1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/sched.h> 30 #include <linux/pci.h> 31 #include <linux/spinlock.h> 32 #include <linux/slab.h> 33 #include <linux/completion.h> 34 #include <linux/blkdev.h> 35 #include <asm/semaphore.h> 36 #include <asm/uaccess.h> 37 38 #include <scsi/scsi.h> 39 #include <scsi/scsi_cmnd.h> 40 #include <scsi/scsi_device.h> 41 #include <scsi/scsi_host.h> 42 43 #include "aacraid.h" 44 45 /* values for inqd_pdt: Peripheral device type in plain English */ 46 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 47 #define INQD_PDT_PROC 0x03 /* Processor device */ 48 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 49 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 50 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 51 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 52 53 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 54 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 55 56 /* 57 * Sense codes 58 */ 59 60 #define SENCODE_NO_SENSE 0x00 61 #define SENCODE_END_OF_DATA 0x00 62 #define SENCODE_BECOMING_READY 0x04 63 #define SENCODE_INIT_CMD_REQUIRED 0x04 64 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 65 #define SENCODE_INVALID_COMMAND 0x20 66 #define SENCODE_LBA_OUT_OF_RANGE 0x21 67 #define SENCODE_INVALID_CDB_FIELD 0x24 68 #define SENCODE_LUN_NOT_SUPPORTED 0x25 69 #define SENCODE_INVALID_PARAM_FIELD 0x26 70 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 71 #define SENCODE_PARAM_VALUE_INVALID 0x26 72 #define SENCODE_RESET_OCCURRED 0x29 73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 74 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 76 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 77 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 78 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 79 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 80 #define SENCODE_OVERLAPPED_COMMAND 0x4E 81 82 /* 83 * Additional sense codes 84 */ 85 86 #define ASENCODE_NO_SENSE 0x00 87 #define ASENCODE_END_OF_DATA 0x05 88 #define ASENCODE_BECOMING_READY 0x01 89 #define ASENCODE_INIT_CMD_REQUIRED 0x02 90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 91 #define ASENCODE_INVALID_COMMAND 0x00 92 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 93 #define ASENCODE_INVALID_CDB_FIELD 0x00 94 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 95 #define ASENCODE_INVALID_PARAM_FIELD 0x00 96 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 97 #define ASENCODE_PARAM_VALUE_INVALID 0x02 98 #define ASENCODE_RESET_OCCURRED 0x00 99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 100 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 102 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 103 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 104 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 105 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 106 #define ASENCODE_OVERLAPPED_COMMAND 0x00 107 108 #define BYTE0(x) (unsigned char)(x) 109 #define BYTE1(x) (unsigned char)((x) >> 8) 110 #define BYTE2(x) (unsigned char)((x) >> 16) 111 #define BYTE3(x) (unsigned char)((x) >> 24) 112 113 /*------------------------------------------------------------------------------ 114 * S T R U C T S / T Y P E D E F S 115 *----------------------------------------------------------------------------*/ 116 /* SCSI inquiry data */ 117 struct inquiry_data { 118 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 119 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 120 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 121 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 122 u8 inqd_len; /* Additional length (n-4) */ 123 u8 inqd_pad1[2];/* Reserved - must be zero */ 124 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 125 u8 inqd_vid[8]; /* Vendor ID */ 126 u8 inqd_pid[16];/* Product ID */ 127 u8 inqd_prl[4]; /* Product Revision Level */ 128 }; 129 130 /* 131 * M O D U L E G L O B A L S 132 */ 133 134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap); 135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg); 136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 137 #ifdef AAC_DETAILED_STATUS_INFO 138 static char *aac_get_status_string(u32 status); 139 #endif 140 141 /* 142 * Non dasd selection is handled entirely in aachba now 143 */ 144 145 static int nondasd = -1; 146 static int dacmode = -1; 147 148 static int commit = -1; 149 150 module_param(nondasd, int, 0); 151 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on"); 152 module_param(dacmode, int, 0); 153 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on"); 154 module_param(commit, int, 0); 155 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on"); 156 157 int numacb = -1; 158 module_param(numacb, int, S_IRUGO|S_IWUSR); 159 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware."); 160 161 int acbsize = -1; 162 module_param(acbsize, int, S_IRUGO|S_IWUSR); 163 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware."); 164 /** 165 * aac_get_config_status - check the adapter configuration 166 * @common: adapter to query 167 * 168 * Query config status, and commit the configuration if needed. 169 */ 170 int aac_get_config_status(struct aac_dev *dev) 171 { 172 int status = 0; 173 struct fib * fibptr; 174 175 if (!(fibptr = fib_alloc(dev))) 176 return -ENOMEM; 177 178 fib_init(fibptr); 179 { 180 struct aac_get_config_status *dinfo; 181 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 182 183 dinfo->command = cpu_to_le32(VM_ContainerConfig); 184 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 185 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 186 } 187 188 status = fib_send(ContainerCommand, 189 fibptr, 190 sizeof (struct aac_get_config_status), 191 FsaNormal, 192 1, 1, 193 NULL, NULL); 194 if (status < 0 ) { 195 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 196 } else { 197 struct aac_get_config_status_resp *reply 198 = (struct aac_get_config_status_resp *) fib_data(fibptr); 199 dprintk((KERN_WARNING 200 "aac_get_config_status: response=%d status=%d action=%d\n", 201 le32_to_cpu(reply->response), 202 le32_to_cpu(reply->status), 203 le32_to_cpu(reply->data.action))); 204 if ((le32_to_cpu(reply->response) != ST_OK) || 205 (le32_to_cpu(reply->status) != CT_OK) || 206 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 207 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 208 status = -EINVAL; 209 } 210 } 211 fib_complete(fibptr); 212 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 213 if (status >= 0) { 214 if (commit == 1) { 215 struct aac_commit_config * dinfo; 216 fib_init(fibptr); 217 dinfo = (struct aac_commit_config *) fib_data(fibptr); 218 219 dinfo->command = cpu_to_le32(VM_ContainerConfig); 220 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 221 222 status = fib_send(ContainerCommand, 223 fibptr, 224 sizeof (struct aac_commit_config), 225 FsaNormal, 226 1, 1, 227 NULL, NULL); 228 fib_complete(fibptr); 229 } else if (commit == 0) { 230 printk(KERN_WARNING 231 "aac_get_config_status: Foreign device configurations are being ignored\n"); 232 } 233 } 234 fib_free(fibptr); 235 return status; 236 } 237 238 /** 239 * aac_get_containers - list containers 240 * @common: adapter to probe 241 * 242 * Make a list of all containers on this controller 243 */ 244 int aac_get_containers(struct aac_dev *dev) 245 { 246 struct fsa_dev_info *fsa_dev_ptr; 247 u32 index; 248 int status = 0; 249 struct fib * fibptr; 250 unsigned instance; 251 struct aac_get_container_count *dinfo; 252 struct aac_get_container_count_resp *dresp; 253 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 254 255 instance = dev->scsi_host_ptr->unique_id; 256 257 if (!