xref: /linux/drivers/sbus/char/bbc_envctrl.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2  * bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5  */
6 
7 #define __KERNEL_SYSCALLS__
8 
9 #include <linux/kernel.h>
10 #include <linux/kthread.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <asm/oplib.h>
15 #include <asm/ebus.h>
16 static int errno;
17 #include <asm/unistd.h>
18 
19 #include "bbc_i2c.h"
20 #include "max1617.h"
21 
22 #undef ENVCTRL_TRACE
23 
24 /* WARNING: Making changes to this driver is very dangerous.
25  *          If you misprogram the sensor chips they can
26  *          cut the power on you instantly.
27  */
28 
29 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
30  * Both are implemented using max1617 i2c devices.  Each max1617
31  * monitors 2 temperatures, one for one of the cpu dies and the other
32  * for the ambient temperature.
33  *
34  * The max1617 is capable of being programmed with power-off
35  * temperature values, one low limit and one high limit.  These
36  * can be controlled independently for the cpu or ambient temperature.
37  * If a limit is violated, the power is simply shut off.  The frequency
38  * with which the max1617 does temperature sampling can be controlled
39  * as well.
40  *
41  * Three fans exist inside the machine, all three are controlled with
42  * an i2c digital to analog converter.  There is a fan directed at the
43  * two processor slots, another for the rest of the enclosure, and the
44  * third is for the power supply.  The first two fans may be speed
45  * controlled by changing the voltage fed to them.  The third fan may
46  * only be completely off or on.  The third fan is meant to only be
47  * disabled/enabled when entering/exiting the lowest power-saving
48  * mode of the machine.
49  *
50  * An environmental control kernel thread periodically monitors all
51  * temperature sensors.  Based upon the samples it will adjust the
52  * fan speeds to try and keep the system within a certain temperature
53  * range (the goal being to make the fans as quiet as possible without
54  * allowing the system to get too hot).
55  *
56  * If the temperature begins to rise/fall outside of the acceptable
57  * operating range, a periodic warning will be sent to the kernel log.
58  * The fans will be put on full blast to attempt to deal with this
59  * situation.  After exceeding the acceptable operating range by a
60  * certain threshold, the kernel thread will shut down the system.
61  * Here, the thread is attempting to shut the machine down cleanly
62  * before the hardware based power-off event is triggered.
63  */
64 
65 /* These settings are in Celsius.  We use these defaults only
66  * if we cannot interrogate the cpu-fru SEEPROM.
67  */
68 struct temp_limits {
69 	s8 high_pwroff, high_shutdown, high_warn;
70 	s8 low_warn, low_shutdown, low_pwroff;
71 };
72 
73 static struct temp_limits cpu_temp_limits[2] = {
74 	{ 100, 85, 80, 5, -5, -10 },
75 	{ 100, 85, 80, 5, -5, -10 },
76 };
77 
78 static struct temp_limits amb_temp_limits[2] = {
79 	{ 65, 55, 40, 5, -5, -10 },
80 	{ 65, 55, 40, 5, -5, -10 },
81 };
82 
83 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
84 
85 struct bbc_cpu_temperature {
86 	struct bbc_cpu_temperature	*next;
87 
88 	struct bbc_i2c_client		*client;
89 	int				index;
90 
91 	/* Current readings, and history. */
92 	s8				curr_cpu_temp;
93 	s8				curr_amb_temp;
94 	s8				prev_cpu_temp;
95 	s8				prev_amb_temp;
96 	s8				avg_cpu_temp;
97 	s8				avg_amb_temp;
98 
99 	int				sample_tick;
100 
101 	enum fan_action			fan_todo[2];
102 #define FAN_AMBIENT	0
103 #define FAN_CPU		1
104 };
105 
106 struct bbc_cpu_temperature *all_bbc_temps;
107 
108 struct bbc_fan_control {
109 	struct bbc_fan_control 	*next;
110 
111 	struct bbc_i2c_client 	*client;
112 	int 			index;
113 
114 	int			psupply_fan_on;
115 	int			cpu_fan_speed;
116 	int			system_fan_speed;
117 };
118 
119 struct bbc_fan_control *all_bbc_fans;
120 
121 #define CPU_FAN_REG	0xf0
122 #define SYS_FAN_REG	0xf2
123 #define PSUPPLY_FAN_REG	0xf4
124 
125 #define FAN_SPEED_MIN	0x0c
126 #define FAN_SPEED_MAX	0x3f
127 
128 #define PSUPPLY_FAN_ON	0x1f
129 #define PSUPPLY_FAN_OFF	0x00
130 
131 static void set_fan_speeds(struct bbc_fan_control *fp)
132 {
133 	/* Put temperatures into range so we don't mis-program
134 	 * the hardware.
