xref: /linux/drivers/scsi/hpsa.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{0,}
150 };
151 
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159 	{0x3241103C, "Smart Array P212", &SA5_access},
160 	{0x3243103C, "Smart Array P410", &SA5_access},
161 	{0x3245103C, "Smart Array P410i", &SA5_access},
162 	{0x3247103C, "Smart Array P411", &SA5_access},
163 	{0x3249103C, "Smart Array P812", &SA5_access},
164 	{0x324A103C, "Smart Array P712m", &SA5_access},
165 	{0x324B103C, "Smart Array P711m", &SA5_access},
166 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 	{0x3350103C, "Smart Array P222", &SA5_access},
168 	{0x3351103C, "Smart Array P420", &SA5_access},
169 	{0x3352103C, "Smart Array P421", &SA5_access},
170 	{0x3353103C, "Smart Array P822", &SA5_access},
171 	{0x3354103C, "Smart Array P420i", &SA5_access},
172 	{0x3355103C, "Smart Array P220i", &SA5_access},
173 	{0x3356103C, "Smart Array P721m", &SA5_access},
174 	{0x1921103C, "Smart Array P830i", &SA5_access},
175 	{0x1922103C, "Smart Array P430", &SA5_access},
176 	{0x1923103C, "Smart Array P431", &SA5_access},
177 	{0x1924103C, "Smart Array P830", &SA5_access},
178 	{0x1926103C, "Smart Array P731m", &SA5_access},
179 	{0x1928103C, "Smart Array P230i", &SA5_access},
180 	{0x1929103C, "Smart Array P530", &SA5_access},
181 	{0x21BD103C, "Smart Array P244br", &SA5_access},
182 	{0x21BE103C, "Smart Array P741m", &SA5_access},
183 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
185 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
186 	{0x21C2103C, "Smart Array P440", &SA5_access},
187 	{0x21C3103C, "Smart Array P441", &SA5_access},
188 	{0x21C4103C, "Smart Array", &SA5_access},
189 	{0x21C5103C, "Smart Array P841", &SA5_access},
190 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
191 	{0x21C7103C, "Smart HBA H240", &SA5_access},
192 	{0x21C8103C, "Smart HBA H241", &SA5_access},
193 	{0x21C9103C, "Smart Array", &SA5_access},
194 	{0x21CA103C, "Smart Array P246br", &SA5_access},
195 	{0x21CB103C, "Smart Array P840", &SA5_access},
196 	{0x21CC103C, "Smart Array", &SA5_access},
197 	{0x21CD103C, "Smart Array", &SA5_access},
198 	{0x21CE103C, "Smart HBA", &SA5_access},
199 	{0x05809005, "SmartHBA-SA", &SA5_access},
200 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212 
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 			struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 		struct sas_rphy *rphy);
222 
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228 
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 	void __user *arg);
236 #endif
237 
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 					    struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 	int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 	unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 	int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 			       u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 				    unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int wait_for_device_to_become_ready(struct ctlr_info *h,
280 					   unsigned char lunaddr[],
281 					   int reply_queue);
282 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
283 				     int wait_for_ready);
284 static inline void finish_cmd(struct CommandList *c);
285 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
286 #define BOARD_NOT_READY 0
287 #define BOARD_READY 1
288 static void hpsa_drain_accel_commands(struct ctlr_info *h);
289 static void hpsa_flush_cache(struct ctlr_info *h);
290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
291 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
292 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
293 static void hpsa_command_resubmit_worker(struct work_struct *work);
294 static u32 lockup_detected(struct ctlr_info *h);
295 static int detect_controller_lockup(struct ctlr_info *h);
296 static void hpsa_disable_rld_caching(struct ctlr_info *h);
297 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
298 	struct ReportExtendedLUNdata *buf, int bufsize);
299 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
300 	unsigned char scsi3addr[], u8 page);
301 static int hpsa_luns_changed(struct ctlr_info *h);
302 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
303 			       struct hpsa_scsi_dev_t *dev,
304 			       unsigned char *scsi3addr);
305 
306 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
307 {
308 	unsigned long *priv = shost_priv(sdev->host);
309 	return (struct ctlr_info *) *priv;
310 }
311 
312 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
313 {
314 	unsigned long *priv = shost_priv(sh);
315 	return (struct ctlr_info *) *priv;
316 }
317 
318 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
319 {
320 	return c->scsi_cmd == SCSI_CMD_IDLE;
321 }
322 
323 static inline bool hpsa_is_pending_event(struct CommandList *c)
324 {
325 	return c->abort_pending || c->reset_pending;
326 }
327 
328 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
329 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
330 			u8 *sense_key, u8 *asc, u8 *ascq)
331 {
332 	struct scsi_sense_hdr sshdr;
333 	bool rc;
334 
335 	*sense_key = -1;
336 	*asc = -1;
337 	*ascq = -1;
338 
339 	if (sense_data_len < 1)
340 		return;
341 
342 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
343 	if (rc) {
344 		*sense_key = sshdr.sense_key;
345 		*asc = sshdr.asc;
346 		*ascq = sshdr.ascq;
347 	}
348 }
349 
350 static int check_for_unit_attention(struct ctlr_info *h,
351 	struct CommandList *c)
352 {
353 	u8 sense_key, asc, ascq;
354 	int sense_len;
355 
356 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
357 		sense_len = sizeof(c->err_info->SenseInfo);
358 	else
359 		sense_len = c->err_info->SenseLen;
360 
361 	decode_sense_data(c->err_info->SenseInfo, sense_len,
362 				&sense_key, &asc, &ascq);
363 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
364 		return 0;
365 
366 	switch (asc) {
367 	case STATE_CHANGED:
368 		dev_warn(&h->pdev->dev,
369 			"%s: a state change detected, command retried\n",
370 			h->devname);
371 		break;
372 	case LUN_FAILED:
373 		dev_warn(&h->pdev->dev,
374 			"%s: LUN failure detected\n", h->devname);
375 		break;
376 	case REPORT_LUNS_CHANGED:
377 		dev_warn(&h->pdev->dev,
378 			"%s: report LUN data changed\n", h->devname);
379 	/*
380 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
381 	 * target (array) devices.
382 	 */
383 		break;
384 	case POWER_OR_RESET:
385 		dev_warn(&h->pdev->dev,
386 			"%s: a power on or device reset detected\n",
387 			h->devname);
388 		break;
389 	case UNIT_ATTENTION_CLEARED:
390 		dev_warn(&h->pdev->dev,
391 			"%s: unit attention cleared by another initiator\n",
392 			h->devname);
393 		break;
394 	default:
395 		dev_warn(&h->pdev->dev,
396 			"%s: unknown unit attention detected\n",
397 			h->devname);
398 		break;
399 	}
400 	return 1;
401 }
402 
403 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
404 {
405 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
406 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
407 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
408 		return 0;
409 	dev_warn(&h->pdev->dev, HPSA "device busy");
410 	return 1;
411 }
412 
413 static u32 lockup_detected(struct ctlr_info *h);
414 static ssize_t host_show_lockup_detected(struct device *dev,
415 		struct device_attribute *attr, char *buf)
416 {
417 	int ld;
418 	struct ctlr_info *h;
419 	struct Scsi_Host *shost = class_to_shost(dev);
420 
421 	h = shost_to_hba(shost);
422 	ld = lockup_detected(h);
423 
424 	return sprintf(buf, "ld=%d\n", ld);
425 }
426 
427 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
428 					 struct device_attribute *attr,
429 					 const char *buf, size_t count)
430 {
431 	int status, len;
432 	struct ctlr_info *h;
433 	struct Scsi_Host *shost = class_to_shost(dev);
434 	char tmpbuf[10];
435 
436 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
437 		return -EACCES;
438 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
439 	strncpy(tmpbuf, buf, len);
440 	tmpbuf[len] = '\0';
441 	if (sscanf(tmpbuf, "%d", &status) != 1)
442 		return -EINVAL;
443 	h = shost_to_hba(shost);
444 	h->acciopath_status = !!status;
445 	dev_warn(&h->pdev->dev,
446 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
447 		h->acciopath_status ? "enabled" : "disabled");
448 	return count;
449 }
450 
451 static ssize_t host_store_raid_offload_debug(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int debug_level, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
466 		return -EINVAL;
467 	if (debug_level < 0)
468 		debug_level = 0;
469 	h = shost_to_hba(shost);
470 	h->raid_offload_debug = debug_level;
471 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
472 		h->raid_offload_debug);
473 	return count;
474 }
475 
476 static ssize_t host_store_rescan(struct device *dev,
477 				 struct device_attribute *attr,
478 				 const char *buf, size_t count)
479 {
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	h = shost_to_hba(shost);
483 	hpsa_scan_start(h->scsi_host);
484 	return count;
485 }
486 
487 static ssize_t host_show_firmware_revision(struct device *dev,
488 	     struct device_attribute *attr, char *buf)
489 {
490 	struct ctlr_info *h;
491 	struct Scsi_Host *shost = class_to_shost(dev);
492 	unsigned char *fwrev;
493 
494 	h = shost_to_hba(shost);
495 	if (!h->hba_inquiry_data)
496 		return 0;
497 	fwrev = &h->hba_inquiry_data[32];
498 	return snprintf(buf, 20, "%c%c%c%c\n",
499 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
500 }
501 
502 static ssize_t host_show_commands_outstanding(struct device *dev,
503 	     struct device_attribute *attr, char *buf)
504 {
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	struct ctlr_info *h = shost_to_hba(shost);
507 
508 	return snprintf(buf, 20, "%d\n",
509 			atomic_read(&h->commands_outstanding));
510 }
511 
512 static ssize_t host_show_transport_mode(struct device *dev,
513 	struct device_attribute *attr, char *buf)
514 {
515 	struct ctlr_info *h;
516 	struct Scsi_Host *shost = class_to_shost(dev);
517 
518 	h = shost_to_hba(shost);
519 	return snprintf(buf, 20, "%s\n",
520 		h->transMethod & CFGTBL_Trans_Performant ?
521 			"performant" : "simple");
522 }
523 
524 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
525 	struct device_attribute *attr, char *buf)
526 {
527 	struct ctlr_info *h;
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 
530 	h = shost_to_hba(shost);
531 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
532 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
533 }
534 
535 /* List of controllers which cannot be hard reset on kexec with reset_devices */
536 static u32 unresettable_controller[] = {
537 	0x324a103C, /* Smart Array P712m */
538 	0x324b103C, /* Smart Array P711m */
539 	0x3223103C, /* Smart Array P800 */
540 	0x3234103C, /* Smart Array P400 */
541 	0x3235103C, /* Smart Array P400i */
542 	0x3211103C, /* Smart Array E200i */
543 	0x3212103C, /* Smart Array E200 */
544 	0x3213103C, /* Smart Array E200i */
545 	0x3214103C, /* Smart Array E200i */
546 	0x3215103C, /* Smart Array E200i */
547 	0x3237103C, /* Smart Array E500 */
548 	0x323D103C, /* Smart Array P700m */
549 	0x40800E11, /* Smart Array 5i */
550 	0x409C0E11, /* Smart Array 6400 */
551 	0x409D0E11, /* Smart Array 6400 EM */
552 	0x40700E11, /* Smart Array 5300 */
553 	0x40820E11, /* Smart Array 532 */
554 	0x40830E11, /* Smart Array 5312 */
555 	0x409A0E11, /* Smart Array 641 */
556 	0x409B0E11, /* Smart Array 642 */
557 	0x40910E11, /* Smart Array 6i */
558 };
559 
560 /* List of controllers which cannot even be soft reset */
561 static u32 soft_unresettable_controller[] = {
562 	0x40800E11, /* Smart Array 5i */
563 	0x40700E11, /* Smart Array 5300 */
564 	0x40820E11, /* Smart Array 532 */
565 	0x40830E11, /* Smart Array 5312 */
566 	0x409A0E11, /* Smart Array 641 */
567 	0x409B0E11, /* Smart Array 642 */
568 	0x40910E11, /* Smart Array 6i */
569 	/* Exclude 640x boards.  These are two pci devices in one slot
570 	 * which share a battery backed cache module.  One controls the
571 	 * cache, the other accesses the cache through the one that controls
572 	 * it.  If we reset the one controlling the cache, the other will
573 	 * likely not be happy.  Just forbid resetting this conjoined mess.
574 	 * The 640x isn't really supported by hpsa anyway.
575 	 */
576 	0x409C0E11, /* Smart Array 6400 */
577 	0x409D0E11, /* Smart Array 6400 EM */
578 };
579 
580 static u32 needs_abort_tags_swizzled[] = {
581 	0x323D103C, /* Smart Array P700m */
582 	0x324a103C, /* Smart Array P712m */
583 	0x324b103C, /* SmartArray P711m */
584 };
585 
586 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
587 {
588 	int i;
589 
590 	for (i = 0; i < nelems; i++)
591 		if (a[i] == board_id)
592 			return 1;
593 	return 0;
594 }
595 
596 static int ctlr_is_hard_resettable(u32 board_id)
597 {
598 	return !board_id_in_array(unresettable_controller,
599 			ARRAY_SIZE(unresettable_controller), board_id);
600 }
601 
602 static int ctlr_is_soft_resettable(u32 board_id)
603 {
604 	return !board_id_in_array(soft_unresettable_controller,
605 			ARRAY_SIZE(soft_unresettable_controller), board_id);
606 }
607 
608 static int ctlr_is_resettable(u32 board_id)
609 {
610 	return ctlr_is_hard_resettable(board_id) ||
611 		ctlr_is_soft_resettable(board_id);
612 }
613 
614 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
615 {
616 	return board_id_in_array(needs_abort_tags_swizzled,
617 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
618 }
619 
620 static ssize_t host_show_resettable(struct device *dev,
621 	struct device_attribute *attr, char *buf)
622 {
623 	struct ctlr_info *h;
624 	struct Scsi_Host *shost = class_to_shost(dev);
625 
626 	h = shost_to_hba(shost);
627 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629 
630 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
631 {
632 	return (scsi3addr[3] & 0xC0) == 0x40;
633 }
634 
635 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
636 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
637 };
638 #define HPSA_RAID_0	0
639 #define HPSA_RAID_4	1
640 #define HPSA_RAID_1	2	/* also used for RAID 10 */
641 #define HPSA_RAID_5	3	/* also used for RAID 50 */
642 #define HPSA_RAID_51	4
643 #define HPSA_RAID_6	5	/* also used for RAID 60 */
644 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
645 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
646 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
647 
648 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
649 {
650 	return !device->physical_device;
651 }
652 
653 static ssize_t raid_level_show(struct device *dev,
654 	     struct device_attribute *attr, char *buf)
655 {
656 	ssize_t l = 0;
657 	unsigned char rlevel;
658 	struct ctlr_info *h;
659 	struct scsi_device *sdev;
660 	struct hpsa_scsi_dev_t *hdev;
661 	unsigned long flags;
662 
663 	sdev = to_scsi_device(dev);
664 	h = sdev_to_hba(sdev);
665 	spin_lock_irqsave(&h->lock, flags);
666 	hdev = sdev->hostdata;
667 	if (!hdev) {
668 		spin_unlock_irqrestore(&h->lock, flags);
669 		return -ENODEV;
670 	}
671 
672 	/* Is this even a logical drive? */
673 	if (!is_logical_device(hdev)) {
674 		spin_unlock_irqrestore(&h->lock, flags);
675 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
676 		return l;
677 	}
678 
679 	rlevel = hdev->raid_level;
680 	spin_unlock_irqrestore(&h->lock, flags);
681 	if (rlevel > RAID_UNKNOWN)
682 		rlevel = RAID_UNKNOWN;
683 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
684 	return l;
685 }
686 
687 static ssize_t lunid_show(struct device *dev,
688 	     struct device_attribute *attr, char *buf)
689 {
690 	struct ctlr_info *h;
691 	struct scsi_device *sdev;
692 	struct hpsa_scsi_dev_t *hdev;
693 	unsigned long flags;
694 	unsigned char lunid[8];
695 
696 	sdev = to_scsi_device(dev);
697 	h = sdev_to_hba(sdev);
698 	spin_lock_irqsave(&h->lock, flags);
699 	hdev = sdev->hostdata;
700 	if (!hdev) {
701 		spin_unlock_irqrestore(&h->lock, flags);
702 		return -ENODEV;
703 	}
704 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
705 	spin_unlock_irqrestore(&h->lock, flags);
706 	return snprintf(buf, 20, "0x%8phN\n", lunid);
707 }
708 
709 static ssize_t unique_id_show(struct device *dev,
710 	     struct device_attribute *attr, char *buf)
711 {
712 	struct ctlr_info *h;
713 	struct scsi_device *sdev;
714 	struct hpsa_scsi_dev_t *hdev;
715 	unsigned long flags;
716 	unsigned char sn[16];
717 
718 	sdev = to_scsi_device(dev);
719 	h = sdev_to_hba(sdev);
720 	spin_lock_irqsave(&h->lock, flags);
721 	hdev = sdev->hostdata;
722 	if (!hdev) {
723 		spin_unlock_irqrestore(&h->lock, flags);
724 		return -ENODEV;
725 	}
726 	memcpy(sn, hdev->device_id, sizeof(sn));
727 	spin_unlock_irqrestore(&h->lock, flags);
728 	return snprintf(buf, 16 * 2 + 2,
729 			"%02X%02X%02X%02X%02X%02X%02X%02X"
730 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
731 			sn[0], sn[1], sn[2], sn[3],
732 			sn[4], sn[5], sn[6], sn[7],
733 			sn[8], sn[9], sn[10], sn[11],
734 			sn[12], sn[13], sn[14], sn[15]);
735 }
736 
737 static ssize_t sas_address_show(struct device *dev,
738 	      struct device_attribute *attr, char *buf)
739 {
740 	struct ctlr_info *h;
741 	struct scsi_device *sdev;
742 	struct hpsa_scsi_dev_t *hdev;
743 	unsigned long flags;
744 	u64 sas_address;
745 
746 	sdev = to_scsi_device(dev);
747 	h = sdev_to_hba(sdev);
748 	spin_lock_irqsave(&h->lock, flags);
749 	hdev = sdev->hostdata;
750 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
751 		spin_unlock_irqrestore(&h->lock, flags);
752 		return -ENODEV;
753 	}
754 	sas_address = hdev->sas_address;
755 	spin_unlock_irqrestore(&h->lock, flags);
756 
757 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
758 }
759 
760 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
761 	     struct device_attribute *attr, char *buf)
762 {
763 	struct ctlr_info *h;
764 	struct scsi_device *sdev;
765 	struct hpsa_scsi_dev_t *hdev;
766 	unsigned long flags;
767 	int offload_enabled;
768 
769 	sdev = to_scsi_device(dev);
770 	h = sdev_to_hba(sdev);
771 	spin_lock_irqsave(&h->lock, flags);
772 	hdev = sdev->hostdata;
773 	if (!hdev) {
774 		spin_unlock_irqrestore(&h->lock, flags);
775 		return -ENODEV;
776 	}
777 	offload_enabled = hdev->offload_enabled;
778 	spin_unlock_irqrestore(&h->lock, flags);
779 	return snprintf(buf, 20, "%d\n", offload_enabled);
780 }
781 
782 #define MAX_PATHS 8
783 static ssize_t path_info_show(struct device *dev,
784 	     struct device_attribute *attr, char *buf)
785 {
786 	struct ctlr_info *h;
787 	struct scsi_device *sdev;
788 	struct hpsa_scsi_dev_t *hdev;
789 	unsigned long flags;
790 	int i;
791 	int output_len = 0;
792 	u8 box;
793 	u8 bay;
794 	u8 path_map_index = 0;
795 	char *active;
796 	unsigned char phys_connector[2];
797 
798 	sdev = to_scsi_device(dev);
799 	h = sdev_to_hba(sdev);
800 	spin_lock_irqsave(&h->devlock, flags);
801 	hdev = sdev->hostdata;
802 	if (!hdev) {
803 		spin_unlock_irqrestore(&h->devlock, flags);
804 		return -ENODEV;
805 	}
806 
807 	bay = hdev->bay;
808 	for (i = 0; i < MAX_PATHS; i++) {
809 		path_map_index = 1<<i;
810 		if (i == hdev->active_path_index)
811 			active = "Active";
812 		else if (hdev->path_map & path_map_index)
813 			active = "Inactive";
814 		else
815 			continue;
816 
817 		output_len += scnprintf(buf + output_len,
818 				PAGE_SIZE - output_len,
819 				"[%d:%d:%d:%d] %20.20s ",
820 				h->scsi_host->host_no,
821 				hdev->bus, hdev->target, hdev->lun,
822 				scsi_device_type(hdev->devtype));
823 
824 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
825 			output_len += scnprintf(buf + output_len,
826 						PAGE_SIZE - output_len,
827 						"%s\n", active);
828 			continue;
829 		}
830 
831 		box = hdev->box[i];
832 		memcpy(&phys_connector, &hdev->phys_connector[i],
833 			sizeof(phys_connector));
834 		if (phys_connector[0] < '0')
835 			phys_connector[0] = '0';
836 		if (phys_connector[1] < '0')
837 			phys_connector[1] = '0';
838 		output_len += scnprintf(buf + output_len,
839 				PAGE_SIZE - output_len,
840 				"PORT: %.2s ",
841 				phys_connector);
842 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
843 			hdev->expose_device) {
844 			if (box == 0 || box == 0xFF) {
845 				output_len += scnprintf(buf + output_len,
846 					PAGE_SIZE - output_len,
847 					"BAY: %hhu %s\n",
848 					bay, active);
849 			} else {
850 				output_len += scnprintf(buf + output_len,
851 					PAGE_SIZE - output_len,
852 					"BOX: %hhu BAY: %hhu %s\n",
853 					box, bay, active);
854 			}
855 		} else if (box != 0 && box != 0xFF) {
856 			output_len += scnprintf(buf + output_len,
857 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
858 				box, active);
859 		} else
860 			output_len += scnprintf(buf + output_len,
861 				PAGE_SIZE - output_len, "%s\n", active);
862 	}
863 
864 	spin_unlock_irqrestore(&h->devlock, flags);
865 	return output_len;
866 }
867 
868 static ssize_t host_show_ctlr_num(struct device *dev,
869 	struct device_attribute *attr, char *buf)
870 {
871 	struct ctlr_info *h;
872 	struct Scsi_Host *shost = class_to_shost(dev);
873 
874 	h = shost_to_hba(shost);
875 	return snprintf(buf, 20, "%d\n", h->ctlr);
876 }
877 
878 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
879 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
880 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
881 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
882 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
883 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
884 			host_show_hp_ssd_smart_path_enabled, NULL);
885 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
886 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
887 		host_show_hp_ssd_smart_path_status,
888 		host_store_hp_ssd_smart_path_status);
889 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
890 			host_store_raid_offload_debug);
891 static DEVICE_ATTR(firmware_revision, S_IRUGO,
892 	host_show_firmware_revision, NULL);
893 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
894 	host_show_commands_outstanding, NULL);
895 static DEVICE_ATTR(transport_mode, S_IRUGO,
896 	host_show_transport_mode, NULL);
897 static DEVICE_ATTR(resettable, S_IRUGO,
898 	host_show_resettable, NULL);
899 static DEVICE_ATTR(lockup_detected, S_IRUGO,
900 	host_show_lockup_detected, NULL);
901 static DEVICE_ATTR(ctlr_num, S_IRUGO,
902 	host_show_ctlr_num, NULL);
903 
904 static struct device_attribute *hpsa_sdev_attrs[] = {
905 	&dev_attr_raid_level,
906 	&dev_attr_lunid,
907 	&dev_attr_unique_id,
908 	&dev_attr_hp_ssd_smart_path_enabled,
909 	&dev_attr_path_info,
910 	&dev_attr_sas_address,
911 	NULL,
912 };
913 
914 static struct device_attribute *hpsa_shost_attrs[] = {
915 	&dev_attr_rescan,
916 	&dev_attr_firmware_revision,
917 	&dev_attr_commands_outstanding,
918 	&dev_attr_transport_mode,
919 	&dev_attr_resettable,
920 	&dev_attr_hp_ssd_smart_path_status,
921 	&dev_attr_raid_offload_debug,
922 	&dev_attr_lockup_detected,
923 	&dev_attr_ctlr_num,
924 	NULL,
925 };
926 
927 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
928 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
929 
930 static struct scsi_host_template hpsa_driver_template = {
931 	.module			= THIS_MODULE,
932 	.name			= HPSA,
933 	.proc_name		= HPSA,
934 	.queuecommand		= hpsa_scsi_queue_command,
935 	.scan_start		= hpsa_scan_start,
936 	.scan_finished		= hpsa_scan_finished,
937 	.change_queue_depth	= hpsa_change_queue_depth,
938 	.this_id		= -1,
939 	.use_clustering		= ENABLE_CLUSTERING,
940 	.eh_abort_handler	= hpsa_eh_abort_handler,
941 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
942 	.ioctl			= hpsa_ioctl,
943 	.slave_alloc		= hpsa_slave_alloc,
944 	.slave_configure	= hpsa_slave_configure,
945 	.slave_destroy		= hpsa_slave_destroy,
946 #ifdef CONFIG_COMPAT
947 	.compat_ioctl		= hpsa_compat_ioctl,
948 #endif
949 	.sdev_attrs = hpsa_sdev_attrs,
950 	.shost_attrs = hpsa_shost_attrs,
951 	.max_sectors = 8192,
952 	.no_write_same = 1,
953 };
954 
955 static inline u32 next_command(struct ctlr_info *h, u8 q)
956 {
957 	u32 a;
958 	struct reply_queue_buffer *rq = &h->reply_queue[q];
959 
960 	if (h->transMethod & CFGTBL_Trans_io_accel1)
961 		return h->access.command_completed(h, q);
962 
963 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
964 		return h->access.command_completed(h, q);
965 
966 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
967 		a = rq->head[rq->current_entry];
968 		rq->current_entry++;
969 		atomic_dec(&h->commands_outstanding);
970 	} else {
971 		a = FIFO_EMPTY;
972 	}
973 	/* Check for wraparound */
974 	if (rq->current_entry == h->max_commands) {
975 		rq->current_entry = 0;
976 		rq->wraparound ^= 1;
977 	}
978 	return a;
979 }
980 
981 /*
982  * There are some special bits in the bus address of the
983  * command that we have to set for the controller to know
984  * how to process the command:
985  *
986  * Normal performant mode:
987  * bit 0: 1 means performant mode, 0 means simple mode.
988  * bits 1-3 = block fetch table entry
989  * bits 4-6 = command type (== 0)
990  *
991  * ioaccel1 mode:
992  * bit 0 = "performant mode" bit.
993  * bits 1-3 = block fetch table entry
994  * bits 4-6 = command type (== 110)
995  * (command type is needed because ioaccel1 mode
996  * commands are submitted through the same register as normal
997  * mode commands, so this is how the controller knows whether
998  * the command is normal mode or ioaccel1 mode.)
999  *
1000  * ioaccel2 mode:
1001  * bit 0 = "performant mode" bit.
1002  * bits 1-4 = block fetch table entry (note extra bit)
1003  * bits 4-6 = not needed, because ioaccel2 mode has
1004  * a separate special register for submitting commands.
1005  */
1006 
1007 /*
1008  * set_performant_mode: Modify the tag for cciss performant
1009  * set bit 0 for pull model, bits 3-1 for block fetch
1010  * register number
1011  */
1012 #define DEFAULT_REPLY_QUEUE (-1)
1013 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1014 					int reply_queue)
1015 {
1016 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1017 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1018 		if (unlikely(!h->msix_vectors))
1019 			return;
1020 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 			c->Header.ReplyQueue =
1022 				raw_smp_processor_id() % h->nreply_queues;
1023 		else
1024 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1025 	}
1026 }
1027 
1028 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1029 						struct CommandList *c,
1030 						int reply_queue)
1031 {
1032 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1033 
1034 	/*
1035 	 * Tell the controller to post the reply to the queue for this
1036 	 * processor.  This seems to give the best I/O throughput.
1037 	 */
1038 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1040 	else
1041 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1042 	/*
1043 	 * Set the bits in the address sent down to include:
1044 	 *  - performant mode bit (bit 0)
1045 	 *  - pull count (bits 1-3)
1046 	 *  - command type (bits 4-6)
1047 	 */
1048 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1049 					IOACCEL1_BUSADDR_CMDTYPE;
1050 }
1051 
1052 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1057 		&h->ioaccel2_cmd_pool[c->cmdindex];
1058 
1059 	/* Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1063 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1064 	else
1065 		cp->reply_queue = reply_queue % h->nreply_queues;
1066 	/* Set the bits in the address sent down to include:
1067 	 *  - performant mode bit not used in ioaccel mode 2
1068 	 *  - pull count (bits 0-3)
1069 	 *  - command type isn't needed for ioaccel2
1070 	 */
1071 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1072 }
1073 
1074 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1075 						struct CommandList *c,
1076 						int reply_queue)
1077 {
1078 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/*
1081 	 * Tell the controller to post the reply to the queue for this
1082 	 * processor.  This seems to give the best I/O throughput.
1083 	 */
1084 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1085 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1086 	else
1087 		cp->reply_queue = reply_queue % h->nreply_queues;
1088 	/*
1089 	 * Set the bits in the address sent down to include:
1090 	 *  - performant mode bit not used in ioaccel mode 2
1091 	 *  - pull count (bits 0-3)
1092 	 *  - command type isn't needed for ioaccel2
1093 	 */
1094 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1095 }
1096 
1097 static int is_firmware_flash_cmd(u8 *cdb)
1098 {
1099 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1100 }
1101 
1102 /*
1103  * During firmware flash, the heartbeat register may not update as frequently
1104  * as it should.  So we dial down lockup detection during firmware flash. and
1105  * dial it back up when firmware flash completes.
1106  */
1107 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1108 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1109 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1110 		struct CommandList *c)
1111 {
1112 	if (!is_firmware_flash_cmd(c->Request.CDB))
1113 		return;
1114 	atomic_inc(&h->firmware_flash_in_progress);
1115 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1116 }
1117 
1118 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1119 		struct CommandList *c)
1120 {
1121 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1122 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1123 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1124 }
1125 
1126 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1127 	struct CommandList *c, int reply_queue)
1128 {
1129 	dial_down_lockup_detection_during_fw_flash(h, c);
1130 	atomic_inc(&h->commands_outstanding);
1131 	switch (c->cmd_type) {
1132 	case CMD_IOACCEL1:
1133 		set_ioaccel1_performant_mode(h, c, reply_queue);
1134 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1135 		break;
1136 	case CMD_IOACCEL2:
1137 		set_ioaccel2_performant_mode(h, c, reply_queue);
1138 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1139 		break;
1140 	case IOACCEL2_TMF:
1141 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1142 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 		break;
1144 	default:
1145 		set_performant_mode(h, c, reply_queue);
1146 		h->access.submit_command(h, c);
1147 	}
1148 }
1149 
1150 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1151 {
1152 	if (unlikely(hpsa_is_pending_event(c)))
1153 		return finish_cmd(c);
1154 
1155 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1156 }
1157 
1158 static inline int is_hba_lunid(unsigned char scsi3addr[])
1159 {
1160 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1161 }
1162 
1163 static inline int is_scsi_rev_5(struct ctlr_info *h)
1164 {
1165 	if (!h->hba_inquiry_data)
1166 		return 0;
1167 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1168 		return 1;
1169 	return 0;
1170 }
1171 
1172 static int hpsa_find_target_lun(struct ctlr_info *h,
1173 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1174 {
1175 	/* finds an unused bus, target, lun for a new physical device
1176 	 * assumes h->devlock is held
1177 	 */
1178 	int i, found = 0;
1179 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1180 
1181 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1182 
1183 	for (i = 0; i < h->ndevices; i++) {
1184 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1185 			__set_bit(h->dev[i]->target, lun_taken);
1186 	}
1187 
1188 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1189 	if (i < HPSA_MAX_DEVICES) {
1190 		/* *bus = 1; */
1191 		*target = i;
1192 		*lun = 0;
1193 		found = 1;
1194 	}
1195 	return !found;
1196 }
1197 
1198 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1199 	struct hpsa_scsi_dev_t *dev, char *description)
1200 {
1201 #define LABEL_SIZE 25
1202 	char label[LABEL_SIZE];
1203 
1204 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1205 		return;
1206 
1207 	switch (dev->devtype) {
1208 	case TYPE_RAID:
1209 		snprintf(label, LABEL_SIZE, "controller");
1210 		break;
1211 	case TYPE_ENCLOSURE:
1212 		snprintf(label, LABEL_SIZE, "enclosure");
1213 		break;
1214 	case TYPE_DISK:
1215 	case TYPE_ZBC:
1216 		if (dev->external)
1217 			snprintf(label, LABEL_SIZE, "external");
1218 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1219 			snprintf(label, LABEL_SIZE, "%s",
1220 				raid_label[PHYSICAL_DRIVE]);
1221 		else
1222 			snprintf(label, LABEL_SIZE, "RAID-%s",
1223 				dev->raid_level > RAID_UNKNOWN ? "?" :
1224 				raid_label[dev->raid_level]);
1225 		break;
1226 	case TYPE_ROM:
1227 		snprintf(label, LABEL_SIZE, "rom");
1228 		break;
1229 	case TYPE_TAPE:
1230 		snprintf(label, LABEL_SIZE, "tape");
1231 		break;
1232 	case TYPE_MEDIUM_CHANGER:
1233 		snprintf(label, LABEL_SIZE, "changer");
1234 		break;
1235 	default:
1236 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1237 		break;
1238 	}
1239 
1240 	dev_printk(level, &h->pdev->dev,
1241 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1242 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1243 			description,
1244 			scsi_device_type(dev->devtype),
1245 			dev->vendor,
1246 			dev->model,
1247 			label,
1248 			dev->offload_config ? '+' : '-',
1249 			dev->offload_enabled ? '+' : '-',
1250 			dev->expose_device);
1251 }
1252 
1253 /* Add an entry into h->dev[] array. */
1254 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1255 		struct hpsa_scsi_dev_t *device,
1256 		struct hpsa_scsi_dev_t *added[], int *nadded)
1257 {
1258 	/* assumes h->devlock is held */
1259 	int n = h->ndevices;
1260 	int i;
1261 	unsigned char addr1[8], addr2[8];
1262 	struct hpsa_scsi_dev_t *sd;
1263 
1264 	if (n >= HPSA_MAX_DEVICES) {
1265 		dev_err(&h->pdev->dev, "too many devices, some will be "
1266 			"inaccessible.\n");
1267 		return -1;
1268 	}
1269 
1270 	/* physical devices do not have lun or target assigned until now. */
1271 	if (device->lun != -1)
1272 		/* Logical device, lun is already assigned. */
1273 		goto lun_assigned;
1274 
1275 	/* If this device a non-zero lun of a multi-lun device
1276 	 * byte 4 of the 8-byte LUN addr will contain the logical
1277 	 * unit no, zero otherwise.
1278 	 */
1279 	if (device->scsi3addr[4] == 0) {
1280 		/* This is not a non-zero lun of a multi-lun device */
1281 		if (hpsa_find_target_lun(h, device->scsi3addr,
1282 			device->bus, &device->target, &device->lun) != 0)
1283 			return -1;
1284 		goto lun_assigned;
1285 	}
1286 
1287 	/* This is a non-zero lun of a multi-lun device.
1288 	 * Search through our list and find the device which
1289 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1290 	 * Assign the same bus and target for this new LUN.
1291 	 * Use the logical unit number from the firmware.
1292 	 */
1293 	memcpy(addr1, device->scsi3addr, 8);
1294 	addr1[4] = 0;
1295 	addr1[5] = 0;
1296 	for (i = 0; i < n; i++) {
1297 		sd = h->dev[i];
1298 		memcpy(addr2, sd->scsi3addr, 8);
1299 		addr2[4] = 0;
1300 		addr2[5] = 0;
1301 		/* differ only in byte 4 and 5? */
1302 		if (memcmp(addr1, addr2, 8) == 0) {
1303 			device->bus = sd->bus;
1304 			device->target = sd->target;
1305 			device->lun = device->scsi3addr[4];
1306 			break;
1307 		}
1308 	}
1309 	if (device->lun == -1) {
1310 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1311 			" suspect firmware bug or unsupported hardware "
1312 			"configuration.\n");
1313 			return -1;
1314 	}
1315 
1316 lun_assigned:
1317 
1318 	h->dev[n] = device;
1319 	h->ndevices++;
1320 	added[*nadded] = device;
1321 	(*nadded)++;
1322 	hpsa_show_dev_msg(KERN_INFO, h, device,
1323 		device->expose_device ? "added" : "masked");
1324 	device->offload_to_be_enabled = device->offload_enabled;
1325 	device->offload_enabled = 0;
1326 	return 0;
1327 }
1328 
1329 /* Update an entry in h->dev[] array. */
1330 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1331 	int entry, struct hpsa_scsi_dev_t *new_entry)
1332 {
1333 	int offload_enabled;
1334 	/* assumes h->devlock is held */
1335 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1336 
1337 	/* Raid level changed. */
1338 	h->dev[entry]->raid_level = new_entry->raid_level;
1339 
1340 	/* Raid offload parameters changed.  Careful about the ordering. */
1341 	if (new_entry->offload_config && new_entry->offload_enabled) {
1342 		/*
1343 		 * if drive is newly offload_enabled, we want to copy the
1344 		 * raid map data first.  If previously offload_enabled and
1345 		 * offload_config were set, raid map data had better be
1346 		 * the same as it was before.  if raid map data is changed
1347 		 * then it had better be the case that
1348 		 * h->dev[entry]->offload_enabled is currently 0.
1349 		 */
1350 		h->dev[entry]->raid_map = new_entry->raid_map;
1351 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1352 	}
1353 	if (new_entry->hba_ioaccel_enabled) {
1354 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1355 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1356 	}
1357 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1358 	h->dev[entry]->offload_config = new_entry->offload_config;
1359 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1360 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1361 
1362 	/*
1363 	 * We can turn off ioaccel offload now, but need to delay turning
1364 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1365 	 * can't do that until all the devices are updated.
1366 	 */
1367 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1368 	if (!new_entry->offload_enabled)
1369 		h->dev[entry]->offload_enabled = 0;
1370 
1371 	offload_enabled = h->dev[entry]->offload_enabled;
1372 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1373 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1374 	h->dev[entry]->offload_enabled = offload_enabled;
1375 }
1376 
1377 /* Replace an entry from h->dev[] array. */
1378 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1379 	int entry, struct hpsa_scsi_dev_t *new_entry,
1380 	struct hpsa_scsi_dev_t *added[], int *nadded,
1381 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1382 {
1383 	/* assumes h->devlock is held */
1384 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1385 	removed[*nremoved] = h->dev[entry];
1386 	(*nremoved)++;
1387 
1388 	/*
1389 	 * New physical devices won't have target/lun assigned yet
1390 	 * so we need to preserve the values in the slot we are replacing.
