xref: /linux/drivers/scsi/scsi_lib.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27 
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30 
31 
32 #define SG_MEMPOOL_NR		(sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE		32
34 
35 struct scsi_host_sg_pool {
36 	size_t		size;
37 	char		*name;
38 	kmem_cache_t	*slab;
39 	mempool_t	*pool;
40 };
41 
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45 
46 #define SP(x) { x, "sgpool-" #x }
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48 	SP(8),
49 	SP(16),
50 	SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 	SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 	SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 	SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
65 
66 
67 /*
68  * Function:    scsi_insert_special_req()
69  *
70  * Purpose:     Insert pre-formed request into request queue.
71  *
72  * Arguments:   sreq	- request that is ready to be queued.
73  *              at_head	- boolean.  True if we should insert at head
74  *                        of queue, false if we should insert at tail.
75  *
76  * Lock status: Assumed that lock is not held upon entry.
77  *
78  * Returns:     Nothing
79  *
80  * Notes:       This function is called from character device and from
81  *              ioctl types of functions where the caller knows exactly
82  *              what SCSI command needs to be issued.   The idea is that
83  *              we merely inject the command into the queue (at the head
84  *              for now), and then call the queue request function to actually
85  *              process it.
86  */
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88 {
89 	/*
90 	 * Because users of this function are apt to reuse requests with no
91 	 * modification, we have to sanitise the request flags here
92 	 */
93 	sreq->sr_request->flags &= ~REQ_DONTPREP;
94 	blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95 		       	   at_head, sreq);
96 	return 0;
97 }
98 
99 static void scsi_run_queue(struct request_queue *q);
100 
101 /*
102  * Function:    scsi_queue_insert()
103  *
104  * Purpose:     Insert a command in the midlevel queue.
105  *
106  * Arguments:   cmd    - command that we are adding to queue.
107  *              reason - why we are inserting command to queue.
108  *
109  * Lock status: Assumed that lock is not held upon entry.
110  *
111  * Returns:     Nothing.
112  *
113  * Notes:       We do this for one of two cases.  Either the host is busy
114  *              and it cannot accept any more commands for the time being,
115  *              or the device returned QUEUE_FULL and can accept no more
116  *              commands.
117  * Notes:       This could be called either from an interrupt context or a
118  *              normal process context.
119  */
120 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
121 {
122 	struct Scsi_Host *host = cmd->device->host;
123 	struct scsi_device *device = cmd->device;
124 	struct request_queue *q = device->request_queue;
125 	unsigned long flags;
126 
127 	SCSI_LOG_MLQUEUE(1,
128 		 printk("Inserting command %p into mlqueue\n", cmd));
129 
130 	/*
131 	 * Set the appropriate busy bit for the device/host.
132 	 *
133 	 * If the host/device isn't busy, assume that something actually
134 	 * completed, and that we should be able to queue a command now.
135 	 *
136 	 * Note that the prior mid-layer assumption that any host could
137 	 * always queue at least one command is now broken.  The mid-layer
138 	 * will implement a user specifiable stall (see
139 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
140 	 * if a command is requeued with no other commands outstanding
141 	 * either for the device or for the host.
142 	 */
143 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
144 		host->host_blocked = host->max_host_blocked;
145 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
146 		device->device_blocked = device->max_device_blocked;
147 
148 	/*
149 	 * Decrement the counters, since these commands are no longer
150 	 * active on the host/device.
151 	 */
152 	scsi_device_unbusy(device);
153 
154 	/*
155 	 * Requeue this command.  It will go before all other commands
156 	 * that are already in the queue.
157 	 *
158 	 * NOTE: there is magic here about the way the queue is plugged if
159 	 * we have no outstanding commands.
160 	 *
161 	 * Although we *don't* plug the queue, we call the request
162 	 * function.  The SCSI request function detects the blocked condition
163 	 * and plugs the queue appropriately.
164          */
165 	spin_lock_irqsave(q->queue_lock, flags);
166 	blk_requeue_request(q, cmd->request);
167 	spin_unlock_irqrestore(q->queue_lock, flags);
168 
169 	scsi_run_queue(q);
170 
171 	return 0;
172 }
173 
174 /*
175  * Function:    scsi_do_req
176  *
177  * Purpose:     Queue a SCSI request
178  *
179  * Arguments:   sreq	  - command descriptor.
180  *              cmnd      - actual SCSI command to be performed.
181  *              buffer    - data buffer.
182  *              bufflen   - size of data buffer.
183  *              done      - completion function to be run.
184  *              timeout   - how long to let it run before timeout.
185  *              retries   - number of retries we allow.
186  *
187  * Lock status: No locks held upon entry.
188  *
189  * Returns:     Nothing.
190  *
191  * Notes:	This function is only used for queueing requests for things
192  *		like ioctls and character device requests - this is because
193  *		we essentially just inject a request into the queue for the
194  *		device.
195  *
196  *		In order to support the scsi_device_quiesce function, we
197  *		now inject requests on the *head* of the device queue
198  *		rather than the tail.
199  */
200 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
201 		 void *buffer, unsigned bufflen,
202 		 void (*done)(struct scsi_cmnd *),
203 		 int timeout, int retries)
204 {
205 	/*
206 	 * If the upper level driver is reusing these things, then
207 	 * we should release the low-level block now.  Another one will
208 	 * be allocated later when this request is getting queued.
209 	 */
210 	__scsi_release_request(sreq);
211 
212 	/*
213 	 * Our own function scsi_done (which marks the host as not busy,
214 	 * disables the timeout counter, etc) will be called by us or by the
215 	 * scsi_hosts[host].queuecommand() function needs to also call
216 	 * the completion function for the high level driver.
217 	 */
218 	memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
219 	sreq->sr_bufflen = bufflen;
220 	sreq->sr_buffer = buffer;
221 	sreq->sr_allowed = retries;
222 	sreq->sr_done = done;
223 	sreq->sr_timeout_per_command = timeout;
224 
225 	if (sreq->sr_cmd_len == 0)
226 		sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
227 
228 	/*
229 	 * head injection *required* here otherwise quiesce won't work
230 	 */
231 	scsi_insert_special_req(sreq, 1);
232 }
233 EXPORT_SYMBOL(scsi_do_req);
234 
235 /* This is the end routine we get to if a command was never attached
236  * to the request.  Simply complete the request without changing
237  * rq_status; this will cause a DRIVER_ERROR. */
238 static void scsi_wait_req_end_io(struct request *req)
239 {
240 	BUG_ON(!req->waiting);
241 
242 	complete(req->waiting);
243 }
244 
245 void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
246 		   unsigned bufflen, int timeout, int retries)
247 {
248 	DECLARE_COMPLETION(wait);
249 	int write = (sreq->sr_data_direction == DMA_TO_DEVICE);
250 	struct request *req;
251 
252 	req = blk_get_request(sreq->sr_device->request_queue, write,
253 			      __GFP_WAIT);
254 	if (bufflen && blk_rq_map_kern(sreq->sr_device->request_queue, req,
255 				       buffer, bufflen, __GFP_WAIT)) {
256 		sreq->sr_result = DRIVER_ERROR << 24;
257 		blk_put_request(req);
258 		return;
259 	}
260 
261 	req->flags |= REQ_NOMERGE;
262 	req->waiting = &wait;
263 	req->end_io = scsi_wait_req_end_io;
264 	req->cmd_len = COMMAND_SIZE(((u8 *)cmnd)[0]);
265 	req->sense = sreq->sr_sense_buffer;
266 	req->sense_len = 0;
267 	memcpy(req->cmd, cmnd, req->cmd_len);
268 	req->timeout = timeout;
269 	req->flags |= REQ_BLOCK_PC;
270 	req->rq_disk = NULL;
271 	blk_insert_request(sreq->sr_device->request_queue, req,
272 			   sreq->sr_data_direction == DMA_TO_DEVICE, NULL);
273 	wait_for_completion(&wait);
274 	sreq->sr_request->waiting = NULL;
275 	sreq->sr_result = req->errors;
276 	if (req->errors)
277 		sreq->sr_result |= (DRIVER_ERROR << 24);
278 
279 	blk_put_request(req);
280 }
281 
282 EXPORT_SYMBOL(scsi_wait_req);
283 
284 /**
285  * scsi_execute - insert request and wait for the result
286  * @sdev:	scsi device
287  * @cmd:	scsi command
288  * @data_direction: data direction
289  * @buffer:	data buffer
290  * @bufflen:	len of buffer
291  * @sense:	optional sense buffer
292  * @timeout:	request timeout in seconds
293  * @retries:	number of times to retry request
294  * @flags:	or into request flags;
295  *
296  * returns the req->errors value which is the the scsi_cmnd result
297  * field.
