xref: /linux/drivers/scsi/aacraid/aachba.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/sched.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
140 
141 /*
142  *	Non dasd selection is handled entirely in aachba now
143  */
144 
145 static int nondasd = -1;
146 static int dacmode = -1;
147 
148 static int commit = -1;
149 
150 module_param(nondasd, int, 0);
151 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
152 module_param(dacmode, int, 0);
153 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
154 module_param(commit, int, 0);
155 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
156 
157 int numacb = -1;
158 module_param(numacb, int, S_IRUGO|S_IWUSR);
159 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware.");
160 
161 int acbsize = -1;
162 module_param(acbsize, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware.");
164 /**
165  *	aac_get_config_status	-	check the adapter configuration
166  *	@common: adapter to query
167  *
168  *	Query config status, and commit the configuration if needed.
169  */
170 int aac_get_config_status(struct aac_dev *dev)
171 {
172 	int status = 0;
173 	struct fib * fibptr;
174 
175 	if (!(fibptr = fib_alloc(dev)))
176 		return -ENOMEM;
177 
178 	fib_init(fibptr);
179 	{
180 		struct aac_get_config_status *dinfo;
181 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
182 
183 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
184 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
185 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
186 	}
187 
188 	status = fib_send(ContainerCommand,
189 			    fibptr,
190 			    sizeof (struct aac_get_config_status),
191 			    FsaNormal,
192 			    1, 1,
193 			    NULL, NULL);
194 	if (status < 0 ) {
195 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
196 	} else {
197 		struct aac_get_config_status_resp *reply
198 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
199 		dprintk((KERN_WARNING
200 		  "aac_get_config_status: response=%d status=%d action=%d\n",
201 		  le32_to_cpu(reply->response),
202 		  le32_to_cpu(reply->status),
203 		  le32_to_cpu(reply->data.action)));
204 		if ((le32_to_cpu(reply->response) != ST_OK) ||
205 		     (le32_to_cpu(reply->status) != CT_OK) ||
206 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
207 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
208 			status = -EINVAL;
209 		}
210 	}
211 	fib_complete(fibptr);
212 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
213 	if (status >= 0) {
214 		if (commit == 1) {
215 			struct aac_commit_config * dinfo;
216 			fib_init(fibptr);
217 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
218 
219 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
220 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
221 
222 			status = fib_send(ContainerCommand,
223 				    fibptr,
224 				    sizeof (struct aac_commit_config),
225 				    FsaNormal,
226 				    1, 1,
227 				    NULL, NULL);
228 			fib_complete(fibptr);
229 		} else if (commit == 0) {
230 			printk(KERN_WARNING
231 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
232 		}
233 	}
234 	fib_free(fibptr);
235 	return status;
236 }
237 
238 /**
239  *	aac_get_containers	-	list containers
240  *	@common: adapter to probe
241  *
242  *	Make a list of all containers on this controller
243  */
244 int aac_get_containers(struct aac_dev *dev)
245 {
246 	struct fsa_dev_info *fsa_dev_ptr;
247 	u32 index;
248 	int status = 0;
249 	struct fib * fibptr;
250 	unsigned instance;
251 	struct aac_get_container_count *dinfo;
252 	struct aac_get_container_count_resp *dresp;
253 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
254 
255 	instance = dev->scsi_host_ptr->unique_id;
256 
257 	if (!(fibptr = fib_alloc(dev)))
258 		return -ENOMEM;
259 
260 	fib_init(fibptr);
261 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
262 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
263 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
264 
265 	status = fib_send(ContainerCommand,
266 		    fibptr,
267 		    sizeof (struct aac_get_container_count),
268 		    FsaNormal,
269 		    1, 1,
270 		    NULL, NULL);
271 	if (status >= 0) {
272 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
273 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
274 		fib_complete(fibptr);
275 	}
276 
277 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
278 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
279 	fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
280 	  sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
281 	if (!fsa_dev_ptr) {
282 		fib_free(fibptr);
283 		return -ENOMEM;
284 	}
285 	memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
286 
287 	dev->fsa_dev = fsa_dev_ptr;
288 	dev->maximum_num_containers = maximum_num_containers;
289 
290 	for (index = 0; index < dev->maximum_num_containers; index++) {
291 		struct aac_query_mount *dinfo;
292 		struct aac_mount *dresp;
293 
294 		fsa_dev_ptr[index].devname[0] = '\0';
295 
296 		fib_init(fibptr);
297 		dinfo = (struct aac_query_mount *) fib_data(fibptr);
298 
299 		dinfo->command = cpu_to_le32(VM_NameServe);
300 		dinfo->count = cpu_to_le32(index);
301 		dinfo->type = cpu_to_le32(FT_FILESYS);
302 
303 		status = fib_send(ContainerCommand,
304 				    fibptr,
305 				    sizeof (struct aac_query_mount),
306 				    FsaNormal,
307 				    1, 1,
308 				    NULL, NULL);
309 		if (status < 0 ) {
310 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
311 			break;
312 		}
313 		dresp = (struct aac_mount *)fib_data(fibptr);
314 
315 		dprintk ((KERN_DEBUG
316 		  "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n",
317 		  (int)index, (int)le32_to_cpu(dresp->status),
318 		  (int)le32_to_cpu(dresp->mnt[0].vol),
319 		  (int)le32_to_cpu(dresp->mnt[0].state),
320 		  (unsigned)le32_to_cpu(dresp->mnt[0].capacity)));
321 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
322 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
323 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
324 			fsa_dev_ptr[index].valid = 1;
325 			fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
326 			fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity);
327 			if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
328 				    fsa_dev_ptr[index].ro = 1;
329 		}
330 		fib_complete(fibptr);
331 		/*
332 		 *	If there are no more containers, then stop asking.
333 		 */
334 		if ((index + 1) >= le32_to_cpu(dresp->count)){
335 			break;
336 		}
337 	}
338 	fib_free(fibptr);
339 	return status;
340 }
341 
342 static void aac_io_done(struct scsi_cmnd * scsicmd)
343 {
344 	unsigned long cpu_flags;
345 	struct Scsi_Host *host = scsicmd->device->host;
346 	spin_lock_irqsave(host->host_lock, cpu_flags);
347 	scsicmd->scsi_done(scsicmd);
348 	spin_unlock_irqrestore(host->host_lock, cpu_flags);
349 }
350 
351 static void get_container_name_callback(void *context, struct fib * fibptr)
352 {
353 	struct aac_get_name_resp * get_name_reply;
354 	struct scsi_cmnd * scsicmd;
355 
356 	scsicmd = (struct scsi_cmnd *) context;
357 
358 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
359 	if (fibptr == NULL)
360 		BUG();
361 
362 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
363 	/* Failure is irrelevant, using default value instead */
364 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
365 	 && (get_name_reply->data[0] != '\0')) {
366 		int    count;
367 		char * dp;
368 		char * sp = get_name_reply->data;
369 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
370 		while (*sp == ' ')
371 			++sp;
372 		count = sizeof(((struct inquiry_data *)NULL)->inqd_pid);
373 		dp = ((struct inquiry_data *)scsicmd->request_buffer)->inqd_pid;
374 		if (*sp) do {
375 			*dp++ = (*sp) ? *sp++ : ' ';
376 		} while (--count > 0);
377 	}
378 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
379 
380 	fib_complete(fibptr);
381 	fib_free(fibptr);
382 	aac_io_done(scsicmd);
383 }
384 
385 /**
386  *	aac_get_container_name	-	get container name, none blocking.
