xref: /linux/drivers/s390/crypto/vfio_ap_ops.c (revision 778e73d2411abc8f3a2d60dbf038acaec218792e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Adjunct processor matrix VFIO device driver callbacks.
4  *
5  * Copyright IBM Corp. 2018
6  *
7  * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8  *	      Halil Pasic <pasic@linux.ibm.com>
9  *	      Pierre Morel <pmorel@linux.ibm.com>
10  */
11 #include <linux/string.h>
12 #include <linux/vfio.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/ctype.h>
16 #include <linux/bitops.h>
17 #include <linux/kvm_host.h>
18 #include <linux/module.h>
19 #include <linux/uuid.h>
20 #include <asm/kvm.h>
21 #include <asm/zcrypt.h>
22 
23 #include "vfio_ap_private.h"
24 #include "vfio_ap_debug.h"
25 
26 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
27 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
28 
29 #define AP_QUEUE_ASSIGNED "assigned"
30 #define AP_QUEUE_UNASSIGNED "unassigned"
31 #define AP_QUEUE_IN_USE "in use"
32 
33 #define AP_RESET_INTERVAL		20	/* Reset sleep interval (20ms)		*/
34 
35 static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable);
36 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
37 static const struct vfio_device_ops vfio_ap_matrix_dev_ops;
38 static void vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q);
39 
40 /**
41  * get_update_locks_for_kvm: Acquire the locks required to dynamically update a
42  *			     KVM guest's APCB in the proper order.
43  *
44  * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
45  *
46  * The proper locking order is:
47  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
48  *			       guest's APCB.
49  * 2. kvm->lock:	       required to update a guest's APCB
50  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
51  *
52  * Note: If @kvm is NULL, the KVM lock will not be taken.
53  */
54 static inline void get_update_locks_for_kvm(struct kvm *kvm)
55 {
56 	mutex_lock(&matrix_dev->guests_lock);
57 	if (kvm)
58 		mutex_lock(&kvm->lock);
59 	mutex_lock(&matrix_dev->mdevs_lock);
60 }
61 
62 /**
63  * release_update_locks_for_kvm: Release the locks used to dynamically update a
64  *				 KVM guest's APCB in the proper order.
65  *
66  * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
67  *
68  * The proper unlocking order is:
69  * 1. matrix_dev->mdevs_lock
70  * 2. kvm->lock
71  * 3. matrix_dev->guests_lock
72  *
73  * Note: If @kvm is NULL, the KVM lock will not be released.
74  */
75 static inline void release_update_locks_for_kvm(struct kvm *kvm)
76 {
77 	mutex_unlock(&matrix_dev->mdevs_lock);
78 	if (kvm)
79 		mutex_unlock(&kvm->lock);
80 	mutex_unlock(&matrix_dev->guests_lock);
81 }
82 
83 /**
84  * get_update_locks_for_mdev: Acquire the locks required to dynamically update a
85  *			      KVM guest's APCB in the proper order.
86  *
87  * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
88  *		 configuration data to use to update a KVM guest's APCB.
89  *
90  * The proper locking order is:
91  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
92  *			       guest's APCB.
93  * 2. matrix_mdev->kvm->lock:  required to update a guest's APCB
94  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
95  *
96  * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
97  *	 lock will not be taken.
98  */
99 static inline void get_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
100 {
101 	mutex_lock(&matrix_dev->guests_lock);
102 	if (matrix_mdev && matrix_mdev->kvm)
103 		mutex_lock(&matrix_mdev->kvm->lock);
104 	mutex_lock(&matrix_dev->mdevs_lock);
105 }
106 
107 /**
108  * release_update_locks_for_mdev: Release the locks used to dynamically update a
109  *				  KVM guest's APCB in the proper order.
110  *
111  * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
112  *		 configuration data to use to update a KVM guest's APCB.
113  *
114  * The proper unlocking order is:
115  * 1. matrix_dev->mdevs_lock
116  * 2. matrix_mdev->kvm->lock
117  * 3. matrix_dev->guests_lock
118  *
119  * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
120  *	 lock will not be released.
121  */
122 static inline void release_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
123 {
124 	mutex_unlock(&matrix_dev->mdevs_lock);
125 	if (matrix_mdev && matrix_mdev->kvm)
126 		mutex_unlock(&matrix_mdev->kvm->lock);
127 	mutex_unlock(&matrix_dev->guests_lock);
128 }
129 
130 /**
131  * get_update_locks_by_apqn: Find the mdev to which an APQN is assigned and
132  *			     acquire the locks required to update the APCB of
133  *			     the KVM guest to which the mdev is attached.
134  *
135  * @apqn: the APQN of a queue device.
136  *
137  * The proper locking order is:
138  * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
139  *			       guest's APCB.
140  * 2. matrix_mdev->kvm->lock:  required to update a guest's APCB
141  * 3. matrix_dev->mdevs_lock:  required to access data stored in a matrix_mdev
142  *
143  * Note: If @apqn is not assigned to a matrix_mdev, the matrix_mdev->kvm->lock
144  *	 will not be taken.
145  *
146  * Return: the ap_matrix_mdev object to which @apqn is assigned or NULL if @apqn
147  *	   is not assigned to an ap_matrix_mdev.
148  */
149 static struct ap_matrix_mdev *get_update_locks_by_apqn(int apqn)
150 {
151 	struct ap_matrix_mdev *matrix_mdev;
152 
153 	mutex_lock(&matrix_dev->guests_lock);
154 
155 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
156 		if (test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm) &&
157 		    test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) {
158 			if (matrix_mdev->kvm)
159 				mutex_lock(&matrix_mdev->kvm->lock);
160 
161 			mutex_lock(&matrix_dev->mdevs_lock);
162 
163 			return matrix_mdev;
164 		}
165 	}
166 
167 	mutex_lock(&matrix_dev->mdevs_lock);
168 
169 	return NULL;
170 }
171 
172 /**
173  * get_update_locks_for_queue: get the locks required to update the APCB of the
174  *			       KVM guest to which the matrix mdev linked to a
175  *			       vfio_ap_queue object is attached.
176  *
177  * @q: a pointer to a vfio_ap_queue object.
178  *
179  * The proper locking order is:
180  * 1. q->matrix_dev->guests_lock: required to use the KVM pointer to update a
181  *				  KVM guest's APCB.
182  * 2. q->matrix_mdev->kvm->lock:  required to update a guest's APCB
183  * 3. matrix_dev->mdevs_lock:	  required to access data stored in matrix_mdev
184  *
185  * Note: if @queue is not linked to an ap_matrix_mdev object, the KVM lock
186  *	  will not be taken.
187  */
188 static inline void get_update_locks_for_queue(struct vfio_ap_queue *q)
189 {
190 	mutex_lock(&matrix_dev->guests_lock);
191 	if (q->matrix_mdev && q->matrix_mdev->kvm)
192 		mutex_lock(&q->matrix_mdev->kvm->lock);
193 	mutex_lock(&matrix_dev->mdevs_lock);
194 }
195 
196 /**
197  * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a
198  *			    hash table of queues assigned to a matrix mdev
199  * @matrix_mdev: the matrix mdev
200  * @apqn: The APQN of a queue device
201  *
202  * Return: the pointer to the vfio_ap_queue struct representing the queue or
203  *	   NULL if the queue is not assigned to @matrix_mdev
204  */
205 static struct vfio_ap_queue *vfio_ap_mdev_get_queue(
206 					struct ap_matrix_mdev *matrix_mdev,
207 					int apqn)
208 {
209 	struct vfio_ap_queue *q;
210 
211 	hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode,
212 			       apqn) {
213 		if (q && q->apqn == apqn)
214 			return q;
215 	}
216 
217 	return NULL;
218 }
219 
220 /**
221  * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
222  * @apqn: The AP Queue number
223  *
224  * Checks the IRQ bit for the status of this APQN using ap_tapq.
225  * Returns if the ap_tapq function succeeded and the bit is clear.
226  * Returns if ap_tapq function failed with invalid, deconfigured or
227  * checkstopped AP.
228  * Otherwise retries up to 5 times after waiting 20ms.
229  */
230 static void vfio_ap_wait_for_irqclear(int apqn)
231 {
232 	struct ap_queue_status status;
233 	int retry = 5;
234 
235 	do {
236 		status = ap_tapq(apqn, NULL);
237 		switch (status.response_code) {
238 		case AP_RESPONSE_NORMAL:
239 		case AP_RESPONSE_RESET_IN_PROGRESS:
240 			if (!status.irq_enabled)
241 				return;
242 			fallthrough;
243 		case AP_RESPONSE_BUSY:
244 			msleep(20);
245 			break;
246 		case AP_RESPONSE_Q_NOT_AVAIL:
247 		case AP_RESPONSE_DECONFIGURED:
248 		case AP_RESPONSE_CHECKSTOPPED:
249 		default:
250 			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
251 				  status.response_code, apqn);
252 			return;
253 		}
254 	} while (--retry);
255 
256 	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
257 		  __func__, status.response_code, apqn);
258 }
259 
260 /**
261  * vfio_ap_free_aqic_resources - free vfio_ap_queue resources
262  * @q: The vfio_ap_queue
263  *
264  * Unregisters the ISC in the GIB when the saved ISC not invalid.
265  * Unpins the guest's page holding the NIB when it exists.
266  * Resets the saved_iova and saved_isc to invalid values.
267  */
268 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
269 {
270 	if (!q)
271 		return;
272 	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
273 	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
274 		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
275 		q->saved_isc = VFIO_AP_ISC_INVALID;
276 	}
277 	if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) {
278 		vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1);
279 		q->saved_iova = 0;
280 	}
281 }
282 
283 /**
284  * vfio_ap_irq_disable - disables and clears an ap_queue interrupt
285  * @q: The vfio_ap_queue
286  *
287  * Uses ap_aqic to disable the interruption and in case of success, reset
288  * in progress or IRQ disable command already proceeded: calls
289  * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
290  * and calls vfio_ap_free_aqic_resources() to free the resources associated
291  * with the AP interrupt handling.
292  *
293  * In the case the AP is busy, or a reset is in progress,
294  * retries after 20ms, up to 5 times.
295  *
296  * Returns if ap_aqic function failed with invalid, deconfigured or
297  * checkstopped AP.
298  *
299  * Return: &struct ap_queue_status
300  */
301 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
302 {
303 	union ap_qirq_ctrl aqic_gisa = { .value = 0 };
304 	struct ap_queue_status status;
305 	int retries = 5;
306 
307 	do {
308 		status = ap_aqic(q->apqn, aqic_gisa, 0);
309 		switch (status.response_code) {
310 		case AP_RESPONSE_OTHERWISE_CHANGED:
311 		case AP_RESPONSE_NORMAL:
312 			vfio_ap_wait_for_irqclear(q->apqn);
313 			goto end_free;
314 		case AP_RESPONSE_RESET_IN_PROGRESS:
315 		case AP_RESPONSE_BUSY:
316 			msleep(20);
317 			break;
318 		case AP_RESPONSE_Q_NOT_AVAIL:
319 		case AP_RESPONSE_DECONFIGURED:
320 		case AP_RESPONSE_CHECKSTOPPED:
321 		case AP_RESPONSE_INVALID_ADDRESS:
322 		default:
323 			/* All cases in default means AP not operational */
324 			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
325 				  status.response_code);
326 			goto end_free;
327 		}
328 	} while (retries--);
329 
330 	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
331 		  status.response_code);
332 end_free:
333 	vfio_ap_free_aqic_resources(q);
334 	return status;
335 }
336 
337 /**
338  * vfio_ap_validate_nib - validate a notification indicator byte (nib) address.
