1 /******************************************************************************* 2 * Filename: target_core_transport.c 3 * 4 * This file contains the Generic Target Engine Core. 5 * 6 * (c) Copyright 2002-2013 Datera, Inc. 7 * 8 * Nicholas A. Bellinger <nab@kernel.org> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 23 * 24 ******************************************************************************/ 25 26 #include <linux/net.h> 27 #include <linux/delay.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/kthread.h> 33 #include <linux/in.h> 34 #include <linux/cdrom.h> 35 #include <linux/module.h> 36 #include <linux/ratelimit.h> 37 #include <linux/vmalloc.h> 38 #include <asm/unaligned.h> 39 #include <net/sock.h> 40 #include <net/tcp.h> 41 #include <scsi/scsi_proto.h> 42 43 #include <target/target_core_base.h> 44 #include <target/target_core_backend.h> 45 #include <target/target_core_fabric.h> 46 #include <target/target_core_configfs.h> 47 48 #include "target_core_internal.h" 49 #include "target_core_alua.h" 50 #include "target_core_pr.h" 51 #include "target_core_ua.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/target.h> 55 56 static struct workqueue_struct *target_completion_wq; 57 static struct kmem_cache *se_sess_cache; 58 struct kmem_cache *se_ua_cache; 59 struct kmem_cache *t10_pr_reg_cache; 60 struct kmem_cache *t10_alua_lu_gp_cache; 61 struct kmem_cache *t10_alua_lu_gp_mem_cache; 62 struct kmem_cache *t10_alua_tg_pt_gp_cache; 63 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; 64 struct kmem_cache *t10_alua_lba_map_cache; 65 struct kmem_cache *t10_alua_lba_map_mem_cache; 66 67 static void transport_complete_task_attr(struct se_cmd *cmd); 68 static void transport_handle_queue_full(struct se_cmd *cmd, 69 struct se_device *dev); 70 static int transport_put_cmd(struct se_cmd *cmd); 71 static void target_complete_ok_work(struct work_struct *work); 72 73 int init_se_kmem_caches(void) 74 { 75 se_sess_cache = kmem_cache_create("se_sess_cache", 76 sizeof(struct se_session), __alignof__(struct se_session), 77 0, NULL); 78 if (!se_sess_cache) { 79 pr_err("kmem_cache_create() for struct se_session" 80 " failed\n"); 81 goto out; 82 } 83 se_ua_cache = kmem_cache_create("se_ua_cache", 84 sizeof(struct se_ua), __alignof__(struct se_ua), 85 0, NULL); 86 if (!se_ua_cache) { 87 pr_err("kmem_cache_create() for struct se_ua failed\n"); 88 goto out_free_sess_cache; 89 } 90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", 91 sizeof(struct t10_pr_registration), 92 __alignof__(struct t10_pr_registration), 0, NULL); 93 if (!t10_pr_reg_cache) { 94 pr_err("kmem_cache_create() for struct t10_pr_registration" 95 " failed\n"); 96 goto out_free_ua_cache; 97 } 98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", 99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 100 0, NULL); 101 if (!t10_alua_lu_gp_cache) { 102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" 103 " failed\n"); 104 goto out_free_pr_reg_cache; 105 } 106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", 107 sizeof(struct t10_alua_lu_gp_member), 108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL); 109 if (!t10_alua_lu_gp_mem_cache) { 110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" 111 "cache failed\n"); 112 goto out_free_lu_gp_cache; 113 } 114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", 115 sizeof(struct t10_alua_tg_pt_gp), 116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); 117 if (!t10_alua_tg_pt_gp_cache) { 118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 119 "cache failed\n"); 120 goto out_free_lu_gp_mem_cache; 121 } 122 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( 123 "t10_alua_tg_pt_gp_mem_cache", 124 sizeof(struct t10_alua_tg_pt_gp_member), 125 __alignof__(struct t10_alua_tg_pt_gp_member), 126 0, NULL); 127 if (!t10_alua_tg_pt_gp_mem_cache) { 128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" 129 "mem_t failed\n"); 130 goto out_free_tg_pt_gp_cache; 131 } 132 t10_alua_lba_map_cache = kmem_cache_create( 133 "t10_alua_lba_map_cache", 134 sizeof(struct t10_alua_lba_map), 135 __alignof__(struct t10_alua_lba_map), 0, NULL); 136 if (!t10_alua_lba_map_cache) { 137 pr_err("kmem_cache_create() for t10_alua_lba_map_" 138 "cache failed\n"); 139 goto out_free_tg_pt_gp_mem_cache; 140 } 141 t10_alua_lba_map_mem_cache = kmem_cache_create( 142 "t10_alua_lba_map_mem_cache", 143 sizeof(struct t10_alua_lba_map_member), 144 __alignof__(struct t10_alua_lba_map_member), 0, NULL); 145 if (!t10_alua_lba_map_mem_cache) { 146 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" 147 "cache failed\n"); 148 goto out_free_lba_map_cache; 149 } 150 151 target_completion_wq = alloc_workqueue("target_completion", 152 WQ_MEM_RECLAIM, 0); 153 if (!target_completion_wq) 154 goto out_free_lba_map_mem_cache; 155 156 return 0; 157 158 out_free_lba_map_mem_cache: 159 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 160 out_free_lba_map_cache: 161 kmem_cache_destroy(t10_alua_lba_map_cache); 162 out_free_tg_pt_gp_mem_cache: 163 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 164 out_free_tg_pt_gp_cache: 165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 166 out_free_lu_gp_mem_cache: 167 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 168 out_free_lu_gp_cache: 169 kmem_cache_destroy(t10_alua_lu_gp_cache); 170 out_free_pr_reg_cache: 171 kmem_cache_destroy(t10_pr_reg_cache); 172 out_free_ua_cache: 173 kmem_cache_destroy(se_ua_cache); 174 out_free_sess_cache: 175 kmem_cache_destroy(se_sess_cache); 176 out: 177 return -ENOMEM; 178 } 179 180 void release_se_kmem_caches(void) 181 { 182 destroy_workqueue(target_completion_wq); 183 kmem_cache_destroy(se_sess_cache); 184 kmem_cache_destroy(se_ua_cache); 185 kmem_cache_destroy(t10_pr_reg_cache); 186 kmem_cache_destroy(t10_alua_lu_gp_cache); 187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache); 188 kmem_cache_destroy(t10_alua_tg_pt_gp_cache); 189 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); 190 kmem_cache_destroy(t10_alua_lba_map_cache); 191 kmem_cache_destroy(t10_alua_lba_map_mem_cache); 192 } 193 194 /* This code ensures unique mib indexes are handed out. */ 195 static DEFINE_SPINLOCK(scsi_mib_index_lock); 196 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; 197 198 /* 199 * Allocate a new row index for the entry type specified 200 */ 201 u32 scsi_get_new_index(scsi_index_t type) 202 { 203 u32 new_index; 204 205 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); 206 207 spin_lock(&scsi_mib_index_lock); 208 new_index = ++scsi_mib_index[type]; 209 spin_unlock(&scsi_mib_index_lock); 210 211 return new_index; 212 } 213 214 void transport_subsystem_check_init(void) 215 { 216 int ret; 217 static int sub_api_initialized; 218 219 if (sub_api_initialized) 220 return; 221 222 ret = request_module("target_core_iblock"); 223 if (ret != 0) 224 pr_err("Unable to load target_core_iblock\n"); 225 226 ret = request_module("target_core_file"); 227 if (ret != 0) 228 pr_err("Unable to load target_core_file\n"); 229 230 ret = request_module("target_core_pscsi"); 231 if (ret != 0) 232 pr_err("Unable to load target_core_pscsi\n"); 233 234 ret = request_module("target_core_user"); 235 if (ret != 0) 236 pr_err("Unable to load target_core_user\n"); 237 238 sub_api_initialized = 1; 239 } 240 241 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops) 242 { 243 struct se_session *se_sess; 244 245 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); 246 if (!se_sess) { 247 pr_err("Unable to allocate struct se_session from" 248 " se_sess_cache\n"); 249 return ERR_PTR(-ENOMEM); 250 } 251 INIT_LIST_HEAD(&se_sess->sess_list); 252 INIT_LIST_HEAD(&se_sess->sess_acl_list); 253 INIT_LIST_HEAD(&se_sess->sess_cmd_list); 254 INIT_LIST_HEAD(&se_sess->sess_wait_list); 255 spin_lock_init(&se_sess->sess_cmd_lock); 256 kref_init(&se_sess->sess_kref); 257 se_sess->sup_prot_ops = sup_prot_ops; 258 259 return se_sess; 260 } 261 EXPORT_SYMBOL(transport_init_session); 262 263 int transport_alloc_session_tags(struct se_session *se_sess, 264 unsigned int tag_num, unsigned int tag_size) 265 { 266 int rc; 267 268 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, 269 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 270 if (!se_sess->sess_cmd_map) { 271 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size); 272 if (!se_sess->sess_cmd_map) { 273 pr_err("Unable to allocate se_sess->sess_cmd_map\n"); 274 return -ENOMEM; 275 } 276 } 277 278 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num); 279 if (rc < 0) { 280 pr_err("Unable to init se_sess->sess_tag_pool," 281 " tag_num: %u\n", tag_num); 282 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 283 vfree(se_sess->sess_cmd_map); 284 else 285 kfree(se_sess->sess_cmd_map); 286 se_sess->sess_cmd_map = NULL; 287 return -ENOMEM; 288 } 289 290 return 0; 291 } 292 EXPORT_SYMBOL(transport_alloc_session_tags); 293 294 struct se_session *transport_init_session_tags(unsigned int tag_num, 295 unsigned int tag_size, 296 enum target_prot_op sup_prot_ops) 297 { 298 struct se_session *se_sess; 299 int rc; 300 301 se_sess = transport_init_session(sup_prot_ops); 302 if (IS_ERR(se_sess)) 303 return se_sess; 304 305 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); 306 if (rc < 0) { 307 transport_free_session(se_sess); 308 return ERR_PTR(-ENOMEM); 309 } 310 311 return se_sess; 312 } 313 EXPORT_SYMBOL(transport_init_session_tags); 314 315 /* 316 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. 317 */ 318 void __transport_register_session( 319 struct se_portal_group *se_tpg, 320 struct se_node_acl *se_nacl, 321 struct se_session *se_sess, 322 void *fabric_sess_ptr) 323 { 324 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; 325 unsigned char buf[PR_REG_ISID_LEN]; 326 327 se_sess->se_tpg = se_tpg; 328 se_sess->fabric_sess_ptr = fabric_sess_ptr; 329 /* 330 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t 331 * 332 * Only set for struct se_session's that will actually be moving I/O. 333 * eg: *NOT* discovery sessions. 