xref: /linux/drivers/scsi/sym53c8xx_2/sym_hipd.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir (struct sym_hcb *np);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 	sym_print_addr(cp->cmd, "%s: ", label);
76 
77 	spi_print_msg(msg);
78 	printf("\n");
79 }
80 
81 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
82 {
83 	struct sym_tcb *tp = &np->target[target];
84 	dev_info(&tp->starget->dev, "%s: ", label);
85 
86 	spi_print_msg(msg);
87 	printf("\n");
88 }
89 
90 /*
91  *  Print something that tells about extended errors.
92  */
93 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
94 {
95 	if (x_status & XE_PARITY_ERR) {
96 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
97 	}
98 	if (x_status & XE_EXTRA_DATA) {
99 		sym_print_addr(cmd, "extraneous data discarded.\n");
100 	}
101 	if (x_status & XE_BAD_PHASE) {
102 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
103 	}
104 	if (x_status & XE_SODL_UNRUN) {
105 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
106 	}
107 	if (x_status & XE_SWIDE_OVRUN) {
108 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
109 	}
110 }
111 
112 /*
113  *  Return a string for SCSI BUS mode.
114  */
115 static char *sym_scsi_bus_mode(int mode)
116 {
117 	switch(mode) {
118 	case SMODE_HVD:	return "HVD";
119 	case SMODE_SE:	return "SE";
120 	case SMODE_LVD: return "LVD";
121 	}
122 	return "??";
123 }
124 
125 /*
126  *  Soft reset the chip.
127  *
128  *  Raising SRST when the chip is running may cause
129  *  problems on dual function chips (see below).
130  *  On the other hand, LVD devices need some delay
131  *  to settle and report actual BUS mode in STEST4.
132  */
133 static void sym_chip_reset (struct sym_hcb *np)
134 {
135 	OUTB(np, nc_istat, SRST);
136 	INB(np, nc_mbox1);
137 	udelay(10);
138 	OUTB(np, nc_istat, 0);
139 	INB(np, nc_mbox1);
140 	udelay(2000);	/* For BUS MODE to settle */
141 }
142 
143 /*
144  *  Really soft reset the chip.:)
145  *
146  *  Some 896 and 876 chip revisions may hang-up if we set
147  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
148  *  are running.
149  *  So, we need to abort the current operation prior to
150  *  soft resetting the chip.
151  */
152 static void sym_soft_reset (struct sym_hcb *np)
153 {
154 	u_char istat = 0;
155 	int i;
156 
157 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
158 		goto do_chip_reset;
159 
160 	OUTB(np, nc_istat, CABRT);
161 	for (i = 100000 ; i ; --i) {
162 		istat = INB(np, nc_istat);
163 		if (istat & SIP) {
164 			INW(np, nc_sist);
165 		}
166 		else if (istat & DIP) {
167 			if (INB(np, nc_dstat) & ABRT)
168 				break;
169 		}
170 		udelay(5);
171 	}
172 	OUTB(np, nc_istat, 0);
173 	if (!i)
174 		printf("%s: unable to abort current chip operation, "
175 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
176 do_chip_reset:
177 	sym_chip_reset(np);
178 }
179 
180 /*
181  *  Start reset process.
182  *
183  *  The interrupt handler will reinitialize the chip.
184  */
185 static void sym_start_reset(struct sym_hcb *np)
186 {
187 	sym_reset_scsi_bus(np, 1);
188 }
189 
190 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
191 {
192 	u32 term;
193 	int retv = 0;
194 
195 	sym_soft_reset(np);	/* Soft reset the chip */
196 	if (enab_int)
197 		OUTW(np, nc_sien, RST);
198 	/*
199 	 *  Enable Tolerant, reset IRQD if present and
200 	 *  properly set IRQ mode, prior to resetting the bus.
201 	 */
202 	OUTB(np, nc_stest3, TE);
203 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
204 	OUTB(np, nc_scntl1, CRST);
205 	INB(np, nc_mbox1);
206 	udelay(200);
207 
208 	if (!SYM_SETUP_SCSI_BUS_CHECK)
209 		goto out;
210 	/*
211 	 *  Check for no terminators or SCSI bus shorts to ground.
212 	 *  Read SCSI data bus, data parity bits and control signals.
213 	 *  We are expecting RESET to be TRUE and other signals to be
214 	 *  FALSE.
215 	 */
216 	term =	INB(np, nc_sstat0);
217 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
218 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
219 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
220 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
221 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
222 
223 	if (!np->maxwide)
224 		term &= 0x3ffff;
225 
226 	if (term != (2<<7)) {
227 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
228 			sym_name(np));
229 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
230 			"0x%lx, expecting 0x%lx\n",
231 			sym_name(np),
232 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
233 			(u_long)term, (u_long)(2<<7));
234 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
235 			retv = 1;
236 	}
237 out:
238 	OUTB(np, nc_scntl1, 0);
239 	return retv;
240 }
241 
242 /*
243  *  Select SCSI clock frequency
244  */
245 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
246 {
247 	/*
248 	 *  If multiplier not present or not selected, leave here.
249 	 */
250 	if (np->multiplier <= 1) {
251 		OUTB(np, nc_scntl3, scntl3);
252 		return;
253 	}
254 
255 	if (sym_verbose >= 2)
256 		printf ("%s: enabling clock multiplier\n", sym_name(np));
257 
258 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
259 	/*
260 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
261 	 *  Otherwise wait 50 micro-seconds (at least).
262 	 */
263 	if (np->features & FE_LCKFRQ) {
264 		int i = 20;
265 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
266 			udelay(20);
267 		if (!i)
268 			printf("%s: the chip cannot lock the frequency\n",
269 				sym_name(np));
270 	} else {
271 		INB(np, nc_mbox1);
272 		udelay(50+10);
273 	}
274 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
275 	OUTB(np, nc_scntl3, scntl3);
276 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
277 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
278 }
279 
280 
281 /*
282  *  Determine the chip's clock frequency.
283  *
284  *  This is essential for the negotiation of the synchronous
285  *  transfer rate.
286  *
287  *  Note: we have to return the correct value.
288  *  THERE IS NO SAFE DEFAULT VALUE.
289  *
290  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
291  *  53C860 and 53C875 rev. 1 support fast20 transfers but
292  *  do not have a clock doubler and so are provided with a
293  *  80 MHz clock. All other fast20 boards incorporate a doubler
294  *  and so should be delivered with a 40 MHz clock.
295  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
296  *  clock and provide a clock quadrupler (160 Mhz).
297  */
298 
299 /*
300  *  calculate SCSI clock frequency (in KHz)
301  */
302 static unsigned getfreq (struct sym_hcb *np, int gen)
303 {
304 	unsigned int ms = 0;
305 	unsigned int f;
306 
307 	/*
308 	 * Measure GEN timer delay in order
309 	 * to calculate SCSI clock frequency
310 	 *
311 	 * This code will never execute too
312 	 * many loop iterations (if DELAY is
313 	 * reasonably correct). It could get
314 	 * too low a delay (too high a freq.)
315 	 * if the CPU is slow executing the
316 	 * loop for some reason (an NMI, for
317 	 * example). For this reason we will
318 	 * if multiple measurements are to be
319 	 * performed trust the higher delay
320 	 * (lower frequency returned).
321 	 */
322 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
323 	INW(np, nc_sist);	/* clear pending scsi interrupt */
324 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
325 	INW(np, nc_sist);	/* another one, just to be sure :) */
326 	/*
327 	 * The C1010-33 core does not report GEN in SIST,
328 	 * if this interrupt is masked in SIEN.
329 	 * I don't know yet if the C1010-66 behaves the same way.
330 	 */
331 	if (np->features & FE_C10) {
332 		OUTW(np, nc_sien, GEN);
333 		OUTB(np, nc_istat1, SIRQD);
334 	}
335 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
336 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
337 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
338 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
339 		udelay(1000/4);    /* count in 1/4 of ms */
340 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
341 	/*
342 	 * Undo C1010-33 specific settings.
343 	 */
344 	if (np->features & FE_C10) {
345 		OUTW(np, nc_sien, 0);
346 		OUTB(np, nc_istat1, 0);
347 	}
348  	/*
349  	 * set prescaler to divide by whatever 0 means
350  	 * 0 ought to choose divide by 2, but appears
351  	 * to set divide by 3.5 mode in my 53c810 ...
352  	 */
353  	OUTB(np, nc_scntl3, 0);
354 
355   	/*
356  	 * adjust for prescaler, and convert into KHz
357   	 */
358 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
359 
360 	/*
361 	 * The C1010-33 result is biased by a factor
362 	 * of 2/3 compared to earlier chips.
363 	 */
364 	if (np->features & FE_C10)
365 		f = (f * 2) / 3;
366 
367 	if (sym_verbose >= 2)
368 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
369 			sym_name(np), gen, ms/4, f);
370 
371 	return f;
372 }
373 
374 static unsigned sym_getfreq (struct sym_hcb *np)
375 {
376 	u_int f1, f2;
377 	int gen = 8;
378 
379 	getfreq (np, gen);	/* throw away first result */
380 	f1 = getfreq (np, gen);
381 	f2 = getfreq (np, gen);
382 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
383 	return f1;
384 }
385 
386 /*
387  *  Get/probe chip SCSI clock frequency
388  */
389 static void sym_getclock (struct sym_hcb *np, int mult)
390 {
391 	unsigned char scntl3 = np->sv_scntl3;
392 	unsigned char stest1 = np->sv_stest1;
393 	unsigned f1;
394 
395 	np->multiplier = 1;
396 	f1 = 40000;
397 	/*
398 	 *  True with 875/895/896/895A with clock multiplier selected
399 	 */
400 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
401 		if (sym_verbose >= 2)
402 			printf ("%s: clock multiplier found\n", sym_name(np));
403 		np->multiplier = mult;
404 	}
405 
406 	/*
407 	 *  If multiplier not found or scntl3 not 7,5,3,
408 	 *  reset chip and get frequency from general purpose timer.
409 	 *  Otherwise trust scntl3 BIOS setting.
410 	 */
411 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
412 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
413 		f1 = sym_getfreq (np);
414 
415 		if (sym_verbose)
416 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
417 
418 		if	(f1 <	45000)		f1 =  40000;
419 		else if (f1 <	55000)		f1 =  50000;
420 		else				f1 =  80000;
421 
422 		if (f1 < 80000 && mult > 1) {
423 			if (sym_verbose >= 2)
424 				printf ("%s: clock multiplier assumed\n",
425 					sym_name(np));
426 			np->multiplier	= mult;
427 		}
428 	} else {
429 		if	((scntl3 & 7) == 3)	f1 =  40000;
430 		else if	((scntl3 & 7) == 5)	f1 =  80000;
431 		else 				f1 = 160000;
432 
433 		f1 /= np->multiplier;
434 	}
435 
436 	/*
437 	 *  Compute controller synchronous parameters.
438 	 */
439 	f1		*= np->multiplier;
440 	np->clock_khz	= f1;
441 }
442 
443 /*
444  *  Get/probe PCI clock frequency
445  */
446 static int sym_getpciclock (struct sym_hcb *np)
447 {
448 	int f = 0;
449 
450 	/*
451 	 *  For now, we only need to know about the actual
452 	 *  PCI BUS clock frequency for C1010-66 chips.
453 	 */
454 #if 1
455 	if (np->features & FE_66MHZ) {
456 #else
457 	if (1) {
458 #endif
459 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
460 		f = sym_getfreq(np);
461 		OUTB(np, nc_stest1, 0);
462 	}
463 	np->pciclk_khz = f;
464 
465 	return f;
466 }
467 
468 /*
469  *  SYMBIOS chip clock divisor table.
470  *
471  *  Divisors are multiplied by 10,000,000 in order to make
472  *  calculations more simple.
473  */
474 #define _5M 5000000
475 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
476 
477 /*
478  *  Get clock factor and sync divisor for a given
479  *  synchronous factor period.
480  */
481 static int
482 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
483 {
484 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
485 	int	div = np->clock_divn;	/* Number of divisors supported	*/
486 	u32	fak;			/* Sync factor in sxfer		*/
487 	u32	per;			/* Period in tenths of ns	*/
488 	u32	kpc;			/* (per * clk)			*/
489 	int	ret;
490 
491 	/*
492 	 *  Compute the synchronous period in tenths of nano-seconds
493 	 */
494 	if (dt && sfac <= 9)	per = 125;
495 	else if	(sfac <= 10)	per = 250;
496 	else if	(sfac == 11)	per = 303;
497 	else if	(sfac == 12)	per = 500;
498 	else			per = 40 * sfac;
499 	ret = per;
500 
501 	kpc = per * clk;
502 	if (dt)
503 		kpc <<= 1;
504 
505 	/*
506 	 *  For earliest C10 revision 0, we cannot use extra
507 	 *  clocks for the setting of the SCSI clocking.
508 	 *  Note that this limits the lowest sync data transfer
509 	 *  to 5 Mega-transfers per second and may result in
510 	 *  using higher clock divisors.
511 	 */
512 #if 1
513 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
514 		/*
515 		 *  Look for the lowest clock divisor that allows an
516 		 *  output speed not faster than the period.
517 		 */
518 		while (div > 0) {
519 			--div;
520 			if (kpc > (div_10M[div] << 2)) {
521 				++div;
522 				break;
523 			}
524 		}
525 		fak = 0;			/* No extra clocks */
526 		if (div == np->clock_divn) {	/* Are we too fast ? */
527 			ret = -1;
528 		}
529 		*divp = div;
530 		*fakp = fak;
531 		return ret;
532 	}
533 #endif
534 
535 	/*
536 	 *  Look for the greatest clock divisor that allows an
537 	 *  input speed faster than the period.
538 	 */
539 	while (div-- > 0)
540 		if (kpc >= (div_10M[div] << 2)) break;
541 
542 	/*
543 	 *  Calculate the lowest clock factor that allows an output
544 	 *  speed not faster than the period, and the max output speed.
545 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
546 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
547 	 */
548 	if (dt) {
549 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
550 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
551 	} else {
552 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
553 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
554 	}
555 
556 	/*
557 	 *  Check against our hardware limits, or bugs :).
558 	 */
559 	if (fak > 2) {
560 		fak = 2;
561 		ret = -1;
562 	}
563 
564 	/*
565 	 *  Compute and return sync parameters.
566 	 */
567 	*divp = div;
568 	*fakp = fak;
569 
570 	return ret;
571 }
572 
573 /*
574  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
575  *  128 transfers. All chips support at least 16 transfers
576  *  bursts. The 825A, 875 and 895 chips support bursts of up
577  *  to 128 transfers and the 895A and 896 support bursts of up
578  *  to 64 transfers. All other chips support up to 16
579  *  transfers bursts.
580  *
581  *  For PCI 32 bit data transfers each transfer is a DWORD.
582  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
583  *
584  *  We use log base 2 (burst length) as internal code, with
585  *  value 0 meaning "burst disabled".
586  */
587 
588 /*
589  *  Burst length from burst code.
590  */
591 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
592 
593 /*
594  *  Burst code from io register bits.
595  */
596 #define burst_code(dmode, ctest4, ctest5) \
597 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
598 
599 /*
600  *  Set initial io register bits from burst code.
601  */
602 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
603 {
604 	np->rv_ctest4	&= ~0x80;
605 	np->rv_dmode	&= ~(0x3 << 6);
606 	np->rv_ctest5	&= ~0x4;
607 
608 	if (!bc) {
609 		np->rv_ctest4	|= 0x80;
610 	}
611 	else {
612 		--bc;
613 		np->rv_dmode	|= ((bc & 0x3) << 6);
614 		np->rv_ctest5	|= (bc & 0x4);
615 	}
616 }
617 
618 /*
619  *  Save initial settings of some IO registers.
620  *  Assumed to have been set by BIOS.
621  *  We cannot reset the chip prior to reading the
622  *  IO registers, since informations will be lost.
623  *  Since the SCRIPTS processor may be running, this
624  *  is not safe on paper, but it seems to work quite
625  *  well. :)
626  */
627 static void sym_save_initial_setting (struct sym_hcb *np)
628 {
629 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
630 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
631 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
632 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
633 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
634 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
635 	np->sv_gpcntl	= INB(np, nc_gpcntl);
636 	np->sv_stest1	= INB(np, nc_stest1);
637 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
638 	np->sv_stest4	= INB(np, nc_stest4);
639 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
640 		np->sv_scntl4	= INB(np, nc_scntl4);
641 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
642 	}
643 	else
644 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
645 }
646 
647 /*
648  *  Prepare io register values used by sym_start_up()
649  *  according to selected and supported features.
650  */
651 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
652 {
653 	u_char	burst_max;
654 	u32	period;
655 	int i;
656 
657 	/*
658 	 *  Wide ?
659 	 */
660 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
661 
662 	/*
663 	 *  Guess the frequency of the chip's clock.
664 	 */
665 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
666 		np->clock_khz = 160000;
667 	else if	(np->features & FE_ULTRA)
668 		np->clock_khz = 80000;
669 	else
670 		np->clock_khz = 40000;
671 
672 	/*
673 	 *  Get the clock multiplier factor.
674  	 */
675 	if	(np->features & FE_QUAD)
676 		np->multiplier	= 4;
677 	else if	(np->features & FE_DBLR)
678 		np->multiplier	= 2;
679 	else
680 		np->multiplier	= 1;
681 
682 	/*
683 	 *  Measure SCSI clock frequency for chips
684 	 *  it may vary from assumed one.
685 	 */
686 	if (np->features & FE_VARCLK)
687 		sym_getclock(np, np->multiplier);
688 
689 	/*
690 	 * Divisor to be used for async (timer pre-scaler).
691 	 */
692 	i = np->clock_divn - 1;
693 	while (--i >= 0) {
694 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
695 			++i;
696 			break;
697 		}
698 	}
699 	np->rv_scntl3 = i+1;
700 
701 	/*
702 	 * The C1010 uses hardwired divisors for async.
703 	 * So, we just throw away, the async. divisor.:-)
704 	 */
705 	if (np->features & FE_C10)
706 		np->rv_scntl3 = 0;
707 
708 	/*
709 	 * Minimum synchronous period factor supported by the chip.
710 	 * Btw, 'period' is in tenths of nanoseconds.
711 	 */
712 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
713 
714 	if	(period <= 250)		np->minsync = 10;
715 	else if	(period <= 303)		np->minsync = 11;
716 	else if	(period <= 500)		np->minsync = 12;
717 	else				np->minsync = (period + 40 - 1) / 40;
718 
719 	/*
720 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
721 	 */
722 	if	(np->minsync < 25 &&
723 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
724 		np->minsync = 25;
725 	else if	(np->minsync < 12 &&
726 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
727 		np->minsync = 12;
728 
729 	/*
730 	 * Maximum synchronous period factor supported by the chip.
731 	 */
732 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
733 	np->maxsync = period > 2540 ? 254 : period / 10;
734 
735 	/*
736 	 * If chip is a C1010, guess the sync limits in DT mode.
737 	 */
738 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
739 		if (np->clock_khz == 160000) {
740 			np->minsync_dt = 9;
741 			np->maxsync_dt = 50;
742 			np->maxoffs_dt = nvram->type ? 62 : 31;
743 		}
744 	}
745 
746 	/*
747 	 *  64 bit addressing  (895A/896/1010) ?
748 	 */
749 	if (np->features & FE_DAC) {
750 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
751 		np->rv_ccntl1	|= (DDAC);
752 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
753 		if (!np->use_dac)
754 			np->rv_ccntl1	|= (DDAC);
755 		else
756 			np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
757 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
758 		if (!np->use_dac)
759 			np->rv_ccntl1	|= (DDAC);
760 		else
761 			np->rv_ccntl1	|= (0 | EXTIBMV);
762 #endif
763 	}
764 
765 	/*
766 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
767   	 */
768 	if (np->features & FE_NOPM)
769 		np->rv_ccntl0	|= (ENPMJ);
770 
771  	/*
772 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
773 	 *  In dual channel mode, contention occurs if internal cycles
774 	 *  are used. Disable internal cycles.
775 	 */
776 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
777 	    np->revision_id < 0x1)
778 		np->rv_ccntl0	|=  DILS;
779 
780 	/*
781 	 *  Select burst length (dwords)
782 	 */
783 	burst_max	= SYM_SETUP_BURST_ORDER;
784 	if (burst_max == 255)
785 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
786 				       np->sv_ctest5);
787 	if (burst_max > 7)
788 		burst_max = 7;
789 	if (burst_max > np->maxburst)
790 		burst_max = np->maxburst;
791 
792 	/*
793 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
794 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
795 	 *  based transactions on LOAD/STORE instructions. So we have
796 	 *  to prevent these chips from using such PCI transactions in
797 	 *  this driver. The generic ncr driver that does not use
798 	 *  LOAD/STORE instructions does not need this work-around.
799 	 */
800 	if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
801 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
802 	    (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
803 	     np->revision_id <= 0x1))
804 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
805 
806 	/*
807 	 *  Select all supported special features.
808 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
809 	 *  does not help, but burst op fetch (BOF) does.
810 	 *  Disabling PFEN makes sure BOF will be used.