339  *
340  * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction.
341  * @nib: the location for storing the nib address.
342  *
343  * When the PQAP(AQIC) instruction is executed, general register 2 contains the
344  * address of the notification indicator byte (nib) used for IRQ notification.
345  * This function parses and validates the nib from gr2.
346  *
347  * Return: returns zero if the nib address is a valid; otherwise, returns
348  *	   -EINVAL.
349  */
350 static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib)
351 {
352 	*nib = vcpu->run->s.regs.gprs[2];
353 
354 	if (!*nib)
355 		return -EINVAL;
356 	if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT)))
357 		return -EINVAL;
358 
359 	return 0;
360 }
361 
362 static int ensure_nib_shared(unsigned long addr, struct gmap *gmap)
363 {
364 	int ret;
365 
366 	/*
367 	 * The nib has to be located in shared storage since guest and
368 	 * host access it. vfio_pin_pages() will do a pin shared and
369 	 * if that fails (possibly because it's not a shared page) it
370 	 * calls export. We try to do a second pin shared here so that
371 	 * the UV gives us an error code if we try to pin a non-shared
372 	 * page.
373 	 *
374 	 * If the page is already pinned shared the UV will return a success.
375 	 */
376 	ret = uv_pin_shared(addr);
377 	if (ret) {
378 		/* vfio_pin_pages() likely exported the page so let's re-import */
379 		gmap_convert_to_secure(gmap, addr);
380 	}
381 	return ret;
382 }
383 
384 /**
385  * vfio_ap_irq_enable - Enable Interruption for a APQN
386  *
387  * @q:	 the vfio_ap_queue holding AQIC parameters
388  * @isc: the guest ISC to register with the GIB interface
389  * @vcpu: the vcpu object containing the registers specifying the parameters
390  *	  passed to the PQAP(AQIC) instruction.
391  *
392  * Pin the NIB saved in *q
393  * Register the guest ISC to GIB interface and retrieve the
394  * host ISC to issue the host side PQAP/AQIC
395  *
396  * status.response_code may be set to AP_RESPONSE_INVALID_ADDRESS in case the
397  * vfio_pin_pages or kvm_s390_gisc_register failed.
398  *
399  * Otherwise return the ap_queue_status returned by the ap_aqic(),
400  * all retry handling will be done by the guest.
401  *
402  * Return: &struct ap_queue_status
403  */
404 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
405 						 int isc,
406 						 struct kvm_vcpu *vcpu)
407 {
408 	union ap_qirq_ctrl aqic_gisa = { .value = 0 };
409 	struct ap_queue_status status = {};
410 	struct kvm_s390_gisa *gisa;
411 	struct page *h_page;
412 	int nisc;
413 	struct kvm *kvm;
414 	phys_addr_t h_nib;
415 	dma_addr_t nib;
416 	int ret;
417 
418 	/* Verify that the notification indicator byte address is valid */
419 	if (vfio_ap_validate_nib(vcpu, &nib)) {
420 		VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n",
421 				 __func__, &nib, q->apqn);
422 
423 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
424 		return status;
425 	}
426 
427 	ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1,
428 			     IOMMU_READ | IOMMU_WRITE, &h_page);
429 	switch (ret) {
430 	case 1:
431 		break;
432 	default:
433 		VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d,"
434 				 "nib=%pad, apqn=%#04x\n",
435 				 __func__, ret, &nib, q->apqn);
436 
437 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
438 		return status;
439 	}
440 
441 	kvm = q->matrix_mdev->kvm;
442 	gisa = kvm->arch.gisa_int.origin;
443 
444 	h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK);
445 	aqic_gisa.gisc = isc;
446 
447 	/* NIB in non-shared storage is a rc 6 for PV guests */
448 	if (kvm_s390_pv_cpu_is_protected(vcpu) &&
449 	    ensure_nib_shared(h_nib & PAGE_MASK, kvm->arch.gmap)) {
450 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
451 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
452 		return status;
453 	}
454 
455 	nisc = kvm_s390_gisc_register(kvm, isc);
456 	if (nisc < 0) {
457 		VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n",
458 				 __func__, nisc, isc, q->apqn);
459 
460 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
461 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
462 		return status;
463 	}
464 
465 	aqic_gisa.isc = nisc;
466 	aqic_gisa.ir = 1;
467 	aqic_gisa.gisa = virt_to_phys(gisa) >> 4;
468 
469 	status = ap_aqic(q->apqn, aqic_gisa, h_nib);
470 	switch (status.response_code) {
471 	case AP_RESPONSE_NORMAL:
472 		/* See if we did clear older IRQ configuration */
473 		vfio_ap_free_aqic_resources(q);
474 		q->saved_iova = nib;
475 		q->saved_isc = isc;
476 		break;
477 	case AP_RESPONSE_OTHERWISE_CHANGED:
478 		/* We could not modify IRQ settings: clear new configuration */
479 		ret = kvm_s390_gisc_unregister(kvm, isc);
480 		if (ret)
481 			VFIO_AP_DBF_WARN("%s: kvm_s390_gisc_unregister: rc=%d isc=%d, apqn=%#04x\n",
482 					 __func__, ret, isc, q->apqn);
483 		vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
484 		break;
485 	default:
486 		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
487 			status.response_code);
488 		vfio_ap_irq_disable(q);
489 		break;
490 	}
491 
492 	if (status.response_code != AP_RESPONSE_NORMAL) {
493 		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: "
494 				 "zone=%#x, ir=%#x, gisc=%#x, f=%#x,"
495 				 "gisa=%#x, isc=%#x, apqn=%#04x\n",
496 				 __func__, status.response_code,
497 				 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc,
498 				 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc,
499 				 q->apqn);
500 	}
501 
502 	return status;
503 }
504 
505 /**
506  * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array
507  *				of big endian elements that can be passed by
508  *				value to an s390dbf sprintf event function to
509  *				format a UUID string.
510  *
511  * @guid: the object containing the little endian guid
512  * @uuid: a six-element array of long values that can be passed by value as
513  *	  arguments for a formatting string specifying a UUID.
514  *
515  * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf
516  * event functions if the memory for the passed string is available as long as
517  * the debug feature exists. Since a mediated device can be removed at any
518  * time, it's name can not be used because %s passes the reference to the string
519  * in memory and the reference will go stale once the device is removed .
520  *
521  * The s390dbf string formatting function allows a maximum of 9 arguments for a
522  * message to be displayed in the 'sprintf' view. In order to use the bytes
523  * comprising the mediated device's UUID to display the mediated device name,
524  * they will have to be converted into an array whose elements can be passed by
525  * value to sprintf. For example:
526  *
527  * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 }
528  * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804
529  * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 }
530  * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx"
531  */
532 static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid)
533 {
534 	/*
535 	 * The input guid is ordered in little endian, so it needs to be
536 	 * reordered for displaying a UUID as a string. This specifies the
537 	 * guid indices in proper order.
538 	 */
539 	uuid[0] = le32_to_cpup((__le32 *)guid);
540 	uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]);
541 	uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]);
542 	uuid[3] = *((__u16 *)&guid->b[8]);
543 	uuid[4] = *((__u16 *)&guid->b[10]);
544 	uuid[5] = *((__u32 *)&guid->b[12]);
545 }
546 
547 /**
548  * handle_pqap - PQAP instruction callback
549  *
550  * @vcpu: The vcpu on which we received the PQAP instruction
551  *
552  * Get the general register contents to initialize internal variables.
553  * REG[0]: APQN
554  * REG[1]: IR and ISC
555  * REG[2]: NIB
556  *
557  * Response.status may be set to following Response Code:
558  * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
559  * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
560  * - AP_RESPONSE_NORMAL (0) : in case of success
561  *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
562  * We take the matrix_dev lock to ensure serialization on queues and
563  * mediated device access.
564  *
565  * Return: 0 if we could handle the request inside KVM.
566  * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
567  */
568 static int handle_pqap(struct kvm_vcpu *vcpu)
569 {
570 	uint64_t status;
571 	uint16_t apqn;
572 	unsigned long uuid[6];
573 	struct vfio_ap_queue *q;
574 	struct ap_queue_status qstatus = {
575 			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
576 	struct ap_matrix_mdev *matrix_mdev;
577 
578 	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
579 
580 	/* If we do not use the AIV facility just go to userland */
581 	if (!(vcpu->arch.sie_block->eca & ECA_AIV)) {
582 		VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n",
583 				 __func__, apqn, vcpu->arch.sie_block->eca);
584 
585 		return -EOPNOTSUPP;
586 	}
587 
588 	mutex_lock(&matrix_dev->mdevs_lock);
589 
590 	if (!vcpu->kvm->arch.crypto.pqap_hook) {
591 		VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n",
592 				 __func__, apqn);
593 
594 		goto out_unlock;
595 	}
596 
597 	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
598 				   struct ap_matrix_mdev, pqap_hook);
599 
600 	/* If the there is no guest using the mdev, there is nothing to do */
601 	if (!matrix_mdev->kvm) {
602 		vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid);
603 		VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n",
604 				 __func__, uuid[0],  uuid[1], uuid[2],
605 				 uuid[3], uuid[4], uuid[5], apqn);
606 		goto out_unlock;
607 	}
608 
609 	q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
610 	if (!q) {
611 		VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n",
612 				 __func__, AP_QID_CARD(apqn),
613 				 AP_QID_QUEUE(apqn));
614 		goto out_unlock;
615 	}
616 
617 	status = vcpu->run->s.regs.gprs[1];
618 
619 	/* If IR bit(16) is set we enable the interrupt */
620 	if ((status >> (63 - 16)) & 0x01)
621 		qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu);
622 	else
623 		qstatus = vfio_ap_irq_disable(q);
624 
625 out_unlock:
626 	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
627 	vcpu->run->s.regs.gprs[1] >>= 32;
628 	mutex_unlock(&matrix_dev->mdevs_lock);
629 	return 0;
630 }
631 
632 static void vfio_ap_matrix_init(struct ap_config_info *info,
633 				struct ap_matrix *matrix)
634 {
635 	matrix->apm_max = info->apxa ? info->na : 63;
636 	matrix->aqm_max = info->apxa ? info->nd : 15;
637 	matrix->adm_max = info->apxa ? info->nd : 15;
638 }
639 
640 static void vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev *matrix_mdev)
641 {
642 	if (matrix_mdev->kvm)
643 		kvm_arch_crypto_set_masks(matrix_mdev->kvm,
644 					  matrix_mdev->shadow_apcb.apm,
645 					  matrix_mdev->shadow_apcb.aqm,
646 					  matrix_mdev->shadow_apcb.adm);
647 }
648 
649 static bool vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev)
650 {
651 	DECLARE_BITMAP(prev_shadow_adm, AP_DOMAINS);
652 
653 	bitmap_copy(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS);
654 	bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm,
655 		   (unsigned long *)matrix_dev->info.adm, AP_DOMAINS);
656 
657 	return !bitmap_equal(prev_shadow_adm, matrix_mdev->shadow_apcb.adm,
658 			     AP_DOMAINS);
659 }
660 
661 /*
662  * vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev
663  *				to ensure no queue devices are passed through to
664  *				the guest that are not bound to the vfio_ap
665  *				device driver.
