xref: /linux/drivers/spi/spi.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/property.h>
36 #include <linux/export.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 #include <linux/highmem.h>
44 #include <linux/idr.h>
45 #include <linux/platform_data/x86/apple.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/spi.h>
49 
50 #include "internals.h"
51 
52 static DEFINE_IDR(spi_master_idr);
53 
54 static void spidev_release(struct device *dev)
55 {
56 	struct spi_device	*spi = to_spi_device(dev);
57 
58 	/* spi controllers may cleanup for released devices */
59 	if (spi->controller->cleanup)
60 		spi->controller->cleanup(spi);
61 
62 	spi_controller_put(spi->controller);
63 	kfree(spi);
64 }
65 
66 static ssize_t
67 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
68 {
69 	const struct spi_device	*spi = to_spi_device(dev);
70 	int len;
71 
72 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73 	if (len != -ENODEV)
74 		return len;
75 
76 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
77 }
78 static DEVICE_ATTR_RO(modalias);
79 
80 #define SPI_STATISTICS_ATTRS(field, file)				\
81 static ssize_t spi_controller_##field##_show(struct device *dev,	\
82 					     struct device_attribute *attr, \
83 					     char *buf)			\
84 {									\
85 	struct spi_controller *ctlr = container_of(dev,			\
86 					 struct spi_controller, dev);	\
87 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
88 }									\
89 static struct device_attribute dev_attr_spi_controller_##field = {	\
90 	.attr = { .name = file, .mode = 0444 },				\
91 	.show = spi_controller_##field##_show,				\
92 };									\
93 static ssize_t spi_device_##field##_show(struct device *dev,		\
94 					 struct device_attribute *attr,	\
95 					char *buf)			\
96 {									\
97 	struct spi_device *spi = to_spi_device(dev);			\
98 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
99 }									\
100 static struct device_attribute dev_attr_spi_device_##field = {		\
101 	.attr = { .name = file, .mode = 0444 },				\
102 	.show = spi_device_##field##_show,				\
103 }
104 
105 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
106 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
107 					    char *buf)			\
108 {									\
109 	unsigned long flags;						\
110 	ssize_t len;							\
111 	spin_lock_irqsave(&stat->lock, flags);				\
112 	len = sprintf(buf, format_string, stat->field);			\
113 	spin_unlock_irqrestore(&stat->lock, flags);			\
114 	return len;							\
115 }									\
116 SPI_STATISTICS_ATTRS(name, file)
117 
118 #define SPI_STATISTICS_SHOW(field, format_string)			\
119 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
120 				 field, format_string)
121 
122 SPI_STATISTICS_SHOW(messages, "%lu");
123 SPI_STATISTICS_SHOW(transfers, "%lu");
124 SPI_STATISTICS_SHOW(errors, "%lu");
125 SPI_STATISTICS_SHOW(timedout, "%lu");
126 
127 SPI_STATISTICS_SHOW(spi_sync, "%lu");
128 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
129 SPI_STATISTICS_SHOW(spi_async, "%lu");
130 
131 SPI_STATISTICS_SHOW(bytes, "%llu");
132 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
133 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
134 
135 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
136 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
137 				 "transfer_bytes_histo_" number,	\
138 				 transfer_bytes_histo[index],  "%lu")
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
156 
157 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
158 
159 static struct attribute *spi_dev_attrs[] = {
160 	&dev_attr_modalias.attr,
161 	NULL,
162 };
163 
164 static const struct attribute_group spi_dev_group = {
165 	.attrs  = spi_dev_attrs,
166 };
167 
168 static struct attribute *spi_device_statistics_attrs[] = {
169 	&dev_attr_spi_device_messages.attr,
170 	&dev_attr_spi_device_transfers.attr,
171 	&dev_attr_spi_device_errors.attr,
172 	&dev_attr_spi_device_timedout.attr,
173 	&dev_attr_spi_device_spi_sync.attr,
174 	&dev_attr_spi_device_spi_sync_immediate.attr,
175 	&dev_attr_spi_device_spi_async.attr,
176 	&dev_attr_spi_device_bytes.attr,
177 	&dev_attr_spi_device_bytes_rx.attr,
178 	&dev_attr_spi_device_bytes_tx.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
187 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
188 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
189 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
190 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
191 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
192 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
193 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
194 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
195 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
196 	&dev_attr_spi_device_transfers_split_maxsize.attr,
197 	NULL,
198 };
199 
200 static const struct attribute_group spi_device_statistics_group = {
201 	.name  = "statistics",
202 	.attrs  = spi_device_statistics_attrs,
203 };
204 
205 static const struct attribute_group *spi_dev_groups[] = {
206 	&spi_dev_group,
207 	&spi_device_statistics_group,
208 	NULL,
209 };
210 
211 static struct attribute *spi_controller_statistics_attrs[] = {
212 	&dev_attr_spi_controller_messages.attr,
213 	&dev_attr_spi_controller_transfers.attr,
214 	&dev_attr_spi_controller_errors.attr,
215 	&dev_attr_spi_controller_timedout.attr,
216 	&dev_attr_spi_controller_spi_sync.attr,
217 	&dev_attr_spi_controller_spi_sync_immediate.attr,
218 	&dev_attr_spi_controller_spi_async.attr,
219 	&dev_attr_spi_controller_bytes.attr,
220 	&dev_attr_spi_controller_bytes_rx.attr,
221 	&dev_attr_spi_controller_bytes_tx.attr,
222 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
223 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
224 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
225 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
226 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
227 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
228 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
229 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
230 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
231 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
232 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
233 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
234 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
235 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
236 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
237 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
238 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
239 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
240 	NULL,
241 };
242 
243 static const struct attribute_group spi_controller_statistics_group = {
244 	.name  = "statistics",
245 	.attrs  = spi_controller_statistics_attrs,
246 };
247 
248 static const struct attribute_group *spi_master_groups[] = {
249 	&spi_controller_statistics_group,
250 	NULL,
251 };
252 
253 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
254 				       struct spi_transfer *xfer,
255 				       struct spi_controller *ctlr)
256 {
257 	unsigned long flags;
258 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
259 
260 	if (l2len < 0)
261 		l2len = 0;
262 
263 	spin_lock_irqsave(&stats->lock, flags);
264 
265 	stats->transfers++;
266 	stats->transfer_bytes_histo[l2len]++;
267 
268 	stats->bytes += xfer->len;
269 	if ((xfer->tx_buf) &&
270 	    (xfer->tx_buf != ctlr->dummy_tx))
271 		stats->bytes_tx += xfer->len;
272 	if ((xfer->rx_buf) &&
273 	    (xfer->rx_buf != ctlr->dummy_rx))
274 		stats->bytes_rx += xfer->len;
275 
276 	spin_unlock_irqrestore(&stats->lock, flags);
277 }
278 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
279 
280 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281  * and the sysfs version makes coldplug work too.
282  */
283 
284 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
285 						const struct spi_device *sdev)
286 {
287 	while (id->name[0]) {
288 		if (!strcmp(sdev->modalias, id->name))
289 			return id;
290 		id++;
291 	}
292 	return NULL;
293 }
294 
295 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
296 {
297 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
298 
299 	return spi_match_id(sdrv->id_table, sdev);
300 }
301 EXPORT_SYMBOL_GPL(spi_get_device_id);
302 
303 static int spi_match_device(struct device *dev, struct device_driver *drv)
304 {
305 	const struct spi_device	*spi = to_spi_device(dev);
306 	const struct spi_driver	*sdrv = to_spi_driver(drv);
307 
308 	/* Attempt an OF style match */
309 	if (of_driver_match_device(dev, drv))
310 		return 1;
311 
312 	/* Then try ACPI */
313 	if (acpi_driver_match_device(dev, drv))
314 		return 1;
315 
316 	if (sdrv->id_table)
317 		return !!spi_match_id(sdrv->id_table, spi);
318 
319 	return strcmp(spi->modalias, drv->name) == 0;
320 }
321 
322 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
323 {
324 	const struct spi_device		*spi = to_spi_device(dev);
325 	int rc;
326 
327 	rc = acpi_device_uevent_modalias(dev, env);
328 	if (rc != -ENODEV)
329 		return rc;
330 
331 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
332 }
333 
334 struct bus_type spi_bus_type = {
335 	.name		= "spi",
336 	.dev_groups	= spi_dev_groups,
337 	.match		= spi_match_device,
338 	.uevent		= spi_uevent,
339 };
340 EXPORT_SYMBOL_GPL(spi_bus_type);
341 
342 
343 static int spi_drv_probe(struct device *dev)
344 {
345 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
346 	struct spi_device		*spi = to_spi_device(dev);
347 	int ret;
348 
349 	ret = of_clk_set_defaults(dev->of_node, false);
350 	if (ret)
351 		return ret;
352 
353 	if (dev->of_node) {
354 		spi->irq = of_irq_get(dev->of_node, 0);
355 		if (spi->irq == -EPROBE_DEFER)
356 			return -EPROBE_DEFER;
357 		if (spi->irq < 0)
358 			spi->irq = 0;
359 	}
360 
361 	ret = dev_pm_domain_attach(dev, true);
362 	if (ret)
363 		return ret;
364 
365 	ret = sdrv->probe(spi);
366 	if (ret)
367 		dev_pm_domain_detach(dev, true);
368 
369 	return ret;
370 }
371 
372 static int spi_drv_remove(struct device *dev)
373 {
374 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
375 	int ret;
376 
377 	ret = sdrv->remove(to_spi_device(dev));
378 	dev_pm_domain_detach(dev, true);
379 
380 	return ret;
381 }
382 
383 static void spi_drv_shutdown(struct device *dev)
384 {
385 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
386 
387 	sdrv->shutdown(to_spi_device(dev));
388 }
389 
390 /**
391  * __spi_register_driver - register a SPI driver
392  * @owner: owner module of the driver to register
393  * @sdrv: the driver to register
394  * Context: can sleep
395  *
396  * Return: zero on success, else a negative error code.
397  */
398 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
399 {
400 	sdrv->driver.owner = owner;
401 	sdrv->driver.bus = &spi_bus_type;
402 	if (sdrv->probe)
403 		sdrv->driver.probe = spi_drv_probe;
404 	if (sdrv->remove)
405 		sdrv->driver.remove = spi_drv_remove;
406 	if (sdrv->shutdown)
407 		sdrv->driver.shutdown = spi_drv_shutdown;
408 	return driver_register(&sdrv->driver);
409 }
410 EXPORT_SYMBOL_GPL(__spi_register_driver);
411 
412 /*-------------------------------------------------------------------------*/
413 
414 /* SPI devices should normally not be created by SPI device drivers; that
415  * would make them board-specific.  Similarly with SPI controller drivers.
416  * Device registration normally goes into like arch/.../mach.../board-YYY.c
417  * with other readonly (flashable) information about mainboard devices.
418  */
419 
420 struct boardinfo {
421 	struct list_head	list;
422 	struct spi_board_info	board_info;
423 };
424 
425 static LIST_HEAD(board_list);
426 static LIST_HEAD(spi_controller_list);
427 
428 /*
429  * Used to protect add/del opertion for board_info list and
430  * spi_controller list, and their matching process
431  * also used to protect object of type struct idr
432  */
433 static DEFINE_MUTEX(board_lock);
434 
435 /**
436  * spi_alloc_device - Allocate a new SPI device
437  * @ctlr: Controller to which device is connected
438  * Context: can sleep
439  *
440  * Allows a driver to allocate and initialize a spi_device without
441  * registering it immediately.  This allows a driver to directly
442  * fill the spi_device with device parameters before calling
443  * spi_add_device() on it.
444  *
445  * Caller is responsible to call spi_add_device() on the returned
446  * spi_device structure to add it to the SPI controller.  If the caller
447  * needs to discard the spi_device without adding it, then it should
448  * call spi_dev_put() on it.
449  *
450  * Return: a pointer to the new device, or NULL.
451  */
452 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
453 {
454 	struct spi_device	*spi;
455 
456 	if (!spi_controller_get(ctlr))
457 		return NULL;
458 
459 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
460 	if (!spi) {
461 		spi_controller_put(ctlr);
462 		return NULL;
463 	}
464 
465 	spi->master = spi->controller = ctlr;
466 	spi->dev.parent = &ctlr->dev;
467 	spi->dev.bus = &spi_bus_type;
468 	spi->dev.release = spidev_release;
469 	spi->cs_gpio = -ENOENT;
470 
471 	spin_lock_init(&spi->statistics.lock);
472 
473 	device_initialize(&spi->dev);
474 	return spi;
475 }
476 EXPORT_SYMBOL_GPL(spi_alloc_device);
477 
478 static void spi_dev_set_name(struct spi_device *spi)
479 {
480 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
481 
482 	if (adev) {
483 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
484 		return;
485 	}
486 
487 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
488 		     spi->chip_select);
489 }
490 
491 static int spi_dev_check(struct device *dev, void *data)
492 {
493 	struct spi_device *spi = to_spi_device(dev);
494 	struct spi_device *new_spi = data;
495 
496 	if (spi->controller == new_spi->controller &&
497 	    spi->chip_select == new_spi->chip_select)
498 		return -EBUSY;
499 	return 0;
500 }
501 
502 /**
503  * spi_add_device - Add spi_device allocated with spi_alloc_device
504  * @spi: spi_device to register
505  *
506  * Companion function to spi_alloc_device.  Devices allocated with
507  * spi_alloc_device can be added onto the spi bus with this function.
