136  * @dev: Device associated with the UFS controller.
10137  *
10138  * Check the description of ufshcd_suspend() function for more details.
10139  *
10140  * Return: 0 for success and non-zero for failure.
10141  */
10142 int ufshcd_runtime_suspend(struct device *dev)
10143 {
10144 	struct ufs_hba *hba = dev_get_drvdata(dev);
10145 	int ret;
10146 	ktime_t start = ktime_get();
10147 
10148 	ret = ufshcd_suspend(hba);
10149 
10150 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10151 		ktime_to_us(ktime_sub(ktime_get(), start)),
10152 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10153 	return ret;
10154 }
10155 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10156 
10157 /**
10158  * ufshcd_runtime_resume - runtime resume routine
10159  * @dev: Device associated with the UFS controller.
10160  *
10161  * This function basically brings controller
10162  * to active state. Following operations are done in this function:
10163  *
10164  * 1. Turn on all the controller related clocks
10165  * 2. Turn ON VCC rail
10166  *
10167  * Return: 0 upon success; < 0 upon failure.
10168  */
10169 int ufshcd_runtime_resume(struct device *dev)
10170 {
10171 	struct ufs_hba *hba = dev_get_drvdata(dev);
10172 	int ret;
10173 	ktime_t start = ktime_get();
10174 
10175 	ret = ufshcd_resume(hba);
10176 
10177 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10178 		ktime_to_us(ktime_sub(ktime_get(), start)),
10179 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10180 	return ret;
10181 }
10182 EXPORT_SYMBOL(ufshcd_runtime_resume);
10183 #endif /* CONFIG_PM */
10184 
10185 static void ufshcd_wl_shutdown(struct device *dev)
10186 {
10187 	struct scsi_device *sdev = to_scsi_device(dev);
10188 	struct ufs_hba *hba = shost_priv(sdev->host);
10189 
10190 	down(&hba->host_sem);
10191 	hba->shutting_down = true;
10192 	up(&hba->host_sem);
10193 
10194 	/* Turn on everything while shutting down */
10195 	ufshcd_rpm_get_sync(hba);
10196 	scsi_device_quiesce(sdev);
10197 	shost_for_each_device(sdev, hba->host) {
10198 		if (sdev == hba->ufs_device_wlun)
10199 			continue;
10200 		scsi_device_quiesce(sdev);
10201 	}
10202 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10203 
10204 	/*
10205 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10206 	 * clocks.
10207 	 */
10208 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10209 		ufshcd_suspend(hba);
10210 
10211 	hba->is_powered = false;
10212 }
10213 
10214 /**
10215  * ufshcd_remove - de-allocate SCSI host and host memory space
10216  *		data structure memory
10217  * @hba: per adapter instance
10218  */
10219 void ufshcd_remove(struct ufs_hba *hba)
10220 {
10221 	if (hba->ufs_device_wlun)
10222 		ufshcd_rpm_get_sync(hba);
10223 	ufs_hwmon_remove(hba);
10224 	ufs_bsg_remove(hba);
10225 	ufs_sysfs_remove_nodes(hba->dev);
10226 	blk_mq_destroy_queue(hba->tmf_queue);
10227 	blk_put_queue(hba->tmf_queue);
10228 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10229 	scsi_remove_host(hba->host);
10230 	/* disable interrupts */
10231 	ufshcd_disable_intr(hba, hba->intr_mask);
10232 	ufshcd_hba_stop(hba);
10233 	ufshcd_hba_exit(hba);
10234 }
10235 EXPORT_SYMBOL_GPL(ufshcd_remove);
10236 
10237 #ifdef CONFIG_PM_SLEEP
10238 int ufshcd_system_freeze(struct device *dev)
10239 {
10240 
10241 	return ufshcd_system_suspend(dev);
10242 
10243 }
10244 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10245 
10246 int ufshcd_system_restore(struct device *dev)
10247 {
10248 
10249 	struct ufs_hba *hba = dev_get_drvdata(dev);
10250 	int ret;
10251 
10252 	ret = ufshcd_system_resume(dev);
10253 	if (ret)
10254 		return ret;
10255 
10256 	/* Configure UTRL and UTMRL base address registers */
10257 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10258 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10259 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10260 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10261 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10262 			REG_UTP_TASK_REQ_LIST_BASE_L);
10263 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10264 			REG_UTP_TASK_REQ_LIST_BASE_H);
10265 	/*
10266 	 * Make sure that UTRL and UTMRL base address registers
10267 	 * are updated with the latest queue addresses. Only after
10268 	 * updating these addresses, we can queue the new commands.