(fibptr = fib_alloc(dev))) 258 return -ENOMEM; 259 260 fib_init(fibptr); 261 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 262 dinfo->command = cpu_to_le32(VM_ContainerConfig); 263 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 264 265 status = fib_send(ContainerCommand, 266 fibptr, 267 sizeof (struct aac_get_container_count), 268 FsaNormal, 269 1, 1, 270 NULL, NULL); 271 if (status >= 0) { 272 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 273 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 274 fib_complete(fibptr); 275 } 276 277 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 278 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 279 fsa_dev_ptr = (struct fsa_dev_info *) kmalloc( 280 sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL); 281 if (!fsa_dev_ptr) { 282 fib_free(fibptr); 283 return -ENOMEM; 284 } 285 memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers); 286 287 dev->fsa_dev = fsa_dev_ptr; 288 dev->maximum_num_containers = maximum_num_containers; 289 290 for (index = 0; index < dev->maximum_num_containers; index++) { 291 struct aac_query_mount *dinfo; 292 struct aac_mount *dresp; 293 294 fsa_dev_ptr[index].devname[0] = '\0'; 295 296 fib_init(fibptr); 297 dinfo = (struct aac_query_mount *) fib_data(fibptr); 298 299 dinfo->command = cpu_to_le32(VM_NameServe); 300 dinfo->count = cpu_to_le32(index); 301 dinfo->type = cpu_to_le32(FT_FILESYS); 302 303 status = fib_send(ContainerCommand, 304 fibptr, 305 sizeof (struct aac_query_mount), 306 FsaNormal, 307 1, 1, 308 NULL, NULL); 309 if (status < 0 ) { 310 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 311 break; 312 } 313 dresp = (struct aac_mount *)fib_data(fibptr); 314 315 dprintk ((KERN_DEBUG 316 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n", 317 (int)index, (int)le32_to_cpu(dresp->status), 318 (int)le32_to_cpu(dresp->mnt[0].vol), 319 (int)le32_to_cpu(dresp->mnt[0].state), 320 (unsigned)le32_to_cpu(dresp->mnt[0].capacity))); 321 if ((le32_to_cpu(dresp->status) == ST_OK) && 322 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 323 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 324 fsa_dev_ptr[index].valid = 1; 325 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol); 326 fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity); 327 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) 328 fsa_dev_ptr[index].ro = 1; 329 } 330 fib_complete(fibptr); 331 /* 332 * If there are no more containers, then stop asking. 333 */ 334 if ((index + 1) >= le32_to_cpu(dresp->count)){ 335 break; 336 } 337 } 338 fib_free(fibptr); 339 return status; 340 } 341 342 static void aac_io_done(struct scsi_cmnd * scsicmd) 343 { 344 unsigned long cpu_flags; 345 struct Scsi_Host *host = scsicmd->device->host; 346 spin_lock_irqsave(host->host_lock, cpu_flags); 347 scsicmd->scsi_done(scsicmd); 348 spin_unlock_irqrestore(host->host_lock, cpu_flags); 349 } 350 351 static void get_container_name_callback(void *context, struct fib * fibptr) 352 { 353 struct aac_get_name_resp * get_name_reply; 354 struct scsi_cmnd * scsicmd; 355 356 scsicmd = (struct scsi_cmnd *) context; 357 358 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 359 if (fibptr == NULL) 360 BUG(); 361 362 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 363 /* Failure is irrelevant, using default value instead */ 364 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 365 && (get_name_reply->data[0] != '\0')) { 366 int count; 367 char * dp; 368 char * sp = get_name_reply->data; 369 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0'; 370 while (*sp == ' ') 371 ++sp; 372 count = sizeof(((struct inquiry_data *)NULL)->inqd_pid); 373 dp = ((struct inquiry_data *)scsicmd->request_buffer)->inqd_pid; 374 if (*sp) do { 375 *dp++ = (*sp) ? *sp++ : ' '; 376 } while (--count > 0); 377 } 378 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 379 380 fib_complete(fibptr); 381 fib_free(fibptr); 382 aac_io_done(scsicmd); 383 } 384 385 /** 386 * aac_get_container_name - get container name, none blocking. 387 */ 388 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid) 389 { 390 int status; 391 struct aac_get_name *dinfo; 392 struct fib * cmd_fibcontext; 393 struct aac_dev * dev; 394 395 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 396 397 if (!(cmd_fibcontext = fib_alloc(dev))) 398 return -ENOMEM; 399 400 fib_init(cmd_fibcontext); 401 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 402 403 dinfo->command = cpu_to_le32(VM_ContainerConfig); 404 dinfo->type = cpu_to_le32(CT_READ_NAME); 405 dinfo->cid = cpu_to_le32(cid); 406 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data)); 407 408 status = fib_send(ContainerCommand, 409 cmd_fibcontext, 410 sizeof (struct aac_get_name), 411 FsaNormal, 412 0, 1, 413 (fib_callback) get_container_name_callback, 414 (void *) scsicmd); 415 416 /* 417 * Check that the command queued to the controller 418 */ 419 if (status == -EINPROGRESS) 420 return 0; 421 422 printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status); 423 fib_complete(cmd_fibcontext); 424 fib_free(cmd_fibcontext); 425 return -1; 426 } 427 428 /** 429 * probe_container - query a logical volume 430 * @dev: device to query 431 * @cid: container identifier 432 * 433 * Queries the controller about the given volume. The volume information 434 * is updated in the struct fsa_dev_info structure rather than returned. 435 */ 436 437 static int probe_container(struct aac_dev *dev, int cid) 438 { 439 struct fsa_dev_info *fsa_dev_ptr; 440 int status; 441 struct aac_query_mount *dinfo; 442 struct aac_mount *dresp; 443 struct fib * fibptr; 444 unsigned instance; 445 446 fsa_dev_ptr = dev->fsa_dev; 447 instance = dev->scsi_host_ptr->unique_id; 448 449 if (!(fibptr = fib_alloc(dev))) 450 return -ENOMEM; 451 452 fib_init(fibptr); 453 454 dinfo = (struct aac_query_mount *)fib_data(fibptr); 455 456 dinfo->command = cpu_to_le32(VM_NameServe); 457 dinfo->count = cpu_to_le32(cid); 458 dinfo->type = cpu_to_le32(FT_FILESYS); 459 460 status = fib_send(ContainerCommand, 461 fibptr, 462 sizeof(struct aac_query_mount), 463 FsaNormal, 464 1, 1, 465 NULL, NULL); 466 if (status < 0) { 467 printk(KERN_WARNING "aacraid: probe_container query failed.\n"); 468 goto error; 469 } 470 471 dresp = (struct aac_mount *) fib_data(fibptr); 472 473 if ((le32_to_cpu(dresp->status) == ST_OK) && 474 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 475 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 476 fsa_dev_ptr[cid].valid = 1; 477 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol); 478 fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity); 479 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) 480 fsa_dev_ptr[cid].ro = 1; 481 } 482 483 error: 484 fib_complete(fibptr); 485 fib_free(fibptr); 486 487 return status; 488 } 489 490 /* Local Structure to set SCSI inquiry data strings */ 491 struct scsi_inq { 492 char vid[8]; /* Vendor ID */ 493 char pid[16]; /* Product ID */ 494 char prl[4]; /* Product Revision Level */ 495 }; 496 497 /** 498 * InqStrCopy - string merge 499 * @a: string to copy from 500 * @b: string to copy to 501 * 502 * Copy a String from one location to another 503 * without copying \0 504 */ 505 506 static void inqstrcpy(char *a, char *b) 507 { 508 509 while(*a != (char)0) 510 *b++ = *a++; 511 } 512 513 static char *container_types[] = { 514 "None", 515 "Volume", 516 "Mirror", 517 "Stripe", 518 "RAID5", 519 "SSRW", 520 "SSRO", 521 "Morph", 522 "Legacy", 523 "RAID4", 524 "RAID10", 525 "RAID00", 526 "V-MIRRORS", 527 "PSEUDO R4", 528 "RAID50", 529 "RAID5D", 530 "RAID5D0", 531 "RAID1E", 532 "RAID6", 533 "RAID60", 534 "Unknown" 535 }; 536 537 538 539 /* Function: setinqstr 540 * 541 * Arguments: [1] pointer to void [1] int 542 * 543 * Purpose: Sets SCSI inquiry data strings for vendor, product 544 * and revision level. Allows strings to be set in platform dependant 545 * files instead of in OS dependant driver source. 