334 */ 335 if (se_nacl) { 336 /* 337 * 338 * Determine if fabric allows for T10-PI feature bits exposed to 339 * initiators for device backends with !dev->dev_attrib.pi_prot_type. 340 * 341 * If so, then always save prot_type on a per se_node_acl node 342 * basis and re-instate the previous sess_prot_type to avoid 343 * disabling PI from below any previously initiator side 344 * registered LUNs. 345 */ 346 if (se_nacl->saved_prot_type) 347 se_sess->sess_prot_type = se_nacl->saved_prot_type; 348 else if (tfo->tpg_check_prot_fabric_only) 349 se_sess->sess_prot_type = se_nacl->saved_prot_type = 350 tfo->tpg_check_prot_fabric_only(se_tpg); 351 /* 352 * If the fabric module supports an ISID based TransportID, 353 * save this value in binary from the fabric I_T Nexus now. 354 */ 355 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { 356 memset(&buf[0], 0, PR_REG_ISID_LEN); 357 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, 358 &buf[0], PR_REG_ISID_LEN); 359 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); 360 } 361 kref_get(&se_nacl->acl_kref); 362 363 spin_lock_irq(&se_nacl->nacl_sess_lock); 364 /* 365 * The se_nacl->nacl_sess pointer will be set to the 366 * last active I_T Nexus for each struct se_node_acl. 367 */ 368 se_nacl->nacl_sess = se_sess; 369 370 list_add_tail(&se_sess->sess_acl_list, 371 &se_nacl->acl_sess_list); 372 spin_unlock_irq(&se_nacl->nacl_sess_lock); 373 } 374 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); 375 376 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", 377 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr); 378 } 379 EXPORT_SYMBOL(__transport_register_session); 380 381 void transport_register_session( 382 struct se_portal_group *se_tpg, 383 struct se_node_acl *se_nacl, 384 struct se_session *se_sess, 385 void *fabric_sess_ptr) 386 { 387 unsigned long flags; 388 389 spin_lock_irqsave(&se_tpg->session_lock, flags); 390 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); 391 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 392 } 393 EXPORT_SYMBOL(transport_register_session); 394 395 static void target_release_session(struct kref *kref) 396 { 397 struct se_session *se_sess = container_of(kref, 398 struct se_session, sess_kref); 399 struct se_portal_group *se_tpg = se_sess->se_tpg; 400 401 se_tpg->se_tpg_tfo->close_session(se_sess); 402 } 403 404 void target_get_session(struct se_session *se_sess) 405 { 406 kref_get(&se_sess->sess_kref); 407 } 408 EXPORT_SYMBOL(target_get_session); 409 410 void target_put_session(struct se_session *se_sess) 411 { 412 struct se_portal_group *tpg = se_sess->se_tpg; 413 414 if (tpg->se_tpg_tfo->put_session != NULL) { 415 tpg->se_tpg_tfo->put_session(se_sess); 416 return; 417 } 418 kref_put(&se_sess->sess_kref, target_release_session); 419 } 420 EXPORT_SYMBOL(target_put_session); 421 422 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) 423 { 424 struct se_session *se_sess; 425 ssize_t len = 0; 426 427 spin_lock_bh(&se_tpg->session_lock); 428 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { 429 if (!se_sess->se_node_acl) 430 continue; 431 if (!se_sess->se_node_acl->dynamic_node_acl) 432 continue; 433 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) 434 break; 435 436 len += snprintf(page + len, PAGE_SIZE - len, "%s\n", 437 se_sess->se_node_acl->initiatorname); 438 len += 1; /* Include NULL terminator */ 439 } 440 spin_unlock_bh(&se_tpg->session_lock); 441 442 return len; 443 } 444 EXPORT_SYMBOL(target_show_dynamic_sessions); 445 446 static void target_complete_nacl(struct kref *kref) 447 { 448 struct se_node_acl *nacl = container_of(kref, 449 struct se_node_acl, acl_kref); 450 451 complete(&nacl->acl_free_comp); 452 } 453 454 void target_put_nacl(struct se_node_acl *nacl) 455 { 456 kref_put(&nacl->acl_kref, target_complete_nacl); 457 } 458 459 void transport_deregister_session_configfs(struct se_session *se_sess) 460 { 461 struct se_node_acl *se_nacl; 462 unsigned long flags; 463 /* 464 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session 465 */ 466 se_nacl = se_sess->se_node_acl; 467 if (se_nacl) { 468 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); 469 if (se_nacl->acl_stop == 0) 470 list_del(&se_sess->sess_acl_list); 471 /* 472 * If the session list is empty, then clear the pointer. 473 * Otherwise, set the struct se_session pointer from the tail 474 * element of the per struct se_node_acl active session list. 475 */ 476 if (list_empty(&se_nacl->acl_sess_list)) 477 se_nacl->nacl_sess = NULL; 478 else { 479 se_nacl->nacl_sess = container_of( 480 se_nacl->acl_sess_list.prev, 481 struct se_session, sess_acl_list); 482 } 483 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); 484 } 485 } 486 EXPORT_SYMBOL(transport_deregister_session_configfs); 487 488 void transport_free_session(struct se_session *se_sess) 489 { 490 if (se_sess->sess_cmd_map) { 491 percpu_ida_destroy(&se_sess->sess_tag_pool); 492 if (is_vmalloc_addr(se_sess->sess_cmd_map)) 493 vfree(se_sess->sess_cmd_map); 494 else 495 kfree(se_sess->sess_cmd_map); 496 } 497 kmem_cache_free(se_sess_cache, se_sess); 498 } 499 EXPORT_SYMBOL(transport_free_session); 500 501 void transport_deregister_session(struct se_session *se_sess) 502 { 503 struct se_portal_group *se_tpg = se_sess->se_tpg; 504 const struct target_core_fabric_ops *se_tfo; 505 struct se_node_acl *se_nacl; 506 unsigned long flags; 507 bool comp_nacl = true; 508 509 if (!se_tpg) { 510 transport_free_session(se_sess); 511 return; 512 } 513 se_tfo = se_tpg->se_tpg_tfo; 514 515 spin_lock_irqsave(&se_tpg->session_lock, flags); 516 list_del(&se_sess->sess_list); 517 se_sess->se_tpg = NULL; 518 se_sess->fabric_sess_ptr = NULL; 519 spin_unlock_irqrestore(&se_tpg->session_lock, flags); 520 521 /* 522 * Determine if we need to do extra work for this initiator node's 523 * struct se_node_acl if it had been previously dynamically generated. 524 */ 525 se_nacl = se_sess->se_node_acl; 526 527 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 528 if (se_nacl && se_nacl->dynamic_node_acl) { 529 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) { 530 list_del(&se_nacl->acl_list); 531 se_tpg->num_node_acls--; 532 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 533 core_tpg_wait_for_nacl_pr_ref(se_nacl); 534 core_free_device_list_for_node(se_nacl, se_tpg); 535 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl); 536 537 comp_nacl = false; 538 spin_lock_irqsave(&se_tpg->acl_node_lock, flags); 539 } 540 } 541 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags); 542 543 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", 544 se_tpg->se_tpg_tfo->get_fabric_name()); 545 /* 546 * If last kref is dropping now for an explicit NodeACL, awake sleeping 547 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group 548 * removal context. 549 */ 550 if (se_nacl && comp_nacl) 551 target_put_nacl(se_nacl); 552 553 transport_free_session(se_sess); 554 } 555 EXPORT_SYMBOL(transport_deregister_session); 556 557 /* 558 * Called with cmd->t_state_lock held. 559 */ 560 static void target_remove_from_state_list(struct se_cmd *cmd) 561 { 562 struct se_device *dev = cmd->se_dev; 563 unsigned long flags; 564 565 if (!dev) 566 return; 567 568 if (cmd->transport_state & CMD_T_BUSY) 569 return; 570 571 spin_lock_irqsave(&dev->execute_task_lock, flags); 572 if (cmd->state_active) { 573 list_del(&cmd->state_list); 574 cmd->state_active = false; 575 } 576 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 577 } 578 579 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists, 580 bool write_pending) 581 { 582 unsigned long flags; 583 584 spin_lock_irqsave(&cmd->t_state_lock, flags); 585 if (write_pending) 586 cmd->t_state = TRANSPORT_WRITE_PENDING; 587 588 if (remove_from_lists) { 589 target_remove_from_state_list(cmd); 590 591 /* 592 * Clear struct se_cmd->se_lun before the handoff to FE. 593 */ 594 cmd->se_lun = NULL; 595 } 596 597 /* 598 * Determine if frontend context caller is requesting the stopping of 599 * this command for frontend exceptions. 600 */ 601 if (cmd->transport_state & CMD_T_STOP) { 602 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 603 __func__, __LINE__, 604 cmd->se_tfo->get_task_tag(cmd)); 605 606 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 607 608 complete_all(&cmd->t_transport_stop_comp); 609 return 1; 610 } 611 612 cmd->transport_state &= ~CMD_T_ACTIVE; 613 if (remove_from_lists) { 614 /* 615 * Some fabric modules like tcm_loop can release 616 * their internally allocated I/O reference now and 617 * struct se_cmd now. 618 * 619 * Fabric modules are expected to return '1' here if the 620 * se_cmd being passed is released at this point, 621 * or zero if not being released. 622 */ 623 if (cmd->se_tfo->check_stop_free != NULL) { 624 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 625 return cmd->se_tfo->check_stop_free(cmd); 626 } 627 } 628 629 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 630 return 0; 631 } 632 633 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) 634 { 635 return transport_cmd_check_stop(cmd, true, false); 636 } 637 638 static void transport_lun_remove_cmd(struct se_cmd *cmd) 639 { 640 struct se_lun *lun = cmd->se_lun; 641 642 if (!lun) 643 return; 644 645 if (cmpxchg(&cmd->lun_ref_active, true, false)) 646 percpu_ref_put(&lun->lun_ref); 647 } 648 649 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) 650 { 651 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) 652 transport_lun_remove_cmd(cmd); 653 /* 654 * Allow the fabric driver to unmap any resources before 655 * releasing the descriptor via TFO->release_cmd() 656 */ 657 if (remove) 658 cmd->se_tfo->aborted_task(cmd); 659 660 if (transport_cmd_check_stop_to_fabric(cmd)) 661 return; 662 if (remove) 663 transport_put_cmd(cmd); 664 } 665 666 static void target_complete_failure_work(struct work_struct *work) 667 { 668 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 669 670 transport_generic_request_failure(cmd, 671 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); 672 } 673 674 /* 675 * Used when asking transport to copy Sense Data from the underlying 676 * Linux/SCSI struct scsi_cmnd 677 */ 678 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) 679 { 680 struct se_device *dev = cmd->se_dev; 681 682 WARN_ON(!cmd->se_lun); 683 684 if (!dev) 685 return NULL; 686 687 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) 688 return NULL; 689 690 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 691 692 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", 693 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); 694 return cmd->sense_buffer; 695 } 696 697 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) 698 { 699 struct se_device *dev = cmd->se_dev; 700 int success = scsi_status == GOOD; 701 unsigned long flags; 702 703 cmd->scsi_status = scsi_status; 704 705 706 spin_lock_irqsave(&cmd->t_state_lock, flags); 707 cmd->transport_state &= ~CMD_T_BUSY; 708 709 if (dev && dev->transport->transport_complete) { 710 dev->transport->transport_complete(cmd, 711 cmd->t_data_sg, 712 transport_get_sense_buffer(cmd)); 713 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) 714 success = 1; 715 } 716 717 /* 718 * See if we are waiting to complete for an exception condition. 719 */ 720 if (cmd->transport_state & CMD_T_REQUEST_STOP) { 721 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 722 complete(&cmd->task_stop_comp); 723 return; 724 } 725 726 /* 727 * Check for case where an explicit ABORT_TASK has been received 728 * and transport_wait_for_tasks() will be waiting for completion.. 729 */ 730 if (cmd->transport_state & CMD_T_ABORTED && 731 cmd->transport_state & CMD_T_STOP) { 732 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 733 complete_all(&cmd->t_transport_stop_comp); 734 return; 735 } else if (!success) { 736 INIT_WORK(&cmd->work, target_complete_failure_work); 737 } else { 738 INIT_WORK(&cmd->work, target_complete_ok_work); 739 } 740 741 cmd->t_state = TRANSPORT_COMPLETE; 742 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); 743 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 744 745 queue_work(target_completion_wq, &cmd->work); 746 } 747 EXPORT_SYMBOL(target_complete_cmd); 748 749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) 750 { 751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) { 752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { 753 cmd->residual_count += cmd->data_length - length; 754 } else { 755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 756 cmd->residual_count = cmd->data_length - length; 757 } 758 759 cmd->data_length = length; 760 } 761 762 target_complete_cmd(cmd, scsi_status); 763 } 764 EXPORT_SYMBOL(target_complete_cmd_with_length); 765 766 static void target_add_to_state_list(struct se_cmd *cmd) 767 { 768 struct se_device *dev = cmd->se_dev; 769 unsigned long flags; 770 771 spin_lock_irqsave(&dev->execute_task_lock, flags); 772 if (!cmd->state_active) { 773 list_add_tail(&cmd->state_list, &dev->state_list); 774 cmd->state_active = true; 775 } 776 spin_unlock_irqrestore(&dev->execute_task_lock, flags); 777 } 778 779 /* 780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status 781 */ 782 static void transport_write_pending_qf(struct se_cmd *cmd); 783 static void transport_complete_qf(struct se_cmd *cmd); 784 785 void target_qf_do_work(struct work_struct *work) 786 { 787 