1391 	 */
1392 	if (new_entry->target == -1) {
1393 		new_entry->target = h->dev[entry]->target;
1394 		new_entry->lun = h->dev[entry]->lun;
1395 	}
1396 
1397 	h->dev[entry] = new_entry;
1398 	added[*nadded] = new_entry;
1399 	(*nadded)++;
1400 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1401 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1402 	new_entry->offload_enabled = 0;
1403 }
1404 
1405 /* Remove an entry from h->dev[] array. */
1406 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1407 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409 	/* assumes h->devlock is held */
1410 	int i;
1411 	struct hpsa_scsi_dev_t *sd;
1412 
1413 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1414 
1415 	sd = h->dev[entry];
1416 	removed[*nremoved] = h->dev[entry];
1417 	(*nremoved)++;
1418 
1419 	for (i = entry; i < h->ndevices-1; i++)
1420 		h->dev[i] = h->dev[i+1];
1421 	h->ndevices--;
1422 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1423 }
1424 
1425 #define SCSI3ADDR_EQ(a, b) ( \
1426 	(a)[7] == (b)[7] && \
1427 	(a)[6] == (b)[6] && \
1428 	(a)[5] == (b)[5] && \
1429 	(a)[4] == (b)[4] && \
1430 	(a)[3] == (b)[3] && \
1431 	(a)[2] == (b)[2] && \
1432 	(a)[1] == (b)[1] && \
1433 	(a)[0] == (b)[0])
1434 
1435 static void fixup_botched_add(struct ctlr_info *h,
1436 	struct hpsa_scsi_dev_t *added)
1437 {
1438 	/* called when scsi_add_device fails in order to re-adjust
1439 	 * h->dev[] to match the mid layer's view.
1440 	 */
1441 	unsigned long flags;
1442 	int i, j;
1443 
1444 	spin_lock_irqsave(&h->lock, flags);
1445 	for (i = 0; i < h->ndevices; i++) {
1446 		if (h->dev[i] == added) {
1447 			for (j = i; j < h->ndevices-1; j++)
1448 				h->dev[j] = h->dev[j+1];
1449 			h->ndevices--;
1450 			break;
1451 		}
1452 	}
1453 	spin_unlock_irqrestore(&h->lock, flags);
1454 	kfree(added);
1455 }
1456 
1457 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1458 	struct hpsa_scsi_dev_t *dev2)
1459 {
1460 	/* we compare everything except lun and target as these
1461 	 * are not yet assigned.  Compare parts likely
1462 	 * to differ first
1463 	 */
1464 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1465 		sizeof(dev1->scsi3addr)) != 0)
1466 		return 0;
1467 	if (memcmp(dev1->device_id, dev2->device_id,
1468 		sizeof(dev1->device_id)) != 0)
1469 		return 0;
1470 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1471 		return 0;
1472 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1473 		return 0;
1474 	if (dev1->devtype != dev2->devtype)
1475 		return 0;
1476 	if (dev1->bus != dev2->bus)
1477 		return 0;
1478 	return 1;
1479 }
1480 
1481 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* Device attributes that can change, but don't mean
1485 	 * that the device is a different device, nor that the OS
1486 	 * needs to be told anything about the change.
1487 	 */
1488 	if (dev1->raid_level != dev2->raid_level)
1489 		return 1;
1490 	if (dev1->offload_config != dev2->offload_config)
1491 		return 1;
1492 	if (dev1->offload_enabled != dev2->offload_enabled)
1493 		return 1;
1494 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1495 		if (dev1->queue_depth != dev2->queue_depth)
1496 			return 1;
1497 	return 0;
1498 }
1499 
1500 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1501  * and return needle location in *index.  If scsi3addr matches, but not
1502  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1503  * location in *index.
1504  * In the case of a minor device attribute change, such as RAID level, just
1505  * return DEVICE_UPDATED, along with the updated device's location in index.
1506  * If needle not found, return DEVICE_NOT_FOUND.
1507  */
1508 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1509 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1510 	int *index)
1511 {
1512 	int i;
1513 #define DEVICE_NOT_FOUND 0
1514 #define DEVICE_CHANGED 1
1515 #define DEVICE_SAME 2
1516 #define DEVICE_UPDATED 3
1517 	if (needle == NULL)
1518 		return DEVICE_NOT_FOUND;
1519 
1520 	for (i = 0; i < haystack_size; i++) {
1521 		if (haystack[i] == NULL) /* previously removed. */
1522 			continue;
1523 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1524 			*index = i;
1525 			if (device_is_the_same(needle, haystack[i])) {
1526 				if (device_updated(needle, haystack[i]))
1527 					return DEVICE_UPDATED;
1528 				return DEVICE_SAME;
1529 			} else {
1530 				/* Keep offline devices offline */
1531 				if (needle->volume_offline)
1532 					return DEVICE_NOT_FOUND;
1533 				return DEVICE_CHANGED;
1534 			}
1535 		}
1536 	}
1537 	*index = -1;
1538 	return DEVICE_NOT_FOUND;
1539 }
1540 
1541 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1542 					unsigned char scsi3addr[])
1543 {
1544 	struct offline_device_entry *device;
1545 	unsigned long flags;
1546 
1547 	/* Check to see if device is already on the list */
1548 	spin_lock_irqsave(&h->offline_device_lock, flags);
1549 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1550 		if (memcmp(device->scsi3addr, scsi3addr,
1551 			sizeof(device->scsi3addr)) == 0) {
1552 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1553 			return;
1554 		}
1555 	}
1556 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557 
1558 	/* Device is not on the list, add it. */
1559 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1560 	if (!device) {
1561 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1562 		return;
1563 	}
1564 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1565 	spin_lock_irqsave(&h->offline_device_lock, flags);
1566 	list_add_tail(&device->offline_list, &h->offline_device_list);
1567 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1568 }
1569 
1570 /* Print a message explaining various offline volume states */
1571 static void hpsa_show_volume_status(struct ctlr_info *h,
1572 	struct hpsa_scsi_dev_t *sd)
1573 {
1574 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1575 		dev_info(&h->pdev->dev,
1576 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1577 			h->scsi_host->host_no,
1578 			sd->bus, sd->target, sd->lun);
1579 	switch (sd->volume_offline) {
1580 	case HPSA_LV_OK:
1581 		break;
1582 	case HPSA_LV_UNDERGOING_ERASE:
1583 		dev_info(&h->pdev->dev,
1584 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1585 			h->scsi_host->host_no,
1586 			sd->bus, sd->target, sd->lun);
1587 		break;
1588 	case HPSA_LV_NOT_AVAILABLE:
1589 		dev_info(&h->pdev->dev,
1590 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1591 			h->scsi_host->host_no,
1592 			sd->bus, sd->target, sd->lun);
1593 		break;
1594 	case HPSA_LV_UNDERGOING_RPI:
1595 		dev_info(&h->pdev->dev,
1596 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1597 			h->scsi_host->host_no,
1598 			sd->bus, sd->target, sd->lun);
1599 		break;
1600 	case HPSA_LV_PENDING_RPI:
1601 		dev_info(&h->pdev->dev,
1602 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1603 			h->scsi_host->host_no,
1604 			sd->bus, sd->target, sd->lun);
1605 		break;
1606 	case HPSA_LV_ENCRYPTED_NO_KEY:
1607 		dev_info(&h->pdev->dev,
1608 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1609 			h->scsi_host->host_no,
1610 			sd->bus, sd->target, sd->lun);
1611 		break;
1612 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1613 		dev_info(&h->pdev->dev,
1614 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1615 			h->scsi_host->host_no,
1616 			sd->bus, sd->target, sd->lun);
1617 		break;
1618 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1619 		dev_info(&h->pdev->dev,
1620 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1621 			h->scsi_host->host_no,
1622 			sd->bus, sd->target, sd->lun);
1623 		break;
1624 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1625 		dev_info(&h->pdev->dev,
1626 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1627 			h->scsi_host->host_no,
1628 			sd->bus, sd->target, sd->lun);
1629 		break;
1630 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1631 		dev_info(&h->pdev->dev,
1632 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1633 			h->scsi_host->host_no,
1634 			sd->bus, sd->target, sd->lun);
1635 		break;
1636 	case HPSA_LV_PENDING_ENCRYPTION:
1637 		dev_info(&h->pdev->dev,
1638 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1639 			h->scsi_host->host_no,
1640 			sd->bus, sd->target, sd->lun);
1641 		break;
1642 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1643 		dev_info(&h->pdev->dev,
1644 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1645 			h->scsi_host->host_no,
1646 			sd->bus, sd->target, sd->lun);
1647 		break;
1648 	}
1649 }
1650 
1651 /*
1652  * Figure the list of physical drive pointers for a logical drive with
1653  * raid offload configured.
1654  */
1655 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1656 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1657 				struct hpsa_scsi_dev_t *logical_drive)
1658 {
1659 	struct raid_map_data *map = &logical_drive->raid_map;
1660 	struct raid_map_disk_data *dd = &map->data[0];
1661 	int i, j;
1662 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1663 				le16_to_cpu(map->metadata_disks_per_row);
1664 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1665 				le16_to_cpu(map->layout_map_count) *
1666 				total_disks_per_row;
1667 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1668 				total_disks_per_row;
1669 	int qdepth;
1670 
1671 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1672 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1673 
1674 	logical_drive->nphysical_disks = nraid_map_entries;
1675 
1676 	qdepth = 0;
1677 	for (i = 0; i < nraid_map_entries; i++) {
1678 		logical_drive->phys_disk[i] = NULL;
1679 		if (!logical_drive->offload_config)
1680 			continue;
1681 		for (j = 0; j < ndevices; j++) {
1682 			if (dev[j] == NULL)
1683 				continue;
1684 			if (dev[j]->devtype != TYPE_DISK &&
1685 			    dev[j]->devtype != TYPE_ZBC)
1686 				continue;
1687 			if (is_logical_device(dev[j]))
1688 				continue;
1689 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1690 				continue;
1691 
1692 			logical_drive->phys_disk[i] = dev[j];
1693 			if (i < nphys_disk)
1694 				qdepth = min(h->nr_cmds, qdepth +
1695 				    logical_drive->phys_disk[i]->queue_depth);
1696 			break;
1697 		}
1698 
1699 		/*
1700 		 * This can happen if a physical drive is removed and
1701 		 * the logical drive is degraded.  In that case, the RAID
1702 		 * map data will refer to a physical disk which isn't actually
1703 		 * present.  And in that case offload_enabled should already
1704 		 * be 0, but we'll turn it off here just in case
1705 		 */
1706 		if (!logical_drive->phys_disk[i]) {
1707 			logical_drive->offload_enabled = 0;
1708 			logical_drive->offload_to_be_enabled = 0;
1709 			logical_drive->queue_depth = 8;
1710 		}
1711 	}
1712 	if (nraid_map_entries)
1713 		/*
1714 		 * This is correct for reads, too high for full stripe writes,
1715 		 * way too high for partial stripe writes
1716 		 */
1717 		logical_drive->queue_depth = qdepth;
1718 	else
1719 		logical_drive->queue_depth = h->nr_cmds;
1720 }
1721 
1722 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1723 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1724 {
1725 	int i;
1726 
1727 	for (i = 0; i < ndevices; i++) {
1728 		if (dev[i] == NULL)
1729 			continue;
1730 		if (dev[i]->devtype != TYPE_DISK &&
1731 		    dev[i]->devtype != TYPE_ZBC)
1732 			continue;
1733 		if (!is_logical_device(dev[i]))
1734 			continue;
1735 
1736 		/*
1737 		 * If offload is currently enabled, the RAID map and
1738 		 * phys_disk[] assignment *better* not be changing
1739 		 * and since it isn't changing, we do not need to
1740 		 * update it.
1741 		 */
1742 		if (dev[i]->offload_enabled)
1743 			continue;
1744 
1745 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1746 	}
1747 }
1748 
1749 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1750 {
1751 	int rc = 0;
1752 
1753 	if (!h->scsi_host)
1754 		return 1;
1755 
1756 	if (is_logical_device(device)) /* RAID */
1757 		rc = scsi_add_device(h->scsi_host, device->bus,
1758 					device->target, device->lun);
1759 	else /* HBA */
1760 		rc = hpsa_add_sas_device(h->sas_host, device);
1761 
1762 	return rc;
1763 }
1764 
1765 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1766 						struct hpsa_scsi_dev_t *dev)
1767 {
1768 	int i;
1769 	int count = 0;
1770 
1771 	for (i = 0; i < h->nr_cmds; i++) {
1772 		struct CommandList *c = h->cmd_pool + i;
1773 		int refcount = atomic_inc_return(&c->refcount);
1774 
1775 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1776 				dev->scsi3addr)) {
1777 			unsigned long flags;
1778 
1779 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1780 			if (!hpsa_is_cmd_idle(c))
1781 				++count;
1782 			spin_unlock_irqrestore(&h->lock, flags);
1783 		}
1784 
1785 		cmd_free(h, c);
1786 	}
1787 
1788 	return count;
1789 }
1790 
1791 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1792 						struct hpsa_scsi_dev_t *device)
1793 {
1794 	int cmds = 0;
1795 	int waits = 0;
1796 
1797 	while (1) {
1798 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1799 		if (cmds == 0)
1800 			break;
1801 		if (++waits > 20)
1802 			break;
1803 		dev_warn(&h->pdev->dev,
1804 			"%s: removing device with %d outstanding commands!\n",
1805 			__func__, cmds);
1806 		msleep(1000);
1807 	}
1808 }
1809 
1810 static void hpsa_remove_device(struct ctlr_info *h,
1811 			struct hpsa_scsi_dev_t *device)
1812 {
1813 	struct scsi_device *sdev = NULL;
1814 
1815 	if (!h->scsi_host)
1816 		return;
1817 
1818 	if (is_logical_device(device)) { /* RAID */
1819 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1820 						device->target, device->lun);
1821 		if (sdev) {
1822 			scsi_remove_device(sdev);
1823 			scsi_device_put(sdev);
1824 		} else {
1825 			/*
1826 			 * We don't expect to get here.  Future commands
1827 			 * to this device will get a selection timeout as
1828 			 * if the device were gone.
1829 			 */
1830 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1831 					"didn't find device for removal.");
1832 		}
1833 	} else { /* HBA */
1834 
1835 		device->removed = 1;
1836 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1837 
1838 		hpsa_remove_sas_device(device);
1839 	}
1840 }
1841 
1842 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1843 	struct hpsa_scsi_dev_t *sd[], int nsds)
1844 {
1845 	/* sd contains scsi3 addresses and devtypes, and inquiry
1846 	 * data.  This function takes what's in sd to be the current
1847 	 * reality and updates h->dev[] to reflect that reality.
1848 	 */
1849 	int i, entry, device_change, changes = 0;
1850 	struct hpsa_scsi_dev_t *csd;
1851 	unsigned long flags;
1852 	struct hpsa_scsi_dev_t **added, **removed;
1853 	int nadded, nremoved;
1854 
1855 	/*
1856 	 * A reset can cause a device status to change
1857 	 * re-schedule the scan to see what happened.
1858 	 */
1859 	if (h->reset_in_progress) {
1860 		h->drv_req_rescan = 1;
1861 		return;
1862 	}
1863 
1864 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1865 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1866 
1867 	if (!added || !removed) {
1868 		dev_warn(&h->pdev->dev, "out of memory in "
1869 			"adjust_hpsa_scsi_table\n");
1870 		goto free_and_out;
1871 	}
1872 
1873 	spin_lock_irqsave(&h->devlock, flags);
1874 
1875 	/* find any devices in h->dev[] that are not in
1876 	 * sd[] and remove them from h->dev[], and for any
1877 	 * devices which have changed, remove the old device
1878 	 * info and add the new device info.
1879 	 * If minor device attributes change, just update
1880 	 * the existing device structure.
1881 	 */
1882 	i = 0;
1883 	nremoved = 0;
1884 	nadded = 0;
1885 	while (i < h->ndevices) {
1886 		csd = h->dev[i];
1887 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1888 		if (device_change == DEVICE_NOT_FOUND) {
1889 			changes++;
1890 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1891 			continue; /* remove ^^^, hence i not incremented */
1892 		} else if (device_change == DEVICE_CHANGED) {
1893 			changes++;
1894 			hpsa_scsi_replace_entry(h, i, sd[entry],
1895 				added, &nadded, removed, &nremoved);
1896 			/* Set it to NULL to prevent it from being freed
1897 			 * at the bottom of hpsa_update_scsi_devices()
1898 			 */
1899 			sd[entry] = NULL;
1900 		} else if (device_change == DEVICE_UPDATED) {
1901 			hpsa_scsi_update_entry(h, i, sd[entry]);
1902 		}
1903 		i++;
1904 	}
1905 
1906 	/* Now, make sure every device listed in sd[] is also
1907 	 * listed in h->dev[], adding them if they aren't found
1908 	 */
1909 
1910 	for (i = 0; i < nsds; i++) {
1911 		if (!sd[i]) /* if already added above. */
1912 			continue;
1913 
1914 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1915 		 * as the SCSI mid-layer does not handle such devices well.
1916 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1917 		 * at 160Hz, and prevents the system from coming up.
1918 		 */
1919 		if (sd[i]->volume_offline) {
1920 			hpsa_show_volume_status(h, sd[i]);
1921 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1922 			continue;
1923 		}
1924 
1925 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1926 					h->ndevices, &entry);
1927 		if (device_change == DEVICE_NOT_FOUND) {
1928 			changes++;
1929 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1930 				break;
1931 			sd[i] = NULL; /* prevent from being freed later. */
1932 		} else if (device_change == DEVICE_CHANGED) {
1933 			/* should never happen... */
1934 			changes++;
1935 			dev_warn(&h->pdev->dev,
1936 				"device unexpectedly changed.\n");
1937 			/* but if it does happen, we just ignore that device */
1938 		}
1939 	}
1940 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1941 
1942 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1943 	 * any logical drives that need it enabled.
1944 	 */
1945 	for (i = 0; i < h->ndevices; i++) {
1946 		if (h->dev[i] == NULL)
1947 			continue;
1948 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1949 	}
1950 
1951 	spin_unlock_irqrestore(&h->devlock, flags);
1952 
1953 	/* Monitor devices which are in one of several NOT READY states to be
1954 	 * brought online later. This must be done without holding h->devlock,
1955 	 * so don't touch h->dev[]
1956 	 */
1957 	for (i = 0; i < nsds; i++) {
1958 		if (!sd[i]) /* if already added above. */
1959 			continue;
1960 		if (sd[i]->volume_offline)
1961 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1962 	}
1963 
1964 	/* Don't notify scsi mid layer of any changes the first time through
1965 	 * (or if there are no changes) scsi_scan_host will do it later the
1966 	 * first time through.
1967 	 */
1968 	if (!changes)
1969 		goto free_and_out;
1970 
1971 	/* Notify scsi mid layer of any removed devices */
1972 	for (i = 0; i < nremoved; i++) {
1973 		if (removed[i] == NULL)
1974 			continue;
1975 		if (removed[i]->expose_device)
1976 			hpsa_remove_device(h, removed[i]);
1977 		kfree(removed[i]);
1978 		removed[i] = NULL;
1979 	}
1980 
1981 	/* Notify scsi mid layer of any added devices */
1982 	for (i = 0; i < nadded; i++) {
1983 		int rc = 0;
1984 
1985 		if (added[i] == NULL)
1986 			continue;
1987 		if (!(added[i]->expose_device))
1988 			continue;
1989 		rc = hpsa_add_device(h, added[i]);
1990 		if (!rc)
1991 			continue;
1992 		dev_warn(&h->pdev->dev,
1993 			"addition failed %d, device not added.", rc);
1994 		/* now we have to remove it from h->dev,
1995 		 * since it didn't get added to scsi mid layer
1996 		 */
1997 		fixup_botched_add(h, added[i]);
1998 		h->drv_req_rescan = 1;
1999 	}
2000 
2001 free_and_out:
2002 	kfree(added);
2003 	kfree(removed);
2004 }
2005 
2006 /*
2007  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2008  * Assume's h->devlock is held.
2009  */
2010 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2011 	int bus, int target, int lun)
2012 {
2013 	int i;
2014 	struct hpsa_scsi_dev_t *sd;
2015 
2016 	for (i = 0; i < h->ndevices; i++) {
2017 		sd = h->dev[i];
2018 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2019 			return sd;
2020 	}
2021 	return NULL;
2022 }
2023 
2024 static int hpsa_slave_alloc(struct scsi_device *sdev)
2025 {
2026 	struct hpsa_scsi_dev_t *sd = NULL;
2027 	unsigned long flags;
2028 	struct ctlr_info *h;
2029 
2030 	h = sdev_to_hba(sdev);
2031 	spin_lock_irqsave(&h->devlock, flags);
2032 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2033 		struct scsi_target *starget;
2034 		struct sas_rphy *rphy;
2035 
2036 		starget = scsi_target(sdev);
2037 		rphy = target_to_rphy(starget);
2038 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2039 		if (sd) {
2040 			sd->target = sdev_id(sdev);
2041 			sd->lun = sdev->lun;
2042 		}
2043 	}
2044 	if (!sd)
2045 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2046 					sdev_id(sdev), sdev->lun);
2047 
2048 	if (sd && sd->expose_device) {
2049 		atomic_set(&sd->ioaccel_cmds_out, 0);
2050 		sdev->hostdata = sd;
2051 	} else
2052 		sdev->hostdata = NULL;
2053 	spin_unlock_irqrestore(&h->devlock, flags);
2054 	return 0;
2055 }
2056 
2057 /* configure scsi device based on internal per-device structure */
2058 static int hpsa_slave_configure(struct scsi_device *sdev)
2059 {
2060 	struct hpsa_scsi_dev_t *sd;
2061 	int queue_depth;
2062 
2063 	sd = sdev->hostdata;
2064 	sdev->no_uld_attach = !sd || !sd->expose_device;
2065 
2066 	if (sd)
2067 		queue_depth = sd->queue_depth != 0 ?
2068 			sd->queue_depth : sdev->host->can_queue;
2069 	else
2070 		queue_depth = sdev->host->can_queue;
2071 
2072 	scsi_change_queue_depth(sdev, queue_depth);
2073 
2074 	return 0;
2075 }
2076 
2077 static void hpsa_slave_destroy(struct scsi_device *sdev)
2078 {
2079 	/* nothing to do. */
2080 }
2081 
2082 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2083 {
2084 	int i;
2085 
2086 	if (!h->ioaccel2_cmd_sg_list)
2087 		return;
2088 	for (i = 0; i < h->nr_cmds; i++) {
2089 		kfree(h->ioaccel2_cmd_sg_list[i]);
2090 		h->ioaccel2_cmd_sg_list[i] = NULL;
2091 	}
2092 	kfree(h->ioaccel2_cmd_sg_list);
2093 	h->ioaccel2_cmd_sg_list = NULL;
2094 }
2095 
2096 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2097 {
2098 	int i;
2099 
2100 	if (h->chainsize <= 0)
2101 		return 0;
2102 
2103 	h->ioaccel2_cmd_sg_list =
2104 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2105 					GFP_KERNEL);
2106 	if (!h->ioaccel2_cmd_sg_list)
2107 		return -ENOMEM;
2108 	for (i = 0; i < h->nr_cmds; i++) {
2109 		h->ioaccel2_cmd_sg_list[i] =
2110 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2111 					h->maxsgentries, GFP_KERNEL);
2112 		if (!h->ioaccel2_cmd_sg_list[i])
2113 			goto clean;
2114 	}
2115 	return 0;
2116 
2117 clean:
2118 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2119 	return -ENOMEM;
2120 }
2121 
2122 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2123 {
2124 	int i;
2125 
2126 	if (!h->cmd_sg_list)
2127 		return;
2128 	for (i = 0; i < h->nr_cmds; i++) {
2129 		kfree(h->cmd_sg_list[i]);
2130 		h->cmd_sg_list[i] = NULL;
2131 	}
2132 	kfree(h->cmd_sg_list);
2133 	h->cmd_sg_list = NULL;
2134 }
2135 
2136 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2137 {
2138 	int i;
2139 
2140 	if (h->chainsize <= 0)
2141 		return 0;
2142 
2143 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2144 				GFP_KERNEL);
2145 	if (!h->cmd_sg_list) {
2146 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2147 		return -ENOMEM;
2148 	}
2149 	for (i = 0; i < h->nr_cmds; i++) {
2150 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2151 						h->chainsize, GFP_KERNEL);
2152 		if (!h->cmd_sg_list[i]) {
2153 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2154 			goto clean;
2155 		}
2156 	}
2157 	return 0;
2158 
2159 clean:
2160 	hpsa_free_sg_chain_blocks(h);
2161 	return -ENOMEM;
2162 }
2163 
2164 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2165 	struct io_accel2_cmd *cp, struct CommandList *c)
2166 {
2167 	struct ioaccel2_sg_element *chain_block;
2168 	u64 temp64;
2169 	u32 chain_size;
2170 
2171 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2172 	chain_size = le32_to_cpu(cp->sg[0].length);
2173 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2174 				PCI_DMA_TODEVICE);
2175 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2176 		/* prevent subsequent unmapping */
2177 		cp->sg->address = 0;
2178 		return -1;
2179 	}
2180 	cp->sg->address = cpu_to_le64(temp64);
2181 	return 0;
2182 }
2183 
2184 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2185 	struct io_accel2_cmd *cp)
2186 {
2187 	struct ioaccel2_sg_element *chain_sg;
2188 	u64 temp64;
2189 	u32 chain_size;
2190 
2191 	chain_sg = cp->sg;
2192 	temp64 = le64_to_cpu(chain_sg->address);
2193 	chain_size = le32_to_cpu(cp->sg[0].length);
2194 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2195 }
2196 
2197 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2198 	struct CommandList *c)
2199 {
2200 	struct SGDescriptor *chain_sg, *chain_block;
2201 	u64 temp64;
2202 	u32 chain_len;
2203 
2204 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2205 	chain_block = h->cmd_sg_list[c->cmdindex];
2206 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2207 	chain_len = sizeof(*chain_sg) *
2208 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2209 	chain_sg->Len = cpu_to_le32(chain_len);
2210 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2211 				PCI_DMA_TODEVICE);
2212 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2213 		/* prevent subsequent unmapping */
2214 		chain_sg->Addr = cpu_to_le64(0);
2215 		return -1;
2216 	}
2217 	chain_sg->Addr = cpu_to_le64(temp64);
2218 	return 0;
2219 }
2220 
2221 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2222 	struct CommandList *c)
2223 {
2224 	struct SGDescriptor *chain_sg;
2225 
2226 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2227 		return;
2228 
2229 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2230 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2231 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2232 }
2233 
2234 
2235 /* Decode the various types of errors on ioaccel2 path.
2236  * Return 1 for any error that should generate a RAID path retry.
2237  * Return 0 for errors that don't require a RAID path retry.
2238  */
2239 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2240 					struct CommandList *c,
2241 					struct scsi_cmnd *cmd,
2242 					struct io_accel2_cmd *c2,
2243 					struct hpsa_scsi_dev_t *dev)
2244 {
2245 	int data_len;
2246 	int retry = 0;
2247 	u32 ioaccel2_resid = 0;
2248 
2249 	switch (c2->error_data.serv_response) {
2250 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2251 		switch (c2->error_data.status) {
2252 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2253 			break;
2254 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2255 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2256 			if (c2->error_data.data_present !=
2257 					IOACCEL2_SENSE_DATA_PRESENT) {
2258 				memset(cmd->sense_buffer, 0,
2259 					SCSI_SENSE_BUFFERSIZE);
2260 				break;
2261 			}
2262 			/* copy the sense data */
2263 			data_len = c2->error_data.sense_data_len;
2264 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2265 				data_len = SCSI_SENSE_BUFFERSIZE;
2266 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2267 				data_len =
2268 					sizeof(c2->error_data.sense_data_buff);
2269 			memcpy(cmd->sense_buffer,
2270 				c2->error_data.sense_data_buff, data_len);
2271 			retry = 1;
2272 			break;
2273 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2274 			retry = 1;
2275 			break;
2276 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2277 			retry = 1;
2278 			break;
2279 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2280 			retry = 1;
2281 			break;
2282 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2283 			retry = 1;
2284 			break;
2285 		default:
2286 			retry = 1;
2287 			break;
2288 		}
2289 		break;
2290 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2291 		switch (c2->error_data.status) {
2292 		case IOACCEL2_STATUS_SR_IO_ERROR:
2293 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2294 		case IOACCEL2_STATUS_SR_OVERRUN:
2295 			retry = 1;
2296 			break;
2297 		case IOACCEL2_STATUS_SR_UNDERRUN:
2298 			cmd->result = (DID_OK << 16);		/* host byte */
2299 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2300 			ioaccel2_resid = get_unaligned_le32(
2301 						&c2->error_data.resid_cnt[0]);
2302 			scsi_set_resid(cmd, ioaccel2_resid);
2303 			break;
2304 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2305 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2306 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2307 			/*
2308 			 * Did an HBA disk disappear? We will eventually
2309 			 * get a state change event from the controller but
2310 			 * in the meantime, we need to tell the OS that the
2311 			 * HBA disk is no longer there and stop I/O
2312 			 * from going down. This allows the potential re-insert
2313 			 * of the disk to get the same device node.
2314 			 */
2315 			if (dev->physical_device && dev->expose_device) {
2316 				cmd->result = DID_NO_CONNECT << 16;
2317 				dev->removed = 1;
2318 				h->drv_req_rescan = 1;
2319 				dev_warn(&h->pdev->dev,
2320 					"%s: device is gone!\n", __func__);
2321 			} else
2322 				/*
2323 				 * Retry by sending down the RAID path.
2324 				 * We will get an event from ctlr to
2325 				 * trigger rescan regardless.
2326 				 */
2327 				retry = 1;
2328 			break;
2329 		default:
2330 			retry = 1;
2331 		}
2332 		break;
2333 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2334 		break;
2335 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2336 		break;
2337 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2338 		retry = 1;
2339 		break;
2340 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2341 		break;
2342 	default:
2343 		retry = 1;
2344 		break;
2345 	}
2346 
2347 	return retry;	/* retry on raid path? */
2348 }
2349 
2350 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2351 		struct CommandList *c)
2352 {
2353 	bool do_wake = false;
2354 
2355 	/*
2356 	 * Prevent the following race in the abort handler:
2357 	 *
2358 	 * 1. LLD is requested to abort a SCSI command
2359 	 * 2. The SCSI command completes
2360 	 * 3. The struct CommandList associated with step 2 is made available
2361 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2362 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2363 	 *    finds struct CommandList and tries to aborts it
2364 	 * Now we have aborted the wrong command.
2365 	 *
2366 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2367 	 * this command has completed.  Then, check to see if the handler is
2368 	 * waiting for this command, and, if so, wake it.
2369 	 */
2370 	c->scsi_cmd = SCSI_CMD_IDLE;
2371 	mb();	/* Declare command idle before checking for pending events. */
2372 	if (c->abort_pending) {
2373 		do_wake = true;
2374 		c->abort_pending = false;
2375 	}
2376 	if (c->reset_pending) {
2377 		unsigned long flags;
2378 		struct hpsa_scsi_dev_t *dev;
2379 
2380 		/*
2381 		 * There appears to be a reset pending; lock the lock and
2382 		 * reconfirm.  If so, then decrement the count of outstanding
2383 		 * commands and wake the reset command if this is the last one.
2384 		 */
2385 		spin_lock_irqsave(&h->lock, flags);
2386 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2387 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2388 			do_wake = true;
2389 		c->reset_pending = NULL;
2390 		spin_unlock_irqrestore(&h->lock, flags);
2391 	}
2392 
2393 	if (do_wake)
2394 		wake_up_all(&h->event_sync_wait_queue);
2395 }
2396 
2397 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2398 				      struct CommandList *c)
2399 {
2400 	hpsa_cmd_resolve_events(h, c);
2401 	cmd_tagged_free(h, c);
2402 }
2403 
2404 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2405 		struct CommandList *c, struct scsi_cmnd *cmd)
2406 {
2407 	hpsa_cmd_resolve_and_free(h, c);
2408 	if (cmd && cmd->scsi_done)
2409 		cmd->scsi_done(cmd);
2410 }
2411 
2412 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2413 {
2414 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2415 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2416 }
2417 
2418 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2419 {
2420 	cmd->result = DID_ABORT << 16;
2421 }
2422 
2423 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2424 				    struct scsi_cmnd *cmd)
2425 {
2426 	hpsa_set_scsi_cmd_aborted(cmd);
2427 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2428 			 c->Request.CDB, c->err_info->ScsiStatus);
2429 	hpsa_cmd_resolve_and_free(h, c);
2430 }
2431 
2432 static void process_ioaccel2_completion(struct ctlr_info *h,
2433 		struct CommandList *c, struct scsi_cmnd *cmd,
2434 		struct hpsa_scsi_dev_t *dev)
2435 {
2436 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2437 
2438 	/* check for good status */
2439 	if (likely(c2->error_data.serv_response == 0 &&
2440 			c2->error_data.status == 0))
2441 		return hpsa_cmd_free_and_done(h, c, cmd);
2442 
2443 	/*
2444 	 * Any RAID offload error results in retry which will use
2445 	 * the normal I/O path so the controller can handle whatever's
2446 	 * wrong.
2447 	 */
2448 	if (is_logical_device(dev) &&
2449 		c2->error_data.serv_response ==
2450 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2451 		if (c2->error_data.status ==
2452 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2453 			dev->offload_enabled = 0;
2454 			dev->offload_to_be_enabled = 0;
2455 		}
2456 
2457 		return hpsa_retry_cmd(h, c);
2458 	}
2459 
2460 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2461 		return hpsa_retry_cmd(h, c);
2462 
2463 	return hpsa_cmd_free_and_done(h, c, cmd);
2464 }
2465 
2466 /* Returns 0 on success, < 0 otherwise. */
2467 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2468 					struct CommandList *cp)
2469 {
2470 	u8 tmf_status = cp->err_info->ScsiStatus;
2471 
2472 	switch (tmf_status) {
2473 	case CISS_TMF_COMPLETE:
2474 		/*
2475 		 * CISS_TMF_COMPLETE never happens, instead,
2476 		 * ei->CommandStatus == 0 for this case.
2477 		 */
2478 	case CISS_TMF_SUCCESS:
2479 		return 0;
2480 	case CISS_TMF_INVALID_FRAME:
2481 	case CISS_TMF_NOT_SUPPORTED:
2482 	case CISS_TMF_FAILED:
2483 	case CISS_TMF_WRONG_LUN:
2484 	case CISS_TMF_OVERLAPPED_TAG:
2485 		break;
2486 	default:
2487 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2488 				tmf_status);
2489 		break;
2490 	}
2491 	return -tmf_status;
2492 }
2493 
2494 static void complete_scsi_command(struct CommandList *cp)
2495 {
2496 	struct scsi_cmnd *cmd;
2497 	struct ctlr_info *h;
2498 	struct ErrorInfo *ei;
2499 	struct hpsa_scsi_dev_t *dev;
2500 	struct io_accel2_cmd *c2;
2501 
2502 	u8 sense_key;
2503 	u8 asc;      /* additional sense code */
2504 	u8 ascq;     /* additional sense code qualifier */
2505 	unsigned long sense_data_size;
2506 
2507 	ei = cp->err_info;
2508 	cmd = cp->scsi_cmd;
2509 	h = cp->h;
2510 
2511 	if (!cmd->device) {
2512 		cmd->result = DID_NO_CONNECT << 16;
2513 		return hpsa_cmd_free_and_done(h, cp, cmd);
2514 	}
2515 
2516 	dev = cmd->device->hostdata;
2517 	if (!dev) {
2518 		cmd->result = DID_NO_CONNECT << 16;
2519 		return hpsa_cmd_free_and_done(h, cp, cmd);
2520 	}
2521 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2522 
2523 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2524 	if ((cp->cmd_type == CMD_SCSI) &&
2525 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2526 		hpsa_unmap_sg_chain_block(h, cp);
2527 
2528 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2529 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2530 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2531 
2532 	cmd->result = (DID_OK << 16); 		/* host byte */
2533 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2534 
2535 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2536 		if (dev->physical_device && dev->expose_device &&
2537 			dev->removed) {
2538 			cmd->result = DID_NO_CONNECT << 16;
2539 			return hpsa_cmd_free_and_done(h, cp, cmd);
2540 		}
2541 		if (likely(cp->phys_disk != NULL))
2542 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2543 	}
2544 
2545 	/*
2546 	 * We check for lockup status here as it may be set for
2547 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2548 	 * fail_all_oustanding_cmds()
2549 	 */
2550 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2551 		/* DID_NO_CONNECT will prevent a retry */
2552 		cmd->result = DID_NO_CONNECT << 16;
2553 		return hpsa_cmd_free_and_done(h, cp, cmd);
2554 	}
2555 
2556 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2557 		if (cp->reset_pending)
2558 			return hpsa_cmd_free_and_done(h, cp, cmd);
2559 		if (cp->abort_pending)
2560 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2561 	}
2562 
2563 	if (cp->cmd_type == CMD_IOACCEL2)
2564 		return process_ioaccel2_completion(h, cp, cmd, dev);
2565 
2566 	scsi_set_resid(cmd, ei->ResidualCnt);
2567 	if (ei->CommandStatus == 0)
2568 		return hpsa_cmd_free_and_done(h, cp, cmd);
2569 
2570 	/* For I/O accelerator commands, copy over some fields to the normal
2571 	 * CISS header used below for error handling.
2572 	 */
2573 	if (cp->cmd_type == CMD_IOACCEL1) {
2574 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2575 		cp->Header.SGList = scsi_sg_count(cmd);
2576 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2577 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2578 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2579 		cp->Header.tag = c->tag;
2580 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2581 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2582 
2583 		/* Any RAID offload error results in retry which will use
2584 		 * the normal I/O path so the controller can handle whatever's
2585 		 * wrong.
2586 		 */
2587 		if (is_logical_device(dev)) {
2588 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2589 				dev->offload_enabled = 0;
2590 			return hpsa_retry_cmd(h, cp);
2591 		}
2592 	}
2593 
2594 	/* an error has occurred */
2595 	switch (ei->CommandStatus) {
2596 
2597 	case CMD_TARGET_STATUS:
2598 		cmd->result |= ei->ScsiStatus;
2599 		/* copy the sense data */
2600 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2601 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2602 		else
2603 			sense_data_size = sizeof(ei->SenseInfo);
2604 		if (ei->SenseLen < sense_data_size)
2605 			sense_data_size = ei->SenseLen;
2606 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2607 		if (ei->ScsiStatus)
2608 			decode_sense_data(ei->SenseInfo, sense_data_size,
2609 				&sense_key, &asc, &ascq);
2610 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2611 			if (sense_key == ABORTED_COMMAND) {
2612 				cmd->result |= DID_SOFT_ERROR << 16;
2613 				break;
2614 			}
2615 			break;
2616 		}
2617 		/* Problem was not a check condition
2618 		 * Pass it up to the upper layers...