546 */ 547 548 static void setinqstr(int devtype, void *data, int tindex) 549 { 550 struct scsi_inq *str; 551 struct aac_driver_ident *mp; 552 553 mp = aac_get_driver_ident(devtype); 554 555 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 556 557 inqstrcpy (mp->vname, str->vid); 558 inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */ 559 560 if (tindex < (sizeof(container_types)/sizeof(char *))){ 561 char *findit = str->pid; 562 563 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 564 /* RAID is superfluous in the context of a RAID device */ 565 if (memcmp(findit-4, "RAID", 4) == 0) 566 *(findit -= 4) = ' '; 567 inqstrcpy (container_types[tindex], findit + 1); 568 } 569 inqstrcpy ("V1.0", str->prl); 570 } 571 572 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code, 573 u8 a_sense_code, u8 incorrect_length, 574 u8 bit_pointer, u16 field_pointer, 575 u32 residue) 576 { 577 sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */ 578 sense_buf[1] = 0; /* Segment number, always zero */ 579 580 if (incorrect_length) { 581 sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */ 582 sense_buf[3] = BYTE3(residue); 583 sense_buf[4] = BYTE2(residue); 584 sense_buf[5] = BYTE1(residue); 585 sense_buf[6] = BYTE0(residue); 586 } else 587 sense_buf[2] = sense_key; /* Sense key */ 588 589 if (sense_key == ILLEGAL_REQUEST) 590 sense_buf[7] = 10; /* Additional sense length */ 591 else 592 sense_buf[7] = 6; /* Additional sense length */ 593 594 sense_buf[12] = sense_code; /* Additional sense code */ 595 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 596 if (sense_key == ILLEGAL_REQUEST) { 597 sense_buf[15] = 0; 598 599 if (sense_code == SENCODE_INVALID_PARAM_FIELD) 600 sense_buf[15] = 0x80;/* Std sense key specific field */ 601 /* Illegal parameter is in the parameter block */ 602 603 if (sense_code == SENCODE_INVALID_CDB_FIELD) 604 sense_buf[15] = 0xc0;/* Std sense key specific field */ 605 /* Illegal parameter is in the CDB block */ 606 sense_buf[15] |= bit_pointer; 607 sense_buf[16] = field_pointer >> 8; /* MSB */ 608 sense_buf[17] = field_pointer; /* LSB */ 609 } 610 } 611 612 int aac_get_adapter_info(struct aac_dev* dev) 613 { 614 struct fib* fibptr; 615 int rcode; 616 u32 tmp; 617 struct aac_adapter_info *info; 618 struct aac_bus_info *command; 619 struct aac_bus_info_response *bus_info; 620 621 if (!(fibptr = fib_alloc(dev))) 622 return -ENOMEM; 623 624 fib_init(fibptr); 625 info = (struct aac_adapter_info *) fib_data(fibptr); 626 memset(info,0,sizeof(*info)); 627 628 rcode = fib_send(RequestAdapterInfo, 629 fibptr, 630 sizeof(*info), 631 FsaNormal, 632 1, 1, 633 NULL, 634 NULL); 635 636 if (rcode < 0) { 637 fib_complete(fibptr); 638 fib_free(fibptr); 639 return rcode; 640 } 641 memcpy(&dev->adapter_info, info, sizeof(*info)); 642 643 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 644 struct aac_supplement_adapter_info * info; 645 646 fib_init(fibptr); 647 648 info = (struct aac_supplement_adapter_info *) fib_data(fibptr); 649 650 memset(info,0,sizeof(*info)); 651 652 rcode = fib_send(RequestSupplementAdapterInfo, 653 fibptr, 654 sizeof(*info), 655 FsaNormal, 656 1, 1, 657 NULL, 658 NULL); 659 660 if (rcode >= 0) 661 memcpy(&dev->supplement_adapter_info, info, sizeof(*info)); 662 } 663 664 665 /* 666 * GetBusInfo 667 */ 668 669 fib_init(fibptr); 670 671 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 672 673 memset(bus_info, 0, sizeof(*bus_info)); 674 675 command = (struct aac_bus_info *)bus_info; 676 677 command->Command = cpu_to_le32(VM_Ioctl); 678 command->ObjType = cpu_to_le32(FT_DRIVE); 679 command->MethodId = cpu_to_le32(1); 680 command->CtlCmd = cpu_to_le32(GetBusInfo); 681 682 rcode = fib_send(ContainerCommand, 683 fibptr, 684 sizeof (*bus_info), 685 FsaNormal, 686 1, 1, 687 NULL, NULL); 688 689 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 690 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 691 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 692 } 693 694 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 695 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 696 dev->name, 697 dev->id, 698 tmp>>24, 699 (tmp>>16)&0xff, 700 tmp&0xff, 701 le32_to_cpu(dev->adapter_info.kernelbuild), 702 (int)sizeof(dev->supplement_adapter_info.BuildDate), 703 dev->supplement_adapter_info.BuildDate); 704 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 705 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 706 dev->name, dev->id, 707 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 708 le32_to_cpu(dev->adapter_info.monitorbuild)); 709 tmp = le32_to_cpu(dev->adapter_info.biosrev); 710 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 711 dev->name, dev->id, 712 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 713 le32_to_cpu(dev->adapter_info.biosbuild)); 714 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 715 printk(KERN_INFO "%s%d: serial %x\n", 716 dev->name, dev->id, 717 le32_to_cpu(dev->adapter_info.serial[0])); 718 719 dev->nondasd_support = 0; 720 dev->raid_scsi_mode = 0; 721 if(dev->adapter_info.options & AAC_OPT_NONDASD){ 722 dev->nondasd_support = 1; 723 } 724 725 /* 726 * If the firmware supports ROMB RAID/SCSI mode and we are currently 727 * in RAID/SCSI mode, set the flag. For now if in this mode we will 728 * force nondasd support on. If we decide to allow the non-dasd flag 729 * additional changes changes will have to be made to support 730 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 731 * changed to support the new dev->raid_scsi_mode flag instead of 732 * leaching off of the dev->nondasd_support flag. Also in linit.c the 733 * function aac_detect will have to be modified where it sets up the 734 * max number of channels based on the aac->nondasd_support flag only. 735 */ 736 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 737 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 738 dev->nondasd_support = 1; 739 dev->raid_scsi_mode = 1; 740 } 741 if (dev->raid_scsi_mode != 0) 742 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 743 dev->name, dev->id); 744 745 if(nondasd != -1) { 746 dev->nondasd_support = (nondasd!=0); 747 } 748 if(dev->nondasd_support != 0){ 749 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 750 } 751 752 dev->dac_support = 0; 753 if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){ 754 printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id); 755 dev->dac_support = 1; 756 } 757 758 if(dacmode != -1) { 759 dev->dac_support = (dacmode!=0); 760 } 761 if(dev->dac_support != 0) { 762 if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) && 763 !pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) { 764 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n", 765 dev->name, dev->id); 766 } else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) && 767 !pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) { 768 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n", 769 dev->name, dev->id); 770 dev->dac_support = 0; 771 } else { 772 printk(KERN_WARNING"%s%d: No suitable DMA available.\n", 773 dev->name, dev->id); 774 rcode = -ENOMEM; 775 } 776 } 777 /* 778 * 57 scatter gather elements 779 */ 780 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 781 sizeof(struct aac_fibhdr) - 782 sizeof(struct aac_write) + sizeof(struct sgmap)) / 783 sizeof(struct sgmap); 784 if (dev->dac_support) { 785 /* 786 * 38 scatter gather elements 787 */ 788 dev->scsi_host_ptr->sg_tablesize = 789 (dev->max_fib_size - 790 sizeof(struct aac_fibhdr) - 791 sizeof(struct aac_write64) + 792 sizeof(struct sgmap64)) / 793 sizeof(struct sgmap64); 794 } 795 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 796 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 797 /* 798 * Worst case size that could cause sg overflow when 799 * we break up SG elements that are larger than 64KB. 800 * Would be nice if we could tell the SCSI layer what 801 * the maximum SG element size can be. Worst case is 802 * (sg_tablesize-1) 4KB elements with one 64KB 803 * element. 