1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/interrupt.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_cmnd.h> 48 #include <asm/semaphore.h> 49 50 #include "aacraid.h" 51 52 /** 53 * fib_map_alloc - allocate the fib objects 54 * @dev: Adapter to allocate for 55 * 56 * Allocate and map the shared PCI space for the FIB blocks used to 57 * talk to the Adaptec firmware. 58 */ 59 60 static int fib_map_alloc(struct aac_dev *dev) 61 { 62 dprintk((KERN_INFO 63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 68 &dev->hw_fib_pa))==NULL) 69 return -ENOMEM; 70 return 0; 71 } 72 73 /** 74 * aac_fib_map_free - free the fib objects 75 * @dev: Adapter to free 76 * 77 * Free the PCI mappings and the memory allocated for FIB blocks 78 * on this adapter. 79 */ 80 81 void aac_fib_map_free(struct aac_dev *dev) 82 { 83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa); 84 } 85 86 /** 87 * aac_fib_setup - setup the fibs 88 * @dev: Adapter to set up 89 * 90 * Allocate the PCI space for the fibs, map it and then intialise the 91 * fib area, the unmapped fib data and also the free list 92 */ 93 94 int aac_fib_setup(struct aac_dev * dev) 95 { 96 struct fib *fibptr; 97 struct hw_fib *hw_fib_va; 98 dma_addr_t hw_fib_pa; 99 int i; 100 101 while (((i = fib_map_alloc(dev)) == -ENOMEM) 102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 105 } 106 if (i<0) 107 return -ENOMEM; 108 109 hw_fib_va = dev->hw_fib_va; 110 hw_fib_pa = dev->hw_fib_pa; 111 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 112 /* 113 * Initialise the fibs 114 */ 115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 116 { 117 fibptr->dev = dev; 118 fibptr->hw_fib = hw_fib_va; 119 fibptr->data = (void *) fibptr->hw_fib->data; 120 fibptr->next = fibptr+1; /* Forward chain the fibs */ 121 init_MUTEX_LOCKED(&fibptr->event_wait); 122 spin_lock_init(&fibptr->event_lock); 123 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff); 124 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size); 125 fibptr->hw_fib_pa = hw_fib_pa; 126 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size); 127 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 128 } 129 /* 130 * Add the fib chain to the free list 131 */ 132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 133 /* 134 * Enable this to debug out of queue space 135 */ 136 dev->free_fib = &dev->fibs[0]; 137 return 0; 138 } 139 140 /** 141 * aac_fib_alloc - allocate a fib 142 * @dev: Adapter to allocate the fib for 143 * 144 * Allocate a fib from the adapter fib pool. If the pool is empty we 145 * return NULL. 146 */ 147 148 struct fib *aac_fib_alloc(struct aac_dev *dev) 149 { 150 struct fib * fibptr; 151 unsigned long flags; 152 spin_lock_irqsave(&dev->fib_lock, flags); 153 fibptr = dev->free_fib; 154 if(!fibptr){ 155 spin_unlock_irqrestore(&dev->fib_lock, flags); 156 return fibptr; 157 } 158 dev->free_fib = fibptr->next; 159 spin_unlock_irqrestore(&dev->fib_lock, flags); 160 /* 161 * Set the proper node type code and node byte size 162 */ 163 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 164 fibptr->size = sizeof(struct fib); 165 /* 166 * Null out fields that depend on being zero at the start of 167 * each I/O 168 */ 169 fibptr->hw_fib->header.XferState = 0; 170 fibptr->callback = NULL; 171 fibptr->callback_data = NULL; 172 173 return fibptr; 174 } 175 176 /** 177 * aac_fib_free - free a fib 178 * @fibptr: fib to free up 179 * 180 * Frees up a fib and places it on the appropriate queue 181 * (either free or timed out) 182 */ 183 184 void aac_fib_free(struct fib *fibptr) 185 { 186 unsigned long flags; 187 188 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 189 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) { 190 aac_config.fib_timeouts++; 191 fibptr->next = fibptr->dev->timeout_fib; 192 fibptr->dev->timeout_fib = fibptr; 193 } else { 194 if (fibptr->hw_fib->header.XferState != 0) { 195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 196 (void*)fibptr, 197 le32_to_cpu(fibptr->hw_fib->header.XferState)); 198 } 199 fibptr->next = fibptr->dev->free_fib; 200 fibptr->dev->free_fib = fibptr; 201 } 202 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 203 } 204 205 /** 206 * aac_fib_init - initialise a fib 207 * @fibptr: The fib to initialize 208 * 209 * Set up the generic fib fields ready for use 210 */ 211 212 void aac_fib_init(struct fib *fibptr) 213 { 214 struct hw_fib *hw_fib = fibptr->hw_fib; 215 216 hw_fib->header.StructType = FIB_MAGIC; 217 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 218 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 219 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 220 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 221 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 222 } 223 224 /** 225 * fib_deallocate - deallocate a fib 226 * @fibptr: fib to deallocate 227 * 228 * Will deallocate and return to the free pool the FIB pointed to by the 229 * caller. 230 */ 231 232 static void fib_dealloc(struct fib * fibptr) 233 { 234 struct hw_fib *hw_fib = fibptr->hw_fib; 235 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 236 hw_fib->header.XferState = 0; 237 } 238 239 /* 240 * Commuication primitives define and support the queuing method we use to 241 * support host to adapter commuication. All queue accesses happen through 242 * these routines and are the only routines which have a knowledge of the 243 * how these queues are implemented. 