387  */
388 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
389 {
390 	int status;
391 	struct aac_get_name *dinfo;
392 	struct fib * cmd_fibcontext;
393 	struct aac_dev * dev;
394 
395 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
396 
397 	if (!(cmd_fibcontext = fib_alloc(dev)))
398 		return -ENOMEM;
399 
400 	fib_init(cmd_fibcontext);
401 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
402 
403 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
404 	dinfo->type = cpu_to_le32(CT_READ_NAME);
405 	dinfo->cid = cpu_to_le32(cid);
406 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
407 
408 	status = fib_send(ContainerCommand,
409 		  cmd_fibcontext,
410 		  sizeof (struct aac_get_name),
411 		  FsaNormal,
412 		  0, 1,
413 		  (fib_callback) get_container_name_callback,
414 		  (void *) scsicmd);
415 
416 	/*
417 	 *	Check that the command queued to the controller
418 	 */
419 	if (status == -EINPROGRESS)
420 		return 0;
421 
422 	printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status);
423 	fib_complete(cmd_fibcontext);
424 	fib_free(cmd_fibcontext);
425 	return -1;
426 }
427 
428 /**
429  *	probe_container		-	query a logical volume
430  *	@dev: device to query
431  *	@cid: container identifier
432  *
433  *	Queries the controller about the given volume. The volume information
434  *	is updated in the struct fsa_dev_info structure rather than returned.
435  */
436 
437 static int probe_container(struct aac_dev *dev, int cid)
438 {
439 	struct fsa_dev_info *fsa_dev_ptr;
440 	int status;
441 	struct aac_query_mount *dinfo;
442 	struct aac_mount *dresp;
443 	struct fib * fibptr;
444 	unsigned instance;
445 
446 	fsa_dev_ptr = dev->fsa_dev;
447 	instance = dev->scsi_host_ptr->unique_id;
448 
449 	if (!(fibptr = fib_alloc(dev)))
450 		return -ENOMEM;
451 
452 	fib_init(fibptr);
453 
454 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
455 
456 	dinfo->command = cpu_to_le32(VM_NameServe);
457 	dinfo->count = cpu_to_le32(cid);
458 	dinfo->type = cpu_to_le32(FT_FILESYS);
459 
460 	status = fib_send(ContainerCommand,
461 			    fibptr,
462 			    sizeof(struct aac_query_mount),
463 			    FsaNormal,
464 			    1, 1,
465 			    NULL, NULL);
466 	if (status < 0) {
467 		printk(KERN_WARNING "aacraid: probe_container query failed.\n");
468 		goto error;
469 	}
470 
471 	dresp = (struct aac_mount *) fib_data(fibptr);
472 
473 	if ((le32_to_cpu(dresp->status) == ST_OK) &&
474 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
475 	    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
476 		fsa_dev_ptr[cid].valid = 1;
477 		fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
478 		fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity);
479 		if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
480 			fsa_dev_ptr[cid].ro = 1;
481 	}
482 
483 error:
484 	fib_complete(fibptr);
485 	fib_free(fibptr);
486 
487 	return status;
488 }
489 
490 /* Local Structure to set SCSI inquiry data strings */
491 struct scsi_inq {
492 	char vid[8];         /* Vendor ID */
493 	char pid[16];        /* Product ID */
494 	char prl[4];         /* Product Revision Level */
495 };
496 
497 /**
498  *	InqStrCopy	-	string merge
499  *	@a:	string to copy from
500  *	@b:	string to copy to
501  *
502  * 	Copy a String from one location to another
503  *	without copying \0
504  */
505 
506 static void inqstrcpy(char *a, char *b)
507 {
508 
509 	while(*a != (char)0)
510 		*b++ = *a++;
511 }
512 
513 static char *container_types[] = {
514         "None",
515         "Volume",
516         "Mirror",
517         "Stripe",
518         "RAID5",
519         "SSRW",
520         "SSRO",
521         "Morph",
522         "Legacy",
523         "RAID4",
524         "RAID10",
525         "RAID00",
526         "V-MIRRORS",
527         "PSEUDO R4",
528 	"RAID50",
529 	"RAID5D",
530 	"RAID5D0",
531 	"RAID1E",
532 	"RAID6",
533 	"RAID60",
534         "Unknown"
535 };
536 
537 
538 
539 /* Function: setinqstr
540  *
541  * Arguments: [1] pointer to void [1] int
542  *
543  * Purpose: Sets SCSI inquiry data strings for vendor, product
544  * and revision level. Allows strings to be set in platform dependant
545  * files instead of in OS dependant driver source.
546  */
547 
548 static void setinqstr(int devtype, void *data, int tindex)
549 {
550 	struct scsi_inq *str;
551 	struct aac_driver_ident *mp;
552 
553 	mp = aac_get_driver_ident(devtype);
554 
555 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
556 
557 	inqstrcpy (mp->vname, str->vid);
558 	inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */
559 
560 	if (tindex < (sizeof(container_types)/sizeof(char *))){
561 		char *findit = str->pid;
562 
563 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
564 		/* RAID is superfluous in the context of a RAID device */
565 		if (memcmp(findit-4, "RAID", 4) == 0)
566 			*(findit -= 4) = ' ';
567 		inqstrcpy (container_types[tindex], findit + 1);
568 	}
569 	inqstrcpy ("V1.0", str->prl);
570 }
571 
572 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
573 		      u8 a_sense_code, u8 incorrect_length,
574 		      u8 bit_pointer, u16 field_pointer,
575 		      u32 residue)
576 {
577 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
578 	sense_buf[1] = 0;	/* Segment number, always zero */
579 
580 	if (incorrect_length) {
581 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
582 		sense_buf[3] = BYTE3(residue);
583 		sense_buf[4] = BYTE2(residue);
584 		sense_buf[5] = BYTE1(residue);
585 		sense_buf[6] = BYTE0(residue);
586 	} else
587 		sense_buf[2] = sense_key;	/* Sense key */
588 
589 	if (sense_key == ILLEGAL_REQUEST)
590 		sense_buf[7] = 10;	/* Additional sense length */
591 	else
592 		sense_buf[7] = 6;	/* Additional sense length */
593 
594 	sense_buf[12] = sense_code;	/* Additional sense code */
595 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
596 	if (sense_key == ILLEGAL_REQUEST) {
597 		sense_buf[15] = 0;
598 
599 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
600 			sense_buf[15] = 0x80;/* Std sense key specific field */
601 		/* Illegal parameter is in the parameter block */
602 
603 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
604 			sense_buf[15] = 0xc0;/* Std sense key specific field */
605 		/* Illegal parameter is in the CDB block */
606 		sense_buf[15] |= bit_pointer;
607 		sense_buf[16] = field_pointer >> 8;	/* MSB */
608 		sense_buf[17] = field_pointer;		/* LSB */
609 	}
610 }
611 
612 int aac_get_adapter_info(struct aac_dev* dev)
613 {
614 	struct fib* fibptr;
615 	int rcode;
616 	u32 tmp;
617 	struct aac_adapter_info *info;
618 	struct aac_bus_info *command;
619 	struct aac_bus_info_response *bus_info;
620 
621 	if (!(fibptr = fib_alloc(dev)))
622 		return -ENOMEM;
623 
624 	fib_init(fibptr);
625 	info = (struct aac_adapter_info *) fib_data(fibptr);
626 	memset(info,0,sizeof(*info));
627 
628 	rcode = fib_send(RequestAdapterInfo,
629 			 fibptr,
630 			 sizeof(*info),
631 			 FsaNormal,
632 			 1, 1,
633 			 NULL,
634 			 NULL);
635 
636 	if (rcode < 0) {
637 		fib_complete(fibptr);
638 		fib_free(fibptr);
639 		return rcode;
640 	}
641 	memcpy(&dev->adapter_info, info, sizeof(*info));
642 
643 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
644 		struct aac_supplement_adapter_info * info;
645 
646 		fib_init(fibptr);
647 
648 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
649 
650 		memset(info,0,sizeof(*info));
651 
652 		rcode = fib_send(RequestSupplementAdapterInfo,
653 				 fibptr,
654 				 sizeof(*info),
655 				 FsaNormal,
656 				 1, 1,
657 				 NULL,
658 				 NULL);
659 
660 		if (rcode >= 0)
661 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
662 	}
663 
664 
665 	/*
666 	 * GetBusInfo
667 	 */
668 
669 	fib_init(fibptr);
670 
671 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
672 
673 	memset(bus_info, 0, sizeof(*bus_info));
674 
675 	command = (struct aac_bus_info *)bus_info;
676 
677 	command->Command = cpu_to_le32(VM_Ioctl);
678 	command->ObjType = cpu_to_le32(FT_DRIVE);
679 	command->MethodId = cpu_to_le32(1);
680 	command->CtlCmd = cpu_to_le32(GetBusInfo);
681 
682 	rcode = fib_send(ContainerCommand,
683 			 fibptr,
684 			 sizeof (*bus_info),
685 			 FsaNormal,
686 			 1, 1,
687 			 NULL, NULL);
688 
689 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
690 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
691 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
692 	}
693 
694 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
695 	printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
696 			dev->name,
697 			dev->id,
698 			tmp>>24,
699 			(tmp>>16)&0xff,
700 			tmp&0xff,
701 			le32_to_cpu(dev->adapter_info.kernelbuild),
702 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
703 			dev->supplement_adapter_info.BuildDate);
704 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
705 	printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
706 			dev->name, dev->id,
707 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
708 			le32_to_cpu(dev->adapter_info.monitorbuild));
709 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
710 	printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
711 			dev->name, dev->id,
712 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
713 			le32_to_cpu(dev->adapter_info.biosbuild));
714 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
715 		printk(KERN_INFO "%s%d: serial %x\n",
716 			dev->name, dev->id,
717 			le32_to_cpu(dev->adapter_info.serial[0]));
718 
719 	dev->nondasd_support = 0;
720 	dev->raid_scsi_mode = 0;
721 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
722 		dev->nondasd_support = 1;
723 	}
724 
725 	/*
726 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
727 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
728 	 * force nondasd support on. If we decide to allow the non-dasd flag
729 	 * additional changes changes will have to be made to support
730 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
731 	 * changed to support the new dev->raid_scsi_mode flag instead of
732 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
733 	 * function aac_detect will have to be modified where it sets up the
734 	 * max number of channels based on the aac->nondasd_support flag only.