811 	 */
812 	if (np->features & FE_ERL)
813 		np->rv_dmode	|= ERL;		/* Enable Read Line */
814 	if (np->features & FE_BOF)
815 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
816 	if (np->features & FE_ERMP)
817 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
818 #if 1
819 	if ((np->features & FE_PFEN) && !np->ram_ba)
820 #else
821 	if (np->features & FE_PFEN)
822 #endif
823 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
824 	if (np->features & FE_CLSE)
825 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
826 	if (np->features & FE_WRIE)
827 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
828 	if (np->features & FE_DFS)
829 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
830 
831 	/*
832 	 *  Select some other
833 	 */
834 	np->rv_ctest4	|= MPEE; /* Master parity checking */
835 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
836 
837 	/*
838 	 *  Get parity checking, host ID and verbose mode from NVRAM
839 	 */
840 	np->myaddr = 255;
841 	sym_nvram_setup_host(shost, np, nvram);
842 
843 	/*
844 	 *  Get SCSI addr of host adapter (set by bios?).
845 	 */
846 	if (np->myaddr == 255) {
847 		np->myaddr = INB(np, nc_scid) & 0x07;
848 		if (!np->myaddr)
849 			np->myaddr = SYM_SETUP_HOST_ID;
850 	}
851 
852 	/*
853 	 *  Prepare initial io register bits for burst length
854 	 */
855 	sym_init_burst(np, burst_max);
856 
857 	/*
858 	 *  Set SCSI BUS mode.
859 	 *  - LVD capable chips (895/895A/896/1010) report the
860 	 *    current BUS mode through the STEST4 IO register.
861 	 *  - For previous generation chips (825/825A/875),
862 	 *    user has to tell us how to check against HVD,
863 	 *    since a 100% safe algorithm is not possible.
864 	 */
865 	np->scsi_mode = SMODE_SE;
866 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
867 		np->scsi_mode = (np->sv_stest4 & SMODE);
868 	else if	(np->features & FE_DIFF) {
869 		if (SYM_SETUP_SCSI_DIFF == 1) {
870 			if (np->sv_scntl3) {
871 				if (np->sv_stest2 & 0x20)
872 					np->scsi_mode = SMODE_HVD;
873 			}
874 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
875 				if (!(INB(np, nc_gpreg) & 0x08))
876 					np->scsi_mode = SMODE_HVD;
877 			}
878 		}
879 		else if	(SYM_SETUP_SCSI_DIFF == 2)
880 			np->scsi_mode = SMODE_HVD;
881 	}
882 	if (np->scsi_mode == SMODE_HVD)
883 		np->rv_stest2 |= 0x20;
884 
885 	/*
886 	 *  Set LED support from SCRIPTS.
887 	 *  Ignore this feature for boards known to use a
888 	 *  specific GPIO wiring and for the 895A, 896
889 	 *  and 1010 that drive the LED directly.
890 	 */
891 	if ((SYM_SETUP_SCSI_LED ||
892 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
893 	      (nvram->type == SYM_TEKRAM_NVRAM &&
894 	       np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
895 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
896 		np->features |= FE_LED0;
897 
898 	/*
899 	 *  Set irq mode.
900 	 */
901 	switch(SYM_SETUP_IRQ_MODE & 3) {
902 	case 2:
903 		np->rv_dcntl	|= IRQM;
904 		break;
905 	case 1:
906 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
907 		break;
908 	default:
909 		break;
910 	}
911 
912 	/*
913 	 *  Configure targets according to driver setup.
914 	 *  If NVRAM present get targets setup from NVRAM.
915 	 */
916 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
917 		struct sym_tcb *tp = &np->target[i];
918 
919 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
920 		tp->usrtags = SYM_SETUP_MAX_TAG;
921 		tp->usr_width = np->maxwide;
922 		tp->usr_period = 9;
923 
924 		sym_nvram_setup_target(tp, i, nvram);
925 
926 		if (!tp->usrtags)
927 			tp->usrflags &= ~SYM_TAGS_ENABLED;
928 	}
929 
930 	/*
931 	 *  Let user know about the settings.
932 	 */
933 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
934 		sym_nvram_type(nvram), np->myaddr,
935 		(np->features & FE_ULTRA3) ? 80 :
936 		(np->features & FE_ULTRA2) ? 40 :
937 		(np->features & FE_ULTRA)  ? 20 : 10,
938 		sym_scsi_bus_mode(np->scsi_mode),
939 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
940 	/*
941 	 *  Tell him more on demand.
942 	 */
943 	if (sym_verbose) {
944 		printf("%s: %s IRQ line driver%s\n",
945 			sym_name(np),
946 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
947 			np->ram_ba ? ", using on-chip SRAM" : "");
948 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
949 		if (np->features & FE_NOPM)
950 			printf("%s: handling phase mismatch from SCRIPTS.\n",
951 			       sym_name(np));
952 	}
953 	/*
954 	 *  And still more.
955 	 */
956 	if (sym_verbose >= 2) {
957 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
958 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
959 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
960 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
961 
962 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
963 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
964 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
965 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  *  Test the pci bus snoop logic :-(
973  *
974  *  Has to be called with interrupts disabled.
975  */
976 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
977 static int sym_regtest (struct sym_hcb *np)
978 {
979 	register volatile u32 data;
980 	/*
981 	 *  chip registers may NOT be cached.
982 	 *  write 0xffffffff to a read only register area,
983 	 *  and try to read it back.
984 	 */
985 	data = 0xffffffff;
986 	OUTL(np, nc_dstat, data);
987 	data = INL(np, nc_dstat);
988 #if 1
989 	if (data == 0xffffffff) {
990 #else
991 	if ((data & 0xe2f0fffd) != 0x02000080) {
992 #endif
993 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
994 			(unsigned) data);
995 		return (0x10);
996 	}
997 	return (0);
998 }
999 #endif
1000 
1001 static int sym_snooptest (struct sym_hcb *np)
1002 {
1003 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1004 	int	i, err=0;
1005 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1006 	err |= sym_regtest (np);
1007 	if (err) return (err);
1008 #endif
1009 restart_test:
1010 	/*
1011 	 *  Enable Master Parity Checking as we intend
1012 	 *  to enable it for normal operations.
1013 	 */
1014 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1015 	/*
1016 	 *  init
1017 	 */
1018 	pc  = SCRIPTZ_BA(np, snooptest);
1019 	host_wr = 1;
1020 	sym_wr  = 2;
1021 	/*
1022 	 *  Set memory and register.
1023 	 */
1024 	np->scratch = cpu_to_scr(host_wr);
1025 	OUTL(np, nc_temp, sym_wr);
1026 	/*
1027 	 *  Start script (exchange values)
1028 	 */
1029 	OUTL(np, nc_dsa, np->hcb_ba);
1030 	OUTL_DSP(np, pc);
1031 	/*
1032 	 *  Wait 'til done (with timeout)
1033 	 */
1034 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1035 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1036 			break;
1037 	if (i>=SYM_SNOOP_TIMEOUT) {
1038 		printf ("CACHE TEST FAILED: timeout.\n");
1039 		return (0x20);
1040 	}
1041 	/*
1042 	 *  Check for fatal DMA errors.
1043 	 */
1044 	dstat = INB(np, nc_dstat);
1045 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1046 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1047 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1048 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1049 			sym_name(np));
1050 		np->rv_ctest4 &= ~MPEE;
1051 		goto restart_test;
1052 	}
1053 #endif
1054 	if (dstat & (MDPE|BF|IID)) {
1055 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1056 		return (0x80);
1057 	}
1058 	/*
1059 	 *  Save termination position.
1060 	 */
1061 	pc = INL(np, nc_dsp);
1062 	/*
1063 	 *  Read memory and register.
1064 	 */
1065 	host_rd = scr_to_cpu(np->scratch);
1066 	sym_rd  = INL(np, nc_scratcha);
1067 	sym_bk  = INL(np, nc_temp);
1068 	/*
1069 	 *  Check termination position.
1070 	 */
1071 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1072 		printf ("CACHE TEST FAILED: script execution failed.\n");
1073 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1074 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1075 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1076 		return (0x40);
1077 	}
1078 	/*
1079 	 *  Show results.
1080 	 */
1081 	if (host_wr != sym_rd) {
1082 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1083 			(int) host_wr, (int) sym_rd);
1084 		err |= 1;
1085 	}
1086 	if (host_rd != sym_wr) {
1087 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1088 			(int) sym_wr, (int) host_rd);
1089 		err |= 2;
1090 	}
1091 	if (sym_bk != sym_wr) {
1092 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1093 			(int) sym_wr, (int) sym_bk);
1094 		err |= 4;
1095 	}
1096 
1097 	return (err);
1098 }
1099 
1100 /*
1101  *  log message for real hard errors
1102  *
1103  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1104  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1105  *
1106  *  exception register:
1107  *  	ds:	dstat
1108  *  	si:	sist
1109  *
1110  *  SCSI bus lines:
1111  *  	so:	control lines as driven by chip.
1112  *  	si:	control lines as seen by chip.
1113  *  	sd:	scsi data lines as seen by chip.
1114  *
1115  *  wide/fastmode:
1116  *  	sx:	sxfer  (see the manual)
1117  *  	s3:	scntl3 (see the manual)
1118  *  	s4:	scntl4 (see the manual)
1119  *
1120  *  current script command:
1121  *  	dsp:	script address (relative to start of script).
1122  *  	dbc:	first word of script command.
1123  *
1124  *  First 24 register of the chip:
1125  *  	r0..rf
1126  */
1127 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1128 {
1129 	u32	dsp;
1130 	int	script_ofs;
1131 	int	script_size;
1132 	char	*script_name;
1133 	u_char	*script_base;
1134 	int	i;
1135 
1136 	dsp	= INL(np, nc_dsp);
1137 
1138 	if	(dsp > np->scripta_ba &&
1139 		 dsp <= np->scripta_ba + np->scripta_sz) {
1140 		script_ofs	= dsp - np->scripta_ba;
1141 		script_size	= np->scripta_sz;
1142 		script_base	= (u_char *) np->scripta0;
1143 		script_name	= "scripta";
1144 	}
1145 	else if (np->scriptb_ba < dsp &&
1146 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1147 		script_ofs	= dsp - np->scriptb_ba;
1148 		script_size	= np->scriptb_sz;
1149 		script_base	= (u_char *) np->scriptb0;
1150 		script_name	= "scriptb";
1151 	} else {
1152 		script_ofs	= dsp;
1153 		script_size	= 0;
1154 		script_base	= NULL;
1155 		script_name	= "mem";
1156 	}
1157 
1158 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1159 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1160 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1161 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1162 		(unsigned)INB(np, nc_scntl3),
1163 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1164 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1165 
1166 	if (((script_ofs & 3) == 0) &&
1167 	    (unsigned)script_ofs < script_size) {
1168 		printf ("%s: script cmd = %08x\n", sym_name(np),
1169 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1170 	}
1171 
1172         printf ("%s: regdump:", sym_name(np));
1173         for (i=0; i<24;i++)
1174             printf (" %02x", (unsigned)INB_OFF(np, i));
1175         printf (".\n");
1176 
1177 	/*
1178 	 *  PCI BUS error.
1179 	 */
1180 	if (dstat & (MDPE|BF))
1181 		sym_log_bus_error(np);
1182 }
1183 
1184 static struct sym_chip sym_dev_table[] = {
1185  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1186  FE_ERL}
1187  ,
1188 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1189  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1190  FE_BOF}
1191  ,
1192 #else
1193  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1194  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1195  ,
1196 #endif
1197  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1198  FE_BOF|FE_ERL}
1199  ,
1200  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1201  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1202  ,
1203  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1204  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1205  ,
1206  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1207  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1208  ,
1209  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1210  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1211  FE_RAM|FE_DIFF|FE_VARCLK}
1212  ,
1213  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1214  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1215  FE_RAM|FE_DIFF|FE_VARCLK}
1216  ,
1217  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1218  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1219  FE_RAM|FE_DIFF|FE_VARCLK}
1220  ,
1221  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1222  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1223  FE_RAM|FE_DIFF|FE_VARCLK}
1224  ,
1225 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1226  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1227  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1228  FE_RAM|FE_LCKFRQ}
1229  ,
1230 #else
1231  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1232  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233  FE_RAM|FE_LCKFRQ}
1234  ,
1235 #endif
1236  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1237  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1238  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1239  ,
1240  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1241  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1242  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1243  ,
1244  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1245  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1246  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1247  ,
1248  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1249  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1250  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1251  FE_C10}
1252  ,
1253  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1254  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1255  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1256  FE_C10|FE_U3EN}
1257  ,
1258  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1259  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1260  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1261  FE_C10|FE_U3EN}
1262  ,
1263  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1264  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1265  FE_RAM|FE_IO256|FE_LEDC}
1266 };
1267 
1268 #define sym_num_devs \
1269 	(sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1270 
1271 /*
1272  *  Look up the chip table.
1273  *
1274  *  Return a pointer to the chip entry if found,
1275  *  zero otherwise.
1276  */
1277 struct sym_chip *
1278 sym_lookup_chip_table (u_short device_id, u_char revision)
1279 {
1280 	struct	sym_chip *chip;
1281 	int	i;
1282 
1283 	for (i = 0; i < sym_num_devs; i++) {
1284 		chip = &sym_dev_table[i];
1285 		if (device_id != chip->device_id)
1286 			continue;
1287 		if (revision > chip->revision_id)
1288 			continue;
1289 		return chip;
1290 	}
1291 
1292 	return NULL;
1293 }
1294 
1295 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1296 /*
1297  *  Lookup the 64 bit DMA segments map.
1298  *  This is only used if the direct mapping
1299  *  has been unsuccessful.
1300  */
1301 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1302 {
1303 	int i;
1304 
1305 	if (!np->use_dac)
1306 		goto weird;
1307 
1308 	/* Look up existing mappings */
1309 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1310 		if (h == np->dmap_bah[i])
1311 			return i;
1312 	}
1313 	/* If direct mapping is free, get it */
1314 	if (!np->dmap_bah[s])
1315 		goto new;
1316 	/* Collision -> lookup free mappings */
1317 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1318 		if (!np->dmap_bah[s])
1319 			goto new;
1320 	}
1321 weird:
1322 	panic("sym: ran out of 64 bit DMA segment registers");
1323 	return -1;
1324 new:
1325 	np->dmap_bah[s] = h;
1326 	np->dmap_dirty = 1;
1327 	return s;
1328 }
1329 
1330 /*
1331  *  Update IO registers scratch C..R so they will be
1332  *  in sync. with queued CCB expectations.
1333  */
1334 static void sym_update_dmap_regs(struct sym_hcb *np)
1335 {
1336 	int o, i;
1337 
1338 	if (!np->dmap_dirty)
1339 		return;
1340 	o = offsetof(struct sym_reg, nc_scrx[0]);
1341 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1342 		OUTL_OFF(np, o, np->dmap_bah[i]);
1343 		o += 4;
1344 	}
1345 	np->dmap_dirty = 0;
1346 }
1347 #endif
1348 
1349 /* Enforce all the fiddly SPI rules and the chip limitations */
1350 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1351 		struct sym_trans *goal)
1352 {
1353 	if (!spi_support_wide(starget))
1354 		goal->width = 0;
1355 
1356 	if (!spi_support_sync(starget)) {
1357 		goal->iu = 0;
1358 		goal->dt = 0;
1359 		goal->qas = 0;
1360 		goal->offset = 0;
1361 		return;
1362 	}
1363 
1364 	if (spi_support_dt(starget)) {
1365 		if (spi_support_dt_only(starget))
1366 			goal->dt = 1;
1367 
1368 		if (goal->offset == 0)
1369 			goal->dt = 0;
1370 	} else {
1371 		goal->dt = 0;
1372 	}
1373 
1374 	/* Some targets fail to properly negotiate DT in SE mode */
1375 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1376 		goal->dt = 0;
1377 
1378 	if (goal->dt) {
1379 		/* all DT transfers must be wide */
1380 		goal->width = 1;
1381 		if (goal->offset > np->maxoffs_dt)
1382 			goal->offset = np->maxoffs_dt;
1383 		if (goal->period < np->minsync_dt)
1384 			goal->period = np->minsync_dt;
1385 		if (goal->period > np->maxsync_dt)
1386 			goal->period = np->maxsync_dt;
1387 	} else {
1388 		goal->iu = goal->qas = 0;
1389 		if (goal->offset > np->maxoffs)
1390 			goal->offset = np->maxoffs;
1391 		if (goal->period < np->minsync)
1392 			goal->period = np->minsync;
1393 		if (goal->period > np->maxsync)
1394 			goal->period = np->maxsync;
1395 	}
1396 }
1397 
1398 /*
1399  *  Prepare the next negotiation message if needed.
1400  *
1401  *  Fill in the part of message buffer that contains the
1402  *  negotiation and the nego_status field of the CCB.
1403  *  Returns the size of the message in bytes.
1404  */
1405 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1406 {
1407 	struct sym_tcb *tp = &np->target[cp->target];
1408 	struct scsi_target *starget = tp->starget;
1409 	struct sym_trans *goal = &tp->tgoal;
1410 	int msglen = 0;
1411 	int nego;
1412 
1413 	sym_check_goals(np, starget, goal);
1414 
1415 	/*
1416 	 * Many devices implement PPR in a buggy way, so only use it if we
1417 	 * really want to.
1418 	 */
1419 	if (goal->offset &&
1420 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1421 		nego = NS_PPR;
1422 	} else if (spi_width(starget) != goal->width) {
1423 		nego = NS_WIDE;
1424 	} else if (spi_period(starget) != goal->period ||
1425 		   spi_offset(starget) != goal->offset) {
1426 		nego = NS_SYNC;
1427 	} else {
1428 		goal->check_nego = 0;
1429 		nego = 0;
1430 	}
1431 
1432 	switch (nego) {
1433 	case NS_SYNC:
1434 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1435 				goal->offset);
1436 		break;
1437 	case NS_WIDE:
1438 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1439 		break;
1440 	case NS_PPR:
1441 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1442 				goal->offset, goal->width,
1443 				(goal->iu ? PPR_OPT_IU : 0) |
1444 					(goal->dt ? PPR_OPT_DT : 0) |
1445 					(goal->qas ? PPR_OPT_QAS : 0));
1446 		break;
1447 	}
1448 
1449 	cp->nego_status = nego;
1450 
1451 	if (nego) {
1452 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1453 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1454 			sym_print_nego_msg(np, cp->target,
1455 					  nego == NS_SYNC ? "sync msgout" :
1456 					  nego == NS_WIDE ? "wide msgout" :
1457 					  "ppr msgout", msgptr);
1458 		}
1459 	}
1460 
1461 	return msglen;
1462 }
1463 
1464 /*
1465  *  Insert a job into the start queue.
1466  */
1467 static void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1468 {
1469 	u_short	qidx;
1470 
1471 #ifdef SYM_CONF_IARB_SUPPORT
1472 	/*
1473 	 *  If the previously queued CCB is not yet done,
1474 	 *  set the IARB hint. The SCRIPTS will go with IARB
1475 	 *  for this job when starting the previous one.
1476 	 *  We leave devices a chance to win arbitration by
1477 	 *  not using more than 'iarb_max' consecutive
1478 	 *  immediate arbitrations.
1479 	 */
1480 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1481 		np->last_cp->host_flags |= HF_HINT_IARB;
1482 		++np->iarb_count;
1483 	}
1484 	else
1485 		np->iarb_count = 0;
1486 	np->last_cp = cp;
1487 #endif
1488 
1489 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1490 	/*
1491 	 *  Make SCRIPTS aware of the 64 bit DMA
1492 	 *  segment registers not being up-to-date.
1493 	 */
1494 	if (np->dmap_dirty)
1495 		cp->host_xflags |= HX_DMAP_DIRTY;
1496 #endif
1497 
1498 	/*
1499 	 *  Insert first the idle task and then our job.
1500 	 *  The MBs should ensure proper ordering.
1501 	 */
1502 	qidx = np->squeueput + 2;
1503 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1504 
1505 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1506 	MEMORY_WRITE_BARRIER();
1507 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1508 
1509 	np->squeueput = qidx;
1510 
1511 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1512 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1513 
1514 	/*
1515 	 *  Script processor may be waiting for reselect.
1516 	 *  Wake it up.
1517 	 */
1518 	MEMORY_WRITE_BARRIER();
1519 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1520 }
1521 
1522 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1523 /*
1524  *  Start next ready-to-start CCBs.
1525  */
1526 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1527 {
1528 	SYM_QUEHEAD *qp;
1529 	struct sym_ccb *cp;
1530 
1531 	/*
1532 	 *  Paranoia, as usual. :-)
1533 	 */
1534 	assert(!lp->started_tags || !lp->started_no_tag);
1535 
1536 	/*
1537 	 *  Try to start as many commands as asked by caller.
1538 	 *  Prevent from having both tagged and untagged
1539 	 *  commands queued to the device at the same time.