2619 		 */
2620 		if (ei->ScsiStatus) {
2621 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2622 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2623 				"Returning result: 0x%x\n",
2624 				cp, ei->ScsiStatus,
2625 				sense_key, asc, ascq,
2626 				cmd->result);
2627 		} else {  /* scsi status is zero??? How??? */
2628 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2629 				"Returning no connection.\n", cp),
2630 
2631 			/* Ordinarily, this case should never happen,
2632 			 * but there is a bug in some released firmware
2633 			 * revisions that allows it to happen if, for
2634 			 * example, a 4100 backplane loses power and
2635 			 * the tape drive is in it.  We assume that
2636 			 * it's a fatal error of some kind because we
2637 			 * can't show that it wasn't. We will make it
2638 			 * look like selection timeout since that is
2639 			 * the most common reason for this to occur,
2640 			 * and it's severe enough.
2641 			 */
2642 
2643 			cmd->result = DID_NO_CONNECT << 16;
2644 		}
2645 		break;
2646 
2647 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2648 		break;
2649 	case CMD_DATA_OVERRUN:
2650 		dev_warn(&h->pdev->dev,
2651 			"CDB %16phN data overrun\n", cp->Request.CDB);
2652 		break;
2653 	case CMD_INVALID: {
2654 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2655 		print_cmd(cp); */
2656 		/* We get CMD_INVALID if you address a non-existent device
2657 		 * instead of a selection timeout (no response).  You will
2658 		 * see this if you yank out a drive, then try to access it.
2659 		 * This is kind of a shame because it means that any other
2660 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2661 		 * missing target. */
2662 		cmd->result = DID_NO_CONNECT << 16;
2663 	}
2664 		break;
2665 	case CMD_PROTOCOL_ERR:
2666 		cmd->result = DID_ERROR << 16;
2667 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2668 				cp->Request.CDB);
2669 		break;
2670 	case CMD_HARDWARE_ERR:
2671 		cmd->result = DID_ERROR << 16;
2672 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2673 			cp->Request.CDB);
2674 		break;
2675 	case CMD_CONNECTION_LOST:
2676 		cmd->result = DID_ERROR << 16;
2677 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2678 			cp->Request.CDB);
2679 		break;
2680 	case CMD_ABORTED:
2681 		/* Return now to avoid calling scsi_done(). */
2682 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2683 	case CMD_ABORT_FAILED:
2684 		cmd->result = DID_ERROR << 16;
2685 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2686 			cp->Request.CDB);
2687 		break;
2688 	case CMD_UNSOLICITED_ABORT:
2689 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2690 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2691 			cp->Request.CDB);
2692 		break;
2693 	case CMD_TIMEOUT:
2694 		cmd->result = DID_TIME_OUT << 16;
2695 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2696 			cp->Request.CDB);
2697 		break;
2698 	case CMD_UNABORTABLE:
2699 		cmd->result = DID_ERROR << 16;
2700 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2701 		break;
2702 	case CMD_TMF_STATUS:
2703 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2704 			cmd->result = DID_ERROR << 16;
2705 		break;
2706 	case CMD_IOACCEL_DISABLED:
2707 		/* This only handles the direct pass-through case since RAID
2708 		 * offload is handled above.  Just attempt a retry.
2709 		 */
2710 		cmd->result = DID_SOFT_ERROR << 16;
2711 		dev_warn(&h->pdev->dev,
2712 				"cp %p had HP SSD Smart Path error\n", cp);
2713 		break;
2714 	default:
2715 		cmd->result = DID_ERROR << 16;
2716 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2717 				cp, ei->CommandStatus);
2718 	}
2719 
2720 	return hpsa_cmd_free_and_done(h, cp, cmd);
2721 }
2722 
2723 static void hpsa_pci_unmap(struct pci_dev *pdev,
2724 	struct CommandList *c, int sg_used, int data_direction)
2725 {
2726 	int i;
2727 
2728 	for (i = 0; i < sg_used; i++)
2729 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2730 				le32_to_cpu(c->SG[i].Len),
2731 				data_direction);
2732 }
2733 
2734 static int hpsa_map_one(struct pci_dev *pdev,
2735 		struct CommandList *cp,
2736 		unsigned char *buf,
2737 		size_t buflen,
2738 		int data_direction)
2739 {
2740 	u64 addr64;
2741 
2742 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2743 		cp->Header.SGList = 0;
2744 		cp->Header.SGTotal = cpu_to_le16(0);
2745 		return 0;
2746 	}
2747 
2748 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2749 	if (dma_mapping_error(&pdev->dev, addr64)) {
2750 		/* Prevent subsequent unmap of something never mapped */
2751 		cp->Header.SGList = 0;
2752 		cp->Header.SGTotal = cpu_to_le16(0);
2753 		return -1;
2754 	}
2755 	cp->SG[0].Addr = cpu_to_le64(addr64);
2756 	cp->SG[0].Len = cpu_to_le32(buflen);
2757 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2758 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2759 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2760 	return 0;
2761 }
2762 
2763 #define NO_TIMEOUT ((unsigned long) -1)
2764 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2765 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2766 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2767 {
2768 	DECLARE_COMPLETION_ONSTACK(wait);
2769 
2770 	c->waiting = &wait;
2771 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2772 	if (timeout_msecs == NO_TIMEOUT) {
2773 		/* TODO: get rid of this no-timeout thing */
2774 		wait_for_completion_io(&wait);
2775 		return IO_OK;
2776 	}
2777 	if (!wait_for_completion_io_timeout(&wait,
2778 					msecs_to_jiffies(timeout_msecs))) {
2779 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2780 		return -ETIMEDOUT;
2781 	}
2782 	return IO_OK;
2783 }
2784 
2785 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2786 				   int reply_queue, unsigned long timeout_msecs)
2787 {
2788 	if (unlikely(lockup_detected(h))) {
2789 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2790 		return IO_OK;
2791 	}
2792 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2793 }
2794 
2795 static u32 lockup_detected(struct ctlr_info *h)
2796 {
2797 	int cpu;
2798 	u32 rc, *lockup_detected;
2799 
2800 	cpu = get_cpu();
2801 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2802 	rc = *lockup_detected;
2803 	put_cpu();
2804 	return rc;
2805 }
2806 
2807 #define MAX_DRIVER_CMD_RETRIES 25
2808 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2809 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2810 {
2811 	int backoff_time = 10, retry_count = 0;
2812 	int rc;
2813 
2814 	do {
2815 		memset(c->err_info, 0, sizeof(*c->err_info));
2816 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2817 						  timeout_msecs);
2818 		if (rc)
2819 			break;
2820 		retry_count++;
2821 		if (retry_count > 3) {
2822 			msleep(backoff_time);
2823 			if (backoff_time < 1000)
2824 				backoff_time *= 2;
2825 		}
2826 	} while ((check_for_unit_attention(h, c) ||
2827 			check_for_busy(h, c)) &&
2828 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2829 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2830 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2831 		rc = -EIO;
2832 	return rc;
2833 }
2834 
2835 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2836 				struct CommandList *c)
2837 {
2838 	const u8 *cdb = c->Request.CDB;
2839 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2840 
2841 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2842 		 txt, lun, cdb);
2843 }
2844 
2845 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2846 			struct CommandList *cp)
2847 {
2848 	const struct ErrorInfo *ei = cp->err_info;
2849 	struct device *d = &cp->h->pdev->dev;
2850 	u8 sense_key, asc, ascq;
2851 	int sense_len;
2852 
2853 	switch (ei->CommandStatus) {
2854 	case CMD_TARGET_STATUS:
2855 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2856 			sense_len = sizeof(ei->SenseInfo);
2857 		else
2858 			sense_len = ei->SenseLen;
2859 		decode_sense_data(ei->SenseInfo, sense_len,
2860 					&sense_key, &asc, &ascq);
2861 		hpsa_print_cmd(h, "SCSI status", cp);
2862 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2863 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2864 				sense_key, asc, ascq);
2865 		else
2866 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2867 		if (ei->ScsiStatus == 0)
2868 			dev_warn(d, "SCSI status is abnormally zero.  "
2869 			"(probably indicates selection timeout "
2870 			"reported incorrectly due to a known "
2871 			"firmware bug, circa July, 2001.)\n");
2872 		break;
2873 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2874 		break;
2875 	case CMD_DATA_OVERRUN:
2876 		hpsa_print_cmd(h, "overrun condition", cp);
2877 		break;
2878 	case CMD_INVALID: {
2879 		/* controller unfortunately reports SCSI passthru's
2880 		 * to non-existent targets as invalid commands.
2881 		 */
2882 		hpsa_print_cmd(h, "invalid command", cp);
2883 		dev_warn(d, "probably means device no longer present\n");
2884 		}
2885 		break;
2886 	case CMD_PROTOCOL_ERR:
2887 		hpsa_print_cmd(h, "protocol error", cp);
2888 		break;
2889 	case CMD_HARDWARE_ERR:
2890 		hpsa_print_cmd(h, "hardware error", cp);
2891 		break;
2892 	case CMD_CONNECTION_LOST:
2893 		hpsa_print_cmd(h, "connection lost", cp);
2894 		break;
2895 	case CMD_ABORTED:
2896 		hpsa_print_cmd(h, "aborted", cp);
2897 		break;
2898 	case CMD_ABORT_FAILED:
2899 		hpsa_print_cmd(h, "abort failed", cp);
2900 		break;
2901 	case CMD_UNSOLICITED_ABORT:
2902 		hpsa_print_cmd(h, "unsolicited abort", cp);
2903 		break;
2904 	case CMD_TIMEOUT:
2905 		hpsa_print_cmd(h, "timed out", cp);
2906 		break;
2907 	case CMD_UNABORTABLE:
2908 		hpsa_print_cmd(h, "unabortable", cp);
2909 		break;
2910 	case CMD_CTLR_LOCKUP:
2911 		hpsa_print_cmd(h, "controller lockup detected", cp);
2912 		break;
2913 	default:
2914 		hpsa_print_cmd(h, "unknown status", cp);
2915 		dev_warn(d, "Unknown command status %x\n",
2916 				ei->CommandStatus);
2917 	}
2918 }
2919 
2920 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2921 			u16 page, unsigned char *buf,
2922 			unsigned char bufsize)
2923 {
2924 	int rc = IO_OK;
2925 	struct CommandList *c;
2926 	struct ErrorInfo *ei;
2927 
2928 	c = cmd_alloc(h);
2929 
2930 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2931 			page, scsi3addr, TYPE_CMD)) {
2932 		rc = -1;
2933 		goto out;
2934 	}
2935 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2936 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2937 	if (rc)
2938 		goto out;
2939 	ei = c->err_info;
2940 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2941 		hpsa_scsi_interpret_error(h, c);
2942 		rc = -1;
2943 	}
2944 out:
2945 	cmd_free(h, c);
2946 	return rc;
2947 }
2948 
2949 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2950 	u8 reset_type, int reply_queue)
2951 {
2952 	int rc = IO_OK;
2953 	struct CommandList *c;
2954 	struct ErrorInfo *ei;
2955 
2956 	c = cmd_alloc(h);
2957 
2958 
2959 	/* fill_cmd can't fail here, no data buffer to map. */
2960 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2961 			scsi3addr, TYPE_MSG);
2962 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2963 	if (rc) {
2964 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2965 		goto out;
2966 	}
2967 	/* no unmap needed here because no data xfer. */
2968 
2969 	ei = c->err_info;
2970 	if (ei->CommandStatus != 0) {
2971 		hpsa_scsi_interpret_error(h, c);
2972 		rc = -1;
2973 	}
2974 out:
2975 	cmd_free(h, c);
2976 	return rc;
2977 }
2978 
2979 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2980 			       struct hpsa_scsi_dev_t *dev,
2981 			       unsigned char *scsi3addr)
2982 {
2983 	int i;
2984 	bool match = false;
2985 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2986 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2987 
2988 	if (hpsa_is_cmd_idle(c))
2989 		return false;
2990 
2991 	switch (c->cmd_type) {
2992 	case CMD_SCSI:
2993 	case CMD_IOCTL_PEND:
2994 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2995 				sizeof(c->Header.LUN.LunAddrBytes));
2996 		break;
2997 
2998 	case CMD_IOACCEL1:
2999 	case CMD_IOACCEL2:
3000 		if (c->phys_disk == dev) {
3001 			/* HBA mode match */
3002 			match = true;
3003 		} else {
3004 			/* Possible RAID mode -- check each phys dev. */
3005 			/* FIXME:  Do we need to take out a lock here?  If
3006 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3007 			 * instead. */
3008 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3009 				/* FIXME: an alternate test might be
3010 				 *
3011 				 * match = dev->phys_disk[i]->ioaccel_handle
3012 				 *              == c2->scsi_nexus;      */
3013 				match = dev->phys_disk[i] == c->phys_disk;
3014 			}
3015 		}
3016 		break;
3017 
3018 	case IOACCEL2_TMF:
3019 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3020 			match = dev->phys_disk[i]->ioaccel_handle ==
3021 					le32_to_cpu(ac->it_nexus);
3022 		}
3023 		break;
3024 
3025 	case 0:		/* The command is in the middle of being initialized. */
3026 		match = false;
3027 		break;
3028 
3029 	default:
3030 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3031 			c->cmd_type);
3032 		BUG();
3033 	}
3034 
3035 	return match;
3036 }
3037 
3038 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3039 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3040 {
3041 	int i;
3042 	int rc = 0;
3043 
3044 	/* We can really only handle one reset at a time */
3045 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3046 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3047 		return -EINTR;
3048 	}
3049 
3050 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3051 
3052 	for (i = 0; i < h->nr_cmds; i++) {
3053 		struct CommandList *c = h->cmd_pool + i;
3054 		int refcount = atomic_inc_return(&c->refcount);
3055 
3056 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3057 			unsigned long flags;
3058 
3059 			/*
3060 			 * Mark the target command as having a reset pending,
3061 			 * then lock a lock so that the command cannot complete
3062 			 * while we're considering it.  If the command is not
3063 			 * idle then count it; otherwise revoke the event.
3064 			 */
3065 			c->reset_pending = dev;
3066 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3067 			if (!hpsa_is_cmd_idle(c))
3068 				atomic_inc(&dev->reset_cmds_out);
3069 			else
3070 				c->reset_pending = NULL;
3071 			spin_unlock_irqrestore(&h->lock, flags);
3072 		}
3073 
3074 		cmd_free(h, c);
3075 	}
3076 
3077 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3078 	if (!rc)
3079 		wait_event(h->event_sync_wait_queue,
3080 			atomic_read(&dev->reset_cmds_out) == 0 ||
3081 			lockup_detected(h));
3082 
3083 	if (unlikely(lockup_detected(h))) {
3084 		dev_warn(&h->pdev->dev,
3085 			 "Controller lockup detected during reset wait\n");
3086 		rc = -ENODEV;
3087 	}
3088 
3089 	if (unlikely(rc))
3090 		atomic_set(&dev->reset_cmds_out, 0);
3091 	else
3092 		wait_for_device_to_become_ready(h, scsi3addr, 0);
3093 
3094 	mutex_unlock(&h->reset_mutex);
3095 	return rc;
3096 }
3097 
3098 static void hpsa_get_raid_level(struct ctlr_info *h,
3099 	unsigned char *scsi3addr, unsigned char *raid_level)
3100 {
3101 	int rc;
3102 	unsigned char *buf;
3103 
3104 	*raid_level = RAID_UNKNOWN;
3105 	buf = kzalloc(64, GFP_KERNEL);
3106 	if (!buf)
3107 		return;
3108 
3109 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3110 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3111 		goto exit;
3112 
3113 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3114 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3115 
3116 	if (rc == 0)
3117 		*raid_level = buf[8];
3118 	if (*raid_level > RAID_UNKNOWN)
3119 		*raid_level = RAID_UNKNOWN;
3120 exit:
3121 	kfree(buf);
3122 	return;
3123 }
3124 
3125 #define HPSA_MAP_DEBUG
3126 #ifdef HPSA_MAP_DEBUG
3127 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3128 				struct raid_map_data *map_buff)
3129 {
3130 	struct raid_map_disk_data *dd = &map_buff->data[0];
3131 	int map, row, col;
3132 	u16 map_cnt, row_cnt, disks_per_row;
3133 
3134 	if (rc != 0)
3135 		return;
3136 
3137 	/* Show details only if debugging has been activated. */
3138 	if (h->raid_offload_debug < 2)
3139 		return;
3140 
3141 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3142 				le32_to_cpu(map_buff->structure_size));
3143 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3144 			le32_to_cpu(map_buff->volume_blk_size));
3145 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3146 			le64_to_cpu(map_buff->volume_blk_cnt));
3147 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3148 			map_buff->phys_blk_shift);
3149 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3150 			map_buff->parity_rotation_shift);
3151 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3152 			le16_to_cpu(map_buff->strip_size));
3153 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3154 			le64_to_cpu(map_buff->disk_starting_blk));
3155 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3156 			le64_to_cpu(map_buff->disk_blk_cnt));
3157 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3158 			le16_to_cpu(map_buff->data_disks_per_row));
3159 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3160 			le16_to_cpu(map_buff->metadata_disks_per_row));
3161 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3162 			le16_to_cpu(map_buff->row_cnt));
3163 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3164 			le16_to_cpu(map_buff->layout_map_count));
3165 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3166 			le16_to_cpu(map_buff->flags));
3167 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3168 			le16_to_cpu(map_buff->flags) &
3169 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3170 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3171 			le16_to_cpu(map_buff->dekindex));
3172 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3173 	for (map = 0; map < map_cnt; map++) {
3174 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3175 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3176 		for (row = 0; row < row_cnt; row++) {
3177 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3178 			disks_per_row =
3179 				le16_to_cpu(map_buff->data_disks_per_row);
3180 			for (col = 0; col < disks_per_row; col++, dd++)
3181 				dev_info(&h->pdev->dev,
3182 					"    D%02u: h=0x%04x xor=%u,%u\n",
3183 					col, dd->ioaccel_handle,
3184 					dd->xor_mult[0], dd->xor_mult[1]);
3185 			disks_per_row =
3186 				le16_to_cpu(map_buff->metadata_disks_per_row);
3187 			for (col = 0; col < disks_per_row; col++, dd++)
3188 				dev_info(&h->pdev->dev,
3189 					"    M%02u: h=0x%04x xor=%u,%u\n",
3190 					col, dd->ioaccel_handle,
3191 					dd->xor_mult[0], dd->xor_mult[1]);
3192 		}
3193 	}
3194 }
3195 #else
3196 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3197 			__attribute__((unused)) int rc,
3198 			__attribute__((unused)) struct raid_map_data *map_buff)
3199 {
3200 }
3201 #endif
3202 
3203 static int hpsa_get_raid_map(struct ctlr_info *h,
3204 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3205 {
3206 	int rc = 0;
3207 	struct CommandList *c;
3208 	struct ErrorInfo *ei;
3209 
3210 	c = cmd_alloc(h);
3211 
3212 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3213 			sizeof(this_device->raid_map), 0,
3214 			scsi3addr, TYPE_CMD)) {
3215 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3216 		cmd_free(h, c);
3217 		return -1;
3218 	}
3219 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3220 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3221 	if (rc)
3222 		goto out;
3223 	ei = c->err_info;
3224 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3225 		hpsa_scsi_interpret_error(h, c);
3226 		rc = -1;
3227 		goto out;
3228 	}
3229 	cmd_free(h, c);
3230 
3231 	/* @todo in the future, dynamically allocate RAID map memory */
3232 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3233 				sizeof(this_device->raid_map)) {
3234 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3235 		rc = -1;
3236 	}
3237 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3238 	return rc;
3239 out:
3240 	cmd_free(h, c);
3241 	return rc;
3242 }
3243 
3244 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3245 		unsigned char scsi3addr[], u16 bmic_device_index,
3246 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3247 {
3248 	int rc = IO_OK;
3249 	struct CommandList *c;
3250 	struct ErrorInfo *ei;
3251 
3252 	c = cmd_alloc(h);
3253 
3254 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3255 		0, RAID_CTLR_LUNID, TYPE_CMD);
3256 	if (rc)
3257 		goto out;
3258 
3259 	c->Request.CDB[2] = bmic_device_index & 0xff;
3260 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3261 
3262 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3263 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3264 	if (rc)
3265 		goto out;
3266 	ei = c->err_info;
3267 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3268 		hpsa_scsi_interpret_error(h, c);
3269 		rc = -1;
3270 	}
3271 out:
3272 	cmd_free(h, c);
3273 	return rc;
3274 }
3275 
3276 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3277 	struct bmic_identify_controller *buf, size_t bufsize)
3278 {
3279 	int rc = IO_OK;
3280 	struct CommandList *c;
3281 	struct ErrorInfo *ei;
3282 
3283 	c = cmd_alloc(h);
3284 
3285 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3286 		0, RAID_CTLR_LUNID, TYPE_CMD);
3287 	if (rc)
3288 		goto out;
3289 
3290 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3291 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3292 	if (rc)
3293 		goto out;
3294 	ei = c->err_info;
3295 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3296 		hpsa_scsi_interpret_error(h, c);
3297 		rc = -1;
3298 	}
3299 out:
3300 	cmd_free(h, c);
3301 	return rc;
3302 }
3303 
3304 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3305 		unsigned char scsi3addr[], u16 bmic_device_index,
3306 		struct bmic_identify_physical_device *buf, size_t bufsize)
3307 {
3308 	int rc = IO_OK;
3309 	struct CommandList *c;
3310 	struct ErrorInfo *ei;
3311 
3312 	c = cmd_alloc(h);
3313 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3314 		0, RAID_CTLR_LUNID, TYPE_CMD);
3315 	if (rc)
3316 		goto out;
3317 
3318 	c->Request.CDB[2] = bmic_device_index & 0xff;
3319 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3320 
3321 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3322 						DEFAULT_TIMEOUT);
3323 	ei = c->err_info;
3324 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3325 		hpsa_scsi_interpret_error(h, c);
3326 		rc = -1;
3327 	}
3328 out:
3329 	cmd_free(h, c);
3330 
3331 	return rc;
3332 }
3333 
3334 /*
3335  * get enclosure information
3336  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3337  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3338  * Uses id_physical_device to determine the box_index.
3339  */
3340 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3341 			unsigned char *scsi3addr,
3342 			struct ReportExtendedLUNdata *rlep, int rle_index,
3343 			struct hpsa_scsi_dev_t *encl_dev)
3344 {
3345 	int rc = -1;
3346 	struct CommandList *c = NULL;
3347 	struct ErrorInfo *ei = NULL;
3348 	struct bmic_sense_storage_box_params *bssbp = NULL;
3349 	struct bmic_identify_physical_device *id_phys = NULL;
3350 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3351 	u16 bmic_device_index = 0;
3352 
3353 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3354 
3355 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3356 		rc = IO_OK;
3357 		goto out;
3358 	}
3359 
3360 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3361 	if (!bssbp)
3362 		goto out;
3363 
3364 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3365 	if (!id_phys)
3366 		goto out;
3367 
3368 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3369 						id_phys, sizeof(*id_phys));
3370 	if (rc) {
3371 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3372 			__func__, encl_dev->external, bmic_device_index);
3373 		goto out;
3374 	}
3375 
3376 	c = cmd_alloc(h);
3377 
3378 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3379 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3380 
3381 	if (rc)
3382 		goto out;
3383 
3384 	if (id_phys->phys_connector[1] == 'E')
3385 		c->Request.CDB[5] = id_phys->box_index;
3386 	else
3387 		c->Request.CDB[5] = 0;
3388 
3389 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3390 						DEFAULT_TIMEOUT);
3391 	if (rc)
3392 		goto out;
3393 
3394 	ei = c->err_info;
3395 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3396 		rc = -1;
3397 		goto out;
3398 	}
3399 
3400 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3401 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3402 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3403 
3404 	rc = IO_OK;
3405 out:
3406 	kfree(bssbp);
3407 	kfree(id_phys);
3408 
3409 	if (c)
3410 		cmd_free(h, c);
3411 
3412 	if (rc != IO_OK)
3413 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3414 			"Error, could not get enclosure information\n");
3415 }
3416 
3417 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3418 						unsigned char *scsi3addr)
3419 {
3420 	struct ReportExtendedLUNdata *physdev;
3421 	u32 nphysicals;
3422 	u64 sa = 0;
3423 	int i;
3424 
3425 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3426 	if (!physdev)
3427 		return 0;
3428 
3429 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3430 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3431 		kfree(physdev);
3432 		return 0;
3433 	}
3434 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3435 
3436 	for (i = 0; i < nphysicals; i++)
3437 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3438 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3439 			break;
3440 		}
3441 
3442 	kfree(physdev);
3443 
3444 	return sa;
3445 }
3446 
3447 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3448 					struct hpsa_scsi_dev_t *dev)
3449 {
3450 	int rc;
3451 	u64 sa = 0;
3452 
3453 	if (is_hba_lunid(scsi3addr)) {
3454 		struct bmic_sense_subsystem_info *ssi;
3455 
3456 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3457 		if (ssi == NULL) {
3458 			dev_warn(&h->pdev->dev,
3459 				"%s: out of memory\n", __func__);
3460 			return;
3461 		}
3462 
3463 		rc = hpsa_bmic_sense_subsystem_information(h,
3464 					scsi3addr, 0, ssi, sizeof(*ssi));
3465 		if (rc == 0) {
3466 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3467 			h->sas_address = sa;
3468 		}
3469 
3470 		kfree(ssi);
3471 	} else
3472 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3473 
3474 	dev->sas_address = sa;
3475 }
3476 
3477 /* Get a device id from inquiry page 0x83 */
3478 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3479 	unsigned char scsi3addr[], u8 page)
3480 {
3481 	int rc;
3482 	int i;
3483 	int pages;
3484 	unsigned char *buf, bufsize;
3485 
3486 	buf = kzalloc(256, GFP_KERNEL);
3487 	if (!buf)
3488 		return false;
3489 
3490 	/* Get the size of the page list first */
3491 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3492 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3493 				buf, HPSA_VPD_HEADER_SZ);
3494 	if (rc != 0)
3495 		goto exit_unsupported;
3496 	pages = buf[3];
3497 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3498 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3499 	else
3500 		bufsize = 255;
3501 
3502 	/* Get the whole VPD page list */
3503 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3504 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3505 				buf, bufsize);
3506 	if (rc != 0)
3507 		goto exit_unsupported;
3508 
3509 	pages = buf[3];
3510 	for (i = 1; i <= pages; i++)
3511 		if (buf[3 + i] == page)
3512 			goto exit_supported;
3513 exit_unsupported:
3514 	kfree(buf);
3515 	return false;
3516 exit_supported:
3517 	kfree(buf);
3518 	return true;
3519 }
3520 
3521 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3522 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3523 {
3524 	int rc;
3525 	unsigned char *buf;
3526 	u8 ioaccel_status;
3527 
3528 	this_device->offload_config = 0;
3529 	this_device->offload_enabled = 0;
3530 	this_device->offload_to_be_enabled = 0;
3531 
3532 	buf = kzalloc(64, GFP_KERNEL);
3533 	if (!buf)
3534 		return;
3535 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3536 		goto out;
3537 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3538 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3539 	if (rc != 0)
3540 		goto out;
3541 
3542 #define IOACCEL_STATUS_BYTE 4
3543 #define OFFLOAD_CONFIGURED_BIT 0x01
3544 #define OFFLOAD_ENABLED_BIT 0x02
3545 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3546 	this_device->offload_config =
3547 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3548 	if (this_device->offload_config) {
3549 		this_device->offload_enabled =
3550 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3551 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3552 			this_device->offload_enabled = 0;
3553 	}
3554 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3555 out:
3556 	kfree(buf);
3557 	return;
3558 }
3559 
3560 /* Get the device id from inquiry page 0x83 */
3561 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3562 	unsigned char *device_id, int index, int buflen)
3563 {
3564 	int rc;
3565 	unsigned char *buf;
3566 
3567 	/* Does controller have VPD for device id? */
3568 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3569 		return 1; /* not supported */
3570 
3571 	buf = kzalloc(64, GFP_KERNEL);
3572 	if (!buf)
3573 		return -ENOMEM;
3574 
3575 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3576 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3577 	if (rc == 0) {
3578 		if (buflen > 16)
3579 			buflen = 16;
3580 		memcpy(device_id, &buf[8], buflen);
3581 	}
3582 
3583 	kfree(buf);
3584 
3585 	return rc; /*0 - got id,  otherwise, didn't */
3586 }
3587 
3588 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3589 		void *buf, int bufsize,
3590 		int extended_response)
3591 {
3592 	int rc = IO_OK;
3593 	struct CommandList *c;
3594 	unsigned char scsi3addr[8];
3595 	struct ErrorInfo *ei;
3596 
3597 	c = cmd_alloc(h);
3598 
3599 	/* address the controller */
3600 	memset(scsi3addr, 0, sizeof(scsi3addr));
3601 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3602 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3603 		rc = -1;
3604 		goto out;
3605 	}
3606 	if (extended_response)
3607 		c->Request.CDB[1] = extended_response;
3608 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3609 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3610 	if (rc)
3611 		goto out;
3612 	ei = c->err_info;
3613 	if (ei->CommandStatus != 0 &&
3614 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3615 		hpsa_scsi_interpret_error(h, c);
3616 		rc = -1;
3617 	} else {
3618 		struct ReportLUNdata *rld = buf;
3619 
3620 		if (rld->extended_response_flag != extended_response) {
3621 			dev_err(&h->pdev->dev,
3622 				"report luns requested format %u, got %u\n",
3623 				extended_response,
3624 				rld->extended_response_flag);
3625 			rc = -1;
3626 		}
3627 	}
3628 out:
3629 	cmd_free(h, c);
3630 	return rc;
3631 }
3632 
3633 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3634 		struct ReportExtendedLUNdata *buf, int bufsize)
3635 {
3636 	int rc;
3637 	struct ReportLUNdata *lbuf;
3638 
3639 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3640 				      HPSA_REPORT_PHYS_EXTENDED);
3641 	if (!rc || !hpsa_allow_any)
3642 		return rc;
3643 
3644 	/* REPORT PHYS EXTENDED is not supported */
3645 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3646 	if (!lbuf)
3647 		return -ENOMEM;
3648 
3649 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3650 	if (!rc) {
3651 		int i;
3652 		u32 nphys;
3653 
3654 		/* Copy ReportLUNdata header */
3655 		memcpy(buf, lbuf, 8);
3656 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3657 		for (i = 0; i < nphys; i++)
3658 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3659 	}
3660 	kfree(lbuf);
3661 	return rc;
3662 }
3663 
3664 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3665 		struct ReportLUNdata *buf, int bufsize)
3666 {
3667 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3668 }
3669 
3670 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3671 	int bus, int target, int lun)
3672 {
3673 	device->bus = bus;
3674 	device->target = target;
3675 	device->lun = lun;
3676 }
3677 
3678 /* Use VPD inquiry to get details of volume status */
3679 static int hpsa_get_volume_status(struct ctlr_info *h,
3680 					unsigned char scsi3addr[])
3681 {
3682 	int rc;
3683 	int status;
3684 	int size;
3685 	unsigned char *buf;
3686 
3687 	buf = kzalloc(64, GFP_KERNEL);
3688 	if (!buf)
3689 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3690 
3691 	/* Does controller have VPD for logical volume status? */
3692 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3693 		goto exit_failed;
3694 
3695 	/* Get the size of the VPD return buffer */
3696 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3697 					buf, HPSA_VPD_HEADER_SZ);
3698 	if (rc != 0)
3699 		goto exit_failed;
3700 	size = buf[3];
3701 
3702 	/* Now get the whole VPD buffer */
3703 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3704 					buf, size + HPSA_VPD_HEADER_SZ);
3705 	if (rc != 0)
3706 		goto exit_failed;
3707 	status = buf[4]; /* status byte */
3708 
3709 	kfree(buf);
3710 	return status;
3711 exit_failed:
3712 	kfree(buf);
3713 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3714 }
3715 
3716 /* Determine offline status of a volume.
3717  * Return either:
3718  *  0 (not offline)
3719  *  0xff (offline for unknown reasons)
3720  *  # (integer code indicating one of several NOT READY states
3721  *     describing why a volume is to be kept offline)
3722  */
3723 static int hpsa_volume_offline(struct ctlr_info *h,
3724 					unsigned char scsi3addr[])
3725 {
3726 	struct CommandList *c;
3727 	unsigned char *sense;
3728 	u8 sense_key, asc, ascq;
3729 	int sense_len;
3730 	int rc, ldstat = 0;
3731 	u16 cmd_status;
3732 	u8 scsi_status;
3733 #define ASC_LUN_NOT_READY 0x04
3734 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3735 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3736 
3737 	c = cmd_alloc(h);
3738 
3739 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3740 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3741 					DEFAULT_TIMEOUT);
3742 	if (rc) {
3743 		cmd_free(h, c);
3744 		return 0;
3745 	}
3746 	sense = c->err_info->SenseInfo;
3747 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3748 		sense_len = sizeof(c->err_info->SenseInfo);
3749 	else
3750 		sense_len = c->err_info->SenseLen;
3751 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3752 	cmd_status = c->err_info->CommandStatus;
3753 	scsi_status = c->err_info->ScsiStatus;
3754 	cmd_free(h, c);
3755 	/* Is the volume 'not ready'? */
3756 	if (cmd_status != CMD_TARGET_STATUS ||
3757 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3758 		sense_key != NOT_READY ||
3759 		asc != ASC_LUN_NOT_READY)  {
3760 		return 0;
3761 	}
3762 
3763 	/* Determine the reason for not ready state */
3764 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3765 
3766 	/* Keep volume offline in certain cases: */
3767 	switch (ldstat) {
3768 	case HPSA_LV_UNDERGOING_ERASE:
3769 	case HPSA_LV_NOT_AVAILABLE:
3770 	case HPSA_LV_UNDERGOING_RPI:
3771 	case HPSA_LV_PENDING_RPI:
3772 	case HPSA_LV_ENCRYPTED_NO_KEY:
3773 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3774 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3775 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3776 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3777 		return ldstat;
3778 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3779 		/* If VPD status page isn't available,
3780 		 * use ASC/ASCQ to determine state
3781 		 */
3782 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3783 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3784 			return ldstat;
3785 		break;
3786 	default:
3787 		break;
3788 	}
3789 	return 0;
3790 }
3791 
3792 /*
3793  * Find out if a logical device supports aborts by simply trying one.
3794  * Smart Array may claim not to support aborts on logical drives, but
3795  * if a MSA2000 * is connected, the drives on that will be presented
3796  * by the Smart Array as logical drives, and aborts may be sent to
3797  * those devices successfully.  So the simplest way to find out is
3798  * to simply try an abort and see how the device responds.
3799  */
3800 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3801 					unsigned char *scsi3addr)
3802 {
3803 	struct CommandList *c;
3804 	struct ErrorInfo *ei;
3805 	int rc = 0;
3806 
3807 	u64 tag = (u64) -1; /* bogus tag */
3808 
3809 	/* Assume that physical devices support aborts */
3810 	if (!is_logical_dev_addr_mode(scsi3addr))
3811 		return 1;
3812 
3813 	c = cmd_alloc(h);
3814 
3815 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3816 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3817 					DEFAULT_TIMEOUT);
3818 	/* no unmap needed here because no data xfer. */
3819 	ei = c->err_info;
3820 	switch (ei->CommandStatus) {
3821 	case CMD_INVALID:
3822 		rc = 0;
3823 		break;
3824 	case CMD_UNABORTABLE:
3825 	case CMD_ABORT_FAILED:
3826 		rc = 1;
3827 		break;
3828 	case CMD_TMF_STATUS:
3829 		rc = hpsa_evaluate_tmf_status(h, c);
3830 		break;
3831 	default:
3832 		rc = 0;
3833 		break;
3834 	}
3835 	cmd_free(h, c);
3836 	return rc;
3837 }
3838 
3839 static int hpsa_update_device_info(struct ctlr_info *h,
3840 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3841 	unsigned char *is_OBDR_device)
3842 {
3843 
3844 #define OBDR_SIG_OFFSET 43
3845 #define OBDR_TAPE_SIG "$DR-10"
3846 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3847 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3848 
3849 	unsigned char *inq_buff;
3850 	unsigned char *obdr_sig;
3851 	int rc = 0;
3852 
3853 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3854 	if (!inq_buff) {
3855 		rc = -ENOMEM;
3856 		goto bail_out;
3857 	}
3858 
3859 	/* Do an inquiry to the device to see what it is. */
3860 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3861 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3862 		/* Inquiry failed (msg printed already) */
3863 		dev_err(&h->pdev->dev,
3864 			"hpsa_update_device_info: inquiry failed\n");
3865 		rc = -EIO;
3866 		goto bail_out;
3867 	}
3868 
3869 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3870 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3871 
3872 	this_device->devtype = (inq_buff[0] & 0x1f);
3873 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3874 	memcpy(this_device->vendor, &inq_buff[8],
3875 		sizeof(this_device->vendor));
3876 	memcpy(this_device->model, &inq_buff[16],
3877 		sizeof(this_device->model));
3878 	this_device->rev = inq_buff[2];
3879 	memset(this_device->device_id, 0,
3880 		sizeof(this_device->device_id));
3881 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3882 		sizeof(this_device->device_id)))
3883 		dev_err(&h->pdev->dev,
3884 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3885 			h->ctlr, __func__,
3886 			h->scsi_host->host_no,
3887 			this_device->target, this_device->lun,
3888 			scsi_device_type(this_device->devtype),
3889 			this_device->model);
3890 
3891 	if ((this_device->devtype == TYPE_DISK ||
3892 		this_device->devtype == TYPE_ZBC) &&
3893 		is_logical_dev_addr_mode(scsi3addr)) {
3894 		int volume_offline;
3895 
3896 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3897 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3898 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3899 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3900 		if (volume_offline < 0 || volume_offline > 0xff)
3901 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3902 		this_device->volume_offline = volume_offline & 0xff;
3903 	} else {
3904 		this_device->raid_level = RAID_UNKNOWN;
3905 		this_device->offload_config = 0;
3906 		this_device->offload_enabled = 0;
3907 		this_device->offload_to_be_enabled = 0;
3908 		this_device->hba_ioaccel_enabled = 0;
3909 		this_device->volume_offline = 0;
3910 		this_device->queue_depth = h->nr_cmds;
3911 	}
3912 
3913 	if (is_OBDR_device) {
3914 		/* See if this is a One-Button-Disaster-Recovery device
3915 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3916 		 */
3917 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3918 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3919 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3920 						OBDR_SIG_LEN) == 0);
3921 	}
3922 	kfree(inq_buff);
3923 	return 0;
3924 
3925 bail_out:
3926 	kfree(inq_buff);
3927 	return rc;
3928 }
3929 
3930 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3931 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3932 {
3933 	unsigned long flags;
3934 	int rc, entry;
3935 	/*
3936 	 * See if this device supports aborts.  If we already know
3937 	 * the device, we already know if it supports aborts, otherwise
3938 	 * we have to find out if it supports aborts by trying one.
