xref: /linux/drivers/scsi/aacraid/commsup.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49 
50 #include "aacraid.h"
51 
52 /**
53  *	fib_map_alloc		-	allocate the fib objects
54  *	@dev: Adapter to allocate for
55  *
56  *	Allocate and map the shared PCI space for the FIB blocks used to
57  *	talk to the Adaptec firmware.
58  */
59 
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 	dprintk((KERN_INFO
63 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 	  &dev->hw_fib_pa))==NULL)
69 		return -ENOMEM;
70 	return 0;
71 }
72 
73 /**
74  *	aac_fib_map_free		-	free the fib objects
75  *	@dev: Adapter to free
76  *
77  *	Free the PCI mappings and the memory allocated for FIB blocks
78  *	on this adapter.
79  */
80 
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85 
86 /**
87  *	aac_fib_setup	-	setup the fibs
88  *	@dev: Adapter to set up
89  *
90  *	Allocate the PCI space for the fibs, map it and then intialise the
91  *	fib area, the unmapped fib data and also the free list
92  */
93 
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96 	struct fib *fibptr;
97 	struct hw_fib *hw_fib_va;
98 	dma_addr_t hw_fib_pa;
99 	int i;
100 
101 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 	}
106 	if (i<0)
107 		return -ENOMEM;
108 
109 	hw_fib_va = dev->hw_fib_va;
110 	hw_fib_pa = dev->hw_fib_pa;
111 	memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112 	/*
113 	 *	Initialise the fibs
114 	 */
115 	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
116 	{
117 		fibptr->dev = dev;
118 		fibptr->hw_fib = hw_fib_va;
119 		fibptr->data = (void *) fibptr->hw_fib->data;
120 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
121 		init_MUTEX_LOCKED(&fibptr->event_wait);
122 		spin_lock_init(&fibptr->event_lock);
123 		hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
124 		hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 		fibptr->hw_fib_pa = hw_fib_pa;
126 		hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
127 		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128 	}
129 	/*
130 	 *	Add the fib chain to the free list
131 	 */
132 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133 	/*
134 	 *	Enable this to debug out of queue space
135 	 */
136 	dev->free_fib = &dev->fibs[0];
137 	return 0;
138 }
139 
140 /**
141  *	aac_fib_alloc	-	allocate a fib
142  *	@dev: Adapter to allocate the fib for
143  *
144  *	Allocate a fib from the adapter fib pool. If the pool is empty we
145  *	return NULL.
146  */
147 
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150 	struct fib * fibptr;
151 	unsigned long flags;
152 	spin_lock_irqsave(&dev->fib_lock, flags);
153 	fibptr = dev->free_fib;
154 	if(!fibptr){
155 		spin_unlock_irqrestore(&dev->fib_lock, flags);
156 		return fibptr;
157 	}
158 	dev->free_fib = fibptr->next;
159 	spin_unlock_irqrestore(&dev->fib_lock, flags);
160 	/*
161 	 *	Set the proper node type code and node byte size
162 	 */
163 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 	fibptr->size = sizeof(struct fib);
165 	/*
166 	 *	Null out fields that depend on being zero at the start of
167 	 *	each I/O
168 	 */
169 	fibptr->hw_fib->header.XferState = 0;
170 	fibptr->callback = NULL;
171 	fibptr->callback_data = NULL;
172 
173 	return fibptr;
174 }
175 
176 /**
177  *	aac_fib_free	-	free a fib
178  *	@fibptr: fib to free up
179  *
180  *	Frees up a fib and places it on the appropriate queue
181  *	(either free or timed out)
182  */
183 
184 void aac_fib_free(struct fib *fibptr)
185 {
186 	unsigned long flags;
187 
188 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
189 	if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
190 		aac_config.fib_timeouts++;
191 		fibptr->next = fibptr->dev->timeout_fib;
192 		fibptr->dev->timeout_fib = fibptr;
193 	} else {
194 		if (fibptr->hw_fib->header.XferState != 0) {
195 			printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196 				 (void*)fibptr,
197 				 le32_to_cpu(fibptr->hw_fib->header.XferState));
198 		}
199 		fibptr->next = fibptr->dev->free_fib;
200 		fibptr->dev->free_fib = fibptr;
201 	}
202 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 }
204 
205 /**
206  *	aac_fib_init	-	initialise a fib
207  *	@fibptr: The fib to initialize
208  *
209  *	Set up the generic fib fields ready for use
210  */
211 
212 void aac_fib_init(struct fib *fibptr)
213 {
214 	struct hw_fib *hw_fib = fibptr->hw_fib;
215 
216 	hw_fib->header.StructType = FIB_MAGIC;
217 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 }
223 
224 /**
225  *	fib_deallocate		-	deallocate a fib
226  *	@fibptr: fib to deallocate
227  *
228  *	Will deallocate and return to the free pool the FIB pointed to by the
229  *	caller.
230  */
231 
232 static void fib_dealloc(struct fib * fibptr)
233 {
234 	struct hw_fib *hw_fib = fibptr->hw_fib;
235 	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236 	hw_fib->header.XferState = 0;
237 }
238 
239 /*
240  *	Commuication primitives define and support the queuing method we use to
241  *	support host to adapter commuication. All queue accesses happen through
242  *	these routines and are the only routines which have a knowledge of the
243  *	 how these queues are implemented.
244  */
245 
246 /**
247  *	aac_get_entry		-	get a queue entry
248  *	@dev: Adapter
249  *	@qid: Queue Number
250  *	@entry: Entry return
251  *	@index: Index return
252  *	@nonotify: notification control
253  *
254  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
255  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256  *	returned.