1540 	 */
1541 	while (maxn--) {
1542 		qp = sym_remque_head(&lp->waiting_ccbq);
1543 		if (!qp)
1544 			break;
1545 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1546 		if (cp->tag != NO_TAG) {
1547 			if (lp->started_no_tag ||
1548 			    lp->started_tags >= lp->started_max) {
1549 				sym_insque_head(qp, &lp->waiting_ccbq);
1550 				break;
1551 			}
1552 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1553 			lp->head.resel_sa =
1554 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1555 			++lp->started_tags;
1556 		} else {
1557 			if (lp->started_no_tag || lp->started_tags) {
1558 				sym_insque_head(qp, &lp->waiting_ccbq);
1559 				break;
1560 			}
1561 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1562 			lp->head.resel_sa =
1563 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1564 			++lp->started_no_tag;
1565 		}
1566 		cp->started = 1;
1567 		sym_insque_tail(qp, &lp->started_ccbq);
1568 		sym_put_start_queue(np, cp);
1569 	}
1570 }
1571 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1572 
1573 /*
1574  *  The chip may have completed jobs. Look at the DONE QUEUE.
1575  *
1576  *  On paper, memory read barriers may be needed here to
1577  *  prevent out of order LOADs by the CPU from having
1578  *  prefetched stale data prior to DMA having occurred.
1579  */
1580 static int sym_wakeup_done (struct sym_hcb *np)
1581 {
1582 	struct sym_ccb *cp;
1583 	int i, n;
1584 	u32 dsa;
1585 
1586 	n = 0;
1587 	i = np->dqueueget;
1588 
1589 	/* MEMORY_READ_BARRIER(); */
1590 	while (1) {
1591 		dsa = scr_to_cpu(np->dqueue[i]);
1592 		if (!dsa)
1593 			break;
1594 		np->dqueue[i] = 0;
1595 		if ((i = i+2) >= MAX_QUEUE*2)
1596 			i = 0;
1597 
1598 		cp = sym_ccb_from_dsa(np, dsa);
1599 		if (cp) {
1600 			MEMORY_READ_BARRIER();
1601 			sym_complete_ok (np, cp);
1602 			++n;
1603 		}
1604 		else
1605 			printf ("%s: bad DSA (%x) in done queue.\n",
1606 				sym_name(np), (u_int) dsa);
1607 	}
1608 	np->dqueueget = i;
1609 
1610 	return n;
1611 }
1612 
1613 /*
1614  *  Complete all CCBs queued to the COMP queue.
1615  *
1616  *  These CCBs are assumed:
1617  *  - Not to be referenced either by devices or
1618  *    SCRIPTS-related queues and datas.
1619  *  - To have to be completed with an error condition
1620  *    or requeued.
1621  *
1622  *  The device queue freeze count is incremented
1623  *  for each CCB that does not prevent this.
1624  *  This function is called when all CCBs involved
1625  *  in error handling/recovery have been reaped.
1626  */
1627 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1628 {
1629 	SYM_QUEHEAD *qp;
1630 	struct sym_ccb *cp;
1631 
1632 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1633 		struct scsi_cmnd *cmd;
1634 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1635 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1636 		/* Leave quiet CCBs waiting for resources */
1637 		if (cp->host_status == HS_WAIT)
1638 			continue;
1639 		cmd = cp->cmd;
1640 		if (cam_status)
1641 			sym_set_cam_status(cmd, cam_status);
1642 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1643 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1644 			struct sym_tcb *tp = &np->target[cp->target];
1645 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1646 			if (lp) {
1647 				sym_remque(&cp->link2_ccbq);
1648 				sym_insque_tail(&cp->link2_ccbq,
1649 				                &lp->waiting_ccbq);
1650 				if (cp->started) {
1651 					if (cp->tag != NO_TAG)
1652 						--lp->started_tags;
1653 					else
1654 						--lp->started_no_tag;
1655 				}
1656 			}
1657 			cp->started = 0;
1658 			continue;
1659 		}
1660 #endif
1661 		sym_free_ccb(np, cp);
1662 		sym_xpt_done(np, cmd);
1663 	}
1664 }
1665 
1666 /*
1667  *  Complete all active CCBs with error.
1668  *  Used on CHIP/SCSI RESET.
1669  */
1670 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1671 {
1672 	/*
1673 	 *  Move all active CCBs to the COMP queue
1674 	 *  and flush this queue.
1675 	 */
1676 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1677 	sym_que_init(&np->busy_ccbq);
1678 	sym_flush_comp_queue(np, cam_status);
1679 }
1680 
1681 /*
1682  *  Start chip.
1683  *
1684  *  'reason' means:
1685  *     0: initialisation.
1686  *     1: SCSI BUS RESET delivered or received.
1687  *     2: SCSI BUS MODE changed.
1688  */
1689 void sym_start_up (struct sym_hcb *np, int reason)
1690 {
1691  	int	i;
1692 	u32	phys;
1693 
1694  	/*
1695 	 *  Reset chip if asked, otherwise just clear fifos.
1696  	 */
1697 	if (reason == 1)
1698 		sym_soft_reset(np);
1699 	else {
1700 		OUTB(np, nc_stest3, TE|CSF);
1701 		OUTONB(np, nc_ctest3, CLF);
1702 	}
1703 
1704 	/*
1705 	 *  Clear Start Queue
1706 	 */
1707 	phys = np->squeue_ba;
1708 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1709 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1710 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1711 	}
1712 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1713 
1714 	/*
1715 	 *  Start at first entry.
1716 	 */
1717 	np->squeueput = 0;
1718 
1719 	/*
1720 	 *  Clear Done Queue
1721 	 */
1722 	phys = np->dqueue_ba;
1723 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1724 		np->dqueue[i]   = 0;
1725 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1726 	}
1727 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1728 
1729 	/*
1730 	 *  Start at first entry.
1731 	 */
1732 	np->dqueueget = 0;
1733 
1734 	/*
1735 	 *  Install patches in scripts.
1736 	 *  This also let point to first position the start
1737 	 *  and done queue pointers used from SCRIPTS.
1738 	 */
1739 	np->fw_patch(np);
1740 
1741 	/*
1742 	 *  Wakeup all pending jobs.
1743 	 */
1744 	sym_flush_busy_queue(np, DID_RESET);
1745 
1746 	/*
1747 	 *  Init chip.
1748 	 */
1749 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1750 	INB(np, nc_mbox1);
1751 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1752 
1753 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1754 					/*  full arb., ena parity, par->ATN  */
1755 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1756 
1757 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1758 
1759 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1760 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1761 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1762 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1763 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1764 
1765 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1766 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1767 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1768 
1769 	/* Extended Sreq/Sack filtering not supported on the C10 */
1770 	if (np->features & FE_C10)
1771 		OUTB(np, nc_stest2, np->rv_stest2);
1772 	else
1773 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1774 
1775 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1776 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1777 
1778 	/*
1779 	 *  For now, disable AIP generation on C1010-66.
1780 	 */
1781 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1782 		OUTB(np, nc_aipcntl1, DISAIP);
1783 
1784 	/*
1785 	 *  C10101 rev. 0 errata.
1786 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1787 	 *  STEST1 register to disable SGE. We probably should do
1788 	 *  that from SCRIPTS for each selection/reselection, but
1789 	 *  I just don't want. :)
1790 	 */
1791 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1792 	    np->revision_id < 1)
1793 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1794 
1795 	/*
1796 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1797 	 *  Disable overlapped arbitration for some dual function devices,
1798 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1799 	 */
1800 	if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1801 		OUTB(np, nc_ctest0, (1<<5));
1802 	else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1803 		np->rv_ccntl0 |= DPR;
1804 
1805 	/*
1806 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1807 	 *  and/or hardware phase mismatch, since only such chips
1808 	 *  seem to support those IO registers.
1809 	 */
1810 	if (np->features & (FE_DAC|FE_NOPM)) {
1811 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1812 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1813 	}
1814 
1815 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1816 	/*
1817 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1818 	 *  DMA address range our data structures are located in.
1819 	 */
1820 	if (np->use_dac) {
1821 		np->dmap_bah[0] = 0;	/* ??? */
1822 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1823 		OUTL(np, nc_drs, np->dmap_bah[0]);
1824 	}
1825 #endif
1826 
1827 	/*
1828 	 *  If phase mismatch handled by scripts (895A/896/1010),
1829 	 *  set PM jump addresses.
1830 	 */
1831 	if (np->features & FE_NOPM) {
1832 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1833 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1834 	}
1835 
1836 	/*
1837 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1838 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1839 	 */
1840 	if (np->features & FE_LED0)
1841 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1842 	else if (np->features & FE_LEDC)
1843 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1844 
1845 	/*
1846 	 *      enable ints
1847 	 */
1848 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1849 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1850 
1851 	/*
1852 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1853 	 *  Try to eat the spurious SBMC interrupt that may occur when
1854 	 *  we reset the chip but not the SCSI BUS (at initialization).
1855 	 */
1856 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1857 		OUTONW(np, nc_sien, SBMC);
1858 		if (reason == 0) {
1859 			INB(np, nc_mbox1);
1860 			mdelay(100);
1861 			INW(np, nc_sist);
1862 		}
1863 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1864 	}
1865 
1866 	/*
1867 	 *  Fill in target structure.
1868 	 *  Reinitialize usrsync.
1869 	 *  Reinitialize usrwide.
1870 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1871 	 */
1872 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1873 		struct sym_tcb *tp = &np->target[i];
1874 
1875 		tp->to_reset  = 0;
1876 		tp->head.sval = 0;
1877 		tp->head.wval = np->rv_scntl3;
1878 		tp->head.uval = 0;
1879 	}
1880 
1881 	/*
1882 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1883 	 *  and start script processor.
1884 	 *  We do the download preferently from the CPU.
1885 	 *  For platforms that may not support PCI memory mapping,
1886 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1887 	 */
1888 	phys = SCRIPTA_BA(np, init);
1889 	if (np->ram_ba) {
1890 		if (sym_verbose >= 2)
1891 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1892 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1893 		if (np->ram_ws == 8192) {
1894 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1895 			phys = scr_to_cpu(np->scr_ram_seg);
1896 			OUTL(np, nc_mmws, phys);
1897 			OUTL(np, nc_mmrs, phys);
1898 			OUTL(np, nc_sfs,  phys);
1899 			phys = SCRIPTB_BA(np, start64);
1900 		}
1901 	}
1902 
1903 	np->istat_sem = 0;
1904 
1905 	OUTL(np, nc_dsa, np->hcb_ba);
1906 	OUTL_DSP(np, phys);
1907 
1908 	/*
1909 	 *  Notify the XPT about the RESET condition.
1910 	 */
1911 	if (reason != 0)
1912 		sym_xpt_async_bus_reset(np);
1913 }
1914 
1915 /*
1916  *  Switch trans mode for current job and its target.
1917  */
1918 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1919 			 u_char per, u_char wide, u_char div, u_char fak)
1920 {
1921 	SYM_QUEHEAD *qp;
1922 	u_char sval, wval, uval;
1923 	struct sym_tcb *tp = &np->target[target];
1924 
1925 	assert(target == (INB(np, nc_sdid) & 0x0f));
1926 
1927 	sval = tp->head.sval;
1928 	wval = tp->head.wval;
1929 	uval = tp->head.uval;
1930 
1931 #if 0
1932 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1933 		sval, wval, uval, np->rv_scntl3);
1934 #endif
1935 	/*
1936 	 *  Set the offset.
1937 	 */
1938 	if (!(np->features & FE_C10))
1939 		sval = (sval & ~0x1f) | ofs;
1940 	else
1941 		sval = (sval & ~0x3f) | ofs;
1942 
1943 	/*
1944 	 *  Set the sync divisor and extra clock factor.
1945 	 */
1946 	if (ofs != 0) {
1947 		wval = (wval & ~0x70) | ((div+1) << 4);
1948 		if (!(np->features & FE_C10))
1949 			sval = (sval & ~0xe0) | (fak << 5);
1950 		else {
1951 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1952 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1953 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1954 		}
1955 	}
1956 
1957 	/*
1958 	 *  Set the bus width.
1959 	 */
1960 	wval = wval & ~EWS;
1961 	if (wide != 0)
1962 		wval |= EWS;
1963 
1964 	/*
1965 	 *  Set misc. ultra enable bits.
1966 	 */
1967 	if (np->features & FE_C10) {
1968 		uval = uval & ~(U3EN|AIPCKEN);
1969 		if (opts)	{
1970 			assert(np->features & FE_U3EN);
1971 			uval |= U3EN;
1972 		}
1973 	} else {
1974 		wval = wval & ~ULTRA;
1975 		if (per <= 12)	wval |= ULTRA;
1976 	}
1977 
1978 	/*
1979 	 *   Stop there if sync parameters are unchanged.
1980 	 */
1981 	if (tp->head.sval == sval &&
1982 	    tp->head.wval == wval &&
1983 	    tp->head.uval == uval)
1984 		return;
1985 	tp->head.sval = sval;
1986 	tp->head.wval = wval;
1987 	tp->head.uval = uval;
1988 
1989 	/*
1990 	 *  Disable extended Sreq/Sack filtering if per < 50.
1991 	 *  Not supported on the C1010.
1992 	 */
1993 	if (per < 50 && !(np->features & FE_C10))
1994 		OUTOFFB(np, nc_stest2, EXT);
1995 
1996 	/*
1997 	 *  set actual value and sync_status
1998 	 */
1999 	OUTB(np, nc_sxfer,  tp->head.sval);
2000 	OUTB(np, nc_scntl3, tp->head.wval);
2001 
2002 	if (np->features & FE_C10) {
2003 		OUTB(np, nc_scntl4, tp->head.uval);
2004 	}
2005 
2006 	/*
2007 	 *  patch ALL busy ccbs of this target.
2008 	 */
2009 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2010 		struct sym_ccb *cp;
2011 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2012 		if (cp->target != target)
2013 			continue;
2014 		cp->phys.select.sel_scntl3 = tp->head.wval;
2015 		cp->phys.select.sel_sxfer  = tp->head.sval;
2016 		if (np->features & FE_C10) {
2017 			cp->phys.select.sel_scntl4 = tp->head.uval;
2018 		}
2019 	}
2020 }
2021 
2022 /*
2023  *  We received a WDTR.
2024  *  Let everything be aware of the changes.
2025  */
2026 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2027 {
2028 	struct sym_tcb *tp = &np->target[target];
2029 	struct scsi_target *starget = tp->starget;
2030 
2031 	if (spi_width(starget) == wide)
2032 		return;
2033 
2034 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2035 
2036 	tp->tgoal.width = wide;
2037 	spi_offset(starget) = 0;
2038 	spi_period(starget) = 0;
2039 	spi_width(starget) = wide;
2040 	spi_iu(starget) = 0;
2041 	spi_dt(starget) = 0;
2042 	spi_qas(starget) = 0;
2043 
2044 	if (sym_verbose >= 3)
2045 		spi_display_xfer_agreement(starget);
2046 }
2047 
2048 /*
2049  *  We received a SDTR.
2050  *  Let everything be aware of the changes.
2051  */
2052 static void
2053 sym_setsync(struct sym_hcb *np, int target,
2054             u_char ofs, u_char per, u_char div, u_char fak)
2055 {
2056 	struct sym_tcb *tp = &np->target[target];
2057 	struct scsi_target *starget = tp->starget;
2058 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2059 
2060 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2061 
2062 	spi_period(starget) = per;
2063 	spi_offset(starget) = ofs;
2064 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2065 
2066 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2067 		tp->tgoal.period = per;
2068 		tp->tgoal.offset = ofs;
2069 		tp->tgoal.check_nego = 0;
2070 	}
2071 
2072 	spi_display_xfer_agreement(starget);
2073 }
2074 
2075 /*
2076  *  We received a PPR.
2077  *  Let everything be aware of the changes.
2078  */
2079 static void
2080 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2081              u_char per, u_char wide, u_char div, u_char fak)
2082 {
2083 	struct sym_tcb *tp = &np->target[target];
2084 	struct scsi_target *starget = tp->starget;
2085 
2086 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2087 
2088 	spi_width(starget) = tp->tgoal.width = wide;
2089 	spi_period(starget) = tp->tgoal.period = per;
2090 	spi_offset(starget) = tp->tgoal.offset = ofs;
2091 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2092 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2093 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2094 	tp->tgoal.check_nego = 0;
2095 
2096 	spi_display_xfer_agreement(starget);
2097 }
2098 
2099 /*
2100  *  generic recovery from scsi interrupt
2101  *
2102  *  The doc says that when the chip gets an SCSI interrupt,
2103  *  it tries to stop in an orderly fashion, by completing
2104  *  an instruction fetch that had started or by flushing
2105  *  the DMA fifo for a write to memory that was executing.
2106  *  Such a fashion is not enough to know if the instruction
2107  *  that was just before the current DSP value has been
2108  *  executed or not.
2109  *
2110  *  There are some small SCRIPTS sections that deal with
2111  *  the start queue and the done queue that may break any
2112  *  assomption from the C code if we are interrupted
2113  *  inside, so we reset if this happens. Btw, since these
2114  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2115  *  started SCSI operations, it is very unlikely to happen.
2116  *
2117  *  All the driver data structures are supposed to be
2118  *  allocated from the same 4 GB memory window, so there
2119  *  is a 1 to 1 relationship between DSA and driver data
2120  *  structures. Since we are careful :) to invalidate the
2121  *  DSA when we complete a command or when the SCRIPTS
2122  *  pushes a DSA into a queue, we can trust it when it
2123  *  points to a CCB.
2124  */
2125 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2126 {
2127 	u32	dsp	= INL(np, nc_dsp);
2128 	u32	dsa	= INL(np, nc_dsa);
2129 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2130 
2131 	/*
2132 	 *  If we haven't been interrupted inside the SCRIPTS
2133 	 *  critical pathes, we can safely restart the SCRIPTS
2134 	 *  and trust the DSA value if it matches a CCB.
2135 	 */
2136 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2137 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2138 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2139 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2140 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2141 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2142 	    (!(dsp > SCRIPTA_BA(np, done) &&
2143 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2144 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2145 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2146 		/*
2147 		 *  If we have a CCB, let the SCRIPTS call us back for
2148 		 *  the handling of the error with SCRATCHA filled with
2149 		 *  STARTPOS. This way, we will be able to freeze the
2150 		 *  device queue and requeue awaiting IOs.
2151 		 */
2152 		if (cp) {
2153 			cp->host_status = hsts;
2154 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2155 		}
2156 		/*
2157 		 *  Otherwise just restart the SCRIPTS.
2158 		 */
2159 		else {
2160 			OUTL(np, nc_dsa, 0xffffff);
2161 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2162 		}
2163 	}
2164 	else
2165 		goto reset_all;
2166 
2167 	return;
2168 
2169 reset_all:
2170 	sym_start_reset(np);
2171 }
2172 
2173 /*
2174  *  chip exception handler for selection timeout
2175  */
2176 static void sym_int_sto (struct sym_hcb *np)
2177 {
2178 	u32 dsp	= INL(np, nc_dsp);
2179 
2180 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2181 
2182 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2183 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2184 	else
2185 		sym_start_reset(np);
2186 }
2187 
2188 /*
2189  *  chip exception handler for unexpected disconnect
2190  */
2191 static void sym_int_udc (struct sym_hcb *np)
2192 {
2193 	printf ("%s: unexpected disconnect\n", sym_name(np));
2194 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2195 }
2196 
2197 /*
2198  *  chip exception handler for SCSI bus mode change
2199  *
2200  *  spi2-r12 11.2.3 says a transceiver mode change must
2201  *  generate a reset event and a device that detects a reset
2202  *  event shall initiate a hard reset. It says also that a
2203  *  device that detects a mode change shall set data transfer
2204  *  mode to eight bit asynchronous, etc...
2205  *  So, just reinitializing all except chip should be enough.
2206  */
2207 static void sym_int_sbmc (struct sym_hcb *np)
2208 {
2209 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2210 
2211 	/*
2212 	 *  Notify user.
2213 	 */
2214 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2215 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2216 
2217 	/*
2218 	 *  Should suspend command processing for a few seconds and
2219 	 *  reinitialize all except the chip.
2220 	 */
2221 	sym_start_up (np, 2);
2222 }
2223 
2224 /*
2225  *  chip exception handler for SCSI parity error.
2226  *
2227  *  When the chip detects a SCSI parity error and is
2228  *  currently executing a (CH)MOV instruction, it does
2229  *  not interrupt immediately, but tries to finish the
2230  *  transfer of the current scatter entry before
2231  *  interrupting. The following situations may occur:
2232  *
2233  *  - The complete scatter entry has been transferred
2234  *    without the device having changed phase.
2235  *    The chip will then interrupt with the DSP pointing
2236  *    to the instruction that follows the MOV.
2237  *
2238  *  - A phase mismatch occurs before the MOV finished
2239  *    and phase errors are to be handled by the C code.
2240  *    The chip will then interrupt with both PAR and MA
2241  *    conditions set.
2242  *
2243  *  - A phase mismatch occurs before the MOV finished and
2244  *    phase errors are to be handled by SCRIPTS.
2245  *    The chip will load the DSP with the phase mismatch
2246  *    JUMP address and interrupt the host processor.