298  **/
299 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
300 		 int data_direction, void *buffer, unsigned bufflen,
301 		 unsigned char *sense, int timeout, int retries, int flags)
302 {
303 	struct request *req;
304 	int write = (data_direction == DMA_TO_DEVICE);
305 	int ret = DRIVER_ERROR << 24;
306 
307 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
308 
309 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
310 					buffer, bufflen, __GFP_WAIT))
311 		goto out;
312 
313 	req->cmd_len = COMMAND_SIZE(cmd[0]);
314 	memcpy(req->cmd, cmd, req->cmd_len);
315 	req->sense = sense;
316 	req->sense_len = 0;
317 	req->timeout = timeout;
318 	req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
319 
320 	/*
321 	 * head injection *required* here otherwise quiesce won't work
322 	 */
323 	blk_execute_rq(req->q, NULL, req, 1);
324 
325 	ret = req->errors;
326  out:
327 	blk_put_request(req);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(scsi_execute);
332 
333 
334 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
335 		     int data_direction, void *buffer, unsigned bufflen,
336 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
337 {
338 	char *sense = NULL;
339 	int result;
340 
341 	if (sshdr) {
342 		sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
343 		if (!sense)
344 			return DRIVER_ERROR << 24;
345 		memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
346 	}
347 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
348 				  sense, timeout, retries, 0);
349 	if (sshdr)
350 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
351 
352 	kfree(sense);
353 	return result;
354 }
355 EXPORT_SYMBOL(scsi_execute_req);
356 
357 /*
358  * Function:    scsi_init_cmd_errh()
359  *
360  * Purpose:     Initialize cmd fields related to error handling.
361  *
362  * Arguments:   cmd	- command that is ready to be queued.
363  *
364  * Returns:     Nothing
365  *
366  * Notes:       This function has the job of initializing a number of
367  *              fields related to error handling.   Typically this will
368  *              be called once for each command, as required.
369  */
370 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
371 {
372 	cmd->serial_number = 0;
373 
374 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
375 
376 	if (cmd->cmd_len == 0)
377 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
378 
379 	/*
380 	 * We need saved copies of a number of fields - this is because
381 	 * error handling may need to overwrite these with different values
382 	 * to run different commands, and once error handling is complete,
383 	 * we will need to restore these values prior to running the actual
384 	 * command.
385 	 */
386 	cmd->old_use_sg = cmd->use_sg;
387 	cmd->old_cmd_len = cmd->cmd_len;
388 	cmd->sc_old_data_direction = cmd->sc_data_direction;
389 	cmd->old_underflow = cmd->underflow;
390 	memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
391 	cmd->buffer = cmd->request_buffer;
392 	cmd->bufflen = cmd->request_bufflen;
393 
394 	return 1;
395 }
396 
397 /*
398  * Function:   scsi_setup_cmd_retry()
399  *
400  * Purpose:    Restore the command state for a retry
401  *
402  * Arguments:  cmd	- command to be restored
403  *
404  * Returns:    Nothing
405  *
406  * Notes:      Immediately prior to retrying a command, we need
407  *             to restore certain fields that we saved above.
408  */
409 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
410 {
411 	memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
412 	cmd->request_buffer = cmd->buffer;
413 	cmd->request_bufflen = cmd->bufflen;
414 	cmd->use_sg = cmd->old_use_sg;
415 	cmd->cmd_len = cmd->old_cmd_len;
416 	cmd->sc_data_direction = cmd->sc_old_data_direction;
417 	cmd->underflow = cmd->old_underflow;
418 }
419 
420 void scsi_device_unbusy(struct scsi_device *sdev)
421 {
422 	struct Scsi_Host *shost = sdev->host;
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(shost->host_lock, flags);
426 	shost->host_busy--;
427 	if (unlikely((shost->shost_state == SHOST_RECOVERY) &&
428 		     shost->host_failed))
429 		scsi_eh_wakeup(shost);
430 	spin_unlock(shost->host_lock);
431 	spin_lock(sdev->request_queue->queue_lock);
432 	sdev->device_busy--;
433 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
434 }
435 
436 /*
437  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
438  * and call blk_run_queue for all the scsi_devices on the target -
439  * including current_sdev first.
440  *
441  * Called with *no* scsi locks held.
442  */
443 static void scsi_single_lun_run(struct scsi_device *current_sdev)
444 {
445 	struct Scsi_Host *shost = current_sdev->host;
446 	struct scsi_device *sdev, *tmp;
447 	struct scsi_target *starget = scsi_target(current_sdev);
448 	unsigned long flags;
449 
450 	spin_lock_irqsave(shost->host_lock, flags);
451 	starget->starget_sdev_user = NULL;
452 	spin_unlock_irqrestore(shost->host_lock, flags);
453 
454 	/*
455 	 * Call blk_run_queue for all LUNs on the target, starting with
456 	 * current_sdev. We race with others (to set starget_sdev_user),
457 	 * but in most cases, we will be first. Ideally, each LU on the
458 	 * target would get some limited time or requests on the target.
459 	 */
460 	blk_run_queue(current_sdev->request_queue);
461 
462 	spin_lock_irqsave(shost->host_lock, flags);
463 	if (starget->starget_sdev_user)
464 		goto out;
465 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
466 			same_target_siblings) {
467 		if (sdev == current_sdev)
468 			continue;
469 		if (scsi_device_get(sdev))
470 			continue;
471 
472 		spin_unlock_irqrestore(shost->host_lock, flags);
473 		blk_run_queue(sdev->request_queue);
474 		spin_lock_irqsave(shost->host_lock, flags);
475 
476 		scsi_device_put(sdev);
477 	}
478  out:
479 	spin_unlock_irqrestore(shost->host_lock, flags);
480 }
481 
482 /*
483  * Function:	scsi_run_queue()
484  *
485  * Purpose:	Select a proper request queue to serve next
486  *
487  * Arguments:	q	- last request's queue
488  *
489  * Returns:     Nothing
490  *
491  * Notes:	The previous command was completely finished, start
492  *		a new one if possible.
493  */
494 static void scsi_run_queue(struct request_queue *q)
495 {
496 	struct scsi_device *sdev = q->queuedata;
497 	struct Scsi_Host *shost = sdev->host;
498 	unsigned long flags;
499 
500 	if (sdev->single_lun)
501 		scsi_single_lun_run(sdev);
502 
503 	spin_lock_irqsave(shost->host_lock, flags);
504 	while (!list_empty(&shost->starved_list) &&
505 	       !shost->host_blocked && !shost->host_self_blocked &&
506 		!((shost->can_queue > 0) &&
507 		  (shost->host_busy >= shost->can_queue))) {
508 		/*
509 		 * As long as shost is accepting commands and we have
510 		 * starved queues, call blk_run_queue. scsi_request_fn
511 		 * drops the queue_lock and can add us back to the
512 		 * starved_list.
513 		 *
514 		 * host_lock protects the starved_list and starved_entry.
515 		 * scsi_request_fn must get the host_lock before checking
516 		 * or modifying starved_list or starved_entry.
517 		 */
518 		sdev = list_entry(shost->starved_list.next,
519 					  struct scsi_device, starved_entry);
520 		list_del_init(&sdev->starved_entry);
521 		spin_unlock_irqrestore(shost->host_lock, flags);
522 
523 		blk_run_queue(sdev->request_queue);
524 
525 		spin_lock_irqsave(shost->host_lock, flags);
526 		if (unlikely(!list_empty(&sdev->starved_entry)))
527 			/*
528 			 * sdev lost a race, and was put back on the
529 			 * starved list. This is unlikely but without this
530 			 * in theory we could loop forever.
531 			 */
532 			break;
533 	}
534 	spin_unlock_irqrestore(shost->host_lock, flags);
535 
536 	blk_run_queue(q);
537 }
538 
539 /*
540  * Function:	scsi_requeue_command()
541  *
542  * Purpose:	Handle post-processing of completed commands.
