xref: /linux/drivers/s390/crypto/ap_bus.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Copyright IBM Corp. 2006, 2012
3  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
5  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
6  *	      Felix Beck <felix.beck@de.ibm.com>
7  *	      Holger Dengler <hd@linux.vnet.ibm.com>
8  *
9  * Adjunct processor bus.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28 
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49 
50 #include "ap_bus.h"
51 
52 /*
53  * Module description.
54  */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 		   "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60 
61 /*
62  * Module parameter
63  */
64 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68 
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72 
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 static bool initialised;
78 
79 /*
80  * Workqueue timer for bus rescan.
81  */
82 static struct timer_list ap_config_timer;
83 static int ap_config_time = AP_CONFIG_TIME;
84 static void ap_scan_bus(struct work_struct *);
85 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
86 
87 /*
88  * Tasklet & timer for AP request polling and interrupts
89  */
90 static void ap_tasklet_fn(unsigned long);
91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
92 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
94 static struct task_struct *ap_poll_kthread = NULL;
95 static DEFINE_MUTEX(ap_poll_thread_mutex);
96 static DEFINE_SPINLOCK(ap_poll_timer_lock);
97 static struct hrtimer ap_poll_timer;
98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
99  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
100 static unsigned long long poll_timeout = 250000;
101 
102 /* Suspend flag */
103 static int ap_suspend_flag;
104 /* Maximum domain id */
105 static int ap_max_domain_id;
106 /* Flag to check if domain was set through module parameter domain=. This is
107  * important when supsend and resume is done in a z/VM environment where the
108  * domain might change. */
109 static int user_set_domain = 0;
110 static struct bus_type ap_bus_type;
111 
112 /* Adapter interrupt definitions */
113 static void ap_interrupt_handler(struct airq_struct *airq);
114 
115 static int ap_airq_flag;
116 
117 static struct airq_struct ap_airq = {
118 	.handler = ap_interrupt_handler,
119 	.isc = AP_ISC,
120 };
121 
122 /**
123  * ap_using_interrupts() - Returns non-zero if interrupt support is
124  * available.
125  */
126 static inline int ap_using_interrupts(void)
127 {
128 	return ap_airq_flag;
129 }
130 
131 /**
132  * ap_intructions_available() - Test if AP instructions are available.
133  *
134  * Returns 0 if the AP instructions are installed.
135  */
136 static inline int ap_instructions_available(void)
137 {
138 	register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 	register unsigned long reg1 asm ("1") = -ENODEV;
140 	register unsigned long reg2 asm ("2") = 0UL;
141 
142 	asm volatile(
143 		"   .long 0xb2af0000\n"		/* PQAP(TAPQ) */
144 		"0: la    %1,0\n"
145 		"1:\n"
146 		EX_TABLE(0b, 1b)
147 		: "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 	return reg1;
149 }
150 
151 /**
152  * ap_interrupts_available(): Test if AP interrupts are available.
153  *
154  * Returns 1 if AP interrupts are available.
155  */
156 static int ap_interrupts_available(void)
157 {
158 	return test_facility(65);
159 }
160 
161 /**
162  * ap_configuration_available(): Test if AP configuration
163  * information is available.
164  *
165  * Returns 1 if AP configuration information is available.
166  */
167 static int ap_configuration_available(void)
168 {
169 	return test_facility(12);
170 }
171 
172 static inline struct ap_queue_status
173 __pqap_tapq(ap_qid_t qid, unsigned long *info)
174 {
175 	register unsigned long reg0 asm ("0") = qid;
176 	register struct ap_queue_status reg1 asm ("1");
177 	register unsigned long reg2 asm ("2") = 0UL;
178 
179 	asm volatile(".long 0xb2af0000"		/* PQAP(TAPQ) */
180 		     : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
181 	*info = reg2;
182 	return reg1;
183 }
184 
185 /**
186  * ap_test_queue(): Test adjunct processor queue.
187  * @qid: The AP queue number
188  * @info: Pointer to queue descriptor
189  *
190  * Returns AP queue status structure.
191  */
192 static inline struct ap_queue_status
193 ap_test_queue(ap_qid_t qid, unsigned long *info)
194 {
195 	struct ap_queue_status aqs;
196 	unsigned long _info;
197 
198 	if (test_facility(15))
199 		qid |= 1UL << 23;		/* set APFT T bit*/
200 	aqs = __pqap_tapq(qid, &_info);
201 	if (info)
202 		*info = _info;
203 	return aqs;
204 }
205 
206 /**
207  * ap_reset_queue(): Reset adjunct processor queue.
208  * @qid: The AP queue number
209  *
210  * Returns AP queue status structure.
211  */
212 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
213 {
214 	register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
215 	register struct ap_queue_status reg1 asm ("1");
216 	register unsigned long reg2 asm ("2") = 0UL;
217 
218 	asm volatile(
219 		".long 0xb2af0000"		/* PQAP(RAPQ) */
220 		: "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
221 	return reg1;
222 }
223 
224 /**
225  * ap_queue_interruption_control(): Enable interruption for a specific AP.
226  * @qid: The AP queue number
227  * @ind: The notification indicator byte
228  *
229  * Returns AP queue status.
230  */
231 static inline struct ap_queue_status
232 ap_queue_interruption_control(ap_qid_t qid, void *ind)
233 {
234 	register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
235 	register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
236 	register struct ap_queue_status reg1_out asm ("1");
237 	register void *reg2 asm ("2") = ind;
238 	asm volatile(
239 		".long 0xb2af0000"		/* PQAP(AQIC) */
240 		: "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
241 		:
242 		: "cc" );
243 	return reg1_out;
244 }
245 
246 /**
247  * ap_query_configuration(): Get AP configuration data
248  *
249  * Returns 0 on success, or -EOPNOTSUPP.
250  */
251 static inline int __ap_query_configuration(void)
252 {
253 	register unsigned long reg0 asm ("0") = 0x04000000UL;
254 	register unsigned long reg1 asm ("1") = -EINVAL;
255 	register void *reg2 asm ("2") = (void *) ap_configuration;
256 
257 	asm volatile(
258 		".long 0xb2af0000\n"		/* PQAP(QCI) */
259 		"0: la    %1,0\n"
260 		"1:\n"
261 		EX_TABLE(0b, 1b)
262 		: "+d" (reg0), "+d" (reg1), "+d" (reg2)
263 		:
264 		: "cc");
265 
266 	return reg1;
267 }
268 
269 static inline int ap_query_configuration(void)
270 {
271 	if (!ap_configuration)
272 		return -EOPNOTSUPP;
273 	return __ap_query_configuration();
274 }
275 
276 /**
277  * ap_init_configuration(): Allocate and query configuration array.
278  */
279 static void ap_init_configuration(void)
280 {
281 	if (!ap_configuration_available())
282 		return;
283 
284 	ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
285 	if (!ap_configuration)
286 		return;
287 	if (ap_query_configuration() != 0) {
288 		kfree(ap_configuration);
289 		ap_configuration = NULL;
290 		return;
291 	}
292 }
293 
294 /*
295  * ap_test_config(): helper function to extract the nrth bit
296  *		     within the unsigned int array field.
297  */
298 static inline int ap_test_config(unsigned int *field, unsigned int nr)
299 {
300 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
301 }
302 
303 /*
304  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
305  * @id AP card ID
306  *
307  * Returns 0 if the card is not configured
308  *	   1 if the card is configured or
309  *	     if the configuration information is not available
310  */
311 static inline int ap_test_config_card_id(unsigned int id)
312 {
313 	if (!ap_configuration)	/* QCI not supported */
314 		return 1;
315 	return ap_test_config(ap_configuration->apm, id);
316 }
317 
318 /*
319  * ap_test_config_domain(): Test, whether an AP usage domain is configured.