struct se_device *dev = container_of(work, struct se_device, 788 qf_work_queue); 789 LIST_HEAD(qf_cmd_list); 790 struct se_cmd *cmd, *cmd_tmp; 791 792 spin_lock_irq(&dev->qf_cmd_lock); 793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); 794 spin_unlock_irq(&dev->qf_cmd_lock); 795 796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { 797 list_del(&cmd->se_qf_node); 798 atomic_dec_mb(&dev->dev_qf_count); 799 800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" 801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd, 802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : 803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" 804 : "UNKNOWN"); 805 806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) 807 transport_write_pending_qf(cmd); 808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) 809 transport_complete_qf(cmd); 810 } 811 } 812 813 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) 814 { 815 switch (cmd->data_direction) { 816 case DMA_NONE: 817 return "NONE"; 818 case DMA_FROM_DEVICE: 819 return "READ"; 820 case DMA_TO_DEVICE: 821 return "WRITE"; 822 case DMA_BIDIRECTIONAL: 823 return "BIDI"; 824 default: 825 break; 826 } 827 828 return "UNKNOWN"; 829 } 830 831 void transport_dump_dev_state( 832 struct se_device *dev, 833 char *b, 834 int *bl) 835 { 836 *bl += sprintf(b + *bl, "Status: "); 837 if (dev->export_count) 838 *bl += sprintf(b + *bl, "ACTIVATED"); 839 else 840 *bl += sprintf(b + *bl, "DEACTIVATED"); 841 842 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); 843 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", 844 dev->dev_attrib.block_size, 845 dev->dev_attrib.hw_max_sectors); 846 *bl += sprintf(b + *bl, " "); 847 } 848 849 void transport_dump_vpd_proto_id( 850 struct t10_vpd *vpd, 851 unsigned char *p_buf, 852 int p_buf_len) 853 { 854 unsigned char buf[VPD_TMP_BUF_SIZE]; 855 int len; 856 857 memset(buf, 0, VPD_TMP_BUF_SIZE); 858 len = sprintf(buf, "T10 VPD Protocol Identifier: "); 859 860 switch (vpd->protocol_identifier) { 861 case 0x00: 862 sprintf(buf+len, "Fibre Channel\n"); 863 break; 864 case 0x10: 865 sprintf(buf+len, "Parallel SCSI\n"); 866 break; 867 case 0x20: 868 sprintf(buf+len, "SSA\n"); 869 break; 870 case 0x30: 871 sprintf(buf+len, "IEEE 1394\n"); 872 break; 873 case 0x40: 874 sprintf(buf+len, "SCSI Remote Direct Memory Access" 875 " Protocol\n"); 876 break; 877 case 0x50: 878 sprintf(buf+len, "Internet SCSI (iSCSI)\n"); 879 break; 880 case 0x60: 881 sprintf(buf+len, "SAS Serial SCSI Protocol\n"); 882 break; 883 case 0x70: 884 sprintf(buf+len, "Automation/Drive Interface Transport" 885 " Protocol\n"); 886 break; 887 case 0x80: 888 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); 889 break; 890 default: 891 sprintf(buf+len, "Unknown 0x%02x\n", 892 vpd->protocol_identifier); 893 break; 894 } 895 896 if (p_buf) 897 strncpy(p_buf, buf, p_buf_len); 898 else 899 pr_debug("%s", buf); 900 } 901 902 void 903 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) 904 { 905 /* 906 * Check if the Protocol Identifier Valid (PIV) bit is set.. 907 * 908 * from spc3r23.pdf section 7.5.1 909 */ 910 if (page_83[1] & 0x80) { 911 vpd->protocol_identifier = (page_83[0] & 0xf0); 912 vpd->protocol_identifier_set = 1; 913 transport_dump_vpd_proto_id(vpd, NULL, 0); 914 } 915 } 916 EXPORT_SYMBOL(transport_set_vpd_proto_id); 917 918 int transport_dump_vpd_assoc( 919 struct t10_vpd *vpd, 920 unsigned char *p_buf, 921 int p_buf_len) 922 { 923 unsigned char buf[VPD_TMP_BUF_SIZE]; 924 int ret = 0; 925 int len; 926 927 memset(buf, 0, VPD_TMP_BUF_SIZE); 928 len = sprintf(buf, "T10 VPD Identifier Association: "); 929 930 switch (vpd->association) { 931 case 0x00: 932 sprintf(buf+len, "addressed logical unit\n"); 933 break; 934 case 0x10: 935 sprintf(buf+len, "target port\n"); 936 break; 937 case 0x20: 938 sprintf(buf+len, "SCSI target device\n"); 939 break; 940 default: 941 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); 942 ret = -EINVAL; 943 break; 944 } 945 946 if (p_buf) 947 strncpy(p_buf, buf, p_buf_len); 948 else 949 pr_debug("%s", buf); 950 951 return ret; 952 } 953 954 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) 955 { 956 /* 957 * The VPD identification association.. 958 * 959 * from spc3r23.pdf Section 7.6.3.1 Table 297 960 */ 961 vpd->association = (page_83[1] & 0x30); 962 return transport_dump_vpd_assoc(vpd, NULL, 0); 963 } 964 EXPORT_SYMBOL(transport_set_vpd_assoc); 965 966 int transport_dump_vpd_ident_type( 967 struct t10_vpd *vpd, 968 unsigned char *p_buf, 969 int p_buf_len) 970 { 971 unsigned char buf[VPD_TMP_BUF_SIZE]; 972 int ret = 0; 973 int len; 974 975 memset(buf, 0, VPD_TMP_BUF_SIZE); 976 len = sprintf(buf, "T10 VPD Identifier Type: "); 977 978 switch (vpd->device_identifier_type) { 979 case 0x00: 980 sprintf(buf+len, "Vendor specific\n"); 981 break; 982 case 0x01: 983 sprintf(buf+len, "T10 Vendor ID based\n"); 984 break; 985 case 0x02: 986 sprintf(buf+len, "EUI-64 based\n"); 987 break; 988 case 0x03: 989 sprintf(buf+len, "NAA\n"); 990 break; 991 case 0x04: 992 sprintf(buf+len, "Relative target port identifier\n"); 993 break; 994 case 0x08: 995 sprintf(buf+len, "SCSI name string\n"); 996 break; 997 default: 998 sprintf(buf+len, "Unsupported: 0x%02x\n", 999 vpd->device_identifier_type); 1000 ret = -EINVAL; 1001 break; 1002 } 1003 1004 if (p_buf) { 1005 if (p_buf_len < strlen(buf)+1) 1006 return -EINVAL; 1007 strncpy(p_buf, buf, p_buf_len); 1008 } else { 1009 pr_debug("%s", buf); 1010 } 1011 1012 return ret; 1013 } 1014 1015 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) 1016 { 1017 /* 1018 * The VPD identifier type.. 1019 * 1020 * from spc3r23.pdf Section 7.6.3.1 Table 298 1021 */ 1022 vpd->device_identifier_type = (page_83[1] & 0x0f); 1023 return transport_dump_vpd_ident_type(vpd, NULL, 0); 1024 } 1025 EXPORT_SYMBOL(transport_set_vpd_ident_type); 1026 1027 int transport_dump_vpd_ident( 1028 struct t10_vpd *vpd, 1029 unsigned char *p_buf, 1030 int p_buf_len) 1031 { 1032 unsigned char buf[VPD_TMP_BUF_SIZE]; 1033 int ret = 0; 1034 1035 memset(buf, 0, VPD_TMP_BUF_SIZE); 1036 1037 switch (vpd->device_identifier_code_set) { 1038 case 0x01: /* Binary */ 1039 snprintf(buf, sizeof(buf), 1040 "T10 VPD Binary Device Identifier: %s\n", 1041 &vpd->device_identifier[0]); 1042 break; 1043 case 0x02: /* ASCII */ 1044 snprintf(buf, sizeof(buf), 1045 "T10 VPD ASCII Device Identifier: %s\n", 1046 &vpd->device_identifier[0]); 1047 break; 1048 case 0x03: /* UTF-8 */ 1049 snprintf(buf, sizeof(buf), 1050 "T10 VPD UTF-8 Device Identifier: %s\n", 1051 &vpd->device_identifier[0]); 1052 break; 1053 default: 1054 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" 1055 " 0x%02x", vpd->device_identifier_code_set); 1056 ret = -EINVAL; 1057 break; 1058 } 1059 1060 if (p_buf) 1061 strncpy(p_buf, buf, p_buf_len); 1062 else 1063 pr_debug("%s", buf); 1064 1065 return ret; 1066 } 1067 1068 int 1069 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) 1070 { 1071 static const char hex_str[] = "0123456789abcdef"; 1072 int j = 0, i = 4; /* offset to start of the identifier */ 1073 1074 /* 1075 * The VPD Code Set (encoding) 1076 * 1077 * from spc3r23.pdf Section 7.6.3.1 Table 296 1078 */ 1079 vpd->device_identifier_code_set = (page_83[0] & 0x0f); 1080 switch (vpd->device_identifier_code_set) { 1081 case 0x01: /* Binary */ 1082 vpd->device_identifier[j++] = 1083 hex_str[vpd->device_identifier_type]; 1084 while (i < (4 + page_83[3])) { 1085 vpd->device_identifier[j++] = 1086 hex_str[(page_83[i] & 0xf0) >> 4]; 1087 vpd->device_identifier[j++] = 1088 hex_str[page_83[i] & 0x0f]; 1089 i++; 1090 } 1091 break; 1092 case 0x02: /* ASCII */ 1093 case 0x03: /* UTF-8 */ 1094 while (i < (4 + page_83[3])) 1095 vpd->device_identifier[j++] = page_83[i++]; 1096 break; 1097 default: 1098 break; 1099 } 1100 1101 return transport_dump_vpd_ident(vpd, NULL, 0); 1102 } 1103 EXPORT_SYMBOL(transport_set_vpd_ident); 1104 1105 sense_reason_t 1106 target_cmd_size_check(struct se_cmd *cmd, unsigned int size) 1107 { 1108 struct se_device *dev = cmd->se_dev; 1109 1110 if (cmd->unknown_data_length) { 1111 cmd->data_length = size; 1112 } else if (size != cmd->data_length) { 1113 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:" 1114 " %u does not match SCSI CDB Length: %u for SAM Opcode:" 1115 " 0x%02x\n", cmd->se_tfo->get_fabric_name(), 1116 cmd->data_length, size, cmd->t_task_cdb[0]); 1117 1118 if (cmd->data_direction == DMA_TO_DEVICE) { 1119 pr_err("Rejecting underflow/overflow" 1120 " WRITE data\n"); 1121 return TCM_INVALID_CDB_FIELD; 1122 } 1123 /* 1124 * Reject READ_* or WRITE_* with overflow/underflow for 1125 * type SCF_SCSI_DATA_CDB. 1126 */ 1127 if (dev->dev_attrib.block_size != 512) { 1128 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op" 1129 " CDB on non 512-byte sector setup subsystem" 1130 " plugin: %s\n", dev->transport->name); 1131 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ 1132 return TCM_INVALID_CDB_FIELD; 1133 } 1134 /* 1135 * For the overflow case keep the existing fabric provided 1136 * ->data_length. Otherwise for the underflow case, reset 1137 * ->data_length to the smaller SCSI expected data transfer 1138 * length. 1139 */ 1140 if (size > cmd->data_length) { 1141 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; 1142 cmd->residual_count = (size - cmd->data_length); 1143 } else { 1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; 1145 cmd->residual_count = (cmd->data_length - size); 1146 cmd->data_length = size; 1147 } 1148 } 1149 1150 return 0; 1151 1152 } 1153 1154 /* 1155 * Used by fabric modules containing a local struct se_cmd within their 1156 * fabric dependent per I/O descriptor. 1157 */ 1158 void transport_init_se_cmd( 1159 struct se_cmd *cmd, 1160 const struct target_core_fabric_ops *tfo, 1161 struct se_session *se_sess, 1162 u32 data_length, 1163 int data_direction, 1164 int task_attr, 1165 unsigned char *sense_buffer) 1166 { 1167 INIT_LIST_HEAD(&cmd->se_delayed_node); 1168 INIT_LIST_HEAD(&cmd->se_qf_node); 1169 INIT_LIST_HEAD(&cmd->se_cmd_list); 1170 INIT_LIST_HEAD(&cmd->state_list); 1171 init_completion(&cmd->t_transport_stop_comp); 1172 init_completion(&cmd->cmd_wait_comp); 1173 init_completion(&cmd->task_stop_comp); 1174 spin_lock_init(&cmd->t_state_lock); 1175 kref_init(&cmd->cmd_kref); 1176 cmd->transport_state = CMD_T_DEV_ACTIVE; 1177 1178 cmd->se_tfo = tfo; 1179 cmd->se_sess = se_sess; 1180 cmd->data_length = data_length; 1181 cmd->data_direction = data_direction; 1182 cmd->sam_task_attr = task_attr; 1183 cmd->sense_buffer = sense_buffer; 1184 1185 cmd->state_active = false; 1186 } 1187 EXPORT_SYMBOL(transport_init_se_cmd); 1188 1189 static sense_reason_t 1190 transport_check_alloc_task_attr(struct se_cmd *cmd) 1191 { 1192 struct se_device *dev = cmd->se_dev; 1193 1194 /* 1195 * Check if SAM Task Attribute emulation is enabled for this 1196 * struct se_device storage object 1197 */ 1198 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1199 return 0; 1200 1201 if (cmd->sam_task_attr == TCM_ACA_TAG) { 1202 pr_debug("SAM Task Attribute ACA" 1203 " emulation is not supported\n"); 1204 return TCM_INVALID_CDB_FIELD; 1205 } 1206 /* 1207 * Used to determine when ORDERED commands should go from 1208 * Dormant to Active status. 