10269 	 */
10270 	mb();
10271 
10272 	/* Resuming from hibernate, assume that link was OFF */
10273 	ufshcd_set_link_off(hba);
10274 
10275 	return 0;
10276 
10277 }
10278 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10279 
10280 int ufshcd_system_thaw(struct device *dev)
10281 {
10282 	return ufshcd_system_resume(dev);
10283 }
10284 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10285 #endif /* CONFIG_PM_SLEEP  */
10286 
10287 /**
10288  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10289  * @hba: pointer to Host Bus Adapter (HBA)
10290  */
10291 void ufshcd_dealloc_host(struct ufs_hba *hba)
10292 {
10293 	scsi_host_put(hba->host);
10294 }
10295 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10296 
10297 /**
10298  * ufshcd_set_dma_mask - Set dma mask based on the controller
10299  *			 addressing capability
10300  * @hba: per adapter instance
10301  *
10302  * Return: 0 for success, non-zero for failure.
10303  */
10304 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10305 {
10306 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10307 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10308 			return 0;
10309 	}
10310 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10311 }
10312 
10313 /**
10314  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10315  * @dev: pointer to device handle
10316  * @hba_handle: driver private handle
10317  *
10318  * Return: 0 on success, non-zero value on failure.
10319  */
10320 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10321 {
10322 	struct Scsi_Host *host;
10323 	struct ufs_hba *hba;
10324 	int err = 0;
10325 
10326 	if (!dev) {
10327 		dev_err(dev,
10328 		"Invalid memory reference for dev is NULL\n");
10329 		err = -ENODEV;
10330 		goto out_error;
10331 	}
10332 
10333 	host = scsi_host_alloc(&ufshcd_driver_template,
10334 				sizeof(struct ufs_hba));
10335 	if (!host) {
10336 		dev_err(dev, "scsi_host_alloc failed\n");
10337 		err = -ENOMEM;
10338 		goto out_error;
10339 	}
10340 	host->nr_maps = HCTX_TYPE_POLL + 1;
10341 	hba = shost_priv(host);
10342 	hba->host = host;
10343 	hba->dev = dev;
10344 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10345 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10346 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10347 	INIT_LIST_HEAD(&hba->clk_list_head);
10348 	spin_lock_init(&hba->outstanding_lock);
10349 
10350 	*hba_handle = hba;
10351 
10352 out_error:
10353 	return err;
10354 }
10355 EXPORT_SYMBOL(ufshcd_alloc_host);
10356 
10357 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10358 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10359 				     const struct blk_mq_queue_data *qd)
10360 {
10361 	WARN_ON_ONCE(true);
10362 	return BLK_STS_NOTSUPP;
10363 }
10364 
10365 static const struct blk_mq_ops ufshcd_tmf_ops = {
10366 	.queue_rq = ufshcd_queue_tmf,
10367 };
10368 
10369 /**
10370  * ufshcd_init - Driver initialization routine
10371  * @hba: per-adapter instance
10372  * @mmio_base: base register address
10373  * @irq: Interrupt line of device
10374  *
10375  * Return: 0 on success, non-zero value on failure.
10376  */
10377 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10378 {
10379 	int err;
10380 	struct Scsi_Host *host = hba->host;
10381 	struct device *dev = hba->dev;
10382 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10383 
10384 	/*
10385 	 * dev_set_drvdata() must be called before any callbacks are registered
10386 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10387 	 * sysfs).
