1 /* 2 * QLOGIC LINUX SOFTWARE 3 * 4 * QLogic ISP2x00 device driver for Linux 2.6.x 5 * Copyright (C) 2003-2004 QLogic Corporation 6 * (www.qlogic.com) 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2, or (at your option) any 11 * later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 */ 19 20 21 static __inline__ uint16_t qla2x00_debounce_register(volatile uint16_t __iomem *); 22 /* 23 * qla2x00_debounce_register 24 * Debounce register. 25 * 26 * Input: 27 * port = register address. 28 * 29 * Returns: 30 * register value. 31 */ 32 static __inline__ uint16_t 33 qla2x00_debounce_register(volatile uint16_t __iomem *addr) 34 { 35 volatile uint16_t first; 36 volatile uint16_t second; 37 38 do { 39 first = RD_REG_WORD(addr); 40 barrier(); 41 cpu_relax(); 42 second = RD_REG_WORD(addr); 43 } while (first != second); 44 45 return (first); 46 } 47 48 static __inline__ int qla2x00_normalize_dma_addr( 49 dma_addr_t *e_addr, uint32_t *e_len, 50 dma_addr_t *ne_addr, uint32_t *ne_len); 51 52 /** 53 * qla2x00_normalize_dma_addr() - Normalize an DMA address. 54 * @e_addr: Raw DMA address 55 * @e_len: Raw DMA length 56 * @ne_addr: Normalized second DMA address 57 * @ne_len: Normalized second DMA length 58 * 59 * If the address does not span a 4GB page boundary, the contents of @ne_addr 60 * and @ne_len are undefined. @e_len is updated to reflect a normalization. 61 * 62 * Example: 63 * 64 * ffffabc0ffffeeee (e_addr) start of DMA address 65 * 0000000020000000 (e_len) length of DMA transfer 66 * ffffabc11fffeeed end of DMA transfer 67 * 68 * Is the 4GB boundary crossed? 69 * 70 * ffffabc0ffffeeee (e_addr) 71 * ffffabc11fffeeed (e_addr + e_len - 1) 72 * 00000001e0000003 ((e_addr ^ (e_addr + e_len - 1)) 73 * 0000000100000000 ((e_addr ^ (e_addr + e_len - 1)) & ~(0xffffffff) 74 * 75 * Compute start of second DMA segment: 76 * 77 * ffffabc0ffffeeee (e_addr) 78 * ffffabc1ffffeeee (0x100000000 + e_addr) 79 * ffffabc100000000 (0x100000000 + e_addr) & ~(0xffffffff) 80 * ffffabc100000000 (ne_addr) 81 * 82 * Compute length of second DMA segment: 83 * 84 * 00000000ffffeeee (e_addr & 0xffffffff) 85 * 0000000000001112 (0x100000000 - (e_addr & 0xffffffff)) 86 * 000000001fffeeee (e_len - (0x100000000 - (e_addr & 0xffffffff)) 87 * 000000001fffeeee (ne_len) 88 * 89 * Adjust length of first DMA segment 90 * 91 * 0000000020000000 (e_len) 92 * 0000000000001112 (e_len - ne_len) 93 * 0000000000001112 (e_len) 94 * 95 * Returns non-zero if the specified address was normalized, else zero. 96 */ 97 static __inline__ int 98 qla2x00_normalize_dma_addr( 99 dma_addr_t *e_addr, uint32_t *e_len, 100 dma_addr_t *ne_addr, uint32_t *ne_len) 101 { 102 int normalized; 103 104 normalized = 0; 105 if ((*e_addr ^ (*e_addr + *e_len - 1)) & ~(0xFFFFFFFFULL)) { 106 /* Compute normalized crossed address and len */ 107 *ne_addr = (0x100000000ULL + *e_addr) & ~(0xFFFFFFFFULL); 108 *ne_len = *e_len - (0x100000000ULL - (*e_addr & 0xFFFFFFFFULL)); 109 *e_len -= *ne_len; 110 111 normalized++; 112 } 113 return (normalized); 114 } 115 116 static __inline__ void qla2x00_poll(scsi_qla_host_t *); 117 static inline void 118 qla2x00_poll(scsi_qla_host_t *ha) 119 { 120 if (IS_QLA2100(ha) || IS_QLA2200(ha)) 121 qla2100_intr_handler(0, ha, NULL); 122 else 123 qla2300_intr_handler(0, ha, NULL); 124 } 125 126 127 static __inline__ void qla2x00_enable_intrs(scsi_qla_host_t *); 128 static __inline__ void qla2x00_disable_intrs(scsi_qla_host_t *); 129 130 static inline void 131 qla2x00_enable_intrs(scsi_qla_host_t *ha) 132 { 133 unsigned long flags = 0; 134 device_reg_t __iomem *reg = ha->iobase; 135 136 spin_lock_irqsave(&ha->hardware_lock, flags); 137 