1209 */ 1210 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id); 1211 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", 1212 cmd->se_ordered_id, cmd->sam_task_attr, 1213 dev->transport->name); 1214 return 0; 1215 } 1216 1217 sense_reason_t 1218 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb) 1219 { 1220 struct se_device *dev = cmd->se_dev; 1221 sense_reason_t ret; 1222 1223 /* 1224 * Ensure that the received CDB is less than the max (252 + 8) bytes 1225 * for VARIABLE_LENGTH_CMD 1226 */ 1227 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { 1228 pr_err("Received SCSI CDB with command_size: %d that" 1229 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", 1230 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); 1231 return TCM_INVALID_CDB_FIELD; 1232 } 1233 /* 1234 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, 1235 * allocate the additional extended CDB buffer now.. Otherwise 1236 * setup the pointer from __t_task_cdb to t_task_cdb. 1237 */ 1238 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { 1239 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), 1240 GFP_KERNEL); 1241 if (!cmd->t_task_cdb) { 1242 pr_err("Unable to allocate cmd->t_task_cdb" 1243 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", 1244 scsi_command_size(cdb), 1245 (unsigned long)sizeof(cmd->__t_task_cdb)); 1246 return TCM_OUT_OF_RESOURCES; 1247 } 1248 } else 1249 cmd->t_task_cdb = &cmd->__t_task_cdb[0]; 1250 /* 1251 * Copy the original CDB into cmd-> 1252 */ 1253 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); 1254 1255 trace_target_sequencer_start(cmd); 1256 1257 /* 1258 * Check for an existing UNIT ATTENTION condition 1259 */ 1260 ret = target_scsi3_ua_check(cmd); 1261 if (ret) 1262 return ret; 1263 1264 ret = target_alua_state_check(cmd); 1265 if (ret) 1266 return ret; 1267 1268 ret = target_check_reservation(cmd); 1269 if (ret) { 1270 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1271 return ret; 1272 } 1273 1274 ret = dev->transport->parse_cdb(cmd); 1275 if (ret) 1276 return ret; 1277 1278 ret = transport_check_alloc_task_attr(cmd); 1279 if (ret) 1280 return ret; 1281 1282 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; 1283 1284 spin_lock(&cmd->se_lun->lun_sep_lock); 1285 if (cmd->se_lun->lun_sep) 1286 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; 1287 spin_unlock(&cmd->se_lun->lun_sep_lock); 1288 return 0; 1289 } 1290 EXPORT_SYMBOL(target_setup_cmd_from_cdb); 1291 1292 /* 1293 * Used by fabric module frontends to queue tasks directly. 1294 * Many only be used from process context only 1295 */ 1296 int transport_handle_cdb_direct( 1297 struct se_cmd *cmd) 1298 { 1299 sense_reason_t ret; 1300 1301 if (!cmd->se_lun) { 1302 dump_stack(); 1303 pr_err("cmd->se_lun is NULL\n"); 1304 return -EINVAL; 1305 } 1306 if (in_interrupt()) { 1307 dump_stack(); 1308 pr_err("transport_generic_handle_cdb cannot be called" 1309 " from interrupt context\n"); 1310 return -EINVAL; 1311 } 1312 /* 1313 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that 1314 * outstanding descriptors are handled correctly during shutdown via 1315 * transport_wait_for_tasks() 1316 * 1317 * Also, we don't take cmd->t_state_lock here as we only expect 1318 * this to be called for initial descriptor submission. 1319 */ 1320 cmd->t_state = TRANSPORT_NEW_CMD; 1321 cmd->transport_state |= CMD_T_ACTIVE; 1322 1323 /* 1324 * transport_generic_new_cmd() is already handling QUEUE_FULL, 1325 * so follow TRANSPORT_NEW_CMD processing thread context usage 1326 * and call transport_generic_request_failure() if necessary.. 1327 */ 1328 ret = transport_generic_new_cmd(cmd); 1329 if (ret) 1330 transport_generic_request_failure(cmd, ret); 1331 return 0; 1332 } 1333 EXPORT_SYMBOL(transport_handle_cdb_direct); 1334 1335 sense_reason_t 1336 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, 1337 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) 1338 { 1339 if (!sgl || !sgl_count) 1340 return 0; 1341 1342 /* 1343 * Reject SCSI data overflow with map_mem_to_cmd() as incoming 1344 * scatterlists already have been set to follow what the fabric 1345 * passes for the original expected data transfer length. 1346 */ 1347 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { 1348 pr_warn("Rejecting SCSI DATA overflow for fabric using" 1349 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); 1350 return TCM_INVALID_CDB_FIELD; 1351 } 1352 1353 cmd->t_data_sg = sgl; 1354 cmd->t_data_nents = sgl_count; 1355 1356 if (sgl_bidi && sgl_bidi_count) { 1357 cmd->t_bidi_data_sg = sgl_bidi; 1358 cmd->t_bidi_data_nents = sgl_bidi_count; 1359 } 1360 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; 1361 return 0; 1362 } 1363 1364 /* 1365 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized 1366 * se_cmd + use pre-allocated SGL memory. 1367 * 1368 * @se_cmd: command descriptor to submit 1369 * @se_sess: associated se_sess for endpoint 1370 * @cdb: pointer to SCSI CDB 1371 * @sense: pointer to SCSI sense buffer 1372 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1373 * @data_length: fabric expected data transfer length 1374 * @task_addr: SAM task attribute 1375 * @data_dir: DMA data direction 1376 * @flags: flags for command submission from target_sc_flags_tables 1377 * @sgl: struct scatterlist memory for unidirectional mapping 1378 * @sgl_count: scatterlist count for unidirectional mapping 1379 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping 1380 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping 1381 * @sgl_prot: struct scatterlist memory protection information 1382 * @sgl_prot_count: scatterlist count for protection information 1383 * 1384 * Returns non zero to signal active I/O shutdown failure. All other 1385 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1386 * but still return zero here. 1387 * 1388 * This may only be called from process context, and also currently 1389 * assumes internal allocation of fabric payload buffer by target-core. 1390 */ 1391 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess, 1392 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1393 u32 data_length, int task_attr, int data_dir, int flags, 1394 struct scatterlist *sgl, u32 sgl_count, 1395 struct scatterlist *sgl_bidi, u32 sgl_bidi_count, 1396 struct scatterlist *sgl_prot, u32 sgl_prot_count) 1397 { 1398 struct se_portal_group *se_tpg; 1399 sense_reason_t rc; 1400 int ret; 1401 1402 se_tpg = se_sess->se_tpg; 1403 BUG_ON(!se_tpg); 1404 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); 1405 BUG_ON(in_interrupt()); 1406 /* 1407 * Initialize se_cmd for target operation. From this point 1408 * exceptions are handled by sending exception status via 1409 * target_core_fabric_ops->queue_status() callback 1410 */ 1411 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1412 data_length, data_dir, task_attr, sense); 1413 if (flags & TARGET_SCF_UNKNOWN_SIZE) 1414 se_cmd->unknown_data_length = 1; 1415 /* 1416 * Obtain struct se_cmd->cmd_kref reference and add new cmd to 1417 * se_sess->sess_cmd_list. A second kref_get here is necessary 1418 * for fabrics using TARGET_SCF_ACK_KREF that expect a second 1419 * kref_put() to happen during fabric packet acknowledgement. 1420 */ 1421 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1422 if (ret) 1423 return ret; 1424 /* 1425 * Signal bidirectional data payloads to target-core 1426 */ 1427 if (flags & TARGET_SCF_BIDI_OP) 1428 se_cmd->se_cmd_flags |= SCF_BIDI; 1429 /* 1430 * Locate se_lun pointer and attach it to struct se_cmd 1431 */ 1432 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun); 1433 if (rc) { 1434 transport_send_check_condition_and_sense(se_cmd, rc, 0); 1435 target_put_sess_cmd(se_sess, se_cmd); 1436 return 0; 1437 } 1438 1439 rc = target_setup_cmd_from_cdb(se_cmd, cdb); 1440 if (rc != 0) { 1441 transport_generic_request_failure(se_cmd, rc); 1442 return 0; 1443 } 1444 1445 /* 1446 * Save pointers for SGLs containing protection information, 1447 * if present. 1448 */ 1449 if (sgl_prot_count) { 1450 se_cmd->t_prot_sg = sgl_prot; 1451 se_cmd->t_prot_nents = sgl_prot_count; 1452 } 1453 1454 /* 1455 * When a non zero sgl_count has been passed perform SGL passthrough 1456 * mapping for pre-allocated fabric memory instead of having target 1457 * core perform an internal SGL allocation.. 1458 */ 1459 if (sgl_count != 0) { 1460 BUG_ON(!sgl); 1461 1462 /* 1463 * A work-around for tcm_loop as some userspace code via 1464 * scsi-generic do not memset their associated read buffers, 1465 * so go ahead and do that here for type non-data CDBs. Also 1466 * note that this is currently guaranteed to be a single SGL 1467 * for this case by target core in target_setup_cmd_from_cdb() 1468 * -> transport_generic_cmd_sequencer(). 1469 */ 1470 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && 1471 se_cmd->data_direction == DMA_FROM_DEVICE) { 1472 unsigned char *buf = NULL; 1473 1474 if (sgl) 1475 buf = kmap(sg_page(sgl)) + sgl->offset; 1476 1477 if (buf) { 1478 memset(buf, 0, sgl->length); 1479 kunmap(sg_page(sgl)); 1480 } 1481 } 1482 1483 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, 1484 sgl_bidi, sgl_bidi_count); 1485 if (rc != 0) { 1486 transport_generic_request_failure(se_cmd, rc); 1487 return 0; 1488 } 1489 } 1490 1491 /* 1492 * Check if we need to delay processing because of ALUA 1493 * Active/NonOptimized primary access state.. 1494 */ 1495 core_alua_check_nonop_delay(se_cmd); 1496 1497 transport_handle_cdb_direct(se_cmd); 1498 return 0; 1499 } 1500 EXPORT_SYMBOL(target_submit_cmd_map_sgls); 1501 1502 /* 1503 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd 1504 * 1505 * @se_cmd: command descriptor to submit 1506 * @se_sess: associated se_sess for endpoint 1507 * @cdb: pointer to SCSI CDB 1508 * @sense: pointer to SCSI sense buffer 1509 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1510 * @data_length: fabric expected data transfer length 1511 * @task_addr: SAM task attribute 1512 * @data_dir: DMA data direction 1513 * @flags: flags for command submission from target_sc_flags_tables 1514 * 1515 * Returns non zero to signal active I/O shutdown failure. All other 1516 * setup exceptions will be returned as a SCSI CHECK_CONDITION response, 1517 * but still return zero here. 1518 * 1519 * This may only be called from process context, and also currently 1520 * assumes internal allocation of fabric payload buffer by target-core. 1521 * 1522 * It also assumes interal target core SGL memory allocation. 1523 */ 1524 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, 1525 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun, 1526 u32 data_length, int task_attr, int data_dir, int flags) 1527 { 1528 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense, 1529 unpacked_lun, data_length, task_attr, data_dir, 1530 flags, NULL, 0, NULL, 0, NULL, 0); 1531 } 1532 EXPORT_SYMBOL(target_submit_cmd); 1533 1534 static void target_complete_tmr_failure(struct work_struct *work) 1535 { 1536 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); 1537 1538 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1539 se_cmd->se_tfo->queue_tm_rsp(se_cmd); 1540 1541 transport_cmd_check_stop_to_fabric(se_cmd); 1542 } 1543 1544 /** 1545 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd 1546 * for TMR CDBs 1547 * 1548 * @se_cmd: command descriptor to submit 1549 * @se_sess: associated se_sess for endpoint 1550 * @sense: pointer to SCSI sense buffer 1551 * @unpacked_lun: unpacked LUN to reference for struct se_lun 1552 * @fabric_context: fabric context for TMR req 1553 * @tm_type: Type of TM request 1554 * @gfp: gfp type for caller 1555 * @tag: referenced task tag for TMR_ABORT_TASK 1556 * @flags: submit cmd flags 1557 * 1558 * Callable from all contexts. 1559 **/ 1560 1561 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, 1562 unsigned char *sense, u32 unpacked_lun, 1563 void *fabric_tmr_ptr, unsigned char tm_type, 1564 gfp_t gfp, unsigned int tag, int flags) 1565 { 1566 struct se_portal_group *se_tpg; 1567 int ret; 1568 1569 se_tpg = se_sess->se_tpg; 1570 BUG_ON(!se_tpg); 1571 1572 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, 1573 0, DMA_NONE, TCM_SIMPLE_TAG, sense); 1574 /* 1575 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req 1576 * allocation failure. 