804 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 805 */ 806 dev->scsi_host_ptr->max_sectors = 807 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 808 } 809 810 fib_complete(fibptr); 811 fib_free(fibptr); 812 813 return rcode; 814 } 815 816 817 static void read_callback(void *context, struct fib * fibptr) 818 { 819 struct aac_dev *dev; 820 struct aac_read_reply *readreply; 821 struct scsi_cmnd *scsicmd; 822 u32 lba; 823 u32 cid; 824 825 scsicmd = (struct scsi_cmnd *) context; 826 827 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 828 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun); 829 830 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 831 dprintk((KERN_DEBUG "read_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies)); 832 833 if (fibptr == NULL) 834 BUG(); 835 836 if(scsicmd->use_sg) 837 pci_unmap_sg(dev->pdev, 838 (struct scatterlist *)scsicmd->buffer, 839 scsicmd->use_sg, 840 scsicmd->sc_data_direction); 841 else if(scsicmd->request_bufflen) 842 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, 843 scsicmd->request_bufflen, 844 scsicmd->sc_data_direction); 845 readreply = (struct aac_read_reply *)fib_data(fibptr); 846 if (le32_to_cpu(readreply->status) == ST_OK) 847 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 848 else { 849 #ifdef AAC_DETAILED_STATUS_INFO 850 printk(KERN_WARNING "read_callback: io failed, status = %d\n", 851 le32_to_cpu(readreply->status)); 852 #endif 853 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 854 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 855 HARDWARE_ERROR, 856 SENCODE_INTERNAL_TARGET_FAILURE, 857 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 858 0, 0); 859 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 860 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) 861 ? sizeof(scsicmd->sense_buffer) 862 : sizeof(dev->fsa_dev[cid].sense_data)); 863 } 864 fib_complete(fibptr); 865 fib_free(fibptr); 866 867 aac_io_done(scsicmd); 868 } 869 870 static void write_callback(void *context, struct fib * fibptr) 871 { 872 struct aac_dev *dev; 873 struct aac_write_reply *writereply; 874 struct scsi_cmnd *scsicmd; 875 u32 lba; 876 u32 cid; 877 878 scsicmd = (struct scsi_cmnd *) context; 879 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 880 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun); 881 882 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 883 dprintk((KERN_DEBUG "write_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies)); 884 if (fibptr == NULL) 885 BUG(); 886 887 if(scsicmd->use_sg) 888 pci_unmap_sg(dev->pdev, 889 (struct scatterlist *)scsicmd->buffer, 890 scsicmd->use_sg, 891 scsicmd->sc_data_direction); 892 else if(scsicmd->request_bufflen) 893 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, 894 scsicmd->request_bufflen, 895 scsicmd->sc_data_direction); 896 897 writereply = (struct aac_write_reply *) fib_data(fibptr); 898 if (le32_to_cpu(writereply->status) == ST_OK) 899 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 900 else { 901 printk(KERN_WARNING "write_callback: write failed, status = %d\n", writereply->status); 902 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 903 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 904 HARDWARE_ERROR, 905 SENCODE_INTERNAL_TARGET_FAILURE, 906 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 907 0, 0); 908 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 909 sizeof(struct sense_data)); 910 } 911 912 fib_complete(fibptr); 913 fib_free(fibptr); 914 aac_io_done(scsicmd); 915 } 916 917 static int aac_read(struct scsi_cmnd * scsicmd, int cid) 918 { 919 u32 lba; 920 u32 count; 921 int status; 922 923 u16 fibsize; 924 struct aac_dev *dev; 925 struct fib * cmd_fibcontext; 926 927 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 928 /* 929 * Get block address and transfer length 930 */ 931 if (scsicmd->cmnd[0] == READ_6) /* 6 byte command */ 932 { 933 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid)); 934 935 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 936 count = scsicmd->cmnd[4]; 937 938 if (count == 0) 939 count = 256; 940 } else { 941 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid)); 942 943 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 944 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 945 } 946 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n", 947 smp_processor_id(), (unsigned long long)lba, jiffies)); 948 /* 949 * Alocate and initialize a Fib 950 */ 951 if (!(cmd_fibcontext = fib_alloc(dev))) { 952 return -1; 953 } 954 955 fib_init(cmd_fibcontext); 956 957 if (dev->dac_support == 1) { 958 struct aac_read64 *readcmd; 959 readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext); 960 readcmd->command = cpu_to_le32(VM_CtHostRead64); 961 readcmd->cid = cpu_to_le16(cid); 962 readcmd->sector_count = cpu_to_le16(count); 963 readcmd->block = cpu_to_le32(lba); 964 readcmd->pad = 0; 965 readcmd->flags = 0; 966 967 aac_build_sg64(scsicmd, &readcmd->sg); 968 fibsize = sizeof(struct aac_read64) + 969 ((le32_to_cpu(readcmd->sg.count) - 1) * 970 sizeof (struct sgentry64)); 971 BUG_ON (fibsize > (sizeof(struct hw_fib) - 972 sizeof(struct aac_fibhdr))); 973 /* 974 * Now send the Fib to the adapter 975 */ 976 status = fib_send(ContainerCommand64, 977 cmd_fibcontext, 978 fibsize, 979 FsaNormal, 980 0, 1, 981 (fib_callback) read_callback, 982 (void *) scsicmd); 983 } else { 984 struct aac_read *readcmd; 985 readcmd = (struct aac_read *) fib_data(cmd_fibcontext); 986 readcmd->command = cpu_to_le32(VM_CtBlockRead); 987 readcmd->cid = cpu_to_le32(cid); 988 readcmd->block = cpu_to_le32(lba); 989 readcmd->count = cpu_to_le32(count * 512); 990 991 aac_build_sg(scsicmd, &readcmd->sg); 992 fibsize = sizeof(struct aac_read) + 993 ((le32_to_cpu(readcmd->sg.count) - 1) * 994 sizeof (struct sgentry)); 995 BUG_ON (fibsize > (dev->max_fib_size - 996 sizeof(struct aac_fibhdr))); 997 /* 998 * Now send the Fib to the adapter 999 */ 1000 status = fib_send(ContainerCommand, 1001 cmd_fibcontext, 1002 fibsize, 1003 FsaNormal, 1004 0, 1, 1005 (fib_callback) read_callback, 1006 (void *) scsicmd); 1007 } 1008 1009 1010 1011 /* 1012 * Check that the command queued to the controller 1013 */ 1014 if (status == -EINPROGRESS) 1015 return 0; 1016 1017 printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status); 1018 /* 1019 * For some reason, the Fib didn't queue, return QUEUE_FULL 1020 */ 1021 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 1022 aac_io_done(scsicmd); 1023 fib_complete(cmd_fibcontext); 1024 fib_free(cmd_fibcontext); 1025 return 0; 1026 } 1027 1028 static int aac_write(struct scsi_cmnd * scsicmd, int cid) 1029 { 1030 u32 lba; 1031 u32 count; 1032 int status; 1033 u16 fibsize; 1034 struct aac_dev *dev; 1035 struct fib * cmd_fibcontext; 1036 1037 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1038 /* 1039 * Get block address and transfer length 1040 */ 1041 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 1042 { 1043 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 1044 count = scsicmd->cmnd[4]; 1045 if (count == 0) 1046 count = 256; 1047 } else { 1048 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid)); 1049 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1050 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1051 } 1052 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n", 1053 smp_processor_id(), (unsigned long long)lba, jiffies)); 1054 /* 1055 * Allocate and initialize a Fib then setup a BlockWrite command 1056 */ 1057 if (!