543  *
544  * Arguments:	q	- queue to operate on
545  *		cmd	- command that may need to be requeued.
546  *
547  * Returns:	Nothing
548  *
549  * Notes:	After command completion, there may be blocks left
550  *		over which weren't finished by the previous command
551  *		this can be for a number of reasons - the main one is
552  *		I/O errors in the middle of the request, in which case
553  *		we need to request the blocks that come after the bad
554  *		sector.
555  */
556 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
557 {
558 	unsigned long flags;
559 
560 	cmd->request->flags &= ~REQ_DONTPREP;
561 
562 	spin_lock_irqsave(q->queue_lock, flags);
563 	blk_requeue_request(q, cmd->request);
564 	spin_unlock_irqrestore(q->queue_lock, flags);
565 
566 	scsi_run_queue(q);
567 }
568 
569 void scsi_next_command(struct scsi_cmnd *cmd)
570 {
571 	struct request_queue *q = cmd->device->request_queue;
572 
573 	scsi_put_command(cmd);
574 	scsi_run_queue(q);
575 }
576 
577 void scsi_run_host_queues(struct Scsi_Host *shost)
578 {
579 	struct scsi_device *sdev;
580 
581 	shost_for_each_device(sdev, shost)
582 		scsi_run_queue(sdev->request_queue);
583 }
584 
585 /*
586  * Function:    scsi_end_request()
587  *
588  * Purpose:     Post-processing of completed commands (usually invoked at end
589  *		of upper level post-processing and scsi_io_completion).
590  *
591  * Arguments:   cmd	 - command that is complete.
592  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
593  *              bytes    - number of bytes of completed I/O
594  *		requeue  - indicates whether we should requeue leftovers.
595  *
596  * Lock status: Assumed that lock is not held upon entry.
597  *
598  * Returns:     cmd if requeue done or required, NULL otherwise
599  *
600  * Notes:       This is called for block device requests in order to
601  *              mark some number of sectors as complete.
602  *
603  *		We are guaranteeing that the request queue will be goosed
604  *		at some point during this call.
605  */
606 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
607 					  int bytes, int requeue)
608 {
609 	request_queue_t *q = cmd->device->request_queue;
610 	struct request *req = cmd->request;
611 	unsigned long flags;
612 
613 	/*
614 	 * If there are blocks left over at the end, set up the command
615 	 * to queue the remainder of them.
616 	 */
617 	if (end_that_request_chunk(req, uptodate, bytes)) {
618 		int leftover = (req->hard_nr_sectors << 9);
619 
620 		if (blk_pc_request(req))
621 			leftover = req->data_len;
622 
623 		/* kill remainder if no retrys */
624 		if (!uptodate && blk_noretry_request(req))
625 			end_that_request_chunk(req, 0, leftover);
626 		else {
627 			if (requeue)
628 				/*
629 				 * Bleah.  Leftovers again.  Stick the
630 				 * leftovers in the front of the
631 				 * queue, and goose the queue again.
632 				 */
633 				scsi_requeue_command(q, cmd);
634 
635 			return cmd;
636 		}
637 	}
638 
639 	add_disk_randomness(req->rq_disk);
640 
641 	spin_lock_irqsave(q->queue_lock, flags);
642 	if (blk_rq_tagged(req))
643 		blk_queue_end_tag(q, req);
644 	end_that_request_last(req);
645 	spin_unlock_irqrestore(q->queue_lock, flags);
646 
647 	/*
648 	 * This will goose the queue request function at the end, so we don't
649 	 * need to worry about launching another command.
650 	 */
651 	scsi_next_command(cmd);
652 	return NULL;
653 }
654 
655 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
656 {
657 	struct scsi_host_sg_pool *sgp;
658 	struct scatterlist *sgl;
659 
660 	BUG_ON(!cmd->use_sg);
661 
662 	switch (cmd->use_sg) {
663 	case 1 ... 8:
664 		cmd->sglist_len = 0;
665 		break;
666 	case 9 ... 16:
667 		cmd->sglist_len = 1;
668 		break;
669 	case 17 ... 32:
670 		cmd->sglist_len = 2;
671 		break;
672 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
673 	case 33 ... 64:
674 		cmd->sglist_len = 3;
675 		break;
676 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
677 	case 65 ... 128:
678 		cmd->sglist_len = 4;
679 		break;
680 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
681 	case 129 ... 256:
682 		cmd->sglist_len = 5;
683 		break;
684 #endif
685 #endif
686 #endif
687 	default:
688 		return NULL;
689 	}
690 
691 	sgp = scsi_sg_pools + cmd->sglist_len;
692 	sgl = mempool_alloc(sgp->pool, gfp_mask);
693 	return sgl;
694 }
695 
696 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
697 {
698 	struct scsi_host_sg_pool *sgp;
699 
700 	BUG_ON(index >= SG_MEMPOOL_NR);
701 
702 	sgp = scsi_sg_pools + index;
703 	mempool_free(sgl, sgp->pool);
704 }
705 
706 /*
707  * Function:    scsi_release_buffers()
708  *
709  * Purpose:     Completion processing for block device I/O requests.
710  *
711  * Arguments:   cmd	- command that we are bailing.
712  *
713  * Lock status: Assumed that no lock is held upon entry.
714  *
715  * Returns:     Nothing
716  *
717  * Notes:       In the event that an upper level driver rejects a
718  *		command, we must release resources allocated during
719  *		the __init_io() function.  Primarily this would involve
720  *		the scatter-gather table, and potentially any bounce
721  *		buffers.
722  */
723 static void scsi_release_buffers(struct scsi_cmnd *cmd)
724 {
725 	struct request *req = cmd->request;
726 
727 	/*
728 	 * Free up any indirection buffers we allocated for DMA purposes.
729 	 */
730 	if (cmd->use_sg)
731 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
732 	else if (cmd->request_buffer != req->buffer)
733 		kfree(cmd->request_buffer);
734 
735 	/*
736 	 * Zero these out.  They now point to freed memory, and it is
737 	 * dangerous to hang onto the pointers.
738 	 */
739 	cmd->buffer  = NULL;
740 	cmd->bufflen = 0;
741 	cmd->request_buffer = NULL;
742 	cmd->request_bufflen = 0;
743 }
744 
745 /*
746  * Function:    scsi_io_completion()
747  *
748  * Purpose:     Completion processing for block device I/O requests.
749  *
750  * Arguments:   cmd   - command that is finished.
751  *
752  * Lock status: Assumed that no lock is held upon entry.
753  *
754  * Returns:     Nothing
755  *
756  * Notes:       This function is matched in terms of capabilities to
757  *              the function that created the scatter-gather list.
758  *              In other words, if there are no bounce buffers
759  *              (the normal case for most drivers), we don't need
760  *              the logic to deal with cleaning up afterwards.
761  *
762  *		We must do one of several things here:
763  *
764  *		a) Call scsi_end_request.  This will finish off the
765  *		   specified number of sectors.  If we are done, the
766  *		   command block will be released, and the queue
767  *		   function will be goosed.  If we are not done, then
768  *		   scsi_end_request will directly goose the queue.
769  *
770  *		b) We can just use scsi_requeue_command() here.  This would
771  *		   be used if we just wanted to retry, for example.
772  */
773 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
774 			unsigned int block_bytes)
775 {
776 	int result = cmd->result;
777 	int this_count = cmd->bufflen;
778 	request_queue_t *q = cmd->device->request_queue;
779 	struct request *req = cmd->request;
780 	int clear_errors = 1;
781 	struct scsi_sense_hdr sshdr;
782 	int sense_valid = 0;
783 	int sense_deferred = 0;
784 
785 	if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
786 		return;
787 
788 	/*
789 	 * Free up any indirection buffers we allocated for DMA purposes.
790 	 * For the case of a READ, we need to copy the data out of the
791 	 * bounce buffer and into the real buffer.