735 	 */
736 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
737 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
738 		dev->nondasd_support = 1;
739 		dev->raid_scsi_mode = 1;
740 	}
741 	if (dev->raid_scsi_mode != 0)
742 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
743 				dev->name, dev->id);
744 
745 	if(nondasd != -1) {
746 		dev->nondasd_support = (nondasd!=0);
747 	}
748 	if(dev->nondasd_support != 0){
749 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
750 	}
751 
752 	dev->dac_support = 0;
753 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
754 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
755 		dev->dac_support = 1;
756 	}
757 
758 	if(dacmode != -1) {
759 		dev->dac_support = (dacmode!=0);
760 	}
761 	if(dev->dac_support != 0) {
762 		if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) &&
763 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) {
764 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
765 				dev->name, dev->id);
766 		} else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) &&
767 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) {
768 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
769 				dev->name, dev->id);
770 			dev->dac_support = 0;
771 		} else {
772 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
773 				dev->name, dev->id);
774 			rcode = -ENOMEM;
775 		}
776 	}
777 	/*
778 	 * 57 scatter gather elements
779 	 */
780 	dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
781 		sizeof(struct aac_fibhdr) -
782 		sizeof(struct aac_write) + sizeof(struct sgmap)) /
783 			sizeof(struct sgmap);
784 	if (dev->dac_support) {
785 		/*
786 		 * 38 scatter gather elements
787 		 */
788 		dev->scsi_host_ptr->sg_tablesize =
789 			(dev->max_fib_size -
790 			sizeof(struct aac_fibhdr) -
791 			sizeof(struct aac_write64) +
792 			sizeof(struct sgmap64)) /
793 				sizeof(struct sgmap64);
794 	}
795 	dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
796 	if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
797 		/*
798 		 * Worst case size that could cause sg overflow when
799 		 * we break up SG elements that are larger than 64KB.
800 		 * Would be nice if we could tell the SCSI layer what
801 		 * the maximum SG element size can be. Worst case is
802 		 * (sg_tablesize-1) 4KB elements with one 64KB
803 		 * element.
804 		 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
805 		 */
806 		dev->scsi_host_ptr->max_sectors =
807 		  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
808 	}
809 
810 	fib_complete(fibptr);
811 	fib_free(fibptr);
812 
813 	return rcode;
814 }
815 
816 
817 static void read_callback(void *context, struct fib * fibptr)
818 {
819 	struct aac_dev *dev;
820 	struct aac_read_reply *readreply;
821 	struct scsi_cmnd *scsicmd;
822 	u32 lba;
823 	u32 cid;
824 
825 	scsicmd = (struct scsi_cmnd *) context;
826 
827 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
828 	cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
829 
830 	lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
831 	dprintk((KERN_DEBUG "read_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies));
832 
833 	if (fibptr == NULL)
834 		BUG();
835 
836 	if(scsicmd->use_sg)
837 		pci_unmap_sg(dev->pdev,
838 			(struct scatterlist *)scsicmd->buffer,
839 			scsicmd->use_sg,
840 			scsicmd->sc_data_direction);
841 	else if(scsicmd->request_bufflen)
842 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
843 				 scsicmd->request_bufflen,
844 				 scsicmd->sc_data_direction);
845 	readreply = (struct aac_read_reply *)fib_data(fibptr);
846 	if (le32_to_cpu(readreply->status) == ST_OK)
847 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
848 	else {
849 #ifdef AAC_DETAILED_STATUS_INFO
850 		printk(KERN_WARNING "read_callback: io failed, status = %d\n",
851 		  le32_to_cpu(readreply->status));
852 #endif
853 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
854 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
855 				    HARDWARE_ERROR,
856 				    SENCODE_INTERNAL_TARGET_FAILURE,
857 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
858 				    0, 0);
859 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
860 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
861 		    ? sizeof(scsicmd->sense_buffer)
862 		    : sizeof(dev->fsa_dev[cid].sense_data));
863 	}
864 	fib_complete(fibptr);
865 	fib_free(fibptr);
866 
867 	aac_io_done(scsicmd);
868 }
869 
870 static void write_callback(void *context, struct fib * fibptr)
871 {
872 	struct aac_dev *dev;
873 	struct aac_write_reply *writereply;
874 	struct scsi_cmnd *scsicmd;
875 	u32 lba;
876 	u32 cid;
877 
878 	scsicmd = (struct scsi_cmnd *) context;
879 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
880 	cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
881 
882 	lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
883 	dprintk((KERN_DEBUG "write_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies));
884 	if (fibptr == NULL)
885 		BUG();
886 
887 	if(scsicmd->use_sg)
888 		pci_unmap_sg(dev->pdev,
889 			(struct scatterlist *)scsicmd->buffer,
890 			scsicmd->use_sg,
891 			scsicmd->sc_data_direction);
892 	else if(scsicmd->request_bufflen)
893 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
894 				 scsicmd->request_bufflen,
895 				 scsicmd->sc_data_direction);
896 
897 	writereply = (struct aac_write_reply *) fib_data(fibptr);
898 	if (le32_to_cpu(writereply->status) == ST_OK)
899 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
900 	else {
901 		printk(KERN_WARNING "write_callback: write failed, status = %d\n", writereply->status);
902 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
903 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
904 				    HARDWARE_ERROR,
905 				    SENCODE_INTERNAL_TARGET_FAILURE,
906 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
907 				    0, 0);
908 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
909 				sizeof(struct sense_data));
910 	}
911 
912 	fib_complete(fibptr);
913 	fib_free(fibptr);
914 	aac_io_done(scsicmd);
915 }
916 
917 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
918 {
919 	u32 lba;
920 	u32 count;
921 	int status;
922 
923 	u16 fibsize;
924 	struct aac_dev *dev;
925 	struct fib * cmd_fibcontext;
926 
927 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
928 	/*
929 	 *	Get block address and transfer length
930 	 */
931 	if (scsicmd->cmnd[0] == READ_6)	/* 6 byte command */
932 	{
933 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
934 
935 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
936 		count = scsicmd->cmnd[4];
937 
938 		if (count == 0)
939 			count = 256;
940 	} else {
941 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
942 
943 		lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
944 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
945 	}
946 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n",
947 	  smp_processor_id(), (unsigned long long)lba, jiffies));
948 	/*
949 	 *	Alocate and initialize a Fib
950 	 */
951 	if (!(cmd_fibcontext = fib_alloc(dev))) {
952 		return -1;
953 	}
954 
955 	fib_init(cmd_fibcontext);
956 
957 	if (dev->dac_support == 1) {
958 		struct aac_read64 *readcmd;
959 		readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