10388 	 */
10389 	dev_set_drvdata(dev, hba);
10390 
10391 	if (!mmio_base) {
10392 		dev_err(hba->dev,
10393 		"Invalid memory reference for mmio_base is NULL\n");
10394 		err = -ENODEV;
10395 		goto out_error;
10396 	}
10397 
10398 	hba->mmio_base = mmio_base;
10399 	hba->irq = irq;
10400 	hba->vps = &ufs_hba_vps;
10401 
10402 	err = ufshcd_hba_init(hba);
10403 	if (err)
10404 		goto out_error;
10405 
10406 	/* Read capabilities registers */
10407 	err = ufshcd_hba_capabilities(hba);
10408 	if (err)
10409 		goto out_disable;
10410 
10411 	/* Get UFS version supported by the controller */
10412 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10413 
10414 	/* Get Interrupt bit mask per version */
10415 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10416 
10417 	err = ufshcd_set_dma_mask(hba);
10418 	if (err) {
10419 		dev_err(hba->dev, "set dma mask failed\n");
10420 		goto out_disable;
10421 	}
10422 
10423 	/* Allocate memory for host memory space */
10424 	err = ufshcd_memory_alloc(hba);
10425 	if (err) {
10426 		dev_err(hba->dev, "Memory allocation failed\n");
10427 		goto out_disable;
10428 	}
10429 
10430 	/* Configure LRB */
10431 	ufshcd_host_memory_configure(hba);
10432 
10433 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10434 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10435 	host->max_id = UFSHCD_MAX_ID;
10436 	host->max_lun = UFS_MAX_LUNS;
10437 	host->max_channel = UFSHCD_MAX_CHANNEL;
10438 	host->unique_id = host->host_no;
10439 	host->max_cmd_len = UFS_CDB_SIZE;
10440 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10441 
10442 	hba->max_pwr_info.is_valid = false;
10443 
10444 	/* Initialize work queues */
10445 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10446 		 hba->host->host_no);
10447 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10448 	if (!hba->eh_wq) {
10449 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10450 			__func__);
10451 		err = -ENOMEM;
10452 		goto out_disable;
10453 	}
10454 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10455 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10456 
10457 	sema_init(&hba->host_sem, 1);
10458 
10459 	/* Initialize UIC command mutex */
10460 	mutex_init(&hba->uic_cmd_mutex);
10461 
10462 	/* Initialize mutex for device management commands */
10463 	mutex_init(&hba->dev_cmd.lock);
10464 
10465 	/* Initialize mutex for exception event control */
10466 	mutex_init(&hba->ee_ctrl_mutex);
10467 
10468 	mutex_init(&hba->wb_mutex);
10469 	init_rwsem(&hba->clk_scaling_lock);
10470 
10471 	ufshcd_init_clk_gating(hba);
10472 
10473 	ufshcd_init_clk_scaling(hba);
10474 
10475 	/*
10476 	 * In order to avoid any spurious interrupt immediately after
10477 	 * registering UFS controller interrupt handler, clear any pending UFS
10478 	 * interrupt status and disable all the UFS interrupts.
10479 	 */
10480 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10481 		      REG_INTERRUPT_STATUS);
10482 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10483 	/*
10484 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10485 	 * status is cleared before registering UFS interrupt handler.
10486 	 */
10487 	mb();
10488 
10489 	/* IRQ registration */
10490 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10491 	if (err) {
10492 		dev_err(hba->dev, "request irq failed\n");
10493 		goto out_disable;
10494 	} else {
10495 		hba->is_irq_enabled = true;
10496 	}
10497 
10498 	if (!is_mcq_supported(hba)) {
10499 		err = scsi_add_host(host, hba->dev);
10500 		if (err) {
10501 			dev_err(hba->dev, "scsi_add_host failed\n");
10502 			goto out_disable;
10503 		}
10504 	}
10505 
10506 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10507 		.nr_hw_queues	= 1,
10508 		.queue_depth	= hba->nutmrs,
10509 		.ops		= &ufshcd_tmf_ops,
10510 		.flags		= BLK_MQ_F_NO_SCHED,
10511 	};
10512 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10513 	if (err < 0)
10514 		goto out_remove_scsi_host;
10515 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10516 	if (IS_ERR(hba->tmf_queue)) {
10517 		err = PTR_ERR(hba->tmf_queue);
10518 		goto free_tmf_tag_set;
10519 	}
10520 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10521 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10522 	if (!hba->tmf_rqs) {
10523 		err = -ENOMEM;
10524 		goto free_tmf_queue;
10525 	}
10526 
10527 	/* Reset the attached device */
10528 	ufshcd_device_reset(hba);
10529 
10530 	ufshcd_init_crypto(hba);
10531 
10532 	/* Host controller enable */
10533 	err = ufshcd_hba_enable(hba);
10534 	if (err) {
10535 		dev_err(hba->dev, "Host controller enable failed\n");
10536 		ufshcd_print_evt_hist(hba);
10537 		ufshcd_print_host_state(hba);
10538 		goto free_tmf_queue;
10539 	}
10540 
10541 	/*
10542 	 * Set the default power management level for runtime and system PM.