320  * @domain AP usage domain ID
321  *
322  * Returns 0 if the usage domain is not configured
323  *	   1 if the usage domain is configured or
324  *	     if the configuration information is not available
325  */
326 static inline int ap_test_config_domain(unsigned int domain)
327 {
328 	if (!ap_configuration)	/* QCI not supported */
329 		return domain < 16;
330 	return ap_test_config(ap_configuration->aqm, domain);
331 }
332 
333 /**
334  * ap_queue_enable_interruption(): Enable interruption on an AP.
335  * @qid: The AP queue number
336  * @ind: the notification indicator byte
337  *
338  * Enables interruption on AP queue via ap_queue_interruption_control(). Based
339  * on the return value it waits a while and tests the AP queue if interrupts
340  * have been switched on using ap_test_queue().
341  */
342 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
343 {
344 	struct ap_queue_status status;
345 
346 	status = ap_queue_interruption_control(ap_dev->qid, ind);
347 	switch (status.response_code) {
348 	case AP_RESPONSE_NORMAL:
349 	case AP_RESPONSE_OTHERWISE_CHANGED:
350 		return 0;
351 	case AP_RESPONSE_Q_NOT_AVAIL:
352 	case AP_RESPONSE_DECONFIGURED:
353 	case AP_RESPONSE_CHECKSTOPPED:
354 	case AP_RESPONSE_INVALID_ADDRESS:
355 		pr_err("Registering adapter interrupts for AP %d failed\n",
356 		       AP_QID_DEVICE(ap_dev->qid));
357 		return -EOPNOTSUPP;
358 	case AP_RESPONSE_RESET_IN_PROGRESS:
359 	case AP_RESPONSE_BUSY:
360 	default:
361 		return -EBUSY;
362 	}
363 }
364 
365 static inline struct ap_queue_status
366 __nqap(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
367 {
368 	typedef struct { char _[length]; } msgblock;
369 	register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
370 	register struct ap_queue_status reg1 asm ("1");
371 	register unsigned long reg2 asm ("2") = (unsigned long) msg;
372 	register unsigned long reg3 asm ("3") = (unsigned long) length;
373 	register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
374 	register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
375 
376 	asm volatile (
377 		"0: .long 0xb2ad0042\n"		/* NQAP */
378 		"   brc   2,0b"
379 		: "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
380 		: "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
381 		: "cc");
382 	return reg1;
383 }
384 
385 /**
386  * __ap_send(): Send message to adjunct processor queue.
387  * @qid: The AP queue number
388  * @psmid: The program supplied message identifier
389  * @msg: The message text
390  * @length: The message length
391  * @special: Special Bit
392  *
393  * Returns AP queue status structure.
394  * Condition code 1 on NQAP can't happen because the L bit is 1.
395  * Condition code 2 on NQAP also means the send is incomplete,
396  * because a segment boundary was reached. The NQAP is repeated.
397  */
398 static inline struct ap_queue_status
399 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
400 	  unsigned int special)
401 {
402 	if (special == 1)
403 		qid |= 0x400000UL;
404 	return __nqap(qid, psmid, msg, length);
405 }
406 
407 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
408 {
409 	struct ap_queue_status status;
410 
411 	status = __ap_send(qid, psmid, msg, length, 0);
412 	switch (status.response_code) {
413 	case AP_RESPONSE_NORMAL:
414 		return 0;
415 	case AP_RESPONSE_Q_FULL:
416 	case AP_RESPONSE_RESET_IN_PROGRESS:
417 		return -EBUSY;
418 	case AP_RESPONSE_REQ_FAC_NOT_INST:
419 		return -EINVAL;
420 	default:	/* Device is gone. */
421 		return -ENODEV;
422 	}
423 }
424 EXPORT_SYMBOL(ap_send);
425 
426 /**
427  * __ap_recv(): Receive message from adjunct processor queue.
428  * @qid: The AP queue number
429  * @psmid: Pointer to program supplied message identifier
430  * @msg: The message text
431  * @length: The message length
432  *
433  * Returns AP queue status structure.
434  * Condition code 1 on DQAP means the receive has taken place
435  * but only partially.	The response is incomplete, hence the
436  * DQAP is repeated.
437  * Condition code 2 on DQAP also means the receive is incomplete,
438  * this time because a segment boundary was reached. Again, the
439  * DQAP is repeated.
440  * Note that gpr2 is used by the DQAP instruction to keep track of
441  * any 'residual' length, in case the instruction gets interrupted.
442  * Hence it gets zeroed before the instruction.
443  */
444 static inline struct ap_queue_status
445 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
446 {
447 	typedef struct { char _[length]; } msgblock;
448 	register unsigned long reg0 asm("0") = qid | 0x80000000UL;
449 	register struct ap_queue_status reg1 asm ("1");
450 	register unsigned long reg2 asm("2") = 0UL;
451 	register unsigned long reg4 asm("4") = (unsigned long) msg;
452 	register unsigned long reg5 asm("5") = (unsigned long) length;
453 	register unsigned long reg6 asm("6") = 0UL;
454 	register unsigned long reg7 asm("7") = 0UL;
455 
456 
457 	asm volatile(
458 		"0: .long 0xb2ae0064\n"		/* DQAP */
459 		"   brc   6,0b\n"
460 		: "+d" (reg0), "=d" (reg1), "+d" (reg2),
461 		"+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
462 		"=m" (*(msgblock *) msg) : : "cc" );
463 	*psmid = (((unsigned long long) reg6) << 32) + reg7;
464 	return reg1;
465 }
466 
467 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
468 {
469 	struct ap_queue_status status;
470 
471 	if (msg == NULL)
472 		return -EINVAL;
473 	status = __ap_recv(qid, psmid, msg, length);
474 	switch (status.response_code) {
475 	case AP_RESPONSE_NORMAL:
476 		return 0;
477 	case AP_RESPONSE_NO_PENDING_REPLY:
478 		if (status.queue_empty)
479 			return -ENOENT;
480 		return -EBUSY;
481 	case AP_RESPONSE_RESET_IN_PROGRESS:
482 		return -EBUSY;
483 	default:
484 		return -ENODEV;
485 	}
486 }
487 EXPORT_SYMBOL(ap_recv);
488 
489 /**
490  * ap_query_queue(): Check if an AP queue is available.
491  * @qid: The AP queue number
492  * @queue_depth: Pointer to queue depth value
493  * @device_type: Pointer to device type value
494  * @facilities: Pointer to facility indicator
495  */
496 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
497 			  unsigned int *facilities)
498 {
499 	struct ap_queue_status status;
500 	unsigned long info;
501 	int nd;
502 
503 	if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
504 		return -ENODEV;
505 
506 	status = ap_test_queue(qid, &info);
507 	switch (status.response_code) {
508 	case AP_RESPONSE_NORMAL:
509 		*queue_depth = (int)(info & 0xff);
510 		*device_type = (int)((info >> 24) & 0xff);
511 		*facilities = (unsigned int)(info >> 32);
512 		/* Update maximum domain id */
513 		nd = (info >> 16) & 0xff;
514 		if ((info & (1UL << 57)) && nd > 0)
515 			ap_max_domain_id = nd;
516 		return 0;
517 	case AP_RESPONSE_Q_NOT_AVAIL:
518 	case AP_RESPONSE_DECONFIGURED:
519 	case AP_RESPONSE_CHECKSTOPPED:
520 	case AP_RESPONSE_INVALID_ADDRESS:
521 		return -ENODEV;
522 	case AP_RESPONSE_RESET_IN_PROGRESS:
523 	case AP_RESPONSE_OTHERWISE_CHANGED:
524 	case AP_RESPONSE_BUSY:
525 		return -EBUSY;
526 	default:
527 		BUG();
528 	}
529 }
530 
531 /* State machine definitions and helpers */
532 
533 static void ap_sm_wait(enum ap_wait wait)
534 {
535 	ktime_t hr_time;
536 
537 	switch (wait) {
538 	case AP_WAIT_AGAIN:
539 	case AP_WAIT_INTERRUPT:
540 		if (ap_using_interrupts())
541 			break;
542 		if (ap_poll_kthread) {
543 			wake_up(&ap_poll_wait);
544 			break;
545 		}
546 		/* Fall through */
547 	case AP_WAIT_TIMEOUT:
548 		spin_lock_bh(&ap_poll_timer_lock);
549 		if (!hrtimer_is_queued(&ap_poll_timer)) {
550 			hr_time = ktime_set(0, poll_timeout);
551 			hrtimer_forward_now(&ap_poll_timer, hr_time);
552 			hrtimer_restart(&ap_poll_timer);
553 		}
554 		spin_unlock_bh(&ap_poll_timer_lock);
555 		break;
556 	case AP_WAIT_NONE:
557 	default:
558 		break;
559 	}
560 }
561 
562 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
563 {
564 	return AP_WAIT_NONE;
565 }
566 
567 /**
568  * ap_sm_recv(): Receive pending reply messages from an AP device but do
569  *	not change the state of the device.