960 		readcmd->command = cpu_to_le32(VM_CtHostRead64);
961 		readcmd->cid = cpu_to_le16(cid);
962 		readcmd->sector_count = cpu_to_le16(count);
963 		readcmd->block = cpu_to_le32(lba);
964 		readcmd->pad   = 0;
965 		readcmd->flags = 0;
966 
967 		aac_build_sg64(scsicmd, &readcmd->sg);
968 		fibsize = sizeof(struct aac_read64) +
969 			((le32_to_cpu(readcmd->sg.count) - 1) *
970 			 sizeof (struct sgentry64));
971 		BUG_ON (fibsize > (sizeof(struct hw_fib) -
972 					sizeof(struct aac_fibhdr)));
973 		/*
974 		 *	Now send the Fib to the adapter
975 		 */
976 		status = fib_send(ContainerCommand64,
977 			  cmd_fibcontext,
978 			  fibsize,
979 			  FsaNormal,
980 			  0, 1,
981 			  (fib_callback) read_callback,
982 			  (void *) scsicmd);
983 	} else {
984 		struct aac_read *readcmd;
985 		readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
986 		readcmd->command = cpu_to_le32(VM_CtBlockRead);
987 		readcmd->cid = cpu_to_le32(cid);
988 		readcmd->block = cpu_to_le32(lba);
989 		readcmd->count = cpu_to_le32(count * 512);
990 
991 		aac_build_sg(scsicmd, &readcmd->sg);
992 		fibsize = sizeof(struct aac_read) +
993 			((le32_to_cpu(readcmd->sg.count) - 1) *
994 			 sizeof (struct sgentry));
995 		BUG_ON (fibsize > (dev->max_fib_size -
996 					sizeof(struct aac_fibhdr)));
997 		/*
998 		 *	Now send the Fib to the adapter
999 		 */
1000 		status = fib_send(ContainerCommand,
1001 			  cmd_fibcontext,
1002 			  fibsize,
1003 			  FsaNormal,
1004 			  0, 1,
1005 			  (fib_callback) read_callback,
1006 			  (void *) scsicmd);
1007 	}
1008 
1009 
1010 
1011 	/*
1012 	 *	Check that the command queued to the controller
1013 	 */
1014 	if (status == -EINPROGRESS)
1015 		return 0;
1016 
1017 	printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status);
1018 	/*
1019 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1020 	 */
1021 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1022 	aac_io_done(scsicmd);
1023 	fib_complete(cmd_fibcontext);
1024 	fib_free(cmd_fibcontext);
1025 	return 0;
1026 }
1027 
1028 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1029 {
1030 	u32 lba;
1031 	u32 count;
1032 	int status;
1033 	u16 fibsize;
1034 	struct aac_dev *dev;
1035 	struct fib * cmd_fibcontext;
1036 
1037 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1038 	/*
1039 	 *	Get block address and transfer length
1040 	 */
1041 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1042 	{
1043 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1044 		count = scsicmd->cmnd[4];
1045 		if (count == 0)
1046 			count = 256;
1047 	} else {
1048 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1049 		lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1050 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1051 	}
1052 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n",
1053 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1054 	/*
1055 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1056 	 */
1057 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1058 		scsicmd->result = DID_ERROR << 16;
1059 		aac_io_done(scsicmd);
1060 		return 0;
1061 	}
1062 	fib_init(cmd_fibcontext);
1063 
1064 	if(dev->dac_support == 1) {
1065 		struct aac_write64 *writecmd;
1066 		writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
1067 		writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1068 		writecmd->cid = cpu_to_le16(cid);
1069 		writecmd->sector_count = cpu_to_le16(count);
1070 		writecmd->block = cpu_to_le32(lba);
1071 		writecmd->pad	= 0;
1072 		writecmd->flags	= 0;
1073 
1074 		aac_build_sg64(scsicmd, &writecmd->sg);
1075 		fibsize = sizeof(struct aac_write64) +
1076 			((le32_to_cpu(writecmd->sg.count) - 1) *
1077 			 sizeof (struct sgentry64));
1078 		BUG_ON (fibsize > (dev->max_fib_size -
1079 					sizeof(struct aac_fibhdr)));
1080 		/*
1081 		 *	Now send the Fib to the adapter
1082 		 */
1083 		status = fib_send(ContainerCommand64,
1084 			  cmd_fibcontext,
1085 			  fibsize,
1086 			  FsaNormal,
1087 			  0, 1,
1088 			  (fib_callback) write_callback,
1089 			  (void *) scsicmd);
1090 	} else {
1091 		struct aac_write *writecmd;
1092 		writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1093 		writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1094 		writecmd->cid = cpu_to_le32(cid);
1095 		writecmd->block = cpu_to_le32(lba);
1096 		writecmd->count = cpu_to_le32(count * 512);
1097 		writecmd->sg.count = cpu_to_le32(1);
1098 		/* ->stable is not used - it did mean which type of write */
1099 
1100 		aac_build_sg(scsicmd, &writecmd->sg);
1101 		fibsize = sizeof(struct aac_write) +
1102 			((le32_to_cpu(writecmd->sg.count) - 1) *
1103 			 sizeof (struct sgentry));
1104 		BUG_ON (fibsize > (dev->max_fib_size -
1105 					sizeof(struct aac_fibhdr)));
1106 		/*
1107 		 *	Now send the Fib to the adapter
1108 		 */
1109 		status = fib_send(ContainerCommand,
1110 			  cmd_fibcontext,
1111 			  fibsize,
1112 			  FsaNormal,
1113 			  0, 1,
1114 			  (fib_callback) write_callback,
1115 			  (void *) scsicmd);
1116 	}
1117 
1118 	/*
1119 	 *	Check that the command queued to the controller
1120 	 */
1121 	if (status == -EINPROGRESS)
1122 	{
1123 		return 0;
1124 	}
1125 
1126 	printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status);
1127 	/*
1128 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1129 	 */
1130 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1131 	aac_io_done(scsicmd);
1132 
1133 	fib_complete(cmd_fibcontext);
1134 	fib_free(cmd_fibcontext);
1135 	return 0;
1136 }
1137 
1138 static void synchronize_callback(void *context, struct fib *fibptr)
1139 {
1140 	struct aac_synchronize_reply *synchronizereply;
1141 	struct scsi_cmnd *cmd;
1142 
1143 	cmd = context;
1144 
1145 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1146 				smp_processor_id(), jiffies));
1147 	BUG_ON(fibptr == NULL);
1148 
1149 
1150 	synchronizereply = fib_data(fibptr);
1151 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1152 		cmd->result = DID_OK << 16 |
1153 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1154 	else {
1155 		struct scsi_device *sdev = cmd->device;
1156 		struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1157 		u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun);
1158 		printk(KERN_WARNING
1159 		     "synchronize_callback: synchronize failed, status = %d\n",
1160 		     le32_to_cpu(synchronizereply->status));
1161 		cmd->result = DID_OK << 16 |
1162 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1163 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1164 				    HARDWARE_ERROR,
1165 				    SENCODE_INTERNAL_TARGET_FAILURE,
1166 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1167 				    0, 0);
1168 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1169 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1170 			  sizeof(cmd->sense_buffer)));
1171 	}
1172 
1173 	fib_complete(fibptr);
1174 	fib_free(fibptr);
1175 	aac_io_done(cmd);
1176 }
1177 
1178 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1179 {
1180 	int status;
1181 	struct fib *cmd_fibcontext;
1182 	struct aac_synchronize *synchronizecmd;
1183 	struct scsi_cmnd *cmd;
1184 	struct scsi_device *sdev = scsicmd->device;
1185 	int active = 0;
1186 	unsigned long flags;
1187 
1188 	/*
1189 	 * Wait for all commands to complete to this specific
1190 	 * target (block).