(cmd_fibcontext = fib_alloc(dev))) { 1058 scsicmd->result = DID_ERROR << 16; 1059 aac_io_done(scsicmd); 1060 return 0; 1061 } 1062 fib_init(cmd_fibcontext); 1063 1064 if(dev->dac_support == 1) { 1065 struct aac_write64 *writecmd; 1066 writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext); 1067 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1068 writecmd->cid = cpu_to_le16(cid); 1069 writecmd->sector_count = cpu_to_le16(count); 1070 writecmd->block = cpu_to_le32(lba); 1071 writecmd->pad = 0; 1072 writecmd->flags = 0; 1073 1074 aac_build_sg64(scsicmd, &writecmd->sg); 1075 fibsize = sizeof(struct aac_write64) + 1076 ((le32_to_cpu(writecmd->sg.count) - 1) * 1077 sizeof (struct sgentry64)); 1078 BUG_ON (fibsize > (dev->max_fib_size - 1079 sizeof(struct aac_fibhdr))); 1080 /* 1081 * Now send the Fib to the adapter 1082 */ 1083 status = fib_send(ContainerCommand64, 1084 cmd_fibcontext, 1085 fibsize, 1086 FsaNormal, 1087 0, 1, 1088 (fib_callback) write_callback, 1089 (void *) scsicmd); 1090 } else { 1091 struct aac_write *writecmd; 1092 writecmd = (struct aac_write *) fib_data(cmd_fibcontext); 1093 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1094 writecmd->cid = cpu_to_le32(cid); 1095 writecmd->block = cpu_to_le32(lba); 1096 writecmd->count = cpu_to_le32(count * 512); 1097 writecmd->sg.count = cpu_to_le32(1); 1098 /* ->stable is not used - it did mean which type of write */ 1099 1100 aac_build_sg(scsicmd, &writecmd->sg); 1101 fibsize = sizeof(struct aac_write) + 1102 ((le32_to_cpu(writecmd->sg.count) - 1) * 1103 sizeof (struct sgentry)); 1104 BUG_ON (fibsize > (dev->max_fib_size - 1105 sizeof(struct aac_fibhdr))); 1106 /* 1107 * Now send the Fib to the adapter 1108 */ 1109 status = fib_send(ContainerCommand, 1110 cmd_fibcontext, 1111 fibsize, 1112 FsaNormal, 1113 0, 1, 1114 (fib_callback) write_callback, 1115 (void *) scsicmd); 1116 } 1117 1118 /* 1119 * Check that the command queued to the controller 1120 */ 1121 if (status == -EINPROGRESS) 1122 { 1123 return 0; 1124 } 1125 1126 printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status); 1127 /* 1128 * For some reason, the Fib didn't queue, return QUEUE_FULL 1129 */ 1130 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 1131 aac_io_done(scsicmd); 1132 1133 fib_complete(cmd_fibcontext); 1134 fib_free(cmd_fibcontext); 1135 return 0; 1136 } 1137 1138 static void synchronize_callback(void *context, struct fib *fibptr) 1139 { 1140 struct aac_synchronize_reply *synchronizereply; 1141 struct scsi_cmnd *cmd; 1142 1143 cmd = context; 1144 1145 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 1146 smp_processor_id(), jiffies)); 1147 BUG_ON(fibptr == NULL); 1148 1149 1150 synchronizereply = fib_data(fibptr); 1151 if (le32_to_cpu(synchronizereply->status) == CT_OK) 1152 cmd->result = DID_OK << 16 | 1153 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1154 else { 1155 struct scsi_device *sdev = cmd->device; 1156 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 1157 u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun); 1158 printk(KERN_WARNING 1159 "synchronize_callback: synchronize failed, status = %d\n", 1160 le32_to_cpu(synchronizereply->status)); 1161 cmd->result = DID_OK << 16 | 1162 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1163 set_sense((u8 *)&dev->fsa_dev[cid].sense_data, 1164 HARDWARE_ERROR, 1165 SENCODE_INTERNAL_TARGET_FAILURE, 1166 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0, 1167 0, 0); 1168 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1169 min(sizeof(dev->fsa_dev[cid].sense_data), 1170 sizeof(cmd->sense_buffer))); 1171 } 1172 1173 fib_complete(fibptr); 1174 fib_free(fibptr); 1175 aac_io_done(cmd); 1176 } 1177 1178 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid) 1179 { 1180 int status; 1181 struct fib *cmd_fibcontext; 1182 struct aac_synchronize *synchronizecmd; 1183 struct scsi_cmnd *cmd; 1184 struct scsi_device *sdev = scsicmd->device; 1185 int active = 0; 1186 unsigned long flags; 1187 1188 /* 1189 * Wait for all commands to complete to this specific 1190 * target (block). 1191 */ 1192 spin_lock_irqsave(&sdev->list_lock, flags); 1193 list_for_each_entry(cmd, &sdev->cmd_list, list) 1194 if (cmd != scsicmd && cmd->serial_number != 0) { 1195 ++active; 1196 break; 1197 } 1198 1199 spin_unlock_irqrestore(&sdev->list_lock, flags); 1200 1201 /* 1202 * Yield the processor (requeue for later) 1203 */ 1204 if (active) 1205 return SCSI_MLQUEUE_DEVICE_BUSY; 1206 1207 /* 1208 * Allocate and initialize a Fib 1209 */ 1210 if (!(cmd_fibcontext = 1211 fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) 1212 return SCSI_MLQUEUE_HOST_BUSY; 1213 1214 fib_init(cmd_fibcontext); 1215 1216 synchronizecmd = fib_data(cmd_fibcontext); 1217 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 1218 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 1219 synchronizecmd->cid = cpu_to_le32(cid); 1220 synchronizecmd->count = 1221 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 1222 1223 /* 1224 * Now send the Fib to the adapter 1225 */ 1226 status = fib_send(ContainerCommand, 1227 cmd_fibcontext, 1228 sizeof(struct aac_synchronize), 1229 FsaNormal, 1230 0, 1, 1231 (fib_callback)synchronize_callback, 1232 (void *)scsicmd); 1233 1234 /* 1235 * Check that the command queued to the controller 1236 */ 1237 if (status == -EINPROGRESS) 1238 return 0; 1239 1240 printk(KERN_WARNING 1241 "aac_synchronize: fib_send failed with status: %d.\n", status); 1242 fib_complete(cmd_fibcontext); 1243 fib_free(cmd_fibcontext); 1244 return SCSI_MLQUEUE_HOST_BUSY; 1245 } 1246 1247 /** 1248 * aac_scsi_cmd() - Process SCSI command 1249 * @scsicmd: SCSI command block 1250 * 1251 * Emulate a SCSI command and queue the required request for the 1252 * aacraid firmware. 1253 */ 1254 1255 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 1256 { 1257 u32 cid = 0; 1258 struct Scsi_Host *host = scsicmd->device->host; 1259 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 1260 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 1261 int cardtype = dev->cardtype; 1262 int ret; 1263 1264 /* 1265 * If the bus, id or lun is out of range, return fail 1266 * Test does not apply to ID 16, the pseudo id for the controller 1267 * itself. 1268 */ 1269 if (scsicmd->device->id != host->this_id) { 1270 if ((scsicmd->device->channel == 0) ){ 1271 if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){ 1272 scsicmd->result = DID_NO_CONNECT << 16; 1273 scsicmd->scsi_done(scsicmd); 1274 return 0; 1275 } 1276 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun); 1277 1278 /* 1279 * If the target container doesn't exist, it may have 1280 * been newly created 1281 */ 1282 if ((fsa_dev_ptr[cid].valid & 1) == 0) { 1283 switch (scsicmd->cmnd[0]) { 1284 case INQUIRY: 1285 case READ_CAPACITY: 1286 case TEST_UNIT_READY: 1287 spin_unlock_irq(host->host_lock); 1288 probe_container(dev, cid); 1289 spin_lock_irq(host->host_lock); 1290 if (fsa_dev_ptr[cid].valid == 0) { 1291 scsicmd->result = DID_NO_CONNECT << 16; 1292 scsicmd->scsi_done(scsicmd); 1293 return 0; 1294 } 1295 default: 1296 break; 1297 } 1298 } 1299 /* 1300 * If the target container still doesn't exist, 1301 * return failure 1302 */ 1303 if (fsa_dev_ptr[cid].valid == 0) { 1304 scsicmd->result = DID_BAD_TARGET << 16; 1305 scsicmd->scsi_done(scsicmd); 1306 return 0; 1307 } 1308 } else { /* check for physical non-dasd devices */ 1309 if(dev->nondasd_support == 1){ 1310 return aac_send_srb_fib(scsicmd); 1311 } else { 1312 scsicmd->result = DID_NO_CONNECT << 16; 1313 scsicmd->scsi_done(scsicmd); 1314 return 0; 1315 } 1316 } 1317 } 1318 /* 1319 * else Command for the controller itself 1320 */ 1321 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 1322 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 1323 { 1324 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 1325 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1326 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 1327 ILLEGAL_REQUEST, 1328 SENCODE_INVALID_COMMAND, 1329 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); 1330 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1331 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) 1332 ? sizeof(scsicmd->sense_buffer) 1333 : sizeof(dev->fsa_dev[cid].sense_data)); 1334 scsicmd->scsi_done(scsicmd); 1335 return 0; 1336 } 1337 1338 1339 /* Handle commands here that don't really require going out to the adapter */ 1340 switch (scsicmd->cmnd[0]) { 1341 case INQUIRY: 1342 { 1343 struct inquiry_data *inq_data_ptr; 1344 1345 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id)); 1346 inq_data_ptr = (struct inquiry_data *)scsicmd->request_buffer; 1347 memset(inq_data_ptr, 0, sizeof (struct inquiry_data)); 1348 1349 inq_data_ptr->inqd_ver = 2; /* claim compliance to SCSI-2 */ 1350 inq_data_ptr->inqd_dtq = 0x80; /* set RMB bit to one indicating that the medium is removable */ 1351 inq_data_ptr->inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 1352 inq_data_ptr->inqd_len = 31; 1353 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 1354 inq_data_ptr->inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 1355 /* 1356 * Set the Vendor, Product, and Revision Level 1357 * see: <vendor>.c i.e. aac.c 