508  *
509  * Return: 0 on success; negative errno on failure
510  */
511 int spi_add_device(struct spi_device *spi)
512 {
513 	static DEFINE_MUTEX(spi_add_lock);
514 	struct spi_controller *ctlr = spi->controller;
515 	struct device *dev = ctlr->dev.parent;
516 	int status;
517 
518 	/* Chipselects are numbered 0..max; validate. */
519 	if (spi->chip_select >= ctlr->num_chipselect) {
520 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
521 			ctlr->num_chipselect);
522 		return -EINVAL;
523 	}
524 
525 	/* Set the bus ID string */
526 	spi_dev_set_name(spi);
527 
528 	/* We need to make sure there's no other device with this
529 	 * chipselect **BEFORE** we call setup(), else we'll trash
530 	 * its configuration.  Lock against concurrent add() calls.
531 	 */
532 	mutex_lock(&spi_add_lock);
533 
534 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
535 	if (status) {
536 		dev_err(dev, "chipselect %d already in use\n",
537 				spi->chip_select);
538 		goto done;
539 	}
540 
541 	if (ctlr->cs_gpios)
542 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
543 
544 	/* Drivers may modify this initial i/o setup, but will
545 	 * normally rely on the device being setup.  Devices
546 	 * using SPI_CS_HIGH can't coexist well otherwise...
547 	 */
548 	status = spi_setup(spi);
549 	if (status < 0) {
550 		dev_err(dev, "can't setup %s, status %d\n",
551 				dev_name(&spi->dev), status);
552 		goto done;
553 	}
554 
555 	/* Device may be bound to an active driver when this returns */
556 	status = device_add(&spi->dev);
557 	if (status < 0)
558 		dev_err(dev, "can't add %s, status %d\n",
559 				dev_name(&spi->dev), status);
560 	else
561 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
562 
563 done:
564 	mutex_unlock(&spi_add_lock);
565 	return status;
566 }
567 EXPORT_SYMBOL_GPL(spi_add_device);
568 
569 /**
570  * spi_new_device - instantiate one new SPI device
571  * @ctlr: Controller to which device is connected
572  * @chip: Describes the SPI device
573  * Context: can sleep
574  *
575  * On typical mainboards, this is purely internal; and it's not needed
576  * after board init creates the hard-wired devices.  Some development
577  * platforms may not be able to use spi_register_board_info though, and
578  * this is exported so that for example a USB or parport based adapter
579  * driver could add devices (which it would learn about out-of-band).
580  *
581  * Return: the new device, or NULL.
582  */
583 struct spi_device *spi_new_device(struct spi_controller *ctlr,
584 				  struct spi_board_info *chip)
585 {
586 	struct spi_device	*proxy;
587 	int			status;
588 
589 	/* NOTE:  caller did any chip->bus_num checks necessary.
590 	 *
591 	 * Also, unless we change the return value convention to use
592 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
593 	 * suggests syslogged diagnostics are best here (ugh).
594 	 */
595 
596 	proxy = spi_alloc_device(ctlr);
597 	if (!proxy)
598 		return NULL;
599 
600 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
601 
602 	proxy->chip_select = chip->chip_select;
603 	proxy->max_speed_hz = chip->max_speed_hz;
604 	proxy->mode = chip->mode;
605 	proxy->irq = chip->irq;
606 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
607 	proxy->dev.platform_data = (void *) chip->platform_data;
608 	proxy->controller_data = chip->controller_data;
609 	proxy->controller_state = NULL;
610 
611 	if (chip->properties) {
612 		status = device_add_properties(&proxy->dev, chip->properties);
613 		if (status) {
614 			dev_err(&ctlr->dev,
615 				"failed to add properties to '%s': %d\n",
616 				chip->modalias, status);
617 			goto err_dev_put;
618 		}
619 	}
620 
621 	status = spi_add_device(proxy);
622 	if (status < 0)
623 		goto err_remove_props;
624 
625 	return proxy;
626 
627 err_remove_props:
628 	if (chip->properties)
629 		device_remove_properties(&proxy->dev);
630 err_dev_put:
631 	spi_dev_put(proxy);
632 	return NULL;
633 }
634 EXPORT_SYMBOL_GPL(spi_new_device);
635 
636 /**
637  * spi_unregister_device - unregister a single SPI device
638  * @spi: spi_device to unregister
639  *
640  * Start making the passed SPI device vanish. Normally this would be handled
641  * by spi_unregister_controller().
642  */
643 void spi_unregister_device(struct spi_device *spi)
644 {
645 	if (!spi)
646 		return;
647 
648 	if (spi->dev.of_node) {
649 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
650 		of_node_put(spi->dev.of_node);
651 	}
652 	if (ACPI_COMPANION(&spi->dev))
653 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
654 	device_unregister(&spi->dev);
655 }
656 EXPORT_SYMBOL_GPL(spi_unregister_device);
657 
658 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
659 					      struct spi_board_info *bi)
660 {
661 	struct spi_device *dev;
662 
663 	if (ctlr->bus_num != bi->bus_num)
664 		return;
665 
666 	dev = spi_new_device(ctlr, bi);
667 	if (!dev)
668 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
669 			bi->modalias);
670 }
671 
672 /**
673  * spi_register_board_info - register SPI devices for a given board
674  * @info: array of chip descriptors
675  * @n: how many descriptors are provided
676  * Context: can sleep
677  *
678  * Board-specific early init code calls this (probably during arch_initcall)
679  * with segments of the SPI device table.  Any device nodes are created later,
680  * after the relevant parent SPI controller (bus_num) is defined.  We keep
681  * this table of devices forever, so that reloading a controller driver will
682  * not make Linux forget about these hard-wired devices.
683  *
684  * Other code can also call this, e.g. a particular add-on board might provide
685  * SPI devices through its expansion connector, so code initializing that board
686  * would naturally declare its SPI devices.
687  *
688  * The board info passed can safely be __initdata ... but be careful of
689  * any embedded pointers (platform_data, etc), they're copied as-is.
690  * Device properties are deep-copied though.
691  *
692  * Return: zero on success, else a negative error code.
693  */
694 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
695 {
696 	struct boardinfo *bi;
697 	int i;
698 
699 	if (!n)
700 		return 0;
701 
702 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
703 	if (!bi)
704 		return -ENOMEM;
705 
706 	for (i = 0; i < n; i++, bi++, info++) {
707 		struct spi_controller *ctlr;
708 
709 		memcpy(&bi->board_info, info, sizeof(*info));
710 		if (info->properties) {
711 			bi->board_info.properties =
712 					property_entries_dup(info->properties);
713 			if (IS_ERR(bi->board_info.properties))
714 				return PTR_ERR(bi->board_info.properties);
715 		}
716 
717 		mutex_lock(&board_lock);
718 		list_add_tail(&bi->list, &board_list);
719 		list_for_each_entry(ctlr, &spi_controller_list, list)
720 			spi_match_controller_to_boardinfo(ctlr,
721 							  &bi->board_info);
722 		mutex_unlock(&board_lock);
723 	}
724 
725 	return 0;
726 }
727 
728 /*-------------------------------------------------------------------------*/
729 
730 static void spi_set_cs(struct spi_device *spi, bool enable)
731 {
732 	if (spi->mode & SPI_CS_HIGH)
733 		enable = !enable;
734 
735 	if (gpio_is_valid(spi->cs_gpio)) {
736 		gpio_set_value(spi->cs_gpio, !enable);
737 		/* Some SPI masters need both GPIO CS & slave_select */
738 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
739 		    spi->controller->set_cs)
740 			spi->controller->set_cs(spi, !enable);
741 	} else if (spi->controller->set_cs) {
742 		spi->controller->set_cs(spi, !enable);
743 	}
744 }
745 
746 #ifdef CONFIG_HAS_DMA
747 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
748 		struct sg_table *sgt, void *buf, size_t len,
749 		enum dma_data_direction dir)
750 {
751 	const bool vmalloced_buf = is_vmalloc_addr(buf);
752 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
753 #ifdef CONFIG_HIGHMEM
754 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
755 				(unsigned long)buf < (PKMAP_BASE +
756 					(LAST_PKMAP * PAGE_SIZE)));
757 #else
758 	const bool kmap_buf = false;
759 #endif
760 	int desc_len;
761 	int sgs;
762 	struct page *vm_page;
763 	struct scatterlist *sg;
764 	void *sg_buf;
765 	size_t min;
766 	int i, ret;
767 
768 	if (vmalloced_buf || kmap_buf) {
769 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
770 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
771 	} else if (virt_addr_valid(buf)) {
772 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
773 		sgs = DIV_ROUND_UP(len, desc_len);
774 	} else {
775 		return -EINVAL;
776 	}
777 
778 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
779 	if (ret != 0)
780 		return ret;
781 
782 	sg = &sgt->sgl[0];
783 	for (i = 0; i < sgs; i++) {
784 
785 		if (vmalloced_buf || kmap_buf) {
786 			/*
787 			 * Next scatterlist entry size is the minimum between
788 			 * the desc_len and the remaining buffer length that
789 			 * fits in a page.
790 			 */
791 			min = min_t(size_t, desc_len,
792 				    min_t(size_t, len,
793 					  PAGE_SIZE - offset_in_page(buf)));
794 			if (vmalloced_buf)
795 				vm_page = vmalloc_to_page(buf);
796 			else
797 				vm_page = kmap_to_page(buf);
798 			if (!vm_page) {
799 				sg_free_table(sgt);
800 				return -ENOMEM;
801 			}
802 			sg_set_page(sg, vm_page,
803 				    min, offset_in_page(buf));
804 		} else {
805 			min = min_t(size_t, len, desc_len);
806 			sg_buf = buf;
807 			sg_set_buf(sg, sg_buf, min);
808 		}
809 
810 		buf += min;
811 		len -= min;
812 		sg = sg_next(sg);
813 	}
814 
815 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
816 	if (!ret)
817 		ret = -ENOMEM;
818 	if (ret < 0) {
819 		sg_free_table(sgt);
820 		return ret;
821 	}
822 
823 	sgt->nents = ret;
824 
825 	return 0;
826 }
827 
828 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
829 		   struct sg_table *sgt, enum dma_data_direction dir)
830 {
831 	if (sgt->orig_nents) {
832 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
833 		sg_free_table(sgt);
834 	}
835 }
836 
837 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
838 {
839 	struct device *tx_dev, *rx_dev;
840 	struct spi_transfer *xfer;
841 	int ret;
842 
843 	if (!ctlr->can_dma)
844 		return 0;
845 
846 	if (ctlr->dma_tx)
847 		tx_dev = ctlr->dma_tx->device->dev;
848 	else
849 		tx_dev = ctlr->dev.parent;
850 
851 	if (ctlr->dma_rx)
852 		rx_dev = ctlr->dma_rx->device->dev;
853 	else
854 		rx_dev = ctlr->dev.parent;
855 
856 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
857 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
858 			continue;
859 
860 		if (xfer->tx_buf != NULL) {
861 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
862 					  (void *)xfer->tx_buf, xfer->len,
863 					  DMA_TO_DEVICE);
864 			if (ret != 0)
865 				return ret;
866 		}
867 
868 		if (xfer->rx_buf != NULL) {
869 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
870 					  xfer->rx_buf, xfer->len,
871 					  DMA_FROM_DEVICE);
872 			if (ret != 0) {
873 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
874 					      DMA_TO_DEVICE);
875 				return ret;
876 			}
877 		}
878 	}
879 
880 	ctlr->cur_msg_mapped = true;
881 
882 	return 0;
883 }
884 
885 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
886 {
887 	struct spi_transfer *xfer;
888 	struct device *tx_dev, *rx_dev;
889 
890 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
891 		return 0;
892 
893 	if (ctlr->dma_tx)
894 		tx_dev = ctlr->dma_tx->device->dev;
895 	else
896 		tx_dev = ctlr->dev.parent;
897 
898 	if (ctlr->dma_rx)
899 		rx_dev = ctlr->dma_rx->device->dev;
900 	else
901 		rx_dev = ctlr->dev.parent;
902 
903 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
904 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
905 			continue;
906 
907 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
908 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
909 	}
910 
911 	return 0;
912 }
913 #else /* !CONFIG_HAS_DMA */
914 static inline int __spi_map_msg(struct spi_controller *ctlr,
915 				struct spi_message *msg)
916 {
917 	return 0;
918 }
919 
920 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
921 				  struct spi_message *msg)
922 {
923 	return 0;
924 }
925 #endif /* !CONFIG_HAS_DMA */
926 
927 static inline int spi_unmap_msg(struct spi_controller *ctlr,
928 				struct spi_message *msg)
929 {
930 	struct spi_transfer *xfer;
931 
932 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 		/*
934 		 * Restore the original value of tx_buf or rx_buf if they are
935 		 * NULL.