1191 	 */
1192 	spin_lock_irqsave(&sdev->list_lock, flags);
1193 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1194 		if (cmd != scsicmd && cmd->serial_number != 0) {
1195 			++active;
1196 			break;
1197 		}
1198 
1199 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1200 
1201 	/*
1202 	 *	Yield the processor (requeue for later)
1203 	 */
1204 	if (active)
1205 		return SCSI_MLQUEUE_DEVICE_BUSY;
1206 
1207 	/*
1208 	 *	Allocate and initialize a Fib
1209 	 */
1210 	if (!(cmd_fibcontext =
1211 	    fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
1212 		return SCSI_MLQUEUE_HOST_BUSY;
1213 
1214 	fib_init(cmd_fibcontext);
1215 
1216 	synchronizecmd = fib_data(cmd_fibcontext);
1217 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1218 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1219 	synchronizecmd->cid = cpu_to_le32(cid);
1220 	synchronizecmd->count =
1221 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1222 
1223 	/*
1224 	 *	Now send the Fib to the adapter
1225 	 */
1226 	status = fib_send(ContainerCommand,
1227 		  cmd_fibcontext,
1228 		  sizeof(struct aac_synchronize),
1229 		  FsaNormal,
1230 		  0, 1,
1231 		  (fib_callback)synchronize_callback,
1232 		  (void *)scsicmd);
1233 
1234 	/*
1235 	 *	Check that the command queued to the controller
1236 	 */
1237 	if (status == -EINPROGRESS)
1238 		return 0;
1239 
1240 	printk(KERN_WARNING
1241 		"aac_synchronize: fib_send failed with status: %d.\n", status);
1242 	fib_complete(cmd_fibcontext);
1243 	fib_free(cmd_fibcontext);
1244 	return SCSI_MLQUEUE_HOST_BUSY;
1245 }
1246 
1247 /**
1248  *	aac_scsi_cmd()		-	Process SCSI command
1249  *	@scsicmd:		SCSI command block
1250  *
1251  *	Emulate a SCSI command and queue the required request for the
1252  *	aacraid firmware.
1253  */
1254 
1255 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1256 {
1257 	u32 cid = 0;
1258 	struct Scsi_Host *host = scsicmd->device->host;
1259 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1260 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1261 	int cardtype = dev->cardtype;
1262 	int ret;
1263 
1264 	/*
1265 	 *	If the bus, id or lun is out of range, return fail
1266 	 *	Test does not apply to ID 16, the pseudo id for the controller
1267 	 *	itself.
1268 	 */
1269 	if (scsicmd->device->id != host->this_id) {
1270 		if ((scsicmd->device->channel == 0) ){
1271 			if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){
1272 				scsicmd->result = DID_NO_CONNECT << 16;
1273 				scsicmd->scsi_done(scsicmd);
1274 				return 0;
1275 			}
1276 			cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
1277 
1278 			/*
1279 			 *	If the target container doesn't exist, it may have
1280 			 *	been newly created
1281 			 */
1282 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1283 				switch (scsicmd->cmnd[0]) {
1284 				case INQUIRY:
1285 				case READ_CAPACITY:
1286 				case TEST_UNIT_READY:
1287 					spin_unlock_irq(host->host_lock);
1288 					probe_container(dev, cid);
1289 					spin_lock_irq(host->host_lock);
1290 					if (fsa_dev_ptr[cid].valid == 0) {
1291 						scsicmd->result = DID_NO_CONNECT << 16;
1292 						scsicmd->scsi_done(scsicmd);
1293 						return 0;
1294 					}
1295 				default:
1296 					break;
1297 				}
1298 			}
1299 			/*
1300 			 *	If the target container still doesn't exist,
1301 			 *	return failure
1302 			 */
1303 			if (fsa_dev_ptr[cid].valid == 0) {
1304 				scsicmd->result = DID_BAD_TARGET << 16;
1305 				scsicmd->scsi_done(scsicmd);
1306 				return 0;
1307 			}
1308 		} else {  /* check for physical non-dasd devices */
1309 			if(dev->nondasd_support == 1){
1310 				return aac_send_srb_fib(scsicmd);
1311 			} else {
1312 				scsicmd->result = DID_NO_CONNECT << 16;
1313 				scsicmd->scsi_done(scsicmd);
1314 				return 0;
1315 			}
1316 		}
1317 	}
1318 	/*
1319 	 * else Command for the controller itself
1320 	 */
1321 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1322 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1323 	{
1324 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1325 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1326 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1327 			    ILLEGAL_REQUEST,
1328 			    SENCODE_INVALID_COMMAND,
1329 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1330 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1331 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1332 		    ? sizeof(scsicmd->sense_buffer)
1333 		    : sizeof(dev->fsa_dev[cid].sense_data));
1334 		scsicmd->scsi_done(scsicmd);
1335 		return 0;
1336 	}
1337 
1338 
1339 	/* Handle commands here that don't really require going out to the adapter */
1340 	switch (scsicmd->cmnd[0]) {
1341 	case INQUIRY:
1342 	{
1343 		struct inquiry_data *inq_data_ptr;
1344 
1345 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id));
1346 		inq_data_ptr = (struct inquiry_data *)scsicmd->request_buffer;
1347 		memset(inq_data_ptr, 0, sizeof (struct inquiry_data));
1348 
1349 		inq_data_ptr->inqd_ver = 2;	/* claim compliance to SCSI-2 */
1350 		inq_data_ptr->inqd_dtq = 0x80;	/* set RMB bit to one indicating that the medium is removable */
1351 		inq_data_ptr->inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1352 		inq_data_ptr->inqd_len = 31;
1353 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1354 		inq_data_ptr->inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1355 		/*
1356 		 *	Set the Vendor, Product, and Revision Level
1357 		 *	see: <vendor>.c i.e. aac.c
1358 		 */
1359 		if (scsicmd->device->id == host->this_id) {
1360 			setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), (sizeof(container_types)/sizeof(char *)));
1361 			inq_data_ptr->inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1362 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1363 			scsicmd->scsi_done(scsicmd);
1364 			return 0;
1365 		}
1366 		setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), fsa_dev_ptr[cid].type);
1367 		inq_data_ptr->inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1368 		return aac_get_container_name(scsicmd, cid);
1369 	}
1370 	case READ_CAPACITY:
1371 	{
1372 		u32 capacity;
1373 		char *cp;
1374 
1375 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1376 		if (fsa_dev_ptr[cid].size <= 0x100000000LL)
1377 			capacity = fsa_dev_ptr[cid].size - 1;
1378 		else
1379 			capacity = (u32)-1;
1380 		cp = scsicmd->request_buffer;
1381 		cp[0] = (capacity >> 24) & 0xff;
1382 		cp[1] = (capacity >> 16) & 0xff;
1383 		cp[2] = (capacity >> 8) & 0xff;
1384 		cp[3] = (capacity >> 0) & 0xff;
1385 		cp[4] = 0;
1386 		cp[5] = 0;
1387 		cp[6] = 2;
1388 		cp[7] = 0;
1389 
1390 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1391 		scsicmd->scsi_done(scsicmd);
1392 
1393 		return 0;
1394 	}
1395 
1396 	case MODE_SENSE:
1397 	{
1398 		char *mode_buf;
1399 
1400 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1401 		mode_buf = scsicmd->request_buffer;
1402 		mode_buf[0] = 3;	/* Mode data length */
1403 		mode_buf[1] = 0;	/* Medium type - default */
1404 		mode_buf[2] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1405 		mode_buf[3] = 0;	/* Block descriptor length */
1406 
1407 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1408 		scsicmd->scsi_done(scsicmd);
1409 
1410 		return 0;
1411 	}
1412 	case MODE_SENSE_10:
1413 	{
1414 		char *mode_buf;
1415 
1416 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1417 		mode_buf = scsicmd->request_buffer;
1418 		mode_buf[0] = 0;	/* Mode data length (MSB) */