1358 */ 1359 if (scsicmd->device->id == host->this_id) { 1360 setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), (sizeof(container_types)/sizeof(char *))); 1361 inq_data_ptr->inqd_pdt = INQD_PDT_PROC; /* Processor device */ 1362 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1363 scsicmd->scsi_done(scsicmd); 1364 return 0; 1365 } 1366 setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), fsa_dev_ptr[cid].type); 1367 inq_data_ptr->inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 1368 return aac_get_container_name(scsicmd, cid); 1369 } 1370 case READ_CAPACITY: 1371 { 1372 u32 capacity; 1373 char *cp; 1374 1375 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 1376 if (fsa_dev_ptr[cid].size <= 0x100000000LL) 1377 capacity = fsa_dev_ptr[cid].size - 1; 1378 else 1379 capacity = (u32)-1; 1380 cp = scsicmd->request_buffer; 1381 cp[0] = (capacity >> 24) & 0xff; 1382 cp[1] = (capacity >> 16) & 0xff; 1383 cp[2] = (capacity >> 8) & 0xff; 1384 cp[3] = (capacity >> 0) & 0xff; 1385 cp[4] = 0; 1386 cp[5] = 0; 1387 cp[6] = 2; 1388 cp[7] = 0; 1389 1390 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1391 scsicmd->scsi_done(scsicmd); 1392 1393 return 0; 1394 } 1395 1396 case MODE_SENSE: 1397 { 1398 char *mode_buf; 1399 1400 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 1401 mode_buf = scsicmd->request_buffer; 1402 mode_buf[0] = 3; /* Mode data length */ 1403 mode_buf[1] = 0; /* Medium type - default */ 1404 mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */ 1405 mode_buf[3] = 0; /* Block descriptor length */ 1406 1407 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1408 scsicmd->scsi_done(scsicmd); 1409 1410 return 0; 1411 } 1412 case MODE_SENSE_10: 1413 { 1414 char *mode_buf; 1415 1416 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 1417 mode_buf = scsicmd->request_buffer; 1418 mode_buf[0] = 0; /* Mode data length (MSB) */ 1419 mode_buf[1] = 6; /* Mode data length (LSB) */ 1420 mode_buf[2] = 0; /* Medium type - default */ 1421 mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */ 1422 mode_buf[4] = 0; /* reserved */ 1423 mode_buf[5] = 0; /* reserved */ 1424 mode_buf[6] = 0; /* Block descriptor length (MSB) */ 1425 mode_buf[7] = 0; /* Block descriptor length (LSB) */ 1426 1427 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1428 scsicmd->scsi_done(scsicmd); 1429 1430 return 0; 1431 } 1432 case REQUEST_SENSE: 1433 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 1434 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data)); 1435 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data)); 1436 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1437 scsicmd->scsi_done(scsicmd); 1438 return 0; 1439 1440 case ALLOW_MEDIUM_REMOVAL: 1441 dprintk((KERN_DEBUG "LOCK command.\n")); 1442 if (scsicmd->cmnd[4]) 1443 fsa_dev_ptr[cid].locked = 1; 1444 else 1445 fsa_dev_ptr[cid].locked = 0; 1446 1447 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1448 scsicmd->scsi_done(scsicmd); 1449 return 0; 1450 /* 1451 * These commands are all No-Ops 1452 */ 1453 case TEST_UNIT_READY: 1454 case RESERVE: 1455 case RELEASE: 1456 case REZERO_UNIT: 1457 case REASSIGN_BLOCKS: 1458 case SEEK_10: 1459 case START_STOP: 1460 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1461 scsicmd->scsi_done(scsicmd); 1462 return 0; 1463 } 1464 1465 switch (scsicmd->cmnd[0]) 1466 { 1467 case READ_6: 1468 case READ_10: 1469 /* 1470 * Hack to keep track of ordinal number of the device that 1471 * corresponds to a container. Needed to convert 1472 * containers to /dev/sd device names 1473 */ 1474 1475 spin_unlock_irq(host->host_lock); 1476 if (scsicmd->request->rq_disk) 1477 memcpy(fsa_dev_ptr[cid].devname, 1478 scsicmd->request->rq_disk->disk_name, 1479 8); 1480 1481 ret = aac_read(scsicmd, cid); 1482 spin_lock_irq(host->host_lock); 1483 return ret; 1484 1485 case WRITE_6: 1486 case WRITE_10: 1487 spin_unlock_irq(host->host_lock); 1488 ret = aac_write(scsicmd, cid); 1489 spin_lock_irq(host->host_lock); 1490 return ret; 1491 1492 case SYNCHRONIZE_CACHE: 1493 /* Issue FIB to tell Firmware to flush it's cache */ 1494 return aac_synchronize(scsicmd, cid); 1495 1496 default: 1497 /* 1498 * Unhandled commands 1499 */ 1500 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0])); 1501 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1502 set_sense((u8 *) &dev->fsa_dev[cid].sense_data, 1503 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 1504 ASENCODE_INVALID_COMMAND, 0, 0, 0, 0); 1505 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1506 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer)) 1507 ? sizeof(scsicmd->sense_buffer) 1508 : sizeof(dev->fsa_dev[cid].sense_data)); 1509 scsicmd->scsi_done(scsicmd); 1510 return 0; 1511 } 1512 } 1513 1514 static int query_disk(struct aac_dev *dev, void __user *arg) 1515 { 1516 struct aac_query_disk qd; 1517 struct fsa_dev_info *fsa_dev_ptr; 1518 1519 fsa_dev_ptr = dev->fsa_dev; 1520 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 1521 return -EFAULT; 1522 if (qd.cnum == -1) 1523 qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun); 1524 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) 1525 { 1526 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 1527 return -EINVAL; 1528 qd.instance = dev->scsi_host_ptr->host_no; 1529 qd.bus = 0; 1530 qd.id = CONTAINER_TO_ID(qd.cnum); 1531 qd.lun = CONTAINER_TO_LUN(qd.cnum); 1532 } 1533 else return -EINVAL; 1534 1535 qd.valid = fsa_dev_ptr[qd.cnum].valid; 1536 qd.locked = fsa_dev_ptr[qd.cnum].locked; 1537 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 1538 1539 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 1540 qd.unmapped = 1; 1541 else 1542 qd.unmapped = 0; 1543 1544 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 1545 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 1546 1547 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 1548 return -EFAULT; 1549 return 0; 1550 } 1551 1552 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 1553 { 1554 struct aac_delete_disk dd; 1555 struct fsa_dev_info *fsa_dev_ptr; 1556 1557 fsa_dev_ptr = dev->fsa_dev; 1558 1559 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 1560 return -EFAULT; 1561 1562 if (dd.cnum >= dev->maximum_num_containers) 1563 return -EINVAL; 1564 /* 1565 * Mark this container as being deleted. 1566 */ 1567 fsa_dev_ptr[dd.cnum].deleted = 1; 1568 /* 1569 * Mark the container as no longer valid 1570 */ 1571 fsa_dev_ptr[dd.cnum].valid = 0; 1572 return 0; 1573 } 1574 1575 static int delete_disk(struct aac_dev *dev, void __user *arg) 1576 { 1577 struct aac_delete_disk dd; 1578 struct fsa_dev_info *fsa_dev_ptr; 1579 1580 fsa_dev_ptr = dev->fsa_dev; 1581 1582 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 1583 return -EFAULT; 1584 1585 if (dd.cnum >= dev->maximum_num_containers) 1586 return -EINVAL; 1587 /* 1588 * If the container is locked, it can not be deleted by the API. 1589 */ 1590 if (fsa_dev_ptr[dd.cnum].locked) 1591 return -EBUSY; 1592 else { 1593 /* 1594 * Mark the container as no longer being valid. 1595 */ 1596 fsa_dev_ptr[dd.cnum].valid = 0; 1597 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 1598 return 0; 1599 } 1600 } 1601 1602 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg) 1603 { 1604 switch (cmd) { 1605 case FSACTL_QUERY_DISK: 1606 return query_disk(dev, arg); 1607 case FSACTL_DELETE_DISK: 1608 return delete_disk(dev, arg); 1609 case FSACTL_FORCE_DELETE_DISK: 1610 return force_delete_disk(dev, arg); 1611 case FSACTL_GET_CONTAINERS: 1612 return aac_get_containers(dev); 1613 default: 1614 return -ENOTTY; 1615 } 1616 } 1617 1618 /** 1619 * 1620 * aac_srb_callback 1621 * @context: the context set in the fib - here it is scsi cmd 1622 * @fibptr: pointer to the fib 1623 * 1624 * Handles the completion of a scsi command to a non dasd device 1625 * 1626 */ 1627 1628 static void aac_srb_callback(void *context, struct fib * fibptr) 1629 { 1630 struct aac_dev *dev; 1631 struct aac_srb_reply *srbreply; 1632 struct scsi_cmnd *scsicmd; 1633 1634 scsicmd = (struct scsi_cmnd *) context; 1635 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1636 1637 if (fibptr == NULL) 1638 BUG(); 1639 1640 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 1641 1642 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 1643 /* 1644 * Calculate resid for sg 1645 */ 1646 1647 scsicmd->resid = scsicmd->request_bufflen - 1648 le32_to_cpu(srbreply->data_xfer_length); 1649 1650 if(scsicmd->use_sg) 1651 pci_unmap_sg(dev->pdev, 1652 (struct scatterlist *)scsicmd->buffer, 1653 scsicmd->use_sg, 1654 scsicmd->sc_data_direction); 1655 else if(scsicmd->request_bufflen) 1656 pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen, 1657 scsicmd->sc_data_direction); 1658 1659 /* 1660 * First check the fib status 1661 */ 1662 1663 if (le32_to_cpu(srbreply->status) != ST_OK){ 1664 int len; 1665 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status)); 1666 len = (le32_to_cpu(srbreply->sense_data_size) > 1667 sizeof(scsicmd->sense_buffer)) ? 