792 	 */
793 	if (cmd->use_sg)
794 		scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
795 	else if (cmd->buffer != req->buffer) {
796 		if (rq_data_dir(req) == READ) {
797 			unsigned long flags;
798 			char *to = bio_kmap_irq(req->bio, &flags);
799 			memcpy(to, cmd->buffer, cmd->bufflen);
800 			bio_kunmap_irq(to, &flags);
801 		}
802 		kfree(cmd->buffer);
803 	}
804 
805 	if (result) {
806 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
807 		if (sense_valid)
808 			sense_deferred = scsi_sense_is_deferred(&sshdr);
809 	}
810 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
811 		req->errors = result;
812 		if (result) {
813 			clear_errors = 0;
814 			if (sense_valid && req->sense) {
815 				/*
816 				 * SG_IO wants current and deferred errors
817 				 */
818 				int len = 8 + cmd->sense_buffer[7];
819 
820 				if (len > SCSI_SENSE_BUFFERSIZE)
821 					len = SCSI_SENSE_BUFFERSIZE;
822 				memcpy(req->sense, cmd->sense_buffer,  len);
823 				req->sense_len = len;
824 			}
825 		} else
826 			req->data_len = cmd->resid;
827 	}
828 
829 	/*
830 	 * Zero these out.  They now point to freed memory, and it is
831 	 * dangerous to hang onto the pointers.
832 	 */
833 	cmd->buffer  = NULL;
834 	cmd->bufflen = 0;
835 	cmd->request_buffer = NULL;
836 	cmd->request_bufflen = 0;
837 
838 	/*
839 	 * Next deal with any sectors which we were able to correctly
840 	 * handle.
841 	 */
842 	if (good_bytes >= 0) {
843 		SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
844 					      req->nr_sectors, good_bytes));
845 		SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
846 
847 		if (clear_errors)
848 			req->errors = 0;
849 		/*
850 		 * If multiple sectors are requested in one buffer, then
851 		 * they will have been finished off by the first command.
852 		 * If not, then we have a multi-buffer command.
853 		 *
854 		 * If block_bytes != 0, it means we had a medium error
855 		 * of some sort, and that we want to mark some number of
856 		 * sectors as not uptodate.  Thus we want to inhibit
857 		 * requeueing right here - we will requeue down below
858 		 * when we handle the bad sectors.
859 		 */
860 		cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
861 
862 		/*
863 		 * If the command completed without error, then either finish off the
864 		 * rest of the command, or start a new one.
865 		 */
866 		if (result == 0 || cmd == NULL ) {
867 			return;
868 		}
869 	}
870 	/*
871 	 * Now, if we were good little boys and girls, Santa left us a request
872 	 * sense buffer.  We can extract information from this, so we
873 	 * can choose a block to remap, etc.
874 	 */
875 	if (sense_valid && !sense_deferred) {
876 		switch (sshdr.sense_key) {
877 		case UNIT_ATTENTION:
878 			if (cmd->device->removable) {
879 				/* detected disc change.  set a bit
880 				 * and quietly refuse further access.
881 				 */
882 				cmd->device->changed = 1;
883 				cmd = scsi_end_request(cmd, 0,
884 						this_count, 1);
885 				return;
886 			} else {
887 				/*
888 				* Must have been a power glitch, or a
889 				* bus reset.  Could not have been a
890 				* media change, so we just retry the
891 				* request and see what happens.
892 				*/
893 				scsi_requeue_command(q, cmd);
894 				return;
895 			}
896 			break;
897 		case ILLEGAL_REQUEST:
898 			/*
899 		 	* If we had an ILLEGAL REQUEST returned, then we may
900 		 	* have performed an unsupported command.  The only
901 		 	* thing this should be would be a ten byte read where
902 			* only a six byte read was supported.  Also, on a
903 			* system where READ CAPACITY failed, we may have read
904 			* past the end of the disk.
905 		 	*/
906 			if (cmd->device->use_10_for_rw &&
907 			    (cmd->cmnd[0] == READ_10 ||
908 			     cmd->cmnd[0] == WRITE_10)) {
909 				cmd->device->use_10_for_rw = 0;
910 				/*
911 				 * This will cause a retry with a 6-byte
912 				 * command.
913 				 */
914 				scsi_requeue_command(q, cmd);
915 				result = 0;
916 			} else {
917 				cmd = scsi_end_request(cmd, 0, this_count, 1);
918 				return;
919 			}
920 			break;
921 		case NOT_READY:
922 			/*
923 			 * If the device is in the process of becoming ready,
924 			 * retry.
925 			 */
926 			if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
927 				scsi_requeue_command(q, cmd);
928 				return;
929 			}
930 			if (!(req->flags & REQ_QUIET))
931 				dev_printk(KERN_INFO,
932 					   &cmd->device->sdev_gendev,
933 					   "Device not ready.\n");
934 			cmd = scsi_end_request(cmd, 0, this_count, 1);
935 			return;
936 		case VOLUME_OVERFLOW:
937 			if (!(req->flags & REQ_QUIET)) {
938 				dev_printk(KERN_INFO,
939 					   &cmd->device->sdev_gendev,
940 					   "Volume overflow, CDB: ");
941 				__scsi_print_command(cmd->data_cmnd);
942 				scsi_print_sense("", cmd);
943 			}
944 			cmd = scsi_end_request(cmd, 0, block_bytes, 1);
945 			return;
946 		default:
947 			break;
948 		}
949 	}			/* driver byte != 0 */
950 	if (host_byte(result) == DID_RESET) {
951 		/*
952 		 * Third party bus reset or reset for error
953 		 * recovery reasons.  Just retry the request
954 		 * and see what happens.
955 		 */
956 		scsi_requeue_command(q, cmd);
957 		return;
958 	}
959 	if (result) {
960 		if (!(req->flags & REQ_QUIET)) {
961 			dev_printk(KERN_INFO, &cmd->device->sdev_gendev,
962 				   "SCSI error: return code = 0x%x\n", result);
963 
964 			if (driver_byte(result) & DRIVER_SENSE)
965 				scsi_print_sense("", cmd);
966 		}
967 		/*
968 		 * Mark a single buffer as not uptodate.  Queue the remainder.
969 		 * We sometimes get this cruft in the event that a medium error
970 		 * isn't properly reported.
971 		 */
972 		block_bytes = req->hard_cur_sectors << 9;
973 		if (!block_bytes)
974 			block_bytes = req->data_len;
975 		cmd = scsi_end_request(cmd, 0, block_bytes, 1);
976 	}
977 }
978 EXPORT_SYMBOL(scsi_io_completion);
979 
980 /*
981  * Function:    scsi_init_io()
982  *
983  * Purpose:     SCSI I/O initialize function.
984  *
985  * Arguments:   cmd   - Command descriptor we wish to initialize
986  *
987  * Returns:     0 on success
988  *		BLKPREP_DEFER if the failure is retryable
989  *		BLKPREP_KILL if the failure is fatal
990  */
991 static int scsi_init_io(struct scsi_cmnd *cmd)
992 {
993 	struct request     *req = cmd->request;
994 	struct scatterlist *sgpnt;
995 	int		   count;
996 
997 	/*
998 	 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
999 	 */
1000 	if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1001 		cmd->request_bufflen = req->data_len;
1002 		cmd->request_buffer = req->data;
1003 		req->buffer = req->data;
1004 		cmd->use_sg = 0;
1005 		return 0;
1006 	}
1007 
1008 	/*
1009 	 * we used to not use scatter-gather for single segment request,
1010 	 * but now we do (it makes highmem I/O easier to support without
1011 	 * kmapping pages)
1012 	 */
1013 	cmd->use_sg = req->nr_phys_segments;
1014 
1015 	/*
1016 	 * if sg table allocation fails, requeue request later.
1017 	 */
1018 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1019 	if (unlikely(!sgpnt))
1020 		return BLKPREP_DEFER;
1021 
1022 	cmd->request_buffer = (char *) sgpnt;
1023 	cmd->request_bufflen = req->nr_sectors << 9;
1024 	if (blk_pc_request(req))
1025 		cmd->request_bufflen = req->data_len;
1026 	req->buffer = NULL;
1027 
1028 	/*
1029 	 * Next, walk the list, and fill in the addresses and sizes of
1030 	 * each segment.