1419 		mode_buf[1] = 6;	/* Mode data length (LSB) */
1420 		mode_buf[2] = 0;	/* Medium type - default */
1421 		mode_buf[3] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1422 		mode_buf[4] = 0;	/* reserved */
1423 		mode_buf[5] = 0;	/* reserved */
1424 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
1425 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
1426 
1427 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1428 		scsicmd->scsi_done(scsicmd);
1429 
1430 		return 0;
1431 	}
1432 	case REQUEST_SENSE:
1433 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1434 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1435 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1436 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1437 		scsicmd->scsi_done(scsicmd);
1438 		return 0;
1439 
1440 	case ALLOW_MEDIUM_REMOVAL:
1441 		dprintk((KERN_DEBUG "LOCK command.\n"));
1442 		if (scsicmd->cmnd[4])
1443 			fsa_dev_ptr[cid].locked = 1;
1444 		else
1445 			fsa_dev_ptr[cid].locked = 0;
1446 
1447 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1448 		scsicmd->scsi_done(scsicmd);
1449 		return 0;
1450 	/*
1451 	 *	These commands are all No-Ops
1452 	 */
1453 	case TEST_UNIT_READY:
1454 	case RESERVE:
1455 	case RELEASE:
1456 	case REZERO_UNIT:
1457 	case REASSIGN_BLOCKS:
1458 	case SEEK_10:
1459 	case START_STOP:
1460 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1461 		scsicmd->scsi_done(scsicmd);
1462 		return 0;
1463 	}
1464 
1465 	switch (scsicmd->cmnd[0])
1466 	{
1467 		case READ_6:
1468 		case READ_10:
1469 			/*
1470 			 *	Hack to keep track of ordinal number of the device that
1471 			 *	corresponds to a container. Needed to convert
1472 			 *	containers to /dev/sd device names
1473 			 */
1474 
1475 			spin_unlock_irq(host->host_lock);
1476 			if  (scsicmd->request->rq_disk)
1477 				memcpy(fsa_dev_ptr[cid].devname,
1478 					scsicmd->request->rq_disk->disk_name,
1479 					8);
1480 
1481 			ret = aac_read(scsicmd, cid);
1482 			spin_lock_irq(host->host_lock);
1483 			return ret;
1484 
1485 		case WRITE_6:
1486 		case WRITE_10:
1487 			spin_unlock_irq(host->host_lock);
1488 			ret = aac_write(scsicmd, cid);
1489 			spin_lock_irq(host->host_lock);
1490 			return ret;
1491 
1492 		case SYNCHRONIZE_CACHE:
1493 			/* Issue FIB to tell Firmware to flush it's cache */
1494 			return aac_synchronize(scsicmd, cid);
1495 
1496 		default:
1497 			/*
1498 			 *	Unhandled commands
1499 			 */
1500 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1501 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1502 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1503 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1504 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1505 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1506 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1507 			    ? sizeof(scsicmd->sense_buffer)
1508 			    : sizeof(dev->fsa_dev[cid].sense_data));
1509 			scsicmd->scsi_done(scsicmd);
1510 			return 0;
1511 	}
1512 }
1513 
1514 static int query_disk(struct aac_dev *dev, void __user *arg)
1515 {
1516 	struct aac_query_disk qd;
1517 	struct fsa_dev_info *fsa_dev_ptr;
1518 
1519 	fsa_dev_ptr = dev->fsa_dev;
1520 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1521 		return -EFAULT;
1522 	if (qd.cnum == -1)
1523 		qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun);
1524 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1525 	{
1526 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1527 			return -EINVAL;
1528 		qd.instance = dev->scsi_host_ptr->host_no;
1529 		qd.bus = 0;
1530 		qd.id = CONTAINER_TO_ID(qd.cnum);
1531 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
1532 	}
1533 	else return -EINVAL;
1534 
1535 	qd.valid = fsa_dev_ptr[qd.cnum].valid;
1536 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
1537 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1538 
1539 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1540 		qd.unmapped = 1;
1541 	else
1542 		qd.unmapped = 0;
1543 
1544 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1545 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1546 
1547 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1548 		return -EFAULT;
1549 	return 0;
1550 }
1551 
1552 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1553 {
1554 	struct aac_delete_disk dd;
1555 	struct fsa_dev_info *fsa_dev_ptr;
1556 
1557 	fsa_dev_ptr = dev->fsa_dev;
1558 
1559 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1560 		return -EFAULT;
1561 
1562 	if (dd.cnum >= dev->maximum_num_containers)
1563 		return -EINVAL;
1564 	/*
1565 	 *	Mark this container as being deleted.
1566 	 */
1567 	fsa_dev_ptr[dd.cnum].deleted = 1;
1568 	/*
1569 	 *	Mark the container as no longer valid
1570 	 */
1571 	fsa_dev_ptr[dd.cnum].valid = 0;
1572 	return 0;
1573 }
1574 
1575 static int delete_disk(struct aac_dev *dev, void __user *arg)
1576 {
1577 	struct aac_delete_disk dd;
1578 	struct fsa_dev_info *fsa_dev_ptr;
1579 
1580 	fsa_dev_ptr = dev->fsa_dev;
1581 
1582 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1583 		return -EFAULT;
1584 
1585 	if (dd.cnum >= dev->maximum_num_containers)
1586 		return -EINVAL;
1587 	/*
1588 	 *	If the container is locked, it can not be deleted by the API.
1589 	 */
1590 	if (fsa_dev_ptr[dd.cnum].locked)
1591 		return -EBUSY;
1592 	else {
1593 		/*
1594 		 *	Mark the container as no longer being valid.
1595 		 */
1596 		fsa_dev_ptr[dd.cnum].valid = 0;
1597 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
1598 		return 0;
1599 	}
1600 }
1601 
1602 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
1603 {
1604 	switch (cmd) {
1605 	case FSACTL_QUERY_DISK:
1606 		return query_disk(dev, arg);
1607 	case FSACTL_DELETE_DISK:
1608 		return delete_disk(dev, arg);
1609 	case FSACTL_FORCE_DELETE_DISK:
1610 		return force_delete_disk(dev, arg);
1611 	case FSACTL_GET_CONTAINERS:
1612 		return aac_get_containers(dev);
1613 	default:
1614 		return -ENOTTY;
1615 	}
1616 }
1617 
1618 /**
1619  *
1620  * aac_srb_callback
1621  * @context: the context set in the fib - here it is scsi cmd
1622  * @fibptr: pointer to the fib
1623  *
1624  * Handles the completion of a scsi command to a non dasd device
1625  *
1626  */
1627 
1628 static void aac_srb_callback(void *context, struct fib * fibptr)
1629 {
1630 	struct aac_dev *dev;
1631 	struct aac_srb_reply *srbreply;
1632 	struct scsi_cmnd *scsicmd;
1633 
1634 	scsicmd = (struct scsi_cmnd *) context;
1635 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1636 
1637 	if (fibptr == NULL)
1638 		BUG();
1639 
1640 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
1641 
1642 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
1643 	/*
1644 	 *	Calculate resid for sg
1645 	 */
1646 
1647 	scsicmd->resid = scsicmd->request_bufflen -
1648 		le32_to_cpu(srbreply->data_xfer_length);
1649 
1650 	if(scsicmd->use_sg)
1651 		pci_unmap_sg(dev->pdev,
1652 			(struct scatterlist *)scsicmd->buffer,
1653 			scsicmd->use_sg,
1654 			scsicmd->sc_data_direction);
1655 	else if(scsicmd->request_bufflen)
1656 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
1657 			scsicmd->sc_data_direction);
1658 
1659 	/*
1660 	 * First check the fib status
1661 	 */
1662 
1663 	if (le32_to_cpu(srbreply->status) != ST_OK){
1664 		int len;
1665 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
1666 		len = (le32_to_cpu(srbreply->sense_data_size) >
1667 				sizeof(scsicmd->sense_buffer)) ?