936 		 */
937 		if (xfer->tx_buf == ctlr->dummy_tx)
938 			xfer->tx_buf = NULL;
939 		if (xfer->rx_buf == ctlr->dummy_rx)
940 			xfer->rx_buf = NULL;
941 	}
942 
943 	return __spi_unmap_msg(ctlr, msg);
944 }
945 
946 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
947 {
948 	struct spi_transfer *xfer;
949 	void *tmp;
950 	unsigned int max_tx, max_rx;
951 
952 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
953 		max_tx = 0;
954 		max_rx = 0;
955 
956 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
958 			    !xfer->tx_buf)
959 				max_tx = max(xfer->len, max_tx);
960 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
961 			    !xfer->rx_buf)
962 				max_rx = max(xfer->len, max_rx);
963 		}
964 
965 		if (max_tx) {
966 			tmp = krealloc(ctlr->dummy_tx, max_tx,
967 				       GFP_KERNEL | GFP_DMA);
968 			if (!tmp)
969 				return -ENOMEM;
970 			ctlr->dummy_tx = tmp;
971 			memset(tmp, 0, max_tx);
972 		}
973 
974 		if (max_rx) {
975 			tmp = krealloc(ctlr->dummy_rx, max_rx,
976 				       GFP_KERNEL | GFP_DMA);
977 			if (!tmp)
978 				return -ENOMEM;
979 			ctlr->dummy_rx = tmp;
980 		}
981 
982 		if (max_tx || max_rx) {
983 			list_for_each_entry(xfer, &msg->transfers,
984 					    transfer_list) {
985 				if (!xfer->tx_buf)
986 					xfer->tx_buf = ctlr->dummy_tx;
987 				if (!xfer->rx_buf)
988 					xfer->rx_buf = ctlr->dummy_rx;
989 			}
990 		}
991 	}
992 
993 	return __spi_map_msg(ctlr, msg);
994 }
995 
996 /*
997  * spi_transfer_one_message - Default implementation of transfer_one_message()
998  *
999  * This is a standard implementation of transfer_one_message() for
1000  * drivers which implement a transfer_one() operation.  It provides
1001  * standard handling of delays and chip select management.
1002  */
1003 static int spi_transfer_one_message(struct spi_controller *ctlr,
1004 				    struct spi_message *msg)
1005 {
1006 	struct spi_transfer *xfer;
1007 	bool keep_cs = false;
1008 	int ret = 0;
1009 	unsigned long long ms = 1;
1010 	struct spi_statistics *statm = &ctlr->statistics;
1011 	struct spi_statistics *stats = &msg->spi->statistics;
1012 
1013 	spi_set_cs(msg->spi, true);
1014 
1015 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1016 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1017 
1018 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1019 		trace_spi_transfer_start(msg, xfer);
1020 
1021 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1022 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1023 
1024 		if (xfer->tx_buf || xfer->rx_buf) {
1025 			reinit_completion(&ctlr->xfer_completion);
1026 
1027 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1028 			if (ret < 0) {
1029 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1030 							       errors);
1031 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1032 							       errors);
1033 				dev_err(&msg->spi->dev,
1034 					"SPI transfer failed: %d\n", ret);
1035 				goto out;
1036 			}
1037 
1038 			if (ret > 0) {
1039 				ret = 0;
1040 				ms = 8LL * 1000LL * xfer->len;
1041 				do_div(ms, xfer->speed_hz);
1042 				ms += ms + 200; /* some tolerance */
1043 
1044 				if (ms > UINT_MAX)
1045 					ms = UINT_MAX;
1046 
1047 				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1048 								 msecs_to_jiffies(ms));
1049 			}
1050 
1051 			if (ms == 0) {
1052 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1053 							       timedout);
1054 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1055 							       timedout);
1056 				dev_err(&msg->spi->dev,
1057 					"SPI transfer timed out\n");
1058 				msg->status = -ETIMEDOUT;
1059 			}
1060 		} else {
1061 			if (xfer->len)
1062 				dev_err(&msg->spi->dev,
1063 					"Bufferless transfer has length %u\n",
1064 					xfer->len);
1065 		}
1066 
1067 		trace_spi_transfer_stop(msg, xfer);
1068 
1069 		if (msg->status != -EINPROGRESS)
1070 			goto out;
1071 
1072 		if (xfer->delay_usecs) {
1073 			u16 us = xfer->delay_usecs;
1074 
1075 			if (us <= 10)
1076 				udelay(us);
1077 			else
1078 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1079 		}
1080 
1081 		if (xfer->cs_change) {
1082 			if (list_is_last(&xfer->transfer_list,
1083 					 &msg->transfers)) {
1084 				keep_cs = true;
1085 			} else {
1086 				spi_set_cs(msg->spi, false);
1087 				udelay(10);
1088 				spi_set_cs(msg->spi, true);
1089 			}
1090 		}
1091 
1092 		msg->actual_length += xfer->len;
1093 	}
1094 
1095 out:
1096 	if (ret != 0 || !keep_cs)
1097 		spi_set_cs(msg->spi, false);
1098 
1099 	if (msg->status == -EINPROGRESS)
1100 		msg->status = ret;
1101 
1102 	if (msg->status && ctlr->handle_err)
1103 		ctlr->handle_err(ctlr, msg);
1104 
1105 	spi_res_release(ctlr, msg);
1106 
1107 	spi_finalize_current_message(ctlr);
1108 
1109 	return ret;
1110 }
1111 
1112 /**
1113  * spi_finalize_current_transfer - report completion of a transfer
1114  * @ctlr: the controller reporting completion
1115  *
1116  * Called by SPI drivers using the core transfer_one_message()
1117  * implementation to notify it that the current interrupt driven
1118  * transfer has finished and the next one may be scheduled.
1119  */
1120 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1121 {
1122 	complete(&ctlr->xfer_completion);
1123 }
1124 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1125 
1126 /**
1127  * __spi_pump_messages - function which processes spi message queue
1128  * @ctlr: controller to process queue for
1129  * @in_kthread: true if we are in the context of the message pump thread
1130  *
1131  * This function checks if there is any spi message in the queue that
1132  * needs processing and if so call out to the driver to initialize hardware
1133  * and transfer each message.
1134  *
1135  * Note that it is called both from the kthread itself and also from
1136  * inside spi_sync(); the queue extraction handling at the top of the
1137  * function should deal with this safely.
1138  */
1139 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1140 {
1141 	unsigned long flags;
1142 	bool was_busy = false;
1143 	int ret;
1144 
1145 	/* Lock queue */
1146 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1147 
1148 	/* Make sure we are not already running a message */
1149 	if (ctlr->cur_msg) {
1150 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1151 		return;
1152 	}
1153 
1154 	/* If another context is idling the device then defer */
1155 	if (ctlr->idling) {
1156 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1157 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1158 		return;
1159 	}
1160 
1161 	/* Check if the queue is idle */
1162 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1163 		if (!ctlr->busy) {
1164 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1165 			return;
1166 		}
1167 
1168 		/* Only do teardown in the thread */
1169 		if (!in_kthread) {
1170 			kthread_queue_work(&ctlr->kworker,
1171 					   &ctlr->pump_messages);
1172 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1173 			return;
1174 		}
1175 
1176 		ctlr->busy = false;
1177 		ctlr->idling = true;
1178 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1179 
1180 		kfree(ctlr->dummy_rx);
1181 		ctlr->dummy_rx = NULL;
1182 		kfree(ctlr->dummy_tx);
1183 		ctlr->dummy_tx = NULL;
1184 		if (ctlr->unprepare_transfer_hardware &&
1185 		    ctlr->unprepare_transfer_hardware(ctlr))
1186 			dev_err(&ctlr->dev,
1187 				"failed to unprepare transfer hardware\n");
1188 		if (ctlr->auto_runtime_pm) {
1189 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1190 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1191 		}
1192 		trace_spi_controller_idle(ctlr);
1193 
1194 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1195 		ctlr->idling = false;
1196 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1197 		return;
1198 	}
1199 
1200 	/* Extract head of queue */
1201 	ctlr->cur_msg =
1202 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1203 
1204 	list_del_init(&ctlr->cur_msg->queue);
1205 	if (ctlr->busy)
1206 		was_busy = true;
1207 	else
1208 		ctlr->busy = true;
1209 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1210 
1211 	mutex_lock(&ctlr->io_mutex);
1212 
1213 	if (!was_busy && ctlr->auto_runtime_pm) {
1214 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1215 		if (ret < 0) {
1216 			pm_runtime_put_noidle(ctlr->dev.parent);
1217 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1218 				ret);
1219 			mutex_unlock(&ctlr->io_mutex);
1220 			return;
1221 		}
1222 	}
1223 
1224 	if (!was_busy)
1225 		trace_spi_controller_busy(ctlr);
1226 
1227 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1228 		ret = ctlr->prepare_transfer_hardware(ctlr);
1229 		if (ret) {
1230 			dev_err(&ctlr->dev,
1231 				"failed to prepare transfer hardware\n");
1232 
1233 			if (ctlr->auto_runtime_pm)
1234 				pm_runtime_put(ctlr->dev.parent);
1235 			mutex_unlock(&ctlr->io_mutex);
1236 			return;
1237 		}
1238 	}
1239 
1240 	trace_spi_message_start(ctlr->cur_msg);
1241 
1242 	if (ctlr->prepare_message) {
1243 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1244 		if (ret) {
1245 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1246 				ret);
1247 			ctlr->cur_msg->status = ret;
1248 			spi_finalize_current_message(ctlr);
1249 			goto out;
1250 		}
1251 		ctlr->cur_msg_prepared = true;
1252 	}
1253 
1254 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1255 	if (ret) {
1256 		ctlr->cur_msg->status = ret;
1257 		spi_finalize_current_message(ctlr);
1258 		goto out;
1259 	}
1260 
1261 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1262 	if (ret) {
1263 		dev_err(&ctlr->dev,
1264 			"failed to transfer one message from queue\n");
1265 		goto out;
1266 	}
1267 
1268 out:
1269 	mutex_unlock(&ctlr->io_mutex);
1270 
1271 	/* Prod the scheduler in case transfer_one() was busy waiting */
1272 	if (!ret)
1273 		cond_resched();
1274 }
1275 
1276 /**
1277  * spi_pump_messages - kthread work function which processes spi message queue
1278  * @work: pointer to kthread work struct contained in the controller struct
1279  */
1280 static void spi_pump_messages(struct kthread_work *work)
1281 {
1282 	struct spi_controller *ctlr =
1283 		container_of(work, struct spi_controller, pump_messages);
1284 
1285 	__spi_pump_messages(ctlr, true);
1286 }
1287 
1288 static int spi_init_queue(struct spi_controller *ctlr)
1289 {
1290 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1291 
1292 	ctlr->running = false;
1293 	ctlr->busy = false;
1294 
1295 	kthread_init_worker(&ctlr->kworker);
1296 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1297 					 "%s", dev_name(&ctlr->dev));
1298 	if (IS_ERR(ctlr->kworker_task)) {
1299 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1300 		return PTR_ERR(ctlr->kworker_task);
1301 	}
1302 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1303 
1304 	/*
1305 	 * Controller config will indicate if this controller should run the
1306 	 * message pump with high (realtime) priority to reduce the transfer
1307 	 * latency on the bus by minimising the delay between a transfer
1308 	 * request and the scheduling of the message pump thread. Without this
1309 	 * setting the message pump thread will remain at default priority.
1310 	 */
1311 	if (ctlr->rt) {
1312 		dev_info(&ctlr->dev,
1313 			"will run message pump with realtime priority\n");
1314 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * spi_get_next_queued_message() - called by driver to check for queued
1322  * messages
1323  * @ctlr: the controller to check for queued messages
1324  *
1325  * If there are more messages in the queue, the next message is returned from
1326  * this call.
1327  *
1328  * Return: the next message in the queue, else NULL if the queue is empty.
1329  */
1330 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1331 {
1332 	struct spi_message *next;
1333 	unsigned long flags;
1334 
1335 	/* get a pointer to the next message, if any */
1336 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1337 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1338 					queue);
1339 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340 
1341 	return next;
1342 }
1343 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1344 
1345 /**
1346  * spi_finalize_current_message() - the current message is complete
1347  * @ctlr: the controller to return the message to
1348  *
1349  * Called by the driver to notify the core that the message in the front of the
1350  * queue is complete and can be removed from the queue.
1351  */
1352 void spi_finalize_current_message(struct spi_controller *ctlr)
1353 {
1354 	struct spi_message *mesg;
1355 	unsigned long flags;
1356 	int ret;
1357 
1358 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1359 	mesg = ctlr->cur_msg;
1360 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1361 
1362 	spi_unmap_msg(ctlr, mesg);
1363 
1364 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1365 		ret = ctlr->unprepare_message(ctlr, mesg);
1366 		if (ret) {
1367 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1368 				ret);
1369 		}
1370 	}
1371 
1372 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1373 	ctlr->cur_msg = NULL;
1374 	ctlr->cur_msg_prepared = false;
1375 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1376 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1377 
1378 	trace_spi_message_done(mesg);
1379 
1380 	mesg->state = NULL;
1381 	if (mesg->complete)
1382 		mesg->complete(mesg->context);
1383 }
1384 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1385 
1386 static int spi_start_queue(struct spi_controller *ctlr)
1387 {
1388 	unsigned long flags;
1389 
1390 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1391 
1392 	if (ctlr->running || ctlr->busy) {
1393 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1394 		return -EBUSY;
1395 	}
1396 
1397 	ctlr->running = true;
1398 	ctlr->cur_msg = NULL;
1399 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400 
1401 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1402 
1403 	return 0;
1404 }
1405 
1406 static int spi_stop_queue(struct spi_controller *ctlr)
1407 {
1408 	unsigned long flags;
1409 	unsigned limit = 500;
1410 	int ret = 0;
1411 
1412 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1413 
1414 	/*
1415 	 * This is a bit lame, but is optimized for the common execution path.
1416 	 * A wait_queue on the ctlr->busy could be used, but then the common
1417 	 * execution path (pump_messages) would be required to call wake_up or
1418 	 * friends on every SPI message. Do this instead.