1031 	 */
1032 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1033 
1034 	/*
1035 	 * mapped well, send it off
1036 	 */
1037 	if (likely(count <= cmd->use_sg)) {
1038 		cmd->use_sg = count;
1039 		return 0;
1040 	}
1041 
1042 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1043 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1044 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1045 			req->current_nr_sectors);
1046 
1047 	/* release the command and kill it */
1048 	scsi_release_buffers(cmd);
1049 	scsi_put_command(cmd);
1050 	return BLKPREP_KILL;
1051 }
1052 
1053 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1054 {
1055 	struct scsi_device *sdev = q->queuedata;
1056 	struct scsi_driver *drv;
1057 
1058 	if (sdev->sdev_state == SDEV_RUNNING) {
1059 		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1060 
1061 		if (drv->prepare_flush)
1062 			return drv->prepare_flush(q, rq);
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1069 {
1070 	struct scsi_device *sdev = q->queuedata;
1071 	struct request *flush_rq = rq->end_io_data;
1072 	struct scsi_driver *drv;
1073 
1074 	if (flush_rq->errors) {
1075 		printk("scsi: barrier error, disabling flush support\n");
1076 		blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1077 	}
1078 
1079 	if (sdev->sdev_state == SDEV_RUNNING) {
1080 		drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1081 		drv->end_flush(q, rq);
1082 	}
1083 }
1084 
1085 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1086 			       sector_t *error_sector)
1087 {
1088 	struct scsi_device *sdev = q->queuedata;
1089 	struct scsi_driver *drv;
1090 
1091 	if (sdev->sdev_state != SDEV_RUNNING)
1092 		return -ENXIO;
1093 
1094 	drv = *(struct scsi_driver **) disk->private_data;
1095 	if (drv->issue_flush)
1096 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1097 
1098 	return -EOPNOTSUPP;
1099 }
1100 
1101 static void scsi_generic_done(struct scsi_cmnd *cmd)
1102 {
1103 	BUG_ON(!blk_pc_request(cmd->request));
1104 	scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1105 }
1106 
1107 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1108 {
1109 	struct scsi_device *sdev = q->queuedata;
1110 	struct scsi_cmnd *cmd;
1111 	int specials_only = 0;
1112 
1113 	/*
1114 	 * Just check to see if the device is online.  If it isn't, we
1115 	 * refuse to process any commands.  The device must be brought
1116 	 * online before trying any recovery commands
1117 	 */
1118 	if (unlikely(!scsi_device_online(sdev))) {
1119 		printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1120 		       sdev->host->host_no, sdev->id, sdev->lun);
1121 		return BLKPREP_KILL;
1122 	}
1123 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1124 		/* OK, we're not in a running state don't prep
1125 		 * user commands */
1126 		if (sdev->sdev_state == SDEV_DEL) {
1127 			/* Device is fully deleted, no commands
1128 			 * at all allowed down */
1129 			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1130 			       sdev->host->host_no, sdev->id, sdev->lun);
1131 			return BLKPREP_KILL;
1132 		}
1133 		/* OK, we only allow special commands (i.e. not
1134 		 * user initiated ones */
1135 		specials_only = sdev->sdev_state;
1136 	}
1137 
1138 	/*
1139 	 * Find the actual device driver associated with this command.
1140 	 * The SPECIAL requests are things like character device or
1141 	 * ioctls, which did not originate from ll_rw_blk.  Note that
1142 	 * the special field is also used to indicate the cmd for
1143 	 * the remainder of a partially fulfilled request that can
1144 	 * come up when there is a medium error.  We have to treat
1145 	 * these two cases differently.  We differentiate by looking
1146 	 * at request->cmd, as this tells us the real story.
1147 	 */
1148 	if (req->flags & REQ_SPECIAL && req->special) {
1149 		struct scsi_request *sreq = req->special;
1150 
1151 		if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1152 			cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1153 			if (unlikely(!cmd))
1154 				goto defer;
1155 			scsi_init_cmd_from_req(cmd, sreq);
1156 		} else
1157 			cmd = req->special;
1158 	} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1159 
1160 		if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1161 			if(specials_only == SDEV_QUIESCE ||
1162 					specials_only == SDEV_BLOCK)
1163 				return BLKPREP_DEFER;
1164 
1165 			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1166 			       sdev->host->host_no, sdev->id, sdev->lun);
1167 			return BLKPREP_KILL;
1168 		}
1169 
1170 
1171 		/*
1172 		 * Now try and find a command block that we can use.
1173 		 */
1174 		if (!req->special) {
1175 			cmd = scsi_get_command(sdev, GFP_ATOMIC);
1176 			if (unlikely(!cmd))
1177 				goto defer;
1178 		} else
1179 			cmd = req->special;
1180 
1181 		/* pull a tag out of the request if we have one */
1182 		cmd->tag = req->tag;
1183 	} else {
1184 		blk_dump_rq_flags(req, "SCSI bad req");
1185 		return BLKPREP_KILL;
1186 	}
1187 
1188 	/* note the overloading of req->special.  When the tag
1189 	 * is active it always means cmd.  If the tag goes
1190 	 * back for re-queueing, it may be reset */
1191 	req->special = cmd;
1192 	cmd->request = req;
1193 
1194 	/*
1195 	 * FIXME: drop the lock here because the functions below
1196 	 * expect to be called without the queue lock held.  Also,
1197 	 * previously, we dequeued the request before dropping the
1198 	 * lock.  We hope REQ_STARTED prevents anything untoward from
1199 	 * happening now.
1200 	 */
1201 	if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1202 		struct scsi_driver *drv;
1203 		int ret;
1204 
1205 		/*
1206 		 * This will do a couple of things:
1207 		 *  1) Fill in the actual SCSI command.
1208 		 *  2) Fill in any other upper-level specific fields
1209 		 * (timeout).
1210 		 *
1211 		 * If this returns 0, it means that the request failed
1212 		 * (reading past end of disk, reading offline device,
1213 		 * etc).   This won't actually talk to the device, but
1214 		 * some kinds of consistency checking may cause the
1215 		 * request to be rejected immediately.
1216 		 */
1217 
1218 		/*
1219 		 * This sets up the scatter-gather table (allocating if
1220 		 * required).
1221 		 */
1222 		ret = scsi_init_io(cmd);
1223 		if (ret)	/* BLKPREP_KILL return also releases the command */
1224 			return ret;
1225 
1226 		/*
1227 		 * Initialize the actual SCSI command for this request.
1228 		 */
1229 		if (req->rq_disk) {
1230 			drv = *(struct scsi_driver **)req->rq_disk->private_data;
1231 			if (unlikely(!drv->init_command(cmd))) {
1232 				scsi_release_buffers(cmd);
1233 				scsi_put_command(cmd);
1234 				return BLKPREP_KILL;
1235 			}
1236 		} else {
1237 			memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1238 			if (rq_data_dir(req) == WRITE)
1239 				cmd->sc_data_direction = DMA_TO_DEVICE;
1240 			else if (req->data_len)
1241 				cmd->sc_data_direction = DMA_FROM_DEVICE;
1242 			else
1243 				cmd->sc_data_direction = DMA_NONE;
1244 
1245 			cmd->transfersize = req->data_len;
1246 			cmd->allowed = 3;
1247 			cmd->timeout_per_command = req->timeout;
1248 			cmd->done = scsi_generic_done;
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * The request is now prepped, no need to come back here
1254 	 */
1255 	req->flags |= REQ_DONTPREP;
1256 	return BLKPREP_OK;
1257 
1258  defer:
1259 	/* If we defer, the elv_next_request() returns NULL, but the
1260 	 * queue must be restarted, so we plug here if no returning
1261 	 * command will automatically do that. */
1262 	if (sdev->device_busy == 0)
1263 		blk_plug_device(q);
1264 	return BLKPREP_DEFER;
1265 }
1266 
1267 /*
1268  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1269  * return 0.
1270  *
1271  * Called with the queue_lock held.
1272  */
1273 static inline int scsi_dev_queue_ready(struct request_queue *q,
1274 				  struct scsi_device *sdev)
1275 {
1276 	if (sdev->device_busy >= sdev->queue_depth)
1277 		return 0;
1278 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1279 		/*
1280 		 * unblock after device_blocked iterates to zero
1281 		 */
1282 		if (--sdev->device_blocked == 0) {
1283 			SCSI_LOG_MLQUEUE(3,
1284 				printk("scsi%d (%d:%d) unblocking device at"
1285 				       " zero depth\n", sdev->host->host_no,
1286 				       sdev->id, sdev->lun));
1287 		} else {
1288 			blk_plug_device(q);
1289 			return 0;
1290 		}
1291 	}
1292 	if (sdev->device_blocked)
1293 		return 0;
1294 
1295 	return 1;
1296 }
1297 
1298 /*
1299  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1300  * return 0. We must end up running the queue again whenever 0 is
1301  * returned, else IO can hang.