2247  */
2248 static void sym_int_par (struct sym_hcb *np, u_short sist)
2249 {
2250 	u_char	hsts	= INB(np, HS_PRT);
2251 	u32	dsp	= INL(np, nc_dsp);
2252 	u32	dbc	= INL(np, nc_dbc);
2253 	u32	dsa	= INL(np, nc_dsa);
2254 	u_char	sbcl	= INB(np, nc_sbcl);
2255 	u_char	cmd	= dbc >> 24;
2256 	int phase	= cmd & 7;
2257 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2258 
2259 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2260 		sym_name(np), hsts, dbc, sbcl);
2261 
2262 	/*
2263 	 *  Check that the chip is connected to the SCSI BUS.
2264 	 */
2265 	if (!(INB(np, nc_scntl1) & ISCON)) {
2266 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2267 		return;
2268 	}
2269 
2270 	/*
2271 	 *  If the nexus is not clearly identified, reset the bus.
2272 	 *  We will try to do better later.
2273 	 */
2274 	if (!cp)
2275 		goto reset_all;
2276 
2277 	/*
2278 	 *  Check instruction was a MOV, direction was INPUT and
2279 	 *  ATN is asserted.
2280 	 */
2281 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2282 		goto reset_all;
2283 
2284 	/*
2285 	 *  Keep track of the parity error.
2286 	 */
2287 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2288 	cp->xerr_status |= XE_PARITY_ERR;
2289 
2290 	/*
2291 	 *  Prepare the message to send to the device.
2292 	 */
2293 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2294 
2295 	/*
2296 	 *  If the old phase was DATA IN phase, we have to deal with
2297 	 *  the 3 situations described above.
2298 	 *  For other input phases (MSG IN and STATUS), the device
2299 	 *  must resend the whole thing that failed parity checking
2300 	 *  or signal error. So, jumping to dispatcher should be OK.
2301 	 */
2302 	if (phase == 1 || phase == 5) {
2303 		/* Phase mismatch handled by SCRIPTS */
2304 		if (dsp == SCRIPTB_BA(np, pm_handle))
2305 			OUTL_DSP(np, dsp);
2306 		/* Phase mismatch handled by the C code */
2307 		else if (sist & MA)
2308 			sym_int_ma (np);
2309 		/* No phase mismatch occurred */
2310 		else {
2311 			sym_set_script_dp (np, cp, dsp);
2312 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2313 		}
2314 	}
2315 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2316 #if 1				/* in message-in phase due to the relection  */
2317 		goto reset_all; /* path and various message anticipations.   */
2318 #else
2319 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2320 #endif
2321 	else
2322 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2323 	return;
2324 
2325 reset_all:
2326 	sym_start_reset(np);
2327 	return;
2328 }
2329 
2330 /*
2331  *  chip exception handler for phase errors.
2332  *
2333  *  We have to construct a new transfer descriptor,
2334  *  to transfer the rest of the current block.
2335  */
2336 static void sym_int_ma (struct sym_hcb *np)
2337 {
2338 	u32	dbc;
2339 	u32	rest;
2340 	u32	dsp;
2341 	u32	dsa;
2342 	u32	nxtdsp;
2343 	u32	*vdsp;
2344 	u32	oadr, olen;
2345 	u32	*tblp;
2346         u32	newcmd;
2347 	u_int	delta;
2348 	u_char	cmd;
2349 	u_char	hflags, hflags0;
2350 	struct	sym_pmc *pm;
2351 	struct sym_ccb *cp;
2352 
2353 	dsp	= INL(np, nc_dsp);
2354 	dbc	= INL(np, nc_dbc);
2355 	dsa	= INL(np, nc_dsa);
2356 
2357 	cmd	= dbc >> 24;
2358 	rest	= dbc & 0xffffff;
2359 	delta	= 0;
2360 
2361 	/*
2362 	 *  locate matching cp if any.
2363 	 */
2364 	cp = sym_ccb_from_dsa(np, dsa);
2365 
2366 	/*
2367 	 *  Donnot take into account dma fifo and various buffers in
2368 	 *  INPUT phase since the chip flushes everything before
2369 	 *  raising the MA interrupt for interrupted INPUT phases.
2370 	 *  For DATA IN phase, we will check for the SWIDE later.
2371 	 */
2372 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2373 		u_char ss0, ss2;
2374 
2375 		if (np->features & FE_DFBC)
2376 			delta = INW(np, nc_dfbc);
2377 		else {
2378 			u32 dfifo;
2379 
2380 			/*
2381 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2382 			 */
2383 			dfifo = INL(np, nc_dfifo);
2384 
2385 			/*
2386 			 *  Calculate remaining bytes in DMA fifo.
2387 			 *  (CTEST5 = dfifo >> 16)
2388 			 */
2389 			if (dfifo & (DFS << 16))
2390 				delta = ((((dfifo >> 8) & 0x300) |
2391 				          (dfifo & 0xff)) - rest) & 0x3ff;
2392 			else
2393 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2394 		}
2395 
2396 		/*
2397 		 *  The data in the dma fifo has not been transfered to
2398 		 *  the target -> add the amount to the rest
2399 		 *  and clear the data.
2400 		 *  Check the sstat2 register in case of wide transfer.
2401 		 */
2402 		rest += delta;
2403 		ss0  = INB(np, nc_sstat0);
2404 		if (ss0 & OLF) rest++;
2405 		if (!(np->features & FE_C10))
2406 			if (ss0 & ORF) rest++;
2407 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2408 			ss2 = INB(np, nc_sstat2);
2409 			if (ss2 & OLF1) rest++;
2410 			if (!(np->features & FE_C10))
2411 				if (ss2 & ORF1) rest++;
2412 		}
2413 
2414 		/*
2415 		 *  Clear fifos.
2416 		 */
2417 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2418 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2419 	}
2420 
2421 	/*
2422 	 *  log the information
2423 	 */
2424 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2425 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2426 			(unsigned) rest, (unsigned) delta);
2427 
2428 	/*
2429 	 *  try to find the interrupted script command,
2430 	 *  and the address at which to continue.
2431 	 */
2432 	vdsp	= NULL;
2433 	nxtdsp	= 0;
2434 	if	(dsp >  np->scripta_ba &&
2435 		 dsp <= np->scripta_ba + np->scripta_sz) {
2436 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2437 		nxtdsp = dsp;
2438 	}
2439 	else if	(dsp >  np->scriptb_ba &&
2440 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2441 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2442 		nxtdsp = dsp;
2443 	}
2444 
2445 	/*
2446 	 *  log the information
2447 	 */
2448 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2449 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2450 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2451 	}
2452 
2453 	if (!vdsp) {
2454 		printf ("%s: interrupted SCRIPT address not found.\n",
2455 			sym_name (np));
2456 		goto reset_all;
2457 	}
2458 
2459 	if (!cp) {
2460 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2461 			sym_name (np));
2462 		goto reset_all;
2463 	}
2464 
2465 	/*
2466 	 *  get old startaddress and old length.
2467 	 */
2468 	oadr = scr_to_cpu(vdsp[1]);
2469 
2470 	if (cmd & 0x10) {	/* Table indirect */
2471 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2472 		olen = scr_to_cpu(tblp[0]);
2473 		oadr = scr_to_cpu(tblp[1]);
2474 	} else {
2475 		tblp = (u32 *) 0;
2476 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2477 	}
2478 
2479 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2480 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2481 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2482 			tblp,
2483 			(unsigned) olen,
2484 			(unsigned) oadr);
2485 	}
2486 
2487 	/*
2488 	 *  check cmd against assumed interrupted script command.
2489 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2490 	 *  the phase.
2491 	 */
2492 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2493 		sym_print_addr(cp->cmd,
2494 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2495 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2496 
2497 		goto reset_all;
2498 	}
2499 
2500 	/*
2501 	 *  if old phase not dataphase, leave here.
2502 	 */
2503 	if (cmd & 2) {
2504 		sym_print_addr(cp->cmd,
2505 			"phase change %x-%x %d@%08x resid=%d.\n",
2506 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2507 			(unsigned)oadr, (unsigned)rest);
2508 		goto unexpected_phase;
2509 	}
2510 
2511 	/*
2512 	 *  Choose the correct PM save area.
2513 	 *
2514 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2515 	 *  this stuff. The equivalent code is implemented in
2516 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2517 	 *  handle PM from the SCRIPTS processor.
2518 	 */
2519 	hflags0 = INB(np, HF_PRT);
2520 	hflags = hflags0;
2521 
2522 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2523 		if (hflags & HF_IN_PM0)
2524 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2525 		else if	(hflags & HF_IN_PM1)
2526 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2527 
2528 		if (hflags & HF_DP_SAVED)
2529 			hflags ^= HF_ACT_PM;
2530 	}
2531 
2532 	if (!(hflags & HF_ACT_PM)) {
2533 		pm = &cp->phys.pm0;
2534 		newcmd = SCRIPTA_BA(np, pm0_data);
2535 	}
2536 	else {
2537 		pm = &cp->phys.pm1;
2538 		newcmd = SCRIPTA_BA(np, pm1_data);
2539 	}
2540 
2541 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2542 	if (hflags != hflags0)
2543 		OUTB(np, HF_PRT, hflags);
2544 
2545 	/*
2546 	 *  fillin the phase mismatch context
2547 	 */
2548 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2549 	pm->sg.size = cpu_to_scr(rest);
2550 	pm->ret     = cpu_to_scr(nxtdsp);
2551 
2552 	/*
2553 	 *  If we have a SWIDE,
2554 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2555 	 *  - compute the SCRIPTS address to restart from,
2556 	 *  - move current data pointer context by one byte.
2557 	 */
2558 	nxtdsp = SCRIPTA_BA(np, dispatch);
2559 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2560 	    (INB(np, nc_scntl2) & WSR)) {
2561 		u32 tmp;
2562 
2563 		/*
2564 		 *  Set up the table indirect for the MOVE
2565 		 *  of the residual byte and adjust the data
2566 		 *  pointer context.
2567 		 */
2568 		tmp = scr_to_cpu(pm->sg.addr);
2569 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2570 		pm->sg.addr = cpu_to_scr(tmp + 1);
2571 		tmp = scr_to_cpu(pm->sg.size);
2572 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2573 		pm->sg.size = cpu_to_scr(tmp - 1);
2574 
2575 		/*
2576 		 *  If only the residual byte is to be moved,
2577 		 *  no PM context is needed.
2578 		 */
2579 		if ((tmp&0xffffff) == 1)
2580 			newcmd = pm->ret;
2581 
2582 		/*
2583 		 *  Prepare the address of SCRIPTS that will
2584 		 *  move the residual byte to memory.
2585 		 */
2586 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2587 	}
2588 
2589 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2590 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2591 			hflags0, hflags, newcmd,
2592 			(unsigned)scr_to_cpu(pm->sg.addr),
2593 			(unsigned)scr_to_cpu(pm->sg.size),
2594 			(unsigned)scr_to_cpu(pm->ret));
2595 	}
2596 
2597 	/*
2598 	 *  Restart the SCRIPTS processor.
2599 	 */
2600 	sym_set_script_dp (np, cp, newcmd);
2601 	OUTL_DSP(np, nxtdsp);
2602 	return;
2603 
2604 	/*
2605 	 *  Unexpected phase changes that occurs when the current phase
2606 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2607 	 *  Such event may only happen when the SCRIPTS is using a
2608 	 *  multibyte SCSI MOVE.
2609 	 *
2610 	 *  Phase change		Some possible cause
2611 	 *
2612 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2613 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2614 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2615 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2616 	 *  			negotiation messages.
2617 	 *
2618 	 *  The code below does not care of the new phase and so
2619 	 *  trusts the target. Why to annoy it ?
2620 	 *  If the interrupted phase is COMMAND phase, we restart at
2621 	 *  dispatcher.
2622 	 *  If a target does not get all the messages after selection,
2623 	 *  the code assumes blindly that the target discards extended
2624 	 *  messages and clears the negotiation status.
2625 	 *  If the target does not want all our response to negotiation,
2626 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2627 	 *  bloat for such a should_not_happen situation).
2628 	 *  In all other situation, we reset the BUS.
2629 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2630 	 */
2631 unexpected_phase:
2632 	dsp -= 8;
2633 	nxtdsp = 0;
2634 
2635 	switch (cmd & 7) {
2636 	case 2:	/* COMMAND phase */
2637 		nxtdsp = SCRIPTA_BA(np, dispatch);
2638 		break;
2639 #if 0
2640 	case 3:	/* STATUS  phase */
2641 		nxtdsp = SCRIPTA_BA(np, dispatch);
2642 		break;
2643 #endif
2644 	case 6:	/* MSG OUT phase */
2645 		/*
2646 		 *  If the device may want to use untagged when we want
2647 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2648 		 *  since we will not be able to handle reselect.
2649 		 *  Otherwise, we just don't care.
2650 		 */
2651 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2652 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2653 				cp->host_status = HS_BUSY;
2654 				np->msgout[0] = IDENTIFY(0, cp->lun);
2655 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2656 			}
2657 			else
2658 				nxtdsp = SCRIPTB_BA(np, ident_break);
2659 		}
2660 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2661 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2662 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2663 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2664 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2665 				struct scsi_device *dev = cp->cmd->device;
2666 				dev->ppr = 0;
2667 			}
2668 		}
2669 		break;
2670 #if 0
2671 	case 7:	/* MSG IN  phase */
2672 		nxtdsp = SCRIPTA_BA(np, clrack);
2673 		break;
2674 #endif
2675 	}
2676 
2677 	if (nxtdsp) {
2678 		OUTL_DSP(np, nxtdsp);
2679 		return;
2680 	}
2681 
2682 reset_all:
2683 	sym_start_reset(np);
2684 }
2685 
2686 /*
2687  *  chip interrupt handler
2688  *
2689  *  In normal situations, interrupt conditions occur one at
2690  *  a time. But when something bad happens on the SCSI BUS,
2691  *  the chip may raise several interrupt flags before
2692  *  stopping and interrupting the CPU. The additionnal
2693  *  interrupt flags are stacked in some extra registers
2694  *  after the SIP and/or DIP flag has been raised in the
2695  *  ISTAT. After the CPU has read the interrupt condition
2696  *  flag from SIST or DSTAT, the chip unstacks the other
2697  *  interrupt flags and sets the corresponding bits in
2698  *  SIST or DSTAT. Since the chip starts stacking once the
2699  *  SIP or DIP flag is set, there is a small window of time
2700  *  where the stacking does not occur.
2701  *
2702  *  Typically, multiple interrupt conditions may happen in
2703  *  the following situations:
2704  *
2705  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2706  *    When an parity error is detected in input phase
2707  *    and the device switches to msg-in phase inside a
2708  *    block MOV.
2709  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2710  *    When a stupid device does not want to handle the
2711  *    recovery of an SCSI parity error.
2712  *  - Some combinations of STO, PAR, UDC, ...
2713  *    When using non compliant SCSI stuff, when user is
2714  *    doing non compliant hot tampering on the BUS, when
2715  *    something really bad happens to a device, etc ...
2716  *
2717  *  The heuristic suggested by SYMBIOS to handle
2718  *  multiple interrupts is to try unstacking all
2719  *  interrupts conditions and to handle them on some
2720  *  priority based on error severity.
2721  *  This will work when the unstacking has been
2722  *  successful, but we cannot be 100 % sure of that,
2723  *  since the CPU may have been faster to unstack than
2724  *  the chip is able to stack. Hmmm ... But it seems that
2725  *  such a situation is very unlikely to happen.
2726  *
2727  *  If this happen, for example STO caught by the CPU
2728  *  then UDC happenning before the CPU have restarted
2729  *  the SCRIPTS, the driver may wrongly complete the
2730  *  same command on UDC, since the SCRIPTS didn't restart
2731  *  and the DSA still points to the same command.
2732  *  We avoid this situation by setting the DSA to an
2733  *  invalid value when the CCB is completed and before
2734  *  restarting the SCRIPTS.
2735  *
2736  *  Another issue is that we need some section of our
2737  *  recovery procedures to be somehow uninterruptible but
2738  *  the SCRIPTS processor does not provides such a
2739  *  feature. For this reason, we handle recovery preferently
2740  *  from the C code and check against some SCRIPTS critical
2741  *  sections from the C code.
2742  *
2743  *  Hopefully, the interrupt handling of the driver is now
2744  *  able to resist to weird BUS error conditions, but donnot
2745  *  ask me for any guarantee that it will never fail. :-)
2746  *  Use at your own decision and risk.
2747  */
2748 
2749 void sym_interrupt (struct sym_hcb *np)
2750 {
2751 	u_char	istat, istatc;
2752 	u_char	dstat;
2753 	u_short	sist;
2754 
2755 	/*
2756 	 *  interrupt on the fly ?
2757 	 *  (SCRIPTS may still be running)
2758 	 *
2759 	 *  A `dummy read' is needed to ensure that the
2760 	 *  clear of the INTF flag reaches the device
2761 	 *  and that posted writes are flushed to memory
2762 	 *  before the scanning of the DONE queue.
2763 	 *  Note that SCRIPTS also (dummy) read to memory
2764 	 *  prior to deliver the INTF interrupt condition.
2765 	 */
2766 	istat = INB(np, nc_istat);
2767 	if (istat & INTF) {
2768 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2769 		istat = INB(np, nc_istat);		/* DUMMY READ */
2770 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2771 		sym_wakeup_done(np);
2772 	}
2773 
2774 	if (!(istat & (SIP|DIP)))
2775 		return;
2776 
2777 #if 0	/* We should never get this one */
2778 	if (istat & CABRT)
2779 		OUTB(np, nc_istat, CABRT);
2780 #endif
2781 
2782 	/*
2783 	 *  PAR and MA interrupts may occur at the same time,
2784 	 *  and we need to know of both in order to handle
2785 	 *  this situation properly. We try to unstack SCSI
2786 	 *  interrupts for that reason. BTW, I dislike a LOT
2787 	 *  such a loop inside the interrupt routine.
2788 	 *  Even if DMA interrupt stacking is very unlikely to
2789 	 *  happen, we also try unstacking these ones, since
2790 	 *  this has no performance impact.
2791 	 */
2792 	sist	= 0;
2793 	dstat	= 0;
2794 	istatc	= istat;
2795 	do {
2796 		if (istatc & SIP)
2797 			sist  |= INW(np, nc_sist);
2798 		if (istatc & DIP)
2799 			dstat |= INB(np, nc_dstat);
2800 		istatc = INB(np, nc_istat);
2801 		istat |= istatc;
2802 	} while (istatc & (SIP|DIP));
2803 
2804 	if (DEBUG_FLAGS & DEBUG_TINY)
2805 		printf ("<%d|%x:%x|%x:%x>",
2806 			(int)INB(np, nc_scr0),
2807 			dstat,sist,
2808 			(unsigned)INL(np, nc_dsp),
2809 			(unsigned)INL(np, nc_dbc));
2810 	/*
2811 	 *  On paper, a memory read barrier may be needed here to
2812 	 *  prevent out of order LOADs by the CPU from having
2813 	 *  prefetched stale data prior to DMA having occurred.
2814 	 *  And since we are paranoid ... :)
2815 	 */
2816 	MEMORY_READ_BARRIER();
2817 
2818 	/*
2819 	 *  First, interrupts we want to service cleanly.
2820 	 *
2821 	 *  Phase mismatch (MA) is the most frequent interrupt
2822 	 *  for chip earlier than the 896 and so we have to service
2823 	 *  it as quickly as possible.
2824 	 *  A SCSI parity error (PAR) may be combined with a phase
2825 	 *  mismatch condition (MA).
2826 	 *  Programmed interrupts (SIR) are used to call the C code
2827 	 *  from SCRIPTS.
2828 	 *  The single step interrupt (SSI) is not used in this
2829 	 *  driver.
2830 	 */
2831 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2832 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2833 		if	(sist & PAR)	sym_int_par (np, sist);
2834 		else if (sist & MA)	sym_int_ma (np);
2835 		else if (dstat & SIR)	sym_int_sir (np);
2836 		else if (dstat & SSI)	OUTONB_STD();
2837 		else			goto unknown_int;
2838 		return;
2839 	}
2840 
2841 	/*
2842 	 *  Now, interrupts that donnot happen in normal
2843 	 *  situations and that we may need to recover from.
2844 	 *
2845 	 *  On SCSI RESET (RST), we reset everything.
2846 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2847 	 *  active CCBs with RESET status, prepare all devices
2848 	 *  for negotiating again and restart the SCRIPTS.
2849 	 *  On STO and UDC, we complete the CCB with the corres-
2850 	 *  ponding status and restart the SCRIPTS.
2851 	 */
2852 	if (sist & RST) {
2853 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2854 		sym_start_up (np, 1);
2855 		return;
2856 	}
2857 
2858 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2859 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2860 
2861 	if (!(sist  & (GEN|HTH|SGE)) &&
2862 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2863 		if	(sist & SBMC)	sym_int_sbmc (np);
2864 		else if (sist & STO)	sym_int_sto (np);
2865 		else if (sist & UDC)	sym_int_udc (np);
2866 		else			goto unknown_int;
2867 		return;
2868 	}
2869 
2870 	/*
2871 	 *  Now, interrupts we are not able to recover cleanly.