244 */ 245 246 /** 247 * aac_get_entry - get a queue entry 248 * @dev: Adapter 249 * @qid: Queue Number 250 * @entry: Entry return 251 * @index: Index return 252 * @nonotify: notification control 253 * 254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 256 * returned. 257 */ 258 259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 260 { 261 struct aac_queue * q; 262 unsigned long idx; 263 264 /* 265 * All of the queues wrap when they reach the end, so we check 266 * to see if they have reached the end and if they have we just 267 * set the index back to zero. This is a wrap. You could or off 268 * the high bits in all updates but this is a bit faster I think. 269 */ 270 271 q = &dev->queues->queue[qid]; 272 273 idx = *index = le32_to_cpu(*(q->headers.producer)); 274 /* Interrupt Moderation, only interrupt for first two entries */ 275 if (idx != le32_to_cpu(*(q->headers.consumer))) { 276 if (--idx == 0) { 277 if (qid == AdapNormCmdQueue) 278 idx = ADAP_NORM_CMD_ENTRIES; 279 else 280 idx = ADAP_NORM_RESP_ENTRIES; 281 } 282 if (idx != le32_to_cpu(*(q->headers.consumer))) 283 *nonotify = 1; 284 } 285 286 if (qid == AdapNormCmdQueue) { 287 if (*index >= ADAP_NORM_CMD_ENTRIES) 288 *index = 0; /* Wrap to front of the Producer Queue. */ 289 } else { 290 if (*index >= ADAP_NORM_RESP_ENTRIES) 291 *index = 0; /* Wrap to front of the Producer Queue. */ 292 } 293 294 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 295 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 296 qid, q->numpending); 297 return 0; 298 } else { 299 *entry = q->base + *index; 300 return 1; 301 } 302 } 303 304 /** 305 * aac_queue_get - get the next free QE 306 * @dev: Adapter 307 * @index: Returned index 308 * @priority: Priority of fib 309 * @fib: Fib to associate with the queue entry 310 * @wait: Wait if queue full 311 * @fibptr: Driver fib object to go with fib 312 * @nonotify: Don't notify the adapter 313 * 314 * Gets the next free QE off the requested priorty adapter command 315 * queue and associates the Fib with the QE. The QE represented by 316 * index is ready to insert on the queue when this routine returns 317 * success. 318 */ 319 320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 321 { 322 struct aac_entry * entry = NULL; 323 int map = 0; 324 325 if (qid == AdapNormCmdQueue) { 326 /* if no entries wait for some if caller wants to */ 327 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 328 { 329 printk(KERN_ERR "GetEntries failed\n"); 330 } 331 /* 332 * Setup queue entry with a command, status and fib mapped 333 */ 334 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 335 map = 1; 336 } else { 337 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 338 { 339 /* if no entries wait for some if caller wants to */ 340 } 341 /* 342 * Setup queue entry with command, status and fib mapped 343 */ 344 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 345 entry->addr = hw_fib->header.SenderFibAddress; 346 /* Restore adapters pointer to the FIB */ 347 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 348 map = 0; 349 } 350 /* 351 * If MapFib is true than we need to map the Fib and put pointers 352 * in the queue entry. 353 */ 354 if (map) 355 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 356 return 0; 357 } 358 359 /* 360 * Define the highest level of host to adapter communication routines. 361 * These routines will support host to adapter FS commuication. These 362 * routines have no knowledge of the commuication method used. This level 363 * sends and receives FIBs. This level has no knowledge of how these FIBs 364 * get passed back and forth. 365 */ 366 367 /** 368 * aac_fib_send - send a fib to the adapter 369 * @command: Command to send 370 * @fibptr: The fib 371 * @size: Size of fib data area 372 * @priority: Priority of Fib 373 * @wait: Async/sync select 374 * @reply: True if a reply is wanted 375 * @callback: Called with reply 376 * @callback_data: Passed to callback 377 * 378 * Sends the requested FIB to the adapter and optionally will wait for a 379 * response FIB. If the caller does not wish to wait for a response than 380 * an event to wait on must be supplied. This event will be set when a 381 * response FIB is received from the adapter. 382 */ 383 384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 385 int priority, int wait, int reply, fib_callback callback, 386 void *callback_data) 387 { 388 struct aac_dev * dev = fibptr->dev; 389 struct hw_fib * hw_fib = fibptr->hw_fib; 390 unsigned long flags = 0; 391 unsigned long qflags; 392 393 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 394 return -EBUSY; 395 /* 396 * There are 5 cases with the wait and reponse requested flags. 397 * The only invalid cases are if the caller requests to wait and 398 * does not request a response and if the caller does not want a 399 * response and the Fib is not allocated from pool. If a response 400 * is not requesed the Fib will just be deallocaed by the DPC 401 * routine when the response comes back from the adapter. No 402 * further processing will be done besides deleting the Fib. We 403 * will have a debug mode where the adapter can notify the host 404 * it had a problem and the host can log that fact. 405 */ 406 if (wait && !reply) { 407 return -EINVAL; 408 } else if (!wait && reply) { 409 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 410 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 411 } else if (!wait && !reply) { 412 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 413 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 414 } else if (wait && reply) { 415 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 416 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 417 } 418 /* 419 * Map the fib into 32bits by using the fib number 420 */ 421 422 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 423 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 424 /* 425 * Set FIB state to indicate where it came from and if we want a 426 * response from the adapter. Also load the command from the 427 * caller. 