1302  *
1303  * Called with host_lock held.
1304  */
1305 static inline int scsi_host_queue_ready(struct request_queue *q,
1306 				   struct Scsi_Host *shost,
1307 				   struct scsi_device *sdev)
1308 {
1309 	if (shost->shost_state == SHOST_RECOVERY)
1310 		return 0;
1311 	if (shost->host_busy == 0 && shost->host_blocked) {
1312 		/*
1313 		 * unblock after host_blocked iterates to zero
1314 		 */
1315 		if (--shost->host_blocked == 0) {
1316 			SCSI_LOG_MLQUEUE(3,
1317 				printk("scsi%d unblocking host at zero depth\n",
1318 					shost->host_no));
1319 		} else {
1320 			blk_plug_device(q);
1321 			return 0;
1322 		}
1323 	}
1324 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1325 	    shost->host_blocked || shost->host_self_blocked) {
1326 		if (list_empty(&sdev->starved_entry))
1327 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1328 		return 0;
1329 	}
1330 
1331 	/* We're OK to process the command, so we can't be starved */
1332 	if (!list_empty(&sdev->starved_entry))
1333 		list_del_init(&sdev->starved_entry);
1334 
1335 	return 1;
1336 }
1337 
1338 /*
1339  * Kill requests for a dead device
1340  */
1341 static void scsi_kill_requests(request_queue_t *q)
1342 {
1343 	struct request *req;
1344 
1345 	while ((req = elv_next_request(q)) != NULL) {
1346 		blkdev_dequeue_request(req);
1347 		req->flags |= REQ_QUIET;
1348 		while (end_that_request_first(req, 0, req->nr_sectors))
1349 			;
1350 		end_that_request_last(req);
1351 	}
1352 }
1353 
1354 /*
1355  * Function:    scsi_request_fn()
1356  *
1357  * Purpose:     Main strategy routine for SCSI.
1358  *
1359  * Arguments:   q       - Pointer to actual queue.
1360  *
1361  * Returns:     Nothing
1362  *
1363  * Lock status: IO request lock assumed to be held when called.
1364  */
1365 static void scsi_request_fn(struct request_queue *q)
1366 {
1367 	struct scsi_device *sdev = q->queuedata;
1368 	struct Scsi_Host *shost;
1369 	struct scsi_cmnd *cmd;
1370 	struct request *req;
1371 
1372 	if (!sdev) {
1373 		printk("scsi: killing requests for dead queue\n");
1374 		scsi_kill_requests(q);
1375 		return;
1376 	}
1377 
1378 	if(!get_device(&sdev->sdev_gendev))
1379 		/* We must be tearing the block queue down already */
1380 		return;
1381 
1382 	/*
1383 	 * To start with, we keep looping until the queue is empty, or until
1384 	 * the host is no longer able to accept any more requests.
1385 	 */
1386 	shost = sdev->host;
1387 	while (!blk_queue_plugged(q)) {
1388 		int rtn;
1389 		/*
1390 		 * get next queueable request.  We do this early to make sure
1391 		 * that the request is fully prepared even if we cannot
1392 		 * accept it.
1393 		 */
1394 		req = elv_next_request(q);
1395 		if (!req || !scsi_dev_queue_ready(q, sdev))
1396 			break;
1397 
1398 		if (unlikely(!scsi_device_online(sdev))) {
1399 			printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1400 			       sdev->host->host_no, sdev->id, sdev->lun);
1401 			blkdev_dequeue_request(req);
1402 			req->flags |= REQ_QUIET;
1403 			while (end_that_request_first(req, 0, req->nr_sectors))
1404 				;
1405 			end_that_request_last(req);
1406 			continue;
1407 		}
1408 
1409 
1410 		/*
1411 		 * Remove the request from the request list.
1412 		 */
1413 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1414 			blkdev_dequeue_request(req);
1415 		sdev->device_busy++;
1416 
1417 		spin_unlock(q->queue_lock);
1418 		spin_lock(shost->host_lock);
1419 
1420 		if (!scsi_host_queue_ready(q, shost, sdev))
1421 			goto not_ready;
1422 		if (sdev->single_lun) {
1423 			if (scsi_target(sdev)->starget_sdev_user &&
1424 			    scsi_target(sdev)->starget_sdev_user != sdev)
1425 				goto not_ready;
1426 			scsi_target(sdev)->starget_sdev_user = sdev;
1427 		}
1428 		shost->host_busy++;
1429 
1430 		/*
1431 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1432 		 *		take the lock again.
1433 		 */
1434 		spin_unlock_irq(shost->host_lock);
1435 
1436 		cmd = req->special;
1437 		if (unlikely(cmd == NULL)) {
1438 			printk(KERN_CRIT "impossible request in %s.\n"
1439 					 "please mail a stack trace to "
1440 					 "linux-scsi@vger.kernel.org",
1441 					 __FUNCTION__);
1442 			BUG();
1443 		}
1444 
1445 		/*
1446 		 * Finally, initialize any error handling parameters, and set up
1447 		 * the timers for timeouts.
1448 		 */
1449 		scsi_init_cmd_errh(cmd);
1450 
1451 		/*
1452 		 * Dispatch the command to the low-level driver.
1453 		 */
1454 		rtn = scsi_dispatch_cmd(cmd);
1455 		spin_lock_irq(q->queue_lock);
1456 		if(rtn) {
1457 			/* we're refusing the command; because of
1458 			 * the way locks get dropped, we need to
1459 			 * check here if plugging is required */
1460 			if(sdev->device_busy == 0)
1461 				blk_plug_device(q);
1462 
1463 			break;
1464 		}
1465 	}
1466 
1467 	goto out;
1468 
1469  not_ready:
1470 	spin_unlock_irq(shost->host_lock);
1471 
1472 	/*
1473 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1474 	 * must return with queue_lock held.
1475 	 *
1476 	 * Decrementing device_busy without checking it is OK, as all such
1477 	 * cases (host limits or settings) should run the queue at some
1478 	 * later time.
1479 	 */
1480 	spin_lock_irq(q->queue_lock);
1481 	blk_requeue_request(q, req);
1482 	sdev->device_busy--;
1483 	if(sdev->device_busy == 0)
1484 		blk_plug_device(q);
1485  out:
1486 	/* must be careful here...if we trigger the ->remove() function
1487 	 * we cannot be holding the q lock */
1488 	spin_unlock_irq(q->queue_lock);
1489 	put_device(&sdev->sdev_gendev);
1490 	spin_lock_irq(q->queue_lock);
1491 }
1492 
1493 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1494 {
1495 	struct device *host_dev;
1496 	u64 bounce_limit = 0xffffffff;
1497 
1498 	if (shost->unchecked_isa_dma)
1499 		return BLK_BOUNCE_ISA;
1500 	/*
1501 	 * Platforms with virtual-DMA translation
1502 	 * hardware have no practical limit.
1503 	 */
1504 	if (!PCI_DMA_BUS_IS_PHYS)
1505 		return BLK_BOUNCE_ANY;
1506 
1507 	host_dev = scsi_get_device(shost);
1508 	if (host_dev && host_dev->dma_mask)
1509 		bounce_limit = *host_dev->dma_mask;
1510 
1511 	return bounce_limit;
1512 }
1513 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1514 
1515 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1516 {
1517 	struct Scsi_Host *shost = sdev->host;
1518 	struct request_queue *q;
1519 
1520 	q = blk_init_queue(scsi_request_fn, NULL);
1521 	if (!q)
1522 		return NULL;
1523 
1524 	blk_queue_prep_rq(q, scsi_prep_fn);
1525 
1526 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1527 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1528 	blk_queue_max_sectors(q, shost->max_sectors);
1529 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1530 	blk_queue_segment_boundary(q, shost->dma_boundary);
1531 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1532 
1533 	/*
1534 	 * ordered tags are superior to flush ordering
1535 	 */
1536 	if (shost->ordered_tag)
1537 		blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1538 	else if (shost->ordered_flush) {
1539 		blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1540 		q->prepare_flush_fn = scsi_prepare_flush_fn;
1541 		q->end_flush_fn = scsi_end_flush_fn;
1542 	}
1543 
1544 	if (!shost->use_clustering)
1545 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1546 	return q;
1547 }
1548 
1549 void scsi_free_queue(struct request_queue *q)
1550 {
1551 	blk_cleanup_queue(q);
1552 }
1553 
1554 /*
1555  * Function:    scsi_block_requests()
1556  *
1557  * Purpose:     Utility function used by low-level drivers to prevent further
1558  *		commands from being queued to the device.