2872 	 *
2873 	 *  Log message for hard errors.
2874 	 *  Reset everything.
2875 	 */
2876 
2877 	sym_log_hard_error(np, sist, dstat);
2878 
2879 	if ((sist & (GEN|HTH|SGE)) ||
2880 		(dstat & (MDPE|BF|ABRT|IID))) {
2881 		sym_start_reset(np);
2882 		return;
2883 	}
2884 
2885 unknown_int:
2886 	/*
2887 	 *  We just miss the cause of the interrupt. :(
2888 	 *  Print a message. The timeout will do the real work.
2889 	 */
2890 	printf(	"%s: unknown interrupt(s) ignored, "
2891 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2892 		sym_name(np), istat, dstat, sist);
2893 }
2894 
2895 /*
2896  *  Dequeue from the START queue all CCBs that match
2897  *  a given target/lun/task condition (-1 means all),
2898  *  and move them from the BUSY queue to the COMP queue
2899  *  with DID_SOFT_ERROR status condition.
2900  *  This function is used during error handling/recovery.
2901  *  It is called with SCRIPTS not running.
2902  */
2903 static int
2904 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2905 {
2906 	int j;
2907 	struct sym_ccb *cp;
2908 
2909 	/*
2910 	 *  Make sure the starting index is within range.
2911 	 */
2912 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2913 
2914 	/*
2915 	 *  Walk until end of START queue and dequeue every job
2916 	 *  that matches the target/lun/task condition.
2917 	 */
2918 	j = i;
2919 	while (i != np->squeueput) {
2920 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2921 		assert(cp);
2922 #ifdef SYM_CONF_IARB_SUPPORT
2923 		/* Forget hints for IARB, they may be no longer relevant */
2924 		cp->host_flags &= ~HF_HINT_IARB;
2925 #endif
2926 		if ((target == -1 || cp->target == target) &&
2927 		    (lun    == -1 || cp->lun    == lun)    &&
2928 		    (task   == -1 || cp->tag    == task)) {
2929 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2930 			sym_remque(&cp->link_ccbq);
2931 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2932 		}
2933 		else {
2934 			if (i != j)
2935 				np->squeue[j] = np->squeue[i];
2936 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
2937 		}
2938 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
2939 	}
2940 	if (i != j)		/* Copy back the idle task if needed */
2941 		np->squeue[j] = np->squeue[i];
2942 	np->squeueput = j;	/* Update our current start queue pointer */
2943 
2944 	return (i - j) / 2;
2945 }
2946 
2947 /*
2948  *  chip handler for bad SCSI status condition
2949  *
2950  *  In case of bad SCSI status, we unqueue all the tasks
2951  *  currently queued to the controller but not yet started
2952  *  and then restart the SCRIPTS processor immediately.
2953  *
2954  *  QUEUE FULL and BUSY conditions are handled the same way.
2955  *  Basically all the not yet started tasks are requeued in
2956  *  device queue and the queue is frozen until a completion.
2957  *
2958  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
2959  *  the CCB of the failed command to prepare a REQUEST SENSE
2960  *  SCSI command and queue it to the controller queue.
2961  *
2962  *  SCRATCHA is assumed to have been loaded with STARTPOS
2963  *  before the SCRIPTS called the C code.
2964  */
2965 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2966 {
2967 	u32		startp;
2968 	u_char		s_status = cp->ssss_status;
2969 	u_char		h_flags  = cp->host_flags;
2970 	int		msglen;
2971 	int		i;
2972 
2973 	/*
2974 	 *  Compute the index of the next job to start from SCRIPTS.
2975 	 */
2976 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
2977 
2978 	/*
2979 	 *  The last CCB queued used for IARB hint may be
2980 	 *  no longer relevant. Forget it.
2981 	 */
2982 #ifdef SYM_CONF_IARB_SUPPORT
2983 	if (np->last_cp)
2984 		np->last_cp = 0;
2985 #endif
2986 
2987 	/*
2988 	 *  Now deal with the SCSI status.
2989 	 */
2990 	switch(s_status) {
2991 	case S_BUSY:
2992 	case S_QUEUE_FULL:
2993 		if (sym_verbose >= 2) {
2994 			sym_print_addr(cp->cmd, "%s\n",
2995 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
2996 		}
2997 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
2998 		sym_complete_error (np, cp);
2999 		break;
3000 	case S_TERMINATED:
3001 	case S_CHECK_COND:
3002 		/*
3003 		 *  If we get an SCSI error when requesting sense, give up.
3004 		 */
3005 		if (h_flags & HF_SENSE) {
3006 			sym_complete_error (np, cp);
3007 			break;
3008 		}
3009 
3010 		/*
3011 		 *  Dequeue all queued CCBs for that device not yet started,
3012 		 *  and restart the SCRIPTS processor immediately.
3013 		 */
3014 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3015 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3016 
3017  		/*
3018 		 *  Save some info of the actual IO.
3019 		 *  Compute the data residual.
3020 		 */
3021 		cp->sv_scsi_status = cp->ssss_status;
3022 		cp->sv_xerr_status = cp->xerr_status;
3023 		cp->sv_resid = sym_compute_residual(np, cp);
3024 
3025 		/*
3026 		 *  Prepare all needed data structures for
3027 		 *  requesting sense data.
3028 		 */
3029 
3030 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3031 		msglen = 1;
3032 
3033 		/*
3034 		 *  If we are currently using anything different from
3035 		 *  async. 8 bit data transfers with that target,
3036 		 *  start a negotiation, since the device may want
3037 		 *  to report us a UNIT ATTENTION condition due to
3038 		 *  a cause we currently ignore, and we donnot want
3039 		 *  to be stuck with WIDE and/or SYNC data transfer.
3040 		 *
3041 		 *  cp->nego_status is filled by sym_prepare_nego().
3042 		 */
3043 		cp->nego_status = 0;
3044 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3045 		/*
3046 		 *  Message table indirect structure.
3047 		 */
3048 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3049 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3050 
3051 		/*
3052 		 *  sense command
3053 		 */
3054 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3055 		cp->phys.cmd.size	= cpu_to_scr(6);
3056 
3057 		/*
3058 		 *  patch requested size into sense command
3059 		 */
3060 		cp->sensecmd[0]		= REQUEST_SENSE;
3061 		cp->sensecmd[1]		= 0;
3062 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3063 			cp->sensecmd[1]	= cp->lun << 5;
3064 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3065 		cp->data_len		= SYM_SNS_BBUF_LEN;
3066 
3067 		/*
3068 		 *  sense data
3069 		 */
3070 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3071 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3072 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3073 
3074 		/*
3075 		 *  requeue the command.
3076 		 */
3077 		startp = SCRIPTB_BA(np, sdata_in);
3078 
3079 		cp->phys.head.savep	= cpu_to_scr(startp);
3080 		cp->phys.head.lastp	= cpu_to_scr(startp);
3081 		cp->startp		= cpu_to_scr(startp);
3082 		cp->goalp		= cpu_to_scr(startp + 16);
3083 
3084 		cp->host_xflags = 0;
3085 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3086 		cp->ssss_status = S_ILLEGAL;
3087 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3088 		cp->xerr_status = 0;
3089 		cp->extra_bytes = 0;
3090 
3091 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3092 
3093 		/*
3094 		 *  Requeue the command.
3095 		 */
3096 		sym_put_start_queue(np, cp);
3097 
3098 		/*
3099 		 *  Give back to upper layer everything we have dequeued.
3100 		 */
3101 		sym_flush_comp_queue(np, 0);
3102 		break;
3103 	}
3104 }
3105 
3106 /*
3107  *  After a device has accepted some management message
3108  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3109  *  a device signals a UNIT ATTENTION condition, some
3110  *  tasks are thrown away by the device. We are required
3111  *  to reflect that on our tasks list since the device
3112  *  will never complete these tasks.
3113  *
3114  *  This function move from the BUSY queue to the COMP
3115  *  queue all disconnected CCBs for a given target that
3116  *  match the following criteria:
3117  *  - lun=-1  means any logical UNIT otherwise a given one.
3118  *  - task=-1 means any task, otherwise a given one.
3119  */
3120 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3121 {
3122 	SYM_QUEHEAD qtmp, *qp;
3123 	int i = 0;
3124 	struct sym_ccb *cp;
3125 
3126 	/*
3127 	 *  Move the entire BUSY queue to our temporary queue.
3128 	 */
3129 	sym_que_init(&qtmp);
3130 	sym_que_splice(&np->busy_ccbq, &qtmp);
3131 	sym_que_init(&np->busy_ccbq);
3132 
3133 	/*
3134 	 *  Put all CCBs that matches our criteria into
3135 	 *  the COMP queue and put back other ones into
3136 	 *  the BUSY queue.
3137 	 */
3138 	while ((qp = sym_remque_head(&qtmp)) != 0) {
3139 		struct scsi_cmnd *cmd;
3140 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3141 		cmd = cp->cmd;
3142 		if (cp->host_status != HS_DISCONNECT ||
3143 		    cp->target != target	     ||
3144 		    (lun  != -1 && cp->lun != lun)   ||
3145 		    (task != -1 &&
3146 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3147 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3148 			continue;
3149 		}
3150 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3151 
3152 		/* Preserve the software timeout condition */
3153 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3154 			sym_set_cam_status(cmd, cam_status);
3155 		++i;
3156 #if 0
3157 printf("XXXX TASK @%p CLEARED\n", cp);
3158 #endif
3159 	}
3160 	return i;
3161 }
3162 
3163 /*
3164  *  chip handler for TASKS recovery
3165  *
3166  *  We cannot safely abort a command, while the SCRIPTS
3167  *  processor is running, since we just would be in race
3168  *  with it.
3169  *
3170  *  As long as we have tasks to abort, we keep the SEM
3171  *  bit set in the ISTAT. When this bit is set, the
3172  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3173  *  each time it enters the scheduler.
3174  *
3175  *  If we have to reset a target, clear tasks of a unit,
3176  *  or to perform the abort of a disconnected job, we
3177  *  restart the SCRIPTS for selecting the target. Once
3178  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3179  *  If it loses arbitration, the SCRIPTS will interrupt again
3180  *  the next time it will enter its scheduler, and so on ...
3181  *
3182  *  On SIR_TARGET_SELECTED, we scan for the more
3183  *  appropriate thing to do:
3184  *
3185  *  - If nothing, we just sent a M_ABORT message to the
3186  *    target to get rid of the useless SCSI bus ownership.
3187  *    According to the specs, no tasks shall be affected.
3188  *  - If the target is to be reset, we send it a M_RESET
3189  *    message.
3190  *  - If a logical UNIT is to be cleared , we send the
3191  *    IDENTIFY(lun) + M_ABORT.
3192  *  - If an untagged task is to be aborted, we send the
3193  *    IDENTIFY(lun) + M_ABORT.
3194  *  - If a tagged task is to be aborted, we send the
3195  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3196  *
3197  *  Once our 'kiss of death' :) message has been accepted
3198  *  by the target, the SCRIPTS interrupts again
3199  *  (SIR_ABORT_SENT). On this interrupt, we complete
3200  *  all the CCBs that should have been aborted by the
3201  *  target according to our message.
3202  */
3203 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3204 {
3205 	SYM_QUEHEAD *qp;
3206 	struct sym_ccb *cp;
3207 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3208 	struct scsi_target *starget;
3209 	int target=-1, lun=-1, task;
3210 	int i, k;
3211 
3212 	switch(num) {
3213 	/*
3214 	 *  The SCRIPTS processor stopped before starting
3215 	 *  the next command in order to allow us to perform
3216 	 *  some task recovery.
3217 	 */
3218 	case SIR_SCRIPT_STOPPED:
3219 		/*
3220 		 *  Do we have any target to reset or unit to clear ?
3221 		 */
3222 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3223 			tp = &np->target[i];
3224 			if (tp->to_reset ||
3225 			    (tp->lun0p && tp->lun0p->to_clear)) {
3226 				target = i;
3227 				break;
3228 			}
3229 			if (!tp->lunmp)
3230 				continue;
3231 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3232 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3233 					target	= i;
3234 					break;
3235 				}
3236 			}
3237 			if (target != -1)
3238 				break;
3239 		}
3240 
3241 		/*
3242 		 *  If not, walk the busy queue for any
3243 		 *  disconnected CCB to be aborted.
3244 		 */
3245 		if (target == -1) {
3246 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3247 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3248 				if (cp->host_status != HS_DISCONNECT)
3249 					continue;
3250 				if (cp->to_abort) {
3251 					target = cp->target;
3252 					break;
3253 				}
3254 			}
3255 		}
3256 
3257 		/*
3258 		 *  If some target is to be selected,
3259 		 *  prepare and start the selection.
3260 		 */
3261 		if (target != -1) {
3262 			tp = &np->target[target];
3263 			np->abrt_sel.sel_id	= target;
3264 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3265 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3266 			OUTL(np, nc_dsa, np->hcb_ba);
3267 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3268 			return;
3269 		}
3270 
3271 		/*
3272 		 *  Now look for a CCB to abort that haven't started yet.
3273 		 *  Btw, the SCRIPTS processor is still stopped, so
3274 		 *  we are not in race.
3275 		 */
3276 		i = 0;
3277 		cp = NULL;
3278 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3279 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3280 			if (cp->host_status != HS_BUSY &&
3281 			    cp->host_status != HS_NEGOTIATE)
3282 				continue;
3283 			if (!cp->to_abort)
3284 				continue;
3285 #ifdef SYM_CONF_IARB_SUPPORT
3286 			/*
3287 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3288 			 *    want to cancel the last queued CCB, since the
3289 			 *    SCRIPTS may have anticipated the selection.
3290 			 */
3291 			if (cp == np->last_cp) {
3292 				cp->to_abort = 0;
3293 				continue;
3294 			}
3295 #endif
3296 			i = 1;	/* Means we have found some */
3297 			break;
3298 		}
3299 		if (!i) {
3300 			/*
3301 			 *  We are done, so we donnot need
3302 			 *  to synchronize with the SCRIPTS anylonger.
3303 			 *  Remove the SEM flag from the ISTAT.
3304 			 */
3305 			np->istat_sem = 0;
3306 			OUTB(np, nc_istat, SIGP);
3307 			break;
3308 		}
3309 		/*
3310 		 *  Compute index of next position in the start
3311 		 *  queue the SCRIPTS intends to start and dequeue
3312 		 *  all CCBs for that device that haven't been started.
3313 		 */
3314 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3315 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3316 
3317 		/*
3318 		 *  Make sure at least our IO to abort has been dequeued.
3319 		 */
3320 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3321 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3322 #else
3323 		sym_remque(&cp->link_ccbq);
3324 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3325 #endif
3326 		/*
3327 		 *  Keep track in cam status of the reason of the abort.
3328 		 */
3329 		if (cp->to_abort == 2)
3330 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3331 		else
3332 			sym_set_cam_status(cp->cmd, DID_ABORT);
3333 
3334 		/*
3335 		 *  Complete with error everything that we have dequeued.
3336 	 	 */
3337 		sym_flush_comp_queue(np, 0);
3338 		break;
3339 	/*
3340 	 *  The SCRIPTS processor has selected a target
3341 	 *  we may have some manual recovery to perform for.
3342 	 */
3343 	case SIR_TARGET_SELECTED:
3344 		target = INB(np, nc_sdid) & 0xf;
3345 		tp = &np->target[target];
3346 
3347 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3348 
3349 		/*
3350 		 *  If the target is to be reset, prepare a
3351 		 *  M_RESET message and clear the to_reset flag
3352 		 *  since we donnot expect this operation to fail.
3353 		 */
3354 		if (tp->to_reset) {
3355 			np->abrt_msg[0] = M_RESET;
3356 			np->abrt_tbl.size = 1;
3357 			tp->to_reset = 0;
3358 			break;
3359 		}
3360 
3361 		/*
3362 		 *  Otherwise, look for some logical unit to be cleared.
3363 		 */
3364 		if (tp->lun0p && tp->lun0p->to_clear)
3365 			lun = 0;
3366 		else if (tp->lunmp) {
3367 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3368 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3369 					lun = k;
3370 					break;
3371 				}
3372 			}
3373 		}
3374 
3375 		/*
3376 		 *  If a logical unit is to be cleared, prepare
3377 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3378 		 */
3379 		if (lun != -1) {
3380 			struct sym_lcb *lp = sym_lp(tp, lun);
3381 			lp->to_clear = 0; /* We don't expect to fail here */
3382 			np->abrt_msg[0] = IDENTIFY(0, lun);
3383 			np->abrt_msg[1] = M_ABORT;
3384 			np->abrt_tbl.size = 2;
3385 			break;
3386 		}
3387 
3388 		/*
3389 		 *  Otherwise, look for some disconnected job to
3390 		 *  abort for this target.
3391 		 */
3392 		i = 0;
3393 		cp = NULL;
3394 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3395 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3396 			if (cp->host_status != HS_DISCONNECT)
3397 				continue;
3398 			if (cp->target != target)
3399 				continue;
3400 			if (!cp->to_abort)
3401 				continue;
3402 			i = 1;	/* Means we have some */
3403 			break;
3404 		}
3405 
3406 		/*
3407 		 *  If we have none, probably since the device has
3408 		 *  completed the command before we won abitration,
3409 		 *  send a M_ABORT message without IDENTIFY.
3410 		 *  According to the specs, the device must just
3411 		 *  disconnect the BUS and not abort any task.
3412 		 */
3413 		if (!i) {
3414 			np->abrt_msg[0] = M_ABORT;
3415 			np->abrt_tbl.size = 1;
3416 			break;
3417 		}
3418 
3419 		/*
3420 		 *  We have some task to abort.
3421 		 *  Set the IDENTIFY(lun)
3422 		 */
3423 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3424 
3425 		/*
3426 		 *  If we want to abort an untagged command, we
3427 		 *  will send a IDENTIFY + M_ABORT.
3428 		 *  Otherwise (tagged command), we will send
3429 		 *  a IDENTITFY + task attributes + ABORT TAG.
3430 		 */
3431 		if (cp->tag == NO_TAG) {
3432 			np->abrt_msg[1] = M_ABORT;
3433 			np->abrt_tbl.size = 2;
3434 		} else {
3435 			np->abrt_msg[1] = cp->scsi_smsg[1];
3436 			np->abrt_msg[2] = cp->scsi_smsg[2];
3437 			np->abrt_msg[3] = M_ABORT_TAG;
3438 			np->abrt_tbl.size = 4;
3439 		}
3440 		/*
3441 		 *  Keep track of software timeout condition, since the
3442 		 *  peripheral driver may not count retries on abort
3443 		 *  conditions not due to timeout.
3444 		 */
3445 		if (cp->to_abort == 2)
3446 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3447 		cp->to_abort = 0; /* We donnot expect to fail here */
3448 		break;
3449 
3450 	/*
3451 	 *  The target has accepted our message and switched
3452 	 *  to BUS FREE phase as we expected.
3453 	 */
3454 	case SIR_ABORT_SENT:
3455 		target = INB(np, nc_sdid) & 0xf;
3456 		tp = &np->target[target];
3457 		starget = tp->starget;
3458 
3459 		/*
3460 		**  If we didn't abort anything, leave here.
3461 		*/
3462 		if (np->abrt_msg[0] == M_ABORT)
3463 			break;
3464 
3465 		/*
3466 		 *  If we sent a M_RESET, then a hardware reset has
3467 		 *  been performed by the target.
3468 		 *  - Reset everything to async 8 bit
3469 		 *  - Tell ourself to negotiate next time :-)
3470 		 *  - Prepare to clear all disconnected CCBs for
3471 		 *    this target from our task list (lun=task=-1)
3472 		 */
3473 		lun = -1;
3474 		task = -1;
3475 		if (np->abrt_msg[0] == M_RESET) {
3476 			tp->head.sval = 0;
3477 			tp->head.wval = np->rv_scntl3;
3478 			tp->head.uval = 0;
3479 			spi_period(starget) = 0;
3480 			spi_offset(starget) = 0;
3481 			spi_width(starget) = 0;
3482 			spi_iu(starget) = 0;
3483 			spi_dt(starget) = 0;
3484 			spi_qas(starget) = 0;
3485 			tp->tgoal.check_nego = 1;
3486 		}
3487 
3488 		/*
3489 		 *  Otherwise, check for the LUN and TASK(s)
3490 		 *  concerned by the cancelation.
3491 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3492 		 *  or an ABORT message :-)
3493 		 */
3494 		else {
3495 			lun = np->abrt_msg[0] & 0x3f;
3496 			if (np->abrt_msg[1] == M_ABORT_TAG)
3497 				task = np->abrt_msg[2];
3498 		}
3499 
3500 		/*
3501 		 *  Complete all the CCBs the device should have
3502 		 *  aborted due to our 'kiss of death' message.
3503 		 */
3504 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3505 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3506 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3507 		sym_flush_comp_queue(np, 0);
3508 
3509  		/*
3510 		 *  If we sent a BDR, make upper layer aware of that.
3511  		 */
3512 		if (np->abrt_msg[0] == M_RESET)
3513 			sym_xpt_async_sent_bdr(np, target);
3514 		break;
3515 	}
3516 
3517 	/*
3518 	 *  Print to the log the message we intend to send.