1668 				sizeof(scsicmd->sense_buffer) :
1669 				le32_to_cpu(srbreply->sense_data_size);
1670 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1671 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1672 	}
1673 
1674 	/*
1675 	 * Next check the srb status
1676 	 */
1677 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
1678 	case SRB_STATUS_ERROR_RECOVERY:
1679 	case SRB_STATUS_PENDING:
1680 	case SRB_STATUS_SUCCESS:
1681 		if(scsicmd->cmnd[0] == INQUIRY ){
1682 			u8 b;
1683 			u8 b1;
1684 			/* We can't expose disk devices because we can't tell whether they
1685 			 * are the raw container drives or stand alone drives.  If they have
1686 			 * the removable bit set then we should expose them though.
1687 			 */
1688 			b = (*(u8*)scsicmd->buffer)&0x1f;
1689 			b1 = ((u8*)scsicmd->buffer)[1];
1690 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1691 					|| (b==TYPE_DISK && (b1&0x80)) ){
1692 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1693 			/*
1694 			 * We will allow disk devices if in RAID/SCSI mode and
1695 			 * the channel is 2
1696 			 */
1697 			} else if ((dev->raid_scsi_mode) &&
1698 					(scsicmd->device->channel == 2)) {
1699 				scsicmd->result = DID_OK << 16 |
1700 						COMMAND_COMPLETE << 8;
1701 			} else {
1702 				scsicmd->result = DID_NO_CONNECT << 16 |
1703 						COMMAND_COMPLETE << 8;
1704 			}
1705 		} else {
1706 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1707 		}
1708 		break;
1709 	case SRB_STATUS_DATA_OVERRUN:
1710 		switch(scsicmd->cmnd[0]){
1711 		case  READ_6:
1712 		case  WRITE_6:
1713 		case  READ_10:
1714 		case  WRITE_10:
1715 		case  READ_12:
1716 		case  WRITE_12:
1717 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1718 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1719 			} else {
1720 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
1721 			}
1722 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1723 			break;
1724 		case INQUIRY: {
1725 			u8 b;
1726 			u8 b1;
1727 			/* We can't expose disk devices because we can't tell whether they
1728 			* are the raw container drives or stand alone drives
1729 			*/
1730 			b = (*(u8*)scsicmd->buffer)&0x0f;
1731 			b1 = ((u8*)scsicmd->buffer)[1];
1732 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1733 					|| (b==TYPE_DISK && (b1&0x80)) ){
1734 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1735 			/*
1736 			 * We will allow disk devices if in RAID/SCSI mode and
1737 			 * the channel is 2
1738 			 */
1739 			} else if ((dev->raid_scsi_mode) &&
1740 					(scsicmd->device->channel == 2)) {
1741 				scsicmd->result = DID_OK << 16 |
1742 						COMMAND_COMPLETE << 8;
1743 			} else {
1744 				scsicmd->result = DID_NO_CONNECT << 16 |
1745 						COMMAND_COMPLETE << 8;
1746 			}
1747 			break;
1748 		}
1749 		default:
1750 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1751 			break;
1752 		}
1753 		break;
1754 	case SRB_STATUS_ABORTED:
1755 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
1756 		break;
1757 	case SRB_STATUS_ABORT_FAILED:
1758 		// Not sure about this one - but assuming the hba was trying to abort for some reason
1759 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
1760 		break;
1761 	case SRB_STATUS_PARITY_ERROR:
1762 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
1763 		break;
1764 	case SRB_STATUS_NO_DEVICE:
1765 	case SRB_STATUS_INVALID_PATH_ID:
1766 	case SRB_STATUS_INVALID_TARGET_ID:
1767 	case SRB_STATUS_INVALID_LUN:
1768 	case SRB_STATUS_SELECTION_TIMEOUT:
1769 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1770 		break;
1771 
1772 	case SRB_STATUS_COMMAND_TIMEOUT:
1773 	case SRB_STATUS_TIMEOUT:
1774 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
1775 		break;
1776 
1777 	case SRB_STATUS_BUSY:
1778 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1779 		break;
1780 
1781 	case SRB_STATUS_BUS_RESET:
1782 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
1783 		break;
1784 
1785 	case SRB_STATUS_MESSAGE_REJECTED:
1786 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
1787 		break;
1788 	case SRB_STATUS_REQUEST_FLUSHED:
1789 	case SRB_STATUS_ERROR:
1790 	case SRB_STATUS_INVALID_REQUEST:
1791 	case SRB_STATUS_REQUEST_SENSE_FAILED:
1792 	case SRB_STATUS_NO_HBA:
1793 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
1794 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
1795 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
1796 	case SRB_STATUS_DELAYED_RETRY:
1797 	case SRB_STATUS_BAD_FUNCTION:
1798 	case SRB_STATUS_NOT_STARTED:
1799 	case SRB_STATUS_NOT_IN_USE:
1800 	case SRB_STATUS_FORCE_ABORT:
1801 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
1802 	default:
1803 #ifdef AAC_DETAILED_STATUS_INFO
1804 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
1805 			le32_to_cpu(srbreply->srb_status) & 0x3F,
1806 			aac_get_status_string(
1807 				le32_to_cpu(srbreply->srb_status) & 0x3F),
1808 			scsicmd->cmnd[0],
1809 			le32_to_cpu(srbreply->scsi_status));
1810 #endif
1811 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1812 		break;
1813 	}
1814 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
1815 		int len;
1816 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
1817 		len = (le32_to_cpu(srbreply->sense_data_size) >
1818 				sizeof(scsicmd->sense_buffer)) ?
1819 				sizeof(scsicmd->sense_buffer) :
1820 				le32_to_cpu(srbreply->sense_data_size);
1821 #ifdef AAC_DETAILED_STATUS_INFO
1822 		dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
1823 					le32_to_cpu(srbreply->status), len));
1824 #endif
1825 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1826 
1827 	}
1828 	/*
1829 	 * OR in the scsi status (already shifted up a bit)
1830 	 */
1831 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
1832 
1833 	fib_complete(fibptr);
1834 	fib_free(fibptr);
1835 	aac_io_done(scsicmd);
1836 }
1837 
1838 /**
1839  *
1840  * aac_send_scb_fib
1841  * @scsicmd: the scsi command block
1842  *
1843  * This routine will form a FIB and fill in the aac_srb from the
1844  * scsicmd passed in.