1559  *
1560  * Arguments:   shost       - Host in question
1561  *
1562  * Returns:     Nothing
1563  *
1564  * Lock status: No locks are assumed held.
1565  *
1566  * Notes:       There is no timer nor any other means by which the requests
1567  *		get unblocked other than the low-level driver calling
1568  *		scsi_unblock_requests().
1569  */
1570 void scsi_block_requests(struct Scsi_Host *shost)
1571 {
1572 	shost->host_self_blocked = 1;
1573 }
1574 EXPORT_SYMBOL(scsi_block_requests);
1575 
1576 /*
1577  * Function:    scsi_unblock_requests()
1578  *
1579  * Purpose:     Utility function used by low-level drivers to allow further
1580  *		commands from being queued to the device.
1581  *
1582  * Arguments:   shost       - Host in question
1583  *
1584  * Returns:     Nothing
1585  *
1586  * Lock status: No locks are assumed held.
1587  *
1588  * Notes:       There is no timer nor any other means by which the requests
1589  *		get unblocked other than the low-level driver calling
1590  *		scsi_unblock_requests().
1591  *
1592  *		This is done as an API function so that changes to the
1593  *		internals of the scsi mid-layer won't require wholesale
1594  *		changes to drivers that use this feature.
1595  */
1596 void scsi_unblock_requests(struct Scsi_Host *shost)
1597 {
1598 	shost->host_self_blocked = 0;
1599 	scsi_run_host_queues(shost);
1600 }
1601 EXPORT_SYMBOL(scsi_unblock_requests);
1602 
1603 int __init scsi_init_queue(void)
1604 {
1605 	int i;
1606 
1607 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1608 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1609 		int size = sgp->size * sizeof(struct scatterlist);
1610 
1611 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1612 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1613 		if (!sgp->slab) {
1614 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1615 					sgp->name);
1616 		}
1617 
1618 		sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1619 				mempool_alloc_slab, mempool_free_slab,
1620 				sgp->slab);
1621 		if (!sgp->pool) {
1622 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1623 					sgp->name);
1624 		}
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 void scsi_exit_queue(void)
1631 {
1632 	int i;
1633 
1634 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1635 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1636 		mempool_destroy(sgp->pool);
1637 		kmem_cache_destroy(sgp->slab);
1638 	}
1639 }
1640 /**
1641  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1642  *		six bytes if necessary.
1643  *	@sdev:	SCSI device to be queried
1644  *	@dbd:	set if mode sense will allow block descriptors to be returned
1645  *	@modepage: mode page being requested
1646  *	@buffer: request buffer (may not be smaller than eight bytes)
1647  *	@len:	length of request buffer.
1648  *	@timeout: command timeout
1649  *	@retries: number of retries before failing
1650  *	@data: returns a structure abstracting the mode header data
1651  *	@sense: place to put sense data (or NULL if no sense to be collected).
1652  *		must be SCSI_SENSE_BUFFERSIZE big.
1653  *
1654  *	Returns zero if unsuccessful, or the header offset (either 4
1655  *	or 8 depending on whether a six or ten byte command was
1656  *	issued) if successful.
1657  **/
1658 int
1659 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1660 		  unsigned char *buffer, int len, int timeout, int retries,
1661 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1662 	unsigned char cmd[12];
1663 	int use_10_for_ms;
1664 	int header_length;
1665 	int result;
1666 	struct scsi_sense_hdr my_sshdr;
1667 
1668 	memset(data, 0, sizeof(*data));
1669 	memset(&cmd[0], 0, 12);
1670 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1671 	cmd[2] = modepage;
1672 
1673 	/* caller might not be interested in sense, but we need it */
1674 	if (!sshdr)
1675 		sshdr = &my_sshdr;
1676 
1677  retry:
1678 	use_10_for_ms = sdev->use_10_for_ms;
1679 
1680 	if (use_10_for_ms) {
1681 		if (len < 8)
1682 			len = 8;
1683 
1684 		cmd[0] = MODE_SENSE_10;
1685 		cmd[8] = len;
1686 		header_length = 8;
1687 	} else {
1688 		if (len < 4)
1689 			len = 4;
1690 
1691 		cmd[0] = MODE_SENSE;
1692 		cmd[4] = len;
1693 		header_length = 4;
1694 	}
1695 
1696 	memset(buffer, 0, len);
1697 
1698 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1699 				  sshdr, timeout, retries);
1700 
1701 	/* This code looks awful: what it's doing is making sure an
1702 	 * ILLEGAL REQUEST sense return identifies the actual command
1703 	 * byte as the problem.  MODE_SENSE commands can return
1704 	 * ILLEGAL REQUEST if the code page isn't supported */
1705 
1706 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1707 	    (driver_byte(result) & DRIVER_SENSE)) {
1708 		if (scsi_sense_valid(sshdr)) {
1709 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1710 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1711 				/*
1712 				 * Invalid command operation code
1713 				 */
1714 				sdev->use_10_for_ms = 0;
1715 				goto retry;
1716 			}
1717 		}
1718 	}
1719 
1720 	if(scsi_status_is_good(result)) {
1721 		data->header_length = header_length;
1722 		if(use_10_for_ms) {
1723 			data->length = buffer[0]*256 + buffer[1] + 2;
1724 			data->medium_type = buffer[2];
1725 			data->device_specific = buffer[3];
1726 			data->longlba = buffer[4] & 0x01;
1727 			data->block_descriptor_length = buffer[6]*256
1728 				+ buffer[7];
1729 		} else {
1730 			data->length = buffer[0] + 1;
1731 			data->medium_type = buffer[1];
1732 			data->device_specific = buffer[2];
1733 			data->block_descriptor_length = buffer[3];
1734 		}
1735 	}
1736 
1737 	return result;
1738 }
1739 EXPORT_SYMBOL(scsi_mode_sense);
1740 
1741 int
1742 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1743 {
1744 	char cmd[] = {
1745 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1746 	};
1747 	struct scsi_sense_hdr sshdr;
1748 	int result;
1749 
1750 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1751 				  timeout, retries);
1752 
1753 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1754 
1755 		if ((scsi_sense_valid(&sshdr)) &&
1756 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1757 		     (sshdr.sense_key == NOT_READY))) {
1758 			sdev->changed = 1;
1759 			result = 0;
1760 		}
1761 	}
1762 	return result;
1763 }
1764 EXPORT_SYMBOL(scsi_test_unit_ready);
1765 
1766 /**
1767  *	scsi_device_set_state - Take the given device through the device
1768  *		state model.
1769  *	@sdev:	scsi device to change the state of.
1770  *	@state:	state to change to.
1771  *
1772  *	Returns zero if unsuccessful or an error if the requested
1773  *	transition is illegal.