257  */
258 
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
260 {
261 	struct aac_queue * q;
262 	unsigned long idx;
263 
264 	/*
265 	 *	All of the queues wrap when they reach the end, so we check
266 	 *	to see if they have reached the end and if they have we just
267 	 *	set the index back to zero. This is a wrap. You could or off
268 	 *	the high bits in all updates but this is a bit faster I think.
269 	 */
270 
271 	q = &dev->queues->queue[qid];
272 
273 	idx = *index = le32_to_cpu(*(q->headers.producer));
274 	/* Interrupt Moderation, only interrupt for first two entries */
275 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
276 		if (--idx == 0) {
277 			if (qid == AdapNormCmdQueue)
278 				idx = ADAP_NORM_CMD_ENTRIES;
279 			else
280 				idx = ADAP_NORM_RESP_ENTRIES;
281 		}
282 		if (idx != le32_to_cpu(*(q->headers.consumer)))
283 			*nonotify = 1;
284 	}
285 
286 	if (qid == AdapNormCmdQueue) {
287 	        if (*index >= ADAP_NORM_CMD_ENTRIES)
288 			*index = 0; /* Wrap to front of the Producer Queue. */
289 	} else {
290 		if (*index >= ADAP_NORM_RESP_ENTRIES)
291 			*index = 0; /* Wrap to front of the Producer Queue. */
292 	}
293 
294         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296 				qid, q->numpending);
297 		return 0;
298 	} else {
299 	        *entry = q->base + *index;
300 		return 1;
301 	}
302 }
303 
304 /**
305  *	aac_queue_get		-	get the next free QE
306  *	@dev: Adapter
307  *	@index: Returned index
308  *	@priority: Priority of fib
309  *	@fib: Fib to associate with the queue entry
310  *	@wait: Wait if queue full
311  *	@fibptr: Driver fib object to go with fib
312  *	@nonotify: Don't notify the adapter
313  *
314  *	Gets the next free QE off the requested priorty adapter command
315  *	queue and associates the Fib with the QE. The QE represented by
316  *	index is ready to insert on the queue when this routine returns
317  *	success.
318  */
319 
320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
321 {
322 	struct aac_entry * entry = NULL;
323 	int map = 0;
324 
325 	if (qid == AdapNormCmdQueue) {
326 		/*  if no entries wait for some if caller wants to */
327         	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
328         	{
329 			printk(KERN_ERR "GetEntries failed\n");
330 		}
331 	        /*
332 	         *	Setup queue entry with a command, status and fib mapped
333 	         */
334 	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335 	        map = 1;
336 	} else {
337 	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
338 	        {
339 			/* if no entries wait for some if caller wants to */
340 		}
341         	/*
342         	 *	Setup queue entry with command, status and fib mapped
343         	 */
344         	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345         	entry->addr = hw_fib->header.SenderFibAddress;
346      			/* Restore adapters pointer to the FIB */
347 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
348         	map = 0;
349 	}
350 	/*
351 	 *	If MapFib is true than we need to map the Fib and put pointers
352 	 *	in the queue entry.
353 	 */
354 	if (map)
355 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356 	return 0;
357 }
358 
359 /*
360  *	Define the highest level of host to adapter communication routines.
361  *	These routines will support host to adapter FS commuication. These
362  *	routines have no knowledge of the commuication method used. This level
363  *	sends and receives FIBs. This level has no knowledge of how these FIBs
364  *	get passed back and forth.
365  */
366 
367 /**
368  *	aac_fib_send	-	send a fib to the adapter
369  *	@command: Command to send
370  *	@fibptr: The fib
371  *	@size: Size of fib data area
372  *	@priority: Priority of Fib
373  *	@wait: Async/sync select
374  *	@reply: True if a reply is wanted
375  *	@callback: Called with reply
376  *	@callback_data: Passed to callback
377  *
378  *	Sends the requested FIB to the adapter and optionally will wait for a
379  *	response FIB. If the caller does not wish to wait for a response than
380  *	an event to wait on must be supplied. This event will be set when a
381  *	response FIB is received from the adapter.
382  */
383 
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385 		int priority, int wait, int reply, fib_callback callback,
386 		void *callback_data)
387 {
388 	struct aac_dev * dev = fibptr->dev;
389 	struct hw_fib * hw_fib = fibptr->hw_fib;
390 	unsigned long flags = 0;
391 	unsigned long qflags;
392 
393 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394 		return -EBUSY;
395 	/*
396 	 *	There are 5 cases with the wait and reponse requested flags.
397 	 *	The only invalid cases are if the caller requests to wait and
398 	 *	does not request a response and if the caller does not want a
399 	 *	response and the Fib is not allocated from pool. If a response
400 	 *	is not requesed the Fib will just be deallocaed by the DPC
401 	 *	routine when the response comes back from the adapter. No
402 	 *	further processing will be done besides deleting the Fib. We
403 	 *	will have a debug mode where the adapter can notify the host
404 	 *	it had a problem and the host can log that fact.
405 	 */
406 	if (wait && !reply) {
407 		return -EINVAL;
408 	} else if (!wait && reply) {
409 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
410 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
411 	} else if (!wait && !reply) {
412 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
413 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
414 	} else if (wait && reply) {
415 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
416 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
417 	}
418 	/*
419 	 *	Map the fib into 32bits by using the fib number
420 	 */
421 
422 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
423 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424 	/*
425 	 *	Set FIB state to indicate where it came from and if we want a
426 	 *	response from the adapter. Also load the command from the
427 	 *	caller.
428 	 *
429 	 *	Map the hw fib pointer as a 32bit value
430 	 */
431 	hw_fib->header.Command = cpu_to_le16(command);
432 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
433 	fibptr->hw_fib->header.Flags = 0;	/* 0 the flags field - internal only*/
434 	/*
435 	 *	Set the size of the Fib we want to send to the adapter
436 	 */
437 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
438 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
439 		return -EMSGSIZE;
440 	}
441 	/*
442 	 *	Get a queue entry connect the FIB to it and send an notify
443 	 *	the adapter a command is ready.
