1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Western Digital Corporation 3 4 #include <linux/err.h> 5 #include <linux/string.h> 6 #include <linux/bitfield.h> 7 #include <linux/unaligned.h> 8 9 #include <ufs/ufs.h> 10 #include <ufs/unipro.h> 11 #include "ufs-sysfs.h" 12 #include "ufshcd-priv.h" 13 14 static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode) 15 { 16 switch (mode) { 17 case FAST_MODE: return "FAST_MODE"; 18 case SLOW_MODE: return "SLOW_MODE"; 19 case FASTAUTO_MODE: return "FASTAUTO_MODE"; 20 case SLOWAUTO_MODE: return "SLOWAUTO_MODE"; 21 default: return "UNKNOWN"; 22 } 23 } 24 25 static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate) 26 { 27 switch (rate) { 28 case PA_HS_MODE_A: return "HS_RATE_A"; 29 case PA_HS_MODE_B: return "HS_RATE_B"; 30 default: return "UNKNOWN"; 31 } 32 } 33 34 static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear) 35 { 36 switch (gear) { 37 case UFS_PWM_G1: return "PWM_GEAR1"; 38 case UFS_PWM_G2: return "PWM_GEAR2"; 39 case UFS_PWM_G3: return "PWM_GEAR3"; 40 case UFS_PWM_G4: return "PWM_GEAR4"; 41 case UFS_PWM_G5: return "PWM_GEAR5"; 42 case UFS_PWM_G6: return "PWM_GEAR6"; 43 case UFS_PWM_G7: return "PWM_GEAR7"; 44 default: return "UNKNOWN"; 45 } 46 } 47 48 static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear) 49 { 50 switch (gear) { 51 case UFS_HS_G1: return "HS_GEAR1"; 52 case UFS_HS_G2: return "HS_GEAR2"; 53 case UFS_HS_G3: return "HS_GEAR3"; 54 case UFS_HS_G4: return "HS_GEAR4"; 55 case UFS_HS_G5: return "HS_GEAR5"; 56 default: return "UNKNOWN"; 57 } 58 } 59 60 static const char *ufs_wb_resize_hint_to_string(enum wb_resize_hint hint) 61 { 62 switch (hint) { 63 case WB_RESIZE_HINT_KEEP: 64 return "keep"; 65 case WB_RESIZE_HINT_DECREASE: 66 return "decrease"; 67 case WB_RESIZE_HINT_INCREASE: 68 return "increase"; 69 default: 70 return "unknown"; 71 } 72 } 73 74 static const char *ufs_wb_resize_status_to_string(enum wb_resize_status status) 75 { 76 switch (status) { 77 case WB_RESIZE_STATUS_IDLE: 78 return "idle"; 79 case WB_RESIZE_STATUS_IN_PROGRESS: 80 return "in_progress"; 81 case WB_RESIZE_STATUS_COMPLETE_SUCCESS: 82 return "complete_success"; 83 case WB_RESIZE_STATUS_GENERAL_FAILURE: 84 return "general_failure"; 85 default: 86 return "unknown"; 87 } 88 } 89 90 static const char * const ufs_hid_states[] = { 91 [HID_IDLE] = "idle", 92 [ANALYSIS_IN_PROGRESS] = "analysis_in_progress", 93 [DEFRAG_REQUIRED] = "defrag_required", 94 [DEFRAG_IN_PROGRESS] = "defrag_in_progress", 95 [DEFRAG_COMPLETED] = "defrag_completed", 96 [DEFRAG_NOT_REQUIRED] = "defrag_not_required", 97 }; 98 99 static const char *ufs_hid_state_to_string(enum ufs_hid_state state) 100 { 101 if (state < NUM_UFS_HID_STATES) 102 return ufs_hid_states[state]; 103 104 return "unknown"; 105 } 106 107 static const char *ufshcd_uic_link_state_to_string( 108 enum uic_link_state state) 109 { 110 switch (state) { 111 case UIC_LINK_OFF_STATE: return "OFF"; 112 case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; 113 case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; 114 case UIC_LINK_BROKEN_STATE: return "BROKEN"; 115 default: return "UNKNOWN"; 116 } 117 } 118 119 static const char *ufshcd_ufs_dev_pwr_mode_to_string( 120 enum ufs_dev_pwr_mode state) 121 { 122 switch (state) { 123 case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; 124 case UFS_SLEEP_PWR_MODE: return "SLEEP"; 125 case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; 126 case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP"; 127 default: return "UNKNOWN"; 128 } 129 } 130 131 static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev, 132 struct device_attribute *attr, 133 const char *buf, size_t count, 134 bool rpm) 135 { 136 struct ufs_hba *hba = dev_get_drvdata(dev); 137 struct ufs_dev_info *dev_info = &hba->dev_info; 138 unsigned long flags, value; 139 140 if (kstrtoul(buf, 0, &value)) 141 return -EINVAL; 142 143 if (value >= UFS_PM_LVL_MAX) 144 return -EINVAL; 145 146 if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE && 147 (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) || 148 !(dev_info->wspecversion >= 0x310))) 149 return -EINVAL; 150 151 spin_lock_irqsave(hba->host->host_lock, flags); 152 if (rpm) 153 hba->rpm_lvl = value; 154 else 155 hba->spm_lvl = value; 156 spin_unlock_irqrestore(hba->host->host_lock, flags); 157 return count; 158 } 159 160 static ssize_t rpm_lvl_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct ufs_hba *hba = dev_get_drvdata(dev); 164 165 return sysfs_emit(buf, "%d\n", hba->rpm_lvl); 166 } 167 168 static ssize_t rpm_lvl_store(struct device *dev, 169 struct device_attribute *attr, const char *buf, size_t count) 170 { 171 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true); 172 } 173 174 static ssize_t rpm_target_dev_state_show(struct device *dev, 175 struct device_attribute *attr, char *buf) 176 { 177 struct ufs_hba *hba = dev_get_drvdata(dev); 178 179 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 180 ufs_pm_lvl_states[hba->rpm_lvl].dev_state)); 181 } 182 183 static ssize_t rpm_target_link_state_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct ufs_hba *hba = dev_get_drvdata(dev); 187 188 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 189 ufs_pm_lvl_states[hba->rpm_lvl].link_state)); 190 } 191 192 static ssize_t spm_lvl_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct ufs_hba *hba = dev_get_drvdata(dev); 196 197 return sysfs_emit(buf, "%d\n", hba->spm_lvl); 198 } 199 200 static ssize_t spm_lvl_store(struct device *dev, 201 struct device_attribute *attr, const char *buf, size_t count) 202 { 203 return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false); 204 } 205 206 static ssize_t spm_target_dev_state_show(struct device *dev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct ufs_hba *hba = dev_get_drvdata(dev); 210 211 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( 212 ufs_pm_lvl_states[hba->spm_lvl].dev_state)); 213 } 214 215 static ssize_t spm_target_link_state_show(struct device *dev, 216 struct device_attribute *attr, char *buf) 217 { 218 struct ufs_hba *hba = dev_get_drvdata(dev); 219 220 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( 221 ufs_pm_lvl_states[hba->spm_lvl].link_state)); 222 } 223 224 /* Convert Auto-Hibernate Idle Timer register value to microseconds */ 225 static int ufshcd_ahit_to_us(u32 ahit) 226 { 227 int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit); 228 int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit); 229 230 for (; scale > 0; --scale) 231 timer *= UFSHCI_AHIBERN8_SCALE_FACTOR; 232 233 return timer; 234 } 235 236 /* Convert microseconds to Auto-Hibernate Idle Timer register value */ 237 static u32 ufshcd_us_to_ahit(unsigned int timer) 238 { 239 unsigned int scale; 240 241 for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale) 242 timer /= UFSHCI_AHIBERN8_SCALE_FACTOR; 243 244 return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) | 245 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale); 246 } 247 248 static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg) 249 { 250 down(&hba->host_sem); 251 if (!ufshcd_is_user_access_allowed(hba)) { 252 up(&hba->host_sem); 253 return -EBUSY; 254 } 255 256 ufshcd_rpm_get_sync(hba); 257 ufshcd_hold(hba); 258 *val = ufshcd_readl(hba, reg); 259 ufshcd_release(hba); 260 ufshcd_rpm_put_sync(hba); 261 262 up(&hba->host_sem); 263 return 0; 264 } 265 266 static ssize_t auto_hibern8_show(struct device *dev, 267 struct device_attribute *attr, char *buf) 268 { 269 u32 ahit; 270 int ret; 271 struct ufs_hba *hba = dev_get_drvdata(dev); 272 273 if (!ufshcd_is_auto_hibern8_supported(hba)) 274 return -EOPNOTSUPP; 275 276 ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 277 if (ret) 278 return ret; 279 280 return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit)); 281 } 282 283 static ssize_t auto_hibern8_store(struct device *dev, 284 struct device_attribute *attr, 285 const char *buf, size_t count) 286 { 287 struct ufs_hba *hba = dev_get_drvdata(dev); 288 unsigned int timer; 289 int ret = 0; 290 291 if (!ufshcd_is_auto_hibern8_supported(hba)) 292 return -EOPNOTSUPP; 293 294 if (kstrtouint(buf, 0, &timer)) 295 return -EINVAL; 296 297 if (timer > UFSHCI_AHIBERN8_MAX) 298 return -EINVAL; 299 300 down(&hba->host_sem); 301 if (!ufshcd_is_user_access_allowed(hba)) { 302 ret = -EBUSY; 303 goto out; 304 } 305 306 ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer)); 307 308 out: 309 up(&hba->host_sem); 310 return ret ? ret : count; 311 } 312 313 static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr, 314 char *buf) 315 { 316 struct ufs_hba *hba = dev_get_drvdata(dev); 317 318 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled); 319 } 320 321 static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr, 322 const char *buf, size_t count) 323 { 324 struct ufs_hba *hba = dev_get_drvdata(dev); 325 unsigned int wb_enable; 326 ssize_t res; 327 328 if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba) 329 && ufshcd_enable_wb_if_scaling_up(hba))) { 330 /* 331 * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB 332 * on/off will be done while clock scaling up/down. 333 */ 334 dev_warn(dev, "It is not allowed to configure WB!