570  * @ap_dev: pointer to the AP device
571  *
572  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
573  */
574 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
575 {
576 	struct ap_queue_status status;
577 	struct ap_message *ap_msg;
578 
579 	status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
580 			   ap_dev->reply->message, ap_dev->reply->length);
581 	switch (status.response_code) {
582 	case AP_RESPONSE_NORMAL:
583 		atomic_dec(&ap_poll_requests);
584 		ap_dev->queue_count--;
585 		if (ap_dev->queue_count > 0)
586 			mod_timer(&ap_dev->timeout,
587 				  jiffies + ap_dev->drv->request_timeout);
588 		list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
589 			if (ap_msg->psmid != ap_dev->reply->psmid)
590 				continue;
591 			list_del_init(&ap_msg->list);
592 			ap_dev->pendingq_count--;
593 			ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
594 			break;
595 		}
596 	case AP_RESPONSE_NO_PENDING_REPLY:
597 		if (!status.queue_empty || ap_dev->queue_count <= 0)
598 			break;
599 		/* The card shouldn't forget requests but who knows. */
600 		atomic_sub(ap_dev->queue_count, &ap_poll_requests);
601 		ap_dev->queue_count = 0;
602 		list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
603 		ap_dev->requestq_count += ap_dev->pendingq_count;
604 		ap_dev->pendingq_count = 0;
605 		break;
606 	default:
607 		break;
608 	}
609 	return status;
610 }
611 
612 /**
613  * ap_sm_read(): Receive pending reply messages from an AP device.
614  * @ap_dev: pointer to the AP device
615  *
616  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
617  */
618 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
619 {
620 	struct ap_queue_status status;
621 
622 	if (!ap_dev->reply)
623 		return AP_WAIT_NONE;
624 	status = ap_sm_recv(ap_dev);
625 	switch (status.response_code) {
626 	case AP_RESPONSE_NORMAL:
627 		if (ap_dev->queue_count > 0) {
628 			ap_dev->state = AP_STATE_WORKING;
629 			return AP_WAIT_AGAIN;
630 		}
631 		ap_dev->state = AP_STATE_IDLE;
632 		return AP_WAIT_NONE;
633 	case AP_RESPONSE_NO_PENDING_REPLY:
634 		if (ap_dev->queue_count > 0)
635 			return AP_WAIT_INTERRUPT;
636 		ap_dev->state = AP_STATE_IDLE;
637 		return AP_WAIT_NONE;
638 	default:
639 		ap_dev->state = AP_STATE_BORKED;
640 		return AP_WAIT_NONE;
641 	}
642 }
643 
644 /**
645  * ap_sm_suspend_read(): Receive pending reply messages from an AP device
646  * without changing the device state in between. In suspend mode we don't
647  * allow sending new requests, therefore just fetch pending replies.
648  * @ap_dev: pointer to the AP device
649  *
650  * Returns AP_WAIT_NONE or AP_WAIT_AGAIN
651  */
652 static enum ap_wait ap_sm_suspend_read(struct ap_device *ap_dev)
653 {
654 	struct ap_queue_status status;
655 
656 	if (!ap_dev->reply)
657 		return AP_WAIT_NONE;
658 	status = ap_sm_recv(ap_dev);
659 	switch (status.response_code) {
660 	case AP_RESPONSE_NORMAL:
661 		if (ap_dev->queue_count > 0)
662 			return AP_WAIT_AGAIN;
663 		/* fall through */
664 	default:
665 		return AP_WAIT_NONE;
666 	}
667 }
668 
669 /**
670  * ap_sm_write(): Send messages from the request queue to an AP device.
671  * @ap_dev: pointer to the AP device
672  *
673  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
674  */
675 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
676 {
677 	struct ap_queue_status status;
678 	struct ap_message *ap_msg;
679 
680 	if (ap_dev->requestq_count <= 0)
681 		return AP_WAIT_NONE;
682 	/* Start the next request on the queue. */
683 	ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
684 	status = __ap_send(ap_dev->qid, ap_msg->psmid,
685 			   ap_msg->message, ap_msg->length, ap_msg->special);
686 	switch (status.response_code) {
687 	case AP_RESPONSE_NORMAL:
688 		atomic_inc(&ap_poll_requests);
689 		ap_dev->queue_count++;
690 		if (ap_dev->queue_count == 1)
691 			mod_timer(&ap_dev->timeout,
692 				  jiffies + ap_dev->drv->request_timeout);
693 		list_move_tail(&ap_msg->list, &ap_dev->pendingq);
694 		ap_dev->requestq_count--;
695 		ap_dev->pendingq_count++;
696 		if (ap_dev->queue_count < ap_dev->queue_depth) {
697 			ap_dev->state = AP_STATE_WORKING;
698 			return AP_WAIT_AGAIN;
699 		}
700 		/* fall through */
701 	case AP_RESPONSE_Q_FULL:
702 		ap_dev->state = AP_STATE_QUEUE_FULL;
703 		return AP_WAIT_INTERRUPT;
704 	case AP_RESPONSE_RESET_IN_PROGRESS:
705 		ap_dev->state = AP_STATE_RESET_WAIT;
706 		return AP_WAIT_TIMEOUT;
707 	case AP_RESPONSE_MESSAGE_TOO_BIG:
708 	case AP_RESPONSE_REQ_FAC_NOT_INST:
709 		list_del_init(&ap_msg->list);
710 		ap_dev->requestq_count--;
711 		ap_msg->rc = -EINVAL;
712 		ap_msg->receive(ap_dev, ap_msg, NULL);
713 		return AP_WAIT_AGAIN;
714 	default:
715 		ap_dev->state = AP_STATE_BORKED;
716 		return AP_WAIT_NONE;
717 	}
718 }
719 
720 /**
721  * ap_sm_read_write(): Send and receive messages to/from an AP device.
722  * @ap_dev: pointer to the AP device
723  *
724  * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
725  */
726 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
727 {
728 	return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
729 }
730 
731 /**
732  * ap_sm_reset(): Reset an AP queue.
733  * @qid: The AP queue number
734  *
735  * Submit the Reset command to an AP queue.