3939 	 */
3940 	spin_lock_irqsave(&h->devlock, flags);
3941 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3942 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3943 		entry >= 0 && entry < h->ndevices) {
3944 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3945 		spin_unlock_irqrestore(&h->devlock, flags);
3946 	} else {
3947 		spin_unlock_irqrestore(&h->devlock, flags);
3948 		dev->supports_aborts =
3949 				hpsa_device_supports_aborts(h, scsi3addr);
3950 		if (dev->supports_aborts < 0)
3951 			dev->supports_aborts = 0;
3952 	}
3953 }
3954 
3955 /*
3956  * Helper function to assign bus, target, lun mapping of devices.
3957  * Logical drive target and lun are assigned at this time, but
3958  * physical device lun and target assignment are deferred (assigned
3959  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3960 */
3961 static void figure_bus_target_lun(struct ctlr_info *h,
3962 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3963 {
3964 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3965 
3966 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3967 		/* physical device, target and lun filled in later */
3968 		if (is_hba_lunid(lunaddrbytes)) {
3969 			int bus = HPSA_HBA_BUS;
3970 
3971 			if (!device->rev)
3972 				bus = HPSA_LEGACY_HBA_BUS;
3973 			hpsa_set_bus_target_lun(device,
3974 					bus, 0, lunid & 0x3fff);
3975 		} else
3976 			/* defer target, lun assignment for physical devices */
3977 			hpsa_set_bus_target_lun(device,
3978 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3979 		return;
3980 	}
3981 	/* It's a logical device */
3982 	if (device->external) {
3983 		hpsa_set_bus_target_lun(device,
3984 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3985 			lunid & 0x00ff);
3986 		return;
3987 	}
3988 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3989 				0, lunid & 0x3fff);
3990 }
3991 
3992 
3993 /*
3994  * Get address of physical disk used for an ioaccel2 mode command:
3995  *	1. Extract ioaccel2 handle from the command.
3996  *	2. Find a matching ioaccel2 handle from list of physical disks.
3997  *	3. Return:
3998  *		1 and set scsi3addr to address of matching physical
3999  *		0 if no matching physical disk was found.
4000  */
4001 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
4002 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4003 {
4004 	struct io_accel2_cmd *c2 =
4005 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4006 	unsigned long flags;
4007 	int i;
4008 
4009 	spin_lock_irqsave(&h->devlock, flags);
4010 	for (i = 0; i < h->ndevices; i++)
4011 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4012 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
4013 				sizeof(h->dev[i]->scsi3addr));
4014 			spin_unlock_irqrestore(&h->devlock, flags);
4015 			return 1;
4016 		}
4017 	spin_unlock_irqrestore(&h->devlock, flags);
4018 	return 0;
4019 }
4020 
4021 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4022 	int i, int nphysicals, int nlocal_logicals)
4023 {
4024 	/* In report logicals, local logicals are listed first,
4025 	* then any externals.
4026 	*/
4027 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4028 
4029 	if (i == raid_ctlr_position)
4030 		return 0;
4031 
4032 	if (i < logicals_start)
4033 		return 0;
4034 
4035 	/* i is in logicals range, but still within local logicals */
4036 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4037 		return 0;
4038 
4039 	return 1; /* it's an external lun */
4040 }
4041 
4042 /*
4043  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4044  * logdev.  The number of luns in physdev and logdev are returned in
4045  * *nphysicals and *nlogicals, respectively.
4046  * Returns 0 on success, -1 otherwise.
4047  */
4048 static int hpsa_gather_lun_info(struct ctlr_info *h,
4049 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4050 	struct ReportLUNdata *logdev, u32 *nlogicals)
4051 {
4052 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4053 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4054 		return -1;
4055 	}
4056 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4057 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4058 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4059 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4060 		*nphysicals = HPSA_MAX_PHYS_LUN;
4061 	}
4062 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4063 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4064 		return -1;
4065 	}
4066 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4067 	/* Reject Logicals in excess of our max capability. */
4068 	if (*nlogicals > HPSA_MAX_LUN) {
4069 		dev_warn(&h->pdev->dev,
4070 			"maximum logical LUNs (%d) exceeded.  "
4071 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4072 			*nlogicals - HPSA_MAX_LUN);
4073 			*nlogicals = HPSA_MAX_LUN;
4074 	}
4075 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4076 		dev_warn(&h->pdev->dev,
4077 			"maximum logical + physical LUNs (%d) exceeded. "
4078 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4079 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4080 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4081 	}
4082 	return 0;
4083 }
4084 
4085 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4086 	int i, int nphysicals, int nlogicals,
4087 	struct ReportExtendedLUNdata *physdev_list,
4088 	struct ReportLUNdata *logdev_list)
4089 {
4090 	/* Helper function, figure out where the LUN ID info is coming from
4091 	 * given index i, lists of physical and logical devices, where in
4092 	 * the list the raid controller is supposed to appear (first or last)
4093 	 */
4094 
4095 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4096 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4097 
4098 	if (i == raid_ctlr_position)
4099 		return RAID_CTLR_LUNID;
4100 
4101 	if (i < logicals_start)
4102 		return &physdev_list->LUN[i -
4103 				(raid_ctlr_position == 0)].lunid[0];
4104 
4105 	if (i < last_device)
4106 		return &logdev_list->LUN[i - nphysicals -
4107 			(raid_ctlr_position == 0)][0];
4108 	BUG();
4109 	return NULL;
4110 }
4111 
4112 /* get physical drive ioaccel handle and queue depth */
4113 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4114 		struct hpsa_scsi_dev_t *dev,
4115 		struct ReportExtendedLUNdata *rlep, int rle_index,
4116 		struct bmic_identify_physical_device *id_phys)
4117 {
4118 	int rc;
4119 	struct ext_report_lun_entry *rle;
4120 
4121 	/*
4122 	 * external targets don't support BMIC
4123 	 */
4124 	if (dev->external) {
4125 		dev->queue_depth = 7;
4126 		return;
4127 	}
4128 
4129 	rle = &rlep->LUN[rle_index];
4130 
4131 	dev->ioaccel_handle = rle->ioaccel_handle;
4132 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4133 		dev->hba_ioaccel_enabled = 1;
4134 	memset(id_phys, 0, sizeof(*id_phys));
4135 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4136 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4137 			sizeof(*id_phys));
4138 	if (!rc)
4139 		/* Reserve space for FW operations */
4140 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4141 #define DRIVE_QUEUE_DEPTH 7
4142 		dev->queue_depth =
4143 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4144 				DRIVE_CMDS_RESERVED_FOR_FW;
4145 	else
4146 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4147 }
4148 
4149 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4150 	struct ReportExtendedLUNdata *rlep, int rle_index,
4151 	struct bmic_identify_physical_device *id_phys)
4152 {
4153 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4154 
4155 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4156 		this_device->hba_ioaccel_enabled = 1;
4157 
4158 	memcpy(&this_device->active_path_index,
4159 		&id_phys->active_path_number,
4160 		sizeof(this_device->active_path_index));
4161 	memcpy(&this_device->path_map,
4162 		&id_phys->redundant_path_present_map,
4163 		sizeof(this_device->path_map));
4164 	memcpy(&this_device->box,
4165 		&id_phys->alternate_paths_phys_box_on_port,
4166 		sizeof(this_device->box));
4167 	memcpy(&this_device->phys_connector,
4168 		&id_phys->alternate_paths_phys_connector,
4169 		sizeof(this_device->phys_connector));
4170 	memcpy(&this_device->bay,
4171 		&id_phys->phys_bay_in_box,
4172 		sizeof(this_device->bay));
4173 }
4174 
4175 /* get number of local logical disks. */
4176 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4177 	struct bmic_identify_controller *id_ctlr,
4178 	u32 *nlocals)
4179 {
4180 	int rc;
4181 
4182 	if (!id_ctlr) {
4183 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4184 			__func__);
4185 		return -ENOMEM;
4186 	}
4187 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4188 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4189 	if (!rc)
4190 		if (id_ctlr->configured_logical_drive_count < 256)
4191 			*nlocals = id_ctlr->configured_logical_drive_count;
4192 		else
4193 			*nlocals = le16_to_cpu(
4194 					id_ctlr->extended_logical_unit_count);
4195 	else
4196 		*nlocals = -1;
4197 	return rc;
4198 }
4199 
4200 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4201 {
4202 	struct bmic_identify_physical_device *id_phys;
4203 	bool is_spare = false;
4204 	int rc;
4205 
4206 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4207 	if (!id_phys)
4208 		return false;
4209 
4210 	rc = hpsa_bmic_id_physical_device(h,
4211 					lunaddrbytes,
4212 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4213 					id_phys, sizeof(*id_phys));
4214 	if (rc == 0)
4215 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4216 
4217 	kfree(id_phys);
4218 	return is_spare;
4219 }
4220 
4221 #define RPL_DEV_FLAG_NON_DISK                           0x1
4222 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4223 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4224 
4225 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4226 
4227 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4228 				struct ext_report_lun_entry *rle)
4229 {
4230 	u8 device_flags;
4231 	u8 device_type;
4232 
4233 	if (!MASKED_DEVICE(lunaddrbytes))
4234 		return false;
4235 
4236 	device_flags = rle->device_flags;
4237 	device_type = rle->device_type;
4238 
4239 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4240 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4241 			return false;
4242 		return true;
4243 	}
4244 
4245 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4246 		return false;
4247 
4248 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4249 		return false;
4250 
4251 	/*
4252 	 * Spares may be spun down, we do not want to
4253 	 * do an Inquiry to a RAID set spare drive as
4254 	 * that would have them spun up, that is a
4255 	 * performance hit because I/O to the RAID device
4256 	 * stops while the spin up occurs which can take
4257 	 * over 50 seconds.
4258 	 */
4259 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4260 		return true;
4261 
4262 	return false;
4263 }
4264 
4265 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4266 {
4267 	/* the idea here is we could get notified
4268 	 * that some devices have changed, so we do a report
4269 	 * physical luns and report logical luns cmd, and adjust
4270 	 * our list of devices accordingly.
4271 	 *
4272 	 * The scsi3addr's of devices won't change so long as the
4273 	 * adapter is not reset.  That means we can rescan and
4274 	 * tell which devices we already know about, vs. new
4275 	 * devices, vs.  disappearing devices.
4276 	 */
4277 	struct ReportExtendedLUNdata *physdev_list = NULL;
4278 	struct ReportLUNdata *logdev_list = NULL;
4279 	struct bmic_identify_physical_device *id_phys = NULL;
4280 	struct bmic_identify_controller *id_ctlr = NULL;
4281 	u32 nphysicals = 0;
4282 	u32 nlogicals = 0;
4283 	u32 nlocal_logicals = 0;
4284 	u32 ndev_allocated = 0;
4285 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4286 	int ncurrent = 0;
4287 	int i, n_ext_target_devs, ndevs_to_allocate;
4288 	int raid_ctlr_position;
4289 	bool physical_device;
4290 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4291 
4292 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4293 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4294 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4295 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4296 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4297 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4298 
4299 	if (!currentsd || !physdev_list || !logdev_list ||
4300 		!tmpdevice || !id_phys || !id_ctlr) {
4301 		dev_err(&h->pdev->dev, "out of memory\n");
4302 		goto out;
4303 	}
4304 	memset(lunzerobits, 0, sizeof(lunzerobits));
4305 
4306 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4307 
4308 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4309 			logdev_list, &nlogicals)) {
4310 		h->drv_req_rescan = 1;
4311 		goto out;
4312 	}
4313 
4314 	/* Set number of local logicals (non PTRAID) */
4315 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4316 		dev_warn(&h->pdev->dev,
4317 			"%s: Can't determine number of local logical devices.\n",
4318 			__func__);
4319 	}
4320 
4321 	/* We might see up to the maximum number of logical and physical disks
4322 	 * plus external target devices, and a device for the local RAID
4323 	 * controller.
4324 	 */
4325 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4326 
4327 	/* Allocate the per device structures */
4328 	for (i = 0; i < ndevs_to_allocate; i++) {
4329 		if (i >= HPSA_MAX_DEVICES) {
4330 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4331 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4332 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4333 			break;
4334 		}
4335 
4336 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4337 		if (!currentsd[i]) {
4338 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4339 				__FILE__, __LINE__);
4340 			h->drv_req_rescan = 1;
4341 			goto out;
4342 		}
4343 		ndev_allocated++;
4344 	}
4345 
4346 	if (is_scsi_rev_5(h))
4347 		raid_ctlr_position = 0;
4348 	else
4349 		raid_ctlr_position = nphysicals + nlogicals;
4350 
4351 	/* adjust our table of devices */
4352 	n_ext_target_devs = 0;
4353 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4354 		u8 *lunaddrbytes, is_OBDR = 0;
4355 		int rc = 0;
4356 		int phys_dev_index = i - (raid_ctlr_position == 0);
4357 		bool skip_device = false;
4358 
4359 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4360 
4361 		/* Figure out where the LUN ID info is coming from */
4362 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4363 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4364 
4365 		/* Determine if this is a lun from an external target array */
4366 		tmpdevice->external =
4367 			figure_external_status(h, raid_ctlr_position, i,
4368 						nphysicals, nlocal_logicals);
4369 
4370 		/*
4371 		 * Skip over some devices such as a spare.
4372 		 */
4373 		if (!tmpdevice->external && physical_device) {
4374 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4375 					&physdev_list->LUN[phys_dev_index]);
4376 			if (skip_device)
4377 				continue;
4378 		}
4379 
4380 		/* Get device type, vendor, model, device id */
4381 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4382 							&is_OBDR);
4383 		if (rc == -ENOMEM) {
4384 			dev_warn(&h->pdev->dev,
4385 				"Out of memory, rescan deferred.\n");
4386 			h->drv_req_rescan = 1;
4387 			goto out;
4388 		}
4389 		if (rc) {
4390 			dev_warn(&h->pdev->dev,
4391 				"Inquiry failed, skipping device.\n");
4392 			continue;
4393 		}
4394 
4395 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4396 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4397 		this_device = currentsd[ncurrent];
4398 
4399 		/* Turn on discovery_polling if there are ext target devices.
4400 		 * Event-based change notification is unreliable for those.
4401 		 */
4402 		if (!h->discovery_polling) {
4403 			if (tmpdevice->external) {
4404 				h->discovery_polling = 1;
4405 				dev_info(&h->pdev->dev,
4406 					"External target, activate discovery polling.\n");
4407 			}
4408 		}
4409 
4410 
4411 		*this_device = *tmpdevice;
4412 		this_device->physical_device = physical_device;
4413 
4414 		/*
4415 		 * Expose all devices except for physical devices that
4416 		 * are masked.
4417 		 */
4418 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4419 			this_device->expose_device = 0;
4420 		else
4421 			this_device->expose_device = 1;
4422 
4423 
4424 		/*
4425 		 * Get the SAS address for physical devices that are exposed.
4426 		 */
4427 		if (this_device->physical_device && this_device->expose_device)
4428 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4429 
4430 		switch (this_device->devtype) {
4431 		case TYPE_ROM:
4432 			/* We don't *really* support actual CD-ROM devices,
4433 			 * just "One Button Disaster Recovery" tape drive
4434 			 * which temporarily pretends to be a CD-ROM drive.
4435 			 * So we check that the device is really an OBDR tape
4436 			 * device by checking for "$DR-10" in bytes 43-48 of
4437 			 * the inquiry data.
4438 			 */
4439 			if (is_OBDR)
4440 				ncurrent++;
4441 			break;
4442 		case TYPE_DISK:
4443 		case TYPE_ZBC:
4444 			if (this_device->physical_device) {
4445 				/* The disk is in HBA mode. */
4446 				/* Never use RAID mapper in HBA mode. */
4447 				this_device->offload_enabled = 0;
4448 				hpsa_get_ioaccel_drive_info(h, this_device,
4449 					physdev_list, phys_dev_index, id_phys);
4450 				hpsa_get_path_info(this_device,
4451 					physdev_list, phys_dev_index, id_phys);
4452 			}
4453 			ncurrent++;
4454 			break;
4455 		case TYPE_TAPE:
4456 		case TYPE_MEDIUM_CHANGER:
4457 			ncurrent++;
4458 			break;
4459 		case TYPE_ENCLOSURE:
4460 			if (!this_device->external)
4461 				hpsa_get_enclosure_info(h, lunaddrbytes,
4462 						physdev_list, phys_dev_index,
4463 						this_device);
4464 			ncurrent++;
4465 			break;
4466 		case TYPE_RAID:
4467 			/* Only present the Smartarray HBA as a RAID controller.
4468 			 * If it's a RAID controller other than the HBA itself
4469 			 * (an external RAID controller, MSA500 or similar)
4470 			 * don't present it.
4471 			 */
4472 			if (!is_hba_lunid(lunaddrbytes))
4473 				break;
4474 			ncurrent++;
4475 			break;
4476 		default:
4477 			break;
4478 		}
4479 		if (ncurrent >= HPSA_MAX_DEVICES)
4480 			break;
4481 	}
4482 
4483 	if (h->sas_host == NULL) {
4484 		int rc = 0;
4485 
4486 		rc = hpsa_add_sas_host(h);
4487 		if (rc) {
4488 			dev_warn(&h->pdev->dev,
4489 				"Could not add sas host %d\n", rc);
4490 			goto out;
4491 		}
4492 	}
4493 
4494 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4495 out:
4496 	kfree(tmpdevice);
4497 	for (i = 0; i < ndev_allocated; i++)
4498 		kfree(currentsd[i]);
4499 	kfree(currentsd);
4500 	kfree(physdev_list);
4501 	kfree(logdev_list);
4502 	kfree(id_ctlr);
4503 	kfree(id_phys);
4504 }
4505 
4506 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4507 				   struct scatterlist *sg)
4508 {
4509 	u64 addr64 = (u64) sg_dma_address(sg);
4510 	unsigned int len = sg_dma_len(sg);
4511 
4512 	desc->Addr = cpu_to_le64(addr64);
4513 	desc->Len = cpu_to_le32(len);
4514 	desc->Ext = 0;
4515 }
4516 
4517 /*
4518  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4519  * dma mapping  and fills in the scatter gather entries of the
4520  * hpsa command, cp.
4521  */
4522 static int hpsa_scatter_gather(struct ctlr_info *h,
4523 		struct CommandList *cp,
4524 		struct scsi_cmnd *cmd)
4525 {
4526 	struct scatterlist *sg;
4527 	int use_sg, i, sg_limit, chained, last_sg;
4528 	struct SGDescriptor *curr_sg;
4529 
4530 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4531 
4532 	use_sg = scsi_dma_map(cmd);
4533 	if (use_sg < 0)
4534 		return use_sg;
4535 
4536 	if (!use_sg)
4537 		goto sglist_finished;
4538 
4539 	/*
4540 	 * If the number of entries is greater than the max for a single list,
4541 	 * then we have a chained list; we will set up all but one entry in the
4542 	 * first list (the last entry is saved for link information);
4543 	 * otherwise, we don't have a chained list and we'll set up at each of
4544 	 * the entries in the one list.
4545 	 */
4546 	curr_sg = cp->SG;
4547 	chained = use_sg > h->max_cmd_sg_entries;
4548 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4549 	last_sg = scsi_sg_count(cmd) - 1;
4550 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4551 		hpsa_set_sg_descriptor(curr_sg, sg);
4552 		curr_sg++;
4553 	}
4554 
4555 	if (chained) {
4556 		/*
4557 		 * Continue with the chained list.  Set curr_sg to the chained
4558 		 * list.  Modify the limit to the total count less the entries
4559 		 * we've already set up.  Resume the scan at the list entry
4560 		 * where the previous loop left off.
4561 		 */
4562 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4563 		sg_limit = use_sg - sg_limit;
4564 		for_each_sg(sg, sg, sg_limit, i) {
4565 			hpsa_set_sg_descriptor(curr_sg, sg);
4566 			curr_sg++;
4567 		}
4568 	}
4569 
4570 	/* Back the pointer up to the last entry and mark it as "last". */
4571 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4572 
4573 	if (use_sg + chained > h->maxSG)
4574 		h->maxSG = use_sg + chained;
4575 
4576 	if (chained) {
4577 		cp->Header.SGList = h->max_cmd_sg_entries;
4578 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4579 		if (hpsa_map_sg_chain_block(h, cp)) {
4580 			scsi_dma_unmap(cmd);
4581 			return -1;
4582 		}
4583 		return 0;
4584 	}
4585 
4586 sglist_finished:
4587 
4588 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4589 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4590 	return 0;
4591 }
4592 
4593 #define IO_ACCEL_INELIGIBLE (1)
4594 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4595 {
4596 	int is_write = 0;
4597 	u32 block;
4598 	u32 block_cnt;
4599 
4600 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4601 	switch (cdb[0]) {
4602 	case WRITE_6:
4603 	case WRITE_12:
4604 		is_write = 1;
4605 	case READ_6:
4606 	case READ_12:
4607 		if (*cdb_len == 6) {
4608 			block = (((cdb[1] & 0x1F) << 16) |
4609 				(cdb[2] << 8) |
4610 				cdb[3]);
4611 			block_cnt = cdb[4];
4612 			if (block_cnt == 0)
4613 				block_cnt = 256;
4614 		} else {
4615 			BUG_ON(*cdb_len != 12);
4616 			block = get_unaligned_be32(&cdb[2]);
4617 			block_cnt = get_unaligned_be32(&cdb[6]);
4618 		}
4619 		if (block_cnt > 0xffff)
4620 			return IO_ACCEL_INELIGIBLE;
4621 
4622 		cdb[0] = is_write ? WRITE_10 : READ_10;
4623 		cdb[1] = 0;
4624 		cdb[2] = (u8) (block >> 24);
4625 		cdb[3] = (u8) (block >> 16);
4626 		cdb[4] = (u8) (block >> 8);
4627 		cdb[5] = (u8) (block);
4628 		cdb[6] = 0;
4629 		cdb[7] = (u8) (block_cnt >> 8);
4630 		cdb[8] = (u8) (block_cnt);
4631 		cdb[9] = 0;
4632 		*cdb_len = 10;
4633 		break;
4634 	}
4635 	return 0;
4636 }
4637 
4638 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4639 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4640 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4641 {
4642 	struct scsi_cmnd *cmd = c->scsi_cmd;
4643 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4644 	unsigned int len;
4645 	unsigned int total_len = 0;
4646 	struct scatterlist *sg;
4647 	u64 addr64;
4648 	int use_sg, i;
4649 	struct SGDescriptor *curr_sg;
4650 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4651 
4652 	/* TODO: implement chaining support */
4653 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4654 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4655 		return IO_ACCEL_INELIGIBLE;
4656 	}
4657 
4658 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4659 
4660 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4661 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4662 		return IO_ACCEL_INELIGIBLE;
4663 	}
4664 
4665 	c->cmd_type = CMD_IOACCEL1;
4666 
4667 	/* Adjust the DMA address to point to the accelerated command buffer */
4668 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4669 				(c->cmdindex * sizeof(*cp));
4670 	BUG_ON(c->busaddr & 0x0000007F);
4671 
4672 	use_sg = scsi_dma_map(cmd);
4673 	if (use_sg < 0) {
4674 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4675 		return use_sg;
4676 	}
4677 
4678 	if (use_sg) {
4679 		curr_sg = cp->SG;
4680 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4681 			addr64 = (u64) sg_dma_address(sg);
4682 			len  = sg_dma_len(sg);
4683 			total_len += len;
4684 			curr_sg->Addr = cpu_to_le64(addr64);
4685 			curr_sg->Len = cpu_to_le32(len);
4686 			curr_sg->Ext = cpu_to_le32(0);
4687 			curr_sg++;
4688 		}
4689 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4690 
4691 		switch (cmd->sc_data_direction) {
4692 		case DMA_TO_DEVICE:
4693 			control |= IOACCEL1_CONTROL_DATA_OUT;
4694 			break;
4695 		case DMA_FROM_DEVICE:
4696 			control |= IOACCEL1_CONTROL_DATA_IN;
4697 			break;
4698 		case DMA_NONE:
4699 			control |= IOACCEL1_CONTROL_NODATAXFER;
4700 			break;
4701 		default:
4702 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4703 			cmd->sc_data_direction);
4704 			BUG();
4705 			break;
4706 		}
4707 	} else {
4708 		control |= IOACCEL1_CONTROL_NODATAXFER;
4709 	}
4710 
4711 	c->Header.SGList = use_sg;
4712 	/* Fill out the command structure to submit */
4713 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4714 	cp->transfer_len = cpu_to_le32(total_len);
4715 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4716 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4717 	cp->control = cpu_to_le32(control);
4718 	memcpy(cp->CDB, cdb, cdb_len);
4719 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4720 	/* Tag was already set at init time. */
4721 	enqueue_cmd_and_start_io(h, c);
4722 	return 0;
4723 }
4724 
4725 /*
4726  * Queue a command directly to a device behind the controller using the
4727  * I/O accelerator path.
4728  */
4729 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4730 	struct CommandList *c)
4731 {
4732 	struct scsi_cmnd *cmd = c->scsi_cmd;
4733 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4734 
4735 	if (!dev)
4736 		return -1;
4737 
4738 	c->phys_disk = dev;
4739 
4740 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4741 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4742 }
4743 
4744 /*
4745  * Set encryption parameters for the ioaccel2 request
4746  */
4747 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4748 	struct CommandList *c, struct io_accel2_cmd *cp)
4749 {
4750 	struct scsi_cmnd *cmd = c->scsi_cmd;
4751 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4752 	struct raid_map_data *map = &dev->raid_map;
4753 	u64 first_block;
4754 
4755 	/* Are we doing encryption on this device */
4756 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4757 		return;
4758 	/* Set the data encryption key index. */
4759 	cp->dekindex = map->dekindex;
4760 
4761 	/* Set the encryption enable flag, encoded into direction field. */
4762 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4763 
4764 	/* Set encryption tweak values based on logical block address
4765 	 * If block size is 512, tweak value is LBA.
4766 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4767 	 */
4768 	switch (cmd->cmnd[0]) {
4769 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4770 	case READ_6:
4771 	case WRITE_6:
4772 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4773 				(cmd->cmnd[2] << 8) |
4774 				cmd->cmnd[3]);
4775 		break;
4776 	case WRITE_10:
4777 	case READ_10:
4778 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4779 	case WRITE_12:
4780 	case READ_12:
4781 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4782 		break;
4783 	case WRITE_16:
4784 	case READ_16:
4785 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4786 		break;
4787 	default:
4788 		dev_err(&h->pdev->dev,
4789 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4790 			__func__, cmd->cmnd[0]);
4791 		BUG();
4792 		break;
4793 	}
4794 
4795 	if (le32_to_cpu(map->volume_blk_size) != 512)
4796 		first_block = first_block *
4797 				le32_to_cpu(map->volume_blk_size)/512;
4798 
4799 	cp->tweak_lower = cpu_to_le32(first_block);
4800 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4801 }
4802 
4803 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4804 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4805 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4806 {
4807 	struct scsi_cmnd *cmd = c->scsi_cmd;
4808 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4809 	struct ioaccel2_sg_element *curr_sg;
4810 	int use_sg, i;
4811 	struct scatterlist *sg;
4812 	u64 addr64;
4813 	u32 len;
4814 	u32 total_len = 0;
4815 
4816 	if (!cmd->device)
4817 		return -1;
4818 
4819 	if (!cmd->device->hostdata)
4820 		return -1;
4821 
4822 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4823 
4824 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4825 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4826 		return IO_ACCEL_INELIGIBLE;
4827 	}
4828 
4829 	c->cmd_type = CMD_IOACCEL2;
4830 	/* Adjust the DMA address to point to the accelerated command buffer */
4831 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4832 				(c->cmdindex * sizeof(*cp));
4833 	BUG_ON(c->busaddr & 0x0000007F);
4834 
4835 	memset(cp, 0, sizeof(*cp));
4836 	cp->IU_type = IOACCEL2_IU_TYPE;
4837 
4838 	use_sg = scsi_dma_map(cmd);
4839 	if (use_sg < 0) {
4840 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4841 		return use_sg;
4842 	}
4843 
4844 	if (use_sg) {
4845 		curr_sg = cp->sg;
4846 		if (use_sg > h->ioaccel_maxsg) {
4847 			addr64 = le64_to_cpu(
4848 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4849 			curr_sg->address = cpu_to_le64(addr64);
4850 			curr_sg->length = 0;
4851 			curr_sg->reserved[0] = 0;
4852 			curr_sg->reserved[1] = 0;
4853 			curr_sg->reserved[2] = 0;
4854 			curr_sg->chain_indicator = 0x80;
4855 
4856 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4857 		}
4858 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4859 			addr64 = (u64) sg_dma_address(sg);
4860 			len  = sg_dma_len(sg);
4861 			total_len += len;
4862 			curr_sg->address = cpu_to_le64(addr64);
4863 			curr_sg->length = cpu_to_le32(len);
4864 			curr_sg->reserved[0] = 0;
4865 			curr_sg->reserved[1] = 0;
4866 			curr_sg->reserved[2] = 0;
4867 			curr_sg->chain_indicator = 0;
4868 			curr_sg++;
4869 		}
4870 
4871 		switch (cmd->sc_data_direction) {
4872 		case DMA_TO_DEVICE:
4873 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4874 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4875 			break;
4876 		case DMA_FROM_DEVICE:
4877 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4878 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4879 			break;
4880 		case DMA_NONE:
4881 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4882 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4883 			break;
4884 		default:
4885 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4886 				cmd->sc_data_direction);
4887 			BUG();
4888 			break;
4889 		}
4890 	} else {
4891 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4892 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4893 	}
4894 
4895 	/* Set encryption parameters, if necessary */
4896 	set_encrypt_ioaccel2(h, c, cp);
4897 
4898 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4899 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4900 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4901 
4902 	cp->data_len = cpu_to_le32(total_len);
4903 	cp->err_ptr = cpu_to_le64(c->busaddr +
4904 			offsetof(struct io_accel2_cmd, error_data));
4905 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4906 
4907 	/* fill in sg elements */
4908 	if (use_sg > h->ioaccel_maxsg) {
4909 		cp->sg_count = 1;
4910 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4911 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4912 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4913 			scsi_dma_unmap(cmd);
4914 			return -1;
4915 		}
4916 	} else
4917 		cp->sg_count = (u8) use_sg;
4918 
4919 	enqueue_cmd_and_start_io(h, c);
4920 	return 0;
4921 }
4922 
4923 /*
4924  * Queue a command to the correct I/O accelerator path.
4925  */
4926 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4927 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4928 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4929 {
4930 	if (!c->scsi_cmd->device)
4931 		return -1;
4932 
4933 	if (!c->scsi_cmd->device->hostdata)
4934 		return -1;
4935 
4936 	/* Try to honor the device's queue depth */
4937 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4938 					phys_disk->queue_depth) {
4939 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4940 		return IO_ACCEL_INELIGIBLE;
4941 	}
4942 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4943 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4944 						cdb, cdb_len, scsi3addr,
4945 						phys_disk);
4946 	else
4947 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4948 						cdb, cdb_len, scsi3addr,
4949 						phys_disk);
4950 }
4951 
4952 static void raid_map_helper(struct raid_map_data *map,
4953 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4954 {
4955 	if (offload_to_mirror == 0)  {
4956 		/* use physical disk in the first mirrored group. */
4957 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4958 		return;
4959 	}
4960 	do {
4961 		/* determine mirror group that *map_index indicates */
4962 		*current_group = *map_index /
4963 			le16_to_cpu(map->data_disks_per_row);
4964 		if (offload_to_mirror == *current_group)
4965 			continue;
4966 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4967 			/* select map index from next group */
4968 			*map_index += le16_to_cpu(map->data_disks_per_row);
4969 			(*current_group)++;
4970 		} else {
4971 			/* select map index from first group */
4972 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4973 			*current_group = 0;
4974 		}
4975 	} while (offload_to_mirror != *current_group);
4976 }
4977 
4978 /*
4979  * Attempt to perform offload RAID mapping for a logical volume I/O.
4980  */
4981 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4982 	struct CommandList *c)
4983 {
4984 	struct scsi_cmnd *cmd = c->scsi_cmd;
4985 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4986 	struct raid_map_data *map = &dev->raid_map;
4987 	struct raid_map_disk_data *dd = &map->data[0];
4988 	int is_write = 0;
4989 	u32 map_index;
4990 	u64 first_block, last_block;
4991 	u32 block_cnt;
4992 	u32 blocks_per_row;
4993 	u64 first_row, last_row;
4994 	u32 first_row_offset, last_row_offset;
4995 	u32 first_column, last_column;
4996 	u64 r0_first_row, r0_last_row;
4997 	u32 r5or6_blocks_per_row;
4998 	u64 r5or6_first_row, r5or6_last_row;
4999 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5000 	u32 r5or6_first_column, r5or6_last_column;
5001 	u32 total_disks_per_row;
5002 	u32 stripesize;
5003 	u32 first_group, last_group, current_group;
5004 	u32 map_row;
5005 	u32 disk_handle;
5006 	u64 disk_block;
5007 	u32 disk_block_cnt;
5008 	u8 cdb[16];
5009 	u8 cdb_len;
5010 	u16 strip_size;
5011 #if BITS_PER_LONG == 32
5012 	u64 tmpdiv;
5013 #endif
5014 	int offload_to_mirror;
5015 
5016 	if (!dev)
5017 		return -1;
5018 
5019 	/* check for valid opcode, get LBA and block count */
5020 	switch (cmd->cmnd[0]) {
5021 	case WRITE_6:
5022 		is_write = 1;
5023 	case READ_6:
5024 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5025 				(cmd->cmnd[2] << 8) |
5026 				cmd->cmnd[3]);
5027 		block_cnt = cmd->cmnd[4];
5028 		if (block_cnt == 0)
5029 			block_cnt = 256;
5030 		break;
5031 	case WRITE_10:
5032 		is_write = 1;
5033 	case READ_10:
5034 		first_block =
5035 			(((u64) cmd->cmnd[2]) << 24) |
5036 			(((u64) cmd->cmnd[3]) << 16) |
5037 			(((u64) cmd->cmnd[4]) << 8) |
5038 			cmd->cmnd[5];
5039 		block_cnt =
5040 			(((u32) cmd->cmnd[7]) << 8) |
5041 			cmd->cmnd[8];
5042 		break;
5043 	case WRITE_12:
5044 		is_write = 1;
5045 	case READ_12:
5046 		first_block =
5047 			(((u64) cmd->cmnd[2]) << 24) |
5048 			(((u64) cmd->cmnd[3]) << 16) |
5049 			(((u64) cmd->cmnd[4]) << 8) |
5050 			cmd->cmnd[5];
5051 		block_cnt =
5052 			(((u32) cmd->cmnd[6]) << 24) |
5053 			(((u32) cmd->cmnd[7]) << 16) |
5054 			(((u32) cmd->cmnd[8]) << 8) |
5055 		cmd->cmnd[9];
5056 		break;
5057 	case WRITE_16:
5058 		is_write = 1;
5059 	case READ_16:
5060 		first_block =
5061 			(((u64) cmd->cmnd[2]) << 56) |
5062 			(((u64) cmd->cmnd[3]) << 48) |
5063 			(((u64) cmd->cmnd[4]) << 40) |
5064 			(((u64) cmd->cmnd[5]) << 32) |
5065 			(((u64) cmd->cmnd[6]) << 24) |
5066 			(((u64) cmd->cmnd[7]) << 16) |
5067 			(((u64) cmd->cmnd[8]) << 8) |
5068 			cmd->cmnd[9];
5069 		block_cnt =
5070 			(((u32) cmd->cmnd[10]) << 24) |
5071 			(((u32) cmd->cmnd[11]) << 16) |
5072 			(((u32) cmd->cmnd[12]) << 8) |
5073 			cmd->cmnd[13];
5074 		break;
5075 	default:
5076 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5077 	}
5078 	last_block = first_block + block_cnt - 1;
5079 
5080 	/* check for write to non-RAID-0 */
5081 	if (is_write && dev->raid_level != 0)
5082 		return IO_ACCEL_INELIGIBLE;
5083 
5084 	/* check for invalid block or wraparound */
5085 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5086 		last_block < first_block)
5087 		return IO_ACCEL_INELIGIBLE;
5088 
5089 	/* calculate stripe information for the request */
5090 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5091 				le16_to_cpu(map->strip_size);
5092 	strip_size = le16_to_cpu(map->strip_size);
5093 #if BITS_PER_LONG == 32
5094 	tmpdiv = first_block;
5095 	(void) do_div(tmpdiv, blocks_per_row);
5096 	first_row = tmpdiv;
5097 	tmpdiv = last_block;
5098 	(void) do_div(tmpdiv, blocks_per_row);
5099 	last_row = tmpdiv;
5100 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5101 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5102 	tmpdiv = first_row_offset;
5103 	(void) do_div(tmpdiv, strip_size);
5104 	first_column = tmpdiv;
5105 	tmpdiv = last_row_offset;
5106 	(void) do_div(tmpdiv, strip_size);
5107 	last_column = tmpdiv;
5108 #else
5109 	first_row = first_block / blocks_per_row;
5110 	last_row = last_block / blocks_per_row;
5111 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5112 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5113 	first_column = first_row_offset / strip_size;
5114 	last_column = last_row_offset / strip_size;
5115 #endif
5116 
5117 	/* if this isn't a single row/column then give to the controller */
5118 	if ((first_row != last_row) || (first_column != last_column))
5119 		return IO_ACCEL_INELIGIBLE;
5120 
5121 	/* proceeding with driver mapping */
5122 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5123 				le16_to_cpu(map->metadata_disks_per_row);
5124 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5125 				le16_to_cpu(map->row_cnt);
5126 	map_index = (map_row * total_disks_per_row) + first_column;
5127 
5128 	switch (dev->raid_level) {
5129 	case HPSA_RAID_0:
5130 		break; /* nothing special to do */
5131 	case HPSA_RAID_1:
5132 		/* Handles load balance across RAID 1 members.
5133 		 * (2-drive R1 and R10 with even # of drives.)
5134 		 * Appropriate for SSDs, not optimal for HDDs
5135 		 */
5136 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5137 		if (dev->offload_to_mirror)
5138 			map_index += le16_to_cpu(map->data_disks_per_row);
5139 		dev->offload_to_mirror = !dev->offload_to_mirror;
5140 		break;
5141 	case HPSA_RAID_ADM:
5142 		/* Handles N-way mirrors  (R1-ADM)
5143 		 * and R10 with # of drives divisible by 3.)
5144 		 */
5145 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5146 
5147 		offload_to_mirror = dev->offload_to_mirror;
5148 		raid_map_helper(map, offload_to_mirror,
5149 				&map_index, &current_group);
5150 		/* set mirror group to use next time */
5151 		offload_to_mirror =
5152 			(offload_to_mirror >=
5153 			le16_to_cpu(map->layout_map_count) - 1)
5154 			? 0 : offload_to_mirror + 1;
5155 		dev->offload_to_mirror = offload_to_mirror;
5156 		/* Avoid direct use of dev->offload_to_mirror within this
5157 		 * function since multiple threads might simultaneously
5158 		 * increment it beyond the range of dev->layout_map_count -1.