\n"); 335 return -EOPNOTSUPP; 336 } 337 338 if (kstrtouint(buf, 0, &wb_enable)) 339 return -EINVAL; 340 341 if (wb_enable != 0 && wb_enable != 1) 342 return -EINVAL; 343 344 down(&hba->host_sem); 345 if (!ufshcd_is_user_access_allowed(hba)) { 346 res = -EBUSY; 347 goto out; 348 } 349 350 ufshcd_rpm_get_sync(hba); 351 res = ufshcd_wb_toggle(hba, wb_enable); 352 ufshcd_rpm_put_sync(hba); 353 out: 354 up(&hba->host_sem); 355 return res < 0 ? res : count; 356 } 357 358 static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr, 359 char *buf) 360 { 361 struct ufs_hba *hba = dev_get_drvdata(dev); 362 363 return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period); 364 } 365 366 static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr, 367 const char *buf, size_t count) 368 { 369 struct ufs_hba *hba = dev_get_drvdata(dev); 370 unsigned int ms; 371 bool resume_period_update = false; 372 373 if (kstrtouint(buf, 0, &ms)) 374 return -EINVAL; 375 376 if (!hba->dev_info.rtc_update_period && ms > 0) 377 resume_period_update = true; 378 /* Minimum and maximum update frequency should be synchronized with all UFS vendors */ 379 hba->dev_info.rtc_update_period = ms; 380 381 if (resume_period_update) 382 schedule_delayed_work(&hba->ufs_rtc_update_work, 383 msecs_to_jiffies(hba->dev_info.rtc_update_period)); 384 return count; 385 } 386 387 static ssize_t enable_wb_buf_flush_show(struct device *dev, 388 struct device_attribute *attr, 389 char *buf) 390 { 391 struct ufs_hba *hba = dev_get_drvdata(dev); 392 393 return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled); 394 } 395 396 static ssize_t enable_wb_buf_flush_store(struct device *dev, 397 struct device_attribute *attr, 398 const char *buf, size_t count) 399 { 400 struct ufs_hba *hba = dev_get_drvdata(dev); 401 unsigned int enable_wb_buf_flush; 402 ssize_t res; 403 404 if (!ufshcd_is_wb_buf_flush_allowed(hba)) { 405 dev_warn(dev, "It is not allowed to configure WB buf flushing!\n"); 406 return -EOPNOTSUPP; 407 } 408 409 if (kstrtouint(buf, 0, &enable_wb_buf_flush)) 410 return -EINVAL; 411 412 if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1) 413 return -EINVAL; 414 415 down(&hba->host_sem); 416 if (!ufshcd_is_user_access_allowed(hba)) { 417 res = -EBUSY; 418 goto out; 419 } 420 421 ufshcd_rpm_get_sync(hba); 422 res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush); 423 ufshcd_rpm_put_sync(hba); 424 425 out: 426 up(&hba->host_sem); 427 return res < 0 ? res : count; 428 } 429 430 static ssize_t wb_flush_threshold_show(struct device *dev, 431 struct device_attribute *attr, 432 char *buf) 433 { 434 struct ufs_hba *hba = dev_get_drvdata(dev); 435 436 return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold); 437 } 438 439 static ssize_t wb_flush_threshold_store(struct device *dev, 440 struct device_attribute *attr, 441 const char *buf, size_t count) 442 { 443 struct ufs_hba *hba = dev_get_drvdata(dev); 444 unsigned int wb_flush_threshold; 445 446 if (kstrtouint(buf, 0, &wb_flush_threshold)) 447 return -EINVAL; 448 449 /* The range of values for wb_flush_threshold is (0,10] */ 450 if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) || 451 wb_flush_threshold == 0) { 452 dev_err(dev, "The value of wb_flush_threshold is invalid!\n"); 453 return -EINVAL; 454 } 455 456 hba->vps->wb_flush_threshold = wb_flush_threshold; 457 458 return count; 459 } 460 461 static const char * const wb_resize_en_mode[] = { 462 [WB_RESIZE_EN_IDLE] = "idle", 463 [WB_RESIZE_EN_DECREASE] = "decrease", 464 [WB_RESIZE_EN_INCREASE] = "increase", 465 }; 466 467 static ssize_t wb_resize_enable_store(struct device *dev, 468 struct device_attribute *attr, 469 const char *buf, size_t count) 470 { 471 struct ufs_hba *hba = dev_get_drvdata(dev); 472 int mode; 473 ssize_t res; 474 475 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled 476 || !hba->dev_info.b_presrv_uspc_en 477 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE)) 478 return -EOPNOTSUPP; 479 480 mode = sysfs_match_string(wb_resize_en_mode, buf); 481 if (mode < 0) 482 return -EINVAL; 483 484 down(&hba->host_sem); 485 if (!ufshcd_is_user_access_allowed(hba)) { 486 res = -EBUSY; 487 goto out; 488 } 489 490 ufshcd_rpm_get_sync(hba); 491 res = ufshcd_wb_set_resize_en(hba, mode); 492 ufshcd_rpm_put_sync(hba); 493 494 out: 495 up(&hba->host_sem); 496 return res < 0 ? res : count; 497 } 498 499 /** 500 * pm_qos_enable_show - sysfs handler to show pm qos enable value 501 * @dev: device associated with the UFS controller 502 * @attr: sysfs attribute handle 503 * @buf: buffer for sysfs file 504 * 505 * Print 1 if PM QoS feature is enabled, 0 if disabled. 506 * 507 * Returns number of characters written to @buf. 508 */ 509 static ssize_t pm_qos_enable_show(struct device *dev, 510 struct device_attribute *attr, char *buf) 511 { 512 struct ufs_hba *hba = dev_get_drvdata(dev); 513 514 return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled); 515 } 516 517 /** 518 * pm_qos_enable_store - sysfs handler to store value 519 * @dev: device associated with the UFS controller 520 * @attr: sysfs attribute handle 521 * @buf: buffer for sysfs file 522 * @count: stores buffer characters count 523 * 524 * Input 0 to disable PM QoS and 1 value to enable. 525 * Default state: 1 526 * 527 * Return: number of characters written to @buf on success, < 0 upon failure. 528 */ 529 static ssize_t pm_qos_enable_store(struct device *dev, 530 struct device_attribute *attr, const char *buf, size_t count) 531 { 532 struct ufs_hba *hba = dev_get_drvdata(dev); 533 bool value; 534 535 if (kstrtobool(buf, &value)) 536 return -EINVAL; 537 538 if (value) 539 ufshcd_pm_qos_init(hba); 540 else 541 ufshcd_pm_qos_exit(hba); 542 543 return count; 544 } 545 546 static ssize_t critical_health_show(struct device *dev, 547 struct device_attribute *attr, char *buf) 548 { 549 struct ufs_hba *hba = dev_get_drvdata(dev); 550 551 return sysfs_emit(buf, "%d\n", hba->critical_health_count); 552 } 553 554 static ssize_t device_lvl_exception_count_show(struct device *dev, 555 struct device_attribute *attr, 556 char *buf) 557 { 558 struct ufs_hba *hba = dev_get_drvdata(dev); 559 560 if (hba->dev_info.wspecversion < 0x410) 561 return -EOPNOTSUPP; 562 563 return sysfs_emit(buf, "%u\n", atomic_read(&hba->dev_lvl_exception_count)); 564 } 565 566 static ssize_t device_lvl_exception_count_store(struct device *dev, 567 struct device_attribute *attr, 568 const char *buf, size_t count) 569 { 570 struct ufs_hba *hba = dev_get_drvdata(dev); 571 unsigned int value; 572 573 if (kstrtouint(buf, 0, &value)) 574 return -EINVAL; 575 576 /* the only supported usecase is to reset the dev_lvl_exception_count */ 577 if (value) 578 return -EINVAL; 579 580 atomic_set(&hba->dev_lvl_exception_count, 0); 581 582 return count; 583 } 584 585 static ssize_t device_lvl_exception_id_show(struct device *dev, 586 struct device_attribute *attr, 587 char *buf) 588 { 589 struct ufs_hba *hba = dev_get_drvdata(dev); 590 u64 exception_id; 591 int err; 592 593 ufshcd_rpm_get_sync(hba); 594 err = ufshcd_read_device_lvl_exception_id(hba, &exception_id); 595 ufshcd_rpm_put_sync(hba); 596 597 if (err) 598 return err; 599 600 hba->dev_lvl_exception_id = exception_id; 601 return sysfs_emit(buf, "%llu\n", exception_id); 602 } 603 604 static DEVICE_ATTR_RW(rpm_lvl); 605 static DEVICE_ATTR_RO(rpm_target_dev_state); 606 static DEVICE_ATTR_RO(rpm_target_link_state); 607 static DEVICE_ATTR_RW(spm_lvl); 608 static DEVICE_ATTR_RO(spm_target_dev_state); 609 static DEVICE_ATTR_RO(spm_target_link_state); 610 static