135 	 */
136 	if (fp->cpu_fan_speed < FAN_SPEED_MIN)
137 		fp->cpu_fan_speed = FAN_SPEED_MIN;
138 	if (fp->cpu_fan_speed > FAN_SPEED_MAX)
139 		fp->cpu_fan_speed = FAN_SPEED_MAX;
140 	if (fp->system_fan_speed < FAN_SPEED_MIN)
141 		fp->system_fan_speed = FAN_SPEED_MIN;
142 	if (fp->system_fan_speed > FAN_SPEED_MAX)
143 		fp->system_fan_speed = FAN_SPEED_MAX;
144 #ifdef ENVCTRL_TRACE
145 	printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
146 	       fp->index,
147 	       fp->cpu_fan_speed, fp->system_fan_speed);
148 #endif
149 
150 	bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
151 	bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
152 	bbc_i2c_writeb(fp->client,
153 		       (fp->psupply_fan_on ?
154 			PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
155 		       PSUPPLY_FAN_REG);
156 }
157 
158 static void get_current_temps(struct bbc_cpu_temperature *tp)
159 {
160 	tp->prev_amb_temp = tp->curr_amb_temp;
161 	bbc_i2c_readb(tp->client,
162 		      (unsigned char *) &tp->curr_amb_temp,
163 		      MAX1617_AMB_TEMP);
164 	tp->prev_cpu_temp = tp->curr_cpu_temp;
165 	bbc_i2c_readb(tp->client,
166 		      (unsigned char *) &tp->curr_cpu_temp,
167 		      MAX1617_CPU_TEMP);
168 #ifdef ENVCTRL_TRACE
169 	printk("temp%d: cpu(%d C) amb(%d C)\n",
170 	       tp->index,
171 	       (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
172 #endif
173 }
174 
175 
176 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
177 {
178 	static int shutting_down = 0;
179 	static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
180 	char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
181 	char *type = "???";
182 	s8 val = -1;
183 
184 	if (shutting_down != 0)
185 		return;
186 
187 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
188 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
189 		type = "ambient";
190 		val = tp->curr_amb_temp;
191 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
192 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
193 		type = "CPU";
194 		val = tp->curr_cpu_temp;
195 	}
196 
197 	printk(KERN_CRIT "temp%d: Outside of safe %s "
198 	       "operating temperature, %d C.\n",
199 	       tp->index, type, val);
200 
201 	printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
202 
203 	shutting_down = 1;
204 	if (execve("/sbin/shutdown", argv, envp) < 0)
205 		printk(KERN_CRIT "envctrl: shutdown execution failed\n");
206 }
207 
208 #define WARN_INTERVAL	(30 * HZ)
209 
210 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
211 {
212 	int ret = 0;
213 
214 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
215 		if (tp->curr_amb_temp >=
216 		    amb_temp_limits[tp->index].high_warn) {
217 			printk(KERN_WARNING "temp%d: "
218 			       "Above safe ambient operating temperature, %d C.\n",
219 			       tp->index, (int) tp->curr_amb_temp);
220 			ret = 1;
221 		} else if (tp->curr_amb_temp <
222 			   amb_temp_limits[tp->index].low_warn) {
223 			printk(KERN_WARNING "temp%d: "
224 			       "Below safe ambient operating temperature, %d C.\n",
225 			       tp->index, (int) tp->curr_amb_temp);
226 			ret = 1;
227 		}
228 		if (ret)
229 			*last_warn = jiffies;
230 	} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
231 		   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
232 		ret = 1;
233 
234 	/* Now check the shutdown limits. */
235 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
236 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
237 		do_envctrl_shutdown(tp);
238 		ret = 1;
239 	}
240 
241 	if (ret) {
242 		tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
243 	} else if ((tick & (8 - 1)) == 0) {
244 		s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
245 		s8 amb_goal_lo;
246 
247 		amb_goal_lo = amb_goal_hi - 3;
248 
249 		/* We do not try to avoid 'too cold' events.  Basically we
250 		 * only try to deal with over-heating and fan noise reduction.