1419 	 */
1420 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1421 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1422 		usleep_range(10000, 11000);
1423 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1424 	}
1425 
1426 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1427 		ret = -EBUSY;
1428 	else
1429 		ctlr->running = false;
1430 
1431 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1432 
1433 	if (ret) {
1434 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1435 		return ret;
1436 	}
1437 	return ret;
1438 }
1439 
1440 static int spi_destroy_queue(struct spi_controller *ctlr)
1441 {
1442 	int ret;
1443 
1444 	ret = spi_stop_queue(ctlr);
1445 
1446 	/*
1447 	 * kthread_flush_worker will block until all work is done.
1448 	 * If the reason that stop_queue timed out is that the work will never
1449 	 * finish, then it does no good to call flush/stop thread, so
1450 	 * return anyway.
1451 	 */
1452 	if (ret) {
1453 		dev_err(&ctlr->dev, "problem destroying queue\n");
1454 		return ret;
1455 	}
1456 
1457 	kthread_flush_worker(&ctlr->kworker);
1458 	kthread_stop(ctlr->kworker_task);
1459 
1460 	return 0;
1461 }
1462 
1463 static int __spi_queued_transfer(struct spi_device *spi,
1464 				 struct spi_message *msg,
1465 				 bool need_pump)
1466 {
1467 	struct spi_controller *ctlr = spi->controller;
1468 	unsigned long flags;
1469 
1470 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1471 
1472 	if (!ctlr->running) {
1473 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1474 		return -ESHUTDOWN;
1475 	}
1476 	msg->actual_length = 0;
1477 	msg->status = -EINPROGRESS;
1478 
1479 	list_add_tail(&msg->queue, &ctlr->queue);
1480 	if (!ctlr->busy && need_pump)
1481 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1482 
1483 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1484 	return 0;
1485 }
1486 
1487 /**
1488  * spi_queued_transfer - transfer function for queued transfers
1489  * @spi: spi device which is requesting transfer
1490  * @msg: spi message which is to handled is queued to driver queue
1491  *
1492  * Return: zero on success, else a negative error code.
1493  */
1494 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1495 {
1496 	return __spi_queued_transfer(spi, msg, true);
1497 }
1498 
1499 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1500 {
1501 	int ret;
1502 
1503 	ctlr->transfer = spi_queued_transfer;
1504 	if (!ctlr->transfer_one_message)
1505 		ctlr->transfer_one_message = spi_transfer_one_message;
1506 
1507 	/* Initialize and start queue */
1508 	ret = spi_init_queue(ctlr);
1509 	if (ret) {
1510 		dev_err(&ctlr->dev, "problem initializing queue\n");
1511 		goto err_init_queue;
1512 	}
1513 	ctlr->queued = true;
1514 	ret = spi_start_queue(ctlr);
1515 	if (ret) {
1516 		dev_err(&ctlr->dev, "problem starting queue\n");
1517 		goto err_start_queue;
1518 	}
1519 
1520 	return 0;
1521 
1522 err_start_queue:
1523 	spi_destroy_queue(ctlr);
1524 err_init_queue:
1525 	return ret;
1526 }
1527 
1528 /**
1529  * spi_flush_queue - Send all pending messages in the queue from the callers'
1530  *		     context
1531  * @ctlr: controller to process queue for
1532  *
1533  * This should be used when one wants to ensure all pending messages have been
1534  * sent before doing something. Is used by the spi-mem code to make sure SPI
1535  * memory operations do not preempt regular SPI transfers that have been queued
1536  * before the spi-mem operation.
1537  */
1538 void spi_flush_queue(struct spi_controller *ctlr)
1539 {
1540 	if (ctlr->transfer == spi_queued_transfer)
1541 		__spi_pump_messages(ctlr, false);
1542 }
1543 
1544 /*-------------------------------------------------------------------------*/
1545 
1546 #if defined(CONFIG_OF)
1547 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1548 			   struct device_node *nc)
1549 {
1550 	u32 value;
1551 	int rc;
1552 
1553 	/* Mode (clock phase/polarity/etc.) */
1554 	if (of_property_read_bool(nc, "spi-cpha"))
1555 		spi->mode |= SPI_CPHA;
1556 	if (of_property_read_bool(nc, "spi-cpol"))
1557 		spi->mode |= SPI_CPOL;
1558 	if (of_property_read_bool(nc, "spi-cs-high"))
1559 		spi->mode |= SPI_CS_HIGH;
1560 	if (of_property_read_bool(nc, "spi-3wire"))
1561 		spi->mode |= SPI_3WIRE;
1562 	if (of_property_read_bool(nc, "spi-lsb-first"))
1563 		spi->mode |= SPI_LSB_FIRST;
1564 
1565 	/* Device DUAL/QUAD mode */
1566 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1567 		switch (value) {
1568 		case 1:
1569 			break;
1570 		case 2:
1571 			spi->mode |= SPI_TX_DUAL;
1572 			break;
1573 		case 4:
1574 			spi->mode |= SPI_TX_QUAD;
1575 			break;
1576 		default:
1577 			dev_warn(&ctlr->dev,
1578 				"spi-tx-bus-width %d not supported\n",
1579 				value);
1580 			break;
1581 		}
1582 	}
1583 
1584 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1585 		switch (value) {
1586 		case 1:
1587 			break;
1588 		case 2:
1589 			spi->mode |= SPI_RX_DUAL;
1590 			break;
1591 		case 4:
1592 			spi->mode |= SPI_RX_QUAD;
1593 			break;
1594 		default:
1595 			dev_warn(&ctlr->dev,
1596 				"spi-rx-bus-width %d not supported\n",
1597 				value);
1598 			break;
1599 		}
1600 	}
1601 
1602 	if (spi_controller_is_slave(ctlr)) {
1603 		if (strcmp(nc->name, "slave")) {
1604 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1605 				nc);
1606 			return -EINVAL;
1607 		}
1608 		return 0;
1609 	}
1610 
1611 	/* Device address */
1612 	rc = of_property_read_u32(nc, "reg", &value);
1613 	if (rc) {
1614 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1615 			nc, rc);
1616 		return rc;
1617 	}
1618 	spi->chip_select = value;
1619 
1620 	/* Device speed */
1621 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1622 	if (rc) {
1623 		dev_err(&ctlr->dev,
1624 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1625 		return rc;
1626 	}
1627 	spi->max_speed_hz = value;
1628 
1629 	return 0;
1630 }
1631 
1632 static struct spi_device *
1633 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1634 {
1635 	struct spi_device *spi;
1636 	int rc;
1637 
1638 	/* Alloc an spi_device */
1639 	spi = spi_alloc_device(ctlr);
1640 	if (!spi) {
1641 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1642 		rc = -ENOMEM;
1643 		goto err_out;
1644 	}
1645 
1646 	/* Select device driver */
1647 	rc = of_modalias_node(nc, spi->modalias,
1648 				sizeof(spi->modalias));
1649 	if (rc < 0) {
1650 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1651 		goto err_out;
1652 	}
1653 
1654 	rc = of_spi_parse_dt(ctlr, spi, nc);
1655 	if (rc)
1656 		goto err_out;
1657 
1658 	/* Store a pointer to the node in the device structure */
1659 	of_node_get(nc);
1660 	spi->dev.of_node = nc;
1661 
1662 	/* Register the new device */
1663 	rc = spi_add_device(spi);
1664 	if (rc) {
1665 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1666 		goto err_of_node_put;
1667 	}
1668 
1669 	return spi;
1670 
1671 err_of_node_put:
1672 	of_node_put(nc);
1673 err_out:
1674 	spi_dev_put(spi);
1675 	return ERR_PTR(rc);
1676 }
1677 
1678 /**
1679  * of_register_spi_devices() - Register child devices onto the SPI bus
1680  * @ctlr:	Pointer to spi_controller device
1681  *
1682  * Registers an spi_device for each child node of controller node which
1683  * represents a valid SPI slave.
1684  */
1685 static void of_register_spi_devices(struct spi_controller *ctlr)
1686 {
1687 	struct spi_device *spi;
1688 	struct device_node *nc;
1689 
1690 	if (!ctlr->dev.of_node)
1691 		return;
1692 
1693 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1694 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1695 			continue;
1696 		spi = of_register_spi_device(ctlr, nc);
1697 		if (IS_ERR(spi)) {
1698 			dev_warn(&ctlr->dev,
1699 				 "Failed to create SPI device for %pOF\n", nc);
1700 			of_node_clear_flag(nc, OF_POPULATED);
1701 		}
1702 	}
1703 }
1704 #else
1705 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1706 #endif
1707 
1708 #ifdef CONFIG_ACPI
1709 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1710 {
1711 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1712 	const union acpi_object *obj;
1713 
1714 	if (!x86_apple_machine)
1715 		return;
1716 
1717 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1718 	    && obj->buffer.length >= 4)
1719 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1720 
1721 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1722 	    && obj->buffer.length == 8)
1723 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1724 
1725 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1726 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1727 		spi->mode |= SPI_LSB_FIRST;
1728 
1729 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1730 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1731 		spi->mode |= SPI_CPOL;
1732 
1733 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1734 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1735 		spi->mode |= SPI_CPHA;
1736 }
1737 
1738 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1739 {
1740 	struct spi_device *spi = data;
1741 	struct spi_controller *ctlr = spi->controller;
1742 
1743 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1744 		struct acpi_resource_spi_serialbus *sb;
1745 
1746 		sb = &ares->data.spi_serial_bus;
1747 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1748 			/*
1749 			 * ACPI DeviceSelection numbering is handled by the
1750 			 * host controller driver in Windows and can vary
1751 			 * from driver to driver. In Linux we always expect
1752 			 * 0 .. max - 1 so we need to ask the driver to
1753 			 * translate between the two schemes.
1754 			 */
1755 			if (ctlr->fw_translate_cs) {
1756 				int cs = ctlr->fw_translate_cs(ctlr,
1757 						sb->device_selection);
1758 				if (cs < 0)
1759 					return cs;
1760 				spi->chip_select = cs;
1761 			} else {
1762 				spi->chip_select = sb->device_selection;
1763 			}
1764 
1765 			spi->max_speed_hz = sb->connection_speed;
1766 
1767 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1768 				spi->mode |= SPI_CPHA;
1769 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1770 				spi->mode |= SPI_CPOL;
1771 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1772 				spi->mode |= SPI_CS_HIGH;
1773 		}
1774 	} else if (spi->irq < 0) {
1775 		struct resource r;
1776 
1777 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1778 			spi->irq = r.start;
1779 	}
1780 
1781 	/* Always tell the ACPI core to skip this resource */
1782 	return 1;
1783 }
1784 
1785 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1786 					    struct acpi_device *adev)
1787 {
1788 	struct list_head resource_list;
1789 	struct spi_device *spi;
1790 	int ret;
1791 
1792 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1793 	    acpi_device_enumerated(adev))
1794 		return AE_OK;
1795 
1796 	spi = spi_alloc_device(ctlr);
1797 	if (!spi) {
1798 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1799 			dev_name(&adev->dev));
1800 		return AE_NO_MEMORY;
1801 	}
1802 
1803 	ACPI_COMPANION_SET(&spi->dev, adev);
1804 	spi->irq = -1;
1805 
1806 	INIT_LIST_HEAD(&resource_list);
1807 	ret = acpi_dev_get_resources(adev, &resource_list,
1808 				     acpi_spi_add_resource, spi);
1809 	acpi_dev_free_resource_list(&resource_list);
1810 
1811 	acpi_spi_parse_apple_properties(spi);
1812 
1813 	if (ret < 0 || !spi->max_speed_hz) {
1814 		spi_dev_put(spi);
1815 		return AE_OK;
1816 	}
1817 
1818 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1819 			  sizeof(spi->modalias));
1820 
1821 	if (spi->irq < 0)
1822 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1823 
1824 	acpi_device_set_enumerated(adev);
1825 
1826 	adev->power.flags.ignore_parent = true;
1827 	if (spi_add_device(spi)) {
1828 		adev->power.flags.ignore_parent = false;
1829 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1830 			dev_name(&adev->dev));
1831 		spi_dev_put(spi);
1832 	}
1833 
1834 	return AE_OK;
1835 }
1836 
1837 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1838 				       void *data, void **return_value)
1839 {
1840 	struct spi_controller *ctlr = data;
1841 	struct acpi_device *adev;
1842 
1843 	if (acpi_bus_get_device(handle, &adev))
1844 		return AE_OK;
1845 
1846 	return acpi_register_spi_device(ctlr, adev);
1847 }
1848 
1849 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1850 {
1851 	acpi_status status;
1852 	acpi_handle handle;
1853 
1854 	handle = ACPI_HANDLE(ctlr->dev.parent);
1855 	if (!handle)
1856 		return;
1857 
1858 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1859 				     acpi_spi_add_device, NULL, ctlr, NULL);
1860 	if (ACPI_FAILURE(status))
1861 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1862 }
1863 #else
1864 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1865 #endif /* CONFIG_ACPI */
1866 
1867 static void spi_controller_release(struct device *dev)
1868 {
1869 	struct spi_controller *ctlr;
1870 
1871 	ctlr = container_of(dev, struct spi_controller, dev);
1872 	kfree(ctlr);
1873 }
1874 
1875 static struct class spi_master_class = {
1876 	.name		= "spi_master",
1877 	.owner		= THIS_MODULE,
1878 	.dev_release	= spi_controller_release,
1879 	.dev_groups	= spi_master_groups,
1880 };
1881 
1882 #ifdef CONFIG_SPI_SLAVE
1883 /**
1884  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1885  *		     controller
1886  * @spi: device used for the current transfer
1887  */
1888 int spi_slave_abort(struct spi_device *spi)
1889 {
1890 	struct spi_controller *ctlr = spi->controller;
1891 
1892 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1893 		return ctlr->slave_abort(ctlr);
1894 
1895 	return -ENOTSUPP;
1896 }
1897 EXPORT_SYMBOL_GPL(spi_slave_abort);
1898 
1899 static int match_true(struct device *dev, void *data)
1900 {
1901 	return 1;
1902 }
1903 
1904 static ssize_t spi_slave_show(struct device *dev,
1905 			      struct device_attribute *attr, char *buf)
1906 {
1907 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1908 						   dev);
1909 	struct device *child;
1910 
1911 	child = device_find_child(&ctlr->dev, NULL, match_true);
1912 	return sprintf(buf, "%s\n",
1913 		       child ? to_spi_device(child)->modalias : NULL);
1914 }
1915 
1916 static ssize_t spi_slave_store(struct device *dev,
1917 			       struct device_attribute *attr, const char *buf,
1918 			       size_t count)
1919 {
1920 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1921 						   dev);
1922 	struct spi_device *spi;
1923 	struct device *child;
1924 	char name[32];
1925 	int rc;
1926 
1927 	rc = sscanf(buf, "%31s", name);
1928 	if (rc != 1 || !name[0])
1929 		return -EINVAL;
1930 
1931 	child = device_find_child(&ctlr->dev, NULL, match_true);
1932 	if (child) {
1933 		/* Remove registered slave */
1934 		device_unregister(child);
1935 		put_device(child);
1936 	}
1937 
1938 	if (strcmp(name, "(null)")) {
1939 		/* Register new slave */
1940 		spi = spi_alloc_device(ctlr);
1941 		if (!spi)
1942 			return -ENOMEM;
1943 
1944 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1945 
1946 		rc = spi_add_device(spi);
1947 		if (rc) {
1948 			spi_dev_put(spi);
1949 			return rc;
1950 		}
1951 	}
1952 
1953 	return count;
1954 }
1955 
1956 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1957 
1958 static struct attribute *spi_slave_attrs[] = {
1959 	&dev_attr_slave.attr,
1960 	NULL,
1961 };
1962 
1963 static const struct attribute_group spi_slave_group = {
1964 	.attrs = spi_slave_attrs,
1965 };
1966 
1967 static const struct attribute_group *spi_slave_groups[] = {
1968 	&spi_controller_statistics_group,
1969 	&spi_slave_group,
1970 	NULL,
1971 };
1972 
1973 static struct class spi_slave_class = {
1974 	.name		= "spi_slave",
1975 	.owner		= THIS_MODULE,
1976 	.dev_release	= spi_controller_release,
1977 	.dev_groups	= spi_slave_groups,
1978 };
1979 #else
1980 extern struct class spi_slave_class;	/* dummy */
1981 #endif
1982 
1983 /**
1984  * __spi_alloc_controller - allocate an SPI master or slave controller
1985  * @dev: the controller, possibly using the platform_bus
1986  * @size: how much zeroed driver-private data to allocate; the pointer to this
1987  *	memory is in the driver_data field of the returned device,
1988  *	accessible with spi_controller_get_devdata().