444 	 */
445 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
446 
447 	/*
448 	 *	Fill in the Callback and CallbackContext if we are not
449 	 *	going to wait.
450 	 */
451 	if (!wait) {
452 		fibptr->callback = callback;
453 		fibptr->callback_data = callback_data;
454 	}
455 
456 	fibptr->done = 0;
457 	fibptr->flags = 0;
458 
459 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460 
461 	dprintk((KERN_DEBUG "Fib contents:.\n"));
462 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
463 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
464 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
465 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
466 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
467 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
468 
469 	if (!dev->queues)
470 		return -EBUSY;
471 
472 	if(wait)
473 		spin_lock_irqsave(&fibptr->event_lock, flags);
474 	aac_adapter_deliver(fibptr);
475 
476 	/*
477 	 *	If the caller wanted us to wait for response wait now.
478 	 */
479 
480 	if (wait) {
481 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
482 		/* Only set for first known interruptable command */
483 		if (wait < 0) {
484 			/*
485 			 * *VERY* Dangerous to time out a command, the
486 			 * assumption is made that we have no hope of
487 			 * functioning because an interrupt routing or other
488 			 * hardware failure has occurred.
489 			 */
490 			unsigned long count = 36000000L; /* 3 minutes */
491 			while (down_trylock(&fibptr->event_wait)) {
492 				int blink;
493 				if (--count == 0) {
494 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
495 					spin_lock_irqsave(q->lock, qflags);
496 					q->numpending--;
497 					spin_unlock_irqrestore(q->lock, qflags);
498 					if (wait == -1) {
499 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
500 						  "Usually a result of a PCI interrupt routing problem;\n"
501 						  "update mother board BIOS or consider utilizing one of\n"
502 						  "the SAFE mode kernel options (acpi, apic etc)\n");
503 					}
504 					return -ETIMEDOUT;
505 				}
506 				if ((blink = aac_adapter_check_health(dev)) > 0) {
507 					if (wait == -1) {
508 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
509 						  "Usually a result of a serious unrecoverable hardware problem\n",
510 						  blink);
511 					}
512 					return -EFAULT;
513 				}
514 				udelay(5);
515 			}
516 		} else if (down_interruptible(&fibptr->event_wait)) {
517 			spin_lock_irqsave(&fibptr->event_lock, flags);
518 			if (fibptr->done == 0) {
519 				fibptr->done = 2; /* Tell interrupt we aborted */
520 				spin_unlock_irqrestore(&fibptr->event_lock, flags);
521 				return -EINTR;
522 			}
523 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
524 		}
525 		BUG_ON(fibptr->done == 0);
526 
527 		if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
528 			return -ETIMEDOUT;
529 		} else {
530 			return 0;
531 		}
532 	}
533 	/*
534 	 *	If the user does not want a response than return success otherwise
535 	 *	return pending
536 	 */
537 	if (reply)
538 		return -EINPROGRESS;
539 	else
540 		return 0;
541 }
542 
543 /**
544  *	aac_consumer_get	-	get the top of the queue
545  *	@dev: Adapter
546  *	@q: Queue
547  *	@entry: Return entry
548  *
549  *	Will return a pointer to the entry on the top of the queue requested that
550  * 	we are a consumer of, and return the address of the queue entry. It does
551  *	not change the state of the queue.
552  */
553 
554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
555 {
556 	u32 index;
557 	int status;
558 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
559 		status = 0;
560 	} else {
561 		/*
562 		 *	The consumer index must be wrapped if we have reached
563 		 *	the end of the queue, else we just use the entry
564 		 *	pointed to by the header index
565 		 */
566 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
567 			index = 0;
568 		else
569 		        index = le32_to_cpu(*q->headers.consumer);
570 		*entry = q->base + index;
571 		status = 1;
572 	}
573 	return(status);
574 }
575 
576 /**
577  *	aac_consumer_free	-	free consumer entry
578  *	@dev: Adapter
579  *	@q: Queue
580  *	@qid: Queue ident
581  *
582  *	Frees up the current top of the queue we are a consumer of. If the
583  *	queue was full notify the producer that the queue is no longer full.
584  */
585 
586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
587 {
588 	int wasfull = 0;
589 	u32 notify;
590 
591 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
592 		wasfull = 1;
593 
594 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595 		*q->headers.consumer = cpu_to_le32(1);
596 	else
597 		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
598 
599 	if (wasfull) {
600 		switch (qid) {
601 
602 		case HostNormCmdQueue:
603 			notify = HostNormCmdNotFull;
604 			break;
605 		case HostNormRespQueue:
606 			notify = HostNormRespNotFull;
607 			break;
608 		default:
609 			BUG();
610 			return;
611 		}
612 		aac_adapter_notify(dev, notify);
613 	}
614 }
615 
616 /**
617  *	aac_fib_adapter_complete	-	complete adapter issued fib
618  *	@fibptr: fib to complete
619  *	@size: size of fib
620  *
621  *	Will do all necessary work to complete a FIB that was sent from
622  *	the adapter.
623  */
624 
625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
626 {
627 	struct hw_fib * hw_fib = fibptr->hw_fib;
628 	struct aac_dev * dev = fibptr->dev;
629 	struct aac_queue * q;
630 	unsigned long nointr = 0;
631 	unsigned long qflags;
632 
633 	if (hw_fib->header.XferState == 0) {
634 		if (dev->comm_interface == AAC_COMM_MESSAGE)
635 			kfree (hw_fib);
636         	return 0;
637 	}
638 	/*
639 	 *	If we plan to do anything check the structure type first.