1668 sizeof(scsicmd->sense_buffer) : 1669 le32_to_cpu(srbreply->sense_data_size); 1670 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 1671 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); 1672 } 1673 1674 /* 1675 * Next check the srb status 1676 */ 1677 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){ 1678 case SRB_STATUS_ERROR_RECOVERY: 1679 case SRB_STATUS_PENDING: 1680 case SRB_STATUS_SUCCESS: 1681 if(scsicmd->cmnd[0] == INQUIRY ){ 1682 u8 b; 1683 u8 b1; 1684 /* We can't expose disk devices because we can't tell whether they 1685 * are the raw container drives or stand alone drives. If they have 1686 * the removable bit set then we should expose them though. 1687 */ 1688 b = (*(u8*)scsicmd->buffer)&0x1f; 1689 b1 = ((u8*)scsicmd->buffer)[1]; 1690 if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER 1691 || (b==TYPE_DISK && (b1&0x80)) ){ 1692 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 1693 /* 1694 * We will allow disk devices if in RAID/SCSI mode and 1695 * the channel is 2 1696 */ 1697 } else if ((dev->raid_scsi_mode) && 1698 (scsicmd->device->channel == 2)) { 1699 scsicmd->result = DID_OK << 16 | 1700 COMMAND_COMPLETE << 8; 1701 } else { 1702 scsicmd->result = DID_NO_CONNECT << 16 | 1703 COMMAND_COMPLETE << 8; 1704 } 1705 } else { 1706 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 1707 } 1708 break; 1709 case SRB_STATUS_DATA_OVERRUN: 1710 switch(scsicmd->cmnd[0]){ 1711 case READ_6: 1712 case WRITE_6: 1713 case READ_10: 1714 case WRITE_10: 1715 case READ_12: 1716 case WRITE_12: 1717 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) { 1718 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); 1719 } else { 1720 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n"); 1721 } 1722 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 1723 break; 1724 case INQUIRY: { 1725 u8 b; 1726 u8 b1; 1727 /* We can't expose disk devices because we can't tell whether they 1728 * are the raw container drives or stand alone drives 1729 */ 1730 b = (*(u8*)scsicmd->buffer)&0x0f; 1731 b1 = ((u8*)scsicmd->buffer)[1]; 1732 if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER 1733 || (b==TYPE_DISK && (b1&0x80)) ){ 1734 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 1735 /* 1736 * We will allow disk devices if in RAID/SCSI mode and 1737 * the channel is 2 1738 */ 1739 } else if ((dev->raid_scsi_mode) && 1740 (scsicmd->device->channel == 2)) { 1741 scsicmd->result = DID_OK << 16 | 1742 COMMAND_COMPLETE << 8; 1743 } else { 1744 scsicmd->result = DID_NO_CONNECT << 16 | 1745 COMMAND_COMPLETE << 8; 1746 } 1747 break; 1748 } 1749 default: 1750 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 1751 break; 1752 } 1753 break; 1754 case SRB_STATUS_ABORTED: 1755 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 1756 break; 1757 case SRB_STATUS_ABORT_FAILED: 1758 // Not sure about this one - but assuming the hba was trying to abort for some reason 1759 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 1760 break; 1761 case SRB_STATUS_PARITY_ERROR: 1762 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8; 1763 break; 1764 case SRB_STATUS_NO_DEVICE: 1765 case SRB_STATUS_INVALID_PATH_ID: 1766 case SRB_STATUS_INVALID_TARGET_ID: 1767 case SRB_STATUS_INVALID_LUN: 1768 case SRB_STATUS_SELECTION_TIMEOUT: 1769 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 1770 break; 1771 1772 case SRB_STATUS_COMMAND_TIMEOUT: 1773 case SRB_STATUS_TIMEOUT: 1774 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8; 1775 break; 1776 1777 case SRB_STATUS_BUSY: 1778 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 1779 break; 1780 1781 case SRB_STATUS_BUS_RESET: 1782 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8; 1783 break; 1784 1785 case SRB_STATUS_MESSAGE_REJECTED: 1786 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 1787 break; 1788 case SRB_STATUS_REQUEST_FLUSHED: 1789 case SRB_STATUS_ERROR: 1790 case SRB_STATUS_INVALID_REQUEST: 1791 case SRB_STATUS_REQUEST_SENSE_FAILED: 1792 case SRB_STATUS_NO_HBA: 1793 case SRB_STATUS_UNEXPECTED_BUS_FREE: 1794 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 1795 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 1796 case SRB_STATUS_DELAYED_RETRY: 1797 case SRB_STATUS_BAD_FUNCTION: 1798 case SRB_STATUS_NOT_STARTED: 1799 case SRB_STATUS_NOT_IN_USE: 1800 case SRB_STATUS_FORCE_ABORT: 1801 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 1802 default: 1803 #ifdef AAC_DETAILED_STATUS_INFO 1804 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n", 1805 le32_to_cpu(srbreply->srb_status) & 0x3F, 1806 aac_get_status_string( 1807 le32_to_cpu(srbreply->srb_status) & 0x3F), 1808 scsicmd->cmnd[0], 1809 le32_to_cpu(srbreply->scsi_status)); 1810 #endif 1811 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 1812 break; 1813 } 1814 if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition 1815 int len; 1816 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 1817 len = (le32_to_cpu(srbreply->sense_data_size) > 1818 sizeof(scsicmd->sense_buffer)) ? 1819 sizeof(scsicmd->sense_buffer) : 1820 le32_to_cpu(srbreply->sense_data_size); 1821 #ifdef AAC_DETAILED_STATUS_INFO 1822 dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", 1823 le32_to_cpu(srbreply->status), len)); 1824 #endif 1825 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); 1826 1827 } 1828 /* 1829 * OR in the scsi status (already shifted up a bit) 1830 */ 1831 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 1832 1833 fib_complete(fibptr); 1834 fib_free(fibptr); 1835 aac_io_done(scsicmd); 1836 } 1837 1838 /** 1839 * 1840 * aac_send_scb_fib 1841 * @scsicmd: the scsi command block 1842 * 1843 * This routine will form a FIB and fill in the aac_srb from the 1844 * scsicmd passed in. 1845 */ 1846 1847 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 1848 { 1849 struct fib* cmd_fibcontext; 1850 struct aac_dev* dev; 1851 int status; 1852 struct aac_srb *srbcmd; 1853 u16 fibsize; 1854 u32 flag; 1855 u32 timeout; 1856 1857 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1858 if (scsicmd->device->id >= dev->maximum_num_physicals || 1859 scsicmd->device->lun > 7) { 1860 scsicmd->result = DID_NO_CONNECT << 16; 1861 scsicmd->scsi_done(scsicmd); 1862 return 0; 1863 } 1864 1865 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1866 switch(scsicmd->sc_data_direction){ 1867 case DMA_TO_DEVICE: 1868 flag = SRB_DataOut; 1869 break; 1870 case DMA_BIDIRECTIONAL: 1871 flag = SRB_DataIn | SRB_DataOut; 1872 break; 1873 case DMA_FROM_DEVICE: 1874 flag = SRB_DataIn; 1875 break; 1876 case DMA_NONE: 1877 default: /* shuts up some versions of gcc */ 1878 flag = SRB_NoDataXfer; 1879 break; 1880 } 1881 1882 1883 /* 1884 * Allocate and initialize a Fib then setup a BlockWrite command 1885 */ 1886 if (!