1989  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1990  *	slave (true) controller
1991  * Context: can sleep
1992  *
1993  * This call is used only by SPI controller drivers, which are the
1994  * only ones directly touching chip registers.  It's how they allocate
1995  * an spi_controller structure, prior to calling spi_register_controller().
1996  *
1997  * This must be called from context that can sleep.
1998  *
1999  * The caller is responsible for assigning the bus number and initializing the
2000  * controller's methods before calling spi_register_controller(); and (after
2001  * errors adding the device) calling spi_controller_put() to prevent a memory
2002  * leak.
2003  *
2004  * Return: the SPI controller structure on success, else NULL.
2005  */
2006 struct spi_controller *__spi_alloc_controller(struct device *dev,
2007 					      unsigned int size, bool slave)
2008 {
2009 	struct spi_controller	*ctlr;
2010 
2011 	if (!dev)
2012 		return NULL;
2013 
2014 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2015 	if (!ctlr)
2016 		return NULL;
2017 
2018 	device_initialize(&ctlr->dev);
2019 	ctlr->bus_num = -1;
2020 	ctlr->num_chipselect = 1;
2021 	ctlr->slave = slave;
2022 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2023 		ctlr->dev.class = &spi_slave_class;
2024 	else
2025 		ctlr->dev.class = &spi_master_class;
2026 	ctlr->dev.parent = dev;
2027 	pm_suspend_ignore_children(&ctlr->dev, true);
2028 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2029 
2030 	return ctlr;
2031 }
2032 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2033 
2034 #ifdef CONFIG_OF
2035 static int of_spi_register_master(struct spi_controller *ctlr)
2036 {
2037 	int nb, i, *cs;
2038 	struct device_node *np = ctlr->dev.of_node;
2039 
2040 	if (!np)
2041 		return 0;
2042 
2043 	nb = of_gpio_named_count(np, "cs-gpios");
2044 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2045 
2046 	/* Return error only for an incorrectly formed cs-gpios property */
2047 	if (nb == 0 || nb == -ENOENT)
2048 		return 0;
2049 	else if (nb < 0)
2050 		return nb;
2051 
2052 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2053 			  GFP_KERNEL);
2054 	ctlr->cs_gpios = cs;
2055 
2056 	if (!ctlr->cs_gpios)
2057 		return -ENOMEM;
2058 
2059 	for (i = 0; i < ctlr->num_chipselect; i++)
2060 		cs[i] = -ENOENT;
2061 
2062 	for (i = 0; i < nb; i++)
2063 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2064 
2065 	return 0;
2066 }
2067 #else
2068 static int of_spi_register_master(struct spi_controller *ctlr)
2069 {
2070 	return 0;
2071 }
2072 #endif
2073 
2074 static int spi_controller_check_ops(struct spi_controller *ctlr)
2075 {
2076 	/*
2077 	 * The controller may implement only the high-level SPI-memory like
2078 	 * operations if it does not support regular SPI transfers, and this is
2079 	 * valid use case.
2080 	 * If ->mem_ops is NULL, we request that at least one of the
2081 	 * ->transfer_xxx() method be implemented.
2082 	 */
2083 	if (ctlr->mem_ops) {
2084 		if (!ctlr->mem_ops->exec_op)
2085 			return -EINVAL;
2086 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2087 		   !ctlr->transfer_one_message) {
2088 		return -EINVAL;
2089 	}
2090 
2091 	return 0;
2092 }
2093 
2094 /**
2095  * spi_register_controller - register SPI master or slave controller
2096  * @ctlr: initialized master, originally from spi_alloc_master() or
2097  *	spi_alloc_slave()
2098  * Context: can sleep
2099  *
2100  * SPI controllers connect to their drivers using some non-SPI bus,
2101  * such as the platform bus.  The final stage of probe() in that code
2102  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2103  *
2104  * SPI controllers use board specific (often SOC specific) bus numbers,
2105  * and board-specific addressing for SPI devices combines those numbers
2106  * with chip select numbers.  Since SPI does not directly support dynamic
2107  * device identification, boards need configuration tables telling which
2108  * chip is at which address.
2109  *
2110  * This must be called from context that can sleep.  It returns zero on
2111  * success, else a negative error code (dropping the controller's refcount).
2112  * After a successful return, the caller is responsible for calling
2113  * spi_unregister_controller().
2114  *
2115  * Return: zero on success, else a negative error code.
2116  */
2117 int spi_register_controller(struct spi_controller *ctlr)
2118 {
2119 	struct device		*dev = ctlr->dev.parent;
2120 	struct boardinfo	*bi;
2121 	int			status = -ENODEV;
2122 	int			id, first_dynamic;
2123 
2124 	if (!dev)
2125 		return -ENODEV;
2126 
2127 	/*
2128 	 * Make sure all necessary hooks are implemented before registering
2129 	 * the SPI controller.
2130 	 */
2131 	status = spi_controller_check_ops(ctlr);
2132 	if (status)
2133 		return status;
2134 
2135 	if (!spi_controller_is_slave(ctlr)) {
2136 		status = of_spi_register_master(ctlr);
2137 		if (status)
2138 			return status;
2139 	}
2140 
2141 	/* even if it's just one always-selected device, there must
2142 	 * be at least one chipselect
2143 	 */
2144 	if (ctlr->num_chipselect == 0)
2145 		return -EINVAL;
2146 	if (ctlr->bus_num >= 0) {
2147 		/* devices with a fixed bus num must check-in with the num */
2148 		mutex_lock(&board_lock);
2149 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2150 			ctlr->bus_num + 1, GFP_KERNEL);
2151 		mutex_unlock(&board_lock);
2152 		if (WARN(id < 0, "couldn't get idr"))
2153 			return id == -ENOSPC ? -EBUSY : id;
2154 		ctlr->bus_num = id;
2155 	} else if (ctlr->dev.of_node) {
2156 		/* allocate dynamic bus number using Linux idr */
2157 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2158 		if (id >= 0) {
2159 			ctlr->bus_num = id;
2160 			mutex_lock(&board_lock);
2161 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2162 				       ctlr->bus_num + 1, GFP_KERNEL);
2163 			mutex_unlock(&board_lock);
2164 			if (WARN(id < 0, "couldn't get idr"))
2165 				return id == -ENOSPC ? -EBUSY : id;
2166 		}
2167 	}
2168 	if (ctlr->bus_num < 0) {
2169 		first_dynamic = of_alias_get_highest_id("spi");
2170 		if (first_dynamic < 0)
2171 			first_dynamic = 0;
2172 		else
2173 			first_dynamic++;
2174 
2175 		mutex_lock(&board_lock);
2176 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2177 			       0, GFP_KERNEL);
2178 		mutex_unlock(&board_lock);
2179 		if (WARN(id < 0, "couldn't get idr"))
2180 			return id;
2181 		ctlr->bus_num = id;
2182 	}
2183 	INIT_LIST_HEAD(&ctlr->queue);
2184 	spin_lock_init(&ctlr->queue_lock);
2185 	spin_lock_init(&ctlr->bus_lock_spinlock);
2186 	mutex_init(&ctlr->bus_lock_mutex);
2187 	mutex_init(&ctlr->io_mutex);
2188 	ctlr->bus_lock_flag = 0;
2189 	init_completion(&ctlr->xfer_completion);
2190 	if (!ctlr->max_dma_len)
2191 		ctlr->max_dma_len = INT_MAX;
2192 
2193 	/* register the device, then userspace will see it.
2194 	 * registration fails if the bus ID is in use.
2195 	 */
2196 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2197 	status = device_add(&ctlr->dev);
2198 	if (status < 0) {
2199 		/* free bus id */
2200 		mutex_lock(&board_lock);
2201 		idr_remove(&spi_master_idr, ctlr->bus_num);
2202 		mutex_unlock(&board_lock);
2203 		goto done;
2204 	}
2205 	dev_dbg(dev, "registered %s %s\n",
2206 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2207 			dev_name(&ctlr->dev));
2208 
2209 	/*
2210 	 * If we're using a queued driver, start the queue. Note that we don't
2211 	 * need the queueing logic if the driver is only supporting high-level
2212 	 * memory operations.
2213 	 */
2214 	if (ctlr->transfer) {
2215 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2216 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2217 		status = spi_controller_initialize_queue(ctlr);
2218 		if (status) {
2219 			device_del(&ctlr->dev);
2220 			/* free bus id */
2221 			mutex_lock(&board_lock);
2222 			idr_remove(&spi_master_idr, ctlr->bus_num);
2223 			mutex_unlock(&board_lock);
2224 			goto done;
2225 		}
2226 	}
2227 	/* add statistics */
2228 	spin_lock_init(&ctlr->statistics.lock);
2229 
2230 	mutex_lock(&board_lock);
2231 	list_add_tail(&ctlr->list, &spi_controller_list);
2232 	list_for_each_entry(bi, &board_list, list)
2233 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2234 	mutex_unlock(&board_lock);
2235 
2236 	/* Register devices from the device tree and ACPI */
2237 	of_register_spi_devices(ctlr);
2238 	acpi_register_spi_devices(ctlr);
2239 done:
2240 	return status;
2241 }
2242 EXPORT_SYMBOL_GPL(spi_register_controller);
2243 
2244 static void devm_spi_unregister(struct device *dev, void *res)
2245 {
2246 	spi_unregister_controller(*(struct spi_controller **)res);
2247 }
2248 
2249 /**
2250  * devm_spi_register_controller - register managed SPI master or slave
2251  *	controller
2252  * @dev:    device managing SPI controller
2253  * @ctlr: initialized controller, originally from spi_alloc_master() or
2254  *	spi_alloc_slave()
2255  * Context: can sleep
2256  *
2257  * Register a SPI device as with spi_register_controller() which will
2258  * automatically be unregistered and freed.
2259  *
2260  * Return: zero on success, else a negative error code.