251 		 */
252 		if (tp->avg_amb_temp < amb_goal_hi) {
253 			if (tp->avg_amb_temp >= amb_goal_lo)
254 				tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
255 			else
256 				tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
257 		} else {
258 			tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
259 		}
260 	} else {
261 		tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
262 	}
263 }
264 
265 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
266 {
267 	int ret = 0;
268 
269 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
270 		if (tp->curr_cpu_temp >=
271 		    cpu_temp_limits[tp->index].high_warn) {
272 			printk(KERN_WARNING "temp%d: "
273 			       "Above safe CPU operating temperature, %d C.\n",
274 			       tp->index, (int) tp->curr_cpu_temp);
275 			ret = 1;
276 		} else if (tp->curr_cpu_temp <
277 			   cpu_temp_limits[tp->index].low_warn) {
278 			printk(KERN_WARNING "temp%d: "
279 			       "Below safe CPU operating temperature, %d C.\n",
280 			       tp->index, (int) tp->curr_cpu_temp);
281 			ret = 1;
282 		}
283 		if (ret)
284 			*last_warn = jiffies;
285 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
286 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
287 		ret = 1;
288 
289 	/* Now check the shutdown limits. */
290 	if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
291 	    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
292 		do_envctrl_shutdown(tp);
293 		ret = 1;
294 	}
295 
296 	if (ret) {
297 		tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
298 	} else if ((tick & (8 - 1)) == 0) {
299 		s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
300 		s8 cpu_goal_lo;
301 
302 		cpu_goal_lo = cpu_goal_hi - 3;
303 
304 		/* We do not try to avoid 'too cold' events.  Basically we
305 		 * only try to deal with over-heating and fan noise reduction.
306 		 */
307 		if (tp->avg_cpu_temp < cpu_goal_hi) {
308 			if (tp->avg_cpu_temp >= cpu_goal_lo)
309 				tp->fan_todo[FAN_CPU] = FAN_SAME;
310 			else
311 				tp->fan_todo[FAN_CPU] = FAN_SLOWER;
312 		} else {
313 			tp->fan_todo[FAN_CPU] = FAN_FASTER;
314 		}
315 	} else {
316 		tp->fan_todo[FAN_CPU] = FAN_SAME;
317 	}
318 }
319 
320 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
321 {
322 	tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
323 	tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
324 
325 	analyze_ambient_temp(tp, last_warn, tp->sample_tick);
326 	analyze_cpu_temp(tp, last_warn, tp->sample_tick);
327 
328 	tp->sample_tick++;
329 }
330 
331 static enum fan_action prioritize_fan_action(int which_fan)
332 {
333 	struct bbc_cpu_temperature *tp;
334 	enum fan_action decision = FAN_STATE_MAX;
335 
336 	/* Basically, prioritize what the temperature sensors
337 	 * recommend we do, and perform that action on all the
338 	 * fans.