666  *
667  * @matrix_mdev: the matrix mdev whose matrix is to be filtered.
668  *
669  * Note: If an APQN referencing a queue device that is not bound to the vfio_ap
670  *	 driver, its APID will be filtered from the guest's APCB. The matrix
671  *	 structure precludes filtering an individual APQN, so its APID will be
672  *	 filtered.
673  *
674  * Return: a boolean value indicating whether the KVM guest's APCB was changed
675  *	   by the filtering or not.
676  */
677 static bool vfio_ap_mdev_filter_matrix(unsigned long *apm, unsigned long *aqm,
678 				       struct ap_matrix_mdev *matrix_mdev)
679 {
680 	unsigned long apid, apqi, apqn;
681 	DECLARE_BITMAP(prev_shadow_apm, AP_DEVICES);
682 	DECLARE_BITMAP(prev_shadow_aqm, AP_DOMAINS);
683 	struct vfio_ap_queue *q;
684 
685 	bitmap_copy(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES);
686 	bitmap_copy(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS);
687 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
688 
689 	/*
690 	 * Copy the adapters, domains and control domains to the shadow_apcb
691 	 * from the matrix mdev, but only those that are assigned to the host's
692 	 * AP configuration.
693 	 */
694 	bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm,
695 		   (unsigned long *)matrix_dev->info.apm, AP_DEVICES);
696 	bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm,
697 		   (unsigned long *)matrix_dev->info.aqm, AP_DOMAINS);
698 
699 	for_each_set_bit_inv(apid, apm, AP_DEVICES) {
700 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
701 			/*
702 			 * If the APQN is not bound to the vfio_ap device
703 			 * driver, then we can't assign it to the guest's
704 			 * AP configuration. The AP architecture won't
705 			 * allow filtering of a single APQN, so let's filter
706 			 * the APID since an adapter represents a physical
707 			 * hardware device.
708 			 */
709 			apqn = AP_MKQID(apid, apqi);
710 			q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
711 			if (!q || q->reset_status.response_code) {
712 				clear_bit_inv(apid,
713 					      matrix_mdev->shadow_apcb.apm);
714 				break;
715 			}
716 		}
717 	}
718 
719 	return !bitmap_equal(prev_shadow_apm, matrix_mdev->shadow_apcb.apm,
720 			     AP_DEVICES) ||
721 	       !bitmap_equal(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm,
722 			     AP_DOMAINS);
723 }
724 
725 static int vfio_ap_mdev_init_dev(struct vfio_device *vdev)
726 {
727 	struct ap_matrix_mdev *matrix_mdev =
728 		container_of(vdev, struct ap_matrix_mdev, vdev);
729 
730 	matrix_mdev->mdev = to_mdev_device(vdev->dev);
731 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
732 	matrix_mdev->pqap_hook = handle_pqap;
733 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
734 	hash_init(matrix_mdev->qtable.queues);
735 
736 	return 0;
737 }
738 
739 static int vfio_ap_mdev_probe(struct mdev_device *mdev)
740 {
741 	struct ap_matrix_mdev *matrix_mdev;
742 	int ret;
743 
744 	matrix_mdev = vfio_alloc_device(ap_matrix_mdev, vdev, &mdev->dev,
745 					&vfio_ap_matrix_dev_ops);
746 	if (IS_ERR(matrix_mdev))
747 		return PTR_ERR(matrix_mdev);
748 
749 	ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev);
750 	if (ret)
751 		goto err_put_vdev;
752 	matrix_mdev->req_trigger = NULL;
753 	dev_set_drvdata(&mdev->dev, matrix_mdev);
754 	mutex_lock(&matrix_dev->mdevs_lock);
755 	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
756 	mutex_unlock(&matrix_dev->mdevs_lock);
757 	return 0;
758 
759 err_put_vdev:
760 	vfio_put_device(&matrix_mdev->vdev);
761 	return ret;
762 }
763 
764 static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev,
765 				    struct vfio_ap_queue *q)
766 {
767 	if (q) {
768 		q->matrix_mdev = matrix_mdev;
769 		hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn);
770 	}
771 }
772 
773 static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn)
774 {
775 	struct vfio_ap_queue *q;
776 
777 	q = vfio_ap_find_queue(apqn);
778 	vfio_ap_mdev_link_queue(matrix_mdev, q);
779 }
780 
781 static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q)
782 {
783 	hash_del(&q->mdev_qnode);
784 }
785 
786 static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q)
787 {
788 	q->matrix_mdev = NULL;
789 }
790 
791 static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev)
792 {
793 	struct vfio_ap_queue *q;
794 	unsigned long apid, apqi;
795 
796 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
797 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
798 				     AP_DOMAINS) {
799 			q = vfio_ap_mdev_get_queue(matrix_mdev,
800 						   AP_MKQID(apid, apqi));
801 			if (q)
802 				q->matrix_mdev = NULL;
803 		}
804 	}
805 }
806 
807 static void vfio_ap_mdev_remove(struct mdev_device *mdev)
808 {
809 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev);
810 
811 	vfio_unregister_group_dev(&matrix_mdev->vdev);
812 
813 	mutex_lock(&matrix_dev->guests_lock);
814 	mutex_lock(&matrix_dev->mdevs_lock);
815 	vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
816 	vfio_ap_mdev_unlink_fr_queues(matrix_mdev);
817 	list_del(&matrix_mdev->node);
818 	mutex_unlock(&matrix_dev->mdevs_lock);
819 	mutex_unlock(&matrix_dev->guests_lock);
820 	vfio_put_device(&matrix_mdev->vdev);
821 }
822 
823 #define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \
824 			 "already assigned to %s"
825 
826 static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev,
827 					 unsigned long *apm,
828 					 unsigned long *aqm)
829 {
830 	unsigned long apid, apqi;
831 	const struct device *dev = mdev_dev(matrix_mdev->mdev);
832 	const char *mdev_name = dev_name(dev);
833 
834 	for_each_set_bit_inv(apid, apm, AP_DEVICES)
835 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS)
836 			dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name);
837 }
838 
839 /**
840  * vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs
841  *
842  * @mdev_apm: mask indicating the APIDs of the APQNs to be verified
843  * @mdev_aqm: mask indicating the APQIs of the APQNs to be verified
844  *
845  * Verifies that each APQN derived from the Cartesian product of a bitmap of
846  * AP adapter IDs and AP queue indexes is not configured for any matrix
847  * mediated device. AP queue sharing is not allowed.
848  *
849  * Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE.
850  */
851 static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm,
852 					  unsigned long *mdev_aqm)
853 {
854 	struct ap_matrix_mdev *matrix_mdev;
855 	DECLARE_BITMAP(apm, AP_DEVICES);
856 	DECLARE_BITMAP(aqm, AP_DOMAINS);
857 
858 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
859 		/*
860 		 * If the input apm and aqm are fields of the matrix_mdev
861 		 * object, then move on to the next matrix_mdev.
862 		 */
863 		if (mdev_apm == matrix_mdev->matrix.apm &&
864 		    mdev_aqm == matrix_mdev->matrix.aqm)
865 			continue;
866 
867 		memset(apm, 0, sizeof(apm));
868 		memset(aqm, 0, sizeof(aqm));
869 
870 		/*
871 		 * We work on full longs, as we can only exclude the leftover
872 		 * bits in non-inverse order. The leftover is all zeros.
873 		 */
874 		if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm,
875 				AP_DEVICES))
876 			continue;
877 
878 		if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm,
879 				AP_DOMAINS))
880 			continue;
881 
882 		vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm);
883 
884 		return -EADDRINUSE;
885 	}
886 
887 	return 0;
888 }
889 
890 /**
891  * vfio_ap_mdev_validate_masks - verify that the APQNs assigned to the mdev are
892  *				 not reserved for the default zcrypt driver and
893  *				 are not assigned to another mdev.
894  *
895  * @matrix_mdev: the mdev to which the APQNs being validated are assigned.
896  *
897  * Return: One of the following values:
898  * o the error returned from the ap_apqn_in_matrix_owned_by_def_drv() function,
899  *   most likely -EBUSY indicating the ap_perms_mutex lock is already held.
900  * o EADDRNOTAVAIL if an APQN assigned to @matrix_mdev is reserved for the
901  *		   zcrypt default driver.
902  * o EADDRINUSE if an APQN assigned to @matrix_mdev is assigned to another mdev
903  * o A zero indicating validation succeeded.
904  */
905 static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev)
906 {
907 	if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm,
908 					       matrix_mdev->matrix.aqm))
909 		return -EADDRNOTAVAIL;
910 
911 	return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm,
912 					      matrix_mdev->matrix.aqm);
913 }
914 
915 static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev,
916 				      unsigned long apid)
917 {
918 	unsigned long apqi;
919 
920 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS)
921 		vfio_ap_mdev_link_apqn(matrix_mdev,
922 				       AP_MKQID(apid, apqi));
923 }
924 
925 /**
926  * assign_adapter_store - parses the APID from @buf and sets the
927  * corresponding bit in the mediated matrix device's APM
928  *
929  * @dev:	the matrix device
930  * @attr:	the mediated matrix device's assign_adapter attribute
931  * @buf:	a buffer containing the AP adapter number (APID) to
932  *		be assigned
933  * @count:	the number of bytes in @buf
934  *
935  * Return: the number of bytes processed if the APID is valid; otherwise,
936  * returns one of the following errors:
937  *
938  *	1. -EINVAL
939  *	   The APID is not a valid number
940  *
941  *	2. -ENODEV
942  *	   The APID exceeds the maximum value configured for the system
943  *
944  *	3. -EADDRNOTAVAIL
945  *	   An APQN derived from the cross product of the APID being assigned
946  *	   and the APQIs previously assigned is not bound to the vfio_ap device
947  *	   driver; or, if no APQIs have yet been assigned, the APID is not
948  *	   contained in an APQN bound to the vfio_ap device driver.
949  *
950  *	4. -EADDRINUSE
951  *	   An APQN derived from the cross product of the APID being assigned
952  *	   and the APQIs previously assigned is being used by another mediated
953  *	   matrix device
954  *
955  *	5. -EAGAIN
956  *	   A lock required to validate the mdev's AP configuration could not
957  *	   be obtained.
958  */
959 static ssize_t assign_adapter_store(struct device *dev,
960 				    struct device_attribute *attr,
961 				    const char *buf, size_t count)
962 {
963 	int ret;
964 	unsigned long apid;
965 	DECLARE_BITMAP(apm_delta, AP_DEVICES);
966 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
967 
968 	mutex_lock(&ap_perms_mutex);
969 	get_update_locks_for_mdev(matrix_mdev);
970 
971 	ret = kstrtoul(buf, 0, &apid);
972 	if (ret)
973 		goto done;
974 
975 	if (apid > matrix_mdev->matrix.apm_max) {
976 		ret = -ENODEV;
977 		goto done;
978 	}
979 
980 	if (test_bit_inv(apid, matrix_mdev->matrix.apm)) {
981 		ret = count;
982 		goto done;
983 	}
984 
985 	set_bit_inv(apid, matrix_mdev->matrix.apm);
986 
987 	ret = vfio_ap_mdev_validate_masks(matrix_mdev);
988 	if (ret) {
989 		clear_bit_inv(apid, matrix_mdev->matrix.apm);
990 		goto done;
991 	}
992 
993 	vfio_ap_mdev_link_adapter(matrix_mdev, apid);
994 	memset(apm_delta, 0, sizeof(apm_delta));
995 	set_bit_inv(apid, apm_delta);
996 
997 	if (vfio_ap_mdev_filter_matrix(apm_delta,
998 				       matrix_mdev->matrix.aqm, matrix_mdev))
999 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1000 
1001 	ret = count;
1002 done:
1003 	release_update_locks_for_mdev(matrix_mdev);
1004 	mutex_unlock(&ap_perms_mutex);
1005 
1006 	return ret;
1007 }
1008 static DEVICE_ATTR_WO(assign_adapter);
1009 
1010 static struct vfio_ap_queue
1011 *vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev *matrix_mdev,
1012 			     unsigned long apid, unsigned long apqi)
1013 {
1014 	struct vfio_ap_queue *q = NULL;
1015 
1016 	q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
1017 	/* If the queue is assigned to the matrix mdev, unlink it. */
1018 	if (q)
1019 		vfio_ap_unlink_queue_fr_mdev(q);
1020 
1021 	return q;
1022 }
1023 
1024 /**
1025  * vfio_ap_mdev_unlink_adapter - unlink all queues associated with unassigned
1026  *				 adapter from the matrix mdev to which the
1027  *				 adapter was assigned.