2261  */
2262 int devm_spi_register_controller(struct device *dev,
2263 				 struct spi_controller *ctlr)
2264 {
2265 	struct spi_controller **ptr;
2266 	int ret;
2267 
2268 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2269 	if (!ptr)
2270 		return -ENOMEM;
2271 
2272 	ret = spi_register_controller(ctlr);
2273 	if (!ret) {
2274 		*ptr = ctlr;
2275 		devres_add(dev, ptr);
2276 	} else {
2277 		devres_free(ptr);
2278 	}
2279 
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2283 
2284 static int __unregister(struct device *dev, void *null)
2285 {
2286 	spi_unregister_device(to_spi_device(dev));
2287 	return 0;
2288 }
2289 
2290 /**
2291  * spi_unregister_controller - unregister SPI master or slave controller
2292  * @ctlr: the controller being unregistered
2293  * Context: can sleep
2294  *
2295  * This call is used only by SPI controller drivers, which are the
2296  * only ones directly touching chip registers.
2297  *
2298  * This must be called from context that can sleep.
2299  *
2300  * Note that this function also drops a reference to the controller.
2301  */
2302 void spi_unregister_controller(struct spi_controller *ctlr)
2303 {
2304 	struct spi_controller *found;
2305 	int id = ctlr->bus_num;
2306 	int dummy;
2307 
2308 	/* First make sure that this controller was ever added */
2309 	mutex_lock(&board_lock);
2310 	found = idr_find(&spi_master_idr, id);
2311 	mutex_unlock(&board_lock);
2312 	if (ctlr->queued) {
2313 		if (spi_destroy_queue(ctlr))
2314 			dev_err(&ctlr->dev, "queue remove failed\n");
2315 	}
2316 	mutex_lock(&board_lock);
2317 	list_del(&ctlr->list);
2318 	mutex_unlock(&board_lock);
2319 
2320 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2321 	device_unregister(&ctlr->dev);
2322 	/* free bus id */
2323 	mutex_lock(&board_lock);
2324 	if (found == ctlr)
2325 		idr_remove(&spi_master_idr, id);
2326 	mutex_unlock(&board_lock);
2327 }
2328 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2329 
2330 int spi_controller_suspend(struct spi_controller *ctlr)
2331 {
2332 	int ret;
2333 
2334 	/* Basically no-ops for non-queued controllers */
2335 	if (!ctlr->queued)
2336 		return 0;
2337 
2338 	ret = spi_stop_queue(ctlr);
2339 	if (ret)
2340 		dev_err(&ctlr->dev, "queue stop failed\n");
2341 
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2345 
2346 int spi_controller_resume(struct spi_controller *ctlr)
2347 {
2348 	int ret;
2349 
2350 	if (!ctlr->queued)
2351 		return 0;
2352 
2353 	ret = spi_start_queue(ctlr);
2354 	if (ret)
2355 		dev_err(&ctlr->dev, "queue restart failed\n");
2356 
2357 	return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(spi_controller_resume);
2360 
2361 static int __spi_controller_match(struct device *dev, const void *data)
2362 {
2363 	struct spi_controller *ctlr;
2364 	const u16 *bus_num = data;
2365 
2366 	ctlr = container_of(dev, struct spi_controller, dev);
2367 	return ctlr->bus_num == *bus_num;
2368 }
2369 
2370 /**
2371  * spi_busnum_to_master - look up master associated with bus_num
2372  * @bus_num: the master's bus number
2373  * Context: can sleep
2374  *
2375  * This call may be used with devices that are registered after
2376  * arch init time.  It returns a refcounted pointer to the relevant
2377  * spi_controller (which the caller must release), or NULL if there is
2378  * no such master registered.
2379  *
2380  * Return: the SPI master structure on success, else NULL.
2381  */
2382 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2383 {
2384 	struct device		*dev;
2385 	struct spi_controller	*ctlr = NULL;
2386 
2387 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2388 				__spi_controller_match);
2389 	if (dev)
2390 		ctlr = container_of(dev, struct spi_controller, dev);
2391 	/* reference got in class_find_device */
2392 	return ctlr;
2393 }
2394 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2395 
2396 /*-------------------------------------------------------------------------*/
2397 
2398 /* Core methods for SPI resource management */
2399 
2400 /**
2401  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2402  *                 during the processing of a spi_message while using
2403  *                 spi_transfer_one
2404  * @spi:     the spi device for which we allocate memory
2405  * @release: the release code to execute for this resource
2406  * @size:    size to alloc and return
2407  * @gfp:     GFP allocation flags
2408  *
2409  * Return: the pointer to the allocated data
2410  *
2411  * This may get enhanced in the future to allocate from a memory pool
2412  * of the @spi_device or @spi_controller to avoid repeated allocations.
2413  */
2414 void *spi_res_alloc(struct spi_device *spi,
2415 		    spi_res_release_t release,
2416 		    size_t size, gfp_t gfp)
2417 {
2418 	struct spi_res *sres;
2419 
2420 	sres = kzalloc(sizeof(*sres) + size, gfp);
2421 	if (!sres)
2422 		return NULL;
2423 
2424 	INIT_LIST_HEAD(&sres->entry);
2425 	sres->release = release;
2426 
2427 	return sres->data;
2428 }
2429 EXPORT_SYMBOL_GPL(spi_res_alloc);
2430 
2431 /**
2432  * spi_res_free - free an spi resource
2433  * @res: pointer to the custom data of a resource
2434  *
2435  */
2436 void spi_res_free(void *res)
2437 {
2438 	struct spi_res *sres = container_of(res, struct spi_res, data);
2439 
2440 	if (!res)
2441 		return;
2442 
2443 	WARN_ON(!list_empty(&sres->entry));
2444 	kfree(sres);
2445 }
2446 EXPORT_SYMBOL_GPL(spi_res_free);
2447 
2448 /**
2449  * spi_res_add - add a spi_res to the spi_message
2450  * @message: the spi message
2451  * @res:     the spi_resource
2452  */
2453 void spi_res_add(struct spi_message *message, void *res)
2454 {
2455 	struct spi_res *sres = container_of(res, struct spi_res, data);
2456 
2457 	WARN_ON(!list_empty(&sres->entry));
2458 	list_add_tail(&sres->entry, &message->resources);
2459 }
2460 EXPORT_SYMBOL_GPL(spi_res_add);
2461 
2462 /**
2463  * spi_res_release - release all spi resources for this message
2464  * @ctlr:  the @spi_controller
2465  * @message: the @spi_message
2466  */
2467 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2468 {
2469 	struct spi_res *res;
2470 
2471 	while (!list_empty(&message->resources)) {
2472 		res = list_last_entry(&message->resources,
2473 				      struct spi_res, entry);
2474 
2475 		if (res->release)
2476 			res->release(ctlr, message, res->data);
2477 
2478 		list_del(&res->entry);
2479 
2480 		kfree(res);
2481 	}
2482 }
2483 EXPORT_SYMBOL_GPL(spi_res_release);
2484 
2485 /*-------------------------------------------------------------------------*/
2486 
2487 /* Core methods for spi_message alterations */
2488 
2489 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2490 					    struct spi_message *msg,
2491 					    void *res)
2492 {
2493 	struct spi_replaced_transfers *rxfer = res;
2494 	size_t i;
2495 
2496 	/* call extra callback if requested */
2497 	if (rxfer->release)
2498 		rxfer->release(ctlr, msg, res);
2499 
2500 	/* insert replaced transfers back into the message */
2501 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2502 
2503 	/* remove the formerly inserted entries */
2504 	for (i = 0; i < rxfer->inserted; i++)
2505 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2506 }
2507 
2508 /**
2509  * spi_replace_transfers - replace transfers with several transfers
2510  *                         and register change with spi_message.resources
2511  * @msg:           the spi_message we work upon
2512  * @xfer_first:    the first spi_transfer we want to replace
2513  * @remove:        number of transfers to remove
2514  * @insert:        the number of transfers we want to insert instead
2515  * @release:       extra release code necessary in some circumstances
2516  * @extradatasize: extra data to allocate (with alignment guarantees
2517  *                 of struct @spi_transfer)
2518  * @gfp:           gfp flags
2519  *
2520  * Returns: pointer to @spi_replaced_transfers,
2521  *          PTR_ERR(...) in case of errors.
2522  */
2523 struct spi_replaced_transfers *spi_replace_transfers(
2524 	struct spi_message *msg,
2525 	struct spi_transfer *xfer_first,
2526 	size_t remove,
2527 	size_t insert,
2528 	spi_replaced_release_t release,
2529 	size_t extradatasize,
2530 	gfp_t gfp)
2531 {
2532 	struct spi_replaced_transfers *rxfer;
2533 	struct spi_transfer *xfer;
2534 	size_t i;
2535 
2536 	/* allocate the structure using spi_res */
2537 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2538 			      insert * sizeof(struct spi_transfer)
2539 			      + sizeof(struct spi_replaced_transfers)
2540 			      + extradatasize,
2541 			      gfp);
2542 	if (!rxfer)
2543 		return ERR_PTR(-ENOMEM);
2544 
2545 	/* the release code to invoke before running the generic release */
2546 	rxfer->release = release;
2547 
2548 	/* assign extradata */
2549 	if (extradatasize)
2550 		rxfer->extradata =
2551 			&rxfer->inserted_transfers[insert];
2552 
2553 	/* init the replaced_transfers list */
2554 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2555 
2556 	/* assign the list_entry after which we should reinsert
2557 	 * the @replaced_transfers - it may be spi_message.messages!
2558 	 */
2559 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2560 
2561 	/* remove the requested number of transfers */
2562 	for (i = 0; i < remove; i++) {
2563 		/* if the entry after replaced_after it is msg->transfers
2564 		 * then we have been requested to remove more transfers
2565 		 * than are in the list
2566 		 */
2567 		if (rxfer->replaced_after->next == &msg->transfers) {
2568 			dev_err(&msg->spi->dev,
2569 				"requested to remove more spi_transfers than are available\n");
2570 			/* insert replaced transfers back into the message */
2571 			list_splice(&rxfer->replaced_transfers,
2572 				    rxfer->replaced_after);
2573 
2574 			/* free the spi_replace_transfer structure */
2575 			spi_res_free(rxfer);
2576 
2577 			/* and return with an error */
2578 			return ERR_PTR(-EINVAL);
2579 		}
2580 
2581 		/* remove the entry after replaced_after from list of
2582 		 * transfers and add it to list of replaced_transfers
2583 		 */
2584 		list_move_tail(rxfer->replaced_after->next,
2585 			       &rxfer->replaced_transfers);
2586 	}
2587 
2588 	/* create copy of the given xfer with identical settings
2589 	 * based on the first transfer to get removed
2590 	 */
2591 	for (i = 0; i < insert; i++) {
2592 		/* we need to run in reverse order */
2593 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2594 
2595 		/* copy all spi_transfer data */
2596 		memcpy(xfer, xfer_first, sizeof(*xfer));
2597 
2598 		/* add to list */
2599 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2600 
2601 		/* clear cs_change and delay_usecs for all but the last */
2602 		if (i) {
2603 			xfer->cs_change = false;
2604 			xfer->delay_usecs = 0;
2605 		}
2606 	}
2607 
2608 	/* set up inserted */
2609 	rxfer->inserted = insert;
2610 
2611 	/* and register it with spi_res/spi_message */
2612 	spi_res_add(msg, rxfer);
2613 
2614 	return rxfer;
2615 }
2616 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2617 
2618 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2619 					struct spi_message *msg,
2620 					struct spi_transfer **xferp,
2621 					size_t maxsize,
2622 					gfp_t gfp)
2623 {
2624 	struct spi_transfer *xfer = *xferp, *xfers;
2625 	struct spi_replaced_transfers *srt;
2626 	size_t offset;
2627 	size_t count, i;
2628 
2629 	/* warn once about this fact that we are splitting a transfer */
2630 	dev_warn_once(&msg->spi->dev,
2631 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2632 		      xfer->len, maxsize);
2633 
2634 	/* calculate how many we have to replace */
2635 	count = DIV_ROUND_UP(xfer->len, maxsize);
2636 
2637 	/* create replacement */
2638 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2639 	if (IS_ERR(srt))
2640 		return PTR_ERR(srt);
2641 	xfers = srt->inserted_transfers;
2642 
2643 	/* now handle each of those newly inserted spi_transfers
2644 	 * note that the replacements spi_transfers all are preset
2645 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2646 	 * are all identical (as well as most others)
2647 	 * so we just have to fix up len and the pointers.
2648 	 *
2649 	 * this also includes support for the depreciated
2650 	 * spi_message.is_dma_mapped interface
2651 	 */
2652 
2653 	/* the first transfer just needs the length modified, so we
2654 	 * run it outside the loop
2655 	 */
2656 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2657 
2658 	/* all the others need rx_buf/tx_buf also set */
2659 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2660 		/* update rx_buf, tx_buf and dma */
2661 		if (xfers[i].rx_buf)
2662 			xfers[i].rx_buf += offset;
2663 		if (xfers[i].rx_dma)
2664 			xfers[i].rx_dma += offset;
2665 		if (xfers[i].tx_buf)
2666 			xfers[i].tx_buf += offset;
2667 		if (xfers[i].tx_dma)
2668 			xfers[i].tx_dma += offset;
2669 
2670 		/* update length */
2671 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2672 	}
2673 
2674 	/* we set up xferp to the last entry we have inserted,
2675 	 * so that we skip those already split transfers
2676 	 */
2677 	*xferp = &xfers[count - 1];
2678 
2679 	/* increment statistics counters */
2680 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2681 				       transfers_split_maxsize);
2682 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2683 				       transfers_split_maxsize);
2684 
2685 	return 0;
2686 }
2687 
2688 /**
2689  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2690  *                              when an individual transfer exceeds a
2691  *                              certain size
2692  * @ctlr:    the @spi_controller for this transfer
2693  * @msg:   the @spi_message to transform
2694  * @maxsize:  the maximum when to apply this
2695  * @gfp: GFP allocation flags
2696  *
2697  * Return: status of transformation
2698  */
2699 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2700 				struct spi_message *msg,
2701 				size_t maxsize,
2702 				gfp_t gfp)
2703 {
2704 	struct spi_transfer *xfer;
2705 	int ret;
2706 
2707 	/* iterate over the transfer_list,
2708 	 * but note that xfer is advanced to the last transfer inserted
2709 	 * to avoid checking sizes again unnecessarily (also xfer does
2710 	 * potentiall belong to a different list by the time the
2711 	 * replacement has happened
2712 	 */
2713 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2714 		if (xfer->len > maxsize) {
2715 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2716 							   maxsize, gfp);
2717 			if (ret)
2718 				return ret;
2719 		}
2720 	}
2721 
2722 	return 0;
2723 }
2724 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2725 
2726 /*-------------------------------------------------------------------------*/
2727 
2728 /* Core methods for SPI controller protocol drivers.  Some of the
2729  * other core methods are currently defined as inline functions.
