xref: /linux/drivers/pci/pci.c (revision 81fa7a69c2174ed8de314b9c231ef30a8718e5e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3_delay;
67 
68 	if (delay < pci_pm_d3_delay)
69 		delay = pci_pm_d3_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_BUS_SIZE	1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
93 
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95 
96 /*
97  * The default CLS is used if arch didn't set CLS explicitly and not
98  * all pci devices agree on the same value.  Arch can override either
99  * the dfl or actual value as it sees fit.  Don't forget this is
100  * measured in 32-bit words, not bytes.
101  */
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
104 
105 /*
106  * If we set up a device for bus mastering, we need to check the latency
107  * timer as certain BIOSes forget to set it properly.
108  */
109 unsigned int pcibios_max_latency = 255;
110 
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
113 
114 /* If set, the PCIe ATS capability will not be used. */
115 static bool pcie_ats_disabled;
116 
117 /* If set, the PCI config space of each device is printed during boot. */
118 bool pci_early_dump;
119 
120 bool pci_ats_disabled(void)
121 {
122 	return pcie_ats_disabled;
123 }
124 
125 /* Disable bridge_d3 for all PCIe ports */
126 static bool pci_bridge_d3_disable;
127 /* Force bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_force;
129 
130 static int __init pcie_port_pm_setup(char *str)
131 {
132 	if (!strcmp(str, "off"))
133 		pci_bridge_d3_disable = true;
134 	else if (!strcmp(str, "force"))
135 		pci_bridge_d3_force = true;
136 	return 1;
137 }
138 __setup("pcie_port_pm=", pcie_port_pm_setup);
139 
140 /* Time to wait after a reset for device to become responsive */
141 #define PCIE_RESET_READY_POLL_MS 60000
142 
143 /**
144  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
145  * @bus: pointer to PCI bus structure to search
146  *
147  * Given a PCI bus, returns the highest PCI bus number present in the set
148  * including the given PCI bus and its list of child PCI buses.
149  */
150 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
151 {
152 	struct pci_bus *tmp;
153 	unsigned char max, n;
154 
155 	max = bus->busn_res.end;
156 	list_for_each_entry(tmp, &bus->children, node) {
157 		n = pci_bus_max_busnr(tmp);
158 		if (n > max)
159 			max = n;
160 	}
161 	return max;
162 }
163 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
164 
165 #ifdef CONFIG_HAS_IOMEM
166 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
167 {
168 	struct resource *res = &pdev->resource[bar];
169 
170 	/*
171 	 * Make sure the BAR is actually a memory resource, not an IO resource
172 	 */
173 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
174 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
175 		return NULL;
176 	}
177 	return ioremap_nocache(res->start, resource_size(res));
178 }
179 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
180 
181 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
182 {
183 	/*
184 	 * Make sure the BAR is actually a memory resource, not an IO resource
185 	 */
186 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
187 		WARN_ON(1);
188 		return NULL;
189 	}
190 	return ioremap_wc(pci_resource_start(pdev, bar),
191 			  pci_resource_len(pdev, bar));
192 }
193 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
194 #endif
195 
196 /**
197  * pci_dev_str_match_path - test if a path string matches a device
198  * @dev:    the PCI device to test
199  * @p:      string to match the device against
200  * @endptr: pointer to the string after the match
201  *
202  * Test if a string (typically from a kernel parameter) formatted as a
203  * path of device/function addresses matches a PCI device. The string must
204  * be of the form:
205  *
206  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
207  *
208  * A path for a device can be obtained using 'lspci -t'.  Using a path
209  * is more robust against bus renumbering than using only a single bus,
210  * device and function address.
211  *
212  * Returns 1 if the string matches the device, 0 if it does not and
213  * a negative error code if it fails to parse the string.
214  */
215 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
216 				  const char **endptr)
217 {
218 	int ret;
219 	int seg, bus, slot, func;
220 	char *wpath, *p;
221 	char end;
222 
223 	*endptr = strchrnul(path, ';');
224 
225 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
226 	if (!wpath)
227 		return -ENOMEM;
228 
229 	while (1) {
230 		p = strrchr(wpath, '/');
231 		if (!p)
232 			break;
233 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
234 		if (ret != 2) {
235 			ret = -EINVAL;
236 			goto free_and_exit;
237 		}
238 
239 		if (dev->devfn != PCI_DEVFN(slot, func)) {
240 			ret = 0;
241 			goto free_and_exit;
242 		}
243 
244 		/*
245 		 * Note: we don't need to get a reference to the upstream
246 		 * bridge because we hold a reference to the top level
247 		 * device which should hold a reference to the bridge,
248 		 * and so on.