DEVICE_ATTR_RW(auto_hibern8); 611 static DEVICE_ATTR_RW(wb_on); 612 static DEVICE_ATTR_RW(enable_wb_buf_flush); 613 static DEVICE_ATTR_RW(wb_flush_threshold); 614 static DEVICE_ATTR_WO(wb_resize_enable); 615 static DEVICE_ATTR_RW(rtc_update_ms); 616 static DEVICE_ATTR_RW(pm_qos_enable); 617 static DEVICE_ATTR_RO(critical_health); 618 static DEVICE_ATTR_RW(device_lvl_exception_count); 619 static DEVICE_ATTR_RO(device_lvl_exception_id); 620 621 static struct attribute *ufs_sysfs_ufshcd_attrs[] = { 622 &dev_attr_rpm_lvl.attr, 623 &dev_attr_rpm_target_dev_state.attr, 624 &dev_attr_rpm_target_link_state.attr, 625 &dev_attr_spm_lvl.attr, 626 &dev_attr_spm_target_dev_state.attr, 627 &dev_attr_spm_target_link_state.attr, 628 &dev_attr_auto_hibern8.attr, 629 &dev_attr_wb_on.attr, 630 &dev_attr_enable_wb_buf_flush.attr, 631 &dev_attr_wb_flush_threshold.attr, 632 &dev_attr_wb_resize_enable.attr, 633 &dev_attr_rtc_update_ms.attr, 634 &dev_attr_pm_qos_enable.attr, 635 &dev_attr_critical_health.attr, 636 &dev_attr_device_lvl_exception_count.attr, 637 &dev_attr_device_lvl_exception_id.attr, 638 NULL 639 }; 640 641 static const struct attribute_group ufs_sysfs_default_group = { 642 .attrs = ufs_sysfs_ufshcd_attrs, 643 }; 644 645 static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr, 646 char *buf) 647 { 648 struct ufs_hba *hba = dev_get_drvdata(dev); 649 650 return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba)); 651 } 652 653 static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr, 654 char *buf) 655 { 656 struct ufs_hba *hba = dev_get_drvdata(dev); 657 658 return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba)); 659 } 660 661 static DEVICE_ATTR_RO(clock_scaling); 662 static DEVICE_ATTR_RO(write_booster); 663 664 /* 665 * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this 666 * group. 667 */ 668 static struct attribute *ufs_sysfs_capabilities_attrs[] = { 669 &dev_attr_clock_scaling.attr, 670 &dev_attr_write_booster.attr, 671 NULL 672 }; 673 674 static const struct attribute_group ufs_sysfs_capabilities_group = { 675 .name = "capabilities", 676 .attrs = ufs_sysfs_capabilities_attrs, 677 }; 678 679 static ssize_t version_show(struct device *dev, 680 struct device_attribute *attr, char *buf) 681 { 682 struct ufs_hba *hba = dev_get_drvdata(dev); 683 684 return sysfs_emit(buf, "0x%x\n", hba->ufs_version); 685 } 686 687 static ssize_t product_id_show(struct device *dev, 688 struct device_attribute *attr, char *buf) 689 { 690 int ret; 691 u32 val; 692 struct ufs_hba *hba = dev_get_drvdata(dev); 693 694 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID); 695 if (ret) 696 return ret; 697 698 return sysfs_emit(buf, "0x%x\n", val); 699 } 700 701 static ssize_t man_id_show(struct device *dev, 702 struct device_attribute *attr, char *buf) 703 { 704 int ret; 705 u32 val; 706 struct ufs_hba *hba = dev_get_drvdata(dev); 707 708 ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID); 709 if (ret) 710 return ret; 711 712 return sysfs_emit(buf, "0x%x\n", val); 713 } 714 715 static DEVICE_ATTR_RO(version); 716 static DEVICE_ATTR_RO(product_id); 717 static DEVICE_ATTR_RO(man_id); 718 719 static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = { 720 &dev_attr_version.attr, 721 &dev_attr_product_id.attr, 722 &dev_attr_man_id.attr, 723 NULL 724 }; 725 726 static const struct attribute_group ufs_sysfs_ufshci_group = { 727 .name = "ufshci_capabilities", 728 .attrs = ufs_sysfs_ufshci_cap_attrs, 729 }; 730 731 static ssize_t monitor_enable_show(struct device *dev, 732 struct device_attribute *attr, char *buf) 733 { 734 struct ufs_hba *hba = dev_get_drvdata(dev); 735 736 return sysfs_emit(buf, "%d\n", hba->monitor.enabled); 737 } 738 739 static ssize_t monitor_enable_store(struct device *dev, 740 struct device_attribute *attr, 741 const char *buf, size_t count) 742 { 743 struct ufs_hba *hba = dev_get_drvdata(dev); 744 unsigned long value, flags; 745 746 if (kstrtoul(buf, 0, &value)) 747 return -EINVAL; 748 749 value = !!value; 750 spin_lock_irqsave(hba->host->host_lock, flags); 751 if (value == hba->monitor.enabled) 752 goto out_unlock; 753 754 if (!value) { 755 memset(&hba->monitor, 0, sizeof(hba->monitor)); 756 } else { 757 hba->monitor.enabled = true; 758 hba->monitor.enabled_ts = ktime_get(); 759 } 760 761 out_unlock: 762 spin_unlock_irqrestore(hba->host->host_lock, flags); 763 return count; 764 } 765 766 static ssize_t monitor_chunk_size_show(struct device *dev, 767 struct device_attribute *attr, char *buf) 768 { 769 struct ufs_hba *hba = dev_get_drvdata(dev); 770 771 return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size); 772 } 773 774 static ssize_t monitor_chunk_size_store(struct device *dev, 775 struct device_attribute *attr, 776 const char *buf, size_t count) 777 { 778 struct ufs_hba *hba = dev_get_drvdata(dev); 779 unsigned long value, flags; 780 781 if (kstrtoul(buf, 0, &value)) 782 return -EINVAL; 783 784 spin_lock_irqsave(hba->host->host_lock, flags); 785 /* Only allow chunk size change when monitor is disabled */ 786 if (!hba->monitor.enabled) 787 hba->monitor.chunk_size = value; 788 spin_unlock_irqrestore(hba->host->host_lock, flags); 789 return count; 790 } 791 792 static ssize_t read_total_sectors_show(struct device *dev, 793 struct device_attribute *attr, char *buf) 794 { 795 struct ufs_hba *hba = dev_get_drvdata(dev); 796 797 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]); 798 } 799 800 static ssize_t read_total_busy_show(struct device *dev, 801 struct device_attribute *attr, char *buf) 802 { 803 struct ufs_hba *hba = dev_get_drvdata(dev); 804 805 return sysfs_emit(buf, "%llu\n", 806 ktime_to_us(hba->monitor.total_busy[READ])); 807 } 808 809 static ssize_t read_nr_requests_show(struct device *dev, 810 struct device_attribute *attr, char *buf) 811 { 812 struct ufs_hba *hba = dev_get_drvdata(dev); 813 814 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]); 815 } 816 817 static ssize_t read_req_latency_avg_show(struct device *dev, 818 struct device_attribute *attr, 819 char *buf) 820 { 821 struct ufs_hba *hba = dev_get_drvdata(dev); 822 struct ufs_hba_monitor *m = &hba->monitor; 823 824 if (!m->nr_req[READ]) 825 return sysfs_emit(buf, "0\n"); 826 827 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]), 828 m->nr_req[READ])); 829 } 830 831 static ssize_t read_req_latency_max_show(struct device *dev, 832 struct device_attribute *attr, 833 char *buf) 834 { 835 struct ufs_hba *hba = dev_get_drvdata(dev); 836 837 return sysfs_emit(buf, "%llu\n", 838 ktime_to_us(hba->monitor.lat_max[READ])); 839 } 840 841 static ssize_t read_req_latency_min_show(struct device *dev, 842 struct device_attribute *attr, 843 char *buf) 844 { 845 struct ufs_hba *hba = dev_get_drvdata(dev); 846 847 return sysfs_emit(buf, "%llu\n", 848 ktime_to_us(hba->monitor.lat_min[READ])); 849 } 850 851 static ssize_t read_req_latency_sum_show(struct device *dev, 852 struct device_attribute *attr, 853 char *buf) 854 { 855 struct ufs_hba *hba = dev_get_drvdata(dev); 856 857 return sysfs_emit(buf, "%llu\n", 858 ktime_to_us(hba->monitor.lat_sum[READ])); 859 } 860 861 static ssize_t write_total_sectors_show(struct device *dev, 862 struct device_attribute *attr, 863 char *buf) 864 { 865 struct ufs_hba *hba = dev_get_drvdata(dev); 866 867 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]); 868 } 869 870 static ssize_t write_total_busy_show(struct device *dev, 871 struct device_attribute *attr, char *buf) 872 { 873 struct ufs_hba *hba = dev_get_drvdata(dev); 874 875 return sysfs_emit(buf, "%llu\n", 876 ktime_to_us(hba->monitor.total_busy[WRITE])); 877 } 878 879 static ssize_t write_nr_requests_show(struct device *dev, 880 struct device_attribute *attr, char *buf) 881 { 882 struct ufs_hba *hba = dev_get_drvdata(dev); 883 884 return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]); 885 } 886 887 static ssize_t write_req_latency_avg_show(struct device *dev, 888 struct device_attribute *attr, 889 char *buf) 890 { 891 struct ufs_hba *hba = dev_get_drvdata(dev); 892 struct ufs_hba_monitor *m = &hba->monitor; 893 894 if (!m->nr_req[WRITE]) 895 return sysfs_emit(buf, "0\n"); 896 897 return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]), 898 m->nr_req[WRITE])); 899 } 900 901 static ssize_t write_req_latency_max_show(struct device *dev, 902 struct device_attribute *attr, 903 char *buf) 904 { 905 struct ufs_hba *hba = dev_get_drvdata(dev); 906 907 return