736  */
737 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
738 {
739 	struct ap_queue_status status;
740 
741 	status = ap_reset_queue(ap_dev->qid);
742 	switch (status.response_code) {
743 	case AP_RESPONSE_NORMAL:
744 	case AP_RESPONSE_RESET_IN_PROGRESS:
745 		ap_dev->state = AP_STATE_RESET_WAIT;
746 		ap_dev->interrupt = AP_INTR_DISABLED;
747 		return AP_WAIT_TIMEOUT;
748 	case AP_RESPONSE_BUSY:
749 		return AP_WAIT_TIMEOUT;
750 	case AP_RESPONSE_Q_NOT_AVAIL:
751 	case AP_RESPONSE_DECONFIGURED:
752 	case AP_RESPONSE_CHECKSTOPPED:
753 	default:
754 		ap_dev->state = AP_STATE_BORKED;
755 		return AP_WAIT_NONE;
756 	}
757 }
758 
759 /**
760  * ap_sm_reset_wait(): Test queue for completion of the reset operation
761  * @ap_dev: pointer to the AP device
762  *
763  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
764  */
765 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
766 {
767 	struct ap_queue_status status;
768 	unsigned long info;
769 
770 	if (ap_dev->queue_count > 0 && ap_dev->reply)
771 		/* Try to read a completed message and get the status */
772 		status = ap_sm_recv(ap_dev);
773 	else
774 		/* Get the status with TAPQ */
775 		status = ap_test_queue(ap_dev->qid, &info);
776 
777 	switch (status.response_code) {
778 	case AP_RESPONSE_NORMAL:
779 		if (ap_using_interrupts() &&
780 		    ap_queue_enable_interruption(ap_dev,
781 						 ap_airq.lsi_ptr) == 0)
782 			ap_dev->state = AP_STATE_SETIRQ_WAIT;
783 		else
784 			ap_dev->state = (ap_dev->queue_count > 0) ?
785 				AP_STATE_WORKING : AP_STATE_IDLE;
786 		return AP_WAIT_AGAIN;
787 	case AP_RESPONSE_BUSY:
788 	case AP_RESPONSE_RESET_IN_PROGRESS:
789 		return AP_WAIT_TIMEOUT;
790 	case AP_RESPONSE_Q_NOT_AVAIL:
791 	case AP_RESPONSE_DECONFIGURED:
792 	case AP_RESPONSE_CHECKSTOPPED:
793 	default:
794 		ap_dev->state = AP_STATE_BORKED;
795 		return AP_WAIT_NONE;
796 	}
797 }
798 
799 /**
800  * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
801  * @ap_dev: pointer to the AP device
802  *
803  * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
804  */
805 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
806 {
807 	struct ap_queue_status status;
808 	unsigned long info;
809 
810 	if (ap_dev->queue_count > 0 && ap_dev->reply)
811 		/* Try to read a completed message and get the status */
812 		status = ap_sm_recv(ap_dev);
813 	else
814 		/* Get the status with TAPQ */
815 		status = ap_test_queue(ap_dev->qid, &info);
816 
817 	if (status.int_enabled == 1) {
818 		/* Irqs are now enabled */
819 		ap_dev->interrupt = AP_INTR_ENABLED;
820 		ap_dev->state = (ap_dev->queue_count > 0) ?
821 			AP_STATE_WORKING : AP_STATE_IDLE;
822 	}
823 
824 	switch (status.response_code) {
825 	case AP_RESPONSE_NORMAL:
826 		if (ap_dev->queue_count > 0)
827 			return AP_WAIT_AGAIN;
828 		/* fallthrough */
829 	case AP_RESPONSE_NO_PENDING_REPLY:
830 		return AP_WAIT_TIMEOUT;
831 	default:
832 		ap_dev->state = AP_STATE_BORKED;
833 		return AP_WAIT_NONE;
834 	}
835 }
836 
837 /*
838  * AP state machine jump table
839  */
840 static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
841 	[AP_STATE_RESET_START] = {
842 		[AP_EVENT_POLL] = ap_sm_reset,
843 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
844 	},
845 	[AP_STATE_RESET_WAIT] = {
846 		[AP_EVENT_POLL] = ap_sm_reset_wait,
847 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
848 	},
849 	[AP_STATE_SETIRQ_WAIT] = {
850 		[AP_EVENT_POLL] = ap_sm_setirq_wait,
851 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
852 	},
853 	[AP_STATE_IDLE] = {
854 		[AP_EVENT_POLL] = ap_sm_write,
855 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
856 	},
857 	[AP_STATE_WORKING] = {
858 		[AP_EVENT_POLL] = ap_sm_read_write,
859 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
860 	},
861 	[AP_STATE_QUEUE_FULL] = {
862 		[AP_EVENT_POLL] = ap_sm_read,
863 		[AP_EVENT_TIMEOUT] = ap_sm_reset,
864 	},
865 	[AP_STATE_SUSPEND_WAIT] = {
866 		[AP_EVENT_POLL] = ap_sm_suspend_read,
867 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
868 	},
869 	[AP_STATE_BORKED] = {
870 		[AP_EVENT_POLL] = ap_sm_nop,
871 		[AP_EVENT_TIMEOUT] = ap_sm_nop,
872 	},
873 };
874 
875 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
876 				       enum ap_event event)
877 {
878 	return ap_jumptable[ap_dev->state][event](ap_dev);
879 }
880 
881 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
882 					    enum ap_event event)
883 {
884 	enum ap_wait wait;
885 
886 	while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
887 		;
888 	return wait;
889 }
890 
891 /**
892  * ap_request_timeout(): Handling of request timeouts
893  * @data: Holds the AP device.
894  *
895  * Handles request timeouts.
896  */
897 static void ap_request_timeout(unsigned long data)
898 {
899 	struct ap_device *ap_dev = (struct ap_device *) data;
900 
901 	if (ap_suspend_flag)
902 		return;
903 	spin_lock_bh(&ap_dev->lock);
904 	ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
905 	spin_unlock_bh(&ap_dev->lock);
906 }
907 
908 /**
909  * ap_poll_timeout(): AP receive polling for finished AP requests.
910  * @unused: Unused pointer.
911  *
912  * Schedules the AP tasklet using a high resolution timer.
913  */
914 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
915 {
916 	if (!ap_suspend_flag)
917 		tasklet_schedule(&ap_tasklet);
918 	return HRTIMER_NORESTART;
919 }
920 
921 /**
922  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
923  * @airq: pointer to adapter interrupt descriptor
924  */
925 static void ap_interrupt_handler(struct airq_struct *airq)
926 {
927 	inc_irq_stat(IRQIO_APB);
928 	if (!ap_suspend_flag)
929 		tasklet_schedule(&ap_tasklet);
930 }
931 
932 /**
933  * ap_tasklet_fn(): Tasklet to poll all AP devices.
934  * @dummy: Unused variable
935  *
936  * Poll all AP devices on the bus.
937  */
938 static void ap_tasklet_fn(unsigned long dummy)
939 {
940 	struct ap_device *ap_dev;
941 	enum ap_wait wait = AP_WAIT_NONE;
942 
943 	/* Reset the indicator if interrupts are used. Thus new interrupts can
944 	 * be received. Doing it in the beginning of the tasklet is therefor
945 	 * important that no requests on any AP get lost.
946 	 */
947 	if (ap_using_interrupts())
948 		xchg(ap_airq.lsi_ptr, 0);
949 
950 	spin_lock(&ap_device_list_lock);
951 	list_for_each_entry(ap_dev, &ap_device_list, list) {
952 		spin_lock_bh(&ap_dev->lock);
953 		wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
954 		spin_unlock_bh(&ap_dev->lock);
955 	}
956 	spin_unlock(&ap_device_list_lock);
957 	ap_sm_wait(wait);
958 }
959 
960 /**
961  * ap_poll_thread(): Thread that polls for finished requests.
962  * @data: Unused pointer
963  *
964  * AP bus poll thread. The purpose of this thread is to poll for
965  * finished requests in a loop if there is a "free" cpu - that is
966  * a cpu that doesn't have anything better to do. The polling stops
967  * as soon as there is another task or if all messages have been
968  * delivered.