1028  * @matrix_mdev: the matrix mediated device to which the adapter was assigned.
1029  * @apid: the APID of the unassigned adapter.
1030  * @qtable: table for storing queues associated with unassigned adapter.
1031  */
1032 static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev,
1033 					unsigned long apid,
1034 					struct ap_queue_table *qtable)
1035 {
1036 	unsigned long apqi;
1037 	struct vfio_ap_queue *q;
1038 
1039 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) {
1040 		q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1041 
1042 		if (q && qtable) {
1043 			if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1044 			    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1045 				hash_add(qtable->queues, &q->mdev_qnode,
1046 					 q->apqn);
1047 		}
1048 	}
1049 }
1050 
1051 static void vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev *matrix_mdev,
1052 					    unsigned long apid)
1053 {
1054 	int loop_cursor;
1055 	struct vfio_ap_queue *q;
1056 	struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL);
1057 
1058 	hash_init(qtable->queues);
1059 	vfio_ap_mdev_unlink_adapter(matrix_mdev, apid, qtable);
1060 
1061 	if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm)) {
1062 		clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
1063 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1064 	}
1065 
1066 	vfio_ap_mdev_reset_queues(qtable);
1067 
1068 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1069 		vfio_ap_unlink_mdev_fr_queue(q);
1070 		hash_del(&q->mdev_qnode);
1071 	}
1072 
1073 	kfree(qtable);
1074 }
1075 
1076 /**
1077  * unassign_adapter_store - parses the APID from @buf and clears the
1078  * corresponding bit in the mediated matrix device's APM
1079  *
1080  * @dev:	the matrix device
1081  * @attr:	the mediated matrix device's unassign_adapter attribute
1082  * @buf:	a buffer containing the adapter number (APID) to be unassigned
1083  * @count:	the number of bytes in @buf
1084  *
1085  * Return: the number of bytes processed if the APID is valid; otherwise,
1086  * returns one of the following errors:
1087  *	-EINVAL if the APID is not a number
1088  *	-ENODEV if the APID it exceeds the maximum value configured for the
1089  *		system
1090  */
1091 static ssize_t unassign_adapter_store(struct device *dev,
1092 				      struct device_attribute *attr,
1093 				      const char *buf, size_t count)
1094 {
1095 	int ret;
1096 	unsigned long apid;
1097 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1098 
1099 	get_update_locks_for_mdev(matrix_mdev);
1100 
1101 	ret = kstrtoul(buf, 0, &apid);
1102 	if (ret)
1103 		goto done;
1104 
1105 	if (apid > matrix_mdev->matrix.apm_max) {
1106 		ret = -ENODEV;
1107 		goto done;
1108 	}
1109 
1110 	if (!test_bit_inv(apid, matrix_mdev->matrix.apm)) {
1111 		ret = count;
1112 		goto done;
1113 	}
1114 
1115 	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
1116 	vfio_ap_mdev_hot_unplug_adapter(matrix_mdev, apid);
1117 	ret = count;
1118 done:
1119 	release_update_locks_for_mdev(matrix_mdev);
1120 	return ret;
1121 }
1122 static DEVICE_ATTR_WO(unassign_adapter);
1123 
1124 static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev,
1125 				     unsigned long apqi)
1126 {
1127 	unsigned long apid;
1128 
1129 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES)
1130 		vfio_ap_mdev_link_apqn(matrix_mdev,
1131 				       AP_MKQID(apid, apqi));
1132 }
1133 
1134 /**
1135  * assign_domain_store - parses the APQI from @buf and sets the
1136  * corresponding bit in the mediated matrix device's AQM
1137  *
1138  * @dev:	the matrix device
1139  * @attr:	the mediated matrix device's assign_domain attribute
1140  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
1141  *		be assigned
1142  * @count:	the number of bytes in @buf
1143  *
1144  * Return: the number of bytes processed if the APQI is valid; otherwise returns
1145  * one of the following errors:
1146  *
1147  *	1. -EINVAL
1148  *	   The APQI is not a valid number
1149  *
1150  *	2. -ENODEV
1151  *	   The APQI exceeds the maximum value configured for the system
1152  *
1153  *	3. -EADDRNOTAVAIL
1154  *	   An APQN derived from the cross product of the APQI being assigned
1155  *	   and the APIDs previously assigned is not bound to the vfio_ap device
1156  *	   driver; or, if no APIDs have yet been assigned, the APQI is not
1157  *	   contained in an APQN bound to the vfio_ap device driver.
1158  *
1159  *	4. -EADDRINUSE
1160  *	   An APQN derived from the cross product of the APQI being assigned
1161  *	   and the APIDs previously assigned is being used by another mediated
1162  *	   matrix device
1163  *
1164  *	5. -EAGAIN
1165  *	   The lock required to validate the mdev's AP configuration could not
1166  *	   be obtained.
1167  */
1168 static ssize_t assign_domain_store(struct device *dev,
1169 				   struct device_attribute *attr,
1170 				   const char *buf, size_t count)
1171 {
1172 	int ret;
1173 	unsigned long apqi;
1174 	DECLARE_BITMAP(aqm_delta, AP_DOMAINS);
1175 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1176 
1177 	mutex_lock(&ap_perms_mutex);
1178 	get_update_locks_for_mdev(matrix_mdev);
1179 
1180 	ret = kstrtoul(buf, 0, &apqi);
1181 	if (ret)
1182 		goto done;
1183 
1184 	if (apqi > matrix_mdev->matrix.aqm_max) {
1185 		ret = -ENODEV;
1186 		goto done;
1187 	}
1188 
1189 	if (test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1190 		ret = count;
1191 		goto done;
1192 	}
1193 
1194 	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
1195 
1196 	ret = vfio_ap_mdev_validate_masks(matrix_mdev);
1197 	if (ret) {
1198 		clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
1199 		goto done;
1200 	}
1201 
1202 	vfio_ap_mdev_link_domain(matrix_mdev, apqi);
1203 	memset(aqm_delta, 0, sizeof(aqm_delta));
1204 	set_bit_inv(apqi, aqm_delta);
1205 
1206 	if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, aqm_delta,
1207 				       matrix_mdev))
1208 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1209 
1210 	ret = count;
1211 done:
1212 	release_update_locks_for_mdev(matrix_mdev);
1213 	mutex_unlock(&ap_perms_mutex);
1214 
1215 	return ret;
1216 }
1217 static DEVICE_ATTR_WO(assign_domain);
1218 
1219 static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev,
1220 				       unsigned long apqi,
1221 				       struct ap_queue_table *qtable)
1222 {
1223 	unsigned long apid;
1224 	struct vfio_ap_queue *q;
1225 
1226 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
1227 		q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1228 
1229 		if (q && qtable) {
1230 			if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1231 			    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1232 				hash_add(qtable->queues, &q->mdev_qnode,
1233 					 q->apqn);
1234 		}
1235 	}
1236 }
1237 
1238 static void vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev *matrix_mdev,
1239 					   unsigned long apqi)
1240 {
1241 	int loop_cursor;
1242 	struct vfio_ap_queue *q;
1243 	struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL);
1244 
1245 	hash_init(qtable->queues);
1246 	vfio_ap_mdev_unlink_domain(matrix_mdev, apqi, qtable);
1247 
1248 	if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
1249 		clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm);
1250 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1251 	}
1252 
1253 	vfio_ap_mdev_reset_queues(qtable);
1254 
1255 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1256 		vfio_ap_unlink_mdev_fr_queue(q);
1257 		hash_del(&q->mdev_qnode);
1258 	}
1259 
1260 	kfree(qtable);
1261 }
1262 
1263 /**
1264  * unassign_domain_store - parses the APQI from @buf and clears the
1265  * corresponding bit in the mediated matrix device's AQM
1266  *
1267  * @dev:	the matrix device
1268  * @attr:	the mediated matrix device's unassign_domain attribute
1269  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
1270  *		be unassigned
1271  * @count:	the number of bytes in @buf
1272  *
1273  * Return: the number of bytes processed if the APQI is valid; otherwise,
1274  * returns one of the following errors:
1275  *	-EINVAL if the APQI is not a number
1276  *	-ENODEV if the APQI exceeds the maximum value configured for the system
1277  */
1278 static ssize_t unassign_domain_store(struct device *dev,
1279 				     struct device_attribute *attr,
1280 				     const char *buf, size_t count)
1281 {
1282 	int ret;
1283 	unsigned long apqi;
1284 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1285 
1286 	get_update_locks_for_mdev(matrix_mdev);
1287 
1288 	ret = kstrtoul(buf, 0, &apqi);
1289 	if (ret)
1290 		goto done;
1291 
1292 	if (apqi > matrix_mdev->matrix.aqm_max) {
1293 		ret = -ENODEV;
1294 		goto done;
1295 	}
1296 
1297 	if (!test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1298 		ret = count;
1299 		goto done;
1300 	}
1301 
1302 	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
1303 	vfio_ap_mdev_hot_unplug_domain(matrix_mdev, apqi);
1304 	ret = count;
1305 
1306 done:
1307 	release_update_locks_for_mdev(matrix_mdev);
1308 	return ret;
1309 }
1310 static DEVICE_ATTR_WO(unassign_domain);
1311 
1312 /**
1313  * assign_control_domain_store - parses the domain ID from @buf and sets
1314  * the corresponding bit in the mediated matrix device's ADM
1315  *
1316  * @dev:	the matrix device
1317  * @attr:	the mediated matrix device's assign_control_domain attribute
1318  * @buf:	a buffer containing the domain ID to be assigned
1319  * @count:	the number of bytes in @buf
1320  *
1321  * Return: the number of bytes processed if the domain ID is valid; otherwise,
1322  * returns one of the following errors:
1323  *	-EINVAL if the ID is not a number
1324  *	-ENODEV if the ID exceeds the maximum value configured for the system
1325  */
1326 static ssize_t assign_control_domain_store(struct device *dev,
1327 					   struct device_attribute *attr,
1328 					   const char *buf, size_t count)
1329 {
1330 	int ret;
1331 	unsigned long id;
1332 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1333 
1334 	get_update_locks_for_mdev(matrix_mdev);
1335 
1336 	ret = kstrtoul(buf, 0, &id);
1337 	if (ret)
1338 		goto done;
1339 
1340 	if (id > matrix_mdev->matrix.adm_max) {
1341 		ret = -ENODEV;
1342 		goto done;
1343 	}
1344 
1345 	if (test_bit_inv(id, matrix_mdev->matrix.adm)) {
1346 		ret = count;
1347 		goto done;
1348 	}
1349 
1350 	/* Set the bit in the ADM (bitmask) corresponding to the AP control
1351 	 * domain number (id). The bits in the mask, from most significant to
1352 	 * least significant, correspond to IDs 0 up to the one less than the
1353 	 * number of control domains that can be assigned.