1845  */
1846 
1847 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
1848 {
1849 	struct fib* cmd_fibcontext;
1850 	struct aac_dev* dev;
1851 	int status;
1852 	struct aac_srb *srbcmd;
1853 	u16 fibsize;
1854 	u32 flag;
1855 	u32 timeout;
1856 
1857 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1858 	if (scsicmd->device->id >= dev->maximum_num_physicals ||
1859 			scsicmd->device->lun > 7) {
1860 		scsicmd->result = DID_NO_CONNECT << 16;
1861 		scsicmd->scsi_done(scsicmd);
1862 		return 0;
1863 	}
1864 
1865 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1866 	switch(scsicmd->sc_data_direction){
1867 	case DMA_TO_DEVICE:
1868 		flag = SRB_DataOut;
1869 		break;
1870 	case DMA_BIDIRECTIONAL:
1871 		flag = SRB_DataIn | SRB_DataOut;
1872 		break;
1873 	case DMA_FROM_DEVICE:
1874 		flag = SRB_DataIn;
1875 		break;
1876 	case DMA_NONE:
1877 	default:	/* shuts up some versions of gcc */
1878 		flag = SRB_NoDataXfer;
1879 		break;
1880 	}
1881 
1882 
1883 	/*
1884 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1885 	 */
1886 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1887 		return -1;
1888 	}
1889 	fib_init(cmd_fibcontext);
1890 
1891 	srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
1892 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1893 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel));
1894 	srbcmd->id   = cpu_to_le32(scsicmd->device->id);
1895 	srbcmd->lun      = cpu_to_le32(scsicmd->device->lun);
1896 	srbcmd->flags    = cpu_to_le32(flag);
1897 	timeout = (scsicmd->timeout-jiffies)/HZ;
1898 	if(timeout == 0){
1899 		timeout = 1;
1900 	}
1901 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1902 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1903 	srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
1904 
1905 	if( dev->dac_support == 1 ) {
1906 		aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
1907 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1908 
1909 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1910 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1911 		/*
1912 		 *	Build Scatter/Gather list
1913 		 */
1914 		fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1915 			((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1916 			 sizeof (struct sgentry64));
1917 		BUG_ON (fibsize > (dev->max_fib_size -
1918 					sizeof(struct aac_fibhdr)));
1919 
1920 		/*
1921 		 *	Now send the Fib to the adapter
1922 		 */
1923 		status = fib_send(ScsiPortCommand64, cmd_fibcontext,
1924 				fibsize, FsaNormal, 0, 1,
1925 				  (fib_callback) aac_srb_callback,
1926 				  (void *) scsicmd);
1927 	} else {
1928 		aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
1929 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1930 
1931 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1932 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1933 		/*
1934 		 *	Build Scatter/Gather list
1935 		 */
1936 		fibsize = sizeof (struct aac_srb) +
1937 			(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1938 			 sizeof (struct sgentry));
1939 		BUG_ON (fibsize > (dev->max_fib_size -
1940 					sizeof(struct aac_fibhdr)));
1941 
1942 		/*
1943 		 *	Now send the Fib to the adapter
1944 		 */
1945 		status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
1946 				  (fib_callback) aac_srb_callback, (void *) scsicmd);
1947 	}
1948 	/*
1949 	 *	Check that the command queued to the controller
1950 	 */
1951 	if (status == -EINPROGRESS){
1952 		return 0;
1953 	}
1954 
1955 	printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status);
1956 	fib_complete(cmd_fibcontext);
1957 	fib_free(cmd_fibcontext);
1958 
1959 	return -1;
1960 }
1961 
1962 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
1963 {
1964 	struct aac_dev *dev;
1965 	unsigned long byte_count = 0;
1966 
1967 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1968 	// Get rid of old data
1969 	psg->count = 0;
1970 	psg->sg[0].addr = 0;
1971 	psg->sg[0].count = 0;
1972 	if (scsicmd->use_sg) {
1973 		struct scatterlist *sg;
1974 		int i;
1975 		int sg_count;
1976 		sg = (struct scatterlist *) scsicmd->request_buffer;
1977 
1978 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
1979 			scsicmd->sc_data_direction);
1980 		psg->count = cpu_to_le32(sg_count);
1981 
1982 		byte_count = 0;
1983 
1984 		for (i = 0; i < sg_count; i++) {
1985 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
1986 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
1987 			byte_count += sg_dma_len(sg);
1988 			sg++;
1989 		}
1990 		/* hba wants the size to be exact */
1991 		if(byte_count > scsicmd->request_bufflen){
1992 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
1993 				(byte_count - scsicmd->request_bufflen);
1994 			psg->sg[i-1].count = cpu_to_le32(temp);
1995 			byte_count = scsicmd->request_bufflen;
1996 		}
1997 		/* Check for command underflow */
1998 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
1999 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2000 					byte_count, scsicmd->underflow);
2001 		}
2002 	}
2003 	else if(scsicmd->request_bufflen) {
2004 		dma_addr_t addr;
2005 		addr = pci_map_single(dev->pdev,
2006 				scsicmd->request_buffer,
2007 				scsicmd->request_bufflen,
2008 				scsicmd->sc_data_direction);
2009 		psg->count = cpu_to_le32(1);
2010 		psg->sg[0].addr = cpu_to_le32(addr);
2011 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2012 		scsicmd->SCp.dma_handle = addr;
2013 		byte_count = scsicmd->request_bufflen;
2014 	}
2015 	return byte_count;
2016 }
2017 
2018 
2019 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2020 {
2021 	struct aac_dev *dev;
2022 	unsigned long byte_count = 0;
2023 	u64 addr;
2024 
2025 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2026 	// Get rid of old data
2027 	psg->count = 0;
2028 	psg->sg[0].addr[0] = 0;
2029 	psg->sg[0].addr[1] = 0;
2030 	psg->sg[0].count = 0;
2031 	if (scsicmd->use_sg) {
2032 		struct scatterlist *sg;
2033 		int i;
2034 		int sg_count;
2035 		sg = (struct scatterlist *) scsicmd->request_buffer;
2036 
2037 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2038 			scsicmd->sc_data_direction);
2039 		psg->count = cpu_to_le32(sg_count);
2040 
2041 		byte_count = 0;
2042 
2043 		for (i = 0; i < sg_count; i++) {
2044 			addr = sg_dma_address(sg);
2045 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2046 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2047 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2048 			byte_count += sg_dma_len(sg);
2049 			sg++;
2050 		}
2051 		/* hba wants the size to be exact */
2052 		if(byte_count > scsicmd->request_bufflen){
2053 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2054 				(byte_count - scsicmd->request_bufflen);
2055 			psg->sg[i-1].count = cpu_to_le32(temp);
2056 			byte_count = scsicmd->request_bufflen;
2057 		}
2058 		/* Check for command underflow */
2059 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2060 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2061 					byte_count, scsicmd->underflow);
2062 		}
2063 	}
2064 	else if(scsicmd->request_bufflen) {
2065 		u64 addr;
2066 		addr = pci_map_single(dev->pdev,
2067 				scsicmd->request_buffer,
2068 				scsicmd->request_bufflen,
2069 				scsicmd->sc_data_direction);
2070 		psg->count = cpu_to_le32(1);
2071 		psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2072 		psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2073 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2074 		scsicmd->SCp.dma_handle = addr;
2075 		byte_count = scsicmd->request_bufflen;
2076 	}
2077 	return byte_count;
2078 }
2079 
2080 #ifdef AAC_DETAILED_STATUS_INFO
2081 
2082 struct aac_srb_status_info {
2083 	u32	status;
2084 	char	*str;
2085 };
2086 
2087 
2088 static struct aac_srb_status_info srb_status_info[] = {
2089 	{ SRB_STATUS_PENDING,		"Pending Status"},
2090 	{ SRB_STATUS_SUCCESS,		"Success"},
2091 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2092 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2093 	{ SRB_STATUS_ERROR,		"Error Event"},
2094 	{ SRB_STATUS_BUSY,		"Device Busy"},
2095 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2096 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2097 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2098 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2099 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2100 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2101 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2102 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2103 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2104 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2105 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2106 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2107 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2108 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2109 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2110 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2111 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2112 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2113 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2114 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2115 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2116 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2117 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2118     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2119 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2120 	{ 0xff,				"Unknown Error"}
2121 };
2122 
2123 char *aac_get_status_string(u32 status)
2124 {
2125 	int i;
2126 
2127 	for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
2128 		if(srb_status_info[i].status == status){
2129 			return srb_status_info[i].str;
2130 		}
2131 	}
2132 
2133 	return "Bad Status Code";
2134 }
2135 
2136 #endif
2137