969  */
970 static int ap_poll_thread(void *data)
971 {
972 	DECLARE_WAITQUEUE(wait, current);
973 
974 	set_user_nice(current, MAX_NICE);
975 	set_freezable();
976 	while (!kthread_should_stop()) {
977 		add_wait_queue(&ap_poll_wait, &wait);
978 		set_current_state(TASK_INTERRUPTIBLE);
979 		if (ap_suspend_flag ||
980 		    atomic_read(&ap_poll_requests) <= 0) {
981 			schedule();
982 			try_to_freeze();
983 		}
984 		set_current_state(TASK_RUNNING);
985 		remove_wait_queue(&ap_poll_wait, &wait);
986 		if (need_resched()) {
987 			schedule();
988 			try_to_freeze();
989 			continue;
990 		}
991 		ap_tasklet_fn(0);
992 	} while (!kthread_should_stop());
993 	return 0;
994 }
995 
996 static int ap_poll_thread_start(void)
997 {
998 	int rc;
999 
1000 	if (ap_using_interrupts() || ap_poll_kthread)
1001 		return 0;
1002 	mutex_lock(&ap_poll_thread_mutex);
1003 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1004 	rc = PTR_RET(ap_poll_kthread);
1005 	if (rc)
1006 		ap_poll_kthread = NULL;
1007 	mutex_unlock(&ap_poll_thread_mutex);
1008 	return rc;
1009 }
1010 
1011 static void ap_poll_thread_stop(void)
1012 {
1013 	if (!ap_poll_kthread)
1014 		return;
1015 	mutex_lock(&ap_poll_thread_mutex);
1016 	kthread_stop(ap_poll_kthread);
1017 	ap_poll_kthread = NULL;
1018 	mutex_unlock(&ap_poll_thread_mutex);
1019 }
1020 
1021 /**
1022  * ap_queue_message(): Queue a request to an AP device.
1023  * @ap_dev: The AP device to queue the message to
1024  * @ap_msg: The message that is to be added
1025  */
1026 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1027 {
1028 	/* For asynchronous message handling a valid receive-callback
1029 	 * is required. */
1030 	BUG_ON(!ap_msg->receive);
1031 
1032 	spin_lock_bh(&ap_dev->lock);
1033 	/* Queue the message. */
1034 	list_add_tail(&ap_msg->list, &ap_dev->requestq);
1035 	ap_dev->requestq_count++;
1036 	ap_dev->total_request_count++;
1037 	/* Send/receive as many request from the queue as possible. */
1038 	ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
1039 	spin_unlock_bh(&ap_dev->lock);
1040 }
1041 EXPORT_SYMBOL(ap_queue_message);
1042 
1043 /**
1044  * ap_cancel_message(): Cancel a crypto request.
1045  * @ap_dev: The AP device that has the message queued
1046  * @ap_msg: The message that is to be removed
1047  *
1048  * Cancel a crypto request. This is done by removing the request
1049  * from the device pending or request queue. Note that the
1050  * request stays on the AP queue. When it finishes the message
1051  * reply will be discarded because the psmid can't be found.
1052  */
1053 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1054 {
1055 	struct ap_message *tmp;
1056 
1057 	spin_lock_bh(&ap_dev->lock);
1058 	if (!list_empty(&ap_msg->list)) {
1059 		list_for_each_entry(tmp, &ap_dev->pendingq, list)
1060 			if (tmp->psmid == ap_msg->psmid) {
1061 				ap_dev->pendingq_count--;
1062 				goto found;
1063 			}
1064 		ap_dev->requestq_count--;
1065 found:
1066 		list_del_init(&ap_msg->list);
1067 	}
1068 	spin_unlock_bh(&ap_dev->lock);
1069 }
1070 EXPORT_SYMBOL(ap_cancel_message);
1071 
1072 /*
1073  * AP device related attributes.
1074  */
1075 static ssize_t ap_hwtype_show(struct device *dev,
1076 			      struct device_attribute *attr, char *buf)
1077 {
1078 	struct ap_device *ap_dev = to_ap_dev(dev);
1079 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1080 }
1081 
1082 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1083 
1084 static ssize_t ap_raw_hwtype_show(struct device *dev,
1085 			      struct device_attribute *attr, char *buf)
1086 {
1087 	struct ap_device *ap_dev = to_ap_dev(dev);
1088 
1089 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1090 }
1091 
1092 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1093 
1094 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1095 			     char *buf)
1096 {
1097 	struct ap_device *ap_dev = to_ap_dev(dev);
1098 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1099 }
1100 
1101 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1102 static ssize_t ap_request_count_show(struct device *dev,
1103 				     struct device_attribute *attr,
1104 				     char *buf)
1105 {
1106 	struct ap_device *ap_dev = to_ap_dev(dev);
1107 	int rc;
1108 
1109 	spin_lock_bh(&ap_dev->lock);
1110 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1111 	spin_unlock_bh(&ap_dev->lock);
1112 	return rc;
1113 }
1114 
1115 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1116 
1117 static ssize_t ap_requestq_count_show(struct device *dev,
1118 				      struct device_attribute *attr, char *buf)
1119 {
1120 	struct ap_device *ap_dev = to_ap_dev(dev);
1121 	int rc;
1122 
1123 	spin_lock_bh(&ap_dev->lock);
1124 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1125 	spin_unlock_bh(&ap_dev->lock);
1126 	return rc;
1127 }
1128 
1129 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1130 
1131 static ssize_t ap_pendingq_count_show(struct device *dev,
1132 				      struct device_attribute *attr, char *buf)
1133 {
1134 	struct ap_device *ap_dev = to_ap_dev(dev);
1135 	int rc;
1136 
1137 	spin_lock_bh(&ap_dev->lock);
1138 	rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1139 	spin_unlock_bh(&ap_dev->lock);
1140 	return rc;
1141 }
1142 
1143 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1144 
1145 static ssize_t ap_reset_show(struct device *dev,
1146 				      struct device_attribute *attr, char *buf)
1147 {
1148 	struct ap_device *ap_dev = to_ap_dev(dev);
1149 	int rc = 0;
1150 
1151 	spin_lock_bh(&ap_dev->lock);
1152 	switch (ap_dev->state) {
1153 	case AP_STATE_RESET_START:
1154 	case AP_STATE_RESET_WAIT:
1155 		rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1156 		break;
1157 	case AP_STATE_WORKING:
1158 	case AP_STATE_QUEUE_FULL:
1159 		rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1160 		break;
1161 	default:
1162 		rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1163 	}
1164 	spin_unlock_bh(&ap_dev->lock);
1165 	return rc;
1166 }
1167 
1168 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1169 
1170 static ssize_t ap_interrupt_show(struct device *dev,
1171 				      struct device_attribute *attr, char *buf)
1172 {
1173 	struct ap_device *ap_dev = to_ap_dev(dev);
1174 	int rc = 0;
1175 
1176 	spin_lock_bh(&ap_dev->lock);
1177 	if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1178 		rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1179 	else if (ap_dev->interrupt == AP_INTR_ENABLED)
1180 		rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1181 	else
1182 		rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1183 	spin_unlock_bh(&ap_dev->lock);
1184 	return rc;
1185 }
1186 
1187 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1188 
1189 static ssize_t ap_modalias_show(struct device *dev,
1190 				struct device_attribute *attr, char *buf)
1191 {
1192 	return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1193 }
1194 
1195 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1196 
1197 static ssize_t ap_functions_show(struct device *dev,
1198 				 struct device_attribute *attr, char *buf)
1199 {
1200 	struct ap_device *ap_dev = to_ap_dev(dev);
1201 	return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1202 }
1203 
1204 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1205 
1206 static struct attribute *ap_dev_attrs[] = {
1207 	&dev_attr_hwtype.attr,
1208 	&dev_attr_raw_hwtype.attr,
1209 	&dev_attr_depth.attr,
1210 	&dev_attr_request_count.attr,
1211 	&dev_attr_requestq_count.attr,
1212 	&dev_attr_pendingq_count.attr,
1213 	&dev_attr_reset.attr,
1214 	&dev_attr_interrupt.attr,
1215 	&dev_attr_modalias.attr,
1216 	&dev_attr_ap_functions.attr,
1217 	NULL
1218 };
1219 static struct attribute_group ap_dev_attr_group = {
1220 	.attrs = ap_dev_attrs
1221 };
1222 
1223 /**
1224  * ap_bus_match()
1225  * @dev: Pointer to device
1226  * @drv: Pointer to device_driver
1227  *
1228  * AP bus driver registration/unregistration.