3519 	 */
3520 	if (num == SIR_TARGET_SELECTED) {
3521 		dev_info(&tp->starget->dev, "control msgout:");
3522 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3523 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3524 	}
3525 
3526 	/*
3527 	 *  Let the SCRIPTS processor continue.
3528 	 */
3529 	OUTONB_STD();
3530 }
3531 
3532 /*
3533  *  Gerard's alchemy:) that deals with with the data
3534  *  pointer for both MDP and the residual calculation.
3535  *
3536  *  I didn't want to bloat the code by more than 200
3537  *  lines for the handling of both MDP and the residual.
3538  *  This has been achieved by using a data pointer
3539  *  representation consisting in an index in the data
3540  *  array (dp_sg) and a negative offset (dp_ofs) that
3541  *  have the following meaning:
3542  *
3543  *  - dp_sg = SYM_CONF_MAX_SG
3544  *    we are at the end of the data script.
3545  *  - dp_sg < SYM_CONF_MAX_SG
3546  *    dp_sg points to the next entry of the scatter array
3547  *    we want to transfer.
3548  *  - dp_ofs < 0
3549  *    dp_ofs represents the residual of bytes of the
3550  *    previous entry scatter entry we will send first.
3551  *  - dp_ofs = 0
3552  *    no residual to send first.
3553  *
3554  *  The function sym_evaluate_dp() accepts an arbitray
3555  *  offset (basically from the MDP message) and returns
3556  *  the corresponding values of dp_sg and dp_ofs.
3557  */
3558 
3559 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3560 {
3561 	u32	dp_scr;
3562 	int	dp_ofs, dp_sg, dp_sgmin;
3563 	int	tmp;
3564 	struct sym_pmc *pm;
3565 
3566 	/*
3567 	 *  Compute the resulted data pointer in term of a script
3568 	 *  address within some DATA script and a signed byte offset.
3569 	 */
3570 	dp_scr = scr;
3571 	dp_ofs = *ofs;
3572 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3573 		pm = &cp->phys.pm0;
3574 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3575 		pm = &cp->phys.pm1;
3576 	else
3577 		pm = NULL;
3578 
3579 	if (pm) {
3580 		dp_scr  = scr_to_cpu(pm->ret);
3581 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3582 	}
3583 
3584 	/*
3585 	 *  If we are auto-sensing, then we are done.
3586 	 */
3587 	if (cp->host_flags & HF_SENSE) {
3588 		*ofs = dp_ofs;
3589 		return 0;
3590 	}
3591 
3592 	/*
3593 	 *  Deduce the index of the sg entry.
3594 	 *  Keep track of the index of the first valid entry.
3595 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3596 	 *  end of the data.
3597 	 */
3598 	tmp = scr_to_cpu(cp->goalp);
3599 	dp_sg = SYM_CONF_MAX_SG;
3600 	if (dp_scr != tmp)
3601 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3602 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3603 
3604 	/*
3605 	 *  Move to the sg entry the data pointer belongs to.
3606 	 *
3607 	 *  If we are inside the data area, we expect result to be:
3608 	 *
3609 	 *  Either,
3610 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3611 	 *      the data pointer belongs to (or the end of the data)
3612 	 *  Or,
3613 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3614 	 *      the data pointer belongs to + 1.
3615 	 */
3616 	if (dp_ofs < 0) {
3617 		int n;
3618 		while (dp_sg > dp_sgmin) {
3619 			--dp_sg;
3620 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3621 			n = dp_ofs + (tmp & 0xffffff);
3622 			if (n > 0) {
3623 				++dp_sg;
3624 				break;
3625 			}
3626 			dp_ofs = n;
3627 		}
3628 	}
3629 	else if (dp_ofs > 0) {
3630 		while (dp_sg < SYM_CONF_MAX_SG) {
3631 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3632 			dp_ofs -= (tmp & 0xffffff);
3633 			++dp_sg;
3634 			if (dp_ofs <= 0)
3635 				break;
3636 		}
3637 	}
3638 
3639 	/*
3640 	 *  Make sure the data pointer is inside the data area.
3641 	 *  If not, return some error.
3642 	 */
3643 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3644 		goto out_err;
3645 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3646 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3647 		goto out_err;
3648 
3649 	/*
3650 	 *  Save the extreme pointer if needed.
3651 	 */
3652 	if (dp_sg > cp->ext_sg ||
3653             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3654 		cp->ext_sg  = dp_sg;
3655 		cp->ext_ofs = dp_ofs;
3656 	}
3657 
3658 	/*
3659 	 *  Return data.
3660 	 */
3661 	*ofs = dp_ofs;
3662 	return dp_sg;
3663 
3664 out_err:
3665 	return -1;
3666 }
3667 
3668 /*
3669  *  chip handler for MODIFY DATA POINTER MESSAGE
3670  *
3671  *  We also call this function on IGNORE WIDE RESIDUE
3672  *  messages that do not match a SWIDE full condition.
3673  *  Btw, we assume in that situation that such a message
3674  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3675  */
3676 
3677 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3678 {
3679 	int dp_ofs	= ofs;
3680 	u32	dp_scr	= sym_get_script_dp (np, cp);
3681 	u32	dp_ret;
3682 	u32	tmp;
3683 	u_char	hflags;
3684 	int	dp_sg;
3685 	struct	sym_pmc *pm;
3686 
3687 	/*
3688 	 *  Not supported for auto-sense.
3689 	 */
3690 	if (cp->host_flags & HF_SENSE)
3691 		goto out_reject;
3692 
3693 	/*
3694 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3695 	 *  to the resulted data pointer.
3696 	 */
3697 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3698 	if (dp_sg < 0)
3699 		goto out_reject;
3700 
3701 	/*
3702 	 *  And our alchemy:) allows to easily calculate the data
3703 	 *  script address we want to return for the next data phase.
3704 	 */
3705 	dp_ret = cpu_to_scr(cp->goalp);
3706 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3707 
3708 	/*
3709 	 *  If offset / scatter entry is zero we donnot need
3710 	 *  a context for the new current data pointer.
3711 	 */
3712 	if (dp_ofs == 0) {
3713 		dp_scr = dp_ret;
3714 		goto out_ok;
3715 	}
3716 
3717 	/*
3718 	 *  Get a context for the new current data pointer.
3719 	 */
3720 	hflags = INB(np, HF_PRT);
3721 
3722 	if (hflags & HF_DP_SAVED)
3723 		hflags ^= HF_ACT_PM;
3724 
3725 	if (!(hflags & HF_ACT_PM)) {
3726 		pm  = &cp->phys.pm0;
3727 		dp_scr = SCRIPTA_BA(np, pm0_data);
3728 	}
3729 	else {
3730 		pm = &cp->phys.pm1;
3731 		dp_scr = SCRIPTA_BA(np, pm1_data);
3732 	}
3733 
3734 	hflags &= ~(HF_DP_SAVED);
3735 
3736 	OUTB(np, HF_PRT, hflags);
3737 
3738 	/*
3739 	 *  Set up the new current data pointer.
3740 	 *  ofs < 0 there, and for the next data phase, we
3741 	 *  want to transfer part of the data of the sg entry
3742 	 *  corresponding to index dp_sg-1 prior to returning
3743 	 *  to the main data script.
3744 	 */
3745 	pm->ret = cpu_to_scr(dp_ret);
3746 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3747 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3748 	pm->sg.addr = cpu_to_scr(tmp);
3749 	pm->sg.size = cpu_to_scr(-dp_ofs);
3750 
3751 out_ok:
3752 	sym_set_script_dp (np, cp, dp_scr);
3753 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3754 	return;
3755 
3756 out_reject:
3757 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3758 }
3759 
3760 
3761 /*
3762  *  chip calculation of the data residual.
3763  *
3764  *  As I used to say, the requirement of data residual
3765  *  in SCSI is broken, useless and cannot be achieved
3766  *  without huge complexity.
3767  *  But most OSes and even the official CAM require it.
3768  *  When stupidity happens to be so widely spread inside
3769  *  a community, it gets hard to convince.
3770  *
3771  *  Anyway, I don't care, since I am not going to use
3772  *  any software that considers this data residual as
3773  *  a relevant information. :)
3774  */
3775 
3776 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3777 {
3778 	int dp_sg, dp_sgmin, resid = 0;
3779 	int dp_ofs = 0;
3780 
3781 	/*
3782 	 *  Check for some data lost or just thrown away.
3783 	 *  We are not required to be quite accurate in this
3784 	 *  situation. Btw, if we are odd for output and the
3785 	 *  device claims some more data, it may well happen
3786 	 *  than our residual be zero. :-)
3787 	 */
3788 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3789 		if (cp->xerr_status & XE_EXTRA_DATA)
3790 			resid -= cp->extra_bytes;
3791 		if (cp->xerr_status & XE_SODL_UNRUN)
3792 			++resid;
3793 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3794 			--resid;
3795 	}
3796 
3797 	/*
3798 	 *  If all data has been transferred,
3799 	 *  there is no residual.
3800 	 */
3801 	if (cp->phys.head.lastp == cp->goalp)
3802 		return resid;
3803 
3804 	/*
3805 	 *  If no data transfer occurs, or if the data
3806 	 *  pointer is weird, return full residual.
3807 	 */
3808 	if (cp->startp == cp->phys.head.lastp ||
3809 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3810 			    &dp_ofs) < 0) {
3811 		return cp->data_len;
3812 	}
3813 
3814 	/*
3815 	 *  If we were auto-sensing, then we are done.
3816 	 */
3817 	if (cp->host_flags & HF_SENSE) {
3818 		return -dp_ofs;
3819 	}
3820 
3821 	/*
3822 	 *  We are now full comfortable in the computation
3823 	 *  of the data residual (2's complement).
3824 	 */
3825 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3826 	resid = -cp->ext_ofs;
3827 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3828 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3829 		resid += (tmp & 0xffffff);
3830 	}
3831 
3832 	resid -= cp->odd_byte_adjustment;
3833 
3834 	/*
3835 	 *  Hopefully, the result is not too wrong.
3836 	 */
3837 	return resid;
3838 }
3839 
3840 /*
3841  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3842  *
3843  *  When we try to negotiate, we append the negotiation message
3844  *  to the identify and (maybe) simple tag message.
3845  *  The host status field is set to HS_NEGOTIATE to mark this
3846  *  situation.
3847  *
3848  *  If the target doesn't answer this message immediately
3849  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3850  *  will be raised eventually.
3851  *  The handler removes the HS_NEGOTIATE status, and sets the
3852  *  negotiated value to the default (async / nowide).
3853  *
3854  *  If we receive a matching answer immediately, we check it
3855  *  for validity, and set the values.
3856  *
3857  *  If we receive a Reject message immediately, we assume the
3858  *  negotiation has failed, and fall back to standard values.
3859  *
3860  *  If we receive a negotiation message while not in HS_NEGOTIATE
3861  *  state, it's a target initiated negotiation. We prepare a
3862  *  (hopefully) valid answer, set our parameters, and send back
3863  *  this answer to the target.
3864  *
3865  *  If the target doesn't fetch the answer (no message out phase),
3866  *  we assume the negotiation has failed, and fall back to default
3867  *  settings (SIR_NEGO_PROTO interrupt).
3868  *
3869  *  When we set the values, we adjust them in all ccbs belonging
3870  *  to this target, in the controller's register, and in the "phys"
3871  *  field of the controller's struct sym_hcb.
3872  */
3873 
3874 /*
3875  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3876  */
3877 static int
3878 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3879 {
3880 	int target = cp->target;
3881 	u_char	chg, ofs, per, fak, div;
3882 
3883 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3884 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3885 	}
3886 
3887 	/*
3888 	 *  Get requested values.
3889 	 */
3890 	chg = 0;
3891 	per = np->msgin[3];
3892 	ofs = np->msgin[4];
3893 
3894 	/*
3895 	 *  Check values against our limits.
3896 	 */
3897 	if (ofs) {
3898 		if (ofs > np->maxoffs)
3899 			{chg = 1; ofs = np->maxoffs;}
3900 	}
3901 
3902 	if (ofs) {
3903 		if (per < np->minsync)
3904 			{chg = 1; per = np->minsync;}
3905 	}
3906 
3907 	/*
3908 	 *  Get new chip synchronous parameters value.
3909 	 */
3910 	div = fak = 0;
3911 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3912 		goto reject_it;
3913 
3914 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3915 		sym_print_addr(cp->cmd,
3916 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3917 				ofs, per, div, fak, chg);
3918 	}
3919 
3920 	/*
3921 	 *  If it was an answer we want to change,
3922 	 *  then it isn't acceptable. Reject it.
3923 	 */
3924 	if (!req && chg)
3925 		goto reject_it;
3926 
3927 	/*
3928 	 *  Apply new values.
3929 	 */
3930 	sym_setsync (np, target, ofs, per, div, fak);
3931 
3932 	/*
3933 	 *  It was an answer. We are done.
3934 	 */
3935 	if (!req)
3936 		return 0;
3937 
3938 	/*
3939 	 *  It was a request. Prepare an answer message.
3940 	 */
3941 	spi_populate_sync_msg(np->msgout, per, ofs);
3942 
3943 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3944 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3945 	}
3946 
3947 	np->msgin [0] = M_NOOP;
3948 
3949 	return 0;
3950 
3951 reject_it:
3952 	sym_setsync (np, target, 0, 0, 0, 0);
3953 	return -1;
3954 }
3955 
3956 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3957 {
3958 	int req = 1;
3959 	int result;
3960 
3961 	/*
3962 	 *  Request or answer ?
3963 	 */
3964 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3965 		OUTB(np, HS_PRT, HS_BUSY);
3966 		if (cp->nego_status && cp->nego_status != NS_SYNC)
3967 			goto reject_it;
3968 		req = 0;
3969 	}
3970 
3971 	/*
3972 	 *  Check and apply new values.
3973 	 */
3974 	result = sym_sync_nego_check(np, req, cp);
3975 	if (result)	/* Not acceptable, reject it */
3976 		goto reject_it;
3977 	if (req) {	/* Was a request, send response. */
3978 		cp->nego_status = NS_SYNC;
3979 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
3980 	}
3981 	else		/* Was a response, we are done. */
3982 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3983 	return;
3984 
3985 reject_it:
3986 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3987 }
3988 
3989 /*
3990  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
3991  */
3992 static int
3993 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
3994 {
3995 	struct sym_tcb *tp = &np->target[target];
3996 	unsigned char fak, div;
3997 	int dt, chg = 0;
3998 
3999 	unsigned char per = np->msgin[3];
4000 	unsigned char ofs = np->msgin[5];
4001 	unsigned char wide = np->msgin[6];
4002 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4003 
4004 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4005 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4006 	}
4007 
4008 	/*
4009 	 *  Check values against our limits.
4010 	 */
4011 	if (wide > np->maxwide) {
4012 		chg = 1;
4013 		wide = np->maxwide;
4014 	}
4015 	if (!wide || !(np->features & FE_U3EN))
4016 		opts = 0;
4017 
4018 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4019 		chg = 1;
4020 
4021 	dt = opts & PPR_OPT_DT;
4022 
4023 	if (ofs) {
4024 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4025 		if (ofs > maxoffs) {
4026 			chg = 1;
4027 			ofs = maxoffs;
4028 		}
4029 	}
4030 
4031 	if (ofs) {
4032 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4033 		if (per < minsync) {
4034 			chg = 1;
4035 			per = minsync;
4036 		}
4037 	}
4038 
4039 	/*
4040 	 *  Get new chip synchronous parameters value.
4041 	 */
4042 	div = fak = 0;
4043 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4044 		goto reject_it;
4045 
4046 	/*
4047 	 *  If it was an answer we want to change,
4048 	 *  then it isn't acceptable. Reject it.
4049 	 */
4050 	if (!req && chg)
4051 		goto reject_it;
4052 
4053 	/*
4054 	 *  Apply new values.
4055 	 */
4056 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4057 
4058 	/*
4059 	 *  It was an answer. We are done.
4060 	 */
4061 	if (!req)
4062 		return 0;
4063 
4064 	/*
4065 	 *  It was a request. Prepare an answer message.
4066 	 */
4067 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4068 
4069 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4070 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4071 	}
4072 
4073 	np->msgin [0] = M_NOOP;
4074 
4075 	return 0;
4076 
4077 reject_it:
4078 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4079 	/*
4080 	 *  If it is a device response that should result in
4081 	 *  ST, we may want to try a legacy negotiation later.
4082 	 */
4083 	if (!req && !opts) {
4084 		tp->tgoal.period = per;
4085 		tp->tgoal.offset = ofs;
4086 		tp->tgoal.width = wide;
4087 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4088 		tp->tgoal.check_nego = 1;
4089 	}
4090 	return -1;
4091 }
4092 
4093 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4094 {
4095 	int req = 1;
4096 	int result;
4097 
4098 	/*
4099 	 *  Request or answer ?
4100 	 */
4101 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4102 		OUTB(np, HS_PRT, HS_BUSY);
4103 		if (cp->nego_status && cp->nego_status != NS_PPR)
4104 			goto reject_it;
4105 		req = 0;
4106 	}
4107 
4108 	/*
4109 	 *  Check and apply new values.
4110 	 */
4111 	result = sym_ppr_nego_check(np, req, cp->target);
4112 	if (result)	/* Not acceptable, reject it */
4113 		goto reject_it;
4114 	if (req) {	/* Was a request, send response. */
4115 		cp->nego_status = NS_PPR;
4116 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4117 	}
4118 	else		/* Was a response, we are done. */
4119 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4120 	return;
4121 
4122 reject_it:
4123 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4124 }
4125 
4126 /*
4127  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4128  */
4129 static int
4130 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4131 {
4132 	int target = cp->target;
4133 	u_char	chg, wide;
4134 
4135 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4136 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4137 	}
4138 
4139 	/*
4140 	 *  Get requested values.
4141 	 */
4142 	chg  = 0;
4143 	wide = np->msgin[3];
4144 
4145 	/*
4146 	 *  Check values against our limits.
4147 	 */
4148 	if (wide > np->maxwide) {
4149 		chg = 1;
4150 		wide = np->maxwide;
4151 	}
4152 
4153 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4154 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4155 				wide, chg);
4156 	}
4157 
4158 	/*
4159 	 *  If it was an answer we want to change,
4160 	 *  then it isn't acceptable. Reject it.
4161 	 */
4162 	if (!req && chg)
4163 		goto reject_it;
4164 
4165 	/*
4166 	 *  Apply new values.
4167 	 */
4168 	sym_setwide (np, target, wide);
4169 
4170 	/*
4171 	 *  It was an answer. We are done.
4172 	 */
4173 	if (!req)
4174 		return 0;
4175 
4176 	/*
4177 	 *  It was a request. Prepare an answer message.
4178 	 */
4179 	spi_populate_width_msg(np->msgout, wide);
4180 
4181 	np->msgin [0] = M_NOOP;
4182 
4183 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4184 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4185 	}
4186 
4187 	return 0;
4188 
4189 reject_it:
4190 	return -1;
4191 }
4192 
4193 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4194 {
4195 	int req = 1;
4196 	int result;
4197 
4198 	/*
4199 	 *  Request or answer ?
4200 	 */
4201 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4202 		OUTB(np, HS_PRT, HS_BUSY);
4203 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4204 			goto reject_it;
4205 		req = 0;
4206 	}
4207 
4208 	/*
4209 	 *  Check and apply new values.
4210 	 */
4211 	result = sym_wide_nego_check(np, req, cp);
4212 	if (result)	/* Not acceptable, reject it */
4213 		goto reject_it;
4214 	if (req) {	/* Was a request, send response. */
4215 		cp->nego_status = NS_WIDE;
4216 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4217 	} else {		/* Was a response. */
4218 		/*
4219 		 * Negotiate for SYNC immediately after WIDE response.
4220 		 * This allows to negotiate for both WIDE and SYNC on
4221 		 * a single SCSI command (Suggested by Justin Gibbs).
4222 		 */
4223 		if (tp->tgoal.offset) {
4224 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4225 					tp->tgoal.offset);
4226 
4227 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4228 				sym_print_nego_msg(np, cp->target,
4229 				                   "sync msgout", np->msgout);
4230 			}
4231 
4232 			cp->nego_status = NS_SYNC;
4233 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4234 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4235 			return;
4236 		} else
4237 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4238 	}
4239 
4240 	return;
4241 
4242 reject_it:
4243 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4244 }
4245 
4246 /*
4247  *  Reset DT, SYNC or WIDE to default settings.
4248  *
4249  *  Called when a negotiation does not succeed either
4250  *  on rejection or on protocol error.
4251  *
4252  *  A target that understands a PPR message should never
4253  *  reject it, and messing with it is very unlikely.
4254  *  So, if a PPR makes problems, we may just want to
4255  *  try a legacy negotiation later.