sysfs_emit(buf, "%llu\n", 908 ktime_to_us(hba->monitor.lat_max[WRITE])); 909 } 910 911 static ssize_t write_req_latency_min_show(struct device *dev, 912 struct device_attribute *attr, 913 char *buf) 914 { 915 struct ufs_hba *hba = dev_get_drvdata(dev); 916 917 return sysfs_emit(buf, "%llu\n", 918 ktime_to_us(hba->monitor.lat_min[WRITE])); 919 } 920 921 static ssize_t write_req_latency_sum_show(struct device *dev, 922 struct device_attribute *attr, 923 char *buf) 924 { 925 struct ufs_hba *hba = dev_get_drvdata(dev); 926 927 return sysfs_emit(buf, "%llu\n", 928 ktime_to_us(hba->monitor.lat_sum[WRITE])); 929 } 930 931 static DEVICE_ATTR_RW(monitor_enable); 932 static DEVICE_ATTR_RW(monitor_chunk_size); 933 static DEVICE_ATTR_RO(read_total_sectors); 934 static DEVICE_ATTR_RO(read_total_busy); 935 static DEVICE_ATTR_RO(read_nr_requests); 936 static DEVICE_ATTR_RO(read_req_latency_avg); 937 static DEVICE_ATTR_RO(read_req_latency_max); 938 static DEVICE_ATTR_RO(read_req_latency_min); 939 static DEVICE_ATTR_RO(read_req_latency_sum); 940 static DEVICE_ATTR_RO(write_total_sectors); 941 static DEVICE_ATTR_RO(write_total_busy); 942 static DEVICE_ATTR_RO(write_nr_requests); 943 static DEVICE_ATTR_RO(write_req_latency_avg); 944 static DEVICE_ATTR_RO(write_req_latency_max); 945 static DEVICE_ATTR_RO(write_req_latency_min); 946 static DEVICE_ATTR_RO(write_req_latency_sum); 947 948 static struct attribute *ufs_sysfs_monitor_attrs[] = { 949 &dev_attr_monitor_enable.attr, 950 &dev_attr_monitor_chunk_size.attr, 951 &dev_attr_read_total_sectors.attr, 952 &dev_attr_read_total_busy.attr, 953 &dev_attr_read_nr_requests.attr, 954 &dev_attr_read_req_latency_avg.attr, 955 &dev_attr_read_req_latency_max.attr, 956 &dev_attr_read_req_latency_min.attr, 957 &dev_attr_read_req_latency_sum.attr, 958 &dev_attr_write_total_sectors.attr, 959 &dev_attr_write_total_busy.attr, 960 &dev_attr_write_nr_requests.attr, 961 &dev_attr_write_req_latency_avg.attr, 962 &dev_attr_write_req_latency_max.attr, 963 &dev_attr_write_req_latency_min.attr, 964 &dev_attr_write_req_latency_sum.attr, 965 NULL 966 }; 967 968 static const struct attribute_group ufs_sysfs_monitor_group = { 969 .name = "monitor", 970 .attrs = ufs_sysfs_monitor_attrs, 971 }; 972 973 static ssize_t lane_show(struct device *dev, struct device_attribute *attr, 974 char *buf) 975 { 976 struct ufs_hba *hba = dev_get_drvdata(dev); 977 978 return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx); 979 } 980 981 static ssize_t mode_show(struct device *dev, struct device_attribute *attr, 982 char *buf) 983 { 984 struct ufs_hba *hba = dev_get_drvdata(dev); 985 986 return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx)); 987 } 988 989 static ssize_t rate_show(struct device *dev, struct device_attribute *attr, 990 char *buf) 991 { 992 struct ufs_hba *hba = dev_get_drvdata(dev); 993 994 return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate)); 995 } 996 997 static ssize_t gear_show(struct device *dev, struct device_attribute *attr, 998 char *buf) 999 { 1000 struct ufs_hba *hba = dev_get_drvdata(dev); 1001 1002 return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ? 1003 ufs_hs_gear_to_string(hba->pwr_info.gear_rx) : 1004 ufs_pwm_gear_to_string(hba->pwr_info.gear_rx)); 1005 } 1006 1007 static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr, 1008 char *buf) 1009 { 1010 struct ufs_hba *hba = dev_get_drvdata(dev); 1011 1012 return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode)); 1013 } 1014 1015 static ssize_t link_state_show(struct device *dev, 1016 struct device_attribute *attr, char *buf) 1017 { 1018 struct ufs_hba *hba = dev_get_drvdata(dev); 1019 1020 return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state)); 1021 } 1022 1023 static DEVICE_ATTR_RO(lane); 1024 static DEVICE_ATTR_RO(mode); 1025 static DEVICE_ATTR_RO(rate); 1026 static DEVICE_ATTR_RO(gear); 1027 static DEVICE_ATTR_RO(dev_pm); 1028 static DEVICE_ATTR_RO(link_state); 1029 1030 static struct attribute *ufs_power_info_attrs[] = { 1031 &dev_attr_lane.attr, 1032 &dev_attr_mode.attr, 1033 &dev_attr_rate.attr, 1034 &dev_attr_gear.attr, 1035 &dev_attr_dev_pm.attr, 1036 &dev_attr_link_state.attr, 1037 NULL 1038 }; 1039 1040 static const struct attribute_group ufs_sysfs_power_info_group = { 1041 .name = "power_info", 1042 .attrs = ufs_power_info_attrs, 1043 }; 1044 1045 static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba, 1046 enum desc_idn desc_id, 1047 u8 desc_index, 1048 u8 param_offset, 1049 u8 *sysfs_buf, 1050 u8 param_size) 1051 { 1052 u8 desc_buf[8] = {0}; 1053 int ret; 1054 1055 if (param_size > 8) 1056 return -EINVAL; 1057 1058 down(&hba->host_sem); 1059 if (!ufshcd_is_user_access_allowed(hba)) { 1060 ret = -EBUSY; 1061 goto out; 1062 } 1063 1064 ufshcd_rpm_get_sync(hba); 1065 ret = ufshcd_read_desc_param(hba, desc_id, desc_index, 1066 param_offset, desc_buf, param_size); 1067 ufshcd_rpm_put_sync(hba); 1068 if (ret) { 1069 ret = -EINVAL; 1070 goto out; 1071 } 1072 1073 switch (param_size) { 1074 case 1: 1075 ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf); 1076 break; 1077 case 2: 1078 ret = sysfs_emit(sysfs_buf, "0x%04X\n", 1079 get_unaligned_be16(desc_buf)); 1080 break; 1081 case 4: 1082 ret = sysfs_emit(sysfs_buf, "0x%08X\n", 1083 get_unaligned_be32(desc_buf)); 1084 break; 1085 case 8: 1086 ret = sysfs_emit(sysfs_buf, "0x%016llX\n", 1087 get_unaligned_be64(desc_buf)); 1088 break; 1089 } 1090 1091 out: 1092 up(&hba->host_sem); 1093 return ret; 1094 } 1095 1096 #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \ 1097 static ssize_t _name##_show(struct device *dev, \ 1098 struct device_attribute *attr, char *buf) \ 1099 { \ 1100 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1101 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1102 0, _duname##_DESC_PARAM##_puname, buf, _size); \ 1103 } \ 1104 static DEVICE_ATTR_RO(_name) 1105 1106 #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \ 1107 UFS_DESC_PARAM(_name, _uname, DEVICE, _size) 1108 1109 UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1); 1110 UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1); 1111 UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1); 1112 UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1); 1113 UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1); 1114 UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1); 1115 UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1); 1116 UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1); 1117 UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1); 1118 UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1); 1119 UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1); 1120 UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1); 1121 UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1); 1122 UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1); 1123 UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2); 1124 UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2); 1125 UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2); 1126 UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1); 1127 UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2); 1128 UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1); 1129 UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1); 1130 UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1); 1131 UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2); 1132 UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1); 1133 UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4); 1134 UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1); 1135 UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4); 1136 UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1); 1137 UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1); 1138 UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4); 1139 1140 static struct attribute *ufs_sysfs_device_descriptor[] = { 1141 &dev_attr_device_type.attr, 1142 &dev_attr_device_class.attr, 1143 &dev_attr_device_sub_class.attr, 1144 &dev_attr_protocol.attr, 1145 &dev_attr_number_of_luns.attr, 1146 &dev_attr_number_of_wluns.attr, 1147 &dev_attr_boot_enable.attr, 1148 &dev_attr_descriptor_access_enable.attr, 1149 &dev_attr_initial_power_mode.attr, 1150 &dev_attr_high_priority_lun.attr, 1151 &dev_attr_secure_removal_type.attr, 1152 &dev_attr_support_security_lun.attr, 