1229  */
1230 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1231 {
1232 	struct ap_device *ap_dev = to_ap_dev(dev);
1233 	struct ap_driver *ap_drv = to_ap_drv(drv);
1234 	struct ap_device_id *id;
1235 
1236 	/*
1237 	 * Compare device type of the device with the list of
1238 	 * supported types of the device_driver.
1239 	 */
1240 	for (id = ap_drv->ids; id->match_flags; id++) {
1241 		if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1242 		    (id->dev_type != ap_dev->device_type))
1243 			continue;
1244 		return 1;
1245 	}
1246 	return 0;
1247 }
1248 
1249 /**
1250  * ap_uevent(): Uevent function for AP devices.
1251  * @dev: Pointer to device
1252  * @env: Pointer to kobj_uevent_env
1253  *
1254  * It sets up a single environment variable DEV_TYPE which contains the
1255  * hardware device type.
1256  */
1257 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1258 {
1259 	struct ap_device *ap_dev = to_ap_dev(dev);
1260 	int retval = 0;
1261 
1262 	if (!ap_dev)
1263 		return -ENODEV;
1264 
1265 	/* Set up DEV_TYPE environment variable. */
1266 	retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1267 	if (retval)
1268 		return retval;
1269 
1270 	/* Add MODALIAS= */
1271 	retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1272 
1273 	return retval;
1274 }
1275 
1276 static int ap_dev_suspend(struct device *dev)
1277 {
1278 	struct ap_device *ap_dev = to_ap_dev(dev);
1279 
1280 	/* Poll on the device until all requests are finished. */
1281 	spin_lock_bh(&ap_dev->lock);
1282 	ap_dev->state = AP_STATE_SUSPEND_WAIT;
1283 	while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1284 		;
1285 	ap_dev->state = AP_STATE_BORKED;
1286 	spin_unlock_bh(&ap_dev->lock);
1287 	return 0;
1288 }
1289 
1290 static void ap_bus_suspend(void)
1291 {
1292 	ap_suspend_flag = 1;
1293 	/*
1294 	 * Disable scanning for devices, thus we do not want to scan
1295 	 * for them after removing.
1296 	 */
1297 	flush_work(&ap_scan_work);
1298 	tasklet_disable(&ap_tasklet);
1299 }
1300 
1301 static int __ap_devices_unregister(struct device *dev, void *dummy)
1302 {
1303 	device_unregister(dev);
1304 	return 0;
1305 }
1306 
1307 static void ap_bus_resume(void)
1308 {
1309 	int rc;
1310 
1311 	/* Unconditionally remove all AP devices */
1312 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1313 	/* Reset thin interrupt setting */
1314 	if (ap_interrupts_available() && !ap_using_interrupts()) {
1315 		rc = register_adapter_interrupt(&ap_airq);
1316 		ap_airq_flag = (rc == 0);
1317 	}
1318 	if (!ap_interrupts_available() && ap_using_interrupts()) {
1319 		unregister_adapter_interrupt(&ap_airq);
1320 		ap_airq_flag = 0;
1321 	}
1322 	/* Reset domain */
1323 	if (!user_set_domain)
1324 		ap_domain_index = -1;
1325 	/* Get things going again */
1326 	ap_suspend_flag = 0;
1327 	if (ap_airq_flag)
1328 		xchg(ap_airq.lsi_ptr, 0);
1329 	tasklet_enable(&ap_tasklet);
1330 	queue_work(system_long_wq, &ap_scan_work);
1331 }
1332 
1333 static int ap_power_event(struct notifier_block *this, unsigned long event,
1334 			  void *ptr)
1335 {
1336 	switch (event) {
1337 	case PM_HIBERNATION_PREPARE:
1338 	case PM_SUSPEND_PREPARE:
1339 		ap_bus_suspend();
1340 		break;
1341 	case PM_POST_HIBERNATION:
1342 	case PM_POST_SUSPEND:
1343 		ap_bus_resume();
1344 		break;
1345 	default:
1346 		break;
1347 	}
1348 	return NOTIFY_DONE;
1349 }
1350 static struct notifier_block ap_power_notifier = {
1351 	.notifier_call = ap_power_event,
1352 };
1353 
1354 static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, NULL);
1355 
1356 static struct bus_type ap_bus_type = {
1357 	.name = "ap",
1358 	.match = &ap_bus_match,
1359 	.uevent = &ap_uevent,
1360 	.pm = &ap_bus_pm_ops,
1361 };
1362 
1363 void ap_device_init_reply(struct ap_device *ap_dev,
1364 			  struct ap_message *reply)
1365 {
1366 	ap_dev->reply = reply;
1367 
1368 	spin_lock_bh(&ap_dev->lock);
1369 	ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1370 	spin_unlock_bh(&ap_dev->lock);
1371 }
1372 EXPORT_SYMBOL(ap_device_init_reply);
1373 
1374 static int ap_device_probe(struct device *dev)
1375 {
1376 	struct ap_device *ap_dev = to_ap_dev(dev);
1377 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1378 	int rc;
1379 
1380 	ap_dev->drv = ap_drv;
1381 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1382 	if (rc)
1383 		ap_dev->drv = NULL;
1384 	return rc;
1385 }
1386 
1387 /**
1388  * __ap_flush_queue(): Flush requests.
1389  * @ap_dev: Pointer to the AP device
1390  *
1391  * Flush all requests from the request/pending queue of an AP device.
1392  */
1393 static void __ap_flush_queue(struct ap_device *ap_dev)
1394 {
1395 	struct ap_message *ap_msg, *next;
1396 
1397 	list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1398 		list_del_init(&ap_msg->list);
1399 		ap_dev->pendingq_count--;
1400 		ap_msg->rc = -EAGAIN;
1401 		ap_msg->receive(ap_dev, ap_msg, NULL);
1402 	}
1403 	list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1404 		list_del_init(&ap_msg->list);
1405 		ap_dev->requestq_count--;
1406 		ap_msg->rc = -EAGAIN;
1407 		ap_msg->receive(ap_dev, ap_msg, NULL);
1408 	}
1409 }
1410 
1411 void ap_flush_queue(struct ap_device *ap_dev)
1412 {
1413 	spin_lock_bh(&ap_dev->lock);
1414 	__ap_flush_queue(ap_dev);
1415 	spin_unlock_bh(&ap_dev->lock);
1416 }
1417 EXPORT_SYMBOL(ap_flush_queue);
1418 
1419 static int ap_device_remove(struct device *dev)
1420 {
1421 	struct ap_device *ap_dev = to_ap_dev(dev);
1422 	struct ap_driver *ap_drv = ap_dev->drv;
1423 
1424 	ap_flush_queue(ap_dev);
1425 	del_timer_sync(&ap_dev->timeout);
1426 	spin_lock_bh(&ap_device_list_lock);
1427 	list_del_init(&ap_dev->list);
1428 	spin_unlock_bh(&ap_device_list_lock);
1429 	if (ap_drv->remove)
1430 		ap_drv->remove(ap_dev);
1431 	spin_lock_bh(&ap_dev->lock);
1432 	atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1433 	spin_unlock_bh(&ap_dev->lock);
1434 	return 0;
1435 }
1436 
1437 static void ap_device_release(struct device *dev)
1438 {
1439 	kfree(to_ap_dev(dev));
1440 }
1441 
1442 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1443 		       char *name)
1444 {
1445 	struct device_driver *drv = &ap_drv->driver;
1446 
1447 	if (!initialised)
1448 		return -ENODEV;
1449 
1450 	drv->bus = &ap_bus_type;
1451 	drv->probe = ap_device_probe;
1452 	drv->remove = ap_device_remove;
1453 	drv->owner = owner;
1454 	drv->name = name;
1455 	return driver_register(drv);
1456 }
1457 EXPORT_SYMBOL(ap_driver_register);
1458 
1459 void ap_driver_unregister(struct ap_driver *ap_drv)
1460 {
1461 	driver_unregister(&ap_drv->driver);
1462 }
1463 EXPORT_SYMBOL(ap_driver_unregister);
1464 
1465 void ap_bus_force_rescan(void)
1466 {
1467 	if (ap_suspend_flag)
1468 		return;
1469 	/* processing a asynchronous bus rescan */
1470 	del_timer(&ap_config_timer);
1471 	queue_work(system_long_wq, &ap_scan_work);
1472 	flush_work(&ap_scan_work);
1473 }
1474 EXPORT_SYMBOL(ap_bus_force_rescan);
1475 
1476 /*
1477  * AP bus attributes.