4256  */
4257 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4258 {
4259 	switch (cp->nego_status) {
4260 	case NS_PPR:
4261 #if 0
4262 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4263 #else
4264 		if (tp->tgoal.period < np->minsync)
4265 			tp->tgoal.period = np->minsync;
4266 		if (tp->tgoal.offset > np->maxoffs)
4267 			tp->tgoal.offset = np->maxoffs;
4268 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4269 		tp->tgoal.check_nego = 1;
4270 #endif
4271 		break;
4272 	case NS_SYNC:
4273 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4274 		break;
4275 	case NS_WIDE:
4276 		sym_setwide (np, cp->target, 0);
4277 		break;
4278 	}
4279 	np->msgin [0] = M_NOOP;
4280 	np->msgout[0] = M_NOOP;
4281 	cp->nego_status = 0;
4282 }
4283 
4284 /*
4285  *  chip handler for MESSAGE REJECT received in response to
4286  *  PPR, WIDE or SYNCHRONOUS negotiation.
4287  */
4288 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4289 {
4290 	sym_nego_default(np, tp, cp);
4291 	OUTB(np, HS_PRT, HS_BUSY);
4292 }
4293 
4294 /*
4295  *  chip exception handler for programmed interrupts.
4296  */
4297 static void sym_int_sir (struct sym_hcb *np)
4298 {
4299 	u_char	num	= INB(np, nc_dsps);
4300 	u32	dsa	= INL(np, nc_dsa);
4301 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4302 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4303 	struct sym_tcb *tp	= &np->target[target];
4304 	int	tmp;
4305 
4306 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4307 
4308 	switch (num) {
4309 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4310 	/*
4311 	 *  SCRIPTS tell us that we may have to update
4312 	 *  64 bit DMA segment registers.
4313 	 */
4314 	case SIR_DMAP_DIRTY:
4315 		sym_update_dmap_regs(np);
4316 		goto out;
4317 #endif
4318 	/*
4319 	 *  Command has been completed with error condition
4320 	 *  or has been auto-sensed.
4321 	 */
4322 	case SIR_COMPLETE_ERROR:
4323 		sym_complete_error(np, cp);
4324 		return;
4325 	/*
4326 	 *  The C code is currently trying to recover from something.
4327 	 *  Typically, user want to abort some command.
4328 	 */
4329 	case SIR_SCRIPT_STOPPED:
4330 	case SIR_TARGET_SELECTED:
4331 	case SIR_ABORT_SENT:
4332 		sym_sir_task_recovery(np, num);
4333 		return;
4334 	/*
4335 	 *  The device didn't go to MSG OUT phase after having
4336 	 *  been selected with ATN. We donnot want to handle
4337 	 *  that.
4338 	 */
4339 	case SIR_SEL_ATN_NO_MSG_OUT:
4340 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4341 			sym_name (np), target);
4342 		goto out_stuck;
4343 	/*
4344 	 *  The device didn't switch to MSG IN phase after
4345 	 *  having reseleted the initiator.
4346 	 */
4347 	case SIR_RESEL_NO_MSG_IN:
4348 		printf ("%s:%d: No MSG IN phase after reselection.\n",
4349 			sym_name (np), target);
4350 		goto out_stuck;
4351 	/*
4352 	 *  After reselection, the device sent a message that wasn't
4353 	 *  an IDENTIFY.
4354 	 */
4355 	case SIR_RESEL_NO_IDENTIFY:
4356 		printf ("%s:%d: No IDENTIFY after reselection.\n",
4357 			sym_name (np), target);
4358 		goto out_stuck;
4359 	/*
4360 	 *  The device reselected a LUN we donnot know about.
4361 	 */
4362 	case SIR_RESEL_BAD_LUN:
4363 		np->msgout[0] = M_RESET;
4364 		goto out;
4365 	/*
4366 	 *  The device reselected for an untagged nexus and we
4367 	 *  haven't any.
4368 	 */
4369 	case SIR_RESEL_BAD_I_T_L:
4370 		np->msgout[0] = M_ABORT;
4371 		goto out;
4372 	/*
4373 	 *  The device reselected for a tagged nexus that we donnot
4374 	 *  have.
4375 	 */
4376 	case SIR_RESEL_BAD_I_T_L_Q:
4377 		np->msgout[0] = M_ABORT_TAG;
4378 		goto out;
4379 	/*
4380 	 *  The SCRIPTS let us know that the device has grabbed
4381 	 *  our message and will abort the job.
4382 	 */
4383 	case SIR_RESEL_ABORTED:
4384 		np->lastmsg = np->msgout[0];
4385 		np->msgout[0] = M_NOOP;
4386 		printf ("%s:%d: message %x sent on bad reselection.\n",
4387 			sym_name (np), target, np->lastmsg);
4388 		goto out;
4389 	/*
4390 	 *  The SCRIPTS let us know that a message has been
4391 	 *  successfully sent to the device.
4392 	 */
4393 	case SIR_MSG_OUT_DONE:
4394 		np->lastmsg = np->msgout[0];
4395 		np->msgout[0] = M_NOOP;
4396 		/* Should we really care of that */
4397 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4398 			if (cp) {
4399 				cp->xerr_status &= ~XE_PARITY_ERR;
4400 				if (!cp->xerr_status)
4401 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4402 			}
4403 		}
4404 		goto out;
4405 	/*
4406 	 *  The device didn't send a GOOD SCSI status.
4407 	 *  We may have some work to do prior to allow
4408 	 *  the SCRIPTS processor to continue.
4409 	 */
4410 	case SIR_BAD_SCSI_STATUS:
4411 		if (!cp)
4412 			goto out;
4413 		sym_sir_bad_scsi_status(np, num, cp);
4414 		return;
4415 	/*
4416 	 *  We are asked by the SCRIPTS to prepare a
4417 	 *  REJECT message.
4418 	 */
4419 	case SIR_REJECT_TO_SEND:
4420 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4421 		np->msgout[0] = M_REJECT;
4422 		goto out;
4423 	/*
4424 	 *  We have been ODD at the end of a DATA IN
4425 	 *  transfer and the device didn't send a
4426 	 *  IGNORE WIDE RESIDUE message.
4427 	 *  It is a data overrun condition.
4428 	 */
4429 	case SIR_SWIDE_OVERRUN:
4430 		if (cp) {
4431 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4432 			cp->xerr_status |= XE_SWIDE_OVRUN;
4433 		}
4434 		goto out;
4435 	/*
4436 	 *  We have been ODD at the end of a DATA OUT
4437 	 *  transfer.
4438 	 *  It is a data underrun condition.
4439 	 */
4440 	case SIR_SODL_UNDERRUN:
4441 		if (cp) {
4442 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4443 			cp->xerr_status |= XE_SODL_UNRUN;
4444 		}
4445 		goto out;
4446 	/*
4447 	 *  The device wants us to tranfer more data than
4448 	 *  expected or in the wrong direction.
4449 	 *  The number of extra bytes is in scratcha.
4450 	 *  It is a data overrun condition.
4451 	 */
4452 	case SIR_DATA_OVERRUN:
4453 		if (cp) {
4454 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4455 			cp->xerr_status |= XE_EXTRA_DATA;
4456 			cp->extra_bytes += INL(np, nc_scratcha);
4457 		}
4458 		goto out;
4459 	/*
4460 	 *  The device switched to an illegal phase (4/5).
4461 	 */
4462 	case SIR_BAD_PHASE:
4463 		if (cp) {
4464 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4465 			cp->xerr_status |= XE_BAD_PHASE;
4466 		}
4467 		goto out;
4468 	/*
4469 	 *  We received a message.
4470 	 */
4471 	case SIR_MSG_RECEIVED:
4472 		if (!cp)
4473 			goto out_stuck;
4474 		switch (np->msgin [0]) {
4475 		/*
4476 		 *  We received an extended message.
4477 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4478 		 *  and reject all other extended messages.
4479 		 */
4480 		case M_EXTENDED:
4481 			switch (np->msgin [2]) {
4482 			case M_X_MODIFY_DP:
4483 				if (DEBUG_FLAGS & DEBUG_POINTER)
4484 					sym_print_msg(cp,"modify DP",np->msgin);
4485 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4486 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4487 				sym_modify_dp(np, tp, cp, tmp);
4488 				return;
4489 			case M_X_SYNC_REQ:
4490 				sym_sync_nego(np, tp, cp);
4491 				return;
4492 			case M_X_PPR_REQ:
4493 				sym_ppr_nego(np, tp, cp);
4494 				return;
4495 			case M_X_WIDE_REQ:
4496 				sym_wide_nego(np, tp, cp);
4497 				return;
4498 			default:
4499 				goto out_reject;
4500 			}
4501 			break;
4502 		/*
4503 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4504 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4505 		 *  RESIDUE messages that haven't been anticipated by
4506 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4507 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4508 		 */
4509 		case M_IGN_RESIDUE:
4510 			if (DEBUG_FLAGS & DEBUG_POINTER)
4511 				sym_print_msg(cp,"ign wide residue", np->msgin);
4512 			if (cp->host_flags & HF_SENSE)
4513 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4514 			else
4515 				sym_modify_dp(np, tp, cp, -1);
4516 			return;
4517 		case M_REJECT:
4518 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4519 				sym_nego_rejected(np, tp, cp);
4520 			else {
4521 				sym_print_addr(cp->cmd,
4522 					"M_REJECT received (%x:%x).\n",
4523 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4524 			}
4525 			goto out_clrack;
4526 			break;
4527 		default:
4528 			goto out_reject;
4529 		}
4530 		break;
4531 	/*
4532 	 *  We received an unknown message.
4533 	 *  Ignore all MSG IN phases and reject it.
4534 	 */
4535 	case SIR_MSG_WEIRD:
4536 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4537 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4538 		return;
4539 	/*
4540 	 *  Negotiation failed.
4541 	 *  Target does not send us the reply.
4542 	 *  Remove the HS_NEGOTIATE status.
4543 	 */
4544 	case SIR_NEGO_FAILED:
4545 		OUTB(np, HS_PRT, HS_BUSY);
4546 	/*
4547 	 *  Negotiation failed.
4548 	 *  Target does not want answer message.
4549 	 */
4550 	case SIR_NEGO_PROTO:
4551 		sym_nego_default(np, tp, cp);
4552 		goto out;
4553 	}
4554 
4555 out:
4556 	OUTONB_STD();
4557 	return;
4558 out_reject:
4559 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4560 	return;
4561 out_clrack:
4562 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4563 	return;
4564 out_stuck:
4565 	return;
4566 }
4567 
4568 /*
4569  *  Acquire a control block
4570  */
4571 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4572 {
4573 	u_char tn = cmd->device->id;
4574 	u_char ln = cmd->device->lun;
4575 	struct sym_tcb *tp = &np->target[tn];
4576 	struct sym_lcb *lp = sym_lp(tp, ln);
4577 	u_short tag = NO_TAG;
4578 	SYM_QUEHEAD *qp;
4579 	struct sym_ccb *cp = NULL;
4580 
4581 	/*
4582 	 *  Look for a free CCB
4583 	 */
4584 	if (sym_que_empty(&np->free_ccbq))
4585 		sym_alloc_ccb(np);
4586 	qp = sym_remque_head(&np->free_ccbq);
4587 	if (!qp)
4588 		goto out;
4589 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4590 
4591 	{
4592 		/*
4593 		 *  If we have been asked for a tagged command.
4594 		 */
4595 		if (tag_order) {
4596 			/*
4597 			 *  Debugging purpose.
4598 			 */
4599 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4600 			assert(lp->busy_itl == 0);
4601 #endif
4602 			/*
4603 			 *  Allocate resources for tags if not yet.
4604 			 */
4605 			if (!lp->cb_tags) {
4606 				sym_alloc_lcb_tags(np, tn, ln);
4607 				if (!lp->cb_tags)
4608 					goto out_free;
4609 			}
4610 			/*
4611 			 *  Get a tag for this SCSI IO and set up
4612 			 *  the CCB bus address for reselection,
4613 			 *  and count it for this LUN.
4614 			 *  Toggle reselect path to tagged.
4615 			 */
4616 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4617 				tag = lp->cb_tags[lp->ia_tag];
4618 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4619 					lp->ia_tag = 0;
4620 				++lp->busy_itlq;
4621 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4622 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4623 				lp->head.resel_sa =
4624 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4625 #endif
4626 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4627 				cp->tags_si = lp->tags_si;
4628 				++lp->tags_sum[cp->tags_si];
4629 				++lp->tags_since;
4630 #endif
4631 			}
4632 			else
4633 				goto out_free;
4634 		}
4635 		/*
4636 		 *  This command will not be tagged.
4637 		 *  If we already have either a tagged or untagged
4638 		 *  one, refuse to overlap this untagged one.
4639 		 */
4640 		else {
4641 			/*
4642 			 *  Debugging purpose.
4643 			 */
4644 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4645 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4646 #endif
4647 			/*
4648 			 *  Count this nexus for this LUN.
4649 			 *  Set up the CCB bus address for reselection.
4650 			 *  Toggle reselect path to untagged.
4651 			 */
4652 			++lp->busy_itl;
4653 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4654 			if (lp->busy_itl == 1) {
4655 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4656 				lp->head.resel_sa =
4657 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4658 			}
4659 			else
4660 				goto out_free;
4661 #endif
4662 		}
4663 	}
4664 	/*
4665 	 *  Put the CCB into the busy queue.
4666 	 */
4667 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4668 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4669 	if (lp) {
4670 		sym_remque(&cp->link2_ccbq);
4671 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4672 	}
4673 
4674 #endif
4675 	cp->to_abort = 0;
4676 	cp->odd_byte_adjustment = 0;
4677 	cp->tag	   = tag;
4678 	cp->order  = tag_order;
4679 	cp->target = tn;
4680 	cp->lun    = ln;
4681 
4682 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4683 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4684 	}
4685 
4686 out:
4687 	return cp;
4688 out_free:
4689 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4690 	return NULL;
4691 }
4692 
4693 /*
4694  *  Release one control block
4695  */
4696 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4697 {
4698 	struct sym_tcb *tp = &np->target[cp->target];
4699 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4700 
4701 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4702 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4703 				cp, cp->tag);
4704 	}
4705 
4706 	/*
4707 	 *  If LCB available,
4708 	 */
4709 	if (lp) {
4710 		/*
4711 		 *  If tagged, release the tag, set the relect path
4712 		 */
4713 		if (cp->tag != NO_TAG) {
4714 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4715 			--lp->tags_sum[cp->tags_si];
4716 #endif
4717 			/*
4718 			 *  Free the tag value.
4719 			 */
4720 			lp->cb_tags[lp->if_tag] = cp->tag;
4721 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4722 				lp->if_tag = 0;
4723 			/*
4724 			 *  Make the reselect path invalid,
4725 			 *  and uncount this CCB.
4726 			 */
4727 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4728 			--lp->busy_itlq;
4729 		} else {	/* Untagged */
4730 			/*
4731 			 *  Make the reselect path invalid,
4732 			 *  and uncount this CCB.
4733 			 */
4734 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4735 			--lp->busy_itl;
4736 		}
4737 		/*
4738 		 *  If no JOB active, make the LUN reselect path invalid.
4739 		 */
4740 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4741 			lp->head.resel_sa =
4742 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4743 	}
4744 
4745 	/*
4746 	 *  We donnot queue more than 1 ccb per target
4747 	 *  with negotiation at any time. If this ccb was
4748 	 *  used for negotiation, clear this info in the tcb.
4749 	 */
4750 	if (cp == tp->nego_cp)
4751 		tp->nego_cp = NULL;
4752 
4753 #ifdef SYM_CONF_IARB_SUPPORT
4754 	/*
4755 	 *  If we just complete the last queued CCB,
4756 	 *  clear this info that is no longer relevant.
4757 	 */
4758 	if (cp == np->last_cp)
4759 		np->last_cp = 0;
4760 #endif
4761 
4762 	/*
4763 	 *  Make this CCB available.
4764 	 */
4765 	cp->cmd = NULL;
4766 	cp->host_status = HS_IDLE;
4767 	sym_remque(&cp->link_ccbq);
4768 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4769 
4770 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4771 	if (lp) {
4772 		sym_remque(&cp->link2_ccbq);
4773 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4774 		if (cp->started) {
4775 			if (cp->tag != NO_TAG)
4776 				--lp->started_tags;
4777 			else
4778 				--lp->started_no_tag;
4779 		}
4780 	}
4781 	cp->started = 0;
4782 #endif
4783 }
4784 
4785 /*
4786  *  Allocate a CCB from memory and initialize its fixed part.
4787  */
4788 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4789 {
4790 	struct sym_ccb *cp = NULL;
4791 	int hcode;
4792 
4793 	/*
4794 	 *  Prevent from allocating more CCBs than we can
4795 	 *  queue to the controller.
4796 	 */
4797 	if (np->actccbs >= SYM_CONF_MAX_START)
4798 		return NULL;
4799 
4800 	/*
4801 	 *  Allocate memory for this CCB.
4802 	 */
4803 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4804 	if (!cp)
4805 		goto out_free;
4806 
4807 	/*
4808 	 *  Count it.
4809 	 */
4810 	np->actccbs++;
4811 
4812 	/*
4813 	 *  Compute the bus address of this ccb.
4814 	 */
4815 	cp->ccb_ba = vtobus(cp);
4816 
4817 	/*
4818 	 *  Insert this ccb into the hashed list.
4819 	 */
4820 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4821 	cp->link_ccbh = np->ccbh[hcode];
4822 	np->ccbh[hcode] = cp;
4823 
4824 	/*
4825 	 *  Initialyze the start and restart actions.
4826 	 */
4827 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4828 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4829 
4830  	/*
4831 	 *  Initilialyze some other fields.
4832 	 */
4833 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4834 
4835 	/*
4836 	 *  Chain into free ccb queue.
4837 	 */
4838 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4839 
4840 	/*
4841 	 *  Chain into optionnal lists.
4842 	 */
4843 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4844 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4845 #endif
4846 	return cp;
4847 out_free:
4848 	if (cp)
4849 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4850 	return NULL;
4851 }
4852 
4853 /*
4854  *  Look up a CCB from a DSA value.
4855  */
4856 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4857 {
4858 	int hcode;
4859 	struct sym_ccb *cp;
4860 
4861 	hcode = CCB_HASH_CODE(dsa);
4862 	cp = np->ccbh[hcode];
4863 	while (cp) {
4864 		if (cp->ccb_ba == dsa)
4865 			break;
4866 		cp = cp->link_ccbh;
4867 	}
4868 
4869 	return cp;
4870 }
4871 
4872 /*
4873  *  Target control block initialisation.
4874  *  Nothing important to do at the moment.
4875  */
4876 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4877 {
4878 #if 0	/*  Hmmm... this checking looks paranoid. */
4879 	/*
4880 	 *  Check some alignments required by the chip.
4881 	 */
4882 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4883 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4884 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4885 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4886 #endif
4887 }
4888 
4889 /*
4890  *  Lun control block allocation and initialization.
4891  */
4892 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4893 {
4894 	struct sym_tcb *tp = &np->target[tn];
4895 	struct sym_lcb *lp = NULL;
4896 
4897 	/*
4898 	 *  Initialize the target control block if not yet.
4899 	 */
4900 	sym_init_tcb (np, tn);
4901 
4902 	/*
4903 	 *  Allocate the LCB bus address array.
4904 	 *  Compute the bus address of this table.
4905 	 */
4906 	if (ln && !tp->luntbl) {
4907 		int i;
4908 
4909 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4910 		if (!tp->luntbl)
4911 			goto fail;
4912 		for (i = 0 ; i < 64 ; i++)
4913 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4914 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4915 	}
4916 
4917 	/*
4918 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4919 	 */
4920 	if (ln && !tp->lunmp) {
4921 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4922 				GFP_KERNEL);
4923 		if (!tp->lunmp)
4924 			goto fail;
4925 	}
4926 
4927 	/*
4928 	 *  Allocate the lcb.
4929 	 *  Make it available to the chip.
4930 	 */
4931 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4932 	if (!lp)
4933 		goto fail;
4934 	if (ln) {
4935 		tp->lunmp[ln] = lp;
4936 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4937 	}
4938 	else {
4939 		tp->lun0p = lp;
4940 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4941 	}
4942 
4943 	/*
4944 	 *  Let the itl task point to error handling.
4945 	 */
4946 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4947 
4948 	/*
4949 	 *  Set the reselect pattern to our default. :)
4950 	 */
4951 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4952 
4953 	/*
4954 	 *  Set user capabilities.
4955 	 */
4956 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4957 
4958 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4959 	/*
4960 	 *  Initialize device queueing.
4961 	 */
4962 	sym_que_init(&lp->waiting_ccbq);
4963 	sym_que_init(&lp->started_ccbq);
4964 	lp->started_max   = SYM_CONF_MAX_TASK;
4965 	lp->started_limit = SYM_CONF_MAX_TASK;
4966 #endif
4967 
4968 fail:
4969 	return lp;
4970 }
4971 
4972 /*
4973  *  Allocate LCB resources for tagged command queuing.
4974  */
4975 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
4976 {
4977 	struct sym_tcb *tp = &np->target[tn];
4978 	struct sym_lcb *lp = sym_lp(tp, ln);
4979 	int i;
4980 
4981 	/*
4982 	 *  Allocate the task table and and the tag allocation
4983 	 *  circular buffer. We want both or none.