428 * 429 * Map the hw fib pointer as a 32bit value 430 */ 431 hw_fib->header.Command = cpu_to_le16(command); 432 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 433 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/ 434 /* 435 * Set the size of the Fib we want to send to the adapter 436 */ 437 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 438 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 439 return -EMSGSIZE; 440 } 441 /* 442 * Get a queue entry connect the FIB to it and send an notify 443 * the adapter a command is ready. 444 */ 445 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 446 447 /* 448 * Fill in the Callback and CallbackContext if we are not 449 * going to wait. 450 */ 451 if (!wait) { 452 fibptr->callback = callback; 453 fibptr->callback_data = callback_data; 454 } 455 456 fibptr->done = 0; 457 fibptr->flags = 0; 458 459 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 460 461 dprintk((KERN_DEBUG "Fib contents:.\n")); 462 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 463 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 464 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 465 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib)); 466 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 467 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 468 469 if (!dev->queues) 470 return -EBUSY; 471 472 if(wait) 473 spin_lock_irqsave(&fibptr->event_lock, flags); 474 aac_adapter_deliver(fibptr); 475 476 /* 477 * If the caller wanted us to wait for response wait now. 478 */ 479 480 if (wait) { 481 spin_unlock_irqrestore(&fibptr->event_lock, flags); 482 /* Only set for first known interruptable command */ 483 if (wait < 0) { 484 /* 485 * *VERY* Dangerous to time out a command, the 486 * assumption is made that we have no hope of 487 * functioning because an interrupt routing or other 488 * hardware failure has occurred. 489 */ 490 unsigned long count = 36000000L; /* 3 minutes */ 491 while (down_trylock(&fibptr->event_wait)) { 492 int blink; 493 if (--count == 0) { 494 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 495 spin_lock_irqsave(q->lock, qflags); 496 q->numpending--; 497 spin_unlock_irqrestore(q->lock, qflags); 498 if (wait == -1) { 499 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 500 "Usually a result of a PCI interrupt routing problem;\n" 501 "update mother board BIOS or consider utilizing one of\n" 502 "the SAFE mode kernel options (acpi, apic etc)\n"); 503 } 504 return -ETIMEDOUT; 505 } 506 if ((blink = aac_adapter_check_health(dev)) > 0) { 507 if (wait == -1) { 508 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 509 "Usually a result of a serious unrecoverable hardware problem\n", 510 blink); 511 } 512 return -EFAULT; 513 } 514 udelay(5); 515 } 516 } else if (down_interruptible(&fibptr->event_wait)) { 517 spin_lock_irqsave(&fibptr->event_lock, flags); 518 if (fibptr->done == 0) { 519 fibptr->done = 2; /* Tell interrupt we aborted */ 520 spin_unlock_irqrestore(&fibptr->event_lock, flags); 521 return -EINTR; 522 } 523 spin_unlock_irqrestore(&fibptr->event_lock, flags); 524 } 525 BUG_ON(fibptr->done == 0); 526 527 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){ 528 return -ETIMEDOUT; 529 } else { 530 return 0; 531 } 532 } 533 /* 534 * If the user does not want a response than return success otherwise 535 * return pending 536 */ 537 if (reply) 538 return -EINPROGRESS; 539 else 540 return 0; 541 } 542 543 /** 544 * aac_consumer_get - get the top of the queue 545 * @dev: Adapter 546 * @q: Queue 547 * @entry: Return entry 548 * 549 * Will return a pointer to the entry on the top of the queue requested that 550 * we are a consumer of, and return the address of the queue entry. It does 551 * not change the state of the queue. 552 */ 553 554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 555 { 556 u32 index; 557 int status; 558 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 559 status = 0; 560 } else { 561 /* 562 * The consumer index must be wrapped if we have reached 563 * the end of the queue, else we just use the entry 564 * pointed to by the header index 565 */ 566 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 567 index = 0; 568 else 569 index = le32_to_cpu(*q->headers.consumer); 570 *entry = q->base + index; 571 status = 1; 572 } 573 return(status); 574 } 575 576 /** 577 * aac_consumer_free - free consumer entry 578 * @dev: Adapter 579 * @q: Queue 580 * @qid: Queue ident 581 * 582 * Frees up the current top of the queue we are a consumer of. If the 583 * queue was full notify the producer that the queue is no longer full. 584 */ 585 586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 587 { 588 int wasfull = 0; 589 u32 notify; 590 591 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 592 wasfull = 1; 593 594 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 595 *q->headers.consumer = cpu_to_le32(1); 596 else 597 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); 598 599 if (wasfull) { 600 switch (qid) { 601 602 case HostNormCmdQueue: 603 notify = HostNormCmdNotFull; 604 break; 605 case HostNormRespQueue: 606 notify = HostNormRespNotFull; 607 break; 608 default: 609 BUG(); 610 return; 611 } 612 aac_adapter_notify(dev, notify); 613 } 614 } 615 616 /** 617 * aac_fib_adapter_complete - complete adapter issued fib 618 * @fibptr: fib to complete 619 * @size: size of fib 620 * 621 * Will do all necessary work to complete a FIB that was sent from 622 * the adapter. 