1577 */ 1578 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); 1579 if (ret < 0) 1580 return -ENOMEM; 1581 1582 if (tm_type == TMR_ABORT_TASK) 1583 se_cmd->se_tmr_req->ref_task_tag = tag; 1584 1585 /* See target_submit_cmd for commentary */ 1586 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF)); 1587 if (ret) { 1588 core_tmr_release_req(se_cmd->se_tmr_req); 1589 return ret; 1590 } 1591 1592 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun); 1593 if (ret) { 1594 /* 1595 * For callback during failure handling, push this work off 1596 * to process context with TMR_LUN_DOES_NOT_EXIST status. 1597 */ 1598 INIT_WORK(&se_cmd->work, target_complete_tmr_failure); 1599 schedule_work(&se_cmd->work); 1600 return 0; 1601 } 1602 transport_generic_handle_tmr(se_cmd); 1603 return 0; 1604 } 1605 EXPORT_SYMBOL(target_submit_tmr); 1606 1607 /* 1608 * If the cmd is active, request it to be stopped and sleep until it 1609 * has completed. 1610 */ 1611 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags) 1612 __releases(&cmd->t_state_lock) 1613 __acquires(&cmd->t_state_lock) 1614 { 1615 bool was_active = false; 1616 1617 if (cmd->transport_state & CMD_T_BUSY) { 1618 cmd->transport_state |= CMD_T_REQUEST_STOP; 1619 spin_unlock_irqrestore(&cmd->t_state_lock, *flags); 1620 1621 pr_debug("cmd %p waiting to complete\n", cmd); 1622 wait_for_completion(&cmd->task_stop_comp); 1623 pr_debug("cmd %p stopped successfully\n", cmd); 1624 1625 spin_lock_irqsave(&cmd->t_state_lock, *flags); 1626 cmd->transport_state &= ~CMD_T_REQUEST_STOP; 1627 cmd->transport_state &= ~CMD_T_BUSY; 1628 was_active = true; 1629 } 1630 1631 return was_active; 1632 } 1633 1634 /* 1635 * Handle SAM-esque emulation for generic transport request failures. 1636 */ 1637 void transport_generic_request_failure(struct se_cmd *cmd, 1638 sense_reason_t sense_reason) 1639 { 1640 int ret = 0; 1641 1642 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" 1643 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd), 1644 cmd->t_task_cdb[0]); 1645 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n", 1646 cmd->se_tfo->get_cmd_state(cmd), 1647 cmd->t_state, sense_reason); 1648 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n", 1649 (cmd->transport_state & CMD_T_ACTIVE) != 0, 1650 (cmd->transport_state & CMD_T_STOP) != 0, 1651 (cmd->transport_state & CMD_T_SENT) != 0); 1652 1653 /* 1654 * For SAM Task Attribute emulation for failed struct se_cmd 1655 */ 1656 transport_complete_task_attr(cmd); 1657 /* 1658 * Handle special case for COMPARE_AND_WRITE failure, where the 1659 * callback is expected to drop the per device ->caw_sem. 1660 */ 1661 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 1662 cmd->transport_complete_callback) 1663 cmd->transport_complete_callback(cmd, false); 1664 1665 switch (sense_reason) { 1666 case TCM_NON_EXISTENT_LUN: 1667 case TCM_UNSUPPORTED_SCSI_OPCODE: 1668 case TCM_INVALID_CDB_FIELD: 1669 case TCM_INVALID_PARAMETER_LIST: 1670 case TCM_PARAMETER_LIST_LENGTH_ERROR: 1671 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 1672 case TCM_UNKNOWN_MODE_PAGE: 1673 case TCM_WRITE_PROTECTED: 1674 case TCM_ADDRESS_OUT_OF_RANGE: 1675 case TCM_CHECK_CONDITION_ABORT_CMD: 1676 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 1677 case TCM_CHECK_CONDITION_NOT_READY: 1678 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 1679 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 1680 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 1681 break; 1682 case TCM_OUT_OF_RESOURCES: 1683 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1684 break; 1685 case TCM_RESERVATION_CONFLICT: 1686 /* 1687 * No SENSE Data payload for this case, set SCSI Status 1688 * and queue the response to $FABRIC_MOD. 1689 * 1690 * Uses linux/include/scsi/scsi.h SAM status codes defs 1691 */ 1692 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; 1693 /* 1694 * For UA Interlock Code 11b, a RESERVATION CONFLICT will 1695 * establish a UNIT ATTENTION with PREVIOUS RESERVATION 1696 * CONFLICT STATUS. 1697 * 1698 * See spc4r17, section 7.4.6 Control Mode Page, Table 349 1699 */ 1700 if (cmd->se_sess && 1701 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) 1702 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl, 1703 cmd->orig_fe_lun, 0x2C, 1704 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); 1705 1706 trace_target_cmd_complete(cmd); 1707 ret = cmd->se_tfo-> queue_status(cmd); 1708 if (ret == -EAGAIN || ret == -ENOMEM) 1709 goto queue_full; 1710 goto check_stop; 1711 default: 1712 pr_err("Unknown transport error for CDB 0x%02x: %d\n", 1713 cmd->t_task_cdb[0], sense_reason); 1714 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; 1715 break; 1716 } 1717 1718 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); 1719 if (ret == -EAGAIN || ret == -ENOMEM) 1720 goto queue_full; 1721 1722 check_stop: 1723 transport_lun_remove_cmd(cmd); 1724 if (!transport_cmd_check_stop_to_fabric(cmd)) 1725 ; 1726 return; 1727 1728 queue_full: 1729 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 1730 transport_handle_queue_full(cmd, cmd->se_dev); 1731 } 1732 EXPORT_SYMBOL(transport_generic_request_failure); 1733 1734 void __target_execute_cmd(struct se_cmd *cmd) 1735 { 1736 sense_reason_t ret; 1737 1738 if (cmd->execute_cmd) { 1739 ret = cmd->execute_cmd(cmd); 1740 if (ret) { 1741 spin_lock_irq(&cmd->t_state_lock); 1742 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1743 spin_unlock_irq(&cmd->t_state_lock); 1744 1745 transport_generic_request_failure(cmd, ret); 1746 } 1747 } 1748 } 1749 1750 static int target_write_prot_action(struct se_cmd *cmd) 1751 { 1752 u32 sectors; 1753 /* 1754 * Perform WRITE_INSERT of PI using software emulation when backend 1755 * device has PI enabled, if the transport has not already generated 1756 * PI using hardware WRITE_INSERT offload. 1757 */ 1758 switch (cmd->prot_op) { 1759 case TARGET_PROT_DOUT_INSERT: 1760 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) 1761 sbc_dif_generate(cmd); 1762 break; 1763 case TARGET_PROT_DOUT_STRIP: 1764 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) 1765 break; 1766 1767 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); 1768 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba, 1769 sectors, 0, NULL, 0); 1770 if (unlikely(cmd->pi_err)) { 1771 spin_lock_irq(&cmd->t_state_lock); 1772 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT); 1773 spin_unlock_irq(&cmd->t_state_lock); 1774 transport_generic_request_failure(cmd, cmd->pi_err); 1775 return -1; 1776 } 1777 break; 1778 default: 1779 break; 1780 } 1781 1782 return 0; 1783 } 1784 1785 static bool target_handle_task_attr(struct se_cmd *cmd) 1786 { 1787 struct se_device *dev = cmd->se_dev; 1788 1789 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1790 return false; 1791 1792 /* 1793 * Check for the existence of HEAD_OF_QUEUE, and if true return 1 1794 * to allow the passed struct se_cmd list of tasks to the front of the list. 1795 */ 1796 switch (cmd->sam_task_attr) { 1797 case TCM_HEAD_TAG: 1798 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, " 1799 "se_ordered_id: %u\n", 1800 cmd->t_task_cdb[0], cmd->se_ordered_id); 1801 return false; 1802 case TCM_ORDERED_TAG: 1803 atomic_inc_mb(&dev->dev_ordered_sync); 1804 1805 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, " 1806 " se_ordered_id: %u\n", 1807 cmd->t_task_cdb[0], cmd->se_ordered_id); 1808 1809 /* 1810 * Execute an ORDERED command if no other older commands 1811 * exist that need to be completed first. 1812 */ 1813 if (!atomic_read(&dev->simple_cmds)) 1814 return false; 1815 break; 1816 default: 1817 /* 1818 * For SIMPLE and UNTAGGED Task Attribute commands 1819 */ 1820 atomic_inc_mb(&dev->simple_cmds); 1821 break; 1822 } 1823 1824 if (atomic_read(&dev->dev_ordered_sync) == 0) 1825 return false; 1826 1827 spin_lock(&dev->delayed_cmd_lock); 1828 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); 1829 spin_unlock(&dev->delayed_cmd_lock); 1830 1831 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to" 1832 " delayed CMD list, se_ordered_id: %u\n", 1833 cmd->t_task_cdb[0], cmd->sam_task_attr, 1834 cmd->se_ordered_id); 1835 return true; 1836 } 1837 1838 void target_execute_cmd(struct se_cmd *cmd) 1839 { 1840 /* 1841 * If the received CDB has aleady been aborted stop processing it here. 1842 */ 1843 if (transport_check_aborted_status(cmd, 1)) 1844 return; 1845 1846 /* 1847 * Determine if frontend context caller is requesting the stopping of 1848 * this command for frontend exceptions. 1849 */ 1850 spin_lock_irq(&cmd->t_state_lock); 1851 if (cmd->transport_state & CMD_T_STOP) { 1852 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n", 1853 __func__, __LINE__, 1854 cmd->se_tfo->get_task_tag(cmd)); 1855 1856 spin_unlock_irq(&cmd->t_state_lock); 1857 complete_all(&cmd->t_transport_stop_comp); 1858 return; 1859 } 1860 1861 cmd->t_state = TRANSPORT_PROCESSING; 1862 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT; 1863 spin_unlock_irq(&cmd->t_state_lock); 1864 1865 if (target_write_prot_action(cmd)) 1866 return; 1867 1868 if (target_handle_task_attr(cmd)) { 1869 spin_lock_irq(&cmd->t_state_lock); 1870 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT); 1871 spin_unlock_irq(&cmd->t_state_lock); 1872 return; 1873 } 1874 1875 __target_execute_cmd(cmd); 1876 } 1877 EXPORT_SYMBOL(target_execute_cmd); 1878 1879 /* 1880 * Process all commands up to the last received ORDERED task attribute which 1881 * requires another blocking boundary 1882 */ 1883 static void target_restart_delayed_cmds(struct se_device *dev) 1884 { 1885 for (;;) { 1886 struct se_cmd *cmd; 1887 1888 spin_lock(&dev->delayed_cmd_lock); 1889 if (list_empty(&dev->delayed_cmd_list)) { 1890 spin_unlock(&dev->delayed_cmd_lock); 1891 break; 1892 } 1893 1894 cmd = list_entry(dev->delayed_cmd_list.next, 1895 struct se_cmd, se_delayed_node); 1896 list_del(&cmd->se_delayed_node); 1897 spin_unlock(&dev->delayed_cmd_lock); 1898 1899 __target_execute_cmd(cmd); 1900 1901 if (cmd->sam_task_attr == TCM_ORDERED_TAG) 1902 break; 1903 } 1904 } 1905 1906 /* 1907 * Called from I/O completion to determine which dormant/delayed 1908 * and ordered cmds need to have their tasks added to the execution queue. 