1354 	 */
1355 	set_bit_inv(id, matrix_mdev->matrix.adm);
1356 	if (vfio_ap_mdev_filter_cdoms(matrix_mdev))
1357 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1358 
1359 	ret = count;
1360 done:
1361 	release_update_locks_for_mdev(matrix_mdev);
1362 	return ret;
1363 }
1364 static DEVICE_ATTR_WO(assign_control_domain);
1365 
1366 /**
1367  * unassign_control_domain_store - parses the domain ID from @buf and
1368  * clears the corresponding bit in the mediated matrix device's ADM
1369  *
1370  * @dev:	the matrix device
1371  * @attr:	the mediated matrix device's unassign_control_domain attribute
1372  * @buf:	a buffer containing the domain ID to be unassigned
1373  * @count:	the number of bytes in @buf
1374  *
1375  * Return: the number of bytes processed if the domain ID is valid; otherwise,
1376  * returns one of the following errors:
1377  *	-EINVAL if the ID is not a number
1378  *	-ENODEV if the ID exceeds the maximum value configured for the system
1379  */
1380 static ssize_t unassign_control_domain_store(struct device *dev,
1381 					     struct device_attribute *attr,
1382 					     const char *buf, size_t count)
1383 {
1384 	int ret;
1385 	unsigned long domid;
1386 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1387 
1388 	get_update_locks_for_mdev(matrix_mdev);
1389 
1390 	ret = kstrtoul(buf, 0, &domid);
1391 	if (ret)
1392 		goto done;
1393 
1394 	if (domid > matrix_mdev->matrix.adm_max) {
1395 		ret = -ENODEV;
1396 		goto done;
1397 	}
1398 
1399 	if (!test_bit_inv(domid, matrix_mdev->matrix.adm)) {
1400 		ret = count;
1401 		goto done;
1402 	}
1403 
1404 	clear_bit_inv(domid, matrix_mdev->matrix.adm);
1405 
1406 	if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm)) {
1407 		clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm);
1408 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1409 	}
1410 
1411 	ret = count;
1412 done:
1413 	release_update_locks_for_mdev(matrix_mdev);
1414 	return ret;
1415 }
1416 static DEVICE_ATTR_WO(unassign_control_domain);
1417 
1418 static ssize_t control_domains_show(struct device *dev,
1419 				    struct device_attribute *dev_attr,
1420 				    char *buf)
1421 {
1422 	unsigned long id;
1423 	int nchars = 0;
1424 	int n;
1425 	char *bufpos = buf;
1426 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1427 	unsigned long max_domid = matrix_mdev->matrix.adm_max;
1428 
1429 	mutex_lock(&matrix_dev->mdevs_lock);
1430 	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
1431 		n = sprintf(bufpos, "%04lx\n", id);
1432 		bufpos += n;
1433 		nchars += n;
1434 	}
1435 	mutex_unlock(&matrix_dev->mdevs_lock);
1436 
1437 	return nchars;
1438 }
1439 static DEVICE_ATTR_RO(control_domains);
1440 
1441 static ssize_t vfio_ap_mdev_matrix_show(struct ap_matrix *matrix, char *buf)
1442 {
1443 	char *bufpos = buf;
1444 	unsigned long apid;
1445 	unsigned long apqi;
1446 	unsigned long apid1;
1447 	unsigned long apqi1;
1448 	unsigned long napm_bits = matrix->apm_max + 1;
1449 	unsigned long naqm_bits = matrix->aqm_max + 1;
1450 	int nchars = 0;
1451 	int n;
1452 
1453 	apid1 = find_first_bit_inv(matrix->apm, napm_bits);
1454 	apqi1 = find_first_bit_inv(matrix->aqm, naqm_bits);
1455 
1456 	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1457 		for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1458 			for_each_set_bit_inv(apqi, matrix->aqm,
1459 					     naqm_bits) {
1460 				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1461 					    apqi);
1462 				bufpos += n;
1463 				nchars += n;
1464 			}
1465 		}
1466 	} else if (apid1 < napm_bits) {
1467 		for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1468 			n = sprintf(bufpos, "%02lx.\n", apid);
1469 			bufpos += n;
1470 			nchars += n;
1471 		}
1472 	} else if (apqi1 < naqm_bits) {
1473 		for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) {
1474 			n = sprintf(bufpos, ".%04lx\n", apqi);
1475 			bufpos += n;
1476 			nchars += n;
1477 		}
1478 	}
1479 
1480 	return nchars;
1481 }
1482 
1483 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1484 			   char *buf)
1485 {
1486 	ssize_t nchars;
1487 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1488 
1489 	mutex_lock(&matrix_dev->mdevs_lock);
1490 	nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->matrix, buf);
1491 	mutex_unlock(&matrix_dev->mdevs_lock);
1492 
1493 	return nchars;
1494 }
1495 static DEVICE_ATTR_RO(matrix);
1496 
1497 static ssize_t guest_matrix_show(struct device *dev,
1498 				 struct device_attribute *attr, char *buf)
1499 {
1500 	ssize_t nchars;
1501 	struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1502 
1503 	mutex_lock(&matrix_dev->mdevs_lock);
1504 	nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->shadow_apcb, buf);
1505 	mutex_unlock(&matrix_dev->mdevs_lock);
1506 
1507 	return nchars;
1508 }
1509 static DEVICE_ATTR_RO(guest_matrix);
1510 
1511 static struct attribute *vfio_ap_mdev_attrs[] = {
1512 	&dev_attr_assign_adapter.attr,
1513 	&dev_attr_unassign_adapter.attr,
1514 	&dev_attr_assign_domain.attr,
1515 	&dev_attr_unassign_domain.attr,
1516 	&dev_attr_assign_control_domain.attr,
1517 	&dev_attr_unassign_control_domain.attr,
1518 	&dev_attr_control_domains.attr,
1519 	&dev_attr_matrix.attr,
1520 	&dev_attr_guest_matrix.attr,
1521 	NULL,
1522 };
1523 
1524 static struct attribute_group vfio_ap_mdev_attr_group = {
1525 	.attrs = vfio_ap_mdev_attrs
1526 };
1527 
1528 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1529 	&vfio_ap_mdev_attr_group,
1530 	NULL
1531 };
1532 
1533 /**
1534  * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
1535  * to manage AP resources for the guest whose state is represented by @kvm
1536  *
1537  * @matrix_mdev: a mediated matrix device
1538  * @kvm: reference to KVM instance
1539  *
1540  * Return: 0 if no other mediated matrix device has a reference to @kvm;
1541  * otherwise, returns an -EPERM.
1542  */
1543 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1544 				struct kvm *kvm)
1545 {
1546 	struct ap_matrix_mdev *m;
1547 
1548 	if (kvm->arch.crypto.crycbd) {
1549 		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1550 		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1551 		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1552 
1553 		get_update_locks_for_kvm(kvm);
1554 
1555 		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1556 			if (m != matrix_mdev && m->kvm == kvm) {
1557 				release_update_locks_for_kvm(kvm);
1558 				return -EPERM;
1559 			}
1560 		}
1561 
1562 		kvm_get_kvm(kvm);
1563 		matrix_mdev->kvm = kvm;
1564 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1565 
1566 		release_update_locks_for_kvm(kvm);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static void unmap_iova(struct ap_matrix_mdev *matrix_mdev, u64 iova, u64 length)
1573 {
1574 	struct ap_queue_table *qtable = &matrix_mdev->qtable;
1575 	struct vfio_ap_queue *q;
1576 	int loop_cursor;
1577 
1578 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1579 		if (q->saved_iova >= iova && q->saved_iova < iova + length)
1580 			vfio_ap_irq_disable(q);
1581 	}
1582 }
1583 
1584 static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova,
1585 				   u64 length)
1586 {
1587 	struct ap_matrix_mdev *matrix_mdev =
1588 		container_of(vdev, struct ap_matrix_mdev, vdev);
1589 
1590 	mutex_lock(&matrix_dev->mdevs_lock);
1591 
1592 	unmap_iova(matrix_mdev, iova, length);
1593 
1594 	mutex_unlock(&matrix_dev->mdevs_lock);
1595 }
1596 
1597 /**
1598  * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
1599  * by @matrix_mdev.
1600  *
1601  * @matrix_mdev: a matrix mediated device
1602  */
1603 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1604 {
1605 	struct kvm *kvm = matrix_mdev->kvm;
1606 
1607 	if (kvm && kvm->arch.crypto.crycbd) {
1608 		down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1609 		kvm->arch.crypto.pqap_hook = NULL;
1610 		up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1611 
1612 		get_update_locks_for_kvm(kvm);
1613 
1614 		kvm_arch_crypto_clear_masks(kvm);
1615 		vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
1616 		kvm_put_kvm(kvm);
1617 		matrix_mdev->kvm = NULL;
1618 
1619 		release_update_locks_for_kvm(kvm);
1620 	}
1621 }
1622 
1623 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1624 {
1625 	struct ap_queue *queue;
1626 	struct vfio_ap_queue *q = NULL;
1627 
1628 	queue = ap_get_qdev(apqn);
1629 	if (!queue)
1630 		return NULL;
1631 
1632 	if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver)
1633 		q = dev_get_drvdata(&queue->ap_dev.device);
1634 
1635 	put_device(&queue->ap_dev.device);
1636 
1637 	return q;
1638 }
1639 
1640 static int apq_status_check(int apqn, struct ap_queue_status *status)
1641 {
1642 	switch (status->response_code) {
1643 	case AP_RESPONSE_NORMAL:
1644 	case AP_RESPONSE_DECONFIGURED:
1645 		return 0;
1646 	case AP_RESPONSE_RESET_IN_PROGRESS:
1647 	case AP_RESPONSE_BUSY:
1648 		return -EBUSY;
1649 	case AP_RESPONSE_ASSOC_SECRET_NOT_UNIQUE:
1650 	case AP_RESPONSE_ASSOC_FAILED:
1651 		/*
1652 		 * These asynchronous response codes indicate a PQAP(AAPQ)
1653 		 * instruction to associate a secret with the guest failed. All
1654 		 * subsequent AP instructions will end with the asynchronous
1655 		 * response code until the AP queue is reset; so, let's return
1656 		 * a value indicating a reset needs to be performed again.