1153 &dev_attr_bkops_termination_latency.attr, 1154 &dev_attr_initial_active_icc_level.attr, 1155 &dev_attr_specification_version.attr, 1156 &dev_attr_manufacturing_date.attr, 1157 &dev_attr_manufacturer_id.attr, 1158 &dev_attr_rtt_capability.attr, 1159 &dev_attr_rtc_update.attr, 1160 &dev_attr_ufs_features.attr, 1161 &dev_attr_ffu_timeout.attr, 1162 &dev_attr_queue_depth.attr, 1163 &dev_attr_device_version.attr, 1164 &dev_attr_number_of_secure_wpa.attr, 1165 &dev_attr_psa_max_data_size.attr, 1166 &dev_attr_psa_state_timeout.attr, 1167 &dev_attr_ext_feature_sup.attr, 1168 &dev_attr_wb_presv_us_en.attr, 1169 &dev_attr_wb_type.attr, 1170 &dev_attr_wb_shared_alloc_units.attr, 1171 NULL, 1172 }; 1173 1174 static const struct attribute_group ufs_sysfs_device_descriptor_group = { 1175 .name = "device_descriptor", 1176 .attrs = ufs_sysfs_device_descriptor, 1177 }; 1178 1179 #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \ 1180 UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size) 1181 1182 UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2); 1183 UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2); 1184 1185 static struct attribute *ufs_sysfs_interconnect_descriptor[] = { 1186 &dev_attr_unipro_version.attr, 1187 &dev_attr_mphy_version.attr, 1188 NULL, 1189 }; 1190 1191 static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = { 1192 .name = "interconnect_descriptor", 1193 .attrs = ufs_sysfs_interconnect_descriptor, 1194 }; 1195 1196 #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \ 1197 UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size) 1198 1199 UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8); 1200 UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1); 1201 UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4); 1202 UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1); 1203 UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1); 1204 UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1); 1205 UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1); 1206 UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1); 1207 UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1); 1208 UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1); 1209 UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1); 1210 UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1); 1211 UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1); 1212 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1); 1213 UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1); 1214 UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1); 1215 UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2); 1216 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units, 1217 _SCM_MAX_NUM_UNITS, 4); 1218 UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor, 1219 _SCM_CAP_ADJ_FCTR, 2); 1220 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units, 1221 _NPM_MAX_NUM_UNITS, 4); 1222 UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor, 1223 _NPM_CAP_ADJ_FCTR, 2); 1224 UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units, 1225 _ENM1_MAX_NUM_UNITS, 4); 1226 UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor, 1227 _ENM1_CAP_ADJ_FCTR, 2); 1228 UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units, 1229 _ENM2_MAX_NUM_UNITS, 4); 1230 UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor, 1231 _ENM2_CAP_ADJ_FCTR, 2); 1232 UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units, 1233 _ENM3_MAX_NUM_UNITS, 4); 1234 UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor, 1235 _ENM3_CAP_ADJ_FCTR, 2); 1236 UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units, 1237 _ENM4_MAX_NUM_UNITS, 4); 1238 UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor, 1239 _ENM4_CAP_ADJ_FCTR, 2); 1240 UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4); 1241 UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1); 1242 UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1); 1243 UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1); 1244 UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1); 1245 1246 1247 static struct attribute *ufs_sysfs_geometry_descriptor[] = { 1248 &dev_attr_raw_device_capacity.attr, 1249 &dev_attr_max_number_of_luns.attr, 1250 &dev_attr_segment_size.attr, 1251 &dev_attr_allocation_unit_size.attr, 1252 &dev_attr_min_addressable_block_size.attr, 1253 &dev_attr_optimal_read_block_size.attr, 1254 &dev_attr_optimal_write_block_size.attr, 1255 &dev_attr_max_in_buffer_size.attr, 1256 &dev_attr_max_out_buffer_size.attr, 1257 &dev_attr_rpmb_rw_size.attr, 1258 &dev_attr_dyn_capacity_resource_policy.attr, 1259 &dev_attr_data_ordering.attr, 1260 &dev_attr_max_number_of_contexts.attr, 1261 &dev_attr_sys_data_tag_unit_size.attr, 1262 &dev_attr_sys_data_tag_resource_size.attr, 1263 &dev_attr_secure_removal_types.attr, 1264 &dev_attr_memory_types.attr, 1265 &dev_attr_sys_code_memory_max_alloc_units.attr, 1266 &dev_attr_sys_code_memory_capacity_adjustment_factor.attr, 1267 &dev_attr_non_persist_memory_max_alloc_units.attr, 1268 &dev_attr_non_persist_memory_capacity_adjustment_factor.attr, 1269 &dev_attr_enh1_memory_max_alloc_units.attr, 1270 &dev_attr_enh1_memory_capacity_adjustment_factor.attr, 1271 &dev_attr_enh2_memory_max_alloc_units.attr, 1272 &dev_attr_enh2_memory_capacity_adjustment_factor.attr, 1273 &dev_attr_enh3_memory_max_alloc_units.attr, 1274 &dev_attr_enh3_memory_capacity_adjustment_factor.attr, 1275 &dev_attr_enh4_memory_max_alloc_units.attr, 1276 &dev_attr_enh4_memory_capacity_adjustment_factor.attr, 1277 &dev_attr_wb_max_alloc_units.attr, 1278 &dev_attr_wb_max_wb_luns.attr, 1279 &dev_attr_wb_buff_cap_adj.attr, 1280 &dev_attr_wb_sup_red_type.attr, 1281 &dev_attr_wb_sup_wb_type.attr, 1282 NULL, 1283 }; 1284 1285 static const struct attribute_group ufs_sysfs_geometry_descriptor_group = { 1286 .name = "geometry_descriptor", 1287 .attrs = ufs_sysfs_geometry_descriptor, 1288 }; 1289 1290 #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \ 1291 UFS_DESC_PARAM(_name, _uname, HEALTH, _size) 1292 1293 UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1); 1294 UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1); 1295 UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1); 1296 1297 static struct attribute *ufs_sysfs_health_descriptor[] = { 1298 &dev_attr_eol_info.attr, 1299 &dev_attr_life_time_estimation_a.attr, 1300 &dev_attr_life_time_estimation_b.attr, 1301 NULL, 1302 }; 1303 1304 static const struct attribute_group ufs_sysfs_health_descriptor_group = { 1305 .name = "health_descriptor", 1306 .attrs = ufs_sysfs_health_descriptor, 1307 }; 1308 1309 #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \ 1310 static ssize_t _name##_index##_show(struct device *dev, \ 1311 struct device_attribute *attr, char *buf) \ 1312 { \ 1313 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1314 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \ 1315 PWR_DESC##_uname##_0 + _index * 2, buf, 2); \ 1316 } \ 1317 static DEVICE_ATTR_RO(_name##_index) 1318 1319 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0); 1320 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1); 1321 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2); 1322 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3); 1323 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4); 1324 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5); 1325 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6); 1326 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7); 1327 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8); 1328 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9); 1329 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10); 1330 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11); 1331 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12); 1332 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13); 1333 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14); 1334 UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15); 1335 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0); 1336 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1); 1337 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2); 1338 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3); 1339 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4); 1340 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5); 