ha->interrupts_on = 1; 138 /* enable risc and host interrupts */ 139 WRT_REG_WORD(®->ictrl, ICR_EN_INT | ICR_EN_RISC); 140 RD_REG_WORD(®->ictrl); 141 spin_unlock_irqrestore(&ha->hardware_lock, flags); 142 143 } 144 145 static inline void 146 qla2x00_disable_intrs(scsi_qla_host_t *ha) 147 { 148 unsigned long flags = 0; 149 device_reg_t __iomem *reg = ha->iobase; 150 151 spin_lock_irqsave(&ha->hardware_lock, flags); 152 ha->interrupts_on = 0; 153 /* disable risc and host interrupts */ 154 WRT_REG_WORD(®->ictrl, 0); 155 RD_REG_WORD(®->ictrl); 156 spin_unlock_irqrestore(&ha->hardware_lock, flags); 157 } 158 159 160 static __inline__ int qla2x00_is_wwn_zero(uint8_t *); 161 162 /* 163 * qla2x00_is_wwn_zero - Check for zero node name 164 * 165 * Input: 166 * wwn = Pointer to WW name to check 167 * 168 * Returns: 169 * 1 if name is 0x00 else 0 170 * 171 * Context: 172 * Kernel context. 173 */ 174 static __inline__ int 175 qla2x00_is_wwn_zero(uint8_t *wwn) 176 { 177 int cnt; 178 179 for (cnt = 0; cnt < WWN_SIZE ; cnt++, wwn++) { 180 if (*wwn != 0) 181 break; 182 } 183 /* if zero return 1 */ 184 if (cnt == WWN_SIZE) 185 return (1); 186 else 187 return (0); 188 } 189 190 static __inline__ void qla2x00_check_fabric_devices(scsi_qla_host_t *); 191 /* 192 * This routine will wait for fabric devices for 193 * the reset delay. 194 */ 195 static __inline__ void qla2x00_check_fabric_devices(scsi_qla_host_t *ha) 196 { 197 uint16_t fw_state; 198 199 qla2x00_get_firmware_state(ha, &fw_state); 200 } 201 202 /** 203 * qla2x00_issue_marker() - Issue a Marker IOCB if necessary. 204 * @ha: HA context 205 * @ha_locked: is function called with the hardware lock 206 * 207 * Returns non-zero if a failure occured, else zero. 208 */ 209 static inline int 210 qla2x00_issue_marker(scsi_qla_host_t *ha, int ha_locked) 211 { 212 /* Send marker if required */ 213 if (ha->marker_needed != 0) { 214 if (ha_locked) { 215 if (__qla2x00_marker(ha, 0, 0, MK_SYNC_ALL) != 216 QLA_SUCCESS) 217 return (QLA_FUNCTION_FAILED); 218 } else { 219 if (qla2x00_marker(ha, 0, 0, MK_SYNC_ALL) != 220 QLA_SUCCESS) 221 return (QLA_FUNCTION_FAILED); 222 } 223 ha->marker_needed = 0; 224 } 225 return (QLA_SUCCESS); 226 } 227 228 static __inline__ void qla2x00_add_timer_to_cmd(srb_t *, int); 229 static __inline__ void qla2x00_delete_timer_from_cmd(srb_t *); 230 231 /************************************************************************** 232 * qla2x00_add_timer_to_cmd 233 * 234 * Description: 235 * Creates a timer for the specified command. The timeout is usually 236 * the command time from kernel minus 2 secs. 237 * 238 * Input: 239 * sp - pointer to validate 240 * 241 * Returns: 242 * None. 243 **************************************************************************/ 244 static inline void 245 qla2x00_add_timer_to_cmd(srb_t *sp, int timeout) 246 { 247 init_timer(&sp->timer); 248 sp->timer.expires = jiffies + timeout * HZ; 249 sp->timer.data = (unsigned long) sp; 250 sp->timer.function = (void (*) (unsigned long))qla2x00_cmd_timeout; 251 add_timer(&sp->timer); 252 } 253 254 /************************************************************************** 255 * qla2x00_delete_timer_from_cmd 256 * 257 * Description: 258 * Delete the timer for the specified command. 259 * 260 * Input: 261 * sp - pointer to validate 262 * 263 * Returns: 264 * None. 265 **************************************************************************/ 266 static inline void 267 qla2x00_delete_timer_from_cmd(srb_t *sp) 268 { 269 if (sp->timer.function != NULL) { 270 del_timer(&sp->timer); 271 sp->timer.function = NULL; 272 sp->timer.data = (unsigned long) NULL; 273 } 274 } 275 276