623 */ 624 625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 626 { 627 struct hw_fib * hw_fib = fibptr->hw_fib; 628 struct aac_dev * dev = fibptr->dev; 629 struct aac_queue * q; 630 unsigned long nointr = 0; 631 unsigned long qflags; 632 633 if (hw_fib->header.XferState == 0) { 634 if (dev->comm_interface == AAC_COMM_MESSAGE) 635 kfree (hw_fib); 636 return 0; 637 } 638 /* 639 * If we plan to do anything check the structure type first. 640 */ 641 if ( hw_fib->header.StructType != FIB_MAGIC ) { 642 if (dev->comm_interface == AAC_COMM_MESSAGE) 643 kfree (hw_fib); 644 return -EINVAL; 645 } 646 /* 647 * This block handles the case where the adapter had sent us a 648 * command and we have finished processing the command. We 649 * call completeFib when we are done processing the command 650 * and want to send a response back to the adapter. This will 651 * send the completed cdb to the adapter. 652 */ 653 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 654 if (dev->comm_interface == AAC_COMM_MESSAGE) { 655 kfree (hw_fib); 656 } else { 657 u32 index; 658 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 659 if (size) { 660 size += sizeof(struct aac_fibhdr); 661 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 662 return -EMSGSIZE; 663 hw_fib->header.Size = cpu_to_le16(size); 664 } 665 q = &dev->queues->queue[AdapNormRespQueue]; 666 spin_lock_irqsave(q->lock, qflags); 667 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 668 *(q->headers.producer) = cpu_to_le32(index + 1); 669 spin_unlock_irqrestore(q->lock, qflags); 670 if (!(nointr & (int)aac_config.irq_mod)) 671 aac_adapter_notify(dev, AdapNormRespQueue); 672 } 673 } 674 else 675 { 676 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); 677 BUG(); 678 } 679 return 0; 680 } 681 682 /** 683 * aac_fib_complete - fib completion handler 684 * @fib: FIB to complete 685 * 686 * Will do all necessary work to complete a FIB. 687 */ 688 689 int aac_fib_complete(struct fib *fibptr) 690 { 691 struct hw_fib * hw_fib = fibptr->hw_fib; 692 693 /* 694 * Check for a fib which has already been completed 695 */ 696 697 if (hw_fib->header.XferState == 0) 698 return 0; 699 /* 700 * If we plan to do anything check the structure type first. 701 */ 702 703 if (hw_fib->header.StructType != FIB_MAGIC) 704 return -EINVAL; 705 /* 706 * This block completes a cdb which orginated on the host and we 707 * just need to deallocate the cdb or reinit it. At this point the 708 * command is complete that we had sent to the adapter and this 709 * cdb could be reused. 710 */ 711 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 712 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 713 { 714 fib_dealloc(fibptr); 715 } 716 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 717 { 718 /* 719 * This handles the case when the host has aborted the I/O 720 * to the adapter because the adapter is not responding 721 */ 722 fib_dealloc(fibptr); 723 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 724 fib_dealloc(fibptr); 725 } else { 726 BUG(); 727 } 728 return 0; 729 } 730 731 /** 732 * aac_printf - handle printf from firmware 733 * @dev: Adapter 734 * @val: Message info 735 * 736 * Print a message passed to us by the controller firmware on the 737 * Adaptec board 738 */ 739 740 void aac_printf(struct aac_dev *dev, u32 val) 741 { 742 char *cp = dev->printfbuf; 743 if (dev->printf_enabled) 744 { 745 int length = val & 0xffff; 746 int level = (val >> 16) & 0xffff; 747 748 /* 749 * The size of the printfbuf is set in port.c 750 * There is no variable or define for it 751 */ 752 if (length > 255) 753 length = 255; 754 if (cp[length] != 0) 755 cp[length] = 0; 756 if (level == LOG_AAC_HIGH_ERROR) 757 printk(KERN_WARNING "%s:%s", dev->name, cp); 758 else 759 printk(KERN_INFO "%s:%s", dev->name, cp); 760 } 761 memset(cp, 0, 256); 762 } 763 764 765 /** 766 * aac_handle_aif - Handle a message from the firmware 767 * @dev: Which adapter this fib is from 768 * @fibptr: Pointer to fibptr from adapter 769 * 770 * This routine handles a driver notify fib from the adapter and 771 * dispatches it to the appropriate routine for handling. 772 */ 773 774 #define AIF_SNIFF_TIMEOUT (30*HZ) 775 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 776 { 777 struct hw_fib * hw_fib = fibptr->hw_fib; 778 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 779 int busy; 780 u32 container; 781 struct scsi_device *device; 782 enum { 783 NOTHING, 784 DELETE, 785 ADD, 786 CHANGE 787 } device_config_needed; 788 789 /* Sniff for container changes */ 790 791 if (!dev || !dev->fsa_dev) 792 return; 793 container = (u32)-1; 794 795 /* 796 * We have set this up to try and minimize the number of 797 * re-configures that take place. As a result of this when 798 * certain AIF's come in we will set a flag waiting for another 799 * type of AIF before setting the re-config flag. 800 */ 801 switch (le32_to_cpu(aifcmd->command)) { 802 case AifCmdDriverNotify: 803 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 804 /* 805 * Morph or Expand complete 806 */ 807 case AifDenMorphComplete: 808 case AifDenVolumeExtendComplete: 809 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 810 if (container >= dev->maximum_num_containers) 811 break; 812 813 /* 814 * Find the scsi_device associated with the SCSI 815 * address. Make sure we have the right array, and if 816 * so set the flag to initiate a new re-config once we 817 * see an AifEnConfigChange AIF come through. 