1341 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6); 1342 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7); 1343 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8); 1344 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9); 1345 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10); 1346 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11); 1347 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12); 1348 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13); 1349 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14); 1350 UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15); 1351 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0); 1352 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1); 1353 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2); 1354 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3); 1355 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4); 1356 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5); 1357 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6); 1358 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7); 1359 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8); 1360 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9); 1361 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10); 1362 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11); 1363 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12); 1364 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13); 1365 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14); 1366 UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15); 1367 1368 static struct attribute *ufs_sysfs_power_descriptor[] = { 1369 &dev_attr_active_icc_levels_vcc0.attr, 1370 &dev_attr_active_icc_levels_vcc1.attr, 1371 &dev_attr_active_icc_levels_vcc2.attr, 1372 &dev_attr_active_icc_levels_vcc3.attr, 1373 &dev_attr_active_icc_levels_vcc4.attr, 1374 &dev_attr_active_icc_levels_vcc5.attr, 1375 &dev_attr_active_icc_levels_vcc6.attr, 1376 &dev_attr_active_icc_levels_vcc7.attr, 1377 &dev_attr_active_icc_levels_vcc8.attr, 1378 &dev_attr_active_icc_levels_vcc9.attr, 1379 &dev_attr_active_icc_levels_vcc10.attr, 1380 &dev_attr_active_icc_levels_vcc11.attr, 1381 &dev_attr_active_icc_levels_vcc12.attr, 1382 &dev_attr_active_icc_levels_vcc13.attr, 1383 &dev_attr_active_icc_levels_vcc14.attr, 1384 &dev_attr_active_icc_levels_vcc15.attr, 1385 &dev_attr_active_icc_levels_vccq0.attr, 1386 &dev_attr_active_icc_levels_vccq1.attr, 1387 &dev_attr_active_icc_levels_vccq2.attr, 1388 &dev_attr_active_icc_levels_vccq3.attr, 1389 &dev_attr_active_icc_levels_vccq4.attr, 1390 &dev_attr_active_icc_levels_vccq5.attr, 1391 &dev_attr_active_icc_levels_vccq6.attr, 1392 &dev_attr_active_icc_levels_vccq7.attr, 1393 &dev_attr_active_icc_levels_vccq8.attr, 1394 &dev_attr_active_icc_levels_vccq9.attr, 1395 &dev_attr_active_icc_levels_vccq10.attr, 1396 &dev_attr_active_icc_levels_vccq11.attr, 1397 &dev_attr_active_icc_levels_vccq12.attr, 1398 &dev_attr_active_icc_levels_vccq13.attr, 1399 &dev_attr_active_icc_levels_vccq14.attr, 1400 &dev_attr_active_icc_levels_vccq15.attr, 1401 &dev_attr_active_icc_levels_vccq20.attr, 1402 &dev_attr_active_icc_levels_vccq21.attr, 1403 &dev_attr_active_icc_levels_vccq22.attr, 1404 &dev_attr_active_icc_levels_vccq23.attr, 1405 &dev_attr_active_icc_levels_vccq24.attr, 1406 &dev_attr_active_icc_levels_vccq25.attr, 1407 &dev_attr_active_icc_levels_vccq26.attr, 1408 &dev_attr_active_icc_levels_vccq27.attr, 1409 &dev_attr_active_icc_levels_vccq28.attr, 1410 &dev_attr_active_icc_levels_vccq29.attr, 1411 &dev_attr_active_icc_levels_vccq210.attr, 1412 &dev_attr_active_icc_levels_vccq211.attr, 1413 &dev_attr_active_icc_levels_vccq212.attr, 1414 &dev_attr_active_icc_levels_vccq213.attr, 1415 &dev_attr_active_icc_levels_vccq214.attr, 1416 &dev_attr_active_icc_levels_vccq215.attr, 1417 NULL, 1418 }; 1419 1420 static const struct attribute_group ufs_sysfs_power_descriptor_group = { 1421 .name = "power_descriptor", 1422 .attrs = ufs_sysfs_power_descriptor, 1423 }; 1424 1425 #define UFS_STRING_DESCRIPTOR(_name, _pname) \ 1426 static ssize_t _name##_show(struct device *dev, \ 1427 struct device_attribute *attr, char *buf) \ 1428 { \ 1429 u8 index; \ 1430 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1431 int ret; \ 1432 int desc_len = QUERY_DESC_MAX_SIZE; \ 1433 u8 *desc_buf; \ 1434 \ 1435 down(&hba->host_sem); \ 1436 if (!ufshcd_is_user_access_allowed(hba)) { \ 1437 up(&hba->host_sem); \ 1438 return -EBUSY; \ 1439 } \ 1440 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \ 1441 if (!desc_buf) { \ 1442 up(&hba->host_sem); \ 1443 return -ENOMEM; \ 1444 } \ 1445 ufshcd_rpm_get_sync(hba); \ 1446 ret = ufshcd_query_descriptor_retry(hba, \ 1447 UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \ 1448 0, 0, desc_buf, &desc_len); \ 1449 if (ret) { \ 1450 ret = -EINVAL; \ 1451 goto out; \ 1452 } \ 1453 index = desc_buf[DEVICE_DESC_PARAM##_pname]; \ 1454 kfree(desc_buf); \ 1455 desc_buf = NULL; \ 1456 ret = ufshcd_read_string_desc(hba, index, &desc_buf, \ 1457 SD_ASCII_STD); \ 1458 if (ret < 0) \ 1459 goto out; \ 1460 ret = sysfs_emit(buf, "%s\n", desc_buf); \ 1461 out: \ 1462 ufshcd_rpm_put_sync(hba); \ 1463 kfree(desc_buf); \ 1464 up(&hba->host_sem); \ 1465 return ret; \ 1466 } \ 1467 static DEVICE_ATTR_RO(_name) 1468 1469 UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME); 1470 UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME); 1471 UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID); 1472 UFS_STRING_DESCRIPTOR(serial_number, _SN); 1473 UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV); 1474 1475 static struct attribute *ufs_sysfs_string_descriptors[] = { 1476 &dev_attr_manufacturer_name.attr, 1477 &dev_attr_product_name.attr, 1478 &dev_attr_oem_id.attr, 1479 &dev_attr_serial_number.attr, 1480 &dev_attr_product_revision.attr, 1481 NULL, 1482 }; 1483 1484 static const struct attribute_group ufs_sysfs_string_descriptors_group = { 1485 .name = "string_descriptors", 1486 .attrs = ufs_sysfs_string_descriptors, 1487 }; 1488 1489 static inline bool ufshcd_is_wb_flags(enum flag_idn idn) 1490 { 1491 return idn >= QUERY_FLAG_IDN_WB_EN && 1492 idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8; 1493 } 1494 1495 #define UFS_FLAG(_name, _uname) \ 1496 static ssize_t _name##_show(struct device *dev, \ 1497 struct device_attribute *attr, char *buf) \ 1498 { \ 1499 bool flag; \ 1500 u8 index = 0; \ 1501 int ret; \ 1502 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1503 \ 1504 down(&hba->host_sem); \ 1505 if (!ufshcd_is_user_access_allowed(hba)) { \ 1506 up(&hba->host_sem); \ 1507 return -EBUSY; \ 1508 } \ 1509 if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \ 1510 index = ufshcd_wb_get_query_index(hba); \ 1511 ufshcd_rpm_get_sync(hba); \ 1512 ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \ 1513 QUERY_FLAG_IDN##_uname, index, &flag); \ 1514 ufshcd_rpm_put_sync(hba); \ 1515 if (ret) { \ 1516 ret = -EINVAL; \ 1517 goto out; \ 1518 } \ 1519 ret = sysfs_emit(buf, "%s\n", flag ? "true" : "false"); \ 1520 out: \ 1521 up(&hba->host_sem); \ 1522 return ret; \ 1523 } \ 1524 static DEVICE_ATTR_RO(_name) 1525 1526 UFS_FLAG(device_init, _FDEVICEINIT); 1527 UFS_FLAG(permanent_wpe, _PERMANENT_WPE); 1528 UFS_FLAG(power_on_wpe, _PWR_ON_WPE); 1529 UFS_FLAG(bkops_enable, _BKOPS_EN); 1530 UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE); 1531 UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL); 1532 UFS_FLAG(busy_rtc, _BUSY_RTC); 1533 UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE); 1534 UFS_FLAG(wb_enable, _WB_EN); 1535 UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN); 1536 UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8); 1537 1538 static struct attribute *ufs_sysfs_device_flags[] = { 1539 &dev_attr_device_init.attr, 1540 &dev_attr_permanent_wpe.attr, 1541 &dev_attr_power_on_wpe.attr, 1542 &dev_attr_bkops_enable.attr, 1543 &dev_attr_life_span_mode_enable.attr, 1544 &dev_attr_phy_resource_removal.attr, 1545 &dev_attr_busy_rtc.attr, 1546 &dev_attr_disable_fw_update.attr, 1547 &dev_attr_wb_enable.attr, 1548 &dev_attr_wb_flush_en.attr, 1549 &dev_attr_wb_flush_during_h8.attr, 1550 NULL, 1551 }; 1552 1553 static const struct attribute_group ufs_sysfs_flags_group = { 1554 .name = "flags", 1555 .attrs = ufs_sysfs_device_flags, 1556 }; 1557 1558 static ssize_t