(cmd_fibcontext = fib_alloc(dev))) { 1887 return -1; 1888 } 1889 fib_init(cmd_fibcontext); 1890 1891 srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext); 1892 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1893 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel)); 1894 srbcmd->id = cpu_to_le32(scsicmd->device->id); 1895 srbcmd->lun = cpu_to_le32(scsicmd->device->lun); 1896 srbcmd->flags = cpu_to_le32(flag); 1897 timeout = (scsicmd->timeout-jiffies)/HZ; 1898 if(timeout == 0){ 1899 timeout = 1; 1900 } 1901 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1902 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1903 srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len); 1904 1905 if( dev->dac_support == 1 ) { 1906 aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg); 1907 srbcmd->count = cpu_to_le32(scsicmd->request_bufflen); 1908 1909 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1910 memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len); 1911 /* 1912 * Build Scatter/Gather list 1913 */ 1914 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1915 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1916 sizeof (struct sgentry64)); 1917 BUG_ON (fibsize > (dev->max_fib_size - 1918 sizeof(struct aac_fibhdr))); 1919 1920 /* 1921 * Now send the Fib to the adapter 1922 */ 1923 status = fib_send(ScsiPortCommand64, cmd_fibcontext, 1924 fibsize, FsaNormal, 0, 1, 1925 (fib_callback) aac_srb_callback, 1926 (void *) scsicmd); 1927 } else { 1928 aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg); 1929 srbcmd->count = cpu_to_le32(scsicmd->request_bufflen); 1930 1931 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1932 memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len); 1933 /* 1934 * Build Scatter/Gather list 1935 */ 1936 fibsize = sizeof (struct aac_srb) + 1937 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1938 sizeof (struct sgentry)); 1939 BUG_ON (fibsize > (dev->max_fib_size - 1940 sizeof(struct aac_fibhdr))); 1941 1942 /* 1943 * Now send the Fib to the adapter 1944 */ 1945 status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1, 1946 (fib_callback) aac_srb_callback, (void *) scsicmd); 1947 } 1948 /* 1949 * Check that the command queued to the controller 1950 */ 1951 if (status == -EINPROGRESS){ 1952 return 0; 1953 } 1954 1955 printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status); 1956 fib_complete(cmd_fibcontext); 1957 fib_free(cmd_fibcontext); 1958 1959 return -1; 1960 } 1961 1962 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg) 1963 { 1964 struct aac_dev *dev; 1965 unsigned long byte_count = 0; 1966 1967 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1968 // Get rid of old data 1969 psg->count = 0; 1970 psg->sg[0].addr = 0; 1971 psg->sg[0].count = 0; 1972 if (scsicmd->use_sg) { 1973 struct scatterlist *sg; 1974 int i; 1975 int sg_count; 1976 sg = (struct scatterlist *) scsicmd->request_buffer; 1977 1978 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, 1979 scsicmd->sc_data_direction); 1980 psg->count = cpu_to_le32(sg_count); 1981 1982 byte_count = 0; 1983 1984 for (i = 0; i < sg_count; i++) { 1985 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 1986 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 1987 byte_count += sg_dma_len(sg); 1988 sg++; 1989 } 1990 /* hba wants the size to be exact */ 1991 if(byte_count > scsicmd->request_bufflen){ 1992 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 1993 (byte_count - scsicmd->request_bufflen); 1994 psg->sg[i-1].count = cpu_to_le32(temp); 1995 byte_count = scsicmd->request_bufflen; 1996 } 1997 /* Check for command underflow */ 1998 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 1999 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 2000 byte_count, scsicmd->underflow); 2001 } 2002 } 2003 else if(scsicmd->request_bufflen) { 2004 dma_addr_t addr; 2005 addr = pci_map_single(dev->pdev, 2006 scsicmd->request_buffer, 2007 scsicmd->request_bufflen, 2008 scsicmd->sc_data_direction); 2009 psg->count = cpu_to_le32(1); 2010 psg->sg[0].addr = cpu_to_le32(addr); 2011 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen); 2012 scsicmd->SCp.dma_handle = addr; 2013 byte_count = scsicmd->request_bufflen; 2014 } 2015 return byte_count; 2016 } 2017 2018 2019 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg) 2020 { 2021 struct aac_dev *dev; 2022 unsigned long byte_count = 0; 2023 u64 addr; 2024 2025 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2026 // Get rid of old data 2027 psg->count = 0; 2028 psg->sg[0].addr[0] = 0; 2029 psg->sg[0].addr[1] = 0; 2030 psg->sg[0].count = 0; 2031 if (scsicmd->use_sg) { 2032 struct scatterlist *sg; 2033 int i; 2034 int sg_count; 2035 sg = (struct scatterlist *) scsicmd->request_buffer; 2036 2037 sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg, 2038 scsicmd->sc_data_direction); 2039 psg->count = cpu_to_le32(sg_count); 2040 2041 byte_count = 0; 2042 2043 for (i = 0; i < sg_count; i++) { 2044 addr = sg_dma_address(sg); 2045 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 2046 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 2047 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 2048 byte_count += sg_dma_len(sg); 2049 sg++; 2050 } 2051 /* hba wants the size to be exact */ 2052 if(byte_count > scsicmd->request_bufflen){ 2053 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 2054 (byte_count - scsicmd->request_bufflen); 2055 psg->sg[i-1].count = cpu_to_le32(temp); 2056 byte_count = scsicmd->request_bufflen; 2057 } 2058 /* Check for command underflow */ 2059 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 2060 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 2061 byte_count, scsicmd->underflow); 2062 } 2063 } 2064 else if(scsicmd->request_bufflen) { 2065 u64 addr; 2066 addr = pci_map_single(dev->pdev, 2067 scsicmd->request_buffer, 2068 scsicmd->request_bufflen, 2069 scsicmd->sc_data_direction); 2070 psg->count = cpu_to_le32(1); 2071 psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff); 2072 psg->sg[0].addr[1] = cpu_to_le32(addr >> 32); 2073 psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen); 2074 scsicmd->SCp.dma_handle = addr; 2075 byte_count = scsicmd->request_bufflen; 2076 } 2077 return byte_count; 2078 } 2079 2080 #ifdef AAC_DETAILED_STATUS_INFO 2081 2082 struct aac_srb_status_info { 2083 u32 status; 2084 char *str; 2085 }; 2086 2087 2088 static struct aac_srb_status_info srb_status_info[] = { 2089 { SRB_STATUS_PENDING, "Pending Status"}, 2090 { SRB_STATUS_SUCCESS, "Success"}, 2091 { SRB_STATUS_ABORTED, "Aborted Command"}, 2092 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 2093 { SRB_STATUS_ERROR, "Error Event"}, 2094 { SRB_STATUS_BUSY, "Device Busy"}, 2095 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 2096 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 2097 { SRB_STATUS_NO_DEVICE, "No Device"}, 2098 { SRB_STATUS_TIMEOUT, "Timeout"}, 2099 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 2100 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 2101 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 2102 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 2103 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 2104 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 2105 { SRB_STATUS_NO_HBA, "No HBA"}, 2106 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 2107 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 2108 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 2109 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 2110 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 2111 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 2112 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 2113 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 2114 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 2115 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 2116 { SRB_STATUS_NOT_STARTED, "Not Started"}, 2117 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 2118 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 2119 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 2120 { 0xff, "Unknown Error"} 2121 }; 2122 2123 char *aac_get_status_string(u32 status) 2124 { 2125 int i; 2126 2127 for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){ 2128 if(srb_status_info[i].status == status){ 2129 return srb_status_info[i].str; 2130 } 2131 } 2132 2133 return "Bad Status Code"; 2134 } 2135 2136 #endif 2137