5159 		 */
5160 		break;
5161 	case HPSA_RAID_5:
5162 	case HPSA_RAID_6:
5163 		if (le16_to_cpu(map->layout_map_count) <= 1)
5164 			break;
5165 
5166 		/* Verify first and last block are in same RAID group */
5167 		r5or6_blocks_per_row =
5168 			le16_to_cpu(map->strip_size) *
5169 			le16_to_cpu(map->data_disks_per_row);
5170 		BUG_ON(r5or6_blocks_per_row == 0);
5171 		stripesize = r5or6_blocks_per_row *
5172 			le16_to_cpu(map->layout_map_count);
5173 #if BITS_PER_LONG == 32
5174 		tmpdiv = first_block;
5175 		first_group = do_div(tmpdiv, stripesize);
5176 		tmpdiv = first_group;
5177 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5178 		first_group = tmpdiv;
5179 		tmpdiv = last_block;
5180 		last_group = do_div(tmpdiv, stripesize);
5181 		tmpdiv = last_group;
5182 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5183 		last_group = tmpdiv;
5184 #else
5185 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5186 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5187 #endif
5188 		if (first_group != last_group)
5189 			return IO_ACCEL_INELIGIBLE;
5190 
5191 		/* Verify request is in a single row of RAID 5/6 */
5192 #if BITS_PER_LONG == 32
5193 		tmpdiv = first_block;
5194 		(void) do_div(tmpdiv, stripesize);
5195 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5196 		tmpdiv = last_block;
5197 		(void) do_div(tmpdiv, stripesize);
5198 		r5or6_last_row = r0_last_row = tmpdiv;
5199 #else
5200 		first_row = r5or6_first_row = r0_first_row =
5201 						first_block / stripesize;
5202 		r5or6_last_row = r0_last_row = last_block / stripesize;
5203 #endif
5204 		if (r5or6_first_row != r5or6_last_row)
5205 			return IO_ACCEL_INELIGIBLE;
5206 
5207 
5208 		/* Verify request is in a single column */
5209 #if BITS_PER_LONG == 32
5210 		tmpdiv = first_block;
5211 		first_row_offset = do_div(tmpdiv, stripesize);
5212 		tmpdiv = first_row_offset;
5213 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5214 		r5or6_first_row_offset = first_row_offset;
5215 		tmpdiv = last_block;
5216 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5217 		tmpdiv = r5or6_last_row_offset;
5218 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5219 		tmpdiv = r5or6_first_row_offset;
5220 		(void) do_div(tmpdiv, map->strip_size);
5221 		first_column = r5or6_first_column = tmpdiv;
5222 		tmpdiv = r5or6_last_row_offset;
5223 		(void) do_div(tmpdiv, map->strip_size);
5224 		r5or6_last_column = tmpdiv;
5225 #else
5226 		first_row_offset = r5or6_first_row_offset =
5227 			(u32)((first_block % stripesize) %
5228 						r5or6_blocks_per_row);
5229 
5230 		r5or6_last_row_offset =
5231 			(u32)((last_block % stripesize) %
5232 						r5or6_blocks_per_row);
5233 
5234 		first_column = r5or6_first_column =
5235 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5236 		r5or6_last_column =
5237 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5238 #endif
5239 		if (r5or6_first_column != r5or6_last_column)
5240 			return IO_ACCEL_INELIGIBLE;
5241 
5242 		/* Request is eligible */
5243 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5244 			le16_to_cpu(map->row_cnt);
5245 
5246 		map_index = (first_group *
5247 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5248 			(map_row * total_disks_per_row) + first_column;
5249 		break;
5250 	default:
5251 		return IO_ACCEL_INELIGIBLE;
5252 	}
5253 
5254 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5255 		return IO_ACCEL_INELIGIBLE;
5256 
5257 	c->phys_disk = dev->phys_disk[map_index];
5258 	if (!c->phys_disk)
5259 		return IO_ACCEL_INELIGIBLE;
5260 
5261 	disk_handle = dd[map_index].ioaccel_handle;
5262 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5263 			first_row * le16_to_cpu(map->strip_size) +
5264 			(first_row_offset - first_column *
5265 			le16_to_cpu(map->strip_size));
5266 	disk_block_cnt = block_cnt;
5267 
5268 	/* handle differing logical/physical block sizes */
5269 	if (map->phys_blk_shift) {
5270 		disk_block <<= map->phys_blk_shift;
5271 		disk_block_cnt <<= map->phys_blk_shift;
5272 	}
5273 	BUG_ON(disk_block_cnt > 0xffff);
5274 
5275 	/* build the new CDB for the physical disk I/O */
5276 	if (disk_block > 0xffffffff) {
5277 		cdb[0] = is_write ? WRITE_16 : READ_16;
5278 		cdb[1] = 0;
5279 		cdb[2] = (u8) (disk_block >> 56);
5280 		cdb[3] = (u8) (disk_block >> 48);
5281 		cdb[4] = (u8) (disk_block >> 40);
5282 		cdb[5] = (u8) (disk_block >> 32);
5283 		cdb[6] = (u8) (disk_block >> 24);
5284 		cdb[7] = (u8) (disk_block >> 16);
5285 		cdb[8] = (u8) (disk_block >> 8);
5286 		cdb[9] = (u8) (disk_block);
5287 		cdb[10] = (u8) (disk_block_cnt >> 24);
5288 		cdb[11] = (u8) (disk_block_cnt >> 16);
5289 		cdb[12] = (u8) (disk_block_cnt >> 8);
5290 		cdb[13] = (u8) (disk_block_cnt);
5291 		cdb[14] = 0;
5292 		cdb[15] = 0;
5293 		cdb_len = 16;
5294 	} else {
5295 		cdb[0] = is_write ? WRITE_10 : READ_10;
5296 		cdb[1] = 0;
5297 		cdb[2] = (u8) (disk_block >> 24);
5298 		cdb[3] = (u8) (disk_block >> 16);
5299 		cdb[4] = (u8) (disk_block >> 8);
5300 		cdb[5] = (u8) (disk_block);
5301 		cdb[6] = 0;
5302 		cdb[7] = (u8) (disk_block_cnt >> 8);
5303 		cdb[8] = (u8) (disk_block_cnt);
5304 		cdb[9] = 0;
5305 		cdb_len = 10;
5306 	}
5307 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5308 						dev->scsi3addr,
5309 						dev->phys_disk[map_index]);
5310 }
5311 
5312 /*
5313  * Submit commands down the "normal" RAID stack path
5314  * All callers to hpsa_ciss_submit must check lockup_detected
5315  * beforehand, before (opt.) and after calling cmd_alloc
5316  */
5317 static int hpsa_ciss_submit(struct ctlr_info *h,
5318 	struct CommandList *c, struct scsi_cmnd *cmd,
5319 	unsigned char scsi3addr[])
5320 {
5321 	cmd->host_scribble = (unsigned char *) c;
5322 	c->cmd_type = CMD_SCSI;
5323 	c->scsi_cmd = cmd;
5324 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5325 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5326 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5327 
5328 	/* Fill in the request block... */
5329 
5330 	c->Request.Timeout = 0;
5331 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5332 	c->Request.CDBLen = cmd->cmd_len;
5333 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5334 	switch (cmd->sc_data_direction) {
5335 	case DMA_TO_DEVICE:
5336 		c->Request.type_attr_dir =
5337 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5338 		break;
5339 	case DMA_FROM_DEVICE:
5340 		c->Request.type_attr_dir =
5341 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5342 		break;
5343 	case DMA_NONE:
5344 		c->Request.type_attr_dir =
5345 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5346 		break;
5347 	case DMA_BIDIRECTIONAL:
5348 		/* This can happen if a buggy application does a scsi passthru
5349 		 * and sets both inlen and outlen to non-zero. ( see
5350 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5351 		 */
5352 
5353 		c->Request.type_attr_dir =
5354 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5355 		/* This is technically wrong, and hpsa controllers should
5356 		 * reject it with CMD_INVALID, which is the most correct
5357 		 * response, but non-fibre backends appear to let it
5358 		 * slide by, and give the same results as if this field
5359 		 * were set correctly.  Either way is acceptable for
5360 		 * our purposes here.
5361 		 */
5362 
5363 		break;
5364 
5365 	default:
5366 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5367 			cmd->sc_data_direction);
5368 		BUG();
5369 		break;
5370 	}
5371 
5372 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5373 		hpsa_cmd_resolve_and_free(h, c);
5374 		return SCSI_MLQUEUE_HOST_BUSY;
5375 	}
5376 	enqueue_cmd_and_start_io(h, c);
5377 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5378 	return 0;
5379 }
5380 
5381 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5382 				struct CommandList *c)
5383 {
5384 	dma_addr_t cmd_dma_handle, err_dma_handle;
5385 
5386 	/* Zero out all of commandlist except the last field, refcount */
5387 	memset(c, 0, offsetof(struct CommandList, refcount));
5388 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5389 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5390 	c->err_info = h->errinfo_pool + index;
5391 	memset(c->err_info, 0, sizeof(*c->err_info));
5392 	err_dma_handle = h->errinfo_pool_dhandle
5393 	    + index * sizeof(*c->err_info);
5394 	c->cmdindex = index;
5395 	c->busaddr = (u32) cmd_dma_handle;
5396 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5397 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5398 	c->h = h;
5399 	c->scsi_cmd = SCSI_CMD_IDLE;
5400 }
5401 
5402 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5403 {
5404 	int i;
5405 
5406 	for (i = 0; i < h->nr_cmds; i++) {
5407 		struct CommandList *c = h->cmd_pool + i;
5408 
5409 		hpsa_cmd_init(h, i, c);
5410 		atomic_set(&c->refcount, 0);
5411 	}
5412 }
5413 
5414 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5415 				struct CommandList *c)
5416 {
5417 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5418 
5419 	BUG_ON(c->cmdindex != index);
5420 
5421 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5422 	memset(c->err_info, 0, sizeof(*c->err_info));
5423 	c->busaddr = (u32) cmd_dma_handle;
5424 }
5425 
5426 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5427 		struct CommandList *c, struct scsi_cmnd *cmd,
5428 		unsigned char *scsi3addr)
5429 {
5430 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5431 	int rc = IO_ACCEL_INELIGIBLE;
5432 
5433 	if (!dev)
5434 		return SCSI_MLQUEUE_HOST_BUSY;
5435 
5436 	cmd->host_scribble = (unsigned char *) c;
5437 
5438 	if (dev->offload_enabled) {
5439 		hpsa_cmd_init(h, c->cmdindex, c);
5440 		c->cmd_type = CMD_SCSI;
5441 		c->scsi_cmd = cmd;
5442 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5443 		if (rc < 0)     /* scsi_dma_map failed. */
5444 			rc = SCSI_MLQUEUE_HOST_BUSY;
5445 	} else if (dev->hba_ioaccel_enabled) {
5446 		hpsa_cmd_init(h, c->cmdindex, c);
5447 		c->cmd_type = CMD_SCSI;
5448 		c->scsi_cmd = cmd;
5449 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5450 		if (rc < 0)     /* scsi_dma_map failed. */
5451 			rc = SCSI_MLQUEUE_HOST_BUSY;
5452 	}
5453 	return rc;
5454 }
5455 
5456 static void hpsa_command_resubmit_worker(struct work_struct *work)
5457 {
5458 	struct scsi_cmnd *cmd;
5459 	struct hpsa_scsi_dev_t *dev;
5460 	struct CommandList *c = container_of(work, struct CommandList, work);
5461 
5462 	cmd = c->scsi_cmd;
5463 	dev = cmd->device->hostdata;
5464 	if (!dev) {
5465 		cmd->result = DID_NO_CONNECT << 16;
5466 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5467 	}
5468 	if (c->reset_pending)
5469 		return hpsa_cmd_resolve_and_free(c->h, c);
5470 	if (c->abort_pending)
5471 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5472 	if (c->cmd_type == CMD_IOACCEL2) {
5473 		struct ctlr_info *h = c->h;
5474 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5475 		int rc;
5476 
5477 		if (c2->error_data.serv_response ==
5478 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5479 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5480 			if (rc == 0)
5481 				return;
5482 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5483 				/*
5484 				 * If we get here, it means dma mapping failed.
5485 				 * Try again via scsi mid layer, which will
5486 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5487 				 */
5488 				cmd->result = DID_IMM_RETRY << 16;
5489 				return hpsa_cmd_free_and_done(h, c, cmd);
5490 			}
5491 			/* else, fall thru and resubmit down CISS path */
5492 		}
5493 	}
5494 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5495 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5496 		/*
5497 		 * If we get here, it means dma mapping failed. Try
5498 		 * again via scsi mid layer, which will then get
5499 		 * SCSI_MLQUEUE_HOST_BUSY.
5500 		 *
5501 		 * hpsa_ciss_submit will have already freed c
5502 		 * if it encountered a dma mapping failure.
5503 		 */
5504 		cmd->result = DID_IMM_RETRY << 16;
5505 		cmd->scsi_done(cmd);
5506 	}
5507 }
5508 
5509 /* Running in struct Scsi_Host->host_lock less mode */
5510 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5511 {
5512 	struct ctlr_info *h;
5513 	struct hpsa_scsi_dev_t *dev;
5514 	unsigned char scsi3addr[8];
5515 	struct CommandList *c;
5516 	int rc = 0;
5517 
5518 	/* Get the ptr to our adapter structure out of cmd->host. */
5519 	h = sdev_to_hba(cmd->device);
5520 
5521 	BUG_ON(cmd->request->tag < 0);
5522 
5523 	dev = cmd->device->hostdata;
5524 	if (!dev) {
5525 		cmd->result = DID_NO_CONNECT << 16;
5526 		cmd->scsi_done(cmd);
5527 		return 0;
5528 	}
5529 
5530 	if (dev->removed) {
5531 		cmd->result = DID_NO_CONNECT << 16;
5532 		cmd->scsi_done(cmd);
5533 		return 0;
5534 	}
5535 
5536 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5537 
5538 	if (unlikely(lockup_detected(h))) {
5539 		cmd->result = DID_NO_CONNECT << 16;
5540 		cmd->scsi_done(cmd);
5541 		return 0;
5542 	}
5543 	c = cmd_tagged_alloc(h, cmd);
5544 
5545 	/*
5546 	 * Call alternate submit routine for I/O accelerated commands.
5547 	 * Retries always go down the normal I/O path.
5548 	 */
5549 	if (likely(cmd->retries == 0 &&
5550 		cmd->request->cmd_type == REQ_TYPE_FS &&
5551 		h->acciopath_status)) {
5552 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5553 		if (rc == 0)
5554 			return 0;
5555 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5556 			hpsa_cmd_resolve_and_free(h, c);
5557 			return SCSI_MLQUEUE_HOST_BUSY;
5558 		}
5559 	}
5560 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5561 }
5562 
5563 static void hpsa_scan_complete(struct ctlr_info *h)
5564 {
5565 	unsigned long flags;
5566 
5567 	spin_lock_irqsave(&h->scan_lock, flags);
5568 	h->scan_finished = 1;
5569 	wake_up_all(&h->scan_wait_queue);
5570 	spin_unlock_irqrestore(&h->scan_lock, flags);
5571 }
5572 
5573 static void hpsa_scan_start(struct Scsi_Host *sh)
5574 {
5575 	struct ctlr_info *h = shost_to_hba(sh);
5576 	unsigned long flags;
5577 
5578 	/*
5579 	 * Don't let rescans be initiated on a controller known to be locked
5580 	 * up.  If the controller locks up *during* a rescan, that thread is
5581 	 * probably hosed, but at least we can prevent new rescan threads from
5582 	 * piling up on a locked up controller.
5583 	 */
5584 	if (unlikely(lockup_detected(h)))
5585 		return hpsa_scan_complete(h);
5586 
5587 	/* wait until any scan already in progress is finished. */
5588 	while (1) {
5589 		spin_lock_irqsave(&h->scan_lock, flags);
5590 		if (h->scan_finished)
5591 			break;
5592 		spin_unlock_irqrestore(&h->scan_lock, flags);
5593 		wait_event(h->scan_wait_queue, h->scan_finished);
5594 		/* Note: We don't need to worry about a race between this
5595 		 * thread and driver unload because the midlayer will
5596 		 * have incremented the reference count, so unload won't
5597 		 * happen if we're in here.
5598 		 */
5599 	}
5600 	h->scan_finished = 0; /* mark scan as in progress */
5601 	spin_unlock_irqrestore(&h->scan_lock, flags);
5602 
5603 	if (unlikely(lockup_detected(h)))
5604 		return hpsa_scan_complete(h);
5605 
5606 	/*
5607 	 * Do the scan after a reset completion
5608 	 */
5609 	if (h->reset_in_progress) {
5610 		h->drv_req_rescan = 1;
5611 		return;
5612 	}
5613 
5614 	hpsa_update_scsi_devices(h);
5615 
5616 	hpsa_scan_complete(h);
5617 }
5618 
5619 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5620 {
5621 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5622 
5623 	if (!logical_drive)
5624 		return -ENODEV;
5625 
5626 	if (qdepth < 1)
5627 		qdepth = 1;
5628 	else if (qdepth > logical_drive->queue_depth)
5629 		qdepth = logical_drive->queue_depth;
5630 
5631 	return scsi_change_queue_depth(sdev, qdepth);
5632 }
5633 
5634 static int hpsa_scan_finished(struct Scsi_Host *sh,
5635 	unsigned long elapsed_time)
5636 {
5637 	struct ctlr_info *h = shost_to_hba(sh);
5638 	unsigned long flags;
5639 	int finished;
5640 
5641 	spin_lock_irqsave(&h->scan_lock, flags);
5642 	finished = h->scan_finished;
5643 	spin_unlock_irqrestore(&h->scan_lock, flags);
5644 	return finished;
5645 }
5646 
5647 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5648 {
5649 	struct Scsi_Host *sh;
5650 
5651 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5652 	if (sh == NULL) {
5653 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5654 		return -ENOMEM;
5655 	}
5656 
5657 	sh->io_port = 0;
5658 	sh->n_io_port = 0;
5659 	sh->this_id = -1;
5660 	sh->max_channel = 3;
5661 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5662 	sh->max_lun = HPSA_MAX_LUN;
5663 	sh->max_id = HPSA_MAX_LUN;
5664 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5665 	sh->cmd_per_lun = sh->can_queue;
5666 	sh->sg_tablesize = h->maxsgentries;
5667 	sh->transportt = hpsa_sas_transport_template;
5668 	sh->hostdata[0] = (unsigned long) h;
5669 	sh->irq = pci_irq_vector(h->pdev, 0);
5670 	sh->unique_id = sh->irq;
5671 
5672 	h->scsi_host = sh;
5673 	return 0;
5674 }
5675 
5676 static int hpsa_scsi_add_host(struct ctlr_info *h)
5677 {
5678 	int rv;
5679 
5680 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5681 	if (rv) {
5682 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5683 		return rv;
5684 	}
5685 	scsi_scan_host(h->scsi_host);
5686 	return 0;
5687 }
5688 
5689 /*
5690  * The block layer has already gone to the trouble of picking out a unique,
5691  * small-integer tag for this request.  We use an offset from that value as
5692  * an index to select our command block.  (The offset allows us to reserve the
5693  * low-numbered entries for our own uses.)
5694  */
5695 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5696 {
5697 	int idx = scmd->request->tag;
5698 
5699 	if (idx < 0)
5700 		return idx;
5701 
5702 	/* Offset to leave space for internal cmds. */
5703 	return idx += HPSA_NRESERVED_CMDS;
5704 }
5705 
5706 /*
5707  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5708  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5709  */
5710 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5711 				struct CommandList *c, unsigned char lunaddr[],
5712 				int reply_queue)
5713 {
5714 	int rc;
5715 
5716 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5717 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5718 			NULL, 0, 0, lunaddr, TYPE_CMD);
5719 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5720 	if (rc)
5721 		return rc;
5722 	/* no unmap needed here because no data xfer. */
5723 
5724 	/* Check if the unit is already ready. */
5725 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5726 		return 0;
5727 
5728 	/*
5729 	 * The first command sent after reset will receive "unit attention" to
5730 	 * indicate that the LUN has been reset...this is actually what we're
5731 	 * looking for (but, success is good too).
5732 	 */
5733 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5734 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5735 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5736 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5737 		return 0;
5738 
5739 	return 1;
5740 }
5741 
5742 /*
5743  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5744  * returns zero when the unit is ready, and non-zero when giving up.
5745  */
5746 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5747 				struct CommandList *c,
5748 				unsigned char lunaddr[], int reply_queue)
5749 {
5750 	int rc;
5751 	int count = 0;
5752 	int waittime = 1; /* seconds */
5753 
5754 	/* Send test unit ready until device ready, or give up. */
5755 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5756 
5757 		/*
5758 		 * Wait for a bit.  do this first, because if we send
5759 		 * the TUR right away, the reset will just abort it.
5760 		 */
5761 		msleep(1000 * waittime);
5762 
5763 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5764 		if (!rc)
5765 			break;
5766 
5767 		/* Increase wait time with each try, up to a point. */
5768 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5769 			waittime *= 2;
5770 
5771 		dev_warn(&h->pdev->dev,
5772 			 "waiting %d secs for device to become ready.\n",
5773 			 waittime);
5774 	}
5775 
5776 	return rc;
5777 }
5778 
5779 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5780 					   unsigned char lunaddr[],
5781 					   int reply_queue)
5782 {
5783 	int first_queue;
5784 	int last_queue;
5785 	int rq;
5786 	int rc = 0;
5787 	struct CommandList *c;
5788 
5789 	c = cmd_alloc(h);
5790 
5791 	/*
5792 	 * If no specific reply queue was requested, then send the TUR
5793 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5794 	 * the loop exactly once using only the specified queue.
5795 	 */
5796 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5797 		first_queue = 0;
5798 		last_queue = h->nreply_queues - 1;
5799 	} else {
5800 		first_queue = reply_queue;
5801 		last_queue = reply_queue;
5802 	}
5803 
5804 	for (rq = first_queue; rq <= last_queue; rq++) {
5805 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5806 		if (rc)
5807 			break;
5808 	}
5809 
5810 	if (rc)
5811 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5812 	else
5813 		dev_warn(&h->pdev->dev, "device is ready.\n");
5814 
5815 	cmd_free(h, c);
5816 	return rc;
5817 }
5818 
5819 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5820  * complaining.  Doing a host- or bus-reset can't do anything good here.
5821  */
5822 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5823 {
5824 	int rc;
5825 	struct ctlr_info *h;
5826 	struct hpsa_scsi_dev_t *dev;
5827 	u8 reset_type;
5828 	char msg[48];
5829 
5830 	/* find the controller to which the command to be aborted was sent */
5831 	h = sdev_to_hba(scsicmd->device);
5832 	if (h == NULL) /* paranoia */
5833 		return FAILED;
5834 
5835 	if (lockup_detected(h))
5836 		return FAILED;
5837 
5838 	dev = scsicmd->device->hostdata;
5839 	if (!dev) {
5840 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5841 		return FAILED;
5842 	}
5843 
5844 	/* if controller locked up, we can guarantee command won't complete */
5845 	if (lockup_detected(h)) {
5846 		snprintf(msg, sizeof(msg),
5847 			 "cmd %d RESET FAILED, lockup detected",
5848 			 hpsa_get_cmd_index(scsicmd));
5849 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5850 		return FAILED;
5851 	}
5852 
5853 	/* this reset request might be the result of a lockup; check */
5854 	if (detect_controller_lockup(h)) {
5855 		snprintf(msg, sizeof(msg),
5856 			 "cmd %d RESET FAILED, new lockup detected",
5857 			 hpsa_get_cmd_index(scsicmd));
5858 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5859 		return FAILED;
5860 	}
5861 
5862 	/* Do not attempt on controller */
5863 	if (is_hba_lunid(dev->scsi3addr))
5864 		return SUCCESS;
5865 
5866 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5867 		reset_type = HPSA_DEVICE_RESET_MSG;
5868 	else
5869 		reset_type = HPSA_PHYS_TARGET_RESET;
5870 
5871 	sprintf(msg, "resetting %s",
5872 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5873 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5874 
5875 	h->reset_in_progress = 1;
5876 
5877 	/* send a reset to the SCSI LUN which the command was sent to */
5878 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5879 			   DEFAULT_REPLY_QUEUE);
5880 	sprintf(msg, "reset %s %s",
5881 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5882 		rc == 0 ? "completed successfully" : "failed");
5883 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5884 	h->reset_in_progress = 0;
5885 	return rc == 0 ? SUCCESS : FAILED;
5886 }
5887 
5888 static void swizzle_abort_tag(u8 *tag)
5889 {
5890 	u8 original_tag[8];
5891 
5892 	memcpy(original_tag, tag, 8);
5893 	tag[0] = original_tag[3];
5894 	tag[1] = original_tag[2];
5895 	tag[2] = original_tag[1];
5896 	tag[3] = original_tag[0];
5897 	tag[4] = original_tag[7];
5898 	tag[5] = original_tag[6];
5899 	tag[6] = original_tag[5];
5900 	tag[7] = original_tag[4];
5901 }
5902 
5903 static void hpsa_get_tag(struct ctlr_info *h,
5904 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5905 {
5906 	u64 tag;
5907 	if (c->cmd_type == CMD_IOACCEL1) {
5908 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5909 			&h->ioaccel_cmd_pool[c->cmdindex];
5910 		tag = le64_to_cpu(cm1->tag);
5911 		*tagupper = cpu_to_le32(tag >> 32);
5912 		*taglower = cpu_to_le32(tag);
5913 		return;
5914 	}
5915 	if (c->cmd_type == CMD_IOACCEL2) {
5916 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5917 			&h->ioaccel2_cmd_pool[c->cmdindex];
5918 		/* upper tag not used in ioaccel2 mode */
5919 		memset(tagupper, 0, sizeof(*tagupper));
5920 		*taglower = cm2->Tag;
5921 		return;
5922 	}
5923 	tag = le64_to_cpu(c->Header.tag);
5924 	*tagupper = cpu_to_le32(tag >> 32);
5925 	*taglower = cpu_to_le32(tag);
5926 }
5927 
5928 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5929 	struct CommandList *abort, int reply_queue)
5930 {
5931 	int rc = IO_OK;
5932 	struct CommandList *c;
5933 	struct ErrorInfo *ei;
5934 	__le32 tagupper, taglower;
5935 
5936 	c = cmd_alloc(h);
5937 
5938 	/* fill_cmd can't fail here, no buffer to map */
5939 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5940 		0, 0, scsi3addr, TYPE_MSG);
5941 	if (h->needs_abort_tags_swizzled)
5942 		swizzle_abort_tag(&c->Request.CDB[4]);
5943 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5944 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5945 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5946 		__func__, tagupper, taglower);
5947 	/* no unmap needed here because no data xfer. */
5948 
5949 	ei = c->err_info;
5950 	switch (ei->CommandStatus) {
5951 	case CMD_SUCCESS:
5952 		break;
5953 	case CMD_TMF_STATUS:
5954 		rc = hpsa_evaluate_tmf_status(h, c);
5955 		break;
5956 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5957 		rc = -1;
5958 		break;
5959 	default:
5960 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5961 			__func__, tagupper, taglower);
5962 		hpsa_scsi_interpret_error(h, c);
5963 		rc = -1;
5964 		break;
5965 	}
5966 	cmd_free(h, c);
5967 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5968 		__func__, tagupper, taglower);
5969 	return rc;
5970 }
5971 
5972 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5973 	struct CommandList *command_to_abort, int reply_queue)
5974 {
5975 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5976 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5977 	struct io_accel2_cmd *c2a =
5978 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5979 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5980 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5981 
5982 	if (!dev)
5983 		return;
5984 
5985 	/*
5986 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5987 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5988 	 * actually fits, and doesn't overrun the error info space.
5989 	 */
5990 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5991 			sizeof(struct io_accel2_cmd));
5992 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5993 			offsetof(struct hpsa_tmf_struct, error_len) +
5994 				sizeof(ac->error_len));
5995 
5996 	c->cmd_type = IOACCEL2_TMF;
5997 	c->scsi_cmd = SCSI_CMD_BUSY;
5998 
5999 	/* Adjust the DMA address to point to the accelerated command buffer */
6000 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6001 				(c->cmdindex * sizeof(struct io_accel2_cmd));
6002 	BUG_ON(c->busaddr & 0x0000007F);
6003 
6004 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6005 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6006 	ac->reply_queue = reply_queue;
6007 	ac->tmf = IOACCEL2_TMF_ABORT;
6008 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6009 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
6010 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6011 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6012 	ac->error_ptr = cpu_to_le64(c->busaddr +
6013 			offsetof(struct io_accel2_cmd, error_data));
6014 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6015 }
6016 
6017 /* ioaccel2 path firmware cannot handle abort task requests.
6018  * Change abort requests to physical target reset, and send to the
6019  * address of the physical disk used for the ioaccel 2 command.
6020  * Return 0 on success (IO_OK)
6021  *	 -1 on failure
6022  */
6023 
6024 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6025 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6026 {
6027 	int rc = IO_OK;
6028 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6029 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6030 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6031 	unsigned char *psa = &phys_scsi3addr[0];
6032 
6033 	/* Get a pointer to the hpsa logical device. */
6034 	scmd = abort->scsi_cmd;
6035 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6036 	if (dev == NULL) {
6037 		dev_warn(&h->pdev->dev,
6038 			"Cannot abort: no device pointer for command.\n");
6039 			return -1; /* not abortable */
6040 	}
6041 
6042 	if (h->raid_offload_debug > 0)
6043 		dev_info(&h->pdev->dev,
6044 			"scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6045 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6046 			"Reset as abort", scsi3addr);
6047 
6048 	if (!dev->offload_enabled) {
6049 		dev_warn(&h->pdev->dev,
6050 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6051 		return -1; /* not abortable */
6052 	}
6053 
6054 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
6055 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6056 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6057 		return -1; /* not abortable */
6058 	}
6059 
6060 	/* send the reset */
6061 	if (h->raid_offload_debug > 0)
6062 		dev_info(&h->pdev->dev,
6063 			"Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6064 			psa);
6065 	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6066 	if (rc != 0) {
6067 		dev_warn(&h->pdev->dev,
6068 			"Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6069 			psa);
6070 		return rc; /* failed to reset */
6071 	}
6072 
6073 	/* wait for device to recover */
6074 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6075 		dev_warn(&h->pdev->dev,
6076 			"Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6077 			psa);
6078 		return -1;  /* failed to recover */
6079 	}
6080 
6081 	/* device recovered */
6082 	dev_info(&h->pdev->dev,
6083 		"Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6084 		psa);
6085 
6086 	return rc; /* success */
6087 }
6088 
6089 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6090 	struct CommandList *abort, int reply_queue)
6091 {
6092 	int rc = IO_OK;
6093 	struct CommandList *c;
6094 	__le32 taglower, tagupper;
6095 	struct hpsa_scsi_dev_t *dev;
6096 	struct io_accel2_cmd *c2;
6097 
6098 	dev = abort->scsi_cmd->device->hostdata;
6099 	if (!dev)
6100 		return -1;
6101 
6102 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6103 		return -1;
6104 
6105 	c = cmd_alloc(h);
6106 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6107 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6108 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6109 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6110 	dev_dbg(&h->pdev->dev,
6111 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6112 		__func__, tagupper, taglower);
6113 	/* no unmap needed here because no data xfer. */
6114 
6115 	dev_dbg(&h->pdev->dev,
6116 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6117 		__func__, tagupper, taglower, c2->error_data.serv_response);
6118 	switch (c2->error_data.serv_response) {
6119 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6120 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6121 		rc = 0;
6122 		break;
6123 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6124 	case IOACCEL2_SERV_RESPONSE_FAILURE:
6125 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6126 		rc = -1;
6127 		break;
6128 	default:
6129 		dev_warn(&h->pdev->dev,
6130 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6131 			__func__, tagupper, taglower,
6132 			c2->error_data.serv_response);
6133 		rc = -1;
6134 	}
6135 	cmd_free(h, c);
6136 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6137 		tagupper, taglower);
6138 	return rc;
6139 }
6140 
6141 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6142 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6143 {
6144 	/*
6145 	 * ioccelerator mode 2 commands should be aborted via the
6146 	 * accelerated path, since RAID path is unaware of these commands,
6147 	 * but not all underlying firmware can handle abort TMF.
6148 	 * Change abort to physical device reset when abort TMF is unsupported.
6149 	 */
6150 	if (abort->cmd_type == CMD_IOACCEL2) {
6151 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6152 			dev->physical_device)
6153 			return hpsa_send_abort_ioaccel2(h, abort,
6154 						reply_queue);
6155 		else
6156 			return hpsa_send_reset_as_abort_ioaccel2(h,
6157 							dev->scsi3addr,
6158 							abort, reply_queue);
6159 	}
6160 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6161 }
6162 
6163 /* Find out which reply queue a command was meant to return on */
6164 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6165 					struct CommandList *c)
6166 {
6167 	if (c->cmd_type == CMD_IOACCEL2)
6168 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6169 	return c->Header.ReplyQueue;
6170 }
6171 
6172 /*
6173  * Limit concurrency of abort commands to prevent
6174  * over-subscription of commands
6175  */
6176 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6177 {
6178 #define ABORT_CMD_WAIT_MSECS 5000
6179 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6180 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6181 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6182 }
6183 
6184 /* Send an abort for the specified command.
6185  *	If the device and controller support it,
6186  *		send a task abort request.
6187  */
6188 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6189 {
6190 
6191 	int rc;
6192 	struct ctlr_info *h;
6193 	struct hpsa_scsi_dev_t *dev;
6194 	struct CommandList *abort; /* pointer to command to be aborted */
6195 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6196 	char msg[256];		/* For debug messaging. */
6197 	int ml = 0;
6198 	__le32 tagupper, taglower;
6199 	int refcount, reply_queue;
6200 
6201 	if (sc == NULL)
6202 		return FAILED;
6203 
6204 	if (sc->device == NULL)
6205 		return FAILED;
6206 
6207 	/* Find the controller of the command to be aborted */
6208 	h = sdev_to_hba(sc->device);
6209 	if (h == NULL)
6210 		return FAILED;
6211 
6212 	/* Find the device of the command to be aborted */
6213 	dev = sc->device->hostdata;
6214 	if (!dev) {
6215 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6216 				msg);
6217 		return FAILED;
6218 	}
6219 
6220 	/* If controller locked up, we can guarantee command won't complete */
6221 	if (lockup_detected(h)) {
6222 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6223 					"ABORT FAILED, lockup detected");
6224 		return FAILED;
6225 	}
6226 
6227 	/* This is a good time to check if controller lockup has occurred */
6228 	if (detect_controller_lockup(h)) {
6229 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6230 					"ABORT FAILED, new lockup detected");
6231 		return FAILED;
6232 	}
6233 
6234 	/* Check that controller supports some kind of task abort */
6235 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6236 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6237 		return FAILED;
6238 
6239 	memset(msg, 0, sizeof(msg));
6240 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6241 		h->scsi_host->host_no, sc->device->channel,
6242 		sc->device->id, sc->device->lun,
6243 		"Aborting command", sc);
6244 
6245 	/* Get SCSI command to be aborted */
6246 	abort = (struct CommandList *) sc->host_scribble;
6247 	if (abort == NULL) {
6248 		/* This can happen if the command already completed. */
6249 		return SUCCESS;
6250 	}
6251 	refcount = atomic_inc_return(&abort->refcount);
6252 	if (refcount == 1) { /* Command is done already. */
6253 		cmd_free(h, abort);
6254 		return SUCCESS;
6255 	}
6256 
6257 	/* Don't bother trying the abort if we know it won't work. */
6258 	if (abort->cmd_type != CMD_IOACCEL2 &&
6259 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6260 		cmd_free(h, abort);
6261 		return FAILED;
6262 	}
6263 
6264 	/*
6265 	 * Check that we're aborting the right command.
6266 	 * It's possible the CommandList already completed and got re-used.
6267 	 */
6268 	if (abort->scsi_cmd != sc) {
6269 		cmd_free(h, abort);
6270 		return SUCCESS;
6271 	}
6272 
6273 	abort->abort_pending = true;
6274 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6275 	reply_queue = hpsa_extract_reply_queue(h, abort);
6276 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6277 	as  = abort->scsi_cmd;
6278 	if (as != NULL)
6279 		ml += sprintf(msg+ml,
6280 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6281 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6282 			as->serial_number);
6283 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6284 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6285 
6286 	/*
6287 	 * Command is in flight, or possibly already completed
6288 	 * by the firmware (but not to the scsi mid layer) but we can't
6289 	 * distinguish which.  Send the abort down.
6290 	 */
6291 	if (wait_for_available_abort_cmd(h)) {
6292 		dev_warn(&h->pdev->dev,
6293 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6294 			msg);
6295 		cmd_free(h, abort);
6296 		return FAILED;
6297 	}
6298 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6299 	atomic_inc(&h->abort_cmds_available);
6300 	wake_up_all(&h->abort_cmd_wait_queue);
6301 	if (rc != 0) {
6302 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6303 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6304 				"FAILED to abort command");
6305 		cmd_free(h, abort);
6306 		return FAILED;
6307 	}
6308 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6309 	wait_event(h->event_sync_wait_queue,
6310 		   abort->scsi_cmd != sc || lockup_detected(h));
6311 	cmd_free(h, abort);
6312 	return !lockup_detected(h) ? SUCCESS : FAILED;
6313 }
6314 
6315 /*
6316  * For operations with an associated SCSI command, a command block is allocated
6317  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6318  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6319  * the complement, although cmd_free() may be called instead.
6320  */
6321 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6322 					    struct scsi_cmnd *scmd)
6323 {
6324 	int idx = hpsa_get_cmd_index(scmd);
6325 	struct CommandList *c = h->cmd_pool + idx;
6326 
6327 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6328 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6329 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6330 		/* The index value comes from the block layer, so if it's out of
6331 		 * bounds, it's probably not our bug.
6332 		 */
6333 		BUG();
6334 	}
6335 
6336 	atomic_inc(&c->refcount);
6337 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6338 		/*
6339 		 * We expect that the SCSI layer will hand us a unique tag
6340 		 * value.  Thus, there should never be a collision here between
6341 		 * two requests...because if the selected command isn't idle
6342 		 * then someone is going to be very disappointed.
6343 		 */
6344 		dev_err(&h->pdev->dev,
6345 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6346 			idx);
6347 		if (c->scsi_cmd != NULL)
6348 			scsi_print_command(c->scsi_cmd);
6349 		scsi_print_command(scmd);
6350 	}
6351 
6352 	hpsa_cmd_partial_init(h, idx, c);
6353 	return c;
6354 }
6355 
6356 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6357 {
6358 	/*
6359 	 * Release our reference to the block.  We don't need to do anything
6360 	 * else to free it, because it is accessed by index.  (There's no point
6361 	 * in checking the result of the decrement, since we cannot guarantee
6362 	 * that there isn't a concurrent abort which is also accessing it.)