max_number_of_rtt_show(struct device *dev, 1559 struct device_attribute *attr, char *buf) 1560 { 1561 struct ufs_hba *hba = dev_get_drvdata(dev); 1562 u32 rtt; 1563 int ret; 1564 1565 down(&hba->host_sem); 1566 if (!ufshcd_is_user_access_allowed(hba)) { 1567 up(&hba->host_sem); 1568 return -EBUSY; 1569 } 1570 1571 ufshcd_rpm_get_sync(hba); 1572 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1573 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1574 ufshcd_rpm_put_sync(hba); 1575 1576 if (ret) 1577 goto out; 1578 1579 ret = sysfs_emit(buf, "0x%08X\n", rtt); 1580 1581 out: 1582 up(&hba->host_sem); 1583 return ret; 1584 } 1585 1586 static ssize_t max_number_of_rtt_store(struct device *dev, 1587 struct device_attribute *attr, 1588 const char *buf, size_t count) 1589 { 1590 struct ufs_hba *hba = dev_get_drvdata(dev); 1591 struct ufs_dev_info *dev_info = &hba->dev_info; 1592 struct scsi_device *sdev; 1593 unsigned int memflags; 1594 unsigned int rtt; 1595 int ret; 1596 1597 if (kstrtouint(buf, 0, &rtt)) 1598 return -EINVAL; 1599 1600 if (rtt > dev_info->rtt_cap) { 1601 dev_err(dev, "rtt can be at most bDeviceRTTCap\n"); 1602 return -EINVAL; 1603 } 1604 1605 down(&hba->host_sem); 1606 if (!ufshcd_is_user_access_allowed(hba)) { 1607 ret = -EBUSY; 1608 goto out; 1609 } 1610 1611 ufshcd_rpm_get_sync(hba); 1612 1613 memflags = memalloc_noio_save(); 1614 shost_for_each_device(sdev, hba->host) 1615 blk_mq_freeze_queue_nomemsave(sdev->request_queue); 1616 1617 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1618 QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt); 1619 1620 shost_for_each_device(sdev, hba->host) 1621 blk_mq_unfreeze_queue_nomemrestore(sdev->request_queue); 1622 memalloc_noio_restore(memflags); 1623 1624 ufshcd_rpm_put_sync(hba); 1625 1626 out: 1627 up(&hba->host_sem); 1628 return ret < 0 ? ret : count; 1629 } 1630 1631 static DEVICE_ATTR_RW(max_number_of_rtt); 1632 1633 static inline bool ufshcd_is_wb_attrs(enum attr_idn idn) 1634 { 1635 return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS && 1636 idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE; 1637 } 1638 1639 static int wb_read_resize_attrs(struct ufs_hba *hba, 1640 enum attr_idn idn, u32 *attr_val) 1641 { 1642 u8 index = 0; 1643 int ret; 1644 1645 if (!ufshcd_is_wb_allowed(hba) || !hba->dev_info.wb_enabled 1646 || !hba->dev_info.b_presrv_uspc_en 1647 || !(hba->dev_info.ext_wb_sup & UFS_DEV_WB_BUF_RESIZE)) 1648 return -EOPNOTSUPP; 1649 1650 down(&hba->host_sem); 1651 if (!ufshcd_is_user_access_allowed(hba)) { 1652 up(&hba->host_sem); 1653 return -EBUSY; 1654 } 1655 1656 index = ufshcd_wb_get_query_index(hba); 1657 ufshcd_rpm_get_sync(hba); 1658 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1659 idn, index, 0, attr_val); 1660 ufshcd_rpm_put_sync(hba); 1661 1662 up(&hba->host_sem); 1663 return ret; 1664 } 1665 1666 static ssize_t wb_resize_hint_show(struct device *dev, 1667 struct device_attribute *attr, char *buf) 1668 { 1669 struct ufs_hba *hba = dev_get_drvdata(dev); 1670 int ret; 1671 u32 value; 1672 1673 ret = wb_read_resize_attrs(hba, 1674 QUERY_ATTR_IDN_WB_BUF_RESIZE_HINT, &value); 1675 if (ret) 1676 return ret; 1677 1678 return sysfs_emit(buf, "%s\n", ufs_wb_resize_hint_to_string(value)); 1679 } 1680 1681 static DEVICE_ATTR_RO(wb_resize_hint); 1682 1683 static ssize_t wb_resize_status_show(struct device *dev, 1684 struct device_attribute *attr, char *buf) 1685 { 1686 struct ufs_hba *hba = dev_get_drvdata(dev); 1687 int ret; 1688 u32 value; 1689 1690 ret = wb_read_resize_attrs(hba, 1691 QUERY_ATTR_IDN_WB_BUF_RESIZE_STATUS, &value); 1692 if (ret) 1693 return ret; 1694 1695 return sysfs_emit(buf, "%s\n", ufs_wb_resize_status_to_string(value)); 1696 } 1697 1698 static DEVICE_ATTR_RO(wb_resize_status); 1699 1700 #define UFS_ATTRIBUTE(_name, _uname) \ 1701 static ssize_t _name##_show(struct device *dev, \ 1702 struct device_attribute *attr, char *buf) \ 1703 { \ 1704 struct ufs_hba *hba = dev_get_drvdata(dev); \ 1705 u32 value; \ 1706 int ret; \ 1707 u8 index = 0; \ 1708 \ 1709 down(&hba->host_sem); \ 1710 if (!ufshcd_is_user_access_allowed(hba)) { \ 1711 up(&hba->host_sem); \ 1712 return -EBUSY; \ 1713 } \ 1714 if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \ 1715 index = ufshcd_wb_get_query_index(hba); \ 1716 ufshcd_rpm_get_sync(hba); \ 1717 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \ 1718 QUERY_ATTR_IDN##_uname, index, 0, &value); \ 1719 ufshcd_rpm_put_sync(hba); \ 1720 if (ret) { \ 1721 ret = -EINVAL; \ 1722 goto out; \ 1723 } \ 1724 ret = sysfs_emit(buf, "0x%08X\n", value); \ 1725 out: \ 1726 up(&hba->host_sem); \ 1727 return ret; \ 1728 } \ 1729 static DEVICE_ATTR_RO(_name) 1730 1731 UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN); 1732 UFS_ATTRIBUTE(current_power_mode, _POWER_MODE); 1733 UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL); 1734 UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN); 1735 UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS); 1736 UFS_ATTRIBUTE(purge_status, _PURGE_STATUS); 1737 UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN); 1738 UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT); 1739 UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ); 1740 UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK); 1741 UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL); 1742 UFS_ATTRIBUTE(exception_event_status, _EE_STATUS); 1743 UFS_ATTRIBUTE(ffu_status, _FFU_STATUS); 1744 UFS_ATTRIBUTE(psa_state, _PSA_STATE); 1745 UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE); 1746 UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS); 1747 UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE); 1748 UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST); 1749 UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE); 1750 1751 1752 static struct attribute *ufs_sysfs_attributes[] = { 1753 &dev_attr_boot_lun_enabled.attr, 1754 &dev_attr_current_power_mode.attr, 1755 &dev_attr_active_icc_level.attr, 1756 &dev_attr_ooo_data_enabled.attr, 1757 &dev_attr_bkops_status.attr, 1758 &dev_attr_purge_status.attr, 1759 &dev_attr_max_data_in_size.attr, 1760 &dev_attr_max_data_out_size.attr, 1761 &dev_attr_reference_clock_frequency.attr, 1762 &dev_attr_configuration_descriptor_lock.attr, 1763 &dev_attr_max_number_of_rtt.attr, 1764 &dev_attr_exception_event_control.attr, 1765 &dev_attr_exception_event_status.attr, 1766 &dev_attr_ffu_status.attr, 1767 &dev_attr_psa_state.attr, 1768 &dev_attr_psa_data_size.attr, 1769 &dev_attr_wb_flush_status.attr, 1770 &dev_attr_wb_avail_buf.attr, 1771 &dev_attr_wb_life_time_est.attr, 1772 &dev_attr_wb_cur_buf.attr, 1773 &dev_attr_wb_resize_hint.attr, 1774 &dev_attr_wb_resize_status.attr, 1775 NULL, 1776 }; 1777 1778 static const struct attribute_group ufs_sysfs_attributes_group = { 1779 .name = "attributes", 1780 .attrs = ufs_sysfs_attributes, 1781 }; 1782 1783 static int hid_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 1784 enum attr_idn idn, u32 *attr_val) 1785 { 1786 int ret; 1787 1788 down(&hba->host_sem); 1789 if (!ufshcd_is_user_access_allowed(hba)) { 1790 up(&hba->host_sem); 1791 return -EBUSY; 1792 } 1793 1794 ufshcd_rpm_get_sync(hba); 1795 ret = ufshcd_query_attr(hba, opcode, idn, 0, 0, attr_val); 1796 ufshcd_rpm_put_sync(hba); 1797 1798 up(&hba->host_sem); 1799 return ret; 1800 } 1801 1802 static ssize_t analysis_trigger_store(struct device *dev, 1803 struct device_attribute *attr, const char *buf, size_t count) 1804 { 1805 struct ufs_hba *hba = dev_get_drvdata(dev); 1806 int mode; 1807 int ret; 1808 1809 if (sysfs_streq(buf, "enable")) 1810 mode = HID_ANALYSIS_ENABLE; 1811 else if (sysfs_streq(buf, "disable")) 1812 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE; 1813 else 1814 return -EINVAL; 1815 1816 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1817 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode); 1818 1819 return ret < 0 ? ret : count; 1820 } 1821 1822 static DEVICE_ATTR_WO(analysis_trigger); 1823 1824 static ssize_t defrag_trigger_store(struct device *dev, 1825 struct device_attribute *attr, const char *buf, size_t count) 1826 { 1827 struct ufs_hba *hba = dev_get_drvdata(dev); 1828 int mode; 1829 int ret; 1830 1831 if (sysfs_streq(buf, "enable")) 1832 mode = HID_ANALYSIS_AND_DEFRAG_ENABLE; 1833 else if (sysfs_streq(buf, "disable")) 1834 mode = HID_ANALYSIS_AND_DEFRAG_DISABLE; 1835 else 1836 