1657 		 */
1658 		return -EAGAIN;
1659 	default:
1660 		WARN(true,
1661 		     "failed to verify reset of queue %02x.%04x: TAPQ rc=%u\n",
1662 		     AP_QID_CARD(apqn), AP_QID_QUEUE(apqn),
1663 		     status->response_code);
1664 		return -EIO;
1665 	}
1666 }
1667 
1668 #define WAIT_MSG "Waited %dms for reset of queue %02x.%04x (%u, %u, %u)"
1669 
1670 static void apq_reset_check(struct work_struct *reset_work)
1671 {
1672 	int ret = -EBUSY, elapsed = 0;
1673 	struct ap_queue_status status;
1674 	struct vfio_ap_queue *q;
1675 
1676 	q = container_of(reset_work, struct vfio_ap_queue, reset_work);
1677 	memcpy(&status, &q->reset_status, sizeof(status));
1678 	while (true) {
1679 		msleep(AP_RESET_INTERVAL);
1680 		elapsed += AP_RESET_INTERVAL;
1681 		status = ap_tapq(q->apqn, NULL);
1682 		ret = apq_status_check(q->apqn, &status);
1683 		if (ret == -EIO)
1684 			return;
1685 		if (ret == -EBUSY) {
1686 			pr_notice_ratelimited(WAIT_MSG, elapsed,
1687 					      AP_QID_CARD(q->apqn),
1688 					      AP_QID_QUEUE(q->apqn),
1689 					      status.response_code,
1690 					      status.queue_empty,
1691 					      status.irq_enabled);
1692 		} else {
1693 			if (q->reset_status.response_code == AP_RESPONSE_RESET_IN_PROGRESS ||
1694 			    q->reset_status.response_code == AP_RESPONSE_BUSY ||
1695 			    q->reset_status.response_code == AP_RESPONSE_STATE_CHANGE_IN_PROGRESS ||
1696 			    ret == -EAGAIN) {
1697 				status = ap_zapq(q->apqn, 0);
1698 				memcpy(&q->reset_status, &status, sizeof(status));
1699 				continue;
1700 			}
1701 			/*
1702 			 * When an AP adapter is deconfigured, the
1703 			 * associated queues are reset, so let's set the
1704 			 * status response code to 0 so the queue may be
1705 			 * passed through (i.e., not filtered)
1706 			 */
1707 			if (status.response_code == AP_RESPONSE_DECONFIGURED)
1708 				q->reset_status.response_code = 0;
1709 			if (q->saved_isc != VFIO_AP_ISC_INVALID)
1710 				vfio_ap_free_aqic_resources(q);
1711 			break;
1712 		}
1713 	}
1714 }
1715 
1716 static void vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q)
1717 {
1718 	struct ap_queue_status status;
1719 
1720 	if (!q)
1721 		return;
1722 	status = ap_zapq(q->apqn, 0);
1723 	memcpy(&q->reset_status, &status, sizeof(status));
1724 	switch (status.response_code) {
1725 	case AP_RESPONSE_NORMAL:
1726 	case AP_RESPONSE_RESET_IN_PROGRESS:
1727 	case AP_RESPONSE_BUSY:
1728 	case AP_RESPONSE_STATE_CHANGE_IN_PROGRESS:
1729 		/*
1730 		 * Let's verify whether the ZAPQ completed successfully on a work queue.
1731 		 */
1732 		queue_work(system_long_wq, &q->reset_work);
1733 		break;
1734 	case AP_RESPONSE_DECONFIGURED:
1735 		/*
1736 		 * When an AP adapter is deconfigured, the associated
1737 		 * queues are reset, so let's set the status response code to 0
1738 		 * so the queue may be passed through (i.e., not filtered).
1739 		 */
1740 		q->reset_status.response_code = 0;
1741 		vfio_ap_free_aqic_resources(q);
1742 		break;
1743 	default:
1744 		WARN(true,
1745 		     "PQAP/ZAPQ for %02x.%04x failed with invalid rc=%u\n",
1746 		     AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn),
1747 		     status.response_code);
1748 	}
1749 }
1750 
1751 static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable)
1752 {
1753 	int ret = 0, loop_cursor;
1754 	struct vfio_ap_queue *q;
1755 
1756 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode)
1757 		vfio_ap_mdev_reset_queue(q);
1758 
1759 	hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1760 		flush_work(&q->reset_work);
1761 
1762 		if (q->reset_status.response_code)
1763 			ret = -EIO;
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 static int vfio_ap_mdev_open_device(struct vfio_device *vdev)
1770 {
1771 	struct ap_matrix_mdev *matrix_mdev =
1772 		container_of(vdev, struct ap_matrix_mdev, vdev);
1773 
1774 	if (!vdev->kvm)
1775 		return -EINVAL;
1776 
1777 	return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm);
1778 }
1779 
1780 static void vfio_ap_mdev_close_device(struct vfio_device *vdev)
1781 {
1782 	struct ap_matrix_mdev *matrix_mdev =
1783 		container_of(vdev, struct ap_matrix_mdev, vdev);
1784 
1785 	vfio_ap_mdev_unset_kvm(matrix_mdev);
1786 }
1787 
1788 static void vfio_ap_mdev_request(struct vfio_device *vdev, unsigned int count)
1789 {
1790 	struct device *dev = vdev->dev;
1791 	struct ap_matrix_mdev *matrix_mdev;
1792 
1793 	matrix_mdev = container_of(vdev, struct ap_matrix_mdev, vdev);
1794 
1795 	if (matrix_mdev->req_trigger) {
1796 		if (!(count % 10))
1797 			dev_notice_ratelimited(dev,
1798 					       "Relaying device request to user (#%u)\n",
1799 					       count);
1800 
1801 		eventfd_signal(matrix_mdev->req_trigger);
1802 	} else if (count == 0) {
1803 		dev_notice(dev,
1804 			   "No device request registered, blocked until released by user\n");
1805 	}
1806 }
1807 
1808 static int vfio_ap_mdev_get_device_info(unsigned long arg)
1809 {
1810 	unsigned long minsz;
1811 	struct vfio_device_info info;
1812 
1813 	minsz = offsetofend(struct vfio_device_info, num_irqs);
1814 
1815 	if (copy_from_user(&info, (void __user *)arg, minsz))
1816 		return -EFAULT;
1817 
1818 	if (info.argsz < minsz)
1819 		return -EINVAL;
1820 
1821 	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1822 	info.num_regions = 0;
1823 	info.num_irqs = VFIO_AP_NUM_IRQS;
1824 
1825 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1826 }
1827 
1828 static ssize_t vfio_ap_get_irq_info(unsigned long arg)
1829 {
1830 	unsigned long minsz;
1831 	struct vfio_irq_info info;
1832 
1833 	minsz = offsetofend(struct vfio_irq_info, count);
1834 
1835 	if (copy_from_user(&info, (void __user *)arg, minsz))
1836 		return -EFAULT;
1837 
1838 	if (info.argsz < minsz || info.index >= VFIO_AP_NUM_IRQS)
1839 		return -EINVAL;
1840 
1841 	switch (info.index) {
1842 	case VFIO_AP_REQ_IRQ_INDEX:
1843 		info.count = 1;
1844 		info.flags = VFIO_IRQ_INFO_EVENTFD;
1845 		break;
1846 	default:
1847 		return -EINVAL;
1848 	}
1849 
1850 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1851 }
1852 
1853 static int vfio_ap_irq_set_init(struct vfio_irq_set *irq_set, unsigned long arg)
1854 {
1855 	int ret;
1856 	size_t data_size;
1857 	unsigned long minsz;
1858 
1859 	minsz = offsetofend(struct vfio_irq_set, count);
1860 
1861 	if (copy_from_user(irq_set, (void __user *)arg, minsz))
1862 		return -EFAULT;
1863 
1864 	ret = vfio_set_irqs_validate_and_prepare(irq_set, 1, VFIO_AP_NUM_IRQS,
1865 						 &data_size);
1866 	if (ret)
1867 		return ret;
1868 
1869 	if (!(irq_set->flags & VFIO_IRQ_SET_ACTION_TRIGGER))
1870 		return -EINVAL;
1871 
1872 	return 0;
1873 }
1874 
1875 static int vfio_ap_set_request_irq(struct ap_matrix_mdev *matrix_mdev,
1876 				   unsigned long arg)
1877 {
1878 	s32 fd;
1879 	void __user *data;
1880 	unsigned long minsz;
1881 	struct eventfd_ctx *req_trigger;
1882 
1883 	minsz = offsetofend(struct vfio_irq_set, count);
1884 	data = (void __user *)(arg + minsz);
1885 
1886 	if (get_user(fd, (s32 __user *)data))
1887 		return -EFAULT;
1888 
1889 	if (fd == -1) {
1890 		if (matrix_mdev->req_trigger)
1891 			eventfd_ctx_put(matrix_mdev->req_trigger);
1892 		matrix_mdev->req_trigger = NULL;
1893 	} else if (fd >= 0) {
1894 		req_trigger = eventfd_ctx_fdget(fd);
1895 		if (IS_ERR(req_trigger))
1896 			return PTR_ERR(req_trigger);
1897 
1898 		if (matrix_mdev->req_trigger)
1899 			eventfd_ctx_put(matrix_mdev->req_trigger);
1900 
1901 		matrix_mdev->req_trigger = req_trigger;
1902 	} else {
1903 		return -EINVAL;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int vfio_ap_set_irqs(struct ap_matrix_mdev *matrix_mdev,
1910 			    unsigned long arg)
1911 {
1912 	int ret;
1913 	struct vfio_irq_set irq_set;
1914 
1915 	ret = vfio_ap_irq_set_init(&irq_set, arg);
1916 	if (ret)
1917 		return ret;
1918 
1919 	switch (irq_set.flags & VFIO_IRQ_SET_DATA_TYPE_MASK) {
1920 	case VFIO_IRQ_SET_DATA_EVENTFD:
1921 		switch (irq_set.index) {
1922 		case VFIO_AP_REQ_IRQ_INDEX:
1923 			return vfio_ap_set_request_irq(matrix_mdev, arg);
1924 		default:
1925 			return -EINVAL;
1926 		}
1927 	default:
1928 		return -EINVAL;
1929 	}
1930 }
1931 
1932 static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev,
1933 				    unsigned int cmd, unsigned long arg)
1934 {
1935 	struct ap_matrix_mdev *matrix_mdev =
1936 		container_of(vdev, struct ap_matrix_mdev, vdev);
1937 	int ret;
1938 
1939 	mutex_lock(&matrix_dev->mdevs_lock);
1940 	switch (cmd) {
1941 	case VFIO_DEVICE_GET_INFO:
1942 		ret = vfio_ap_mdev_get_device_info(arg);
1943 		break;
1944 	case VFIO_DEVICE_RESET:
1945 		ret = vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
1946 		break;
1947 	case VFIO_DEVICE_GET_IRQ_INFO:
1948 			ret = vfio_ap_get_irq_info(arg);
1949 			break;
1950 	case VFIO_DEVICE_SET_IRQS:
1951 		ret = vfio_ap_set_irqs(matrix_mdev, arg);
1952 		break;
1953 	default:
1954 		ret = -EOPNOTSUPP;
1955 		break;
1956 	}
1957 	mutex_unlock(&matrix_dev->mdevs_lock);
1958 
1959 	return ret;
1960 }
1961 
1962 static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q)
1963 {
1964 	struct ap_matrix_mdev *matrix_mdev;
1965 	unsigned long apid = AP_QID_CARD(q->apqn);
1966 	unsigned long apqi = AP_QID_QUEUE(q->apqn);
1967 
1968 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
1969 		if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
1970 		    test_bit_inv(apqi, matrix_mdev->matrix.aqm))
1971 			return matrix_mdev;
1972 	}
1973 
1974 	return NULL;
1975 }
1976 
1977 static ssize_t status_show(struct device *dev,
1978 			   struct device_attribute *attr,
1979 			   char *buf)
1980 {
1981 	ssize_t nchars = 0;
1982 	struct vfio_ap_queue *q;
1983 	unsigned long apid, apqi;
1984 	struct ap_matrix_mdev *matrix_mdev;
1985 	struct ap_device *apdev = to_ap_dev(dev);
1986 
1987 	mutex_lock(&matrix_dev->mdevs_lock);
1988 	q = dev_get_drvdata(&apdev->device);
1989 	matrix_mdev = vfio_ap_mdev_for_queue(q);
1990 
1991 	/* If the queue is assigned to the matrix mediated device, then
1992 	 * determine whether it is passed through to a guest; otherwise,
1993 	 * indicate that it is unassigned.