818 */ 819 820 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 821 device = scsi_device_lookup(dev->scsi_host_ptr, 822 CONTAINER_TO_CHANNEL(container), 823 CONTAINER_TO_ID(container), 824 CONTAINER_TO_LUN(container)); 825 if (device) { 826 dev->fsa_dev[container].config_needed = CHANGE; 827 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 828 dev->fsa_dev[container].config_waiting_stamp = jiffies; 829 scsi_device_put(device); 830 } 831 } 832 } 833 834 /* 835 * If we are waiting on something and this happens to be 836 * that thing then set the re-configure flag. 837 */ 838 if (container != (u32)-1) { 839 if (container >= dev->maximum_num_containers) 840 break; 841 if ((dev->fsa_dev[container].config_waiting_on == 842 le32_to_cpu(*(u32 *)aifcmd->data)) && 843 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 844 dev->fsa_dev[container].config_waiting_on = 0; 845 } else for (container = 0; 846 container < dev->maximum_num_containers; ++container) { 847 if ((dev->fsa_dev[container].config_waiting_on == 848 le32_to_cpu(*(u32 *)aifcmd->data)) && 849 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 850 dev->fsa_dev[container].config_waiting_on = 0; 851 } 852 break; 853 854 case AifCmdEventNotify: 855 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 856 /* 857 * Add an Array. 858 */ 859 case AifEnAddContainer: 860 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 861 if (container >= dev->maximum_num_containers) 862 break; 863 dev->fsa_dev[container].config_needed = ADD; 864 dev->fsa_dev[container].config_waiting_on = 865 AifEnConfigChange; 866 dev->fsa_dev[container].config_waiting_stamp = jiffies; 867 break; 868 869 /* 870 * Delete an Array. 871 */ 872 case AifEnDeleteContainer: 873 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 874 if (container >= dev->maximum_num_containers) 875 break; 876 dev->fsa_dev[container].config_needed = DELETE; 877 dev->fsa_dev[container].config_waiting_on = 878 AifEnConfigChange; 879 dev->fsa_dev[container].config_waiting_stamp = jiffies; 880 break; 881 882 /* 883 * Container change detected. If we currently are not 884 * waiting on something else, setup to wait on a Config Change. 885 */ 886 case AifEnContainerChange: 887 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 888 if (container >= dev->maximum_num_containers) 889 break; 890 if (dev->fsa_dev[container].config_waiting_on && 891 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 892 break; 893 dev->fsa_dev[container].config_needed = CHANGE; 894 dev->fsa_dev[container].config_waiting_on = 895 AifEnConfigChange; 896 dev->fsa_dev[container].config_waiting_stamp = jiffies; 897 break; 898 899 case AifEnConfigChange: 900 break; 901 902 } 903 904 /* 905 * If we are waiting on something and this happens to be 906 * that thing then set the re-configure flag. 907 */ 908 if (container != (u32)-1) { 909 if (container >= dev->maximum_num_containers) 910 break; 911 if ((dev->fsa_dev[container].config_waiting_on == 912 le32_to_cpu(*(u32 *)aifcmd->data)) && 913 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 914 dev->fsa_dev[container].config_waiting_on = 0; 915 } else for (container = 0; 916 container < dev->maximum_num_containers; ++container) { 917 if ((dev->fsa_dev[container].config_waiting_on == 918 le32_to_cpu(*(u32 *)aifcmd->data)) && 919 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 920 dev->fsa_dev[container].config_waiting_on = 0; 921 } 922 break; 923 924 case AifCmdJobProgress: 925 /* 926 * These are job progress AIF's. When a Clear is being 927 * done on a container it is initially created then hidden from 928 * the OS. When the clear completes we don't get a config 929 * change so we monitor the job status complete on a clear then 930 * wait for a container change. 931 */ 932 933 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 934 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) 935 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { 936 for (container = 0; 937 container < dev->maximum_num_containers; 938 ++container) { 939 /* 940 * Stomp on all config sequencing for all 941 * containers? 942 */ 943 dev->fsa_dev[container].config_waiting_on = 944 AifEnContainerChange; 945 dev->fsa_dev[container].config_needed = ADD; 946 dev->fsa_dev[container].config_waiting_stamp = 947 jiffies; 948 } 949 } 950 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 951 && (((u32 *)aifcmd->data)[6] == 0) 952 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { 953 for (container = 0; 954 container < dev->maximum_num_containers; 955 ++container) { 956 /* 957 * Stomp on all config sequencing for all 958 * containers? 