1478  */
1479 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1480 {
1481 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1482 }
1483 
1484 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1485 
1486 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1487 {
1488 	if (!ap_configuration)	/* QCI not supported */
1489 		return snprintf(buf, PAGE_SIZE, "not supported\n");
1490 	if (!test_facility(76))
1491 		/* format 0 - 16 bit domain field */
1492 		return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1493 				ap_configuration->adm[0],
1494 				ap_configuration->adm[1]);
1495 	/* format 1 - 256 bit domain field */
1496 	return snprintf(buf, PAGE_SIZE,
1497 			"0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1498 			ap_configuration->adm[0], ap_configuration->adm[1],
1499 			ap_configuration->adm[2], ap_configuration->adm[3],
1500 			ap_configuration->adm[4], ap_configuration->adm[5],
1501 			ap_configuration->adm[6], ap_configuration->adm[7]);
1502 }
1503 
1504 static BUS_ATTR(ap_control_domain_mask, 0444,
1505 		ap_control_domain_mask_show, NULL);
1506 
1507 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1508 {
1509 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1510 }
1511 
1512 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1513 {
1514 	return snprintf(buf, PAGE_SIZE, "%d\n",
1515 			ap_using_interrupts() ? 1 : 0);
1516 }
1517 
1518 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1519 
1520 static ssize_t ap_config_time_store(struct bus_type *bus,
1521 				    const char *buf, size_t count)
1522 {
1523 	int time;
1524 
1525 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1526 		return -EINVAL;
1527 	ap_config_time = time;
1528 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1529 	return count;
1530 }
1531 
1532 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1533 
1534 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1535 {
1536 	return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1537 }
1538 
1539 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1540 				    const char *buf, size_t count)
1541 {
1542 	int flag, rc;
1543 
1544 	if (sscanf(buf, "%d\n", &flag) != 1)
1545 		return -EINVAL;
1546 	if (flag) {
1547 		rc = ap_poll_thread_start();
1548 		if (rc)
1549 			count = rc;
1550 	} else
1551 		ap_poll_thread_stop();
1552 	return count;
1553 }
1554 
1555 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1556 
1557 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1558 {
1559 	return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1560 }
1561 
1562 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1563 				  size_t count)
1564 {
1565 	unsigned long long time;
1566 	ktime_t hr_time;
1567 
1568 	/* 120 seconds = maximum poll interval */
1569 	if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1570 	    time > 120000000000ULL)
1571 		return -EINVAL;
1572 	poll_timeout = time;
1573 	hr_time = ktime_set(0, poll_timeout);
1574 
1575 	spin_lock_bh(&ap_poll_timer_lock);
1576 	hrtimer_cancel(&ap_poll_timer);
1577 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1578 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1579 	spin_unlock_bh(&ap_poll_timer_lock);
1580 
1581 	return count;
1582 }
1583 
1584 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1585 
1586 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1587 {
1588 	int max_domain_id;
1589 
1590 	if (ap_configuration)
1591 		max_domain_id = ap_max_domain_id ? : -1;
1592 	else
1593 		max_domain_id = 15;
1594 	return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1595 }
1596 
1597 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1598 
1599 static struct bus_attribute *const ap_bus_attrs[] = {
1600 	&bus_attr_ap_domain,
1601 	&bus_attr_ap_control_domain_mask,
1602 	&bus_attr_config_time,
1603 	&bus_attr_poll_thread,
1604 	&bus_attr_ap_interrupts,
1605 	&bus_attr_poll_timeout,
1606 	&bus_attr_ap_max_domain_id,
1607 	NULL,
1608 };
1609 
1610 /**
1611  * ap_select_domain(): Select an AP domain.
1612  *
1613  * Pick one of the 16 AP domains.
1614  */
1615 static int ap_select_domain(void)
1616 {
1617 	int count, max_count, best_domain;
1618 	struct ap_queue_status status;
1619 	int i, j;
1620 
1621 	/*
1622 	 * We want to use a single domain. Either the one specified with
1623 	 * the "domain=" parameter or the domain with the maximum number
1624 	 * of devices.
1625 	 */
1626 	if (ap_domain_index >= 0)
1627 		/* Domain has already been selected. */
1628 		return 0;
1629 	best_domain = -1;
1630 	max_count = 0;
1631 	for (i = 0; i < AP_DOMAINS; i++) {
1632 		if (!ap_test_config_domain(i))
1633 			continue;
1634 		count = 0;
1635 		for (j = 0; j < AP_DEVICES; j++) {
1636 			if (!ap_test_config_card_id(j))
1637 				continue;
1638 			status = ap_test_queue(AP_MKQID(j, i), NULL);
1639 			if (status.response_code != AP_RESPONSE_NORMAL)
1640 				continue;
1641 			count++;
1642 		}
1643 		if (count > max_count) {
1644 			max_count = count;
1645 			best_domain = i;
1646 		}
1647 	}
1648 	if (best_domain >= 0){
1649 		ap_domain_index = best_domain;
1650 		return 0;
1651 	}
1652 	return -ENODEV;
1653 }
1654 
1655 /**
1656  * __ap_scan_bus(): Scan the AP bus.
1657  * @dev: Pointer to device
1658  * @data: Pointer to data
1659  *
1660  * Scan the AP bus for new devices.