1909 */ 1910 static void transport_complete_task_attr(struct se_cmd *cmd) 1911 { 1912 struct se_device *dev = cmd->se_dev; 1913 1914 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) 1915 return; 1916 1917 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { 1918 atomic_dec_mb(&dev->simple_cmds); 1919 dev->dev_cur_ordered_id++; 1920 pr_debug("Incremented dev->dev_cur_ordered_id: %u for" 1921 " SIMPLE: %u\n", dev->dev_cur_ordered_id, 1922 cmd->se_ordered_id); 1923 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { 1924 dev->dev_cur_ordered_id++; 1925 pr_debug("Incremented dev_cur_ordered_id: %u for" 1926 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, 1927 cmd->se_ordered_id); 1928 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { 1929 atomic_dec_mb(&dev->dev_ordered_sync); 1930 1931 dev->dev_cur_ordered_id++; 1932 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:" 1933 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); 1934 } 1935 1936 target_restart_delayed_cmds(dev); 1937 } 1938 1939 static void transport_complete_qf(struct se_cmd *cmd) 1940 { 1941 int ret = 0; 1942 1943 transport_complete_task_attr(cmd); 1944 1945 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 1946 trace_target_cmd_complete(cmd); 1947 ret = cmd->se_tfo->queue_status(cmd); 1948 goto out; 1949 } 1950 1951 switch (cmd->data_direction) { 1952 case DMA_FROM_DEVICE: 1953 trace_target_cmd_complete(cmd); 1954 ret = cmd->se_tfo->queue_data_in(cmd); 1955 break; 1956 case DMA_TO_DEVICE: 1957 if (cmd->se_cmd_flags & SCF_BIDI) { 1958 ret = cmd->se_tfo->queue_data_in(cmd); 1959 break; 1960 } 1961 /* Fall through for DMA_TO_DEVICE */ 1962 case DMA_NONE: 1963 trace_target_cmd_complete(cmd); 1964 ret = cmd->se_tfo->queue_status(cmd); 1965 break; 1966 default: 1967 break; 1968 } 1969 1970 out: 1971 if (ret < 0) { 1972 transport_handle_queue_full(cmd, cmd->se_dev); 1973 return; 1974 } 1975 transport_lun_remove_cmd(cmd); 1976 transport_cmd_check_stop_to_fabric(cmd); 1977 } 1978 1979 static void transport_handle_queue_full( 1980 struct se_cmd *cmd, 1981 struct se_device *dev) 1982 { 1983 spin_lock_irq(&dev->qf_cmd_lock); 1984 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); 1985 atomic_inc_mb(&dev->dev_qf_count); 1986 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); 1987 1988 schedule_work(&cmd->se_dev->qf_work_queue); 1989 } 1990 1991 static bool target_read_prot_action(struct se_cmd *cmd) 1992 { 1993 sense_reason_t rc; 1994 1995 switch (cmd->prot_op) { 1996 case TARGET_PROT_DIN_STRIP: 1997 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { 1998 rc = sbc_dif_read_strip(cmd); 1999 if (rc) { 2000 cmd->pi_err = rc; 2001 return true; 2002 } 2003 } 2004 break; 2005 case TARGET_PROT_DIN_INSERT: 2006 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) 2007 break; 2008 2009 sbc_dif_generate(cmd); 2010 break; 2011 default: 2012 break; 2013 } 2014 2015 return false; 2016 } 2017 2018 static void target_complete_ok_work(struct work_struct *work) 2019 { 2020 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 2021 int ret; 2022 2023 /* 2024 * Check if we need to move delayed/dormant tasks from cmds on the 2025 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task 2026 * Attribute. 2027 */ 2028 transport_complete_task_attr(cmd); 2029 2030 /* 2031 * Check to schedule QUEUE_FULL work, or execute an existing 2032 * cmd->transport_qf_callback() 2033 */ 2034 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) 2035 schedule_work(&cmd->se_dev->qf_work_queue); 2036 2037 /* 2038 * Check if we need to send a sense buffer from 2039 * the struct se_cmd in question. 2040 */ 2041 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { 2042 WARN_ON(!cmd->scsi_status); 2043 ret = transport_send_check_condition_and_sense( 2044 cmd, 0, 1); 2045 if (ret == -EAGAIN || ret == -ENOMEM) 2046 goto queue_full; 2047 2048 transport_lun_remove_cmd(cmd); 2049 transport_cmd_check_stop_to_fabric(cmd); 2050 return; 2051 } 2052 /* 2053 * Check for a callback, used by amongst other things 2054 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. 2055 */ 2056 if (cmd->transport_complete_callback) { 2057 sense_reason_t rc; 2058 2059 rc = cmd->transport_complete_callback(cmd, true); 2060 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) { 2061 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2062 !cmd->data_length) 2063 goto queue_rsp; 2064 2065 return; 2066 } else if (rc) { 2067 ret = transport_send_check_condition_and_sense(cmd, 2068 rc, 0); 2069 if (ret == -EAGAIN || ret == -ENOMEM) 2070 goto queue_full; 2071 2072 transport_lun_remove_cmd(cmd); 2073 transport_cmd_check_stop_to_fabric(cmd); 2074 return; 2075 } 2076 } 2077 2078 queue_rsp: 2079 switch (cmd->data_direction) { 2080 case DMA_FROM_DEVICE: 2081 spin_lock(&cmd->se_lun->lun_sep_lock); 2082 if (cmd->se_lun->lun_sep) { 2083 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2084 cmd->data_length; 2085 } 2086 spin_unlock(&cmd->se_lun->lun_sep_lock); 2087 /* 2088 * Perform READ_STRIP of PI using software emulation when 2089 * backend had PI enabled, if the transport will not be 2090 * performing hardware READ_STRIP offload. 2091 */ 2092 if (target_read_prot_action(cmd)) { 2093 ret = transport_send_check_condition_and_sense(cmd, 2094 cmd->pi_err, 0); 2095 if (ret == -EAGAIN || ret == -ENOMEM) 2096 goto queue_full; 2097 2098 transport_lun_remove_cmd(cmd); 2099 transport_cmd_check_stop_to_fabric(cmd); 2100 return; 2101 } 2102 2103 trace_target_cmd_complete(cmd); 2104 ret = cmd->se_tfo->queue_data_in(cmd); 2105 if (ret == -EAGAIN || ret == -ENOMEM) 2106 goto queue_full; 2107 break; 2108 case DMA_TO_DEVICE: 2109 spin_lock(&cmd->se_lun->lun_sep_lock); 2110 if (cmd->se_lun->lun_sep) { 2111 cmd->se_lun->lun_sep->sep_stats.rx_data_octets += 2112 cmd->data_length; 2113 } 2114 spin_unlock(&cmd->se_lun->lun_sep_lock); 2115 /* 2116 * Check if we need to send READ payload for BIDI-COMMAND 2117 */ 2118 if (cmd->se_cmd_flags & SCF_BIDI) { 2119 spin_lock(&cmd->se_lun->lun_sep_lock); 2120 if (cmd->se_lun->lun_sep) { 2121 cmd->se_lun->lun_sep->sep_stats.tx_data_octets += 2122 cmd->data_length; 2123 } 2124 spin_unlock(&cmd->se_lun->lun_sep_lock); 2125 ret = cmd->se_tfo->queue_data_in(cmd); 2126 if (ret == -EAGAIN || ret == -ENOMEM) 2127 goto queue_full; 2128 break; 2129 } 2130 /* Fall through for DMA_TO_DEVICE */ 2131 case DMA_NONE: 2132 trace_target_cmd_complete(cmd); 2133 ret = cmd->se_tfo->queue_status(cmd); 2134 if (ret == -EAGAIN || ret == -ENOMEM) 2135 goto queue_full; 2136 break; 2137 default: 2138 break; 2139 } 2140 2141 transport_lun_remove_cmd(cmd); 2142 transport_cmd_check_stop_to_fabric(cmd); 2143 return; 2144 2145 queue_full: 2146 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," 2147 " data_direction: %d\n", cmd, cmd->data_direction); 2148 cmd->t_state = TRANSPORT_COMPLETE_QF_OK; 2149 transport_handle_queue_full(cmd, cmd->se_dev); 2150 } 2151 2152 static inline void transport_free_sgl(struct scatterlist *sgl, int nents) 2153 { 2154 struct scatterlist *sg; 2155 int count; 2156 2157 for_each_sg(sgl, sg, nents, count) 2158 __free_page(sg_page(sg)); 2159 2160 kfree(sgl); 2161 } 2162 2163 static inline void transport_reset_sgl_orig(struct se_cmd *cmd) 2164 { 2165 /* 2166 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE 2167 * emulation, and free + reset pointers if necessary.. 2168 */ 2169 if (!cmd->t_data_sg_orig) 2170 return; 2171 2172 kfree(cmd->t_data_sg); 2173 cmd->t_data_sg = cmd->t_data_sg_orig; 2174 cmd->t_data_sg_orig = NULL; 2175 cmd->t_data_nents = cmd->t_data_nents_orig; 2176 cmd->t_data_nents_orig = 0; 2177 } 2178 2179 static inline void transport_free_pages(struct se_cmd *cmd) 2180 { 2181 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { 2182 /* 2183 * Release special case READ buffer payload required for 2184 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE 2185 */ 2186 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { 2187 transport_free_sgl(cmd->t_bidi_data_sg, 2188 cmd->t_bidi_data_nents); 2189 cmd->t_bidi_data_sg = NULL; 2190 cmd->t_bidi_data_nents = 0; 2191 } 2192 transport_reset_sgl_orig(cmd); 2193 return; 2194 } 2195 transport_reset_sgl_orig(cmd); 2196 2197 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents); 2198 cmd->t_data_sg = NULL; 2199 cmd->t_data_nents = 0; 2200 2201 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); 2202 cmd->t_bidi_data_sg = NULL; 2203 cmd->t_bidi_data_nents = 0; 2204 2205 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); 2206 cmd->t_prot_sg = NULL; 2207 cmd->t_prot_nents = 0; 2208 } 2209 2210 /** 2211 * transport_release_cmd - free a command 2212 * @cmd: command to free 2213 * 2214 * This routine unconditionally frees a command, and reference counting 2215 * or list removal must be done in the caller. 2216 */ 2217 static int transport_release_cmd(struct se_cmd *cmd) 2218 { 2219 BUG_ON(!cmd->se_tfo); 2220 2221 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) 2222 core_tmr_release_req(cmd->se_tmr_req); 2223 if (cmd->t_task_cdb != cmd->__t_task_cdb) 2224 kfree(cmd->t_task_cdb); 2225 /* 2226 * If this cmd has been setup with target_get_sess_cmd(), drop 2227 * the kref and call ->release_cmd() in kref callback. 2228 */ 2229 return target_put_sess_cmd(cmd->se_sess, cmd); 2230 } 2231 2232 /** 2233 * transport_put_cmd - release a reference to a command 2234 * @cmd: command to release 2235 * 2236 * This routine releases our reference to the command and frees it if possible. 2237 */ 2238 static int transport_put_cmd(struct se_cmd *cmd) 2239 { 2240 transport_free_pages(cmd); 2241 return transport_release_cmd(cmd); 2242 } 2243 2244 void *transport_kmap_data_sg(struct se_cmd *cmd) 2245 { 2246 struct scatterlist *sg = cmd->t_data_sg; 2247 struct page **pages; 2248 int i; 2249 2250 /* 2251 * We need to take into account a possible offset here for fabrics like 2252 * tcm_loop who may be using a contig buffer from the SCSI midlayer for 2253 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() 2254 */ 2255 if (!cmd->t_data_nents) 2256 return NULL; 2257 2258 BUG_ON(!sg); 2259 if (cmd->t_data_nents == 1) 2260 return kmap(sg_page(sg)) + sg->offset; 2261 2262 /* >1 page. use vmap */ 2263 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL); 2264 if (!pages) 2265 return NULL; 2266 2267 /* convert sg[] to pages[] */ 2268 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { 2269 pages[i] = sg_page(sg); 2270 } 2271 2272 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); 2273 kfree(pages); 2274 if (!cmd->t_data_vmap) 2275 return NULL; 2276 2277 return cmd->t_data_vmap + cmd->t_data_sg[0].offset; 2278 } 2279 EXPORT_SYMBOL(transport_kmap_data_sg); 2280 2281 void transport_kunmap_data_sg(struct se_cmd *cmd) 2282 { 2283 if (!cmd->t_data_nents) { 2284 return; 2285 } else if (cmd->t_data_nents == 1) { 2286 kunmap(sg_page(cmd->t_data_sg)); 2287 return; 2288 } 2289 2290 vunmap(cmd->t_data_vmap); 2291 cmd->t_data_vmap = NULL; 2292 } 2293 EXPORT_SYMBOL(transport_kunmap_data_sg); 2294 2295 int 2296 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, 2297 bool zero_page) 2298 { 2299 struct scatterlist *sg; 2300 struct page *page; 2301 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0; 2302 unsigned int nent; 2303 int i = 0; 2304 2305 nent = DIV_ROUND_UP(length, PAGE_SIZE); 2306 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL); 2307 if (!sg) 2308 return -ENOMEM; 2309 2310 sg_init_table(sg, nent); 2311 2312 while (length) { 2313 u32 page_len = min_t(u32, length, PAGE_SIZE); 2314 page = alloc_page(GFP_KERNEL | zero_flag); 2315 if (!page) 2316 goto out; 2317 2318 sg_set_page(&sg[i], page, page_len, 0); 2319 length -= page_len; 2320 i++; 2321 } 2322 *sgl = sg; 2323 *nents = nent; 2324 return 0; 2325 2326 out: 2327 while (i > 0) { 2328 i--; 2329 __free_page(sg_page(&sg[i])); 2330 } 2331 kfree(sg); 2332 return -ENOMEM; 2333 } 2334 2335 /* 2336 * Allocate any required resources to execute the command. For writes we 2337 * might not have the payload yet, so notify the fabric via a call to 2338 * ->write_pending instead. Otherwise place it on the execution queue. 2339 */ 2340 sense_reason_t 2341 transport_generic_new_cmd(struct se_cmd *cmd) 2342 { 2343 int ret = 0; 2344 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); 2345 2346 /* 2347 * Determine is the TCM fabric module has already allocated physical 2348 * memory, and is directly calling transport_generic_map_mem_to_cmd() 2349 * beforehand. 2350 */ 2351 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && 2352 cmd->data_length) { 2353 2354 if ((cmd->se_cmd_flags & SCF_BIDI) || 2355 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { 2356 u32 bidi_length; 2357 2358 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) 2359 bidi_length = cmd->t_task_nolb * 2360 cmd->se_dev->dev_attrib.block_size; 2361 else 2362 bidi_length = cmd->data_length; 2363 2364 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2365 &cmd->t_bidi_data_nents, 2366 bidi_length, zero_flag); 2367 if (ret < 0) 2368 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2369 } 2370 2371 if (cmd->prot_op != TARGET_PROT_NORMAL) { 2372 ret = target_alloc_sgl(&cmd->t_prot_sg, 2373 &cmd->t_prot_nents, 2374 cmd->prot_length, true); 2375 if (ret < 0) 2376 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2377 } 2378 2379 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, 2380 cmd->data_length, zero_flag); 2381 if (ret < 0) 2382 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2383 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && 2384 cmd->data_length) { 2385 /* 2386 * Special case for COMPARE_AND_WRITE with fabrics 2387 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. 