640 	 */
641 	if ( hw_fib->header.StructType != FIB_MAGIC ) {
642 		if (dev->comm_interface == AAC_COMM_MESSAGE)
643 			kfree (hw_fib);
644         	return -EINVAL;
645 	}
646 	/*
647 	 *	This block handles the case where the adapter had sent us a
648 	 *	command and we have finished processing the command. We
649 	 *	call completeFib when we are done processing the command
650 	 *	and want to send a response back to the adapter. This will
651 	 *	send the completed cdb to the adapter.
652 	 */
653 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
654 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
655 			kfree (hw_fib);
656 		} else {
657 	       		u32 index;
658 		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659 			if (size) {
660 				size += sizeof(struct aac_fibhdr);
661 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
662 					return -EMSGSIZE;
663 				hw_fib->header.Size = cpu_to_le16(size);
664 			}
665 			q = &dev->queues->queue[AdapNormRespQueue];
666 			spin_lock_irqsave(q->lock, qflags);
667 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
668 			*(q->headers.producer) = cpu_to_le32(index + 1);
669 			spin_unlock_irqrestore(q->lock, qflags);
670 			if (!(nointr & (int)aac_config.irq_mod))
671 				aac_adapter_notify(dev, AdapNormRespQueue);
672 		}
673 	}
674 	else
675 	{
676         	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
677         	BUG();
678 	}
679 	return 0;
680 }
681 
682 /**
683  *	aac_fib_complete	-	fib completion handler
684  *	@fib: FIB to complete
685  *
686  *	Will do all necessary work to complete a FIB.
687  */
688 
689 int aac_fib_complete(struct fib *fibptr)
690 {
691 	struct hw_fib * hw_fib = fibptr->hw_fib;
692 
693 	/*
694 	 *	Check for a fib which has already been completed
695 	 */
696 
697 	if (hw_fib->header.XferState == 0)
698         	return 0;
699 	/*
700 	 *	If we plan to do anything check the structure type first.
701 	 */
702 
703 	if (hw_fib->header.StructType != FIB_MAGIC)
704 	        return -EINVAL;
705 	/*
706 	 *	This block completes a cdb which orginated on the host and we
707 	 *	just need to deallocate the cdb or reinit it. At this point the
708 	 *	command is complete that we had sent to the adapter and this
709 	 *	cdb could be reused.
710 	 */
711 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
712 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
713 	{
714 		fib_dealloc(fibptr);
715 	}
716 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
717 	{
718 		/*
719 		 *	This handles the case when the host has aborted the I/O
720 		 *	to the adapter because the adapter is not responding
721 		 */
722 		fib_dealloc(fibptr);
723 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
724 		fib_dealloc(fibptr);
725 	} else {
726 		BUG();
727 	}
728 	return 0;
729 }
730 
731 /**
732  *	aac_printf	-	handle printf from firmware
733  *	@dev: Adapter
734  *	@val: Message info
735  *
736  *	Print a message passed to us by the controller firmware on the
737  *	Adaptec board
738  */
739 
740 void aac_printf(struct aac_dev *dev, u32 val)
741 {
742 	char *cp = dev->printfbuf;
743 	if (dev->printf_enabled)
744 	{
745 		int length = val & 0xffff;
746 		int level = (val >> 16) & 0xffff;
747 
748 		/*
749 		 *	The size of the printfbuf is set in port.c
750 		 *	There is no variable or define for it
751 		 */
752 		if (length > 255)
753 			length = 255;
754 		if (cp[length] != 0)
755 			cp[length] = 0;
756 		if (level == LOG_AAC_HIGH_ERROR)
757 			printk(KERN_WARNING "%s:%s", dev->name, cp);
758 		else
759 			printk(KERN_INFO "%s:%s", dev->name, cp);
760 	}
761 	memset(cp, 0,  256);
762 }
763 
764 
765 /**
766  *	aac_handle_aif		-	Handle a message from the firmware
767  *	@dev: Which adapter this fib is from
768  *	@fibptr: Pointer to fibptr from adapter
769  *
770  *	This routine handles a driver notify fib from the adapter and
771  *	dispatches it to the appropriate routine for handling.
772  */
773 
774 #define AIF_SNIFF_TIMEOUT	(30*HZ)
775 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
776 {
777 	struct hw_fib * hw_fib = fibptr->hw_fib;
778 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
779 	int busy;
780 	u32 container;
781 	struct scsi_device *device;
782 	enum {
783 		NOTHING,
784 		DELETE,
785 		ADD,
786 		CHANGE
787 	} device_config_needed;
788 
789 	/* Sniff for container changes */
790 
791 	if (!dev || !dev->fsa_dev)
792 		return;
793 	container = (u32)-1;
794 
795 	/*
796 	 *	We have set this up to try and minimize the number of
797 	 * re-configures that take place. As a result of this when
798 	 * certain AIF's come in we will set a flag waiting for another
799 	 * type of AIF before setting the re-config flag.
800 	 */
801 	switch (le32_to_cpu(aifcmd->command)) {
802 	case AifCmdDriverNotify:
803 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
804 		/*
805 		 *	Morph or Expand complete
806 		 */
807 		case AifDenMorphComplete:
808 		case AifDenVolumeExtendComplete:
809 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
810 			if (container >= dev->maximum_num_containers)
811 				break;
812 
813 			/*
814 			 *	Find the scsi_device associated with the SCSI
815 			 * address. Make sure we have the right array, and if
816 			 * so set the flag to initiate a new re-config once we
817 			 * see an AifEnConfigChange AIF come through.