4984 	 */
4985 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
4986 	if (!lp->itlq_tbl)
4987 		goto fail;
4988 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
4989 	if (!lp->cb_tags) {
4990 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
4991 		lp->itlq_tbl = NULL;
4992 		goto fail;
4993 	}
4994 
4995 	/*
4996 	 *  Initialize the task table with invalid entries.
4997 	 */
4998 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
4999 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5000 
5001 	/*
5002 	 *  Fill up the tag buffer with tag numbers.
5003 	 */
5004 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5005 		lp->cb_tags[i] = i;
5006 
5007 	/*
5008 	 *  Make the task table available to SCRIPTS,
5009 	 *  And accept tagged commands now.
5010 	 */
5011 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5012 
5013 	return;
5014 fail:
5015 	return;
5016 }
5017 
5018 /*
5019  *  Queue a SCSI IO to the controller.
5020  */
5021 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5022 {
5023 	struct scsi_device *sdev = cmd->device;
5024 	struct sym_tcb *tp;
5025 	struct sym_lcb *lp;
5026 	u_char	*msgptr;
5027 	u_int   msglen;
5028 	int can_disconnect;
5029 
5030 	/*
5031 	 *  Keep track of the IO in our CCB.
5032 	 */
5033 	cp->cmd = cmd;
5034 
5035 	/*
5036 	 *  Retrieve the target descriptor.
5037 	 */
5038 	tp = &np->target[cp->target];
5039 
5040 	/*
5041 	 *  Retrieve the lun descriptor.
5042 	 */
5043 	lp = sym_lp(tp, sdev->lun);
5044 
5045 	can_disconnect = (cp->tag != NO_TAG) ||
5046 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5047 
5048 	msgptr = cp->scsi_smsg;
5049 	msglen = 0;
5050 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5051 
5052 	/*
5053 	 *  Build the tag message if present.
5054 	 */
5055 	if (cp->tag != NO_TAG) {
5056 		u_char order = cp->order;
5057 
5058 		switch(order) {
5059 		case M_ORDERED_TAG:
5060 			break;
5061 		case M_HEAD_TAG:
5062 			break;
5063 		default:
5064 			order = M_SIMPLE_TAG;
5065 		}
5066 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5067 		/*
5068 		 *  Avoid too much reordering of SCSI commands.
5069 		 *  The algorithm tries to prevent completion of any
5070 		 *  tagged command from being delayed against more
5071 		 *  than 3 times the max number of queued commands.
5072 		 */
5073 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5074 			lp->tags_si = !(lp->tags_si);
5075 			if (lp->tags_sum[lp->tags_si]) {
5076 				order = M_ORDERED_TAG;
5077 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5078 					sym_print_addr(cmd,
5079 						"ordered tag forced.\n");
5080 				}
5081 			}
5082 			lp->tags_since = 0;
5083 		}
5084 #endif
5085 		msgptr[msglen++] = order;
5086 
5087 		/*
5088 		 *  For less than 128 tags, actual tags are numbered
5089 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5090 		 *  with devices that have problems with #TAG 0 or too
5091 		 *  great #TAG numbers. For more tags (up to 256),
5092 		 *  we use directly our tag number.
5093 		 */
5094 #if SYM_CONF_MAX_TASK > (512/4)
5095 		msgptr[msglen++] = cp->tag;
5096 #else
5097 		msgptr[msglen++] = (cp->tag << 1) + 1;
5098 #endif
5099 	}
5100 
5101 	/*
5102 	 *  Build a negotiation message if needed.
5103 	 *  (nego_status is filled by sym_prepare_nego())
5104 	 */
5105 	cp->nego_status = 0;
5106 	if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5107 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5108 	}
5109 
5110 	/*
5111 	 *  Startqueue
5112 	 */
5113 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5114 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5115 
5116 	/*
5117 	 *  select
5118 	 */
5119 	cp->phys.select.sel_id		= cp->target;
5120 	cp->phys.select.sel_scntl3	= tp->head.wval;
5121 	cp->phys.select.sel_sxfer	= tp->head.sval;
5122 	cp->phys.select.sel_scntl4	= tp->head.uval;
5123 
5124 	/*
5125 	 *  message
5126 	 */
5127 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5128 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5129 
5130 	/*
5131 	 *  status
5132 	 */
5133 	cp->host_xflags		= 0;
5134 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5135 	cp->ssss_status		= S_ILLEGAL;
5136 	cp->xerr_status		= 0;
5137 	cp->host_flags		= 0;
5138 	cp->extra_bytes		= 0;
5139 
5140 	/*
5141 	 *  extreme data pointer.
5142 	 *  shall be positive, so -1 is lower than lowest.:)
5143 	 */
5144 	cp->ext_sg  = -1;
5145 	cp->ext_ofs = 0;
5146 
5147 	/*
5148 	 *  Build the CDB and DATA descriptor block
5149 	 *  and start the IO.
5150 	 */
5151 	return sym_setup_data_and_start(np, cmd, cp);
5152 }
5153 
5154 /*
5155  *  Reset a SCSI target (all LUNs of this target).
5156  */
5157 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5158 {
5159 	struct sym_tcb *tp;
5160 
5161 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5162 		return -1;
5163 
5164 	tp = &np->target[target];
5165 	tp->to_reset = 1;
5166 
5167 	np->istat_sem = SEM;
5168 	OUTB(np, nc_istat, SIGP|SEM);
5169 
5170 	return 0;
5171 }
5172 
5173 /*
5174  *  Abort a SCSI IO.
5175  */
5176 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5177 {
5178 	/*
5179 	 *  Check that the IO is active.
5180 	 */
5181 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5182 		return -1;
5183 
5184 	/*
5185 	 *  If a previous abort didn't succeed in time,
5186 	 *  perform a BUS reset.
5187 	 */
5188 	if (cp->to_abort) {
5189 		sym_reset_scsi_bus(np, 1);
5190 		return 0;
5191 	}
5192 
5193 	/*
5194 	 *  Mark the CCB for abort and allow time for.
5195 	 */
5196 	cp->to_abort = timed_out ? 2 : 1;
5197 
5198 	/*
5199 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5200 	 */
5201 	np->istat_sem = SEM;
5202 	OUTB(np, nc_istat, SIGP|SEM);
5203 	return 0;
5204 }
5205 
5206 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5207 {
5208 	struct sym_ccb *cp;
5209 	SYM_QUEHEAD *qp;
5210 
5211 	/*
5212 	 *  Look up our CCB control block.
5213 	 */
5214 	cp = NULL;
5215 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5216 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5217 		if (cp2->cmd == cmd) {
5218 			cp = cp2;
5219 			break;
5220 		}
5221 	}
5222 
5223 	return sym_abort_ccb(np, cp, timed_out);
5224 }
5225 
5226 /*
5227  *  Complete execution of a SCSI command with extended
5228  *  error, SCSI status error, or having been auto-sensed.
5229  *
5230  *  The SCRIPTS processor is not running there, so we
5231  *  can safely access IO registers and remove JOBs from
5232  *  the START queue.
5233  *  SCRATCHA is assumed to have been loaded with STARTPOS
5234  *  before the SCRIPTS called the C code.
5235  */
5236 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5237 {
5238 	struct scsi_device *sdev;
5239 	struct scsi_cmnd *cmd;
5240 	struct sym_tcb *tp;
5241 	struct sym_lcb *lp;
5242 	int resid;
5243 	int i;
5244 
5245 	/*
5246 	 *  Paranoid check. :)
5247 	 */
5248 	if (!cp || !cp->cmd)
5249 		return;
5250 
5251 	cmd = cp->cmd;
5252 	sdev = cmd->device;
5253 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5254 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5255 			cp->host_status, cp->ssss_status, cp->host_flags);
5256 	}
5257 
5258 	/*
5259 	 *  Get target and lun pointers.
5260 	 */
5261 	tp = &np->target[cp->target];
5262 	lp = sym_lp(tp, sdev->lun);
5263 
5264 	/*
5265 	 *  Check for extended errors.
5266 	 */
5267 	if (cp->xerr_status) {
5268 		if (sym_verbose)
5269 			sym_print_xerr(cmd, cp->xerr_status);
5270 		if (cp->host_status == HS_COMPLETE)
5271 			cp->host_status = HS_COMP_ERR;
5272 	}
5273 
5274 	/*
5275 	 *  Calculate the residual.
5276 	 */
5277 	resid = sym_compute_residual(np, cp);
5278 
5279 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5280 		resid  = 0;		 /* throw them away. :)		    */
5281 		cp->sv_resid = 0;
5282 	}
5283 #ifdef DEBUG_2_0_X
5284 if (resid)
5285 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5286 #endif
5287 
5288 	/*
5289 	 *  Dequeue all queued CCBs for that device
5290 	 *  not yet started by SCRIPTS.
5291 	 */
5292 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5293 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5294 
5295 	/*
5296 	 *  Restart the SCRIPTS processor.
5297 	 */
5298 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5299 
5300 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5301 	if (cp->host_status == HS_COMPLETE &&
5302 	    cp->ssss_status == S_QUEUE_FULL) {
5303 		if (!lp || lp->started_tags - i < 2)
5304 			goto weirdness;
5305 		/*
5306 		 *  Decrease queue depth as needed.
5307 		 */
5308 		lp->started_max = lp->started_tags - i - 1;
5309 		lp->num_sgood = 0;
5310 
5311 		if (sym_verbose >= 2) {
5312 			sym_print_addr(cmd, " queue depth is now %d\n",
5313 					lp->started_max);
5314 		}
5315 
5316 		/*
5317 		 *  Repair the CCB.
5318 		 */
5319 		cp->host_status = HS_BUSY;
5320 		cp->ssss_status = S_ILLEGAL;
5321 
5322 		/*
5323 		 *  Let's requeue it to device.
5324 		 */
5325 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5326 		goto finish;
5327 	}
5328 weirdness:
5329 #endif
5330 	/*
5331 	 *  Build result in CAM ccb.
5332 	 */
5333 	sym_set_cam_result_error(np, cp, resid);
5334 
5335 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5336 finish:
5337 #endif
5338 	/*
5339 	 *  Add this one to the COMP queue.
5340 	 */
5341 	sym_remque(&cp->link_ccbq);
5342 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5343 
5344 	/*
5345 	 *  Complete all those commands with either error
5346 	 *  or requeue condition.
5347 	 */
5348 	sym_flush_comp_queue(np, 0);
5349 
5350 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5351 	/*
5352 	 *  Donnot start more than 1 command after an error.
5353 	 */
5354 	sym_start_next_ccbs(np, lp, 1);
5355 #endif
5356 }
5357 
5358 /*
5359  *  Complete execution of a successful SCSI command.
5360  *
5361  *  Only successful commands go to the DONE queue,
5362  *  since we need to have the SCRIPTS processor
5363  *  stopped on any error condition.
5364  *  The SCRIPTS processor is running while we are
5365  *  completing successful commands.
5366  */
5367 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5368 {
5369 	struct sym_tcb *tp;
5370 	struct sym_lcb *lp;
5371 	struct scsi_cmnd *cmd;
5372 	int resid;
5373 
5374 	/*
5375 	 *  Paranoid check. :)
5376 	 */
5377 	if (!cp || !cp->cmd)
5378 		return;
5379 	assert (cp->host_status == HS_COMPLETE);
5380 
5381 	/*
5382 	 *  Get user command.
5383 	 */
5384 	cmd = cp->cmd;
5385 
5386 	/*
5387 	 *  Get target and lun pointers.
5388 	 */
5389 	tp = &np->target[cp->target];
5390 	lp = sym_lp(tp, cp->lun);
5391 
5392 	/*
5393 	 *  If all data have been transferred, given than no
5394 	 *  extended error did occur, there is no residual.
5395 	 */
5396 	resid = 0;
5397 	if (cp->phys.head.lastp != cp->goalp)
5398 		resid = sym_compute_residual(np, cp);
5399 
5400 	/*
5401 	 *  Wrong transfer residuals may be worse than just always
5402 	 *  returning zero. User can disable this feature in
5403 	 *  sym53c8xx.h. Residual support is enabled by default.
5404 	 */
5405 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5406 		resid  = 0;
5407 #ifdef DEBUG_2_0_X
5408 if (resid)
5409 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5410 #endif
5411 
5412 	/*
5413 	 *  Build result in CAM ccb.
5414 	 */
5415 	sym_set_cam_result_ok(cp, cmd, resid);
5416 
5417 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5418 	/*
5419 	 *  If max number of started ccbs had been reduced,
5420 	 *  increase it if 200 good status received.
5421 	 */
5422 	if (lp && lp->started_max < lp->started_limit) {
5423 		++lp->num_sgood;
5424 		if (lp->num_sgood >= 200) {
5425 			lp->num_sgood = 0;
5426 			++lp->started_max;
5427 			if (sym_verbose >= 2) {
5428 				sym_print_addr(cmd, " queue depth is now %d\n",
5429 				       lp->started_max);
5430 			}
5431 		}
5432 	}
5433 #endif
5434 
5435 	/*
5436 	 *  Free our CCB.
5437 	 */
5438 	sym_free_ccb (np, cp);
5439 
5440 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5441 	/*
5442 	 *  Requeue a couple of awaiting scsi commands.
5443 	 */
5444 	if (!sym_que_empty(&lp->waiting_ccbq))
5445 		sym_start_next_ccbs(np, lp, 2);
5446 #endif
5447 	/*
5448 	 *  Complete the command.
5449 	 */
5450 	sym_xpt_done(np, cmd);
5451 }
5452 
5453 /*
5454  *  Soft-attach the controller.
5455  */
5456 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5457 {
5458 	struct sym_hcb *np = sym_get_hcb(shost);
5459 	int i;
5460 
5461 	/*
5462 	 *  Get some info about the firmware.
5463 	 */
5464 	np->scripta_sz	 = fw->a_size;
5465 	np->scriptb_sz	 = fw->b_size;
5466 	np->scriptz_sz	 = fw->z_size;
5467 	np->fw_setup	 = fw->setup;
5468 	np->fw_patch	 = fw->patch;
5469 	np->fw_name	 = fw->name;
5470 
5471 	/*
5472 	 *  Save setting of some IO registers, so we will
5473 	 *  be able to probe specific implementations.
5474 	 */
5475 	sym_save_initial_setting (np);
5476 
5477 	/*
5478 	 *  Reset the chip now, since it has been reported
5479 	 *  that SCSI clock calibration may not work properly
5480 	 *  if the chip is currently active.
5481 	 */
5482 	sym_chip_reset(np);
5483 
5484 	/*
5485 	 *  Prepare controller and devices settings, according
5486 	 *  to chip features, user set-up and driver set-up.
5487 	 */
5488 	sym_prepare_setting(shost, np, nvram);
5489 
5490 	/*
5491 	 *  Check the PCI clock frequency.
5492 	 *  Must be performed after prepare_setting since it destroys
5493 	 *  STEST1 that is used to probe for the clock doubler.
5494 	 */
5495 	i = sym_getpciclock(np);
5496 	if (i > 37000 && !(np->features & FE_66MHZ))
5497 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5498 			sym_name(np), i);
5499 
5500 	/*
5501 	 *  Allocate the start queue.
5502 	 */
5503 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5504 	if (!np->squeue)
5505 		goto attach_failed;
5506 	np->squeue_ba = vtobus(np->squeue);
5507 
5508 	/*
5509 	 *  Allocate the done queue.
5510 	 */
5511 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5512 	if (!np->dqueue)
5513 		goto attach_failed;
5514 	np->dqueue_ba = vtobus(np->dqueue);
5515 
5516 	/*
5517 	 *  Allocate the target bus address array.
5518 	 */
5519 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5520 	if (!np->targtbl)
5521 		goto attach_failed;
5522 	np->targtbl_ba = vtobus(np->targtbl);
5523 
5524 	/*
5525 	 *  Allocate SCRIPTS areas.
5526 	 */
5527 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5528 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5529 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5530 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5531 		goto attach_failed;
5532 
5533 	/*
5534 	 *  Allocate the array of lists of CCBs hashed by DSA.
5535 	 */
5536 	np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5537 	if (!np->ccbh)
5538 		goto attach_failed;
5539 
5540 	/*
5541 	 *  Initialyze the CCB free and busy queues.
5542 	 */
5543 	sym_que_init(&np->free_ccbq);
5544 	sym_que_init(&np->busy_ccbq);
5545 	sym_que_init(&np->comp_ccbq);
5546 
5547 	/*
5548 	 *  Initialization for optional handling
5549 	 *  of device queueing.
5550 	 */
5551 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5552 	sym_que_init(&np->dummy_ccbq);
5553 #endif
5554 	/*
5555 	 *  Allocate some CCB. We need at least ONE.
5556 	 */
5557 	if (!sym_alloc_ccb(np))
5558 		goto attach_failed;
5559 
5560 	/*
5561 	 *  Calculate BUS addresses where we are going
5562 	 *  to load the SCRIPTS.
5563 	 */
5564 	np->scripta_ba	= vtobus(np->scripta0);
5565 	np->scriptb_ba	= vtobus(np->scriptb0);
5566 	np->scriptz_ba	= vtobus(np->scriptz0);
5567 
5568 	if (np->ram_ba) {
5569 		np->scripta_ba	= np->ram_ba;
5570 		if (np->features & FE_RAM8K) {
5571 			np->ram_ws = 8192;
5572 			np->scriptb_ba = np->scripta_ba + 4096;
5573 #if 0	/* May get useful for 64 BIT PCI addressing */
5574 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5575 #endif
5576 		}
5577 		else
5578 			np->ram_ws = 4096;
5579 	}
5580 
5581 	/*
5582 	 *  Copy scripts to controller instance.
5583 	 */
5584 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5585 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5586 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5587 
5588 	/*
5589 	 *  Setup variable parts in scripts and compute
5590 	 *  scripts bus addresses used from the C code.
5591 	 */
5592 	np->fw_setup(np, fw);
5593 
5594 	/*
5595 	 *  Bind SCRIPTS with physical addresses usable by the
5596 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5597 	 */
5598 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5599 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5600 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5601 
5602 #ifdef SYM_CONF_IARB_SUPPORT
5603 	/*
5604 	 *    If user wants IARB to be set when we win arbitration
5605 	 *    and have other jobs, compute the max number of consecutive
5606 	 *    settings of IARB hints before we leave devices a chance to
5607 	 *    arbitrate for reselection.
5608 	 */
5609 #ifdef	SYM_SETUP_IARB_MAX
5610 	np->iarb_max = SYM_SETUP_IARB_MAX;
5611 #else
5612 	np->iarb_max = 4;
5613 #endif
5614 #endif
5615 
5616 	/*
5617 	 *  Prepare the idle and invalid task actions.
5618 	 */
5619 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5620 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5621 	np->idletask_ba		= vtobus(&np->idletask);
5622 
5623 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5624 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5625 	np->notask_ba		= vtobus(&np->notask);
5626 
5627 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5628 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5629 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5630 
5631 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5632 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5633 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5634 
5635 	/*
5636 	 *  Allocate and prepare the lun JUMP table that is used
5637 	 *  for a target prior the probing of devices (bad lun table).
5638 	 *  A private table will be allocated for the target on the
5639 	 *  first INQUIRY response received.
5640 	 */
5641 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5642 	if (!np->badluntbl)
5643 		goto attach_failed;
5644 
5645 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5646 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5647 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5648 
5649 	/*
5650 	 *  Prepare the bus address array that contains the bus
5651 	 *  address of each target control block.
5652 	 *  For now, assume all logical units are wrong. :)
5653 	 */
5654 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5655 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5656 		np->target[i].head.luntbl_sa =
5657 				cpu_to_scr(vtobus(np->badluntbl));
5658 		np->target[i].head.lun0_sa =
5659 				cpu_to_scr(vtobus(&np->badlun_sa));
5660 	}
5661 
5662 	/*
5663 	 *  Now check the cache handling of the pci chipset.
5664 	 */
5665 	if (sym_snooptest (np)) {
5666 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5667 		goto attach_failed;
5668 	}
5669 
5670 	/*
5671 	 *  Sigh! we are done.
5672 	 */
5673 	return 0;
5674 
5675 attach_failed:
5676 	return -ENXIO;
5677 }
5678 
5679 /*
5680  *  Free everything that has been allocated for this device.
5681  */
5682 void sym_hcb_free(struct sym_hcb *np)
5683 {
5684 	SYM_QUEHEAD *qp;
5685 	struct sym_ccb *cp;
5686 	struct sym_tcb *tp;
5687 	int target;
5688 
5689 	if (np->scriptz0)
5690 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5691 	if (np->scriptb0)
5692 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5693 	if (np->scripta0)
5694 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5695 	if (np->squeue)
5696 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5697 	if (np->dqueue)
5698 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5699 
5700 	if (np->actccbs) {
5701 		while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5702 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5703 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5704 		}
5705 	}
5706 	kfree(np->ccbh);
5707 
5708 	if (np->badluntbl)
5709 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5710 
5711 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5712 		tp = &np->target[target];
5713 #if SYM_CONF_MAX_LUN > 1
5714 		kfree(tp->lunmp);
5715 #endif
5716 	}
5717 	if (np->targtbl)
5718 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5719 }
5720