959 */ 960 dev->fsa_dev[container].config_waiting_on = 961 AifEnContainerChange; 962 dev->fsa_dev[container].config_needed = DELETE; 963 dev->fsa_dev[container].config_waiting_stamp = 964 jiffies; 965 } 966 } 967 break; 968 } 969 970 device_config_needed = NOTHING; 971 for (container = 0; container < dev->maximum_num_containers; 972 ++container) { 973 if ((dev->fsa_dev[container].config_waiting_on == 0) && 974 (dev->fsa_dev[container].config_needed != NOTHING) && 975 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 976 device_config_needed = 977 dev->fsa_dev[container].config_needed; 978 dev->fsa_dev[container].config_needed = NOTHING; 979 break; 980 } 981 } 982 if (device_config_needed == NOTHING) 983 return; 984 985 /* 986 * If we decided that a re-configuration needs to be done, 987 * schedule it here on the way out the door, please close the door 988 * behind you. 989 */ 990 991 busy = 0; 992 993 994 /* 995 * Find the scsi_device associated with the SCSI address, 996 * and mark it as changed, invalidating the cache. This deals 997 * with changes to existing device IDs. 998 */ 999 1000 if (!dev || !dev->scsi_host_ptr) 1001 return; 1002 /* 1003 * force reload of disk info via aac_probe_container 1004 */ 1005 if ((device_config_needed == CHANGE) 1006 && (dev->fsa_dev[container].valid == 1)) 1007 dev->fsa_dev[container].valid = 2; 1008 if ((device_config_needed == CHANGE) || 1009 (device_config_needed == ADD)) 1010 aac_probe_container(dev, container); 1011 device = scsi_device_lookup(dev->scsi_host_ptr, 1012 CONTAINER_TO_CHANNEL(container), 1013 CONTAINER_TO_ID(container), 1014 CONTAINER_TO_LUN(container)); 1015 if (device) { 1016 switch (device_config_needed) { 1017 case DELETE: 1018 case CHANGE: 1019 scsi_rescan_device(&device->sdev_gendev); 1020 1021 default: 1022 break; 1023 } 1024 scsi_device_put(device); 1025 } 1026 if (device_config_needed == ADD) { 1027 scsi_add_device(dev->scsi_host_ptr, 1028 CONTAINER_TO_CHANNEL(container), 1029 CONTAINER_TO_ID(container), 1030 CONTAINER_TO_LUN(container)); 1031 } 1032 1033 } 1034 1035 static int _aac_reset_adapter(struct aac_dev *aac) 1036 { 1037 int index, quirks; 1038 u32 ret; 1039 int retval; 1040 struct Scsi_Host *host; 1041 struct scsi_device *dev; 1042 struct scsi_cmnd *command; 1043 struct scsi_cmnd *command_list; 1044 1045 /* 1046 * Assumptions: 1047 * - host is locked. 1048 * - in_reset is asserted, so no new i/o is getting to the 1049 * card. 1050 * - The card is dead. 1051 */ 1052 host = aac->scsi_host_ptr; 1053 scsi_block_requests(host); 1054 aac_adapter_disable_int(aac); 1055 spin_unlock_irq(host->host_lock); 1056 kthread_stop(aac->thread); 1057 1058 /* 1059 * If a positive health, means in a known DEAD PANIC 1060 * state and the adapter could be reset to `try again'. 1061 */ 1062 retval = aac_adapter_check_health(aac); 1063 if (retval == 0) 1064 retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS, 1065 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL); 1066 if (retval) 1067 retval = aac_adapter_sync_cmd(aac, IOP_RESET, 1068 0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL); 1069 1070 if (retval) 1071 goto out; 1072 if (ret != 0x00000001) { 1073 retval = -ENODEV; 1074 goto out; 1075 } 1076 1077 /* 1078 * Loop through the fibs, close the synchronous FIBS 1079 */ 1080 for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1081 struct fib *fib = &aac->fibs[index]; 1082 if (!(fib->hw_fib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1083 (fib->hw_fib->header.XferState & cpu_to_le32(ResponseExpected))) { 1084 unsigned long flagv; 1085 spin_lock_irqsave(&fib->event_lock, flagv); 1086 up(&fib->event_wait); 1087 spin_unlock_irqrestore(&fib->event_lock, flagv); 1088 schedule(); 1089 } 1090 } 1091 index = aac->cardtype; 1092 1093 /* 1094 * Re-initialize the adapter, first free resources, then carefully 1095 * apply the initialization sequence to come back again. Only risk 1096 * is a change in Firmware dropping cache, it is assumed the caller 1097 * will ensure that i/o is queisced and the card is flushed in that 1098 * case. 1099 */ 1100 aac_fib_map_free(aac); 1101 aac->hw_fib_va = NULL; 1102 aac->hw_fib_pa = 0; 1103 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1104 aac->comm_addr = NULL; 1105 aac->comm_phys = 0; 1106 kfree(aac->queues); 1107 aac->queues = NULL; 1108 free_irq(aac->pdev->irq, aac); 1109 kfree(aac->fsa_dev); 1110 aac->fsa_dev = NULL; 1111 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) { 1112 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || 1113 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) 1114 goto out; 1115 } else { 1116 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) || 1117 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL)))) 1118 goto out; 1119 } 1120 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1121 goto out; 1122 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) 1123 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) 1124 goto out; 1125 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1126 if (IS_ERR(aac->thread)) { 1127 retval = PTR_ERR(aac->thread); 1128 goto out; 1129 } 1130 (void)aac_get_adapter_info(aac); 1131 quirks = aac_get_driver_ident(index)->quirks; 1132 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1133 host->sg_tablesize = 34; 1134 host->max_sectors = (host->sg_tablesize * 8) + 112; 1135 } 1136 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1137 host->sg_tablesize = 17; 1138 host->max_sectors = (host->sg_tablesize * 8) + 112; 1139 } 1140 aac_get_config_status(aac, 1); 1141 aac_get_containers(aac); 1142 /* 1143 * This is where the assumption that the Adapter is quiesced 1144 * is important. 