818 			 */
819 
820 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
821 				device = scsi_device_lookup(dev->scsi_host_ptr,
822 					CONTAINER_TO_CHANNEL(container),
823 					CONTAINER_TO_ID(container),
824 					CONTAINER_TO_LUN(container));
825 				if (device) {
826 					dev->fsa_dev[container].config_needed = CHANGE;
827 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
828 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
829 					scsi_device_put(device);
830 				}
831 			}
832 		}
833 
834 		/*
835 		 *	If we are waiting on something and this happens to be
836 		 * that thing then set the re-configure flag.
837 		 */
838 		if (container != (u32)-1) {
839 			if (container >= dev->maximum_num_containers)
840 				break;
841 			if ((dev->fsa_dev[container].config_waiting_on ==
842 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
843 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
844 				dev->fsa_dev[container].config_waiting_on = 0;
845 		} else for (container = 0;
846 		    container < dev->maximum_num_containers; ++container) {
847 			if ((dev->fsa_dev[container].config_waiting_on ==
848 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
849 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
850 				dev->fsa_dev[container].config_waiting_on = 0;
851 		}
852 		break;
853 
854 	case AifCmdEventNotify:
855 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
856 		/*
857 		 *	Add an Array.
858 		 */
859 		case AifEnAddContainer:
860 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
861 			if (container >= dev->maximum_num_containers)
862 				break;
863 			dev->fsa_dev[container].config_needed = ADD;
864 			dev->fsa_dev[container].config_waiting_on =
865 				AifEnConfigChange;
866 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
867 			break;
868 
869 		/*
870 		 *	Delete an Array.
871 		 */
872 		case AifEnDeleteContainer:
873 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
874 			if (container >= dev->maximum_num_containers)
875 				break;
876 			dev->fsa_dev[container].config_needed = DELETE;
877 			dev->fsa_dev[container].config_waiting_on =
878 				AifEnConfigChange;
879 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
880 			break;
881 
882 		/*
883 		 *	Container change detected. If we currently are not
884 		 * waiting on something else, setup to wait on a Config Change.
885 		 */
886 		case AifEnContainerChange:
887 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
888 			if (container >= dev->maximum_num_containers)
889 				break;
890 			if (dev->fsa_dev[container].config_waiting_on &&
891 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
892 				break;
893 			dev->fsa_dev[container].config_needed = CHANGE;
894 			dev->fsa_dev[container].config_waiting_on =
895 				AifEnConfigChange;
896 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
897 			break;
898 
899 		case AifEnConfigChange:
900 			break;
901 
902 		}
903 
904 		/*
905 		 *	If we are waiting on something and this happens to be
906 		 * that thing then set the re-configure flag.
907 		 */
908 		if (container != (u32)-1) {
909 			if (container >= dev->maximum_num_containers)
910 				break;
911 			if ((dev->fsa_dev[container].config_waiting_on ==
912 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
913 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
914 				dev->fsa_dev[container].config_waiting_on = 0;
915 		} else for (container = 0;
916 		    container < dev->maximum_num_containers; ++container) {
917 			if ((dev->fsa_dev[container].config_waiting_on ==
918 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
919 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
920 				dev->fsa_dev[container].config_waiting_on = 0;
921 		}
922 		break;
923 
924 	case AifCmdJobProgress:
925 		/*
926 		 *	These are job progress AIF's. When a Clear is being
927 		 * done on a container it is initially created then hidden from
928 		 * the OS. When the clear completes we don't get a config
929 		 * change so we monitor the job status complete on a clear then
930 		 * wait for a container change.
931 		 */
932 
933 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
934 		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
935 		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
936 			for (container = 0;
937 			    container < dev->maximum_num_containers;
938 			    ++container) {
939 				/*
940 				 * Stomp on all config sequencing for all
941 				 * containers?
942 				 */
943 				dev->fsa_dev[container].config_waiting_on =
944 					AifEnContainerChange;
945 				dev->fsa_dev[container].config_needed = ADD;
946 				dev->fsa_dev[container].config_waiting_stamp =
947 					jiffies;
948 			}
949 		}
950 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
951 		 && (((u32 *)aifcmd->data)[6] == 0)
952 		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
953 			for (container = 0;
954 			    container < dev->maximum_num_containers;
955 			    ++container) {
956 				/*
957 				 * Stomp on all config sequencing for all
958 				 * containers?
959 				 */
960 				dev->fsa_dev[container].config_waiting_on =
961 					AifEnContainerChange;
962 				dev->fsa_dev[container].config_needed = DELETE;
963 				dev->fsa_dev[container].config_waiting_stamp =
964 					jiffies;
965 			}
966 		}
967 		break;
968 	}
969 
970 	device_config_needed = NOTHING;
971 	for (container = 0; container < dev->maximum_num_containers;
972 	    ++container) {
973 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
974 			(dev->fsa_dev[container].config_needed != NOTHING) &&
975 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
976 			device_config_needed =
977 				dev->fsa_dev[container].config_needed;
978 			dev->fsa_dev[container].config_needed = NOTHING;
979 			break;
980 		}
981 	}
982 	if (device_config_needed == NOTHING)
983 		return;
984 
985 	/*
986 	 *	If we decided that a re-configuration needs to be done,
987 	 * schedule it here on the way out the door, please close the door
988 	 * behind you.
989 	 */
990 
991 	busy = 0;
992 
993 
994 	/*
995 	 *	Find the scsi_device associated with the SCSI address,
996 	 * and mark it as changed, invalidating the cache. This deals
997 	 * with changes to existing device IDs.