2388 */ 2389 u32 caw_length = cmd->t_task_nolb * 2390 cmd->se_dev->dev_attrib.block_size; 2391 2392 ret = target_alloc_sgl(&cmd->t_bidi_data_sg, 2393 &cmd->t_bidi_data_nents, 2394 caw_length, zero_flag); 2395 if (ret < 0) 2396 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2397 } 2398 /* 2399 * If this command is not a write we can execute it right here, 2400 * for write buffers we need to notify the fabric driver first 2401 * and let it call back once the write buffers are ready. 2402 */ 2403 target_add_to_state_list(cmd); 2404 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { 2405 target_execute_cmd(cmd); 2406 return 0; 2407 } 2408 transport_cmd_check_stop(cmd, false, true); 2409 2410 ret = cmd->se_tfo->write_pending(cmd); 2411 if (ret == -EAGAIN || ret == -ENOMEM) 2412 goto queue_full; 2413 2414 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */ 2415 WARN_ON(ret); 2416 2417 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 2418 2419 queue_full: 2420 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); 2421 cmd->t_state = TRANSPORT_COMPLETE_QF_WP; 2422 transport_handle_queue_full(cmd, cmd->se_dev); 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(transport_generic_new_cmd); 2426 2427 static void transport_write_pending_qf(struct se_cmd *cmd) 2428 { 2429 int ret; 2430 2431 ret = cmd->se_tfo->write_pending(cmd); 2432 if (ret == -EAGAIN || ret == -ENOMEM) { 2433 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", 2434 cmd); 2435 transport_handle_queue_full(cmd, cmd->se_dev); 2436 } 2437 } 2438 2439 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) 2440 { 2441 unsigned long flags; 2442 int ret = 0; 2443 2444 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) { 2445 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) 2446 transport_wait_for_tasks(cmd); 2447 2448 ret = transport_release_cmd(cmd); 2449 } else { 2450 if (wait_for_tasks) 2451 transport_wait_for_tasks(cmd); 2452 /* 2453 * Handle WRITE failure case where transport_generic_new_cmd() 2454 * has already added se_cmd to state_list, but fabric has 2455 * failed command before I/O submission. 2456 */ 2457 if (cmd->state_active) { 2458 spin_lock_irqsave(&cmd->t_state_lock, flags); 2459 target_remove_from_state_list(cmd); 2460 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2461 } 2462 2463 if (cmd->se_lun) 2464 transport_lun_remove_cmd(cmd); 2465 2466 ret = transport_put_cmd(cmd); 2467 } 2468 return ret; 2469 } 2470 EXPORT_SYMBOL(transport_generic_free_cmd); 2471 2472 /* target_get_sess_cmd - Add command to active ->sess_cmd_list 2473 * @se_sess: session to reference 2474 * @se_cmd: command descriptor to add 2475 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() 2476 */ 2477 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd, 2478 bool ack_kref) 2479 { 2480 unsigned long flags; 2481 int ret = 0; 2482 2483 /* 2484 * Add a second kref if the fabric caller is expecting to handle 2485 * fabric acknowledgement that requires two target_put_sess_cmd() 2486 * invocations before se_cmd descriptor release. 2487 */ 2488 if (ack_kref) 2489 kref_get(&se_cmd->cmd_kref); 2490 2491 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2492 if (se_sess->sess_tearing_down) { 2493 ret = -ESHUTDOWN; 2494 goto out; 2495 } 2496 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list); 2497 out: 2498 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2499 2500 if (ret && ack_kref) 2501 target_put_sess_cmd(se_sess, se_cmd); 2502 2503 return ret; 2504 } 2505 EXPORT_SYMBOL(target_get_sess_cmd); 2506 2507 static void target_release_cmd_kref(struct kref *kref) 2508 __releases(&se_cmd->se_sess->sess_cmd_lock) 2509 { 2510 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); 2511 struct se_session *se_sess = se_cmd->se_sess; 2512 2513 if (list_empty(&se_cmd->se_cmd_list)) { 2514 spin_unlock(&se_sess->sess_cmd_lock); 2515 se_cmd->se_tfo->release_cmd(se_cmd); 2516 return; 2517 } 2518 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) { 2519 spin_unlock(&se_sess->sess_cmd_lock); 2520 complete(&se_cmd->cmd_wait_comp); 2521 return; 2522 } 2523 list_del(&se_cmd->se_cmd_list); 2524 spin_unlock(&se_sess->sess_cmd_lock); 2525 2526 se_cmd->se_tfo->release_cmd(se_cmd); 2527 } 2528 2529 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put 2530 * @se_sess: session to reference 2531 * @se_cmd: command descriptor to drop 2532 */ 2533 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd) 2534 { 2535 if (!se_sess) { 2536 se_cmd->se_tfo->release_cmd(se_cmd); 2537 return 1; 2538 } 2539 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref, 2540 &se_sess->sess_cmd_lock); 2541 } 2542 EXPORT_SYMBOL(target_put_sess_cmd); 2543 2544 /* target_sess_cmd_list_set_waiting - Flag all commands in 2545 * sess_cmd_list to complete cmd_wait_comp. Set 2546 * sess_tearing_down so no more commands are queued. 2547 * @se_sess: session to flag 2548 */ 2549 void target_sess_cmd_list_set_waiting(struct se_session *se_sess) 2550 { 2551 struct se_cmd *se_cmd; 2552 unsigned long flags; 2553 2554 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2555 if (se_sess->sess_tearing_down) { 2556 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2557 return; 2558 } 2559 se_sess->sess_tearing_down = 1; 2560 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list); 2561 2562 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) 2563 se_cmd->cmd_wait_set = 1; 2564 2565 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2566 } 2567 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting); 2568 2569 /* target_wait_for_sess_cmds - Wait for outstanding descriptors 2570 * @se_sess: session to wait for active I/O 2571 */ 2572 void target_wait_for_sess_cmds(struct se_session *se_sess) 2573 { 2574 struct se_cmd *se_cmd, *tmp_cmd; 2575 unsigned long flags; 2576 2577 list_for_each_entry_safe(se_cmd, tmp_cmd, 2578 &se_sess->sess_wait_list, se_cmd_list) { 2579 list_del(&se_cmd->se_cmd_list); 2580 2581 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:" 2582 " %d\n", se_cmd, se_cmd->t_state, 2583 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2584 2585 wait_for_completion(&se_cmd->cmd_wait_comp); 2586 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d" 2587 " fabric state: %d\n", se_cmd, se_cmd->t_state, 2588 se_cmd->se_tfo->get_cmd_state(se_cmd)); 2589 2590 se_cmd->se_tfo->release_cmd(se_cmd); 2591 } 2592 2593 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags); 2594 WARN_ON(!list_empty(&se_sess->sess_cmd_list)); 2595 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags); 2596 2597 } 2598 EXPORT_SYMBOL(target_wait_for_sess_cmds); 2599 2600 static int transport_clear_lun_ref_thread(void *p) 2601 { 2602 struct se_lun *lun = p; 2603 2604 percpu_ref_kill(&lun->lun_ref); 2605 2606 wait_for_completion(&lun->lun_ref_comp); 2607 complete(&lun->lun_shutdown_comp); 2608 2609 return 0; 2610 } 2611 2612 int transport_clear_lun_ref(struct se_lun *lun) 2613 { 2614 struct task_struct *kt; 2615 2616 kt = kthread_run(transport_clear_lun_ref_thread, lun, 2617 "tcm_cl_%u", lun->unpacked_lun); 2618 if (IS_ERR(kt)) { 2619 pr_err("Unable to start clear_lun thread\n"); 2620 return PTR_ERR(kt); 2621 } 2622 wait_for_completion(&lun->lun_shutdown_comp); 2623 2624 return 0; 2625 } 2626 2627 /** 2628 * transport_wait_for_tasks - wait for completion to occur 2629 * @cmd: command to wait 2630 * 2631 * Called from frontend fabric context to wait for storage engine 2632 * to pause and/or release frontend generated struct se_cmd. 2633 */ 2634 bool transport_wait_for_tasks(struct se_cmd *cmd) 2635 { 2636 unsigned long flags; 2637 2638 spin_lock_irqsave(&cmd->t_state_lock, flags); 2639 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && 2640 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2641 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2642 return false; 2643 } 2644 2645 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && 2646 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { 2647 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2648 return false; 2649 } 2650 2651 if (!(cmd->transport_state & CMD_T_ACTIVE)) { 2652 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2653 return false; 2654 } 2655 2656 cmd->transport_state |= CMD_T_STOP; 2657 2658 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x" 2659 " i_state: %d, t_state: %d, CMD_T_STOP\n", 2660 cmd, cmd->se_tfo->get_task_tag(cmd), 2661 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state); 2662 2663 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2664 2665 wait_for_completion(&cmd->t_transport_stop_comp); 2666 2667 spin_lock_irqsave(&cmd->t_state_lock, flags); 2668 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP); 2669 2670 pr_debug("wait_for_tasks: Stopped wait_for_completion(" 2671 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n", 2672 cmd->se_tfo->get_task_tag(cmd)); 2673 2674 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2675 2676 return true; 2677 } 2678 EXPORT_SYMBOL(transport_wait_for_tasks); 2679 2680 static int transport_get_sense_codes( 2681 struct se_cmd *cmd, 2682 u8 *asc, 2683 u8 *ascq) 2684 { 2685 *asc = cmd->scsi_asc; 2686 *ascq = cmd->scsi_ascq; 2687 2688 return 0; 2689 } 2690 2691 static 2692 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector) 2693 { 2694 /* Place failed LBA in sense data information descriptor 0. */ 2695 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc; 2696 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */ 2697 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa; 2698 buffer[SPC_VALIDITY_OFFSET] = 0x80; 2699 2700 /* Descriptor Information: failing sector */ 2701 put_unaligned_be64(bad_sector, &buffer[12]); 2702 } 2703 2704 int 2705 transport_send_check_condition_and_sense(struct se_cmd *cmd, 2706 sense_reason_t reason, int from_transport) 2707 { 2708 unsigned char *buffer = cmd->sense_buffer; 2709 unsigned long flags; 2710 u8 asc = 0, ascq = 0; 2711 2712 spin_lock_irqsave(&cmd->t_state_lock, flags); 2713 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { 2714 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2715 return 0; 2716 } 2717 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; 2718 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2719 2720 if (!reason && from_transport) 2721 goto after_reason; 2722 2723 if (!from_transport) 2724 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; 2725 2726 /* 2727 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses 2728 * SENSE KEY values from include/scsi/scsi.h 2729 */ 2730 switch (reason) { 2731 case TCM_NO_SENSE: 2732 /* CURRENT ERROR */ 2733 buffer[0] = 0x70; 2734 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2735 /* Not Ready */ 2736 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2737 /* NO ADDITIONAL SENSE INFORMATION */ 2738 buffer[SPC_ASC_KEY_OFFSET] = 0; 2739 buffer[SPC_ASCQ_KEY_OFFSET] = 0; 2740 break; 2741 case TCM_NON_EXISTENT_LUN: 2742 /* CURRENT ERROR */ 2743 buffer[0] = 0x70; 2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2745 /* ILLEGAL REQUEST */ 2746 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2747 /* LOGICAL UNIT NOT SUPPORTED */ 2748 buffer[SPC_ASC_KEY_OFFSET] = 0x25; 2749 break; 2750 case TCM_UNSUPPORTED_SCSI_OPCODE: 2751 case TCM_SECTOR_COUNT_TOO_MANY: 2752 /* CURRENT ERROR */ 2753 buffer[0] = 0x70; 2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2755 /* ILLEGAL REQUEST */ 2756 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2757 /* INVALID COMMAND OPERATION CODE */ 2758 buffer[SPC_ASC_KEY_OFFSET] = 0x20; 2759 break; 2760 case TCM_UNKNOWN_MODE_PAGE: 2761 /* CURRENT ERROR */ 2762 buffer[0] = 0x70; 2763 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2764 /* ILLEGAL REQUEST */ 2765 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2766 /* INVALID FIELD IN CDB */ 2767 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2768 break; 2769 case TCM_CHECK_CONDITION_ABORT_CMD: 2770 /* CURRENT ERROR */ 2771 buffer[0] = 0x70; 2772 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2773 /* ABORTED COMMAND */ 2774 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2775 /* BUS DEVICE RESET FUNCTION OCCURRED */ 2776 buffer[SPC_ASC_KEY_OFFSET] = 0x29; 2777 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2778 break; 2779 case TCM_INCORRECT_AMOUNT_OF_DATA: 2780 /* CURRENT ERROR */ 2781 buffer[0] = 0x70; 2782 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2783 /* ABORTED COMMAND */ 2784 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2785 /* WRITE ERROR */ 2786 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2787 /* NOT ENOUGH UNSOLICITED DATA */ 2788 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d; 2789 break; 2790 case TCM_INVALID_CDB_FIELD: 2791 /* CURRENT ERROR */ 2792 buffer[0] = 0x70; 2793 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2794 /* ILLEGAL REQUEST */ 2795 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2796 /* INVALID FIELD IN CDB */ 2797 buffer[SPC_ASC_KEY_OFFSET] = 0x24; 2798 break; 2799 case TCM_INVALID_PARAMETER_LIST: 2800 /* CURRENT ERROR */ 2801 buffer[0] = 0x70; 2802 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2803 /* ILLEGAL REQUEST */ 2804 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2805 /* INVALID FIELD IN PARAMETER LIST */ 2806 buffer[SPC_ASC_KEY_OFFSET] = 0x26; 2807 break; 2808 case TCM_PARAMETER_LIST_LENGTH_ERROR: 2809 /* CURRENT ERROR */ 2810 buffer[0] = 0x70; 2811 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2812 /* ILLEGAL REQUEST */ 2813 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2814 /* PARAMETER LIST LENGTH ERROR */ 2815 buffer[SPC_ASC_KEY_OFFSET] = 0x1a; 2816 break; 2817 case TCM_UNEXPECTED_UNSOLICITED_DATA: 2818 /* CURRENT ERROR */ 2819 buffer[0] = 0x70; 2820 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2821 /* ABORTED COMMAND */ 2822 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2823 /* WRITE ERROR */ 2824 buffer[SPC_ASC_KEY_OFFSET] = 0x0c; 2825 /* UNEXPECTED_UNSOLICITED_DATA */ 2826 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c; 2827 break; 2828 case TCM_SERVICE_CRC_ERROR: 2829 /* CURRENT ERROR */ 2830 buffer[0] = 0x70; 2831 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2832 /* ABORTED COMMAND */ 2833 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2834 /* PROTOCOL SERVICE CRC ERROR */ 2835 buffer[SPC_ASC_KEY_OFFSET] = 0x47; 2836 /* N/A */ 2837 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05; 2838 break; 2839 case TCM_SNACK_REJECTED: 2840 /* CURRENT ERROR */ 2841 buffer[0] = 0x70; 2842 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2843 /* ABORTED COMMAND */ 2844 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; 2845 /* READ ERROR */ 2846 buffer[SPC_ASC_KEY_OFFSET] = 0x11; 2847 /* FAILED RETRANSMISSION REQUEST */ 2848 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13; 2849 break; 2850 case TCM_WRITE_PROTECTED: 2851 /* CURRENT ERROR */ 2852 buffer[0] = 0x70; 2853 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2854 /* DATA PROTECT */ 2855 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; 2856 /* WRITE PROTECTED */ 2857 buffer[SPC_ASC_KEY_OFFSET] = 0x27; 2858 break; 2859 case TCM_ADDRESS_OUT_OF_RANGE: 2860 /* CURRENT ERROR */ 2861 buffer[0] = 0x70; 2862 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2863 /* ILLEGAL REQUEST */ 2864 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2865 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */ 2866 buffer[SPC_ASC_KEY_OFFSET] = 0x21; 2867 break; 2868 case TCM_CHECK_CONDITION_UNIT_ATTENTION: 2869 /* CURRENT ERROR */ 2870 buffer[0] = 0x70; 2871 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2872 /* UNIT ATTENTION */ 2873 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; 2874 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); 2875 buffer[SPC_ASC_KEY_OFFSET] = asc; 2876 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2877 break; 2878 case TCM_CHECK_CONDITION_NOT_READY: 2879 /* CURRENT ERROR */ 2880 buffer[0] = 0x70; 2881 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2882 /* Not Ready */ 2883 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2884 transport_get_sense_codes(cmd, &asc, &ascq); 2885 buffer[SPC_ASC_KEY_OFFSET] = asc; 2886 buffer[SPC_ASCQ_KEY_OFFSET] = ascq; 2887 break; 2888 case TCM_MISCOMPARE_VERIFY: 2889 /* CURRENT ERROR */ 2890 buffer[0] = 0x70; 2891 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2892 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE; 2893 /* MISCOMPARE DURING VERIFY OPERATION */ 2894 buffer[SPC_ASC_KEY_OFFSET] = 0x1d; 2895 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00; 2896 break; 2897 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: 2898 /* CURRENT ERROR */ 2899 buffer[0] = 0x70; 2900 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2901 /* ILLEGAL REQUEST */ 2902 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2903 /* LOGICAL BLOCK GUARD CHECK FAILED */ 2904 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2905 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01; 2906 transport_err_sector_info(buffer, cmd->bad_sector); 2907 break; 2908 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: 2909 /* CURRENT ERROR */ 2910 buffer[0] = 0x70; 2911 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2912 /* ILLEGAL REQUEST */ 2913 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2914 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */ 2915 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2916 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02; 2917 transport_err_sector_info(buffer, cmd->bad_sector); 2918 break; 2919 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: 2920 /* CURRENT ERROR */ 2921 buffer[0] = 0x70; 2922 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2923 /* ILLEGAL REQUEST */ 2924 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; 2925 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */ 2926 buffer[SPC_ASC_KEY_OFFSET] = 0x10; 2927 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03; 2928 transport_err_sector_info(buffer, cmd->bad_sector); 2929 break; 2930 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: 2931 default: 2932 /* CURRENT ERROR */ 2933 buffer[0] = 0x70; 2934 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10; 2935 /* 2936 * Returning ILLEGAL REQUEST would cause immediate IO errors on 2937 * Solaris initiators. Returning NOT READY instead means the 2938 * operations will be retried a finite number of times and we 2939 * can survive intermittent errors. 2940 */ 2941 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY; 2942 /* LOGICAL UNIT COMMUNICATION FAILURE */ 2943 buffer[SPC_ASC_KEY_OFFSET] = 0x08; 2944 break; 2945 } 2946 /* 2947 * This code uses linux/include/scsi/scsi.h SAM status codes! 2948 */ 2949 cmd->scsi_status = SAM_STAT_CHECK_CONDITION; 2950 /* 2951 * Automatically padded, this value is encoded in the fabric's 2952 * data_length response PDU containing the SCSI defined sense data. 2953 */ 2954 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; 2955 2956 after_reason: 2957 trace_target_cmd_complete(cmd); 2958 return cmd->se_tfo->queue_status(cmd); 2959 } 2960 EXPORT_SYMBOL(transport_send_check_condition_and_sense); 2961 2962 int transport_check_aborted_status(struct se_cmd *cmd, int send_status) 2963 { 2964 if (!(cmd->transport_state & CMD_T_ABORTED)) 2965 return 0; 2966 2967 /* 2968 * If cmd has been aborted but either no status is to be sent or it has 2969 * already been sent, just return 2970 */ 2971 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) 2972 return 1; 2973 2974 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n", 2975 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd)); 2976 2977 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS; 2978 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 2979 trace_target_cmd_complete(cmd); 2980 cmd->se_tfo->queue_status(cmd); 2981 2982 return 1; 2983 } 2984 EXPORT_SYMBOL(transport_check_aborted_status); 2985 2986 void transport_send_task_abort(struct se_cmd *cmd) 2987 { 2988 unsigned long flags; 2989 2990 spin_lock_irqsave(&cmd->t_state_lock, flags); 2991 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) { 2992 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2993 return; 2994 } 2995 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 2996 2997 /* 2998 * If there are still expected incoming fabric WRITEs, we wait 2999 * until until they have completed before sending a TASK_ABORTED 3000 * response. This response with TASK_ABORTED status will be 3001 * queued back to fabric module by transport_check_aborted_status(). 3002 */ 3003 if (cmd->data_direction == DMA_TO_DEVICE) { 3004 if (cmd->se_tfo->write_pending_status(cmd) != 0) { 3005 cmd->transport_state |= CMD_T_ABORTED; 3006 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS; 3007 return; 3008 } 3009 } 3010 cmd->scsi_status = SAM_STAT_TASK_ABORTED; 3011 3012 transport_lun_remove_cmd(cmd); 3013 3014 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," 3015 " ITT: 0x%08x\n", cmd->t_task_cdb[0], 3016 cmd->se_tfo->get_task_tag(cmd)); 3017 3018 trace_target_cmd_complete(cmd); 3019 cmd->se_tfo->queue_status(cmd); 3020 } 3021 3022 static void target_tmr_work(struct work_struct *work) 3023 { 3024 struct se_cmd *cmd = container_of(work, struct se_cmd, work); 3025 struct se_device *dev = cmd->se_dev; 3026 struct se_tmr_req *tmr = cmd->se_tmr_req; 3027 int ret; 3028 3029 switch (tmr->function) { 3030 case TMR_ABORT_TASK: 3031 core_tmr_abort_task(dev, tmr, cmd->se_sess); 3032 break; 3033 case TMR_ABORT_TASK_SET: 3034 case TMR_CLEAR_ACA: 3035 case TMR_CLEAR_TASK_SET: 3036 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 3037 break; 3038 case TMR_LUN_RESET: 3039 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); 3040 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : 3041 TMR_FUNCTION_REJECTED; 3042 break; 3043 case TMR_TARGET_WARM_RESET: 3044 tmr->response = TMR_FUNCTION_REJECTED; 3045 break; 3046 case TMR_TARGET_COLD_RESET: 3047 tmr->response = TMR_FUNCTION_REJECTED; 3048 break; 3049 default: 3050 pr_err("Uknown TMR function: 0x%02x.\n", 3051 tmr->function); 3052 tmr->response = TMR_FUNCTION_REJECTED; 3053 break; 3054 } 3055 3056 cmd->t_state = TRANSPORT_ISTATE_PROCESSING; 3057 cmd->se_tfo->queue_tm_rsp(cmd); 3058 3059 transport_cmd_check_stop_to_fabric(cmd); 3060 } 3061 3062 int transport_generic_handle_tmr( 3063 struct se_cmd *cmd) 3064 { 3065 unsigned long flags; 3066 3067 spin_lock_irqsave(&cmd->t_state_lock, flags); 3068 cmd->transport_state |= CMD_T_ACTIVE; 3069 spin_unlock_irqrestore(&cmd->t_state_lock, flags); 3070 3071 INIT_WORK(&cmd->work, target_tmr_work); 3072 queue_work(cmd->se_dev->tmr_wq, &cmd->work); 3073 return 0; 3074 } 3075 EXPORT_SYMBOL(transport_generic_handle_tmr); 3076