2730  */
2731 
2732 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2733 					u8 bits_per_word)
2734 {
2735 	if (ctlr->bits_per_word_mask) {
2736 		/* Only 32 bits fit in the mask */
2737 		if (bits_per_word > 32)
2738 			return -EINVAL;
2739 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2740 			return -EINVAL;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /**
2747  * spi_setup - setup SPI mode and clock rate
2748  * @spi: the device whose settings are being modified
2749  * Context: can sleep, and no requests are queued to the device
2750  *
2751  * SPI protocol drivers may need to update the transfer mode if the
2752  * device doesn't work with its default.  They may likewise need
2753  * to update clock rates or word sizes from initial values.  This function
2754  * changes those settings, and must be called from a context that can sleep.
2755  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2756  * effect the next time the device is selected and data is transferred to
2757  * or from it.  When this function returns, the spi device is deselected.
2758  *
2759  * Note that this call will fail if the protocol driver specifies an option
2760  * that the underlying controller or its driver does not support.  For
2761  * example, not all hardware supports wire transfers using nine bit words,
2762  * LSB-first wire encoding, or active-high chipselects.
2763  *
2764  * Return: zero on success, else a negative error code.
2765  */
2766 int spi_setup(struct spi_device *spi)
2767 {
2768 	unsigned	bad_bits, ugly_bits;
2769 	int		status;
2770 
2771 	/* check mode to prevent that DUAL and QUAD set at the same time
2772 	 */
2773 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2774 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2775 		dev_err(&spi->dev,
2776 		"setup: can not select dual and quad at the same time\n");
2777 		return -EINVAL;
2778 	}
2779 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2780 	 */
2781 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2782 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2783 		return -EINVAL;
2784 	/* help drivers fail *cleanly* when they need options
2785 	 * that aren't supported with their current controller
2786 	 */
2787 	bad_bits = spi->mode & ~spi->controller->mode_bits;
2788 	ugly_bits = bad_bits &
2789 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2790 	if (ugly_bits) {
2791 		dev_warn(&spi->dev,
2792 			 "setup: ignoring unsupported mode bits %x\n",
2793 			 ugly_bits);
2794 		spi->mode &= ~ugly_bits;
2795 		bad_bits &= ~ugly_bits;
2796 	}
2797 	if (bad_bits) {
2798 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2799 			bad_bits);
2800 		return -EINVAL;
2801 	}
2802 
2803 	if (!spi->bits_per_word)
2804 		spi->bits_per_word = 8;
2805 
2806 	status = __spi_validate_bits_per_word(spi->controller,
2807 					      spi->bits_per_word);
2808 	if (status)
2809 		return status;
2810 
2811 	if (!spi->max_speed_hz)
2812 		spi->max_speed_hz = spi->controller->max_speed_hz;
2813 
2814 	if (spi->controller->setup)
2815 		status = spi->controller->setup(spi);
2816 
2817 	spi_set_cs(spi, false);
2818 
2819 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2820 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2821 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2822 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2823 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2824 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2825 			spi->bits_per_word, spi->max_speed_hz,
2826 			status);
2827 
2828 	return status;
2829 }
2830 EXPORT_SYMBOL_GPL(spi_setup);
2831 
2832 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2833 {
2834 	struct spi_controller *ctlr = spi->controller;
2835 	struct spi_transfer *xfer;
2836 	int w_size;
2837 
2838 	if (list_empty(&message->transfers))
2839 		return -EINVAL;
2840 
2841 	/* Half-duplex links include original MicroWire, and ones with
2842 	 * only one data pin like SPI_3WIRE (switches direction) or where
2843 	 * either MOSI or MISO is missing.  They can also be caused by
2844 	 * software limitations.
2845 	 */
2846 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2847 	    (spi->mode & SPI_3WIRE)) {
2848 		unsigned flags = ctlr->flags;
2849 
2850 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2851 			if (xfer->rx_buf && xfer->tx_buf)
2852 				return -EINVAL;
2853 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2854 				return -EINVAL;
2855 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2856 				return -EINVAL;
2857 		}
2858 	}
2859 
2860 	/**
2861 	 * Set transfer bits_per_word and max speed as spi device default if
2862 	 * it is not set for this transfer.
2863 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2864 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2865 	 */
2866 	message->frame_length = 0;
2867 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2868 		message->frame_length += xfer->len;
2869 		if (!xfer->bits_per_word)
2870 			xfer->bits_per_word = spi->bits_per_word;
2871 
2872 		if (!xfer->speed_hz)
2873 			xfer->speed_hz = spi->max_speed_hz;
2874 		if (!xfer->speed_hz)
2875 			xfer->speed_hz = ctlr->max_speed_hz;
2876 
2877 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2878 			xfer->speed_hz = ctlr->max_speed_hz;
2879 
2880 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2881 			return -EINVAL;
2882 
2883 		/*
2884 		 * SPI transfer length should be multiple of SPI word size
2885 		 * where SPI word size should be power-of-two multiple
2886 		 */
2887 		if (xfer->bits_per_word <= 8)
2888 			w_size = 1;
2889 		else if (xfer->bits_per_word <= 16)
2890 			w_size = 2;
2891 		else
2892 			w_size = 4;
2893 
2894 		/* No partial transfers accepted */
2895 		if (xfer->len % w_size)
2896 			return -EINVAL;
2897 
2898 		if (xfer->speed_hz && ctlr->min_speed_hz &&
2899 		    xfer->speed_hz < ctlr->min_speed_hz)
2900 			return -EINVAL;
2901 
2902 		if (xfer->tx_buf && !xfer->tx_nbits)
2903 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2904 		if (xfer->rx_buf && !xfer->rx_nbits)
2905 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2906 		/* check transfer tx/rx_nbits:
2907 		 * 1. check the value matches one of single, dual and quad
2908 		 * 2. check tx/rx_nbits match the mode in spi_device
2909 		 */
2910 		if (xfer->tx_buf) {
2911 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2912 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2913 				xfer->tx_nbits != SPI_NBITS_QUAD)
2914 				return -EINVAL;
2915 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2916 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2917 				return -EINVAL;
2918 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2919 				!(spi->mode & SPI_TX_QUAD))
2920 				return -EINVAL;
2921 		}
2922 		/* check transfer rx_nbits */
2923 		if (xfer->rx_buf) {
2924 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2925 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2926 				xfer->rx_nbits != SPI_NBITS_QUAD)
2927 				return -EINVAL;
2928 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2929 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2930 				return -EINVAL;
2931 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2932 				!(spi->mode & SPI_RX_QUAD))
2933 				return -EINVAL;
2934 		}
2935 	}
2936 
2937 	message->status = -EINPROGRESS;
2938 
2939 	return 0;
2940 }
2941 
2942 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2943 {
2944 	struct spi_controller *ctlr = spi->controller;
2945 
2946 	/*
2947 	 * Some controllers do not support doing regular SPI transfers. Return
2948 	 * ENOTSUPP when this is the case.
2949 	 */
2950 	if (!ctlr->transfer)
2951 		return -ENOTSUPP;
2952 
2953 	message->spi = spi;
2954 
2955 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2956 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2957 
2958 	trace_spi_message_submit(message);
2959 
2960 	return ctlr->transfer(spi, message);
2961 }
2962 
2963 /**
2964  * spi_async - asynchronous SPI transfer
2965  * @spi: device with which data will be exchanged
2966  * @message: describes the data transfers, including completion callback
2967  * Context: any (irqs may be blocked, etc)
2968  *
2969  * This call may be used in_irq and other contexts which can't sleep,
2970  * as well as from task contexts which can sleep.
2971  *
2972  * The completion callback is invoked in a context which can't sleep.
2973  * Before that invocation, the value of message->status is undefined.
2974  * When the callback is issued, message->status holds either zero (to
2975  * indicate complete success) or a negative error code.  After that
2976  * callback returns, the driver which issued the transfer request may
2977  * deallocate the associated memory; it's no longer in use by any SPI
2978  * core or controller driver code.
2979  *
2980  * Note that although all messages to a spi_device are handled in
2981  * FIFO order, messages may go to different devices in other orders.
2982  * Some device might be higher priority, or have various "hard" access
2983  * time requirements, for example.
2984  *
2985  * On detection of any fault during the transfer, processing of
2986  * the entire message is aborted, and the device is deselected.
2987  * Until returning from the associated message completion callback,
2988  * no other spi_message queued to that device will be processed.
2989  * (This rule applies equally to all the synchronous transfer calls,
2990  * which are wrappers around this core asynchronous primitive.)
2991  *
2992  * Return: zero on success, else a negative error code.
2993  */
2994 int spi_async(struct spi_device *spi, struct spi_message *message)
2995 {
2996 	struct spi_controller *ctlr = spi->controller;
2997 	int ret;
2998 	unsigned long flags;
2999 
3000 	ret = __spi_validate(spi, message);
3001 	if (ret != 0)
3002 		return ret;
3003 
3004 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3005 
3006 	if (ctlr->bus_lock_flag)
3007 		ret = -EBUSY;
3008 	else
3009 		ret = __spi_async(spi, message);
3010 
3011 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3012 
3013 	return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(spi_async);
3016 
3017 /**
3018  * spi_async_locked - version of spi_async with exclusive bus usage
3019  * @spi: device with which data will be exchanged
3020  * @message: describes the data transfers, including completion callback
3021  * Context: any (irqs may be blocked, etc)
3022  *
3023  * This call may be used in_irq and other contexts which can't sleep,
3024  * as well as from task contexts which can sleep.
3025  *
3026  * The completion callback is invoked in a context which can't sleep.
3027  * Before that invocation, the value of message->status is undefined.
3028  * When the callback is issued, message->status holds either zero (to
3029  * indicate complete success) or a negative error code.  After that
3030  * callback returns, the driver which issued the transfer request may
3031  * deallocate the associated memory; it's no longer in use by any SPI
3032  * core or controller driver code.
3033  *
3034  * Note that although all messages to a spi_device are handled in
3035  * FIFO order, messages may go to different devices in other orders.
3036  * Some device might be higher priority, or have various "hard" access
3037  * time requirements, for example.
3038  *
3039  * On detection of any fault during the transfer, processing of
3040  * the entire message is aborted, and the device is deselected.
3041  * Until returning from the associated message completion callback,
3042  * no other spi_message queued to that device will be processed.
3043  * (This rule applies equally to all the synchronous transfer calls,
3044  * which are wrappers around this core asynchronous primitive.)
3045  *
3046  * Return: zero on success, else a negative error code.
3047  */
3048 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3049 {
3050 	struct spi_controller *ctlr = spi->controller;
3051 	int ret;
3052 	unsigned long flags;
3053 
3054 	ret = __spi_validate(spi, message);
3055 	if (ret != 0)
3056 		return ret;
3057 
3058 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3059 
3060 	ret = __spi_async(spi, message);
3061 
3062 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3063 
3064 	return ret;
3065 
3066 }
3067 EXPORT_SYMBOL_GPL(spi_async_locked);
3068 
3069 /*-------------------------------------------------------------------------*/
3070 
3071 /* Utility methods for SPI protocol drivers, layered on
3072  * top of the core.  Some other utility methods are defined as
3073  * inline functions.
3074  */
3075 
3076 static void spi_complete(void *arg)
3077 {
3078 	complete(arg);
3079 }
3080 
3081 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3082 {
3083 	DECLARE_COMPLETION_ONSTACK(done);
3084 	int status;
3085 	struct spi_controller *ctlr = spi->controller;
3086 	unsigned long flags;
3087 
3088 	status = __spi_validate(spi, message);
3089 	if (status != 0)
3090 		return status;
3091 
3092 	message->complete = spi_complete;
3093 	message->context = &done;
3094 	message->spi = spi;
3095 
3096 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3097 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3098 
3099 	/* If we're not using the legacy transfer method then we will
3100 	 * try to transfer in the calling context so special case.
3101 	 * This code would be less tricky if we could remove the
3102 	 * support for driver implemented message queues.
3103 	 */
3104 	if (ctlr->transfer == spi_queued_transfer) {
3105 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3106 
3107 		trace_spi_message_submit(message);
3108 
3109 		status = __spi_queued_transfer(spi, message, false);
3110 
3111 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3112 	} else {
3113 		status = spi_async_locked(spi, message);
3114 	}
3115 
3116 	if (status == 0) {
3117 		/* Push out the messages in the calling context if we
3118 		 * can.