return -EINVAL; 1837 1838 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1839 QUERY_ATTR_IDN_HID_DEFRAG_OPERATION, &mode); 1840 1841 return ret < 0 ? ret : count; 1842 } 1843 1844 static DEVICE_ATTR_WO(defrag_trigger); 1845 1846 static ssize_t fragmented_size_show(struct device *dev, 1847 struct device_attribute *attr, char *buf) 1848 { 1849 struct ufs_hba *hba = dev_get_drvdata(dev); 1850 u32 value; 1851 int ret; 1852 1853 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1854 QUERY_ATTR_IDN_HID_AVAILABLE_SIZE, &value); 1855 if (ret) 1856 return ret; 1857 1858 return sysfs_emit(buf, "%u\n", value); 1859 } 1860 1861 static DEVICE_ATTR_RO(fragmented_size); 1862 1863 static ssize_t defrag_size_show(struct device *dev, 1864 struct device_attribute *attr, char *buf) 1865 { 1866 struct ufs_hba *hba = dev_get_drvdata(dev); 1867 u32 value; 1868 int ret; 1869 1870 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1871 QUERY_ATTR_IDN_HID_SIZE, &value); 1872 if (ret) 1873 return ret; 1874 1875 return sysfs_emit(buf, "%u\n", value); 1876 } 1877 1878 static ssize_t defrag_size_store(struct device *dev, 1879 struct device_attribute *attr, const char *buf, size_t count) 1880 { 1881 struct ufs_hba *hba = dev_get_drvdata(dev); 1882 u32 value; 1883 int ret; 1884 1885 if (kstrtou32(buf, 0, &value)) 1886 return -EINVAL; 1887 1888 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 1889 QUERY_ATTR_IDN_HID_SIZE, &value); 1890 1891 return ret < 0 ? ret : count; 1892 } 1893 1894 static DEVICE_ATTR_RW(defrag_size); 1895 1896 static ssize_t progress_ratio_show(struct device *dev, 1897 struct device_attribute *attr, char *buf) 1898 { 1899 struct ufs_hba *hba = dev_get_drvdata(dev); 1900 u32 value; 1901 int ret; 1902 1903 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1904 QUERY_ATTR_IDN_HID_PROGRESS_RATIO, &value); 1905 if (ret) 1906 return ret; 1907 1908 return sysfs_emit(buf, "%u\n", value); 1909 } 1910 1911 static DEVICE_ATTR_RO(progress_ratio); 1912 1913 static ssize_t state_show(struct device *dev, 1914 struct device_attribute *attr, char *buf) 1915 { 1916 struct ufs_hba *hba = dev_get_drvdata(dev); 1917 u32 value; 1918 int ret; 1919 1920 ret = hid_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 1921 QUERY_ATTR_IDN_HID_STATE, &value); 1922 if (ret) 1923 return ret; 1924 1925 return sysfs_emit(buf, "%s\n", ufs_hid_state_to_string(value)); 1926 } 1927 1928 static DEVICE_ATTR_RO(state); 1929 1930 static struct attribute *ufs_sysfs_hid[] = { 1931 &dev_attr_analysis_trigger.attr, 1932 &dev_attr_defrag_trigger.attr, 1933 &dev_attr_fragmented_size.attr, 1934 &dev_attr_defrag_size.attr, 1935 &dev_attr_progress_ratio.attr, 1936 &dev_attr_state.attr, 1937 NULL, 1938 }; 1939 1940 static umode_t ufs_sysfs_hid_is_visible(struct kobject *kobj, 1941 struct attribute *attr, int n) 1942 { 1943 struct device *dev = container_of(kobj, struct device, kobj); 1944 struct ufs_hba *hba = dev_get_drvdata(dev); 1945 1946 return hba->dev_info.hid_sup ? attr->mode : 0; 1947 } 1948 1949 static const struct attribute_group ufs_sysfs_hid_group = { 1950 .name = "hid", 1951 .attrs = ufs_sysfs_hid, 1952 .is_visible = ufs_sysfs_hid_is_visible, 1953 }; 1954 1955 static const struct attribute_group *ufs_sysfs_groups[] = { 1956 &ufs_sysfs_default_group, 1957 &ufs_sysfs_capabilities_group, 1958 &ufs_sysfs_ufshci_group, 1959 &ufs_sysfs_monitor_group, 1960 &ufs_sysfs_power_info_group, 1961 &ufs_sysfs_device_descriptor_group, 1962 &ufs_sysfs_interconnect_descriptor_group, 1963 &ufs_sysfs_geometry_descriptor_group, 1964 &ufs_sysfs_health_descriptor_group, 1965 &ufs_sysfs_power_descriptor_group, 1966 &ufs_sysfs_string_descriptors_group, 1967 &ufs_sysfs_flags_group, 1968 &ufs_sysfs_attributes_group, 1969 &ufs_sysfs_hid_group, 1970 NULL, 1971 }; 1972 1973 #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \ 1974 static ssize_t _pname##_show(struct device *dev, \ 1975 struct device_attribute *attr, char *buf) \ 1976 { \ 1977 struct scsi_device *sdev = to_scsi_device(dev); \ 1978 struct ufs_hba *hba = shost_priv(sdev->host); \ 1979 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \ 1980 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \ 1981 return -EINVAL; \ 1982 return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 1983 lun, _duname##_DESC_PARAM##_puname, buf, _size); \ 1984 } \ 1985 static DEVICE_ATTR_RO(_pname) 1986 1987 #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \ 1988 UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size) 1989 1990 UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1); 1991 UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1); 1992 UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1); 1993 UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1); 1994 UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1); 1995 UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1); 1996 UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1); 1997 UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1); 1998 UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8); 1999 UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4); 2000 UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1); 2001 UFS_UNIT_DESC_PARAM(physical_memory_resource_count, _PHY_MEM_RSRC_CNT, 8); 2002 UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2); 2003 UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1); 2004 UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4); 2005 2006 static struct attribute *ufs_sysfs_unit_descriptor[] = { 2007 &dev_attr_lu_enable.attr, 2008 &dev_attr_boot_lun_id.attr, 2009 &dev_attr_lun_write_protect.attr, 2010 &dev_attr_lun_queue_depth.attr, 2011 &dev_attr_psa_sensitive.attr, 2012 &dev_attr_lun_memory_type.attr, 2013 &dev_attr_data_reliability.attr, 2014 &dev_attr_logical_block_size.attr, 2015 &dev_attr_logical_block_count.attr, 2016 &dev_attr_erase_block_size.attr, 2017 &dev_attr_provisioning_type.attr, 2018 &dev_attr_physical_memory_resource_count.attr, 2019 &dev_attr_context_capabilities.attr, 2020 &dev_attr_large_unit_granularity.attr, 2021 &dev_attr_wb_buf_alloc_units.attr, 2022 NULL, 2023 }; 2024 2025 static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n) 2026 { 2027 struct device *dev = container_of(kobj, struct device, kobj); 2028 struct scsi_device *sdev = to_scsi_device(dev); 2029 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 2030 umode_t mode = attr->mode; 2031 2032 if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN) 2033 /* Boot and device WLUN have no unit descriptors */ 2034 mode = 0; 2035 if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr) 2036 mode = 0; 2037 2038 return mode; 2039 } 2040 2041 2042 const struct attribute_group ufs_sysfs_unit_descriptor_group = { 2043 .name = "unit_descriptor", 2044 .attrs = ufs_sysfs_unit_descriptor, 2045 .is_visible = ufs_unit_descriptor_is_visible, 2046 }; 2047 2048 static ssize_t dyn_cap_needed_attribute_show(struct device *dev, 2049 struct device_attribute *attr, char *buf) 2050 { 2051 u32 value; 2052 struct scsi_device *sdev = to_scsi_device(dev); 2053 struct ufs_hba *hba = shost_priv(sdev->host); 2054 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 2055 int ret; 2056 2057 down(&hba->host_sem); 2058 if (!ufshcd_is_user_access_allowed(hba)) { 2059 ret = -EBUSY; 2060 goto out; 2061 } 2062 2063 ufshcd_rpm_get_sync(hba); 2064 ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, 2065 QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value); 2066 ufshcd_rpm_put_sync(hba); 2067 if (ret) { 2068 ret = -EINVAL; 2069 goto out; 2070 } 2071 2072 ret = sysfs_emit(buf, "0x%08X\n", value); 2073 2074 out: 2075 up(&hba->host_sem); 2076 return ret; 2077 } 2078 static DEVICE_ATTR_RO(dyn_cap_needed_attribute); 2079 2080 static struct attribute *ufs_sysfs_lun_attributes[] = { 2081 &dev_attr_dyn_cap_needed_attribute.attr, 2082 NULL, 2083 }; 2084 2085 const struct attribute_group ufs_sysfs_lun_attributes_group = { 2086 .attrs = ufs_sysfs_lun_attributes, 2087 }; 2088 2089 void ufs_sysfs_add_nodes(struct device *dev) 2090 { 2091 int ret; 2092 2093 ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups); 2094 if (ret) 2095 dev_err(dev, 2096 "%s: sysfs groups creation failed (err = %d)\n", 2097 __func__, ret); 2098 } 2099 2100 void ufs_sysfs_remove_nodes(struct device *dev) 2101 { 2102 sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups); 2103 } 2104