339 	 */
340 	for (tp = all_bbc_temps; tp; tp = tp->next) {
341 		if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
342 			decision = FAN_FULLBLAST;
343 			break;
344 		}
345 		if (tp->fan_todo[which_fan] == FAN_SAME &&
346 		    decision != FAN_FASTER)
347 			decision = FAN_SAME;
348 		else if (tp->fan_todo[which_fan] == FAN_FASTER)
349 			decision = FAN_FASTER;
350 		else if (decision != FAN_FASTER &&
351 			 decision != FAN_SAME &&
352 			 tp->fan_todo[which_fan] == FAN_SLOWER)
353 			decision = FAN_SLOWER;
354 	}
355 	if (decision == FAN_STATE_MAX)
356 		decision = FAN_SAME;
357 
358 	return decision;
359 }
360 
361 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
362 {
363 	enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
364 	int ret;
365 
366 	if (decision == FAN_SAME)
367 		return 0;
368 
369 	ret = 1;
370 	if (decision == FAN_FULLBLAST) {
371 		if (fp->system_fan_speed >= FAN_SPEED_MAX)
372 			ret = 0;
373 		else
374 			fp->system_fan_speed = FAN_SPEED_MAX;
375 	} else {
376 		if (decision == FAN_FASTER) {
377 			if (fp->system_fan_speed >= FAN_SPEED_MAX)
378 				ret = 0;
379 			else
380 				fp->system_fan_speed += 2;
381 		} else {
382 			int orig_speed = fp->system_fan_speed;
383 
384 			if (orig_speed <= FAN_SPEED_MIN ||
385 			    orig_speed <= (fp->cpu_fan_speed - 3))
386 				ret = 0;
387 			else
388 				fp->system_fan_speed -= 1;
389 		}
390 	}
391 
392 	return ret;
393 }
394 
395 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
396 {
397 	enum fan_action decision = prioritize_fan_action(FAN_CPU);
398 	int ret;
399 
400 	if (decision == FAN_SAME)
401 		return 0;
402 
403 	ret = 1;
404 	if (decision == FAN_FULLBLAST) {
405 		if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
406 			ret = 0;
407 		else
408 			fp->cpu_fan_speed = FAN_SPEED_MAX;
409 	} else {
410 		if (decision == FAN_FASTER) {
411 			if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
412 				ret = 0;
413 			else {
414 				fp->cpu_fan_speed += 2;
415 				if (fp->system_fan_speed <
416 				    (fp->cpu_fan_speed - 3))
417 					fp->system_fan_speed =
418 						fp->cpu_fan_speed - 3;
419 			}
420 		} else {
421 			if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
422 				ret = 0;
423 			else
424 				fp->cpu_fan_speed -= 1;
425 		}
426 	}
427 
428 	return ret;
429 }
430 
431 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
432 {
433 	int new;
434 
435 	new  = maybe_new_ambient_fan_speed(fp);
436 	new |= maybe_new_cpu_fan_speed(fp);
437 
438 	if (new)
439 		set_fan_speeds(fp);
440 }
441 
442 static void fans_full_blast(void)
443 {
444 	struct bbc_fan_control *fp;
445 
446 	/* Since we will not be monitoring things anymore, put
447 	 * the fans on full blast.
448 	 */
449 	for (fp = all_bbc_fans; fp; fp = fp->next) {
450 		fp->cpu_fan_speed = FAN_SPEED_MAX;
451 		fp->system_fan_speed = FAN_SPEED_MAX;
452 		fp->psupply_fan_on = 1;
453 		set_fan_speeds(fp);
454 	}
455 }
456 
457 #define POLL_INTERVAL	(5 * 1000)
458 static unsigned long last_warning_jiffies;
459 static struct task_struct *kenvctrld_task;
460 
461 static int kenvctrld(void *__unused)
462 {
463 	printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
464 	last_warning_jiffies = jiffies - WARN_INTERVAL;
465 	for (;;) {
466 		struct bbc_cpu_temperature *tp;
467 		struct bbc_fan_control *fp;
468 
469 		msleep_interruptible(POLL_INTERVAL);
470 		if (kthread_should_stop())
471 			break;
472 
473 		for (tp = all_bbc_temps; tp; tp = tp->next) {
474 			get_current_temps(tp);
475 			analyze_temps(tp, &last_warning_jiffies);
476 		}
477 		for (fp = all_bbc_fans; fp; fp = fp->next)
478 			maybe_new_fan_speeds(fp);
479 	}
480 	printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
481 
482 	fans_full_blast();
483 
484 	return 0;
485 }
486 
487 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
488 {
489 	struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
490 
491 	if (!tp)
492 		return;
493 	memset(tp, 0, sizeof(*tp));
494 	tp->client = bbc_i2c_attach(echild);
495 	if (!tp->client) {
496 		kfree(tp);
497 		return;
498 	}
499 
500 	tp->index = temp_idx;
501 	{
502 		struct bbc_cpu_temperature **tpp = &all_bbc_temps;
503 		while (*tpp)
504 			tpp = &((*tpp)->next);
505 		tp->next = NULL;
506 		*tpp = tp;
507 	}
508 
509 	/* Tell it to convert once every 5 seconds, clear all cfg
510 	 * bits.