1994 	 */
1995 	if (matrix_mdev) {
1996 		apid = AP_QID_CARD(q->apqn);
1997 		apqi = AP_QID_QUEUE(q->apqn);
1998 		/*
1999 		 * If the queue is passed through to the guest, then indicate
2000 		 * that it is in use; otherwise, indicate that it is
2001 		 * merely assigned to a matrix mediated device.
2002 		 */
2003 		if (matrix_mdev->kvm &&
2004 		    test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
2005 		    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
2006 			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
2007 					   AP_QUEUE_IN_USE);
2008 		else
2009 			nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
2010 					   AP_QUEUE_ASSIGNED);
2011 	} else {
2012 		nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
2013 				   AP_QUEUE_UNASSIGNED);
2014 	}
2015 
2016 	mutex_unlock(&matrix_dev->mdevs_lock);
2017 
2018 	return nchars;
2019 }
2020 
2021 static DEVICE_ATTR_RO(status);
2022 
2023 static struct attribute *vfio_queue_attrs[] = {
2024 	&dev_attr_status.attr,
2025 	NULL,
2026 };
2027 
2028 static const struct attribute_group vfio_queue_attr_group = {
2029 	.attrs = vfio_queue_attrs,
2030 };
2031 
2032 static const struct vfio_device_ops vfio_ap_matrix_dev_ops = {
2033 	.init = vfio_ap_mdev_init_dev,
2034 	.open_device = vfio_ap_mdev_open_device,
2035 	.close_device = vfio_ap_mdev_close_device,
2036 	.ioctl = vfio_ap_mdev_ioctl,
2037 	.dma_unmap = vfio_ap_mdev_dma_unmap,
2038 	.bind_iommufd = vfio_iommufd_emulated_bind,
2039 	.unbind_iommufd = vfio_iommufd_emulated_unbind,
2040 	.attach_ioas = vfio_iommufd_emulated_attach_ioas,
2041 	.detach_ioas = vfio_iommufd_emulated_detach_ioas,
2042 	.request = vfio_ap_mdev_request
2043 };
2044 
2045 static struct mdev_driver vfio_ap_matrix_driver = {
2046 	.device_api = VFIO_DEVICE_API_AP_STRING,
2047 	.max_instances = MAX_ZDEV_ENTRIES_EXT,
2048 	.driver = {
2049 		.name = "vfio_ap_mdev",
2050 		.owner = THIS_MODULE,
2051 		.mod_name = KBUILD_MODNAME,
2052 		.dev_groups = vfio_ap_mdev_attr_groups,
2053 	},
2054 	.probe = vfio_ap_mdev_probe,
2055 	.remove = vfio_ap_mdev_remove,
2056 };
2057 
2058 int vfio_ap_mdev_register(void)
2059 {
2060 	int ret;
2061 
2062 	ret = mdev_register_driver(&vfio_ap_matrix_driver);
2063 	if (ret)
2064 		return ret;
2065 
2066 	matrix_dev->mdev_type.sysfs_name = VFIO_AP_MDEV_TYPE_HWVIRT;
2067 	matrix_dev->mdev_type.pretty_name = VFIO_AP_MDEV_NAME_HWVIRT;
2068 	matrix_dev->mdev_types[0] = &matrix_dev->mdev_type;
2069 	ret = mdev_register_parent(&matrix_dev->parent, &matrix_dev->device,
2070 				   &vfio_ap_matrix_driver,
2071 				   matrix_dev->mdev_types, 1);
2072 	if (ret)
2073 		goto err_driver;
2074 	return 0;
2075 
2076 err_driver:
2077 	mdev_unregister_driver(&vfio_ap_matrix_driver);
2078 	return ret;
2079 }
2080 
2081 void vfio_ap_mdev_unregister(void)
2082 {
2083 	mdev_unregister_parent(&matrix_dev->parent);
2084 	mdev_unregister_driver(&vfio_ap_matrix_driver);
2085 }
2086 
2087 int vfio_ap_mdev_probe_queue(struct ap_device *apdev)
2088 {
2089 	int ret;
2090 	struct vfio_ap_queue *q;
2091 	struct ap_matrix_mdev *matrix_mdev;
2092 
2093 	ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group);
2094 	if (ret)
2095 		return ret;
2096 
2097 	q = kzalloc(sizeof(*q), GFP_KERNEL);
2098 	if (!q) {
2099 		ret = -ENOMEM;
2100 		goto err_remove_group;
2101 	}
2102 
2103 	q->apqn = to_ap_queue(&apdev->device)->qid;
2104 	q->saved_isc = VFIO_AP_ISC_INVALID;
2105 	memset(&q->reset_status, 0, sizeof(q->reset_status));
2106 	INIT_WORK(&q->reset_work, apq_reset_check);
2107 	matrix_mdev = get_update_locks_by_apqn(q->apqn);
2108 
2109 	if (matrix_mdev) {
2110 		vfio_ap_mdev_link_queue(matrix_mdev, q);
2111 
2112 		if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm,
2113 					       matrix_mdev->matrix.aqm,
2114 					       matrix_mdev))
2115 			vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2116 	}
2117 	dev_set_drvdata(&apdev->device, q);
2118 	release_update_locks_for_mdev(matrix_mdev);
2119 
2120 	return 0;
2121 
2122 err_remove_group:
2123 	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
2124 	return ret;
2125 }
2126 
2127 void vfio_ap_mdev_remove_queue(struct ap_device *apdev)
2128 {
2129 	unsigned long apid, apqi;
2130 	struct vfio_ap_queue *q;
2131 	struct ap_matrix_mdev *matrix_mdev;
2132 
2133 	sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
2134 	q = dev_get_drvdata(&apdev->device);
2135 	get_update_locks_for_queue(q);
2136 	matrix_mdev = q->matrix_mdev;
2137 
2138 	if (matrix_mdev) {
2139 		vfio_ap_unlink_queue_fr_mdev(q);
2140 
2141 		apid = AP_QID_CARD(q->apqn);
2142 		apqi = AP_QID_QUEUE(q->apqn);
2143 
2144 		/*
2145 		 * If the queue is assigned to the guest's APCB, then remove
2146 		 * the adapter's APID from the APCB and hot it into the guest.
2147 		 */
2148 		if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
2149 		    test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
2150 			clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
2151 			vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2152 		}
2153 	}
2154 
2155 	vfio_ap_mdev_reset_queue(q);
2156 	flush_work(&q->reset_work);
2157 	dev_set_drvdata(&apdev->device, NULL);
2158 	kfree(q);
2159 	release_update_locks_for_mdev(matrix_mdev);
2160 }
2161 
2162 /**
2163  * vfio_ap_mdev_resource_in_use: check whether any of a set of APQNs is
2164  *				 assigned to a mediated device under the control
2165  *				 of the vfio_ap device driver.
2166  *
2167  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check.
2168  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check.
2169  *
2170  * Return:
2171  *	* -EADDRINUSE if one or more of the APQNs specified via @apm/@aqm are
2172  *	  assigned to a mediated device under the control of the vfio_ap
2173  *	  device driver.
2174  *	* Otherwise, return 0.
2175  */
2176 int vfio_ap_mdev_resource_in_use(unsigned long *apm, unsigned long *aqm)
2177 {
2178 	int ret;
2179 
2180 	mutex_lock(&matrix_dev->guests_lock);
2181 	mutex_lock(&matrix_dev->mdevs_lock);
2182 	ret = vfio_ap_mdev_verify_no_sharing(apm, aqm);
2183 	mutex_unlock(&matrix_dev->mdevs_lock);
2184 	mutex_unlock(&matrix_dev->guests_lock);
2185 
2186 	return ret;
2187 }
2188 
2189 /**
2190  * vfio_ap_mdev_hot_unplug_cfg - hot unplug the adapters, domains and control
2191  *				 domains that have been removed from the host's
2192  *				 AP configuration from a guest.
2193  *
2194  * @matrix_mdev: an ap_matrix_mdev object attached to a KVM guest.
2195  * @aprem: the adapters that have been removed from the host's AP configuration
2196  * @aqrem: the domains that have been removed from the host's AP configuration
2197  * @cdrem: the control domains that have been removed from the host's AP
2198  *	   configuration.
2199  */
2200 static void vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev *matrix_mdev,
2201 					unsigned long *aprem,
2202 					unsigned long *aqrem,
2203 					unsigned long *cdrem)
2204 {
2205 	int do_hotplug = 0;
2206 
2207 	if (!bitmap_empty(aprem, AP_DEVICES)) {
2208 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.apm,
2209 					    matrix_mdev->shadow_apcb.apm,
2210 					    aprem, AP_DEVICES);
2211 	}
2212 
2213 	if (!bitmap_empty(aqrem, AP_DOMAINS)) {
2214 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.aqm,
2215 					    matrix_mdev->shadow_apcb.aqm,
2216 					    aqrem, AP_DEVICES);
2217 	}
2218 
2219 	if (!bitmap_empty(cdrem, AP_DOMAINS))
2220 		do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.adm,
2221 					    matrix_mdev->shadow_apcb.adm,
2222 					    cdrem, AP_DOMAINS);
2223 
2224 	if (do_hotplug)
2225 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2226 }
2227 
2228 /**
2229  * vfio_ap_mdev_cfg_remove - determines which guests are using the adapters,
2230  *			     domains and control domains that have been removed
2231  *			     from the host AP configuration and unplugs them
2232  *			     from those guests.
2233  *
2234  * @ap_remove:	bitmap specifying which adapters have been removed from the host
2235  *		config.
2236  * @aq_remove:	bitmap specifying which domains have been removed from the host
2237  *		config.
2238  * @cd_remove:	bitmap specifying which control domains have been removed from
2239  *		the host config.
2240  */
2241 static void vfio_ap_mdev_cfg_remove(unsigned long *ap_remove,
2242 				    unsigned long *aq_remove,
2243 				    unsigned long *cd_remove)
2244 {
2245 	struct ap_matrix_mdev *matrix_mdev;
2246 	DECLARE_BITMAP(aprem, AP_DEVICES);
2247 	DECLARE_BITMAP(aqrem, AP_DOMAINS);
2248 	DECLARE_BITMAP(cdrem, AP_DOMAINS);
2249 	int do_remove = 0;
2250 
2251 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2252 		mutex_lock(&matrix_mdev->kvm->lock);
2253 		mutex_lock(&matrix_dev->mdevs_lock);
2254 
2255 		do_remove |= bitmap_and(aprem, ap_remove,
2256 					  matrix_mdev->matrix.apm,
2257 					  AP_DEVICES);
2258 		do_remove |= bitmap_and(aqrem, aq_remove,
2259 					  matrix_mdev->matrix.aqm,
2260 					  AP_DOMAINS);
2261 		do_remove |= bitmap_andnot(cdrem, cd_remove,
2262 					     matrix_mdev->matrix.adm,
2263 					     AP_DOMAINS);
2264 
2265 		if (do_remove)
2266 			vfio_ap_mdev_hot_unplug_cfg(matrix_mdev, aprem, aqrem,
2267 						    cdrem);
2268 
2269 		mutex_unlock(&matrix_dev->mdevs_lock);
2270 		mutex_unlock(&matrix_mdev->kvm->lock);
2271 	}
2272 }
2273 
2274 /**
2275  * vfio_ap_mdev_on_cfg_remove - responds to the removal of adapters, domains and
2276  *				control domains from the host AP configuration
2277  *				by unplugging them from the guests that are
2278  *				using them.