10543 	 * Default power saving mode is to keep UFS link in Hibern8 state
10544 	 * and UFS device in sleep state.
10545 	 */
10546 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10547 						UFS_SLEEP_PWR_MODE,
10548 						UIC_LINK_HIBERN8_STATE);
10549 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10550 						UFS_SLEEP_PWR_MODE,
10551 						UIC_LINK_HIBERN8_STATE);
10552 
10553 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10554 			  ufshcd_rpm_dev_flush_recheck_work);
10555 
10556 	/* Set the default auto-hiberate idle timer value to 150 ms */
10557 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10558 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10559 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10560 	}
10561 
10562 	/* Hold auto suspend until async scan completes */
10563 	pm_runtime_get_sync(dev);
10564 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10565 	/*
10566 	 * We are assuming that device wasn't put in sleep/power-down
10567 	 * state exclusively during the boot stage before kernel.
10568 	 * This assumption helps avoid doing link startup twice during
10569 	 * ufshcd_probe_hba().
10570 	 */
10571 	ufshcd_set_ufs_dev_active(hba);
10572 
10573 	async_schedule(ufshcd_async_scan, hba);
10574 	ufs_sysfs_add_nodes(hba->dev);
10575 
10576 	device_enable_async_suspend(dev);
10577 	return 0;
10578 
10579 free_tmf_queue:
10580 	blk_mq_destroy_queue(hba->tmf_queue);
10581 	blk_put_queue(hba->tmf_queue);
10582 free_tmf_tag_set:
10583 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10584 out_remove_scsi_host:
10585 	scsi_remove_host(hba->host);
10586 out_disable:
10587 	hba->is_irq_enabled = false;
10588 	ufshcd_hba_exit(hba);
10589 out_error:
10590 	return err;
10591 }
10592 EXPORT_SYMBOL_GPL(ufshcd_init);
10593 
10594 void ufshcd_resume_complete(struct device *dev)
10595 {
10596 	struct ufs_hba *hba = dev_get_drvdata(dev);
10597 
10598 	if (hba->complete_put) {
10599 		ufshcd_rpm_put(hba);
10600 		hba->complete_put = false;
10601 	}
10602 }
10603 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10604 
10605 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10606 {
10607 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10608 	enum ufs_dev_pwr_mode dev_pwr_mode;
10609 	enum uic_link_state link_state;
10610 	unsigned long flags;
10611 	bool res;
10612 
10613 	spin_lock_irqsave(&dev->power.lock, flags);
10614 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10615 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10616 	res = pm_runtime_suspended(dev) &&
10617 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10618 	      hba->uic_link_state == link_state &&
10619 	      !hba->dev_info.b_rpm_dev_flush_capable;
10620 	spin_unlock_irqrestore(&dev->power.lock, flags);
10621 
10622 	return res;
10623 }
10624 
10625 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10626 {
10627 	struct ufs_hba *hba = dev_get_drvdata(dev);
10628 	int ret;
10629 
10630 	/*
10631 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10632 	 * are same. And it doesn't wake up the device for system-suspend
10633 	 * if it's runtime suspended. But ufs doesn't follow that.
10634 	 * Refer ufshcd_resume_complete()
10635 	 */
10636 	if (hba->ufs_device_wlun) {
10637 		/* Prevent runtime suspend */
10638 		ufshcd_rpm_get_noresume(hba);
10639 		/*
10640 		 * Check if already runtime suspended in same state as system
10641 		 * suspend would be.