6363 	 */
6364 	(void)atomic_dec(&c->refcount);
6365 }
6366 
6367 /*
6368  * For operations that cannot sleep, a command block is allocated at init,
6369  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6370  * which ones are free or in use.  Lock must be held when calling this.
6371  * cmd_free() is the complement.
6372  * This function never gives up and returns NULL.  If it hangs,
6373  * another thread must call cmd_free() to free some tags.
6374  */
6375 
6376 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6377 {
6378 	struct CommandList *c;
6379 	int refcount, i;
6380 	int offset = 0;
6381 
6382 	/*
6383 	 * There is some *extremely* small but non-zero chance that that
6384 	 * multiple threads could get in here, and one thread could
6385 	 * be scanning through the list of bits looking for a free
6386 	 * one, but the free ones are always behind him, and other
6387 	 * threads sneak in behind him and eat them before he can
6388 	 * get to them, so that while there is always a free one, a
6389 	 * very unlucky thread might be starved anyway, never able to
6390 	 * beat the other threads.  In reality, this happens so
6391 	 * infrequently as to be indistinguishable from never.
6392 	 *
6393 	 * Note that we start allocating commands before the SCSI host structure
6394 	 * is initialized.  Since the search starts at bit zero, this
6395 	 * all works, since we have at least one command structure available;
6396 	 * however, it means that the structures with the low indexes have to be
6397 	 * reserved for driver-initiated requests, while requests from the block
6398 	 * layer will use the higher indexes.
6399 	 */
6400 
6401 	for (;;) {
6402 		i = find_next_zero_bit(h->cmd_pool_bits,
6403 					HPSA_NRESERVED_CMDS,
6404 					offset);
6405 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6406 			offset = 0;
6407 			continue;
6408 		}
6409 		c = h->cmd_pool + i;
6410 		refcount = atomic_inc_return(&c->refcount);
6411 		if (unlikely(refcount > 1)) {
6412 			cmd_free(h, c); /* already in use */
6413 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6414 			continue;
6415 		}
6416 		set_bit(i & (BITS_PER_LONG - 1),
6417 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6418 		break; /* it's ours now. */
6419 	}
6420 	hpsa_cmd_partial_init(h, i, c);
6421 	return c;
6422 }
6423 
6424 /*
6425  * This is the complementary operation to cmd_alloc().  Note, however, in some
6426  * corner cases it may also be used to free blocks allocated by
6427  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6428  * the clear-bit is harmless.
6429  */
6430 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6431 {
6432 	if (atomic_dec_and_test(&c->refcount)) {
6433 		int i;
6434 
6435 		i = c - h->cmd_pool;
6436 		clear_bit(i & (BITS_PER_LONG - 1),
6437 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6438 	}
6439 }
6440 
6441 #ifdef CONFIG_COMPAT
6442 
6443 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6444 	void __user *arg)
6445 {
6446 	IOCTL32_Command_struct __user *arg32 =
6447 	    (IOCTL32_Command_struct __user *) arg;
6448 	IOCTL_Command_struct arg64;
6449 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6450 	int err;
6451 	u32 cp;
6452 
6453 	memset(&arg64, 0, sizeof(arg64));
6454 	err = 0;
6455 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6456 			   sizeof(arg64.LUN_info));
6457 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6458 			   sizeof(arg64.Request));
6459 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6460 			   sizeof(arg64.error_info));
6461 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6462 	err |= get_user(cp, &arg32->buf);
6463 	arg64.buf = compat_ptr(cp);
6464 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6465 
6466 	if (err)
6467 		return -EFAULT;
6468 
6469 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6470 	if (err)
6471 		return err;
6472 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6473 			 sizeof(arg32->error_info));
6474 	if (err)
6475 		return -EFAULT;
6476 	return err;
6477 }
6478 
6479 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6480 	int cmd, void __user *arg)
6481 {
6482 	BIG_IOCTL32_Command_struct __user *arg32 =
6483 	    (BIG_IOCTL32_Command_struct __user *) arg;
6484 	BIG_IOCTL_Command_struct arg64;
6485 	BIG_IOCTL_Command_struct __user *p =
6486 	    compat_alloc_user_space(sizeof(arg64));
6487 	int err;
6488 	u32 cp;
6489 
6490 	memset(&arg64, 0, sizeof(arg64));
6491 	err = 0;
6492 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6493 			   sizeof(arg64.LUN_info));
6494 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6495 			   sizeof(arg64.Request));
6496 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6497 			   sizeof(arg64.error_info));
6498 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6499 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6500 	err |= get_user(cp, &arg32->buf);
6501 	arg64.buf = compat_ptr(cp);
6502 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6503 
6504 	if (err)
6505 		return -EFAULT;
6506 
6507 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6508 	if (err)
6509 		return err;
6510 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6511 			 sizeof(arg32->error_info));
6512 	if (err)
6513 		return -EFAULT;
6514 	return err;
6515 }
6516 
6517 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6518 {
6519 	switch (cmd) {
6520 	case CCISS_GETPCIINFO:
6521 	case CCISS_GETINTINFO:
6522 	case CCISS_SETINTINFO:
6523 	case CCISS_GETNODENAME:
6524 	case CCISS_SETNODENAME:
6525 	case CCISS_GETHEARTBEAT:
6526 	case CCISS_GETBUSTYPES:
6527 	case CCISS_GETFIRMVER:
6528 	case CCISS_GETDRIVVER:
6529 	case CCISS_REVALIDVOLS:
6530 	case CCISS_DEREGDISK:
6531 	case CCISS_REGNEWDISK:
6532 	case CCISS_REGNEWD:
6533 	case CCISS_RESCANDISK:
6534 	case CCISS_GETLUNINFO:
6535 		return hpsa_ioctl(dev, cmd, arg);
6536 
6537 	case CCISS_PASSTHRU32:
6538 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6539 	case CCISS_BIG_PASSTHRU32:
6540 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6541 
6542 	default:
6543 		return -ENOIOCTLCMD;
6544 	}
6545 }
6546 #endif
6547 
6548 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6549 {
6550 	struct hpsa_pci_info pciinfo;
6551 
6552 	if (!argp)
6553 		return -EINVAL;
6554 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6555 	pciinfo.bus = h->pdev->bus->number;
6556 	pciinfo.dev_fn = h->pdev->devfn;
6557 	pciinfo.board_id = h->board_id;
6558 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6559 		return -EFAULT;
6560 	return 0;
6561 }
6562 
6563 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6564 {
6565 	DriverVer_type DriverVer;
6566 	unsigned char vmaj, vmin, vsubmin;
6567 	int rc;
6568 
6569 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6570 		&vmaj, &vmin, &vsubmin);
6571 	if (rc != 3) {
6572 		dev_info(&h->pdev->dev, "driver version string '%s' "
6573 			"unrecognized.", HPSA_DRIVER_VERSION);
6574 		vmaj = 0;
6575 		vmin = 0;
6576 		vsubmin = 0;
6577 	}
6578 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6579 	if (!argp)
6580 		return -EINVAL;
6581 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6582 		return -EFAULT;
6583 	return 0;
6584 }
6585 
6586 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6587 {
6588 	IOCTL_Command_struct iocommand;
6589 	struct CommandList *c;
6590 	char *buff = NULL;
6591 	u64 temp64;
6592 	int rc = 0;
6593 
6594 	if (!argp)
6595 		return -EINVAL;
6596 	if (!capable(CAP_SYS_RAWIO))
6597 		return -EPERM;
6598 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6599 		return -EFAULT;
6600 	if ((iocommand.buf_size < 1) &&
6601 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6602 		return -EINVAL;
6603 	}
6604 	if (iocommand.buf_size > 0) {
6605 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6606 		if (buff == NULL)
6607 			return -ENOMEM;
6608 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6609 			/* Copy the data into the buffer we created */
6610 			if (copy_from_user(buff, iocommand.buf,
6611 				iocommand.buf_size)) {
6612 				rc = -EFAULT;
6613 				goto out_kfree;
6614 			}
6615 		} else {
6616 			memset(buff, 0, iocommand.buf_size);
6617 		}
6618 	}
6619 	c = cmd_alloc(h);
6620 
6621 	/* Fill in the command type */
6622 	c->cmd_type = CMD_IOCTL_PEND;
6623 	c->scsi_cmd = SCSI_CMD_BUSY;
6624 	/* Fill in Command Header */
6625 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6626 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6627 		c->Header.SGList = 1;
6628 		c->Header.SGTotal = cpu_to_le16(1);
6629 	} else	{ /* no buffers to fill */
6630 		c->Header.SGList = 0;
6631 		c->Header.SGTotal = cpu_to_le16(0);
6632 	}
6633 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6634 
6635 	/* Fill in Request block */
6636 	memcpy(&c->Request, &iocommand.Request,
6637 		sizeof(c->Request));
6638 
6639 	/* Fill in the scatter gather information */
6640 	if (iocommand.buf_size > 0) {
6641 		temp64 = pci_map_single(h->pdev, buff,
6642 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6643 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6644 			c->SG[0].Addr = cpu_to_le64(0);
6645 			c->SG[0].Len = cpu_to_le32(0);
6646 			rc = -ENOMEM;
6647 			goto out;
6648 		}
6649 		c->SG[0].Addr = cpu_to_le64(temp64);
6650 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6651 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6652 	}
6653 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6654 					NO_TIMEOUT);
6655 	if (iocommand.buf_size > 0)
6656 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6657 	check_ioctl_unit_attention(h, c);
6658 	if (rc) {
6659 		rc = -EIO;
6660 		goto out;
6661 	}
6662 
6663 	/* Copy the error information out */
6664 	memcpy(&iocommand.error_info, c->err_info,
6665 		sizeof(iocommand.error_info));
6666 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6667 		rc = -EFAULT;
6668 		goto out;
6669 	}
6670 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6671 		iocommand.buf_size > 0) {
6672 		/* Copy the data out of the buffer we created */
6673 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6674 			rc = -EFAULT;
6675 			goto out;
6676 		}
6677 	}
6678 out:
6679 	cmd_free(h, c);
6680 out_kfree:
6681 	kfree(buff);
6682 	return rc;
6683 }
6684 
6685 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6686 {
6687 	BIG_IOCTL_Command_struct *ioc;
6688 	struct CommandList *c;
6689 	unsigned char **buff = NULL;
6690 	int *buff_size = NULL;
6691 	u64 temp64;
6692 	BYTE sg_used = 0;
6693 	int status = 0;
6694 	u32 left;
6695 	u32 sz;
6696 	BYTE __user *data_ptr;
6697 
6698 	if (!argp)
6699 		return -EINVAL;
6700 	if (!capable(CAP_SYS_RAWIO))
6701 		return -EPERM;
6702 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6703 	if (!ioc) {
6704 		status = -ENOMEM;
6705 		goto cleanup1;
6706 	}
6707 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6708 		status = -EFAULT;
6709 		goto cleanup1;
6710 	}
6711 	if ((ioc->buf_size < 1) &&
6712 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6713 		status = -EINVAL;
6714 		goto cleanup1;
6715 	}
6716 	/* Check kmalloc limits  using all SGs */
6717 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6718 		status = -EINVAL;
6719 		goto cleanup1;
6720 	}
6721 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6722 		status = -EINVAL;
6723 		goto cleanup1;
6724 	}
6725 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6726 	if (!buff) {
6727 		status = -ENOMEM;
6728 		goto cleanup1;
6729 	}
6730 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6731 	if (!buff_size) {
6732 		status = -ENOMEM;
6733 		goto cleanup1;
6734 	}
6735 	left = ioc->buf_size;
6736 	data_ptr = ioc->buf;
6737 	while (left) {
6738 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6739 		buff_size[sg_used] = sz;
6740 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6741 		if (buff[sg_used] == NULL) {
6742 			status = -ENOMEM;
6743 			goto cleanup1;
6744 		}
6745 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6746 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6747 				status = -EFAULT;
6748 				goto cleanup1;
6749 			}
6750 		} else
6751 			memset(buff[sg_used], 0, sz);
6752 		left -= sz;
6753 		data_ptr += sz;
6754 		sg_used++;
6755 	}
6756 	c = cmd_alloc(h);
6757 
6758 	c->cmd_type = CMD_IOCTL_PEND;
6759 	c->scsi_cmd = SCSI_CMD_BUSY;
6760 	c->Header.ReplyQueue = 0;
6761 	c->Header.SGList = (u8) sg_used;
6762 	c->Header.SGTotal = cpu_to_le16(sg_used);
6763 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6764 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6765 	if (ioc->buf_size > 0) {
6766 		int i;
6767 		for (i = 0; i < sg_used; i++) {
6768 			temp64 = pci_map_single(h->pdev, buff[i],
6769 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6770 			if (dma_mapping_error(&h->pdev->dev,
6771 							(dma_addr_t) temp64)) {
6772 				c->SG[i].Addr = cpu_to_le64(0);
6773 				c->SG[i].Len = cpu_to_le32(0);
6774 				hpsa_pci_unmap(h->pdev, c, i,
6775 					PCI_DMA_BIDIRECTIONAL);
6776 				status = -ENOMEM;
6777 				goto cleanup0;
6778 			}
6779 			c->SG[i].Addr = cpu_to_le64(temp64);
6780 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6781 			c->SG[i].Ext = cpu_to_le32(0);
6782 		}
6783 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6784 	}
6785 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6786 						NO_TIMEOUT);
6787 	if (sg_used)
6788 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6789 	check_ioctl_unit_attention(h, c);
6790 	if (status) {
6791 		status = -EIO;
6792 		goto cleanup0;
6793 	}
6794 
6795 	/* Copy the error information out */
6796 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6797 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6798 		status = -EFAULT;
6799 		goto cleanup0;
6800 	}
6801 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6802 		int i;
6803 
6804 		/* Copy the data out of the buffer we created */
6805 		BYTE __user *ptr = ioc->buf;
6806 		for (i = 0; i < sg_used; i++) {
6807 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6808 				status = -EFAULT;
6809 				goto cleanup0;
6810 			}
6811 			ptr += buff_size[i];
6812 		}
6813 	}
6814 	status = 0;
6815 cleanup0:
6816 	cmd_free(h, c);
6817 cleanup1:
6818 	if (buff) {
6819 		int i;
6820 
6821 		for (i = 0; i < sg_used; i++)
6822 			kfree(buff[i]);
6823 		kfree(buff);
6824 	}
6825 	kfree(buff_size);
6826 	kfree(ioc);
6827 	return status;
6828 }
6829 
6830 static void check_ioctl_unit_attention(struct ctlr_info *h,
6831 	struct CommandList *c)
6832 {
6833 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6834 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6835 		(void) check_for_unit_attention(h, c);
6836 }
6837 
6838 /*
6839  * ioctl
6840  */
6841 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6842 {
6843 	struct ctlr_info *h;
6844 	void __user *argp = (void __user *)arg;
6845 	int rc;
6846 
6847 	h = sdev_to_hba(dev);
6848 
6849 	switch (cmd) {
6850 	case CCISS_DEREGDISK:
6851 	case CCISS_REGNEWDISK:
6852 	case CCISS_REGNEWD:
6853 		hpsa_scan_start(h->scsi_host);
6854 		return 0;
6855 	case CCISS_GETPCIINFO:
6856 		return hpsa_getpciinfo_ioctl(h, argp);
6857 	case CCISS_GETDRIVVER:
6858 		return hpsa_getdrivver_ioctl(h, argp);
6859 	case CCISS_PASSTHRU:
6860 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6861 			return -EAGAIN;
6862 		rc = hpsa_passthru_ioctl(h, argp);
6863 		atomic_inc(&h->passthru_cmds_avail);
6864 		return rc;
6865 	case CCISS_BIG_PASSTHRU:
6866 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6867 			return -EAGAIN;
6868 		rc = hpsa_big_passthru_ioctl(h, argp);
6869 		atomic_inc(&h->passthru_cmds_avail);
6870 		return rc;
6871 	default:
6872 		return -ENOTTY;
6873 	}
6874 }
6875 
6876 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6877 				u8 reset_type)
6878 {
6879 	struct CommandList *c;
6880 
6881 	c = cmd_alloc(h);
6882 
6883 	/* fill_cmd can't fail here, no data buffer to map */
6884 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6885 		RAID_CTLR_LUNID, TYPE_MSG);
6886 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6887 	c->waiting = NULL;
6888 	enqueue_cmd_and_start_io(h, c);
6889 	/* Don't wait for completion, the reset won't complete.  Don't free
6890 	 * the command either.  This is the last command we will send before
6891 	 * re-initializing everything, so it doesn't matter and won't leak.
6892 	 */
6893 	return;
6894 }
6895 
6896 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6897 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6898 	int cmd_type)
6899 {
6900 	int pci_dir = XFER_NONE;
6901 	u64 tag; /* for commands to be aborted */
6902 
6903 	c->cmd_type = CMD_IOCTL_PEND;
6904 	c->scsi_cmd = SCSI_CMD_BUSY;
6905 	c->Header.ReplyQueue = 0;
6906 	if (buff != NULL && size > 0) {
6907 		c->Header.SGList = 1;
6908 		c->Header.SGTotal = cpu_to_le16(1);
6909 	} else {
6910 		c->Header.SGList = 0;
6911 		c->Header.SGTotal = cpu_to_le16(0);
6912 	}
6913 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6914 
6915 	if (cmd_type == TYPE_CMD) {
6916 		switch (cmd) {
6917 		case HPSA_INQUIRY:
6918 			/* are we trying to read a vital product page */
6919 			if (page_code & VPD_PAGE) {
6920 				c->Request.CDB[1] = 0x01;
6921 				c->Request.CDB[2] = (page_code & 0xff);
6922 			}
6923 			c->Request.CDBLen = 6;
6924 			c->Request.type_attr_dir =
6925 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6926 			c->Request.Timeout = 0;
6927 			c->Request.CDB[0] = HPSA_INQUIRY;
6928 			c->Request.CDB[4] = size & 0xFF;
6929 			break;
6930 		case HPSA_REPORT_LOG:
6931 		case HPSA_REPORT_PHYS:
6932 			/* Talking to controller so It's a physical command
6933 			   mode = 00 target = 0.  Nothing to write.
6934 			 */
6935 			c->Request.CDBLen = 12;
6936 			c->Request.type_attr_dir =
6937 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6938 			c->Request.Timeout = 0;
6939 			c->Request.CDB[0] = cmd;
6940 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6941 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6942 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6943 			c->Request.CDB[9] = size & 0xFF;
6944 			break;
6945 		case BMIC_SENSE_DIAG_OPTIONS:
6946 			c->Request.CDBLen = 16;
6947 			c->Request.type_attr_dir =
6948 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6949 			c->Request.Timeout = 0;
6950 			/* Spec says this should be BMIC_WRITE */
6951 			c->Request.CDB[0] = BMIC_READ;
6952 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6953 			break;
6954 		case BMIC_SET_DIAG_OPTIONS:
6955 			c->Request.CDBLen = 16;
6956 			c->Request.type_attr_dir =
6957 					TYPE_ATTR_DIR(cmd_type,
6958 						ATTR_SIMPLE, XFER_WRITE);
6959 			c->Request.Timeout = 0;
6960 			c->Request.CDB[0] = BMIC_WRITE;
6961 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6962 			break;
6963 		case HPSA_CACHE_FLUSH:
6964 			c->Request.CDBLen = 12;
6965 			c->Request.type_attr_dir =
6966 					TYPE_ATTR_DIR(cmd_type,
6967 						ATTR_SIMPLE, XFER_WRITE);
6968 			c->Request.Timeout = 0;
6969 			c->Request.CDB[0] = BMIC_WRITE;
6970 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6971 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6972 			c->Request.CDB[8] = size & 0xFF;
6973 			break;
6974 		case TEST_UNIT_READY:
6975 			c->Request.CDBLen = 6;
6976 			c->Request.type_attr_dir =
6977 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6978 			c->Request.Timeout = 0;
6979 			break;
6980 		case HPSA_GET_RAID_MAP:
6981 			c->Request.CDBLen = 12;
6982 			c->Request.type_attr_dir =
6983 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6984 			c->Request.Timeout = 0;
6985 			c->Request.CDB[0] = HPSA_CISS_READ;
6986 			c->Request.CDB[1] = cmd;
6987 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6988 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6989 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6990 			c->Request.CDB[9] = size & 0xFF;
6991 			break;
6992 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6993 			c->Request.CDBLen = 10;
6994 			c->Request.type_attr_dir =
6995 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6996 			c->Request.Timeout = 0;
6997 			c->Request.CDB[0] = BMIC_READ;
6998 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6999 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7000 			c->Request.CDB[8] = (size >> 8) & 0xFF;
7001 			break;
7002 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7003 			c->Request.CDBLen = 10;
7004 			c->Request.type_attr_dir =
7005 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7006 			c->Request.Timeout = 0;
7007 			c->Request.CDB[0] = BMIC_READ;
7008 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7009 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7010 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7011 			break;
7012 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7013 			c->Request.CDBLen = 10;
7014 			c->Request.type_attr_dir =
7015 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7016 			c->Request.Timeout = 0;
7017 			c->Request.CDB[0] = BMIC_READ;
7018 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7019 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7020 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7021 			break;
7022 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
7023 			c->Request.CDBLen = 10;
7024 			c->Request.type_attr_dir =
7025 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7026 			c->Request.Timeout = 0;
7027 			c->Request.CDB[0] = BMIC_READ;
7028 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7029 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7030 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7031 			break;
7032 		case BMIC_IDENTIFY_CONTROLLER:
7033 			c->Request.CDBLen = 10;
7034 			c->Request.type_attr_dir =
7035 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7036 			c->Request.Timeout = 0;
7037 			c->Request.CDB[0] = BMIC_READ;
7038 			c->Request.CDB[1] = 0;
7039 			c->Request.CDB[2] = 0;
7040 			c->Request.CDB[3] = 0;
7041 			c->Request.CDB[4] = 0;
7042 			c->Request.CDB[5] = 0;
7043 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7044 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7045 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7046 			c->Request.CDB[9] = 0;
7047 			break;
7048 		default:
7049 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7050 			BUG();
7051 			return -1;
7052 		}
7053 	} else if (cmd_type == TYPE_MSG) {
7054 		switch (cmd) {
7055 
7056 		case  HPSA_PHYS_TARGET_RESET:
7057 			c->Request.CDBLen = 16;
7058 			c->Request.type_attr_dir =
7059 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7060 			c->Request.Timeout = 0; /* Don't time out */
7061 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7062 			c->Request.CDB[0] = HPSA_RESET;
7063 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7064 			/* Physical target reset needs no control bytes 4-7*/
7065 			c->Request.CDB[4] = 0x00;
7066 			c->Request.CDB[5] = 0x00;
7067 			c->Request.CDB[6] = 0x00;
7068 			c->Request.CDB[7] = 0x00;
7069 			break;
7070 		case  HPSA_DEVICE_RESET_MSG:
7071 			c->Request.CDBLen = 16;
7072 			c->Request.type_attr_dir =
7073 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7074 			c->Request.Timeout = 0; /* Don't time out */
7075 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7076 			c->Request.CDB[0] =  cmd;
7077 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7078 			/* If bytes 4-7 are zero, it means reset the */
7079 			/* LunID device */
7080 			c->Request.CDB[4] = 0x00;
7081 			c->Request.CDB[5] = 0x00;
7082 			c->Request.CDB[6] = 0x00;
7083 			c->Request.CDB[7] = 0x00;
7084 			break;
7085 		case  HPSA_ABORT_MSG:
7086 			memcpy(&tag, buff, sizeof(tag));
7087 			dev_dbg(&h->pdev->dev,
7088 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7089 				tag, c->Header.tag);
7090 			c->Request.CDBLen = 16;
7091 			c->Request.type_attr_dir =
7092 					TYPE_ATTR_DIR(cmd_type,
7093 						ATTR_SIMPLE, XFER_WRITE);
7094 			c->Request.Timeout = 0; /* Don't time out */
7095 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7096 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7097 			c->Request.CDB[2] = 0x00; /* reserved */
7098 			c->Request.CDB[3] = 0x00; /* reserved */
7099 			/* Tag to abort goes in CDB[4]-CDB[11] */
7100 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7101 			c->Request.CDB[12] = 0x00; /* reserved */
7102 			c->Request.CDB[13] = 0x00; /* reserved */
7103 			c->Request.CDB[14] = 0x00; /* reserved */
7104 			c->Request.CDB[15] = 0x00; /* reserved */
7105 		break;
7106 		default:
7107 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
7108 				cmd);
7109 			BUG();
7110 		}
7111 	} else {
7112 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7113 		BUG();
7114 	}
7115 
7116 	switch (GET_DIR(c->Request.type_attr_dir)) {
7117 	case XFER_READ:
7118 		pci_dir = PCI_DMA_FROMDEVICE;
7119 		break;
7120 	case XFER_WRITE:
7121 		pci_dir = PCI_DMA_TODEVICE;
7122 		break;
7123 	case XFER_NONE:
7124 		pci_dir = PCI_DMA_NONE;
7125 		break;
7126 	default:
7127 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7128 	}
7129 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7130 		return -1;
7131 	return 0;
7132 }
7133 
7134 /*
7135  * Map (physical) PCI mem into (virtual) kernel space
7136  */
7137 static void __iomem *remap_pci_mem(ulong base, ulong size)
7138 {
7139 	ulong page_base = ((ulong) base) & PAGE_MASK;
7140 	ulong page_offs = ((ulong) base) - page_base;
7141 	void __iomem *page_remapped = ioremap_nocache(page_base,
7142 		page_offs + size);
7143 
7144 	return page_remapped ? (page_remapped + page_offs) : NULL;
7145 }
7146 
7147 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7148 {
7149 	return h->access.command_completed(h, q);
7150 }
7151 
7152 static inline bool interrupt_pending(struct ctlr_info *h)
7153 {
7154 	return h->access.intr_pending(h);
7155 }
7156 
7157 static inline long interrupt_not_for_us(struct ctlr_info *h)
7158 {
7159 	return (h->access.intr_pending(h) == 0) ||
7160 		(h->interrupts_enabled == 0);
7161 }
7162 
7163 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7164 	u32 raw_tag)
7165 {
7166 	if (unlikely(tag_index >= h->nr_cmds)) {
7167 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7168 		return 1;
7169 	}
7170 	return 0;
7171 }
7172 
7173 static inline void finish_cmd(struct CommandList *c)
7174 {
7175 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7176 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7177 			|| c->cmd_type == CMD_IOACCEL2))
7178 		complete_scsi_command(c);
7179 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7180 		complete(c->waiting);
7181 }
7182 
7183 /* process completion of an indexed ("direct lookup") command */
7184 static inline void process_indexed_cmd(struct ctlr_info *h,
7185 	u32 raw_tag)
7186 {
7187 	u32 tag_index;
7188 	struct CommandList *c;
7189 
7190 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7191 	if (!bad_tag(h, tag_index, raw_tag)) {
7192 		c = h->cmd_pool + tag_index;
7193 		finish_cmd(c);
7194 	}
7195 }
7196 
7197 /* Some controllers, like p400, will give us one interrupt
7198  * after a soft reset, even if we turned interrupts off.
7199  * Only need to check for this in the hpsa_xxx_discard_completions
7200  * functions.
7201  */
7202 static int ignore_bogus_interrupt(struct ctlr_info *h)
7203 {
7204 	if (likely(!reset_devices))
7205 		return 0;
7206 
7207 	if (likely(h->interrupts_enabled))
7208 		return 0;
7209 
7210 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7211 		"(known firmware bug.)  Ignoring.\n");
7212 
7213 	return 1;
7214 }
7215 
7216 /*
7217  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7218  * Relies on (h-q[x] == x) being true for x such that
7219  * 0 <= x < MAX_REPLY_QUEUES.
7220  */
7221 static struct ctlr_info *queue_to_hba(u8 *queue)
7222 {
7223 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7224 }
7225 
7226 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7227 {
7228 	struct ctlr_info *h = queue_to_hba(queue);
7229 	u8 q = *(u8 *) queue;
7230 	u32 raw_tag;
7231 
7232 	if (ignore_bogus_interrupt(h))
7233 		return IRQ_NONE;
7234 
7235 	if (interrupt_not_for_us(h))
7236 		return IRQ_NONE;
7237 	h->last_intr_timestamp = get_jiffies_64();
7238 	while (interrupt_pending(h)) {
7239 		raw_tag = get_next_completion(h, q);
7240 		while (raw_tag != FIFO_EMPTY)
7241 			raw_tag = next_command(h, q);
7242 	}
7243 	return IRQ_HANDLED;
7244 }
7245 
7246 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7247 {
7248 	struct ctlr_info *h = queue_to_hba(queue);
7249 	u32 raw_tag;
7250 	u8 q = *(u8 *) queue;
7251 
7252 	if (ignore_bogus_interrupt(h))
7253 		return IRQ_NONE;
7254 
7255 	h->last_intr_timestamp = get_jiffies_64();
7256 	raw_tag = get_next_completion(h, q);
7257 	while (raw_tag != FIFO_EMPTY)
7258 		raw_tag = next_command(h, q);
7259 	return IRQ_HANDLED;
7260 }
7261 
7262 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7263 {
7264 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7265 	u32 raw_tag;
7266 	u8 q = *(u8 *) queue;
7267 
7268 	if (interrupt_not_for_us(h))
7269 		return IRQ_NONE;
7270 	h->last_intr_timestamp = get_jiffies_64();
7271 	while (interrupt_pending(h)) {
7272 		raw_tag = get_next_completion(h, q);
7273 		while (raw_tag != FIFO_EMPTY) {
7274 			process_indexed_cmd(h, raw_tag);
7275 			raw_tag = next_command(h, q);
7276 		}
7277 	}
7278 	return IRQ_HANDLED;
7279 }
7280 
7281 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7282 {
7283 	struct ctlr_info *h = queue_to_hba(queue);
7284 	u32 raw_tag;
7285 	u8 q = *(u8 *) queue;
7286 
7287 	h->last_intr_timestamp = get_jiffies_64();
7288 	raw_tag = get_next_completion(h, q);
7289 	while (raw_tag != FIFO_EMPTY) {
7290 		process_indexed_cmd(h, raw_tag);
7291 		raw_tag = next_command(h, q);
7292 	}
7293 	return IRQ_HANDLED;
7294 }
7295 
7296 /* Send a message CDB to the firmware. Careful, this only works
7297  * in simple mode, not performant mode due to the tag lookup.
7298  * We only ever use this immediately after a controller reset.
7299  */
7300 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7301 			unsigned char type)
7302 {
7303 	struct Command {
7304 		struct CommandListHeader CommandHeader;
7305 		struct RequestBlock Request;
7306 		struct ErrDescriptor ErrorDescriptor;
7307 	};
7308 	struct Command *cmd;
7309 	static const size_t cmd_sz = sizeof(*cmd) +
7310 					sizeof(cmd->ErrorDescriptor);
7311 	dma_addr_t paddr64;
7312 	__le32 paddr32;
7313 	u32 tag;
7314 	void __iomem *vaddr;
7315 	int i, err;
7316 
7317 	vaddr = pci_ioremap_bar(pdev, 0);
7318 	if (vaddr == NULL)
7319 		return -ENOMEM;
7320 
7321 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7322 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7323 	 * memory.
7324 	 */
7325 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7326 	if (err) {
7327 		iounmap(vaddr);
7328 		return err;
7329 	}
7330 
7331 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7332 	if (cmd == NULL) {
7333 		iounmap(vaddr);
7334 		return -ENOMEM;
7335 	}
7336 
7337 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7338 	 * although there's no guarantee, we assume that the address is at
7339 	 * least 4-byte aligned (most likely, it's page-aligned).
7340 	 */
7341 	paddr32 = cpu_to_le32(paddr64);
7342 
7343 	cmd->CommandHeader.ReplyQueue = 0;
7344 	cmd->CommandHeader.SGList = 0;
7345 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7346 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7347 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7348 
7349 	cmd->Request.CDBLen = 16;
7350 	cmd->Request.type_attr_dir =
7351 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7352 	cmd->Request.Timeout = 0; /* Don't time out */
7353 	cmd->Request.CDB[0] = opcode;
7354 	cmd->Request.CDB[1] = type;
7355 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7356 	cmd->ErrorDescriptor.Addr =
7357 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7358 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7359 
7360 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7361 
7362 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7363 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7364 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7365 			break;
7366 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7367 	}
7368 
7369 	iounmap(vaddr);
7370 
7371 	/* we leak the DMA buffer here ... no choice since the controller could
7372 	 *  still complete the command.
7373 	 */
7374 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7375 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7376 			opcode, type);
7377 		return -ETIMEDOUT;
7378 	}
7379 
7380 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7381 
7382 	if (tag & HPSA_ERROR_BIT) {
7383 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7384 			opcode, type);
7385 		return -EIO;
7386 	}
7387 
7388 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7389 		opcode, type);
7390 	return 0;
7391 }
7392 
7393 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7394 
7395 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7396 	void __iomem *vaddr, u32 use_doorbell)
7397 {
7398 
7399 	if (use_doorbell) {
7400 		/* For everything after the P600, the PCI power state method
7401 		 * of resetting the controller doesn't work, so we have this
7402 		 * other way using the doorbell register.
7403 		 */
7404 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7405 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7406 
7407 		/* PMC hardware guys tell us we need a 10 second delay after
7408 		 * doorbell reset and before any attempt to talk to the board
7409 		 * at all to ensure that this actually works and doesn't fall
7410 		 * over in some weird corner cases.
7411 		 */
7412 		msleep(10000);
7413 	} else { /* Try to do it the PCI power state way */
7414 
7415 		/* Quoting from the Open CISS Specification: "The Power
7416 		 * Management Control/Status Register (CSR) controls the power
7417 		 * state of the device.  The normal operating state is D0,
7418 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7419 		 * the controller, place the interface device in D3 then to D0,
7420 		 * this causes a secondary PCI reset which will reset the
7421 		 * controller." */
7422 
7423 		int rc = 0;
7424 
7425 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7426 
7427 		/* enter the D3hot power management state */
7428 		rc = pci_set_power_state(pdev, PCI_D3hot);
7429 		if (rc)
7430 			return rc;
7431 
7432 		msleep(500);
7433 
7434 		/* enter the D0 power management state */
7435 		rc = pci_set_power_state(pdev, PCI_D0);
7436 		if (rc)
7437 			return rc;
7438 
7439 		/*
7440 		 * The P600 requires a small delay when changing states.
7441 		 * Otherwise we may think the board did not reset and we bail.
7442 		 * This for kdump only and is particular to the P600.
7443 		 */
7444 		msleep(500);
7445 	}
7446 	return 0;
7447 }
7448 
7449 static void init_driver_version(char *driver_version, int len)
7450 {
7451 	memset(driver_version, 0, len);
7452 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7453 }
7454 
7455 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7456 {
7457 	char *driver_version;
7458 	int i, size = sizeof(cfgtable->driver_version);
7459 
7460 	driver_version = kmalloc(size, GFP_KERNEL);
7461 	if (!driver_version)
7462 		return -ENOMEM;
7463 
7464 	init_driver_version(driver_version, size);
7465 	for (i = 0; i < size; i++)
7466 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7467 	kfree(driver_version);
7468 	return 0;
7469 }
7470 
7471 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7472 					  unsigned char *driver_ver)
7473 {
7474 	int i;
7475 
7476 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7477 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7478 }
7479 
7480 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7481 {
7482 
7483 	char *driver_ver, *old_driver_ver;
7484 	int rc, size = sizeof(cfgtable->driver_version);
7485 
7486 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7487 	if (!old_driver_ver)
7488 		return -ENOMEM;
7489 	driver_ver = old_driver_ver + size;
7490 
7491 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7492 	 * should have been changed, otherwise we know the reset failed.
7493 	 */
7494 	init_driver_version(old_driver_ver, size);
7495 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7496 	rc = !memcmp(driver_ver, old_driver_ver, size);
7497 	kfree(old_driver_ver);
7498 	return rc;
7499 }
7500 /* This does a hard reset of the controller using PCI power management
7501  * states or the using the doorbell register.
7502  */
7503 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7504 {
7505 	u64 cfg_offset;
7506 	u32 cfg_base_addr;
7507 	u64 cfg_base_addr_index;
7508 	void __iomem *vaddr;
7509 	unsigned long paddr;
7510 	u32 misc_fw_support;
7511 	int rc;
7512 	struct CfgTable __iomem *cfgtable;
7513 	u32 use_doorbell;
7514 	u16 command_register;
7515 
7516 	/* For controllers as old as the P600, this is very nearly
7517 	 * the same thing as
7518 	 *
7519 	 * pci_save_state(pci_dev);
7520 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7521 	 * pci_set_power_state(pci_dev, PCI_D0);
7522 	 * pci_restore_state(pci_dev);
7523 	 *
7524 	 * For controllers newer than the P600, the pci power state
7525 	 * method of resetting doesn't work so we have another way
7526 	 * using the doorbell register.
7527 	 */
7528 
7529 	if (!ctlr_is_resettable(board_id)) {
7530 		dev_warn(&pdev->dev, "Controller not resettable\n");
7531 		return -ENODEV;
7532 	}
7533 
7534 	/* if controller is soft- but not hard resettable... */
7535 	if (!ctlr_is_hard_resettable(board_id))
7536 		return -ENOTSUPP; /* try soft reset later. */
7537 
7538 	/* Save the PCI command register */
7539 	pci_read_config_word(pdev, 4, &command_register);
7540 	pci_save_state(pdev);
7541 
7542 	/* find the first memory BAR, so we can find the cfg table */
7543 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7544 	if (rc)
7545 		return rc;
7546 	vaddr = remap_pci_mem(paddr, 0x250);
7547 	if (!vaddr)
7548 		return -ENOMEM;
7549 
7550 	/* find cfgtable in order to check if reset via doorbell is supported */
7551 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7552 					&cfg_base_addr_index, &cfg_offset);
7553 	if (rc)
7554 		goto unmap_vaddr;
7555 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7556 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7557 	if (!cfgtable) {
7558 		rc = -ENOMEM;
7559 		goto unmap_vaddr;
7560 	}
7561 	rc = write_driver_ver_to_cfgtable(cfgtable);
7562 	if (rc)
7563 		goto unmap_cfgtable;
7564 
7565 	/* If reset via doorbell register is supported, use that.
7566 	 * There are two such methods.  Favor the newest method.