1145 */ 1146 command_list = NULL; 1147 __shost_for_each_device(dev, host) { 1148 unsigned long flags; 1149 spin_lock_irqsave(&dev->list_lock, flags); 1150 list_for_each_entry(command, &dev->cmd_list, list) 1151 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1152 command->SCp.buffer = (struct scatterlist *)command_list; 1153 command_list = command; 1154 } 1155 spin_unlock_irqrestore(&dev->list_lock, flags); 1156 } 1157 while ((command = command_list)) { 1158 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1159 command->SCp.buffer = NULL; 1160 command->result = DID_OK << 16 1161 | COMMAND_COMPLETE << 8 1162 | SAM_STAT_TASK_SET_FULL; 1163 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1164 command->scsi_done(command); 1165 } 1166 retval = 0; 1167 1168 out: 1169 aac->in_reset = 0; 1170 scsi_unblock_requests(host); 1171 spin_lock_irq(host->host_lock); 1172 return retval; 1173 } 1174 1175 int aac_check_health(struct aac_dev * aac) 1176 { 1177 int BlinkLED; 1178 unsigned long time_now, flagv = 0; 1179 struct list_head * entry; 1180 struct Scsi_Host * host; 1181 1182 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1183 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1184 return 0; 1185 1186 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1187 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1188 return 0; /* OK */ 1189 } 1190 1191 aac->in_reset = 1; 1192 1193 /* Fake up an AIF: 1194 * aac_aifcmd.command = AifCmdEventNotify = 1 1195 * aac_aifcmd.seqnum = 0xFFFFFFFF 1196 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1197 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1198 * aac.aifcmd.data[2] = AifHighPriority = 3 1199 * aac.aifcmd.data[3] = BlinkLED 1200 */ 1201 1202 time_now = jiffies/HZ; 1203 entry = aac->fib_list.next; 1204 1205 /* 1206 * For each Context that is on the 1207 * fibctxList, make a copy of the 1208 * fib, and then set the event to wake up the 1209 * thread that is waiting for it. 1210 */ 1211 while (entry != &aac->fib_list) { 1212 /* 1213 * Extract the fibctx 1214 */ 1215 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1216 struct hw_fib * hw_fib; 1217 struct fib * fib; 1218 /* 1219 * Check if the queue is getting 1220 * backlogged 1221 */ 1222 if (fibctx->count > 20) { 1223 /* 1224 * It's *not* jiffies folks, 1225 * but jiffies / HZ, so do not 1226 * panic ... 1227 */ 1228 u32 time_last = fibctx->jiffies; 1229 /* 1230 * Has it been > 2 minutes 1231 * since the last read off 1232 * the queue? 1233 */ 1234 if ((time_now - time_last) > aif_timeout) { 1235 entry = entry->next; 1236 aac_close_fib_context(aac, fibctx); 1237 continue; 1238 } 1239 } 1240 /* 1241 * Warning: no sleep allowed while 1242 * holding spinlock 1243 */ 1244 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1245 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC); 1246 if (fib && hw_fib) { 1247 struct aac_aifcmd * aif; 1248 1249 memset(hw_fib, 0, sizeof(struct hw_fib)); 1250 memset(fib, 0, sizeof(struct fib)); 1251 fib->hw_fib = hw_fib; 1252 fib->dev = aac; 1253 aac_fib_init(fib); 1254 fib->type = FSAFS_NTC_FIB_CONTEXT; 1255 fib->size = sizeof (struct fib); 1256 fib->data = hw_fib->data; 1257 aif = (struct aac_aifcmd *)hw_fib->data; 1258 aif->command = cpu_to_le32(AifCmdEventNotify); 1259 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1260 aif->data[0] = cpu_to_le32(AifEnExpEvent); 1261 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic); 1262 aif->data[2] = cpu_to_le32(AifHighPriority); 1263 aif->data[3] = cpu_to_le32(BlinkLED); 1264 1265 /* 1266 * Put the FIB onto the 1267 * fibctx's fibs 1268 */ 1269 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1270 fibctx->count++; 1271 /* 1272 * Set the event to wake up the 1273 * thread that will waiting. 1274 */ 1275 up(&fibctx->wait_sem); 1276 } else { 1277 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1278 kfree(fib); 1279 kfree(hw_fib); 1280 } 1281 entry = entry->next; 1282 } 1283 1284 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1285 1286 if (BlinkLED < 0) { 1287 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1288 goto out; 1289 } 1290 1291 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1292 1293 host = aac->scsi_host_ptr; 1294 spin_lock_irqsave(host->host_lock, flagv); 1295 BlinkLED = _aac_reset_adapter(aac); 1296 spin_unlock_irqrestore(host->host_lock, flagv); 1297 return BlinkLED; 1298 1299 out: 1300 aac->in_reset = 0; 1301 return BlinkLED; 1302 } 1303 1304 1305 /** 1306 * aac_command_thread - command processing thread 1307 * @dev: Adapter to monitor 1308 * 1309 * Waits on the commandready event in it's queue. When the event gets set 1310 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1311 * until the queue is empty. When the queue is empty it will wait for 1312 * more FIBs. 1313 */ 1314 1315 int aac_command_thread(void *data) 1316 { 1317 struct aac_dev *dev = data; 1318 struct hw_fib *hw_fib, *hw_newfib; 1319 struct fib *fib, *newfib; 1320 struct aac_fib_context *fibctx; 1321 unsigned long flags; 1322 DECLARE_WAITQUEUE(wait, current); 1323 1324 /* 1325 * We can only have one thread per adapter for AIF's. 1326 */ 1327 if (dev->aif_thread) 1328 return -EINVAL; 1329 1330 /* 1331 * Let the DPC know it has a place to send the AIF's to. 1332 */ 1333 dev->aif_thread = 1; 1334 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1335 set_current_state(TASK_INTERRUPTIBLE); 1336 dprintk ((KERN_INFO "aac_command_thread start\n")); 1337 while(1) 1338 { 1339 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1340 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1341 struct list_head *entry; 1342 struct aac_aifcmd * aifcmd; 1343 1344 set_current_state(TASK_RUNNING); 1345 1346 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1347 list_del(entry); 1348 1349 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1350 fib = list_entry(entry, struct fib, fiblink); 1351 /* 1352 * We will process the FIB here or pass it to a 1353 * worker thread that is TBD. We Really can't 1354 * do anything at this point since we don't have 1355 * anything defined for this thread to do. 1356 */ 1357 hw_fib = fib->hw_fib; 1358 memset(fib, 0, sizeof(struct fib)); 1359 fib->type = FSAFS_NTC_FIB_CONTEXT; 1360 fib->size = sizeof( struct fib ); 1361 fib->hw_fib = hw_fib; 1362 fib->data = hw_fib->data; 1363 fib->dev = dev; 1364 /* 1365 * We only handle AifRequest fibs from the adapter. 