998 	 */
999 
1000 	if (!dev || !dev->scsi_host_ptr)
1001 		return;
1002 	/*
1003 	 * force reload of disk info via aac_probe_container
1004 	 */
1005 	if ((device_config_needed == CHANGE)
1006 	 && (dev->fsa_dev[container].valid == 1))
1007 		dev->fsa_dev[container].valid = 2;
1008 	if ((device_config_needed == CHANGE) ||
1009 			(device_config_needed == ADD))
1010 		aac_probe_container(dev, container);
1011 	device = scsi_device_lookup(dev->scsi_host_ptr,
1012 		CONTAINER_TO_CHANNEL(container),
1013 		CONTAINER_TO_ID(container),
1014 		CONTAINER_TO_LUN(container));
1015 	if (device) {
1016 		switch (device_config_needed) {
1017 		case DELETE:
1018 		case CHANGE:
1019 			scsi_rescan_device(&device->sdev_gendev);
1020 
1021 		default:
1022 			break;
1023 		}
1024 		scsi_device_put(device);
1025 	}
1026 	if (device_config_needed == ADD) {
1027 		scsi_add_device(dev->scsi_host_ptr,
1028 		  CONTAINER_TO_CHANNEL(container),
1029 		  CONTAINER_TO_ID(container),
1030 		  CONTAINER_TO_LUN(container));
1031 	}
1032 
1033 }
1034 
1035 static int _aac_reset_adapter(struct aac_dev *aac)
1036 {
1037 	int index, quirks;
1038 	u32 ret;
1039 	int retval;
1040 	struct Scsi_Host *host;
1041 	struct scsi_device *dev;
1042 	struct scsi_cmnd *command;
1043 	struct scsi_cmnd *command_list;
1044 
1045 	/*
1046 	 * Assumptions:
1047 	 *	- host is locked.
1048 	 *	- in_reset is asserted, so no new i/o is getting to the
1049 	 *	  card.
1050 	 *	- The card is dead.
1051 	 */
1052 	host = aac->scsi_host_ptr;
1053 	scsi_block_requests(host);
1054 	aac_adapter_disable_int(aac);
1055 	spin_unlock_irq(host->host_lock);
1056 	kthread_stop(aac->thread);
1057 
1058 	/*
1059 	 *	If a positive health, means in a known DEAD PANIC
1060 	 * state and the adapter could be reset to `try again'.
1061 	 */
1062 	retval = aac_adapter_check_health(aac);
1063 	if (retval == 0)
1064 		retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1065 		  0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1066 	if (retval)
1067 		retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1068 		  0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1069 
1070 	if (retval)
1071 		goto out;
1072 	if (ret != 0x00000001) {
1073 		retval = -ENODEV;
1074 		goto out;
1075 	}
1076 
1077 	/*
1078 	 *	Loop through the fibs, close the synchronous FIBS
1079 	 */
1080 	for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1081 		struct fib *fib = &aac->fibs[index];
1082 		if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1083 		  (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) {
1084 			unsigned long flagv;
1085 			spin_lock_irqsave(&fib->event_lock, flagv);
1086 			up(&fib->event_wait);
1087 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1088 			schedule();
1089 		}
1090 	}
1091 	index = aac->cardtype;
1092 
1093 	/*
1094 	 * Re-initialize the adapter, first free resources, then carefully
1095 	 * apply the initialization sequence to come back again. Only risk
1096 	 * is a change in Firmware dropping cache, it is assumed the caller
1097 	 * will ensure that i/o is queisced and the card is flushed in that
1098 	 * case.
1099 	 */
1100 	aac_fib_map_free(aac);
1101 	aac->hw_fib_va = NULL;
1102 	aac->hw_fib_pa = 0;
1103 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1104 	aac->comm_addr = NULL;
1105 	aac->comm_phys = 0;
1106 	kfree(aac->queues);
1107 	aac->queues = NULL;
1108 	free_irq(aac->pdev->irq, aac);
1109 	kfree(aac->fsa_dev);
1110 	aac->fsa_dev = NULL;
1111 	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1112 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1113 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1114 			goto out;
1115 	} else {
1116 		if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1117 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1118 			goto out;
1119 	}
1120 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1121 		goto out;
1122 	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1123 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1124 			goto out;
1125 	aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1126 	if (IS_ERR(aac->thread)) {
1127 		retval = PTR_ERR(aac->thread);
1128 		goto out;
1129 	}
1130 	(void)aac_get_adapter_info(aac);
1131 	quirks = aac_get_driver_ident(index)->quirks;
1132 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1133  		host->sg_tablesize = 34;
1134  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1135  	}
1136  	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1137  		host->sg_tablesize = 17;
1138  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1139  	}
1140 	aac_get_config_status(aac, 1);
1141 	aac_get_containers(aac);
1142 	/*
1143 	 * This is where the assumption that the Adapter is quiesced
1144 	 * is important.
1145 	 */
1146 	command_list = NULL;
1147 	__shost_for_each_device(dev, host) {
1148 		unsigned long flags;
1149 		spin_lock_irqsave(&dev->list_lock, flags);
1150 		list_for_each_entry(command, &dev->cmd_list, list)
1151 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1152 				command->SCp.buffer = (struct scatterlist *)command_list;
1153 				command_list = command;
1154 			}
1155 		spin_unlock_irqrestore(&dev->list_lock, flags);
1156 	}
1157 	while ((command = command_list)) {
1158 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1159 		command->SCp.buffer = NULL;
1160 		command->result = DID_OK << 16
1161 		  | COMMAND_COMPLETE << 8
1162 		  | SAM_STAT_TASK_SET_FULL;
1163 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1164 		command->scsi_done(command);
1165 	}
1166 	retval = 0;
1167 
1168 out:
1169 	aac->in_reset = 0;
1170 	scsi_unblock_requests(host);
1171 	spin_lock_irq(host->host_lock);
1172 	return retval;
1173 }
1174 
1175 int aac_check_health(struct aac_dev * aac)
1176 {
1177 	int BlinkLED;
1178 	unsigned long time_now, flagv = 0;
1179 	struct list_head * entry;
1180 	struct Scsi_Host * host;
1181 
1182 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1183 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1184 		return 0;
1185 
1186 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1187 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1188 		return 0; /* OK */
1189 	}
1190 
1191 	aac->in_reset = 1;
1192 
1193 	/* Fake up an AIF:
1194 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1195 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1196 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1197 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1198 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1199 	 *	aac.aifcmd.data[3] = BlinkLED
1200 	 */
1201 
1202 	time_now = jiffies/HZ;
1203 	entry = aac->fib_list.next;
1204 
1205 	/*
1206 	 * For each Context that is on the
1207 	 * fibctxList, make a copy of the
1208 	 * fib, and then set the event to wake up the
1209 	 * thread that is waiting for it.