511 	 */
512 	bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
513 	bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
514 
515 	/* Program the hard temperature limits into the chip. */
516 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
517 		       MAX1617_WR_AMB_HIGHLIM);
518 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
519 		       MAX1617_WR_AMB_LOWLIM);
520 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
521 		       MAX1617_WR_CPU_HIGHLIM);
522 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
523 		       MAX1617_WR_CPU_LOWLIM);
524 
525 	get_current_temps(tp);
526 	tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
527 	tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
528 
529 	tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
530 	tp->fan_todo[FAN_CPU] = FAN_SAME;
531 }
532 
533 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
534 {
535 	struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
536 
537 	if (!fp)
538 		return;
539 	memset(fp, 0, sizeof(*fp));
540 	fp->client = bbc_i2c_attach(echild);
541 	if (!fp->client) {
542 		kfree(fp);
543 		return;
544 	}
545 
546 	fp->index = fan_idx;
547 
548 	{
549 		struct bbc_fan_control **fpp = &all_bbc_fans;
550 		while (*fpp)
551 			fpp = &((*fpp)->next);
552 		fp->next = NULL;
553 		*fpp = fp;
554 	}
555 
556 	/* The i2c device controlling the fans is write-only.
557 	 * So the only way to keep track of the current power
558 	 * level fed to the fans is via software.  Choose half
559 	 * power for cpu/system and 'on' fo the powersupply fan
560 	 * and set it now.
561 	 */
562 	fp->psupply_fan_on = 1;
563 	fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
564 	fp->cpu_fan_speed += FAN_SPEED_MIN;
565 	fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
566 	fp->system_fan_speed += FAN_SPEED_MIN;
567 
568 	set_fan_speeds(fp);
569 }
570 
571 int bbc_envctrl_init(void)
572 {
573 	struct linux_ebus_child *echild;
574 	int temp_index = 0;
575 	int fan_index = 0;
576 	int devidx = 0;
577 
578 	while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
579 		if (!strcmp(echild->prom_name, "temperature"))
580 			attach_one_temp(echild, temp_index++);
581 		if (!strcmp(echild->prom_name, "fan-control"))
582 			attach_one_fan(echild, fan_index++);
583 	}
584 	if (temp_index != 0 && fan_index != 0) {
585 		kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
586 		if (IS_ERR(kenvctrld_task))
587 			return PTR_ERR(kenvctrld_task);
588 	}
589 
590 	return 0;
591 }
592 
593 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
594 {
595 	bbc_i2c_detach(tp->client);
596 	kfree(tp);
597 }
598 
599 static void destroy_one_fan(struct bbc_fan_control *fp)
600 {
601 	bbc_i2c_detach(fp->client);
602 	kfree(fp);
603 }
604 
605 void bbc_envctrl_cleanup(void)
606 {
607 	struct bbc_cpu_temperature *tp;
608 	struct bbc_fan_control *fp;
609 
610 	kthread_stop(kenvctrld_task);
611 
612 	tp = all_bbc_temps;
613 	while (tp != NULL) {
614 		struct bbc_cpu_temperature *next = tp->next;
615 		destroy_one_temp(tp);
616 		tp = next;
617 	}
618 	all_bbc_temps = NULL;
619 
620 	fp = all_bbc_fans;
621 	while (fp != NULL) {
622 		struct bbc_fan_control *next = fp->next;
623 		destroy_one_fan(fp);
624 		fp = next;
625 	}
626 	all_bbc_fans = NULL;
627 }
628