1774  **/
1775 int
1776 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1777 {
1778 	enum scsi_device_state oldstate = sdev->sdev_state;
1779 
1780 	if (state == oldstate)
1781 		return 0;
1782 
1783 	switch (state) {
1784 	case SDEV_CREATED:
1785 		/* There are no legal states that come back to
1786 		 * created.  This is the manually initialised start
1787 		 * state */
1788 		goto illegal;
1789 
1790 	case SDEV_RUNNING:
1791 		switch (oldstate) {
1792 		case SDEV_CREATED:
1793 		case SDEV_OFFLINE:
1794 		case SDEV_QUIESCE:
1795 		case SDEV_BLOCK:
1796 			break;
1797 		default:
1798 			goto illegal;
1799 		}
1800 		break;
1801 
1802 	case SDEV_QUIESCE:
1803 		switch (oldstate) {
1804 		case SDEV_RUNNING:
1805 		case SDEV_OFFLINE:
1806 			break;
1807 		default:
1808 			goto illegal;
1809 		}
1810 		break;
1811 
1812 	case SDEV_OFFLINE:
1813 		switch (oldstate) {
1814 		case SDEV_CREATED:
1815 		case SDEV_RUNNING:
1816 		case SDEV_QUIESCE:
1817 		case SDEV_BLOCK:
1818 			break;
1819 		default:
1820 			goto illegal;
1821 		}
1822 		break;
1823 
1824 	case SDEV_BLOCK:
1825 		switch (oldstate) {
1826 		case SDEV_CREATED:
1827 		case SDEV_RUNNING:
1828 			break;
1829 		default:
1830 			goto illegal;
1831 		}
1832 		break;
1833 
1834 	case SDEV_CANCEL:
1835 		switch (oldstate) {
1836 		case SDEV_CREATED:
1837 		case SDEV_RUNNING:
1838 		case SDEV_OFFLINE:
1839 		case SDEV_BLOCK:
1840 			break;
1841 		default:
1842 			goto illegal;
1843 		}
1844 		break;
1845 
1846 	case SDEV_DEL:
1847 		switch (oldstate) {
1848 		case SDEV_CANCEL:
1849 			break;
1850 		default:
1851 			goto illegal;
1852 		}
1853 		break;
1854 
1855 	}
1856 	sdev->sdev_state = state;
1857 	return 0;
1858 
1859  illegal:
1860 	SCSI_LOG_ERROR_RECOVERY(1,
1861 				dev_printk(KERN_ERR, &sdev->sdev_gendev,
1862 					   "Illegal state transition %s->%s\n",
1863 					   scsi_device_state_name(oldstate),
1864 					   scsi_device_state_name(state))
1865 				);
1866 	return -EINVAL;
1867 }
1868 EXPORT_SYMBOL(scsi_device_set_state);
1869 
1870 /**
1871  *	scsi_device_quiesce - Block user issued commands.
1872  *	@sdev:	scsi device to quiesce.
1873  *
1874  *	This works by trying to transition to the SDEV_QUIESCE state
1875  *	(which must be a legal transition).  When the device is in this
1876  *	state, only special requests will be accepted, all others will
1877  *	be deferred.  Since special requests may also be requeued requests,
1878  *	a successful return doesn't guarantee the device will be
1879  *	totally quiescent.
1880  *
1881  *	Must be called with user context, may sleep.
1882  *
1883  *	Returns zero if unsuccessful or an error if not.
1884  **/
1885 int
1886 scsi_device_quiesce(struct scsi_device *sdev)
1887 {
1888 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1889 	if (err)
1890 		return err;
1891 
1892 	scsi_run_queue(sdev->request_queue);
1893 	while (sdev->device_busy) {
1894 		msleep_interruptible(200);
1895 		scsi_run_queue(sdev->request_queue);
1896 	}
1897 	return 0;
1898 }
1899 EXPORT_SYMBOL(scsi_device_quiesce);
1900 
1901 /**
1902  *	scsi_device_resume - Restart user issued commands to a quiesced device.
1903  *	@sdev:	scsi device to resume.
1904  *
1905  *	Moves the device from quiesced back to running and restarts the
1906  *	queues.
1907  *
1908  *	Must be called with user context, may sleep.
1909  **/
1910 void
1911 scsi_device_resume(struct scsi_device *sdev)
1912 {
1913 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
1914 		return;
1915 	scsi_run_queue(sdev->request_queue);
1916 }
1917 EXPORT_SYMBOL(scsi_device_resume);
1918 
1919 static void
1920 device_quiesce_fn(struct scsi_device *sdev, void *data)
1921 {
1922 	scsi_device_quiesce(sdev);
1923 }
1924 
1925 void
1926 scsi_target_quiesce(struct scsi_target *starget)
1927 {
1928 	starget_for_each_device(starget, NULL, device_quiesce_fn);
1929 }
1930 EXPORT_SYMBOL(scsi_target_quiesce);
1931 
1932 static void
1933 device_resume_fn(struct scsi_device *sdev, void *data)
1934 {
1935 	scsi_device_resume(sdev);
1936 }
1937 
1938 void
1939 scsi_target_resume(struct scsi_target *starget)
1940 {
1941 	starget_for_each_device(starget, NULL, device_resume_fn);
1942 }
1943 EXPORT_SYMBOL(scsi_target_resume);
1944 
1945 /**
1946  * scsi_internal_device_block - internal function to put a device
1947  *				temporarily into the SDEV_BLOCK state
1948  * @sdev:	device to block
1949  *
1950  * Block request made by scsi lld's to temporarily stop all
1951  * scsi commands on the specified device.  Called from interrupt
1952  * or normal process context.
1953  *
1954  * Returns zero if successful or error if not
1955  *
1956  * Notes:
1957  *	This routine transitions the device to the SDEV_BLOCK state
1958  *	(which must be a legal transition).  When the device is in this
1959  *	state, all commands are deferred until the scsi lld reenables
1960  *	the device with scsi_device_unblock or device_block_tmo fires.
1961  *	This routine assumes the host_lock is held on entry.
1962  **/
1963 int
1964 scsi_internal_device_block(struct scsi_device *sdev)
1965 {
1966 	request_queue_t *q = sdev->request_queue;
1967 	unsigned long flags;
1968 	int err = 0;
1969 
1970 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
1971 	if (err)
1972 		return err;
1973 
1974 	/*
1975 	 * The device has transitioned to SDEV_BLOCK.  Stop the
1976 	 * block layer from calling the midlayer with this device's
1977 	 * request queue.
1978 	 */
1979 	spin_lock_irqsave(q->queue_lock, flags);
1980 	blk_stop_queue(q);
1981 	spin_unlock_irqrestore(q->queue_lock, flags);
1982 
1983 	return 0;
1984 }
1985 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1986 
1987 /**
1988  * scsi_internal_device_unblock - resume a device after a block request
1989  * @sdev:	device to resume
1990  *
1991  * Called by scsi lld's or the midlayer to restart the device queue
1992  * for the previously suspended scsi device.  Called from interrupt or
1993  * normal process context.
1994  *
1995  * Returns zero if successful or error if not.
1996  *
1997  * Notes:
1998  *	This routine transitions the device to the SDEV_RUNNING state
1999  *	(which must be a legal transition) allowing the midlayer to
2000  *	goose the queue for this device.  This routine assumes the
2001  *	host_lock is held upon entry.
2002  **/
2003 int
2004 scsi_internal_device_unblock(struct scsi_device *sdev)
2005 {
2006 	request_queue_t *q = sdev->request_queue;
2007 	int err;
2008 	unsigned long flags;
2009 
2010 	/*
2011 	 * Try to transition the scsi device to SDEV_RUNNING
2012 	 * and goose the device queue if successful.
2013 	 */
2014 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2015 	if (err)
2016 		return err;
2017 
2018 	spin_lock_irqsave(q->queue_lock, flags);
2019 	blk_start_queue(q);
2020 	spin_unlock_irqrestore(q->queue_lock, flags);
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2025 
2026 static void
2027 device_block(struct scsi_device *sdev, void *data)
2028 {
2029 	scsi_internal_device_block(sdev);
2030 }
2031 
2032 static int
2033 target_block(struct device *dev, void *data)
2034 {
2035 	if (scsi_is_target_device(dev))
2036 		starget_for_each_device(to_scsi_target(dev), NULL,
2037 					device_block);
2038 	return 0;
2039 }
2040 
2041 void
2042 scsi_target_block(struct device *dev)
2043 {
2044 	if (scsi_is_target_device(dev))
2045 		starget_for_each_device(to_scsi_target(dev), NULL,
2046 					device_block);
2047 	else
2048 		device_for_each_child(dev, NULL, target_block);
2049 }
2050 EXPORT_SYMBOL_GPL(scsi_target_block);
2051 
2052 static void
2053 device_unblock(struct scsi_device *sdev, void *data)
2054 {
2055 	scsi_internal_device_unblock(sdev);
2056 }
2057 
2058 static int
2059 target_unblock(struct device *dev, void *data)
2060 {
2061 	if (scsi_is_target_device(dev))
2062 		starget_for_each_device(to_scsi_target(dev), NULL,
2063 					device_unblock);
2064 	return 0;
2065 }
2066 
2067 void
2068 scsi_target_unblock(struct device *dev)
2069 {
2070 	if (scsi_is_target_device(dev))
2071 		starget_for_each_device(to_scsi_target(dev), NULL,
2072 					device_unblock);
2073 	else
2074 		device_for_each_child(dev, NULL, target_unblock);
2075 }
2076 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2077