1210 	 */
1211 	while (entry != &aac->fib_list) {
1212 		/*
1213 		 * Extract the fibctx
1214 		 */
1215 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1216 		struct hw_fib * hw_fib;
1217 		struct fib * fib;
1218 		/*
1219 		 * Check if the queue is getting
1220 		 * backlogged
1221 		 */
1222 		if (fibctx->count > 20) {
1223 			/*
1224 			 * It's *not* jiffies folks,
1225 			 * but jiffies / HZ, so do not
1226 			 * panic ...
1227 			 */
1228 			u32 time_last = fibctx->jiffies;
1229 			/*
1230 			 * Has it been > 2 minutes
1231 			 * since the last read off
1232 			 * the queue?
1233 			 */
1234 			if ((time_now - time_last) > aif_timeout) {
1235 				entry = entry->next;
1236 				aac_close_fib_context(aac, fibctx);
1237 				continue;
1238 			}
1239 		}
1240 		/*
1241 		 * Warning: no sleep allowed while
1242 		 * holding spinlock
1243 		 */
1244 		hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1245 		fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1246 		if (fib && hw_fib) {
1247 			struct aac_aifcmd * aif;
1248 
1249 			memset(hw_fib, 0, sizeof(struct hw_fib));
1250 			memset(fib, 0, sizeof(struct fib));
1251 			fib->hw_fib = hw_fib;
1252 			fib->dev = aac;
1253 			aac_fib_init(fib);
1254 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1255 			fib->size = sizeof (struct fib);
1256 			fib->data = hw_fib->data;
1257 			aif = (struct aac_aifcmd *)hw_fib->data;
1258 			aif->command = cpu_to_le32(AifCmdEventNotify);
1259 		 	aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1260 		 	aif->data[0] = cpu_to_le32(AifEnExpEvent);
1261 			aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1262 		 	aif->data[2] = cpu_to_le32(AifHighPriority);
1263 			aif->data[3] = cpu_to_le32(BlinkLED);
1264 
1265 			/*
1266 			 * Put the FIB onto the
1267 			 * fibctx's fibs
1268 			 */
1269 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1270 			fibctx->count++;
1271 			/*
1272 			 * Set the event to wake up the
1273 			 * thread that will waiting.
1274 			 */
1275 			up(&fibctx->wait_sem);
1276 		} else {
1277 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1278 			kfree(fib);
1279 			kfree(hw_fib);
1280 		}
1281 		entry = entry->next;
1282 	}
1283 
1284 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1285 
1286 	if (BlinkLED < 0) {
1287 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1288 		goto out;
1289 	}
1290 
1291 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1292 
1293 	host = aac->scsi_host_ptr;
1294 	spin_lock_irqsave(host->host_lock, flagv);
1295 	BlinkLED = _aac_reset_adapter(aac);
1296 	spin_unlock_irqrestore(host->host_lock, flagv);
1297 	return BlinkLED;
1298 
1299 out:
1300 	aac->in_reset = 0;
1301 	return BlinkLED;
1302 }
1303 
1304 
1305 /**
1306  *	aac_command_thread	-	command processing thread
1307  *	@dev: Adapter to monitor
1308  *
1309  *	Waits on the commandready event in it's queue. When the event gets set
1310  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1311  *	until the queue is empty. When the queue is empty it will wait for
1312  *	more FIBs.
1313  */
1314 
1315 int aac_command_thread(void *data)
1316 {
1317 	struct aac_dev *dev = data;
1318 	struct hw_fib *hw_fib, *hw_newfib;
1319 	struct fib *fib, *newfib;
1320 	struct aac_fib_context *fibctx;
1321 	unsigned long flags;
1322 	DECLARE_WAITQUEUE(wait, current);
1323 
1324 	/*
1325 	 *	We can only have one thread per adapter for AIF's.
1326 	 */
1327 	if (dev->aif_thread)
1328 		return -EINVAL;
1329 
1330 	/*
1331 	 *	Let the DPC know it has a place to send the AIF's to.
1332 	 */
1333 	dev->aif_thread = 1;
1334 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1335 	set_current_state(TASK_INTERRUPTIBLE);
1336 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1337 	while(1)
1338 	{
1339 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1340 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1341 			struct list_head *entry;
1342 			struct aac_aifcmd * aifcmd;
1343 
1344 			set_current_state(TASK_RUNNING);
1345 
1346 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1347 			list_del(entry);
1348 
1349 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1350 			fib = list_entry(entry, struct fib, fiblink);
1351 			/*
1352 			 *	We will process the FIB here or pass it to a
1353 			 *	worker thread that is TBD. We Really can't
1354 			 *	do anything at this point since we don't have
1355 			 *	anything defined for this thread to do.
1356 			 */
1357 			hw_fib = fib->hw_fib;
1358 			memset(fib, 0, sizeof(struct fib));
1359 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1360 			fib->size = sizeof( struct fib );
1361 			fib->hw_fib = hw_fib;
1362 			fib->data = hw_fib->data;
1363 			fib->dev = dev;
1364 			/*
1365 			 *	We only handle AifRequest fibs from the adapter.