7567 	 */
7568 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7569 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7570 	if (use_doorbell) {
7571 		use_doorbell = DOORBELL_CTLR_RESET2;
7572 	} else {
7573 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7574 		if (use_doorbell) {
7575 			dev_warn(&pdev->dev,
7576 				"Soft reset not supported. Firmware update is required.\n");
7577 			rc = -ENOTSUPP; /* try soft reset */
7578 			goto unmap_cfgtable;
7579 		}
7580 	}
7581 
7582 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7583 	if (rc)
7584 		goto unmap_cfgtable;
7585 
7586 	pci_restore_state(pdev);
7587 	pci_write_config_word(pdev, 4, command_register);
7588 
7589 	/* Some devices (notably the HP Smart Array 5i Controller)
7590 	   need a little pause here */
7591 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7592 
7593 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7594 	if (rc) {
7595 		dev_warn(&pdev->dev,
7596 			"Failed waiting for board to become ready after hard reset\n");
7597 		goto unmap_cfgtable;
7598 	}
7599 
7600 	rc = controller_reset_failed(vaddr);
7601 	if (rc < 0)
7602 		goto unmap_cfgtable;
7603 	if (rc) {
7604 		dev_warn(&pdev->dev, "Unable to successfully reset "
7605 			"controller. Will try soft reset.\n");
7606 		rc = -ENOTSUPP;
7607 	} else {
7608 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7609 	}
7610 
7611 unmap_cfgtable:
7612 	iounmap(cfgtable);
7613 
7614 unmap_vaddr:
7615 	iounmap(vaddr);
7616 	return rc;
7617 }
7618 
7619 /*
7620  *  We cannot read the structure directly, for portability we must use
7621  *   the io functions.
7622  *   This is for debug only.
7623  */
7624 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7625 {
7626 #ifdef HPSA_DEBUG
7627 	int i;
7628 	char temp_name[17];
7629 
7630 	dev_info(dev, "Controller Configuration information\n");
7631 	dev_info(dev, "------------------------------------\n");
7632 	for (i = 0; i < 4; i++)
7633 		temp_name[i] = readb(&(tb->Signature[i]));
7634 	temp_name[4] = '\0';
7635 	dev_info(dev, "   Signature = %s\n", temp_name);
7636 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7637 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7638 	       readl(&(tb->TransportSupport)));
7639 	dev_info(dev, "   Transport methods active = 0x%x\n",
7640 	       readl(&(tb->TransportActive)));
7641 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7642 	       readl(&(tb->HostWrite.TransportRequest)));
7643 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7644 	       readl(&(tb->HostWrite.CoalIntDelay)));
7645 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7646 	       readl(&(tb->HostWrite.CoalIntCount)));
7647 	dev_info(dev, "   Max outstanding commands = %d\n",
7648 	       readl(&(tb->CmdsOutMax)));
7649 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7650 	for (i = 0; i < 16; i++)
7651 		temp_name[i] = readb(&(tb->ServerName[i]));
7652 	temp_name[16] = '\0';
7653 	dev_info(dev, "   Server Name = %s\n", temp_name);
7654 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7655 		readl(&(tb->HeartBeat)));
7656 #endif				/* HPSA_DEBUG */
7657 }
7658 
7659 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7660 {
7661 	int i, offset, mem_type, bar_type;
7662 
7663 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7664 		return 0;
7665 	offset = 0;
7666 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7667 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7668 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7669 			offset += 4;
7670 		else {
7671 			mem_type = pci_resource_flags(pdev, i) &
7672 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7673 			switch (mem_type) {
7674 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7675 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7676 				offset += 4;	/* 32 bit */
7677 				break;
7678 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7679 				offset += 8;
7680 				break;
7681 			default:	/* reserved in PCI 2.2 */
7682 				dev_warn(&pdev->dev,
7683 				       "base address is invalid\n");
7684 				return -1;
7685 				break;
7686 			}
7687 		}
7688 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7689 			return i + 1;
7690 	}
7691 	return -1;
7692 }
7693 
7694 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7695 {
7696 	pci_free_irq_vectors(h->pdev);
7697 	h->msix_vectors = 0;
7698 }
7699 
7700 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7701  * controllers that are capable. If not, we use legacy INTx mode.
7702  */
7703 static int hpsa_interrupt_mode(struct ctlr_info *h)
7704 {
7705 	unsigned int flags = PCI_IRQ_LEGACY;
7706 	int ret;
7707 
7708 	/* Some boards advertise MSI but don't really support it */
7709 	switch (h->board_id) {
7710 	case 0x40700E11:
7711 	case 0x40800E11:
7712 	case 0x40820E11:
7713 	case 0x40830E11:
7714 		break;
7715 	default:
7716 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7717 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7718 		if (ret > 0) {
7719 			h->msix_vectors = ret;
7720 			return 0;
7721 		}
7722 
7723 		flags |= PCI_IRQ_MSI;
7724 		break;
7725 	}
7726 
7727 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7728 	if (ret < 0)
7729 		return ret;
7730 	return 0;
7731 }
7732 
7733 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7734 {
7735 	int i;
7736 	u32 subsystem_vendor_id, subsystem_device_id;
7737 
7738 	subsystem_vendor_id = pdev->subsystem_vendor;
7739 	subsystem_device_id = pdev->subsystem_device;
7740 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7741 		    subsystem_vendor_id;
7742 
7743 	for (i = 0; i < ARRAY_SIZE(products); i++)
7744 		if (*board_id == products[i].board_id)
7745 			return i;
7746 
7747 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7748 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7749 		!hpsa_allow_any) {
7750 		dev_warn(&pdev->dev, "unrecognized board ID: "
7751 			"0x%08x, ignoring.\n", *board_id);
7752 			return -ENODEV;
7753 	}
7754 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7755 }
7756 
7757 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7758 				    unsigned long *memory_bar)
7759 {
7760 	int i;
7761 
7762 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7763 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7764 			/* addressing mode bits already removed */
7765 			*memory_bar = pci_resource_start(pdev, i);
7766 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7767 				*memory_bar);
7768 			return 0;
7769 		}
7770 	dev_warn(&pdev->dev, "no memory BAR found\n");
7771 	return -ENODEV;
7772 }
7773 
7774 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7775 				     int wait_for_ready)
7776 {
7777 	int i, iterations;
7778 	u32 scratchpad;
7779 	if (wait_for_ready)
7780 		iterations = HPSA_BOARD_READY_ITERATIONS;
7781 	else
7782 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7783 
7784 	for (i = 0; i < iterations; i++) {
7785 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7786 		if (wait_for_ready) {
7787 			if (scratchpad == HPSA_FIRMWARE_READY)
7788 				return 0;
7789 		} else {
7790 			if (scratchpad != HPSA_FIRMWARE_READY)
7791 				return 0;
7792 		}
7793 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7794 	}
7795 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7796 	return -ENODEV;
7797 }
7798 
7799 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7800 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7801 			       u64 *cfg_offset)
7802 {
7803 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7804 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7805 	*cfg_base_addr &= (u32) 0x0000ffff;
7806 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7807 	if (*cfg_base_addr_index == -1) {
7808 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7809 		return -ENODEV;
7810 	}
7811 	return 0;
7812 }
7813 
7814 static void hpsa_free_cfgtables(struct ctlr_info *h)
7815 {
7816 	if (h->transtable) {
7817 		iounmap(h->transtable);
7818 		h->transtable = NULL;
7819 	}
7820 	if (h->cfgtable) {
7821 		iounmap(h->cfgtable);
7822 		h->cfgtable = NULL;
7823 	}
7824 }
7825 
7826 /* Find and map CISS config table and transfer table
7827 + * several items must be unmapped (freed) later
7828 + * */
7829 static int hpsa_find_cfgtables(struct ctlr_info *h)
7830 {
7831 	u64 cfg_offset;
7832 	u32 cfg_base_addr;
7833 	u64 cfg_base_addr_index;
7834 	u32 trans_offset;
7835 	int rc;
7836 
7837 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7838 		&cfg_base_addr_index, &cfg_offset);
7839 	if (rc)
7840 		return rc;
7841 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7842 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7843 	if (!h->cfgtable) {
7844 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7845 		return -ENOMEM;
7846 	}
7847 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7848 	if (rc)
7849 		return rc;
7850 	/* Find performant mode table. */
7851 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7852 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7853 				cfg_base_addr_index)+cfg_offset+trans_offset,
7854 				sizeof(*h->transtable));
7855 	if (!h->transtable) {
7856 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7857 		hpsa_free_cfgtables(h);
7858 		return -ENOMEM;
7859 	}
7860 	return 0;
7861 }
7862 
7863 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7864 {
7865 #define MIN_MAX_COMMANDS 16
7866 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7867 
7868 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7869 
7870 	/* Limit commands in memory limited kdump scenario. */
7871 	if (reset_devices && h->max_commands > 32)
7872 		h->max_commands = 32;
7873 
7874 	if (h->max_commands < MIN_MAX_COMMANDS) {
7875 		dev_warn(&h->pdev->dev,
7876 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7877 			h->max_commands,
7878 			MIN_MAX_COMMANDS);
7879 		h->max_commands = MIN_MAX_COMMANDS;
7880 	}
7881 }
7882 
7883 /* If the controller reports that the total max sg entries is greater than 512,
7884  * then we know that chained SG blocks work.  (Original smart arrays did not
7885  * support chained SG blocks and would return zero for max sg entries.)
7886  */
7887 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7888 {
7889 	return h->maxsgentries > 512;
7890 }
7891 
7892 /* Interrogate the hardware for some limits:
7893  * max commands, max SG elements without chaining, and with chaining,
7894  * SG chain block size, etc.
7895  */
7896 static void hpsa_find_board_params(struct ctlr_info *h)
7897 {
7898 	hpsa_get_max_perf_mode_cmds(h);
7899 	h->nr_cmds = h->max_commands;
7900 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7901 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7902 	if (hpsa_supports_chained_sg_blocks(h)) {
7903 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7904 		h->max_cmd_sg_entries = 32;
7905 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7906 		h->maxsgentries--; /* save one for chain pointer */
7907 	} else {
7908 		/*
7909 		 * Original smart arrays supported at most 31 s/g entries
7910 		 * embedded inline in the command (trying to use more
7911 		 * would lock up the controller)
7912 		 */
7913 		h->max_cmd_sg_entries = 31;
7914 		h->maxsgentries = 31; /* default to traditional values */
7915 		h->chainsize = 0;
7916 	}
7917 
7918 	/* Find out what task management functions are supported and cache */
7919 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7920 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7921 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7922 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7923 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7924 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7925 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7926 }
7927 
7928 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7929 {
7930 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7931 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7932 		return false;
7933 	}
7934 	return true;
7935 }
7936 
7937 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7938 {
7939 	u32 driver_support;
7940 
7941 	driver_support = readl(&(h->cfgtable->driver_support));
7942 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7943 #ifdef CONFIG_X86
7944 	driver_support |= ENABLE_SCSI_PREFETCH;
7945 #endif
7946 	driver_support |= ENABLE_UNIT_ATTN;
7947 	writel(driver_support, &(h->cfgtable->driver_support));
7948 }
7949 
7950 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7951  * in a prefetch beyond physical memory.
7952  */
7953 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7954 {
7955 	u32 dma_prefetch;
7956 
7957 	if (h->board_id != 0x3225103C)
7958 		return;
7959 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7960 	dma_prefetch |= 0x8000;
7961 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7962 }
7963 
7964 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7965 {
7966 	int i;
7967 	u32 doorbell_value;
7968 	unsigned long flags;
7969 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7970 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7971 		spin_lock_irqsave(&h->lock, flags);
7972 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7973 		spin_unlock_irqrestore(&h->lock, flags);
7974 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7975 			goto done;
7976 		/* delay and try again */
7977 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7978 	}
7979 	return -ENODEV;
7980 done:
7981 	return 0;
7982 }
7983 
7984 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7985 {
7986 	int i;
7987 	u32 doorbell_value;
7988 	unsigned long flags;
7989 
7990 	/* under certain very rare conditions, this can take awhile.
7991 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7992 	 * as we enter this code.)
7993 	 */
7994 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7995 		if (h->remove_in_progress)
7996 			goto done;
7997 		spin_lock_irqsave(&h->lock, flags);
7998 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7999 		spin_unlock_irqrestore(&h->lock, flags);
8000 		if (!(doorbell_value & CFGTBL_ChangeReq))
8001 			goto done;
8002 		/* delay and try again */
8003 		msleep(MODE_CHANGE_WAIT_INTERVAL);
8004 	}
8005 	return -ENODEV;
8006 done:
8007 	return 0;
8008 }
8009 
8010 /* return -ENODEV or other reason on error, 0 on success */
8011 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8012 {
8013 	u32 trans_support;
8014 
8015 	trans_support = readl(&(h->cfgtable->TransportSupport));
8016 	if (!(trans_support & SIMPLE_MODE))
8017 		return -ENOTSUPP;
8018 
8019 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8020 
8021 	/* Update the field, and then ring the doorbell */
8022 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8023 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8024 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8025 	if (hpsa_wait_for_mode_change_ack(h))
8026 		goto error;
8027 	print_cfg_table(&h->pdev->dev, h->cfgtable);
8028 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8029 		goto error;
8030 	h->transMethod = CFGTBL_Trans_Simple;
8031 	return 0;
8032 error:
8033 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8034 	return -ENODEV;
8035 }
8036 
8037 /* free items allocated or mapped by hpsa_pci_init */
8038 static void hpsa_free_pci_init(struct ctlr_info *h)
8039 {
8040 	hpsa_free_cfgtables(h);			/* pci_init 4 */
8041 	iounmap(h->vaddr);			/* pci_init 3 */
8042 	h->vaddr = NULL;
8043 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8044 	/*
8045 	 * call pci_disable_device before pci_release_regions per
8046 	 * Documentation/PCI/pci.txt
8047 	 */
8048 	pci_disable_device(h->pdev);		/* pci_init 1 */
8049 	pci_release_regions(h->pdev);		/* pci_init 2 */
8050 }
8051 
8052 /* several items must be freed later */
8053 static int hpsa_pci_init(struct ctlr_info *h)
8054 {
8055 	int prod_index, err;
8056 
8057 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8058 	if (prod_index < 0)
8059 		return prod_index;
8060 	h->product_name = products[prod_index].product_name;
8061 	h->access = *(products[prod_index].access);
8062 
8063 	h->needs_abort_tags_swizzled =
8064 		ctlr_needs_abort_tags_swizzled(h->board_id);
8065 
8066 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8067 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8068 
8069 	err = pci_enable_device(h->pdev);
8070 	if (err) {
8071 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8072 		pci_disable_device(h->pdev);
8073 		return err;
8074 	}
8075 
8076 	err = pci_request_regions(h->pdev, HPSA);
8077 	if (err) {
8078 		dev_err(&h->pdev->dev,
8079 			"failed to obtain PCI resources\n");
8080 		pci_disable_device(h->pdev);
8081 		return err;
8082 	}
8083 
8084 	pci_set_master(h->pdev);
8085 
8086 	err = hpsa_interrupt_mode(h);
8087 	if (err)
8088 		goto clean1;
8089 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8090 	if (err)
8091 		goto clean2;	/* intmode+region, pci */
8092 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
8093 	if (!h->vaddr) {
8094 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8095 		err = -ENOMEM;
8096 		goto clean2;	/* intmode+region, pci */
8097 	}
8098 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8099 	if (err)
8100 		goto clean3;	/* vaddr, intmode+region, pci */
8101 	err = hpsa_find_cfgtables(h);
8102 	if (err)
8103 		goto clean3;	/* vaddr, intmode+region, pci */
8104 	hpsa_find_board_params(h);
8105 
8106 	if (!hpsa_CISS_signature_present(h)) {
8107 		err = -ENODEV;
8108 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8109 	}
8110 	hpsa_set_driver_support_bits(h);
8111 	hpsa_p600_dma_prefetch_quirk(h);
8112 	err = hpsa_enter_simple_mode(h);
8113 	if (err)
8114 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8115 	return 0;
8116 
8117 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8118 	hpsa_free_cfgtables(h);
8119 clean3:	/* vaddr, intmode+region, pci */
8120 	iounmap(h->vaddr);
8121 	h->vaddr = NULL;
8122 clean2:	/* intmode+region, pci */
8123 	hpsa_disable_interrupt_mode(h);
8124 clean1:
8125 	/*
8126 	 * call pci_disable_device before pci_release_regions per
8127 	 * Documentation/PCI/pci.txt
8128 	 */
8129 	pci_disable_device(h->pdev);
8130 	pci_release_regions(h->pdev);
8131 	return err;
8132 }
8133 
8134 static void hpsa_hba_inquiry(struct ctlr_info *h)
8135 {
8136 	int rc;
8137 
8138 #define HBA_INQUIRY_BYTE_COUNT 64
8139 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8140 	if (!h->hba_inquiry_data)
8141 		return;
8142 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8143 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8144 	if (rc != 0) {
8145 		kfree(h->hba_inquiry_data);
8146 		h->hba_inquiry_data = NULL;
8147 	}
8148 }
8149 
8150 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8151 {
8152 	int rc, i;
8153 	void __iomem *vaddr;
8154 
8155 	if (!reset_devices)
8156 		return 0;
8157 
8158 	/* kdump kernel is loading, we don't know in which state is
8159 	 * the pci interface. The dev->enable_cnt is equal zero
8160 	 * so we call enable+disable, wait a while and switch it on.
8161 	 */
8162 	rc = pci_enable_device(pdev);
8163 	if (rc) {
8164 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8165 		return -ENODEV;
8166 	}
8167 	pci_disable_device(pdev);
8168 	msleep(260);			/* a randomly chosen number */
8169 	rc = pci_enable_device(pdev);
8170 	if (rc) {
8171 		dev_warn(&pdev->dev, "failed to enable device.\n");
8172 		return -ENODEV;
8173 	}
8174 
8175 	pci_set_master(pdev);
8176 
8177 	vaddr = pci_ioremap_bar(pdev, 0);
8178 	if (vaddr == NULL) {
8179 		rc = -ENOMEM;
8180 		goto out_disable;
8181 	}
8182 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8183 	iounmap(vaddr);
8184 
8185 	/* Reset the controller with a PCI power-cycle or via doorbell */
8186 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8187 
8188 	/* -ENOTSUPP here means we cannot reset the controller
8189 	 * but it's already (and still) up and running in
8190 	 * "performant mode".  Or, it might be 640x, which can't reset
8191 	 * due to concerns about shared bbwc between 6402/6404 pair.
8192 	 */
8193 	if (rc)
8194 		goto out_disable;
8195 
8196 	/* Now try to get the controller to respond to a no-op */
8197 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8198 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8199 		if (hpsa_noop(pdev) == 0)
8200 			break;
8201 		else
8202 			dev_warn(&pdev->dev, "no-op failed%s\n",
8203 					(i < 11 ? "; re-trying" : ""));
8204 	}
8205 
8206 out_disable:
8207 
8208 	pci_disable_device(pdev);
8209 	return rc;
8210 }
8211 
8212 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8213 {
8214 	kfree(h->cmd_pool_bits);
8215 	h->cmd_pool_bits = NULL;
8216 	if (h->cmd_pool) {
8217 		pci_free_consistent(h->pdev,
8218 				h->nr_cmds * sizeof(struct CommandList),
8219 				h->cmd_pool,
8220 				h->cmd_pool_dhandle);
8221 		h->cmd_pool = NULL;
8222 		h->cmd_pool_dhandle = 0;
8223 	}
8224 	if (h->errinfo_pool) {
8225 		pci_free_consistent(h->pdev,
8226 				h->nr_cmds * sizeof(struct ErrorInfo),
8227 				h->errinfo_pool,
8228 				h->errinfo_pool_dhandle);
8229 		h->errinfo_pool = NULL;
8230 		h->errinfo_pool_dhandle = 0;
8231 	}
8232 }
8233 
8234 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8235 {
8236 	h->cmd_pool_bits = kzalloc(
8237 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8238 		sizeof(unsigned long), GFP_KERNEL);
8239 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8240 		    h->nr_cmds * sizeof(*h->cmd_pool),
8241 		    &(h->cmd_pool_dhandle));
8242 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8243 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8244 		    &(h->errinfo_pool_dhandle));
8245 	if ((h->cmd_pool_bits == NULL)
8246 	    || (h->cmd_pool == NULL)
8247 	    || (h->errinfo_pool == NULL)) {
8248 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8249 		goto clean_up;
8250 	}
8251 	hpsa_preinitialize_commands(h);
8252 	return 0;
8253 clean_up:
8254 	hpsa_free_cmd_pool(h);
8255 	return -ENOMEM;
8256 }
8257 
8258 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8259 static void hpsa_free_irqs(struct ctlr_info *h)
8260 {
8261 	int i;
8262 
8263 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8264 		/* Single reply queue, only one irq to free */
8265 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8266 		h->q[h->intr_mode] = 0;
8267 		return;
8268 	}
8269 
8270 	for (i = 0; i < h->msix_vectors; i++) {
8271 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8272 		h->q[i] = 0;
8273 	}
8274 	for (; i < MAX_REPLY_QUEUES; i++)
8275 		h->q[i] = 0;
8276 }
8277 
8278 /* returns 0 on success; cleans up and returns -Enn on error */
8279 static int hpsa_request_irqs(struct ctlr_info *h,
8280 	irqreturn_t (*msixhandler)(int, void *),
8281 	irqreturn_t (*intxhandler)(int, void *))
8282 {
8283 	int rc, i;
8284 
8285 	/*
8286 	 * initialize h->q[x] = x so that interrupt handlers know which
8287 	 * queue to process.
8288 	 */
8289 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8290 		h->q[i] = (u8) i;
8291 
8292 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8293 		/* If performant mode and MSI-X, use multiple reply queues */
8294 		for (i = 0; i < h->msix_vectors; i++) {
8295 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8296 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8297 					0, h->intrname[i],
8298 					&h->q[i]);
8299 			if (rc) {
8300 				int j;
8301 
8302 				dev_err(&h->pdev->dev,
8303 					"failed to get irq %d for %s\n",
8304 				       pci_irq_vector(h->pdev, i), h->devname);
8305 				for (j = 0; j < i; j++) {
8306 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8307 					h->q[j] = 0;
8308 				}
8309 				for (; j < MAX_REPLY_QUEUES; j++)
8310 					h->q[j] = 0;
8311 				return rc;
8312 			}
8313 		}
8314 	} else {
8315 		/* Use single reply pool */
8316 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8317 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8318 				h->msix_vectors ? "x" : "");
8319 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8320 				msixhandler, 0,
8321 				h->intrname[0],
8322 				&h->q[h->intr_mode]);
8323 		} else {
8324 			sprintf(h->intrname[h->intr_mode],
8325 				"%s-intx", h->devname);
8326 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8327 				intxhandler, IRQF_SHARED,
8328 				h->intrname[0],
8329 				&h->q[h->intr_mode]);
8330 		}
8331 	}
8332 	if (rc) {
8333 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8334 		       pci_irq_vector(h->pdev, 0), h->devname);
8335 		hpsa_free_irqs(h);
8336 		return -ENODEV;
8337 	}
8338 	return 0;
8339 }
8340 
8341 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8342 {
8343 	int rc;
8344 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8345 
8346 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8347 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8348 	if (rc) {
8349 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8350 		return rc;
8351 	}
8352 
8353 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8354 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8355 	if (rc) {
8356 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8357 			"after soft reset.\n");
8358 		return rc;
8359 	}
8360 
8361 	return 0;
8362 }
8363 
8364 static void hpsa_free_reply_queues(struct ctlr_info *h)
8365 {
8366 	int i;
8367 
8368 	for (i = 0; i < h->nreply_queues; i++) {
8369 		if (!h->reply_queue[i].head)
8370 			continue;
8371 		pci_free_consistent(h->pdev,
8372 					h->reply_queue_size,
8373 					h->reply_queue[i].head,
8374 					h->reply_queue[i].busaddr);
8375 		h->reply_queue[i].head = NULL;
8376 		h->reply_queue[i].busaddr = 0;
8377 	}
8378 	h->reply_queue_size = 0;
8379 }
8380 
8381 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8382 {
8383 	hpsa_free_performant_mode(h);		/* init_one 7 */
8384 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8385 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8386 	hpsa_free_irqs(h);			/* init_one 4 */
8387 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8388 	h->scsi_host = NULL;			/* init_one 3 */
8389 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8390 	free_percpu(h->lockup_detected);	/* init_one 2 */
8391 	h->lockup_detected = NULL;		/* init_one 2 */
8392 	if (h->resubmit_wq) {
8393 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8394 		h->resubmit_wq = NULL;
8395 	}
8396 	if (h->rescan_ctlr_wq) {
8397 		destroy_workqueue(h->rescan_ctlr_wq);
8398 		h->rescan_ctlr_wq = NULL;
8399 	}
8400 	kfree(h);				/* init_one 1 */
8401 }
8402 
8403 /* Called when controller lockup detected. */
8404 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8405 {
8406 	int i, refcount;
8407 	struct CommandList *c;
8408 	int failcount = 0;
8409 
8410 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8411 	for (i = 0; i < h->nr_cmds; i++) {
8412 		c = h->cmd_pool + i;
8413 		refcount = atomic_inc_return(&c->refcount);
8414 		if (refcount > 1) {
8415 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8416 			finish_cmd(c);
8417 			atomic_dec(&h->commands_outstanding);
8418 			failcount++;
8419 		}
8420 		cmd_free(h, c);
8421 	}
8422 	dev_warn(&h->pdev->dev,
8423 		"failed %d commands in fail_all\n", failcount);
8424 }
8425 
8426 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8427 {
8428 	int cpu;
8429 
8430 	for_each_online_cpu(cpu) {
8431 		u32 *lockup_detected;
8432 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8433 		*lockup_detected = value;
8434 	}
8435 	wmb(); /* be sure the per-cpu variables are out to memory */
8436 }
8437 
8438 static void controller_lockup_detected(struct ctlr_info *h)
8439 {
8440 	unsigned long flags;
8441 	u32 lockup_detected;
8442 
8443 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8444 	spin_lock_irqsave(&h->lock, flags);
8445 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8446 	if (!lockup_detected) {
8447 		/* no heartbeat, but controller gave us a zero. */
8448 		dev_warn(&h->pdev->dev,
8449 			"lockup detected after %d but scratchpad register is zero\n",
8450 			h->heartbeat_sample_interval / HZ);
8451 		lockup_detected = 0xffffffff;
8452 	}
8453 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8454 	spin_unlock_irqrestore(&h->lock, flags);
8455 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8456 			lockup_detected, h->heartbeat_sample_interval / HZ);
8457 	pci_disable_device(h->pdev);
8458 	fail_all_outstanding_cmds(h);
8459 }
8460 
8461 static int detect_controller_lockup(struct ctlr_info *h)
8462 {
8463 	u64 now;
8464 	u32 heartbeat;
8465 	unsigned long flags;
8466 
8467 	now = get_jiffies_64();
8468 	/* If we've received an interrupt recently, we're ok. */
8469 	if (time_after64(h->last_intr_timestamp +
8470 				(h->heartbeat_sample_interval), now))
8471 		return false;
8472 
8473 	/*
8474 	 * If we've already checked the heartbeat recently, we're ok.
8475 	 * This could happen if someone sends us a signal. We
8476 	 * otherwise don't care about signals in this thread.
8477 	 */
8478 	if (time_after64(h->last_heartbeat_timestamp +
8479 				(h->heartbeat_sample_interval), now))
8480 		return false;
8481 
8482 	/* If heartbeat has not changed since we last looked, we're not ok. */
8483 	spin_lock_irqsave(&h->lock, flags);
8484 	heartbeat = readl(&h->cfgtable->HeartBeat);
8485 	spin_unlock_irqrestore(&h->lock, flags);
8486 	if (h->last_heartbeat == heartbeat) {
8487 		controller_lockup_detected(h);
8488 		return true;
8489 	}
8490 
8491 	/* We're ok. */
8492 	h->last_heartbeat = heartbeat;
8493 	h->last_heartbeat_timestamp = now;
8494 	return false;
8495 }
8496 
8497 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8498 {
8499 	int i;
8500 	char *event_type;
8501 
8502 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8503 		return;
8504 
8505 	/* Ask the controller to clear the events we're handling. */
8506 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8507 			| CFGTBL_Trans_io_accel2)) &&
8508 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8509 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8510 
8511 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8512 			event_type = "state change";
8513 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8514 			event_type = "configuration change";
8515 		/* Stop sending new RAID offload reqs via the IO accelerator */
8516 		scsi_block_requests(h->scsi_host);
8517 		for (i = 0; i < h->ndevices; i++) {
8518 			h->dev[i]->offload_enabled = 0;
8519 			h->dev[i]->offload_to_be_enabled = 0;
8520 		}
8521 		hpsa_drain_accel_commands(h);
8522 		/* Set 'accelerator path config change' bit */
8523 		dev_warn(&h->pdev->dev,
8524 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8525 			h->events, event_type);
8526 		writel(h->events, &(h->cfgtable->clear_event_notify));
8527 		/* Set the "clear event notify field update" bit 6 */
8528 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8529 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8530 		hpsa_wait_for_clear_event_notify_ack(h);
8531 		scsi_unblock_requests(h->scsi_host);
8532 	} else {
8533 		/* Acknowledge controller notification events. */
8534 		writel(h->events, &(h->cfgtable->clear_event_notify));
8535 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8536 		hpsa_wait_for_clear_event_notify_ack(h);
8537 #if 0
8538 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8539 		hpsa_wait_for_mode_change_ack(h);
8540 #endif
8541 	}
8542 	return;
8543 }
8544 
8545 /* Check a register on the controller to see if there are configuration
8546  * changes (added/changed/removed logical drives, etc.) which mean that
8547  * we should rescan the controller for devices.
8548  * Also check flag for driver-initiated rescan.
8549  */
8550 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8551 {
8552 	if (h->drv_req_rescan) {
8553 		h->drv_req_rescan = 0;
8554 		return 1;
8555 	}
8556 
8557 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8558 		return 0;
8559 
8560 	h->events = readl(&(h->cfgtable->event_notify));
8561 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8562 }
8563 
8564 /*
8565  * Check if any of the offline devices have become ready
8566  */
8567 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8568 {
8569 	unsigned long flags;
8570 	struct offline_device_entry *d;
8571 	struct list_head *this, *tmp;
8572 
8573 	spin_lock_irqsave(&h->offline_device_lock, flags);
8574 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8575 		d = list_entry(this, struct offline_device_entry,
8576 				offline_list);
8577 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8578 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8579 			spin_lock_irqsave(&h->offline_device_lock, flags);
8580 			list_del(&d->offline_list);
8581 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8582 			return 1;
8583 		}
8584 		spin_lock_irqsave(&h->offline_device_lock, flags);
8585 	}
8586 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8587 	return 0;
8588 }
8589 
8590 static int hpsa_luns_changed(struct ctlr_info *h)
8591 {
8592 	int rc = 1; /* assume there are changes */
8593 	struct ReportLUNdata *logdev = NULL;
8594 
8595 	/* if we can't find out if lun data has changed,
8596 	 * assume that it has.
8597 	 */
8598 
8599 	if (!h->lastlogicals)
8600 		goto out;
8601 
8602 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8603 	if (!logdev) {
8604 		dev_warn(&h->pdev->dev,
8605 			"Out of memory, can't track lun changes.\n");
8606 		goto out;
8607 	}
8608 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8609 		dev_warn(&h->pdev->dev,
8610 			"report luns failed, can't track lun changes.\n");
8611 		goto out;
8612 	}
8613 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8614 		dev_info(&h->pdev->dev,
8615 			"Lun changes detected.\n");
8616 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8617 		goto out;
8618 	} else
8619 		rc = 0; /* no changes detected. */
8620 out:
8621 	kfree(logdev);
8622 	return rc;
8623 }
8624 
8625 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8626 {
8627 	unsigned long flags;
8628 	struct ctlr_info *h = container_of(to_delayed_work(work),
8629 					struct ctlr_info, rescan_ctlr_work);
8630 
8631 
8632 	if (h->remove_in_progress)
8633 		return;
8634 
8635 	/*
8636 	 * Do the scan after the reset
8637 	 */
8638 	if (h->reset_in_progress) {
8639 		h->drv_req_rescan = 1;
8640 		return;
8641 	}
8642 
8643 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8644 		scsi_host_get(h->scsi_host);
8645 		hpsa_ack_ctlr_events(h);
8646 		hpsa_scan_start(h->scsi_host);
8647 		scsi_host_put(h->scsi_host);
8648 	} else if (h->discovery_polling) {
8649 		hpsa_disable_rld_caching(h);
8650 		if (hpsa_luns_changed(h)) {
8651 			struct Scsi_Host *sh = NULL;
8652 
8653 			dev_info(&h->pdev->dev,
8654 				"driver discovery polling rescan.\n");
8655 			sh = scsi_host_get(h->scsi_host);
8656 			if (sh != NULL) {
8657 				hpsa_scan_start(sh);
8658 				scsi_host_put(sh);
8659 			}
8660 		}
8661 	}
8662 	spin_lock_irqsave(&h->lock, flags);
8663 	if (!h->remove_in_progress)
8664 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8665 				h->heartbeat_sample_interval);
8666 	spin_unlock_irqrestore(&h->lock, flags);
8667 }
8668 
8669 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8670 {
8671 	unsigned long flags;
8672 	struct ctlr_info *h = container_of(to_delayed_work(work),
8673 					struct ctlr_info, monitor_ctlr_work);
8674 
8675 	detect_controller_lockup(h);
8676 	if (lockup_detected(h))
8677 		return;
8678 
8679 	spin_lock_irqsave(&h->lock, flags);
8680 	if (!h->remove_in_progress)
8681 		schedule_delayed_work(&h->monitor_ctlr_work,
8682 				h->heartbeat_sample_interval);
8683 	spin_unlock_irqrestore(&h->lock, flags);
8684 }
8685 
8686 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8687 						char *name)
8688 {
8689 	struct workqueue_struct *wq = NULL;
8690 
8691 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8692 	if (!wq)
8693 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8694 
8695 	return wq;
8696 }
8697 
8698 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8699 {
8700 	int dac, rc;
8701 	struct ctlr_info *h;
8702 	int try_soft_reset = 0;
8703 	unsigned long flags;
8704 	u32 board_id;
8705 
8706 	if (number_of_controllers == 0)
8707 		printk(KERN_INFO DRIVER_NAME "\n");
8708 
8709 	rc = hpsa_lookup_board_id(pdev, &board_id);
8710 	if (rc < 0) {
8711 		dev_warn(&pdev->dev, "Board ID not found\n");
8712 		return rc;
8713 	}
8714 
8715 	rc = hpsa_init_reset_devices(pdev, board_id);
8716 	if (rc) {
8717 		if (rc != -ENOTSUPP)
8718 			return rc;
8719 		/* If the reset fails in a particular way (it has no way to do
8720 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8721 		 * a soft reset once we get the controller configured up to the
8722 		 * point that it can accept a command.
8723 		 */
8724 		try_soft_reset = 1;
8725 		rc = 0;
8726 	}
8727 
8728 reinit_after_soft_reset:
8729 
8730 	/* Command structures must be aligned on a 32-byte boundary because
8731 	 * the 5 lower bits of the address are used by the hardware. and by
8732 	 * the driver.  See comments in hpsa.h for more info.
8733 	 */
8734 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8735 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8736 	if (!h) {
8737 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8738 		return -ENOMEM;
8739 	}
8740 
8741 	h->pdev = pdev;
8742 
8743 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8744 	INIT_LIST_HEAD(&h->offline_device_list);
8745 	spin_lock_init(&h->lock);
8746 	spin_lock_init(&h->offline_device_lock);
8747 	spin_lock_init(&h->scan_lock);
8748 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8749 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8750 
8751 	/* Allocate and clear per-cpu variable lockup_detected */
8752 	h->lockup_detected = alloc_percpu(u32);
8753 	if (!h->lockup_detected) {
8754 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8755 		rc = -ENOMEM;
8756 		goto clean1;	/* aer/h */
8757 	}
8758 	set_lockup_detected_for_all_cpus(h, 0);
8759 
8760 	rc = hpsa_pci_init(h);
8761 	if (rc)
8762 		goto clean2;	/* lu, aer/h */
8763 
8764 	/* relies on h-> settings made by hpsa_pci_init, including
8765 	 * interrupt_mode h->intr */
8766 	rc = hpsa_scsi_host_alloc(h);
8767 	if (rc)
8768 		goto clean2_5;	/* pci, lu, aer/h */
8769 
8770 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8771 	h->ctlr = number_of_controllers;
8772 	number_of_controllers++;
8773 
8774 	/* configure PCI DMA stuff */
8775 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8776 	if (rc == 0) {
8777 		dac = 1;
8778 	} else {
8779 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8780 		if (rc == 0) {
8781 			dac = 0;
8782 		} else {
8783 			dev_err(&pdev->dev, "no suitable DMA available\n");
8784 			goto clean3;	/* shost, pci, lu, aer/h */
8785 		}
8786 	}
8787 
8788 	/* make sure the board interrupts are off */
8789 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8790 
8791 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8792 	if (rc)
8793 		goto clean3;	/* shost, pci, lu, aer/h */
8794 	rc = hpsa_alloc_cmd_pool(h);
8795 	if (rc)
8796 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8797 	rc = hpsa_alloc_sg_chain_blocks(h);
8798 	if (rc)
8799 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8800 	init_waitqueue_head(&h->scan_wait_queue);
8801 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8802 	init_waitqueue_head(&h->event_sync_wait_queue);
8803 	mutex_init(&h->reset_mutex);
8804 	h->scan_finished = 1; /* no scan currently in progress */
8805 
8806 	pci_set_drvdata(pdev, h);
8807 	h->ndevices = 0;
8808 
8809 	spin_lock_init(&h->devlock);
8810 	rc = hpsa_put_ctlr_into_performant_mode(h);
8811 	if (rc)
8812 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8813 
8814 	/* create the resubmit workqueue */
8815 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8816 	if (!h->rescan_ctlr_wq) {
8817 		rc = -ENOMEM;
8818 		goto clean7;
8819 	}
8820 
8821 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8822 	if (!h->resubmit_wq) {
8823 		rc = -ENOMEM;
8824 		goto clean7;	/* aer/h */
8825 	}
8826 
8827 	/*
8828 	 * At this point, the controller is ready to take commands.
8829 	 * Now, if reset_devices and the hard reset didn't work, try
8830 	 * the soft reset and see if that works.
8831 	 */
8832 	if (try_soft_reset) {
8833 
8834 		/* This is kind of gross.  We may or may not get a completion
8835 		 * from the soft reset command, and if we do, then the value
8836 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8837 		 * after the reset throwing away any completions we get during
8838 		 * that time.  Unregister the interrupt handler and register
8839 		 * fake ones to scoop up any residual completions.