1661  */
1662 static int __ap_scan_bus(struct device *dev, void *data)
1663 {
1664 	return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1665 }
1666 
1667 static void ap_scan_bus(struct work_struct *unused)
1668 {
1669 	struct ap_device *ap_dev;
1670 	struct device *dev;
1671 	ap_qid_t qid;
1672 	int queue_depth = 0, device_type = 0;
1673 	unsigned int device_functions = 0;
1674 	int rc, i, borked;
1675 
1676 	ap_query_configuration();
1677 	if (ap_select_domain() != 0)
1678 		goto out;
1679 
1680 	for (i = 0; i < AP_DEVICES; i++) {
1681 		qid = AP_MKQID(i, ap_domain_index);
1682 		dev = bus_find_device(&ap_bus_type, NULL,
1683 				      (void *)(unsigned long)qid,
1684 				      __ap_scan_bus);
1685 		rc = ap_query_queue(qid, &queue_depth, &device_type,
1686 				    &device_functions);
1687 		if (dev) {
1688 			ap_dev = to_ap_dev(dev);
1689 			spin_lock_bh(&ap_dev->lock);
1690 			if (rc == -ENODEV)
1691 				ap_dev->state = AP_STATE_BORKED;
1692 			borked = ap_dev->state == AP_STATE_BORKED;
1693 			spin_unlock_bh(&ap_dev->lock);
1694 			if (borked)	/* Remove broken device */
1695 				device_unregister(dev);
1696 			put_device(dev);
1697 			if (!borked)
1698 				continue;
1699 		}
1700 		if (rc)
1701 			continue;
1702 		ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1703 		if (!ap_dev)
1704 			break;
1705 		ap_dev->qid = qid;
1706 		ap_dev->state = AP_STATE_RESET_START;
1707 		ap_dev->interrupt = AP_INTR_DISABLED;
1708 		ap_dev->queue_depth = queue_depth;
1709 		ap_dev->raw_hwtype = device_type;
1710 		ap_dev->device_type = device_type;
1711 		ap_dev->functions = device_functions;
1712 		spin_lock_init(&ap_dev->lock);
1713 		INIT_LIST_HEAD(&ap_dev->pendingq);
1714 		INIT_LIST_HEAD(&ap_dev->requestq);
1715 		INIT_LIST_HEAD(&ap_dev->list);
1716 		setup_timer(&ap_dev->timeout, ap_request_timeout,
1717 			    (unsigned long) ap_dev);
1718 
1719 		ap_dev->device.bus = &ap_bus_type;
1720 		ap_dev->device.parent = ap_root_device;
1721 		rc = dev_set_name(&ap_dev->device, "card%02x",
1722 				  AP_QID_DEVICE(ap_dev->qid));
1723 		if (rc) {
1724 			kfree(ap_dev);
1725 			continue;
1726 		}
1727 		/* Add to list of devices */
1728 		spin_lock_bh(&ap_device_list_lock);
1729 		list_add(&ap_dev->list, &ap_device_list);
1730 		spin_unlock_bh(&ap_device_list_lock);
1731 		/* Start with a device reset */
1732 		spin_lock_bh(&ap_dev->lock);
1733 		ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1734 		spin_unlock_bh(&ap_dev->lock);
1735 		/* Register device */
1736 		ap_dev->device.release = ap_device_release;
1737 		rc = device_register(&ap_dev->device);
1738 		if (rc) {
1739 			spin_lock_bh(&ap_dev->lock);
1740 			list_del_init(&ap_dev->list);
1741 			spin_unlock_bh(&ap_dev->lock);
1742 			put_device(&ap_dev->device);
1743 			continue;
1744 		}
1745 		/* Add device attributes. */
1746 		rc = sysfs_create_group(&ap_dev->device.kobj,
1747 					&ap_dev_attr_group);
1748 		if (rc) {
1749 			device_unregister(&ap_dev->device);
1750 			continue;
1751 		}
1752 	}
1753 out:
1754 	mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1755 }
1756 
1757 static void ap_config_timeout(unsigned long ptr)
1758 {
1759 	if (ap_suspend_flag)
1760 		return;
1761 	queue_work(system_long_wq, &ap_scan_work);
1762 }
1763 
1764 static void ap_reset_domain(void)
1765 {
1766 	int i;
1767 
1768 	if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1769 		return;
1770 	for (i = 0; i < AP_DEVICES; i++)
1771 		ap_reset_queue(AP_MKQID(i, ap_domain_index));
1772 }
1773 
1774 static void ap_reset_all(void)
1775 {
1776 	int i, j;
1777 
1778 	for (i = 0; i < AP_DOMAINS; i++) {
1779 		if (!ap_test_config_domain(i))
1780 			continue;
1781 		for (j = 0; j < AP_DEVICES; j++) {
1782 			if (!ap_test_config_card_id(j))
1783 				continue;
1784 			ap_reset_queue(AP_MKQID(j, i));
1785 		}
1786 	}
1787 }
1788 
1789 static struct reset_call ap_reset_call = {
1790 	.fn = ap_reset_all,
1791 };
1792 
1793 /**
1794  * ap_module_init(): The module initialization code.
1795  *
1796  * Initializes the module.
1797  */
1798 int __init ap_module_init(void)
1799 {
1800 	int max_domain_id;
1801 	int rc, i;
1802 
1803 	if (ap_instructions_available() != 0) {
1804 		pr_warn("The hardware system does not support AP instructions\n");
1805 		return -ENODEV;
1806 	}
1807 
1808 	/* Get AP configuration data if available */
1809 	ap_init_configuration();
1810 
1811 	if (ap_configuration)
1812 		max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1813 	else
1814 		max_domain_id = 15;
1815 	if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1816 		pr_warn("%d is not a valid cryptographic domain\n",
1817 			ap_domain_index);
1818 		rc = -EINVAL;
1819 		goto out_free;
1820 	}
1821 	/* In resume callback we need to know if the user had set the domain.
1822 	 * If so, we can not just reset it.
1823 	 */
1824 	if (ap_domain_index >= 0)
1825 		user_set_domain = 1;
1826 
1827 	if (ap_interrupts_available()) {
1828 		rc = register_adapter_interrupt(&ap_airq);
1829 		ap_airq_flag = (rc == 0);
1830 	}
1831 
1832 	register_reset_call(&ap_reset_call);
1833 
1834 	/* Create /sys/bus/ap. */
1835 	rc = bus_register(&ap_bus_type);
1836 	if (rc)
1837 		goto out;
1838 	for (i = 0; ap_bus_attrs[i]; i++) {
1839 		rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1840 		if (rc)
1841 			goto out_bus;
1842 	}
1843 
1844 	/* Create /sys/devices/ap. */
1845 	ap_root_device = root_device_register("ap");
1846 	rc = PTR_RET(ap_root_device);
1847 	if (rc)
1848 		goto out_bus;
1849 
1850 	/* Setup the AP bus rescan timer. */
1851 	setup_timer(&ap_config_timer, ap_config_timeout, 0);
1852 
1853 	/*
1854 	 * Setup the high resultion poll timer.
1855 	 * If we are running under z/VM adjust polling to z/VM polling rate.
1856 	 */
1857 	if (MACHINE_IS_VM)
1858 		poll_timeout = 1500000;
1859 	spin_lock_init(&ap_poll_timer_lock);
1860 	hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1861 	ap_poll_timer.function = ap_poll_timeout;
1862 
1863 	/* Start the low priority AP bus poll thread. */
1864 	if (ap_thread_flag) {
1865 		rc = ap_poll_thread_start();
1866 		if (rc)
1867 			goto out_work;
1868 	}
1869 
1870 	rc = register_pm_notifier(&ap_power_notifier);
1871 	if (rc)
1872 		goto out_pm;
1873 
1874 	queue_work(system_long_wq, &ap_scan_work);
1875 	initialised = true;
1876 
1877 	return 0;
1878 
1879 out_pm:
1880 	ap_poll_thread_stop();
1881 out_work:
1882 	hrtimer_cancel(&ap_poll_timer);
1883 	root_device_unregister(ap_root_device);
1884 out_bus:
1885 	while (i--)
1886 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1887 	bus_unregister(&ap_bus_type);
1888 out:
1889 	unregister_reset_call(&ap_reset_call);
1890 	if (ap_using_interrupts())
1891 		unregister_adapter_interrupt(&ap_airq);
1892 out_free:
1893 	kfree(ap_configuration);
1894 	return rc;
1895 }
1896 
1897 /**
1898  * ap_modules_exit(): The module termination code
1899  *
1900  * Terminates the module.
1901  */
1902 void ap_module_exit(void)
1903 {
1904 	int i;
1905 
1906 	initialised = false;
1907 	ap_reset_domain();
1908 	ap_poll_thread_stop();
1909 	del_timer_sync(&ap_config_timer);
1910 	hrtimer_cancel(&ap_poll_timer);
1911 	tasklet_kill(&ap_tasklet);
1912 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1913 	for (i = 0; ap_bus_attrs[i]; i++)
1914 		bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1915 	unregister_pm_notifier(&ap_power_notifier);
1916 	root_device_unregister(ap_root_device);
1917 	bus_unregister(&ap_bus_type);
1918 	kfree(ap_configuration);
1919 	unregister_reset_call(&ap_reset_call);
1920 	if (ap_using_interrupts())
1921 		unregister_adapter_interrupt(&ap_airq);
1922 }
1923 
1924 module_init(ap_module_init);
1925 module_exit(ap_module_exit);
1926