1366 			 */
1367 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1368 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1369 				/* Handle Driver Notify Events */
1370 				aac_handle_aif(dev, fib);
1371 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1372 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1373 			} else {
1374 				struct list_head *entry;
1375 				/* The u32 here is important and intended. We are using
1376 				   32bit wrapping time to fit the adapter field */
1377 
1378 				u32 time_now, time_last;
1379 				unsigned long flagv;
1380 				unsigned num;
1381 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1382 				struct fib ** fib_pool, ** fib_p;
1383 
1384 				/* Sniff events */
1385 				if ((aifcmd->command ==
1386 				     cpu_to_le32(AifCmdEventNotify)) ||
1387 				    (aifcmd->command ==
1388 				     cpu_to_le32(AifCmdJobProgress))) {
1389 					aac_handle_aif(dev, fib);
1390 				}
1391 
1392 				time_now = jiffies/HZ;
1393 
1394 				/*
1395 				 * Warning: no sleep allowed while
1396 				 * holding spinlock. We take the estimate
1397 				 * and pre-allocate a set of fibs outside the
1398 				 * lock.
1399 				 */
1400 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1401 				    / sizeof(struct hw_fib); /* some extra */
1402 				spin_lock_irqsave(&dev->fib_lock, flagv);
1403 				entry = dev->fib_list.next;
1404 				while (entry != &dev->fib_list) {
1405 					entry = entry->next;
1406 					++num;
1407 				}
1408 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1409 				hw_fib_pool = NULL;
1410 				fib_pool = NULL;
1411 				if (num
1412 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1413 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1414 					hw_fib_p = hw_fib_pool;
1415 					fib_p = fib_pool;
1416 					while (hw_fib_p < &hw_fib_pool[num]) {
1417 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1418 							--hw_fib_p;
1419 							break;
1420 						}
1421 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1422 							kfree(*(--hw_fib_p));
1423 							break;
1424 						}
1425 					}
1426 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1427 						kfree(fib_pool);
1428 						fib_pool = NULL;
1429 						kfree(hw_fib_pool);
1430 						hw_fib_pool = NULL;
1431 					}
1432 				} else {
1433 					kfree(hw_fib_pool);
1434 					hw_fib_pool = NULL;
1435 				}
1436 				spin_lock_irqsave(&dev->fib_lock, flagv);
1437 				entry = dev->fib_list.next;
1438 				/*
1439 				 * For each Context that is on the
1440 				 * fibctxList, make a copy of the
1441 				 * fib, and then set the event to wake up the
1442 				 * thread that is waiting for it.
1443 				 */
1444 				hw_fib_p = hw_fib_pool;
1445 				fib_p = fib_pool;
1446 				while (entry != &dev->fib_list) {
1447 					/*
1448 					 * Extract the fibctx
1449 					 */
1450 					fibctx = list_entry(entry, struct aac_fib_context, next);
1451 					/*
1452 					 * Check if the queue is getting
1453 					 * backlogged
1454 					 */
1455 					if (fibctx->count > 20)
1456 					{
1457 						/*
1458 						 * It's *not* jiffies folks,
1459 						 * but jiffies / HZ so do not
1460 						 * panic ...
1461 						 */
1462 						time_last = fibctx->jiffies;
1463 						/*
1464 						 * Has it been > 2 minutes
1465 						 * since the last read off
1466 						 * the queue?
1467 						 */
1468 						if ((time_now - time_last) > aif_timeout) {
1469 							entry = entry->next;
1470 							aac_close_fib_context(dev, fibctx);
1471 							continue;
1472 						}
1473 					}
1474 					/*
1475 					 * Warning: no sleep allowed while
1476 					 * holding spinlock
1477 					 */
1478 					if (hw_fib_p < &hw_fib_pool[num]) {
1479 						hw_newfib = *hw_fib_p;
1480 						*(hw_fib_p++) = NULL;
1481 						newfib = *fib_p;
1482 						*(fib_p++) = NULL;
1483 						/*
1484 						 * Make the copy of the FIB
1485 						 */
1486 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1487 						memcpy(newfib, fib, sizeof(struct fib));
1488 						newfib->hw_fib = hw_newfib;
1489 						/*
1490 						 * Put the FIB onto the
1491 						 * fibctx's fibs
1492 						 */
1493 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1494 						fibctx->count++;
1495 						/*
1496 						 * Set the event to wake up the
1497 						 * thread that is waiting.
1498 						 */
1499 						up(&fibctx->wait_sem);
1500 					} else {
1501 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1502 					}
1503 					entry = entry->next;
1504 				}
1505 				/*
1506 				 *	Set the status of this FIB
1507 				 */
1508 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1509 				aac_fib_adapter_complete(fib, sizeof(u32));
1510 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1511 				/* Free up the remaining resources */
1512 				hw_fib_p = hw_fib_pool;
1513 				fib_p = fib_pool;
1514 				while (hw_fib_p < &hw_fib_pool[num]) {
1515 					kfree(*hw_fib_p);
1516 					kfree(*fib_p);
1517 					++fib_p;
1518 					++hw_fib_p;
1519 				}
1520 				kfree(hw_fib_pool);
1521 				kfree(fib_pool);
1522 			}
1523 			kfree(fib);
1524 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1525 		}
1526 		/*
1527 		 *	There are no more AIF's
1528 		 */
1529 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1530 		schedule();
1531 
1532 		if (kthread_should_stop())
1533 			break;
1534 		set_current_state(TASK_INTERRUPTIBLE);
1535 	}
1536 	if (dev->queues)
1537 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1538 	dev->aif_thread = 0;
1539 	return 0;
1540 }
1541