3119 		 */
3120 		if (ctlr->transfer == spi_queued_transfer) {
3121 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3122 						       spi_sync_immediate);
3123 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3124 						       spi_sync_immediate);
3125 			__spi_pump_messages(ctlr, false);
3126 		}
3127 
3128 		wait_for_completion(&done);
3129 		status = message->status;
3130 	}
3131 	message->context = NULL;
3132 	return status;
3133 }
3134 
3135 /**
3136  * spi_sync - blocking/synchronous SPI data transfers
3137  * @spi: device with which data will be exchanged
3138  * @message: describes the data transfers
3139  * Context: can sleep
3140  *
3141  * This call may only be used from a context that may sleep.  The sleep
3142  * is non-interruptible, and has no timeout.  Low-overhead controller
3143  * drivers may DMA directly into and out of the message buffers.
3144  *
3145  * Note that the SPI device's chip select is active during the message,
3146  * and then is normally disabled between messages.  Drivers for some
3147  * frequently-used devices may want to minimize costs of selecting a chip,
3148  * by leaving it selected in anticipation that the next message will go
3149  * to the same chip.  (That may increase power usage.)
3150  *
3151  * Also, the caller is guaranteeing that the memory associated with the
3152  * message will not be freed before this call returns.
3153  *
3154  * Return: zero on success, else a negative error code.
3155  */
3156 int spi_sync(struct spi_device *spi, struct spi_message *message)
3157 {
3158 	int ret;
3159 
3160 	mutex_lock(&spi->controller->bus_lock_mutex);
3161 	ret = __spi_sync(spi, message);
3162 	mutex_unlock(&spi->controller->bus_lock_mutex);
3163 
3164 	return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(spi_sync);
3167 
3168 /**
3169  * spi_sync_locked - version of spi_sync with exclusive bus usage
3170  * @spi: device with which data will be exchanged
3171  * @message: describes the data transfers
3172  * Context: can sleep
3173  *
3174  * This call may only be used from a context that may sleep.  The sleep
3175  * is non-interruptible, and has no timeout.  Low-overhead controller
3176  * drivers may DMA directly into and out of the message buffers.
3177  *
3178  * This call should be used by drivers that require exclusive access to the
3179  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3180  * be released by a spi_bus_unlock call when the exclusive access is over.
3181  *
3182  * Return: zero on success, else a negative error code.
3183  */
3184 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3185 {
3186 	return __spi_sync(spi, message);
3187 }
3188 EXPORT_SYMBOL_GPL(spi_sync_locked);
3189 
3190 /**
3191  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3192  * @ctlr: SPI bus master that should be locked for exclusive bus access
3193  * Context: can sleep
3194  *
3195  * This call may only be used from a context that may sleep.  The sleep
3196  * is non-interruptible, and has no timeout.
3197  *
3198  * This call should be used by drivers that require exclusive access to the
3199  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3200  * exclusive access is over. Data transfer must be done by spi_sync_locked
3201  * and spi_async_locked calls when the SPI bus lock is held.
3202  *
3203  * Return: always zero.
3204  */
3205 int spi_bus_lock(struct spi_controller *ctlr)
3206 {
3207 	unsigned long flags;
3208 
3209 	mutex_lock(&ctlr->bus_lock_mutex);
3210 
3211 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3212 	ctlr->bus_lock_flag = 1;
3213 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3214 
3215 	/* mutex remains locked until spi_bus_unlock is called */
3216 
3217 	return 0;
3218 }
3219 EXPORT_SYMBOL_GPL(spi_bus_lock);
3220 
3221 /**
3222  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3223  * @ctlr: SPI bus master that was locked for exclusive bus access
3224  * Context: can sleep
3225  *
3226  * This call may only be used from a context that may sleep.  The sleep
3227  * is non-interruptible, and has no timeout.
3228  *
3229  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3230  * call.
3231  *
3232  * Return: always zero.
3233  */
3234 int spi_bus_unlock(struct spi_controller *ctlr)
3235 {
3236 	ctlr->bus_lock_flag = 0;
3237 
3238 	mutex_unlock(&ctlr->bus_lock_mutex);
3239 
3240 	return 0;
3241 }
3242 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3243 
3244 /* portable code must never pass more than 32 bytes */
3245 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3246 
3247 static u8	*buf;
3248 
3249 /**
3250  * spi_write_then_read - SPI synchronous write followed by read
3251  * @spi: device with which data will be exchanged
3252  * @txbuf: data to be written (need not be dma-safe)
3253  * @n_tx: size of txbuf, in bytes
3254  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3255  * @n_rx: size of rxbuf, in bytes
3256  * Context: can sleep
3257  *
3258  * This performs a half duplex MicroWire style transaction with the
3259  * device, sending txbuf and then reading rxbuf.  The return value
3260  * is zero for success, else a negative errno status code.
3261  * This call may only be used from a context that may sleep.
3262  *
3263  * Parameters to this routine are always copied using a small buffer;
3264  * portable code should never use this for more than 32 bytes.
3265  * Performance-sensitive or bulk transfer code should instead use
3266  * spi_{async,sync}() calls with dma-safe buffers.
3267  *
3268  * Return: zero on success, else a negative error code.
3269  */
3270 int spi_write_then_read(struct spi_device *spi,
3271 		const void *txbuf, unsigned n_tx,
3272 		void *rxbuf, unsigned n_rx)
3273 {
3274 	static DEFINE_MUTEX(lock);
3275 
3276 	int			status;
3277 	struct spi_message	message;
3278 	struct spi_transfer	x[2];
3279 	u8			*local_buf;
3280 
3281 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3282 	 * copying here, (as a pure convenience thing), but we can
3283 	 * keep heap costs out of the hot path unless someone else is
3284 	 * using the pre-allocated buffer or the transfer is too large.
3285 	 */
3286 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3287 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3288 				    GFP_KERNEL | GFP_DMA);
3289 		if (!local_buf)
3290 			return -ENOMEM;
3291 	} else {
3292 		local_buf = buf;
3293 	}
3294 
3295 	spi_message_init(&message);
3296 	memset(x, 0, sizeof(x));
3297 	if (n_tx) {
3298 		x[0].len = n_tx;
3299 		spi_message_add_tail(&x[0], &message);
3300 	}
3301 	if (n_rx) {
3302 		x[1].len = n_rx;
3303 		spi_message_add_tail(&x[1], &message);
3304 	}
3305 
3306 	memcpy(local_buf, txbuf, n_tx);
3307 	x[0].tx_buf = local_buf;
3308 	x[1].rx_buf = local_buf + n_tx;
3309 
3310 	/* do the i/o */
3311 	status = spi_sync(spi, &message);
3312 	if (status == 0)
3313 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3314 
3315 	if (x[0].tx_buf == buf)
3316 		mutex_unlock(&lock);
3317 	else
3318 		kfree(local_buf);
3319 
3320 	return status;
3321 }
3322 EXPORT_SYMBOL_GPL(spi_write_then_read);
3323 
3324 /*-------------------------------------------------------------------------*/
3325 
3326 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3327 static int __spi_of_device_match(struct device *dev, void *data)
3328 {
3329 	return dev->of_node == data;
3330 }
3331 
3332 /* must call put_device() when done with returned spi_device device */
3333 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3334 {
3335 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3336 						__spi_of_device_match);
3337 	return dev ? to_spi_device(dev) : NULL;
3338 }
3339 
3340 static int __spi_of_controller_match(struct device *dev, const void *data)
3341 {
3342 	return dev->of_node == data;
3343 }
3344 
3345 /* the spi controllers are not using spi_bus, so we find it with another way */
3346 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3347 {
3348 	struct device *dev;
3349 
3350 	dev = class_find_device(&spi_master_class, NULL, node,
3351 				__spi_of_controller_match);
3352 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3353 		dev = class_find_device(&spi_slave_class, NULL, node,
3354 					__spi_of_controller_match);
3355 	if (!dev)
3356 		return NULL;
3357 
3358 	/* reference got in class_find_device */
3359 	return container_of(dev, struct spi_controller, dev);
3360 }
3361 
3362 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3363 			 void *arg)
3364 {
3365 	struct of_reconfig_data *rd = arg;
3366 	struct spi_controller *ctlr;
3367 	struct spi_device *spi;
3368 
3369 	switch (of_reconfig_get_state_change(action, arg)) {
3370 	case OF_RECONFIG_CHANGE_ADD:
3371 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3372 		if (ctlr == NULL)
3373 			return NOTIFY_OK;	/* not for us */
3374 
3375 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3376 			put_device(&ctlr->dev);
3377 			return NOTIFY_OK;
3378 		}
3379 
3380 		spi = of_register_spi_device(ctlr, rd->dn);
3381 		put_device(&ctlr->dev);
3382 
3383 		if (IS_ERR(spi)) {
3384 			pr_err("%s: failed to create for '%pOF'\n",
3385 					__func__, rd->dn);
3386 			of_node_clear_flag(rd->dn, OF_POPULATED);
3387 			return notifier_from_errno(PTR_ERR(spi));
3388 		}
3389 		break;
3390 
3391 	case OF_RECONFIG_CHANGE_REMOVE:
3392 		/* already depopulated? */
3393 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3394 			return NOTIFY_OK;
3395 
3396 		/* find our device by node */
3397 		spi = of_find_spi_device_by_node(rd->dn);
3398 		if (spi == NULL)
3399 			return NOTIFY_OK;	/* no? not meant for us */
3400 
3401 		/* unregister takes one ref away */
3402 		spi_unregister_device(spi);
3403 
3404 		/* and put the reference of the find */
3405 		put_device(&spi->dev);
3406 		break;
3407 	}
3408 
3409 	return NOTIFY_OK;
3410 }
3411 
3412 static struct notifier_block spi_of_notifier = {
3413 	.notifier_call = of_spi_notify,
3414 };
3415 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3416 extern struct notifier_block spi_of_notifier;
3417 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3418 
3419 #if IS_ENABLED(CONFIG_ACPI)
3420 static int spi_acpi_controller_match(struct device *dev, const void *data)
3421 {
3422 	return ACPI_COMPANION(dev->parent) == data;
3423 }
3424 
3425 static int spi_acpi_device_match(struct device *dev, void *data)
3426 {
3427 	return ACPI_COMPANION(dev) == data;
3428 }
3429 
3430 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3431 {
3432 	struct device *dev;
3433 
3434 	dev = class_find_device(&spi_master_class, NULL, adev,
3435 				spi_acpi_controller_match);
3436 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3437 		dev = class_find_device(&spi_slave_class, NULL, adev,
3438 					spi_acpi_controller_match);
3439 	if (!dev)
3440 		return NULL;
3441 
3442 	return container_of(dev, struct spi_controller, dev);
3443 }
3444 
3445 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3446 {
3447 	struct device *dev;
3448 
3449 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3450 
3451 	return dev ? to_spi_device(dev) : NULL;
3452 }
3453 
3454 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3455 			   void *arg)
3456 {
3457 	struct acpi_device *adev = arg;
3458 	struct spi_controller *ctlr;
3459 	struct spi_device *spi;
3460 
3461 	switch (value) {
3462 	case ACPI_RECONFIG_DEVICE_ADD:
3463 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3464 		if (!ctlr)
3465 			break;
3466 
3467 		acpi_register_spi_device(ctlr, adev);
3468 		put_device(&ctlr->dev);
3469 		break;
3470 	case ACPI_RECONFIG_DEVICE_REMOVE:
3471 		if (!acpi_device_enumerated(adev))
3472 			break;
3473 
3474 		spi = acpi_spi_find_device_by_adev(adev);
3475 		if (!spi)
3476 			break;
3477 
3478 		spi_unregister_device(spi);
3479 		put_device(&spi->dev);
3480 		break;
3481 	}
3482 
3483 	return NOTIFY_OK;
3484 }
3485 
3486 static struct notifier_block spi_acpi_notifier = {
3487 	.notifier_call = acpi_spi_notify,
3488 };
3489 #else
3490 extern struct notifier_block spi_acpi_notifier;
3491 #endif
3492 
3493 static int __init spi_init(void)
3494 {
3495 	int	status;
3496 
3497 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3498 	if (!buf) {
3499 		status = -ENOMEM;
3500 		goto err0;
3501 	}
3502 
3503 	status = bus_register(&spi_bus_type);
3504 	if (status < 0)
3505 		goto err1;
3506 
3507 	status = class_register(&spi_master_class);
3508 	if (status < 0)
3509 		goto err2;
3510 
3511 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3512 		status = class_register(&spi_slave_class);
3513 		if (status < 0)
3514 			goto err3;
3515 	}
3516 
3517 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3518 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3519 	if (IS_ENABLED(CONFIG_ACPI))
3520 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3521 
3522 	return 0;
3523 
3524 err3:
3525 	class_unregister(&spi_master_class);
3526 err2:
3527 	bus_unregister(&spi_bus_type);
3528 err1:
3529 	kfree(buf);
3530 	buf = NULL;
3531 err0:
3532 	return status;
3533 }
3534 
3535 /* board_info is normally registered in arch_initcall(),
3536  * but even essential drivers wait till later
3537  *
3538  * REVISIT only boardinfo really needs static linking. the rest (device and
3539  * driver registration) _could_ be dynamically linked (modular) ... costs
3540  * include needing to have boardinfo data structures be much more public.
3541  */
3542 postcore_initcall(spi_init);
3543 
3544