2279  * @cur_config_info: the current host AP configuration information
2280  * @prev_config_info: the previous host AP configuration information
2281  */
2282 static void vfio_ap_mdev_on_cfg_remove(struct ap_config_info *cur_config_info,
2283 				       struct ap_config_info *prev_config_info)
2284 {
2285 	int do_remove;
2286 	DECLARE_BITMAP(aprem, AP_DEVICES);
2287 	DECLARE_BITMAP(aqrem, AP_DOMAINS);
2288 	DECLARE_BITMAP(cdrem, AP_DOMAINS);
2289 
2290 	do_remove = bitmap_andnot(aprem,
2291 				  (unsigned long *)prev_config_info->apm,
2292 				  (unsigned long *)cur_config_info->apm,
2293 				  AP_DEVICES);
2294 	do_remove |= bitmap_andnot(aqrem,
2295 				   (unsigned long *)prev_config_info->aqm,
2296 				   (unsigned long *)cur_config_info->aqm,
2297 				   AP_DEVICES);
2298 	do_remove |= bitmap_andnot(cdrem,
2299 				   (unsigned long *)prev_config_info->adm,
2300 				   (unsigned long *)cur_config_info->adm,
2301 				   AP_DEVICES);
2302 
2303 	if (do_remove)
2304 		vfio_ap_mdev_cfg_remove(aprem, aqrem, cdrem);
2305 }
2306 
2307 /**
2308  * vfio_ap_filter_apid_by_qtype: filter APIDs from an AP mask for adapters that
2309  *				 are older than AP type 10 (CEX4).
2310  * @apm: a bitmap of the APIDs to examine
2311  * @aqm: a bitmap of the APQIs of the queues to query for the AP type.
2312  */
2313 static void vfio_ap_filter_apid_by_qtype(unsigned long *apm, unsigned long *aqm)
2314 {
2315 	bool apid_cleared;
2316 	struct ap_queue_status status;
2317 	unsigned long apid, apqi;
2318 	struct ap_tapq_hwinfo info;
2319 
2320 	for_each_set_bit_inv(apid, apm, AP_DEVICES) {
2321 		apid_cleared = false;
2322 
2323 		for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
2324 			status = ap_test_queue(AP_MKQID(apid, apqi), 1, &info);
2325 			switch (status.response_code) {
2326 			/*
2327 			 * According to the architecture in each case
2328 			 * below, the queue's info should be filled.
2329 			 */
2330 			case AP_RESPONSE_NORMAL:
2331 			case AP_RESPONSE_RESET_IN_PROGRESS:
2332 			case AP_RESPONSE_DECONFIGURED:
2333 			case AP_RESPONSE_CHECKSTOPPED:
2334 			case AP_RESPONSE_BUSY:
2335 				/*
2336 				 * The vfio_ap device driver only
2337 				 * supports CEX4 and newer adapters, so
2338 				 * remove the APID if the adapter is
2339 				 * older than a CEX4.
2340 				 */
2341 				if (info.at < AP_DEVICE_TYPE_CEX4) {
2342 					clear_bit_inv(apid, apm);
2343 					apid_cleared = true;
2344 				}
2345 
2346 				break;
2347 
2348 			default:
2349 				/*
2350 				 * If we don't know the adapter type,
2351 				 * clear its APID since it can't be
2352 				 * determined whether the vfio_ap
2353 				 * device driver supports it.
2354 				 */
2355 				clear_bit_inv(apid, apm);
2356 				apid_cleared = true;
2357 				break;
2358 			}
2359 
2360 			/*
2361 			 * If we've already cleared the APID from the apm, there
2362 			 * is no need to continue examining the remainin AP
2363 			 * queues to determine the type of the adapter.
2364 			 */
2365 			if (apid_cleared)
2366 				continue;
2367 		}
2368 	}
2369 }
2370 
2371 /**
2372  * vfio_ap_mdev_cfg_add - store bitmaps specifying the adapters, domains and
2373  *			  control domains that have been added to the host's
2374  *			  AP configuration for each matrix mdev to which they
2375  *			  are assigned.
2376  *
2377  * @apm_add: a bitmap specifying the adapters that have been added to the AP
2378  *	     configuration.
2379  * @aqm_add: a bitmap specifying the domains that have been added to the AP
2380  *	     configuration.
2381  * @adm_add: a bitmap specifying the control domains that have been added to the
2382  *	     AP configuration.
2383  */
2384 static void vfio_ap_mdev_cfg_add(unsigned long *apm_add, unsigned long *aqm_add,
2385 				 unsigned long *adm_add)
2386 {
2387 	struct ap_matrix_mdev *matrix_mdev;
2388 
2389 	if (list_empty(&matrix_dev->mdev_list))
2390 		return;
2391 
2392 	vfio_ap_filter_apid_by_qtype(apm_add, aqm_add);
2393 
2394 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2395 		bitmap_and(matrix_mdev->apm_add,
2396 			   matrix_mdev->matrix.apm, apm_add, AP_DEVICES);
2397 		bitmap_and(matrix_mdev->aqm_add,
2398 			   matrix_mdev->matrix.aqm, aqm_add, AP_DOMAINS);
2399 		bitmap_and(matrix_mdev->adm_add,
2400 			   matrix_mdev->matrix.adm, adm_add, AP_DEVICES);
2401 	}
2402 }
2403 
2404 /**
2405  * vfio_ap_mdev_on_cfg_add - responds to the addition of adapters, domains and
2406  *			     control domains to the host AP configuration
2407  *			     by updating the bitmaps that specify what adapters,
2408  *			     domains and control domains have been added so they
2409  *			     can be hot plugged into the guest when the AP bus
2410  *			     scan completes (see vfio_ap_on_scan_complete
2411  *			     function).
2412  * @cur_config_info: the current AP configuration information
2413  * @prev_config_info: the previous AP configuration information
2414  */
2415 static void vfio_ap_mdev_on_cfg_add(struct ap_config_info *cur_config_info,
2416 				    struct ap_config_info *prev_config_info)
2417 {
2418 	bool do_add;
2419 	DECLARE_BITMAP(apm_add, AP_DEVICES);
2420 	DECLARE_BITMAP(aqm_add, AP_DOMAINS);
2421 	DECLARE_BITMAP(adm_add, AP_DOMAINS);
2422 
2423 	do_add = bitmap_andnot(apm_add,
2424 			       (unsigned long *)cur_config_info->apm,
2425 			       (unsigned long *)prev_config_info->apm,
2426 			       AP_DEVICES);
2427 	do_add |= bitmap_andnot(aqm_add,
2428 				(unsigned long *)cur_config_info->aqm,
2429 				(unsigned long *)prev_config_info->aqm,
2430 				AP_DOMAINS);
2431 	do_add |= bitmap_andnot(adm_add,
2432 				(unsigned long *)cur_config_info->adm,
2433 				(unsigned long *)prev_config_info->adm,
2434 				AP_DOMAINS);
2435 
2436 	if (do_add)
2437 		vfio_ap_mdev_cfg_add(apm_add, aqm_add, adm_add);
2438 }
2439 
2440 /**
2441  * vfio_ap_on_cfg_changed - handles notification of changes to the host AP
2442  *			    configuration.
2443  *
2444  * @cur_cfg_info: the current host AP configuration
2445  * @prev_cfg_info: the previous host AP configuration
2446  */
2447 void vfio_ap_on_cfg_changed(struct ap_config_info *cur_cfg_info,
2448 			    struct ap_config_info *prev_cfg_info)
2449 {
2450 	if (!cur_cfg_info || !prev_cfg_info)
2451 		return;
2452 
2453 	mutex_lock(&matrix_dev->guests_lock);
2454 
2455 	vfio_ap_mdev_on_cfg_remove(cur_cfg_info, prev_cfg_info);
2456 	vfio_ap_mdev_on_cfg_add(cur_cfg_info, prev_cfg_info);
2457 	memcpy(&matrix_dev->info, cur_cfg_info, sizeof(*cur_cfg_info));
2458 
2459 	mutex_unlock(&matrix_dev->guests_lock);
2460 }
2461 
2462 static void vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev *matrix_mdev)
2463 {
2464 	bool do_hotplug = false;
2465 	int filter_domains = 0;
2466 	int filter_adapters = 0;
2467 	DECLARE_BITMAP(apm, AP_DEVICES);
2468 	DECLARE_BITMAP(aqm, AP_DOMAINS);
2469 
2470 	mutex_lock(&matrix_mdev->kvm->lock);
2471 	mutex_lock(&matrix_dev->mdevs_lock);
2472 
2473 	filter_adapters = bitmap_and(apm, matrix_mdev->matrix.apm,
2474 				     matrix_mdev->apm_add, AP_DEVICES);
2475 	filter_domains = bitmap_and(aqm, matrix_mdev->matrix.aqm,
2476 				    matrix_mdev->aqm_add, AP_DOMAINS);
2477 
2478 	if (filter_adapters && filter_domains)
2479 		do_hotplug |= vfio_ap_mdev_filter_matrix(apm, aqm, matrix_mdev);
2480 	else if (filter_adapters)
2481 		do_hotplug |=
2482 			vfio_ap_mdev_filter_matrix(apm,
2483 						   matrix_mdev->shadow_apcb.aqm,
2484 						   matrix_mdev);
2485 	else
2486 		do_hotplug |=
2487 			vfio_ap_mdev_filter_matrix(matrix_mdev->shadow_apcb.apm,
2488 						   aqm, matrix_mdev);
2489 
2490 	if (bitmap_intersects(matrix_mdev->matrix.adm, matrix_mdev->adm_add,
2491 			      AP_DOMAINS))
2492 		do_hotplug |= vfio_ap_mdev_filter_cdoms(matrix_mdev);
2493 
2494 	if (do_hotplug)
2495 		vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2496 
2497 	mutex_unlock(&matrix_dev->mdevs_lock);
2498 	mutex_unlock(&matrix_mdev->kvm->lock);
2499 }
2500 
2501 void vfio_ap_on_scan_complete(struct ap_config_info *new_config_info,
2502 			      struct ap_config_info *old_config_info)
2503 {
2504 	struct ap_matrix_mdev *matrix_mdev;
2505 
2506 	mutex_lock(&matrix_dev->guests_lock);
2507 
2508 	list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2509 		if (bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) &&
2510 		    bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS) &&
2511 		    bitmap_empty(matrix_mdev->adm_add, AP_DOMAINS))
2512 			continue;
2513 
2514 		vfio_ap_mdev_hot_plug_cfg(matrix_mdev);
2515 		bitmap_clear(matrix_mdev->apm_add, 0, AP_DEVICES);
2516 		bitmap_clear(matrix_mdev->aqm_add, 0, AP_DOMAINS);
2517 		bitmap_clear(matrix_mdev->adm_add, 0, AP_DOMAINS);
2518 	}
2519 
2520 	mutex_unlock(&matrix_dev->guests_lock);
2521 }
2522