1366 */ 1367 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1368 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1369 /* Handle Driver Notify Events */ 1370 aac_handle_aif(dev, fib); 1371 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1372 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1373 } else { 1374 struct list_head *entry; 1375 /* The u32 here is important and intended. We are using 1376 32bit wrapping time to fit the adapter field */ 1377 1378 u32 time_now, time_last; 1379 unsigned long flagv; 1380 unsigned num; 1381 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1382 struct fib ** fib_pool, ** fib_p; 1383 1384 /* Sniff events */ 1385 if ((aifcmd->command == 1386 cpu_to_le32(AifCmdEventNotify)) || 1387 (aifcmd->command == 1388 cpu_to_le32(AifCmdJobProgress))) { 1389 aac_handle_aif(dev, fib); 1390 } 1391 1392 time_now = jiffies/HZ; 1393 1394 /* 1395 * Warning: no sleep allowed while 1396 * holding spinlock. We take the estimate 1397 * and pre-allocate a set of fibs outside the 1398 * lock. 1399 */ 1400 num = le32_to_cpu(dev->init->AdapterFibsSize) 1401 / sizeof(struct hw_fib); /* some extra */ 1402 spin_lock_irqsave(&dev->fib_lock, flagv); 1403 entry = dev->fib_list.next; 1404 while (entry != &dev->fib_list) { 1405 entry = entry->next; 1406 ++num; 1407 } 1408 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1409 hw_fib_pool = NULL; 1410 fib_pool = NULL; 1411 if (num 1412 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1413 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1414 hw_fib_p = hw_fib_pool; 1415 fib_p = fib_pool; 1416 while (hw_fib_p < &hw_fib_pool[num]) { 1417 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1418 --hw_fib_p; 1419 break; 1420 } 1421 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1422 kfree(*(--hw_fib_p)); 1423 break; 1424 } 1425 } 1426 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1427 kfree(fib_pool); 1428 fib_pool = NULL; 1429 kfree(hw_fib_pool); 1430 hw_fib_pool = NULL; 1431 } 1432 } else { 1433 kfree(hw_fib_pool); 1434 hw_fib_pool = NULL; 1435 } 1436 spin_lock_irqsave(&dev->fib_lock, flagv); 1437 entry = dev->fib_list.next; 1438 /* 1439 * For each Context that is on the 1440 * fibctxList, make a copy of the 1441 * fib, and then set the event to wake up the 1442 * thread that is waiting for it. 1443 */ 1444 hw_fib_p = hw_fib_pool; 1445 fib_p = fib_pool; 1446 while (entry != &dev->fib_list) { 1447 /* 1448 * Extract the fibctx 1449 */ 1450 fibctx = list_entry(entry, struct aac_fib_context, next); 1451 /* 1452 * Check if the queue is getting 1453 * backlogged 1454 */ 1455 if (fibctx->count > 20) 1456 { 1457 /* 1458 * It's *not* jiffies folks, 1459 * but jiffies / HZ so do not 1460 * panic ... 1461 */ 1462 time_last = fibctx->jiffies; 1463 /* 1464 * Has it been > 2 minutes 1465 * since the last read off 1466 * the queue? 1467 */ 1468 if ((time_now - time_last) > aif_timeout) { 1469 entry = entry->next; 1470 aac_close_fib_context(dev, fibctx); 1471 continue; 1472 } 1473 } 1474 /* 1475 * Warning: no sleep allowed while 1476 * holding spinlock 1477 */ 1478 if (hw_fib_p < &hw_fib_pool[num]) { 1479 hw_newfib = *hw_fib_p; 1480 *(hw_fib_p++) = NULL; 1481 newfib = *fib_p; 1482 *(fib_p++) = NULL; 1483 /* 1484 * Make the copy of the FIB 1485 */ 1486 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1487 memcpy(newfib, fib, sizeof(struct fib)); 1488 newfib->hw_fib = hw_newfib; 1489 /* 1490 * Put the FIB onto the 1491 * fibctx's fibs 1492 */ 1493 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1494 fibctx->count++; 1495 /* 1496 * Set the event to wake up the 1497 * thread that is waiting. 1498 */ 1499 up(&fibctx->wait_sem); 1500 } else { 1501 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1502 } 1503 entry = entry->next; 1504 } 1505 /* 1506 * Set the status of this FIB 1507 */ 1508 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1509 aac_fib_adapter_complete(fib, sizeof(u32)); 1510 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1511 /* Free up the remaining resources */ 1512 hw_fib_p = hw_fib_pool; 1513 fib_p = fib_pool; 1514 while (hw_fib_p < &hw_fib_pool[num]) { 1515 kfree(*hw_fib_p); 1516 kfree(*fib_p); 1517 ++fib_p; 1518 ++hw_fib_p; 1519 } 1520 kfree(hw_fib_pool); 1521 kfree(fib_pool); 1522 } 1523 kfree(fib); 1524 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1525 } 1526 /* 1527 * There are no more AIF's 1528 */ 1529 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1530 schedule(); 1531 1532 if (kthread_should_stop()) 1533 break; 1534 set_current_state(TASK_INTERRUPTIBLE); 1535 } 1536 if (dev->queues) 1537 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1538 dev->aif_thread = 0; 1539 return 0; 1540 } 1541