8840 		 */
8841 		spin_lock_irqsave(&h->lock, flags);
8842 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843 		spin_unlock_irqrestore(&h->lock, flags);
8844 		hpsa_free_irqs(h);
8845 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8846 					hpsa_intx_discard_completions);
8847 		if (rc) {
8848 			dev_warn(&h->pdev->dev,
8849 				"Failed to request_irq after soft reset.\n");
8850 			/*
8851 			 * cannot goto clean7 or free_irqs will be called
8852 			 * again. Instead, do its work
8853 			 */
8854 			hpsa_free_performant_mode(h);	/* clean7 */
8855 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8856 			hpsa_free_cmd_pool(h);		/* clean5 */
8857 			/*
8858 			 * skip hpsa_free_irqs(h) clean4 since that
8859 			 * was just called before request_irqs failed
8860 			 */
8861 			goto clean3;
8862 		}
8863 
8864 		rc = hpsa_kdump_soft_reset(h);
8865 		if (rc)
8866 			/* Neither hard nor soft reset worked, we're hosed. */
8867 			goto clean7;
8868 
8869 		dev_info(&h->pdev->dev, "Board READY.\n");
8870 		dev_info(&h->pdev->dev,
8871 			"Waiting for stale completions to drain.\n");
8872 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8873 		msleep(10000);
8874 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875 
8876 		rc = controller_reset_failed(h->cfgtable);
8877 		if (rc)
8878 			dev_info(&h->pdev->dev,
8879 				"Soft reset appears to have failed.\n");
8880 
8881 		/* since the controller's reset, we have to go back and re-init
8882 		 * everything.  Easiest to just forget what we've done and do it
8883 		 * all over again.
8884 		 */
8885 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8886 		try_soft_reset = 0;
8887 		if (rc)
8888 			/* don't goto clean, we already unallocated */
8889 			return -ENODEV;
8890 
8891 		goto reinit_after_soft_reset;
8892 	}
8893 
8894 	/* Enable Accelerated IO path at driver layer */
8895 	h->acciopath_status = 1;
8896 	/* Disable discovery polling.*/
8897 	h->discovery_polling = 0;
8898 
8899 
8900 	/* Turn the interrupts on so we can service requests */
8901 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8902 
8903 	hpsa_hba_inquiry(h);
8904 
8905 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8906 	if (!h->lastlogicals)
8907 		dev_info(&h->pdev->dev,
8908 			"Can't track change to report lun data\n");
8909 
8910 	/* hook into SCSI subsystem */
8911 	rc = hpsa_scsi_add_host(h);
8912 	if (rc)
8913 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8914 
8915 	/* Monitor the controller for firmware lockups */
8916 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8917 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8918 	schedule_delayed_work(&h->monitor_ctlr_work,
8919 				h->heartbeat_sample_interval);
8920 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8921 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8922 				h->heartbeat_sample_interval);
8923 	return 0;
8924 
8925 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8926 	hpsa_free_performant_mode(h);
8927 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8928 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8929 	hpsa_free_sg_chain_blocks(h);
8930 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8931 	hpsa_free_cmd_pool(h);
8932 clean4: /* irq, shost, pci, lu, aer/h */
8933 	hpsa_free_irqs(h);
8934 clean3: /* shost, pci, lu, aer/h */
8935 	scsi_host_put(h->scsi_host);
8936 	h->scsi_host = NULL;
8937 clean2_5: /* pci, lu, aer/h */
8938 	hpsa_free_pci_init(h);
8939 clean2: /* lu, aer/h */
8940 	if (h->lockup_detected) {
8941 		free_percpu(h->lockup_detected);
8942 		h->lockup_detected = NULL;
8943 	}
8944 clean1:	/* wq/aer/h */
8945 	if (h->resubmit_wq) {
8946 		destroy_workqueue(h->resubmit_wq);
8947 		h->resubmit_wq = NULL;
8948 	}
8949 	if (h->rescan_ctlr_wq) {
8950 		destroy_workqueue(h->rescan_ctlr_wq);
8951 		h->rescan_ctlr_wq = NULL;
8952 	}
8953 	kfree(h);
8954 	return rc;
8955 }
8956 
8957 static void hpsa_flush_cache(struct ctlr_info *h)
8958 {
8959 	char *flush_buf;
8960 	struct CommandList *c;
8961 	int rc;
8962 
8963 	if (unlikely(lockup_detected(h)))
8964 		return;
8965 	flush_buf = kzalloc(4, GFP_KERNEL);
8966 	if (!flush_buf)
8967 		return;
8968 
8969 	c = cmd_alloc(h);
8970 
8971 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8972 		RAID_CTLR_LUNID, TYPE_CMD)) {
8973 		goto out;
8974 	}
8975 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8976 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8977 	if (rc)
8978 		goto out;
8979 	if (c->err_info->CommandStatus != 0)
8980 out:
8981 		dev_warn(&h->pdev->dev,
8982 			"error flushing cache on controller\n");
8983 	cmd_free(h, c);
8984 	kfree(flush_buf);
8985 }
8986 
8987 /* Make controller gather fresh report lun data each time we
8988  * send down a report luns request
8989  */
8990 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8991 {
8992 	u32 *options;
8993 	struct CommandList *c;
8994 	int rc;
8995 
8996 	/* Don't bother trying to set diag options if locked up */
8997 	if (unlikely(h->lockup_detected))
8998 		return;
8999 
9000 	options = kzalloc(sizeof(*options), GFP_KERNEL);
9001 	if (!options) {
9002 		dev_err(&h->pdev->dev,
9003 			"Error: failed to disable rld caching, during alloc.\n");
9004 		return;
9005 	}
9006 
9007 	c = cmd_alloc(h);
9008 
9009 	/* first, get the current diag options settings */
9010 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9011 		RAID_CTLR_LUNID, TYPE_CMD))
9012 		goto errout;
9013 
9014 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9015 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9016 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
9017 		goto errout;
9018 
9019 	/* Now, set the bit for disabling the RLD caching */
9020 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9021 
9022 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9023 		RAID_CTLR_LUNID, TYPE_CMD))
9024 		goto errout;
9025 
9026 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9027 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9028 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9029 		goto errout;
9030 
9031 	/* Now verify that it got set: */
9032 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9033 		RAID_CTLR_LUNID, TYPE_CMD))
9034 		goto errout;
9035 
9036 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9037 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9038 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9039 		goto errout;
9040 
9041 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9042 		goto out;
9043 
9044 errout:
9045 	dev_err(&h->pdev->dev,
9046 			"Error: failed to disable report lun data caching.\n");
9047 out:
9048 	cmd_free(h, c);
9049 	kfree(options);
9050 }
9051 
9052 static void hpsa_shutdown(struct pci_dev *pdev)
9053 {
9054 	struct ctlr_info *h;
9055 
9056 	h = pci_get_drvdata(pdev);
9057 	/* Turn board interrupts off  and send the flush cache command
9058 	 * sendcmd will turn off interrupt, and send the flush...
9059 	 * To write all data in the battery backed cache to disks
9060 	 */
9061 	hpsa_flush_cache(h);
9062 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9063 	hpsa_free_irqs(h);			/* init_one 4 */
9064 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9065 }
9066 
9067 static void hpsa_free_device_info(struct ctlr_info *h)
9068 {
9069 	int i;
9070 
9071 	for (i = 0; i < h->ndevices; i++) {
9072 		kfree(h->dev[i]);
9073 		h->dev[i] = NULL;
9074 	}
9075 }
9076 
9077 static void hpsa_remove_one(struct pci_dev *pdev)
9078 {
9079 	struct ctlr_info *h;
9080 	unsigned long flags;
9081 
9082 	if (pci_get_drvdata(pdev) == NULL) {
9083 		dev_err(&pdev->dev, "unable to remove device\n");
9084 		return;
9085 	}
9086 	h = pci_get_drvdata(pdev);
9087 
9088 	/* Get rid of any controller monitoring work items */
9089 	spin_lock_irqsave(&h->lock, flags);
9090 	h->remove_in_progress = 1;
9091 	spin_unlock_irqrestore(&h->lock, flags);
9092 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9093 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9094 	destroy_workqueue(h->rescan_ctlr_wq);
9095 	destroy_workqueue(h->resubmit_wq);
9096 
9097 	/*
9098 	 * Call before disabling interrupts.
9099 	 * scsi_remove_host can trigger I/O operations especially
9100 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9101 	 * operations which cannot complete and will hang the system.
9102 	 */
9103 	if (h->scsi_host)
9104 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9105 	/* includes hpsa_free_irqs - init_one 4 */
9106 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9107 	hpsa_shutdown(pdev);
9108 
9109 	hpsa_free_device_info(h);		/* scan */
9110 
9111 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9112 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9113 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9114 	hpsa_free_performant_mode(h);			/* init_one 7 */
9115 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9116 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9117 	kfree(h->lastlogicals);
9118 
9119 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9120 
9121 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9122 	h->scsi_host = NULL;				/* init_one 3 */
9123 
9124 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9125 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9126 
9127 	free_percpu(h->lockup_detected);		/* init_one 2 */
9128 	h->lockup_detected = NULL;			/* init_one 2 */
9129 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9130 
9131 	hpsa_delete_sas_host(h);
9132 
9133 	kfree(h);					/* init_one 1 */
9134 }
9135 
9136 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9137 	__attribute__((unused)) pm_message_t state)
9138 {
9139 	return -ENOSYS;
9140 }
9141 
9142 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9143 {
9144 	return -ENOSYS;
9145 }
9146 
9147 static struct pci_driver hpsa_pci_driver = {
9148 	.name = HPSA,
9149 	.probe = hpsa_init_one,
9150 	.remove = hpsa_remove_one,
9151 	.id_table = hpsa_pci_device_id,	/* id_table */
9152 	.shutdown = hpsa_shutdown,
9153 	.suspend = hpsa_suspend,
9154 	.resume = hpsa_resume,
9155 };
9156 
9157 /* Fill in bucket_map[], given nsgs (the max number of
9158  * scatter gather elements supported) and bucket[],
9159  * which is an array of 8 integers.  The bucket[] array
9160  * contains 8 different DMA transfer sizes (in 16
9161  * byte increments) which the controller uses to fetch
9162  * commands.  This function fills in bucket_map[], which
9163  * maps a given number of scatter gather elements to one of
9164  * the 8 DMA transfer sizes.  The point of it is to allow the
9165  * controller to only do as much DMA as needed to fetch the
9166  * command, with the DMA transfer size encoded in the lower
9167  * bits of the command address.
9168  */
9169 static void  calc_bucket_map(int bucket[], int num_buckets,
9170 	int nsgs, int min_blocks, u32 *bucket_map)
9171 {
9172 	int i, j, b, size;
9173 
9174 	/* Note, bucket_map must have nsgs+1 entries. */
9175 	for (i = 0; i <= nsgs; i++) {
9176 		/* Compute size of a command with i SG entries */
9177 		size = i + min_blocks;
9178 		b = num_buckets; /* Assume the biggest bucket */
9179 		/* Find the bucket that is just big enough */
9180 		for (j = 0; j < num_buckets; j++) {
9181 			if (bucket[j] >= size) {
9182 				b = j;
9183 				break;
9184 			}
9185 		}
9186 		/* for a command with i SG entries, use bucket b. */
9187 		bucket_map[i] = b;
9188 	}
9189 }
9190 
9191 /*
9192  * return -ENODEV on err, 0 on success (or no action)
9193  * allocates numerous items that must be freed later
9194  */
9195 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9196 {
9197 	int i;
9198 	unsigned long register_value;
9199 	unsigned long transMethod = CFGTBL_Trans_Performant |
9200 			(trans_support & CFGTBL_Trans_use_short_tags) |
9201 				CFGTBL_Trans_enable_directed_msix |
9202 			(trans_support & (CFGTBL_Trans_io_accel1 |
9203 				CFGTBL_Trans_io_accel2));
9204 	struct access_method access = SA5_performant_access;
9205 
9206 	/* This is a bit complicated.  There are 8 registers on
9207 	 * the controller which we write to to tell it 8 different
9208 	 * sizes of commands which there may be.  It's a way of
9209 	 * reducing the DMA done to fetch each command.  Encoded into
9210 	 * each command's tag are 3 bits which communicate to the controller
9211 	 * which of the eight sizes that command fits within.  The size of
9212 	 * each command depends on how many scatter gather entries there are.
9213 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9214 	 * with the number of 16-byte blocks a command of that size requires.
9215 	 * The smallest command possible requires 5 such 16 byte blocks.
9216 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9217 	 * blocks.  Note, this only extends to the SG entries contained
9218 	 * within the command block, and does not extend to chained blocks
9219 	 * of SG elements.   bft[] contains the eight values we write to
9220 	 * the registers.  They are not evenly distributed, but have more
9221 	 * sizes for small commands, and fewer sizes for larger commands.
9222 	 */
9223 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9224 #define MIN_IOACCEL2_BFT_ENTRY 5
9225 #define HPSA_IOACCEL2_HEADER_SZ 4
9226 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9227 			13, 14, 15, 16, 17, 18, 19,
9228 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9229 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9230 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9231 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9232 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9233 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9234 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9235 	/*  5 = 1 s/g entry or 4k
9236 	 *  6 = 2 s/g entry or 8k
9237 	 *  8 = 4 s/g entry or 16k
9238 	 * 10 = 6 s/g entry or 24k
9239 	 */
9240 
9241 	/* If the controller supports either ioaccel method then
9242 	 * we can also use the RAID stack submit path that does not
9243 	 * perform the superfluous readl() after each command submission.
9244 	 */
9245 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9246 		access = SA5_performant_access_no_read;
9247 
9248 	/* Controller spec: zero out this buffer. */
9249 	for (i = 0; i < h->nreply_queues; i++)
9250 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9251 
9252 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9253 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9254 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9255 	for (i = 0; i < 8; i++)
9256 		writel(bft[i], &h->transtable->BlockFetch[i]);
9257 
9258 	/* size of controller ring buffer */
9259 	writel(h->max_commands, &h->transtable->RepQSize);
9260 	writel(h->nreply_queues, &h->transtable->RepQCount);
9261 	writel(0, &h->transtable->RepQCtrAddrLow32);
9262 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9263 
9264 	for (i = 0; i < h->nreply_queues; i++) {
9265 		writel(0, &h->transtable->RepQAddr[i].upper);
9266 		writel(h->reply_queue[i].busaddr,
9267 			&h->transtable->RepQAddr[i].lower);
9268 	}
9269 
9270 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9271 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9272 	/*
9273 	 * enable outbound interrupt coalescing in accelerator mode;
9274 	 */
9275 	if (trans_support & CFGTBL_Trans_io_accel1) {
9276 		access = SA5_ioaccel_mode1_access;
9277 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9278 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9279 	} else {
9280 		if (trans_support & CFGTBL_Trans_io_accel2) {
9281 			access = SA5_ioaccel_mode2_access;
9282 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9283 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9284 		}
9285 	}
9286 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9287 	if (hpsa_wait_for_mode_change_ack(h)) {
9288 		dev_err(&h->pdev->dev,
9289 			"performant mode problem - doorbell timeout\n");
9290 		return -ENODEV;
9291 	}
9292 	register_value = readl(&(h->cfgtable->TransportActive));
9293 	if (!(register_value & CFGTBL_Trans_Performant)) {
9294 		dev_err(&h->pdev->dev,
9295 			"performant mode problem - transport not active\n");
9296 		return -ENODEV;
9297 	}
9298 	/* Change the access methods to the performant access methods */
9299 	h->access = access;
9300 	h->transMethod = transMethod;
9301 
9302 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9303 		(trans_support & CFGTBL_Trans_io_accel2)))
9304 		return 0;
9305 
9306 	if (trans_support & CFGTBL_Trans_io_accel1) {
9307 		/* Set up I/O accelerator mode */
9308 		for (i = 0; i < h->nreply_queues; i++) {
9309 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9310 			h->reply_queue[i].current_entry =
9311 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9312 		}
9313 		bft[7] = h->ioaccel_maxsg + 8;
9314 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9315 				h->ioaccel1_blockFetchTable);
9316 
9317 		/* initialize all reply queue entries to unused */
9318 		for (i = 0; i < h->nreply_queues; i++)
9319 			memset(h->reply_queue[i].head,
9320 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9321 				h->reply_queue_size);
9322 
9323 		/* set all the constant fields in the accelerator command
9324 		 * frames once at init time to save CPU cycles later.
9325 		 */
9326 		for (i = 0; i < h->nr_cmds; i++) {
9327 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9328 
9329 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9330 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9331 					(i * sizeof(struct ErrorInfo)));
9332 			cp->err_info_len = sizeof(struct ErrorInfo);
9333 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9334 			cp->host_context_flags =
9335 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9336 			cp->timeout_sec = 0;
9337 			cp->ReplyQueue = 0;
9338 			cp->tag =
9339 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9340 			cp->host_addr =
9341 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9342 					(i * sizeof(struct io_accel1_cmd)));
9343 		}
9344 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9345 		u64 cfg_offset, cfg_base_addr_index;
9346 		u32 bft2_offset, cfg_base_addr;
9347 		int rc;
9348 
9349 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9350 			&cfg_base_addr_index, &cfg_offset);
9351 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9352 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9353 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9354 				4, h->ioaccel2_blockFetchTable);
9355 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9356 		BUILD_BUG_ON(offsetof(struct CfgTable,
9357 				io_accel_request_size_offset) != 0xb8);
9358 		h->ioaccel2_bft2_regs =
9359 			remap_pci_mem(pci_resource_start(h->pdev,
9360 					cfg_base_addr_index) +
9361 					cfg_offset + bft2_offset,
9362 					ARRAY_SIZE(bft2) *
9363 					sizeof(*h->ioaccel2_bft2_regs));
9364 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9365 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9366 	}
9367 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9368 	if (hpsa_wait_for_mode_change_ack(h)) {
9369 		dev_err(&h->pdev->dev,
9370 			"performant mode problem - enabling ioaccel mode\n");
9371 		return -ENODEV;
9372 	}
9373 	return 0;
9374 }
9375 
9376 /* Free ioaccel1 mode command blocks and block fetch table */
9377 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9378 {
9379 	if (h->ioaccel_cmd_pool) {
9380 		pci_free_consistent(h->pdev,
9381 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9382 			h->ioaccel_cmd_pool,
9383 			h->ioaccel_cmd_pool_dhandle);
9384 		h->ioaccel_cmd_pool = NULL;
9385 		h->ioaccel_cmd_pool_dhandle = 0;
9386 	}
9387 	kfree(h->ioaccel1_blockFetchTable);
9388 	h->ioaccel1_blockFetchTable = NULL;
9389 }
9390 
9391 /* Allocate ioaccel1 mode command blocks and block fetch table */
9392 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9393 {
9394 	h->ioaccel_maxsg =
9395 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9396 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9397 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9398 
9399 	/* Command structures must be aligned on a 128-byte boundary
9400 	 * because the 7 lower bits of the address are used by the
9401 	 * hardware.
9402 	 */
9403 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9404 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9405 	h->ioaccel_cmd_pool =
9406 		pci_alloc_consistent(h->pdev,
9407 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9408 			&(h->ioaccel_cmd_pool_dhandle));
9409 
9410 	h->ioaccel1_blockFetchTable =
9411 		kmalloc(((h->ioaccel_maxsg + 1) *
9412 				sizeof(u32)), GFP_KERNEL);
9413 
9414 	if ((h->ioaccel_cmd_pool == NULL) ||
9415 		(h->ioaccel1_blockFetchTable == NULL))
9416 		goto clean_up;
9417 
9418 	memset(h->ioaccel_cmd_pool, 0,
9419 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9420 	return 0;
9421 
9422 clean_up:
9423 	hpsa_free_ioaccel1_cmd_and_bft(h);
9424 	return -ENOMEM;
9425 }
9426 
9427 /* Free ioaccel2 mode command blocks and block fetch table */
9428 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9429 {
9430 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9431 
9432 	if (h->ioaccel2_cmd_pool) {
9433 		pci_free_consistent(h->pdev,
9434 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9435 			h->ioaccel2_cmd_pool,
9436 			h->ioaccel2_cmd_pool_dhandle);
9437 		h->ioaccel2_cmd_pool = NULL;
9438 		h->ioaccel2_cmd_pool_dhandle = 0;
9439 	}
9440 	kfree(h->ioaccel2_blockFetchTable);
9441 	h->ioaccel2_blockFetchTable = NULL;
9442 }
9443 
9444 /* Allocate ioaccel2 mode command blocks and block fetch table */
9445 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9446 {
9447 	int rc;
9448 
9449 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9450 
9451 	h->ioaccel_maxsg =
9452 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9453 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9454 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9455 
9456 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9457 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9458 	h->ioaccel2_cmd_pool =
9459 		pci_alloc_consistent(h->pdev,
9460 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9461 			&(h->ioaccel2_cmd_pool_dhandle));
9462 
9463 	h->ioaccel2_blockFetchTable =
9464 		kmalloc(((h->ioaccel_maxsg + 1) *
9465 				sizeof(u32)), GFP_KERNEL);
9466 
9467 	if ((h->ioaccel2_cmd_pool == NULL) ||
9468 		(h->ioaccel2_blockFetchTable == NULL)) {
9469 		rc = -ENOMEM;
9470 		goto clean_up;
9471 	}
9472 
9473 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9474 	if (rc)
9475 		goto clean_up;
9476 
9477 	memset(h->ioaccel2_cmd_pool, 0,
9478 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9479 	return 0;
9480 
9481 clean_up:
9482 	hpsa_free_ioaccel2_cmd_and_bft(h);
9483 	return rc;
9484 }
9485 
9486 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9487 static void hpsa_free_performant_mode(struct ctlr_info *h)
9488 {
9489 	kfree(h->blockFetchTable);
9490 	h->blockFetchTable = NULL;
9491 	hpsa_free_reply_queues(h);
9492 	hpsa_free_ioaccel1_cmd_and_bft(h);
9493 	hpsa_free_ioaccel2_cmd_and_bft(h);
9494 }
9495 
9496 /* return -ENODEV on error, 0 on success (or no action)
9497  * allocates numerous items that must be freed later
9498  */
9499 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9500 {
9501 	u32 trans_support;
9502 	unsigned long transMethod = CFGTBL_Trans_Performant |
9503 					CFGTBL_Trans_use_short_tags;
9504 	int i, rc;
9505 
9506 	if (hpsa_simple_mode)
9507 		return 0;
9508 
9509 	trans_support = readl(&(h->cfgtable->TransportSupport));
9510 	if (!(trans_support & PERFORMANT_MODE))
9511 		return 0;
9512 
9513 	/* Check for I/O accelerator mode support */
9514 	if (trans_support & CFGTBL_Trans_io_accel1) {
9515 		transMethod |= CFGTBL_Trans_io_accel1 |
9516 				CFGTBL_Trans_enable_directed_msix;
9517 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9518 		if (rc)
9519 			return rc;
9520 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9521 		transMethod |= CFGTBL_Trans_io_accel2 |
9522 				CFGTBL_Trans_enable_directed_msix;
9523 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9524 		if (rc)
9525 			return rc;
9526 	}
9527 
9528 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9529 	hpsa_get_max_perf_mode_cmds(h);
9530 	/* Performant mode ring buffer and supporting data structures */
9531 	h->reply_queue_size = h->max_commands * sizeof(u64);
9532 
9533 	for (i = 0; i < h->nreply_queues; i++) {
9534 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9535 						h->reply_queue_size,
9536 						&(h->reply_queue[i].busaddr));
9537 		if (!h->reply_queue[i].head) {
9538 			rc = -ENOMEM;
9539 			goto clean1;	/* rq, ioaccel */
9540 		}
9541 		h->reply_queue[i].size = h->max_commands;
9542 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9543 		h->reply_queue[i].current_entry = 0;
9544 	}
9545 
9546 	/* Need a block fetch table for performant mode */
9547 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9548 				sizeof(u32)), GFP_KERNEL);
9549 	if (!h->blockFetchTable) {
9550 		rc = -ENOMEM;
9551 		goto clean1;	/* rq, ioaccel */
9552 	}
9553 
9554 	rc = hpsa_enter_performant_mode(h, trans_support);
9555 	if (rc)
9556 		goto clean2;	/* bft, rq, ioaccel */
9557 	return 0;
9558 
9559 clean2:	/* bft, rq, ioaccel */
9560 	kfree(h->blockFetchTable);
9561 	h->blockFetchTable = NULL;
9562 clean1:	/* rq, ioaccel */
9563 	hpsa_free_reply_queues(h);
9564 	hpsa_free_ioaccel1_cmd_and_bft(h);
9565 	hpsa_free_ioaccel2_cmd_and_bft(h);
9566 	return rc;
9567 }
9568 
9569 static int is_accelerated_cmd(struct CommandList *c)
9570 {
9571 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9572 }
9573 
9574 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9575 {
9576 	struct CommandList *c = NULL;
9577 	int i, accel_cmds_out;
9578 	int refcount;
9579 
9580 	do { /* wait for all outstanding ioaccel commands to drain out */
9581 		accel_cmds_out = 0;
9582 		for (i = 0; i < h->nr_cmds; i++) {
9583 			c = h->cmd_pool + i;
9584 			refcount = atomic_inc_return(&c->refcount);
9585 			if (refcount > 1) /* Command is allocated */
9586 				accel_cmds_out += is_accelerated_cmd(c);
9587 			cmd_free(h, c);
9588 		}
9589 		if (accel_cmds_out <= 0)
9590 			break;
9591 		msleep(100);
9592 	} while (1);
9593 }
9594 
9595 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9596 				struct hpsa_sas_port *hpsa_sas_port)
9597 {
9598 	struct hpsa_sas_phy *hpsa_sas_phy;
9599 	struct sas_phy *phy;
9600 
9601 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9602 	if (!hpsa_sas_phy)
9603 		return NULL;
9604 
9605 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9606 		hpsa_sas_port->next_phy_index);
9607 	if (!phy) {
9608 		kfree(hpsa_sas_phy);
9609 		return NULL;
9610 	}
9611 
9612 	hpsa_sas_port->next_phy_index++;
9613 	hpsa_sas_phy->phy = phy;
9614 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9615 
9616 	return hpsa_sas_phy;
9617 }
9618 
9619 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9620 {
9621 	struct sas_phy *phy = hpsa_sas_phy->phy;
9622 
9623 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9624 	sas_phy_free(phy);
9625 	if (hpsa_sas_phy->added_to_port)
9626 		list_del(&hpsa_sas_phy->phy_list_entry);
9627 	kfree(hpsa_sas_phy);
9628 }
9629 
9630 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9631 {
9632 	int rc;
9633 	struct hpsa_sas_port *hpsa_sas_port;
9634 	struct sas_phy *phy;
9635 	struct sas_identify *identify;
9636 
9637 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9638 	phy = hpsa_sas_phy->phy;
9639 
9640 	identify = &phy->identify;
9641 	memset(identify, 0, sizeof(*identify));
9642 	identify->sas_address = hpsa_sas_port->sas_address;
9643 	identify->device_type = SAS_END_DEVICE;
9644 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9645 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9646 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9647 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9648 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9649 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9650 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9651 
9652 	rc = sas_phy_add(hpsa_sas_phy->phy);
9653 	if (rc)
9654 		return rc;
9655 
9656 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9657 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9658 			&hpsa_sas_port->phy_list_head);
9659 	hpsa_sas_phy->added_to_port = true;
9660 
9661 	return 0;
9662 }
9663 
9664 static int
9665 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9666 				struct sas_rphy *rphy)
9667 {
9668 	struct sas_identify *identify;
9669 
9670 	identify = &rphy->identify;
9671 	identify->sas_address = hpsa_sas_port->sas_address;
9672 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9673 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9674 
9675 	return sas_rphy_add(rphy);
9676 }
9677 
9678 static struct hpsa_sas_port
9679 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9680 				u64 sas_address)
9681 {
9682 	int rc;
9683 	struct hpsa_sas_port *hpsa_sas_port;
9684 	struct sas_port *port;
9685 
9686 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9687 	if (!hpsa_sas_port)
9688 		return NULL;
9689 
9690 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9691 	hpsa_sas_port->parent_node = hpsa_sas_node;
9692 
9693 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9694 	if (!port)
9695 		goto free_hpsa_port;
9696 
9697 	rc = sas_port_add(port);
9698 	if (rc)
9699 		goto free_sas_port;
9700 
9701 	hpsa_sas_port->port = port;
9702 	hpsa_sas_port->sas_address = sas_address;
9703 	list_add_tail(&hpsa_sas_port->port_list_entry,
9704 			&hpsa_sas_node->port_list_head);
9705 
9706 	return hpsa_sas_port;
9707 
9708 free_sas_port:
9709 	sas_port_free(port);
9710 free_hpsa_port:
9711 	kfree(hpsa_sas_port);
9712 
9713 	return NULL;
9714 }
9715 
9716 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9717 {
9718 	struct hpsa_sas_phy *hpsa_sas_phy;
9719 	struct hpsa_sas_phy *next;
9720 
9721 	list_for_each_entry_safe(hpsa_sas_phy, next,
9722 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9723 		hpsa_free_sas_phy(hpsa_sas_phy);
9724 
9725 	sas_port_delete(hpsa_sas_port->port);
9726 	list_del(&hpsa_sas_port->port_list_entry);
9727 	kfree(hpsa_sas_port);
9728 }
9729 
9730 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9731 {
9732 	struct hpsa_sas_node *hpsa_sas_node;
9733 
9734 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9735 	if (hpsa_sas_node) {
9736 		hpsa_sas_node->parent_dev = parent_dev;
9737 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9738 	}
9739 
9740 	return hpsa_sas_node;
9741 }
9742 
9743 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9744 {
9745 	struct hpsa_sas_port *hpsa_sas_port;
9746 	struct hpsa_sas_port *next;
9747 
9748 	if (!hpsa_sas_node)
9749 		return;
9750 
9751 	list_for_each_entry_safe(hpsa_sas_port, next,
9752 			&hpsa_sas_node->port_list_head, port_list_entry)
9753 		hpsa_free_sas_port(hpsa_sas_port);
9754 
9755 	kfree(hpsa_sas_node);
9756 }
9757 
9758 static struct hpsa_scsi_dev_t
9759 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9760 					struct sas_rphy *rphy)
9761 {
9762 	int i;
9763 	struct hpsa_scsi_dev_t *device;
9764 
9765 	for (i = 0; i < h->ndevices; i++) {
9766 		device = h->dev[i];
9767 		if (!device->sas_port)
9768 			continue;
9769 		if (device->sas_port->rphy == rphy)
9770 			return device;
9771 	}
9772 
9773 	return NULL;
9774 }
9775 
9776 static int hpsa_add_sas_host(struct ctlr_info *h)
9777 {
9778 	int rc;
9779 	struct device *parent_dev;
9780 	struct hpsa_sas_node *hpsa_sas_node;
9781 	struct hpsa_sas_port *hpsa_sas_port;
9782 	struct hpsa_sas_phy *hpsa_sas_phy;
9783 
9784 	parent_dev = &h->scsi_host->shost_gendev;
9785 
9786 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9787 	if (!hpsa_sas_node)
9788 		return -ENOMEM;
9789 
9790 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9791 	if (!hpsa_sas_port) {
9792 		rc = -ENODEV;
9793 		goto free_sas_node;
9794 	}
9795 
9796 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9797 	if (!hpsa_sas_phy) {
9798 		rc = -ENODEV;
9799 		goto free_sas_port;
9800 	}
9801 
9802 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9803 	if (rc)
9804 		goto free_sas_phy;
9805 
9806 	h->sas_host = hpsa_sas_node;
9807 
9808 	return 0;
9809 
9810 free_sas_phy:
9811 	hpsa_free_sas_phy(hpsa_sas_phy);
9812 free_sas_port:
9813 	hpsa_free_sas_port(hpsa_sas_port);
9814 free_sas_node:
9815 	hpsa_free_sas_node(hpsa_sas_node);
9816 
9817 	return rc;
9818 }
9819 
9820 static void hpsa_delete_sas_host(struct ctlr_info *h)
9821 {
9822 	hpsa_free_sas_node(h->sas_host);
9823 }
9824 
9825 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9826 				struct hpsa_scsi_dev_t *device)
9827 {
9828 	int rc;
9829 	struct hpsa_sas_port *hpsa_sas_port;
9830 	struct sas_rphy *rphy;
9831 
9832 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9833 	if (!hpsa_sas_port)
9834 		return -ENOMEM;
9835 
9836 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9837 	if (!rphy) {
9838 		rc = -ENODEV;
9839 		goto free_sas_port;
9840 	}
9841 
9842 	hpsa_sas_port->rphy = rphy;
9843 	device->sas_port = hpsa_sas_port;
9844 
9845 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9846 	if (rc)
9847 		goto free_sas_port;
9848 
9849 	return 0;
9850 
9851 free_sas_port:
9852 	hpsa_free_sas_port(hpsa_sas_port);
9853 	device->sas_port = NULL;
9854 
9855 	return rc;
9856 }
9857 
9858 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9859 {
9860 	if (device->sas_port) {
9861 		hpsa_free_sas_port(device->sas_port);
9862 		device->sas_port = NULL;
9863 	}
9864 }
9865 
9866 static int
9867 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9868 {
9869 	return 0;
9870 }
9871 
9872 static int
9873 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9874 {
9875 	*identifier = 0;
9876 	return 0;
9877 }
9878 
9879 static int
9880 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9881 {
9882 	return -ENXIO;
9883 }
9884 
9885 static int
9886 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9887 {
9888 	return 0;
9889 }
9890 
9891 static int
9892 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9893 {
9894 	return 0;
9895 }
9896 
9897 static int
9898 hpsa_sas_phy_setup(struct sas_phy *phy)
9899 {
9900 	return 0;
9901 }
9902 
9903 static void
9904 hpsa_sas_phy_release(struct sas_phy *phy)
9905 {
9906 }
9907 
9908 static int
9909 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9910 {
9911 	return -EINVAL;
9912 }
9913 
9914 /* SMP = Serial Management Protocol */
9915 static int
9916 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9917 struct request *req)
9918 {
9919 	return -EINVAL;
9920 }
9921 
9922 static struct sas_function_template hpsa_sas_transport_functions = {
9923 	.get_linkerrors = hpsa_sas_get_linkerrors,
9924 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9925 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9926 	.phy_reset = hpsa_sas_phy_reset,
9927 	.phy_enable = hpsa_sas_phy_enable,
9928 	.phy_setup = hpsa_sas_phy_setup,
9929 	.phy_release = hpsa_sas_phy_release,
9930 	.set_phy_speed = hpsa_sas_phy_speed,
9931 	.smp_handler = hpsa_sas_smp_handler,
9932 };
9933 
9934 /*
9935  *  This is it.  Register the PCI driver information for the cards we control
9936  *  the OS will call our registered routines when it finds one of our cards.
9937  */
9938 static int __init hpsa_init(void)
9939 {
9940 	int rc;
9941 
9942 	hpsa_sas_transport_template =
9943 		sas_attach_transport(&hpsa_sas_transport_functions);
9944 	if (!hpsa_sas_transport_template)
9945 		return -ENODEV;
9946 
9947 	rc = pci_register_driver(&hpsa_pci_driver);
9948 
9949 	if (rc)
9950 		sas_release_transport(hpsa_sas_transport_template);
9951 
9952 	return rc;
9953 }
9954 
9955 static void __exit hpsa_cleanup(void)
9956 {
9957 	pci_unregister_driver(&hpsa_pci_driver);
9958 	sas_release_transport(hpsa_sas_transport_template);
9959 }
9960 
9961 static void __attribute__((unused)) verify_offsets(void)
9962 {
9963 #define VERIFY_OFFSET(member, offset) \
9964 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9965 
9966 	VERIFY_OFFSET(structure_size, 0);
9967 	VERIFY_OFFSET(volume_blk_size, 4);
9968 	VERIFY_OFFSET(volume_blk_cnt, 8);
9969 	VERIFY_OFFSET(phys_blk_shift, 16);
9970 	VERIFY_OFFSET(parity_rotation_shift, 17);
9971 	VERIFY_OFFSET(strip_size, 18);
9972 	VERIFY_OFFSET(disk_starting_blk, 20);
9973 	VERIFY_OFFSET(disk_blk_cnt, 28);
9974 	VERIFY_OFFSET(data_disks_per_row, 36);
9975 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9976 	VERIFY_OFFSET(row_cnt, 40);
9977 	VERIFY_OFFSET(layout_map_count, 42);
9978 	VERIFY_OFFSET(flags, 44);
9979 	VERIFY_OFFSET(dekindex, 46);
9980 	/* VERIFY_OFFSET(reserved, 48 */
9981 	VERIFY_OFFSET(data, 64);
9982 
9983 #undef VERIFY_OFFSET
9984 
9985 #define VERIFY_OFFSET(member, offset) \
9986 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9987 
9988 	VERIFY_OFFSET(IU_type, 0);
9989 	VERIFY_OFFSET(direction, 1);
9990 	VERIFY_OFFSET(reply_queue, 2);
9991 	/* VERIFY_OFFSET(reserved1, 3);  */
9992 	VERIFY_OFFSET(scsi_nexus, 4);
9993 	VERIFY_OFFSET(Tag, 8);
9994 	VERIFY_OFFSET(cdb, 16);
9995 	VERIFY_OFFSET(cciss_lun, 32);
9996 	VERIFY_OFFSET(data_len, 40);
9997 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9998 	VERIFY_OFFSET(sg_count, 45);
9999 	/* VERIFY_OFFSET(reserved3 */
10000 	VERIFY_OFFSET(err_ptr, 48);
10001 	VERIFY_OFFSET(err_len, 56);
10002 	/* VERIFY_OFFSET(reserved4  */
10003 	VERIFY_OFFSET(sg, 64);
10004 
10005 #undef VERIFY_OFFSET
10006 
10007 #define VERIFY_OFFSET(member, offset) \
10008 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10009 
10010 	VERIFY_OFFSET(dev_handle, 0x00);
10011 	VERIFY_OFFSET(reserved1, 0x02);
10012 	VERIFY_OFFSET(function, 0x03);
10013 	VERIFY_OFFSET(reserved2, 0x04);
10014 	VERIFY_OFFSET(err_info, 0x0C);
10015 	VERIFY_OFFSET(reserved3, 0x10);
10016 	VERIFY_OFFSET(err_info_len, 0x12);
10017 	VERIFY_OFFSET(reserved4, 0x13);
10018 	VERIFY_OFFSET(sgl_offset, 0x14);
10019 	VERIFY_OFFSET(reserved5, 0x15);
10020 	VERIFY_OFFSET(transfer_len, 0x1C);
10021 	VERIFY_OFFSET(reserved6, 0x20);
10022 	VERIFY_OFFSET(io_flags, 0x24);
10023 	VERIFY_OFFSET(reserved7, 0x26);
10024 	VERIFY_OFFSET(LUN, 0x34);
10025 	VERIFY_OFFSET(control, 0x3C);
10026 	VERIFY_OFFSET(CDB, 0x40);
10027 	VERIFY_OFFSET(reserved8, 0x50);
10028 	VERIFY_OFFSET(host_context_flags, 0x60);
10029 	VERIFY_OFFSET(timeout_sec, 0x62);
10030 	VERIFY_OFFSET(ReplyQueue, 0x64);
10031 	VERIFY_OFFSET(reserved9, 0x65);
10032 	VERIFY_OFFSET(tag, 0x68);
10033 	VERIFY_OFFSET(host_addr, 0x70);
10034 	VERIFY_OFFSET(CISS_LUN, 0x78);
10035 	VERIFY_OFFSET(SG, 0x78 + 8);
10036 #undef VERIFY_OFFSET
10037 }
10038 
10039 module_init(hpsa_init);
10040 module_exit(hpsa_cleanup);
10041