10642 		 */
10643 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10644 			/* RPM state is not ok for SPM, so runtime resume */
10645 			ret = ufshcd_rpm_resume(hba);
10646 			if (ret < 0 && ret != -EACCES) {
10647 				ufshcd_rpm_put(hba);
10648 				return ret;
10649 			}
10650 		}
10651 		hba->complete_put = true;
10652 	}
10653 	return 0;
10654 }
10655 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10656 
10657 int ufshcd_suspend_prepare(struct device *dev)
10658 {
10659 	return __ufshcd_suspend_prepare(dev, true);
10660 }
10661 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10662 
10663 #ifdef CONFIG_PM_SLEEP
10664 static int ufshcd_wl_poweroff(struct device *dev)
10665 {
10666 	struct scsi_device *sdev = to_scsi_device(dev);
10667 	struct ufs_hba *hba = shost_priv(sdev->host);
10668 
10669 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10670 	return 0;
10671 }
10672 #endif
10673 
10674 static int ufshcd_wl_probe(struct device *dev)
10675 {
10676 	struct scsi_device *sdev = to_scsi_device(dev);
10677 
10678 	if (!is_device_wlun(sdev))
10679 		return -ENODEV;
10680 
10681 	blk_pm_runtime_init(sdev->request_queue, dev);
10682 	pm_runtime_set_autosuspend_delay(dev, 0);
10683 	pm_runtime_allow(dev);
10684 
10685 	return  0;
10686 }
10687 
10688 static int ufshcd_wl_remove(struct device *dev)
10689 {
10690 	pm_runtime_forbid(dev);
10691 	return 0;
10692 }
10693 
10694 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10695 #ifdef CONFIG_PM_SLEEP
10696 	.suspend = ufshcd_wl_suspend,
10697 	.resume = ufshcd_wl_resume,
10698 	.freeze = ufshcd_wl_suspend,
10699 	.thaw = ufshcd_wl_resume,
10700 	.poweroff = ufshcd_wl_poweroff,
10701 	.restore = ufshcd_wl_resume,
10702 #endif
10703 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10704 };
10705 
10706 static void ufshcd_check_header_layout(void)
10707 {
10708 	/*
10709 	 * gcc compilers before version 10 cannot do constant-folding for
10710 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10711 	 * before.
10712 	 */
10713 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10714 		return;
10715 
10716 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10717 				.cci = 3})[0] != 3);
10718 
10719 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10720 				.ehs_length = 2})[1] != 2);
10721 
10722 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10723 				.enable_crypto = 1})[2]
10724 		     != 0x80);
10725 
10726 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10727 					.command_type = 5,
10728 					.data_direction = 3,
10729 					.interrupt = 1,
10730 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10731 
10732 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10733 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10734 		cpu_to_le32(0xdeadbeef));
10735 
10736 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10737 				.ocs = 4})[8] != 4);
10738 
10739 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10740 				.cds = 5})[9] != 5);
10741 
10742 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10743 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10744 		cpu_to_le32(0xbadcafe));
10745 
10746 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10747 			     .iid = 0xf })[4] != 0xf0);
10748 
10749 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10750 			     .command_set_type = 0xf })[4] != 0xf);
10751 }
10752 
10753 /*
10754  * ufs_dev_wlun_template - describes ufs device wlun
10755  * ufs-device wlun - used to send pm commands
10756  * All luns are consumers of ufs-device wlun.
10757  *
10758  * Currently, no sd driver is present for wluns.
10759  * Hence the no specific pm operations are performed.
10760  * With ufs design, SSU should be sent to ufs-device wlun.
10761  * Hence register a scsi driver for ufs wluns only.
10762  */
10763 static struct scsi_driver ufs_dev_wlun_template = {
10764 	.gendrv = {
10765 		.name = "ufs_device_wlun",
10766 		.owner = THIS_MODULE,
10767 		.probe = ufshcd_wl_probe,
10768 		.remove = ufshcd_wl_remove,
10769 		.pm = &ufshcd_wl_pm_ops,
10770 		.shutdown = ufshcd_wl_shutdown,
10771 	},
10772 };
10773 
10774 static int __init ufshcd_core_init(void)
10775 {
10776 	int ret;
10777 
10778 	ufshcd_check_header_layout();
10779 
10780 	ufs_debugfs_init();
10781 
10782 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10783 	if (ret)
10784 		ufs_debugfs_exit();
10785 	return ret;
10786 }
10787 
10788 static void __exit ufshcd_core_exit(void)
10789 {
10790 	ufs_debugfs_exit();
10791 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10792 }
10793 
10794 module_init(ufshcd_core_init);
10795 module_exit(ufshcd_core_exit);
10796 
10797 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10798 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10799 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10800 MODULE_SOFTDEP("pre: governor_simpleondemand");
10801 MODULE_LICENSE("GPL");
10802