249 		 */
250 		dev = pci_upstream_bridge(dev);
251 		if (!dev) {
252 			ret = 0;
253 			goto free_and_exit;
254 		}
255 
256 		*p = 0;
257 	}
258 
259 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
260 		     &func, &end);
261 	if (ret != 4) {
262 		seg = 0;
263 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
264 		if (ret != 3) {
265 			ret = -EINVAL;
266 			goto free_and_exit;
267 		}
268 	}
269 
270 	ret = (seg == pci_domain_nr(dev->bus) &&
271 	       bus == dev->bus->number &&
272 	       dev->devfn == PCI_DEVFN(slot, func));
273 
274 free_and_exit:
275 	kfree(wpath);
276 	return ret;
277 }
278 
279 /**
280  * pci_dev_str_match - test if a string matches a device
281  * @dev:    the PCI device to test
282  * @p:      string to match the device against
283  * @endptr: pointer to the string after the match
284  *
285  * Test if a string (typically from a kernel parameter) matches a specified
286  * PCI device. The string may be of one of the following formats:
287  *
288  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
289  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
290  *
291  * The first format specifies a PCI bus/device/function address which
292  * may change if new hardware is inserted, if motherboard firmware changes,
293  * or due to changes caused in kernel parameters. If the domain is
294  * left unspecified, it is taken to be 0.  In order to be robust against
295  * bus renumbering issues, a path of PCI device/function numbers may be used
296  * to address the specific device.  The path for a device can be determined
297  * through the use of 'lspci -t'.
298  *
299  * The second format matches devices using IDs in the configuration
300  * space which may match multiple devices in the system. A value of 0
301  * for any field will match all devices. (Note: this differs from
302  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
303  * legacy reasons and convenience so users don't have to specify
304  * FFFFFFFFs on the command line.)
305  *
306  * Returns 1 if the string matches the device, 0 if it does not and
307  * a negative error code if the string cannot be parsed.
308  */
309 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
310 			     const char **endptr)
311 {
312 	int ret;
313 	int count;
314 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
315 
316 	if (strncmp(p, "pci:", 4) == 0) {
317 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
318 		p += 4;
319 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
320 			     &subsystem_vendor, &subsystem_device, &count);
321 		if (ret != 4) {
322 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
323 			if (ret != 2)
324 				return -EINVAL;
325 
326 			subsystem_vendor = 0;
327 			subsystem_device = 0;
328 		}
329 
330 		p += count;
331 
332 		if ((!vendor || vendor == dev->vendor) &&
333 		    (!device || device == dev->device) &&
334 		    (!subsystem_vendor ||
335 			    subsystem_vendor == dev->subsystem_vendor) &&
336 		    (!subsystem_device ||
337 			    subsystem_device == dev->subsystem_device))
338 			goto found;
339 	} else {
340 		/*
341 		 * PCI Bus, Device, Function IDs are specified
342 		 *  (optionally, may include a path of devfns following it)
343 		 */
344 		ret = pci_dev_str_match_path(dev, p, &p);
345 		if (ret < 0)
346 			return ret;
347 		else if (ret)
348 			goto found;
349 	}
350 
351 	*endptr = p;
352 	return 0;
353 
354 found:
355 	*endptr = p;
356 	return 1;
357 }
358 
359 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
360 				   u8 pos, int cap, int *ttl)
361 {
362 	u8 id;
363 	u16 ent;
364 
365 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
366 
367 	while ((*ttl)--) {
368 		if (pos < 0x40)
369 			break;
370 		pos &= ~3;
371 		pci_bus_read_config_word(bus, devfn, pos, &ent);
372 
373 		id = ent & 0xff;
374 		if (id == 0xff)
375 			break;
376 		if (id == cap)
377 			return pos;
378 		pos = (ent >> 8);
379 	}
380 	return 0;
381 }
382 
383 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
384 			       u8 pos, int cap)
385 {
386 	int ttl = PCI_FIND_CAP_TTL;
387 
388 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
389 }
390 
391 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
392 {
393 	return __pci_find_next_cap(dev->bus, dev->devfn,
394 				   pos + PCI_CAP_LIST_NEXT, cap);
395 }
396 EXPORT_SYMBOL_GPL(pci_find_next_capability);
397 
398 static int __pci_bus_find_cap_start(struct pci_bus *bus,
399 				    unsigned int devfn, u8 hdr_type)
400 {
401 	u16 status;
402 
403 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
404 	if (!(status & PCI_STATUS_CAP_LIST))
405 		return 0;
406 
407 	switch (hdr_type) {
408 	case PCI_HEADER_TYPE_NORMAL:
409 	case PCI_HEADER_TYPE_BRIDGE:
410 		return PCI_CAPABILITY_LIST;
411 	case PCI_HEADER_TYPE_CARDBUS:
412 		return PCI_CB_CAPABILITY_LIST;
413 	}
414 
415 	return 0;
416 }
417 
418 /**
419  * pci_find_capability - query for devices' capabilities
420  * @dev: PCI device to query
421  * @cap: capability code
422  *
423  * Tell if a device supports a given PCI capability.
424  * Returns the address of the requested capability structure within the
425  * device's PCI configuration space or 0 in case the device does not
426  * support it.  Possible values for @cap:
427  *
428  *  %PCI_CAP_ID_PM           Power Management
429  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
430  *  %PCI_CAP_ID_VPD          Vital Product Data
431  *  %PCI_CAP_ID_SLOTID       Slot Identification
432  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
433  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
434  *  %PCI_CAP_ID_PCIX         PCI-X
435  *  %PCI_CAP_ID_EXP          PCI Express
436  */
437 int pci_find_capability(struct pci_dev *dev, int cap)
438 {
439 	int pos;
440 
441 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
442 	if (pos)
443 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
444 
445 	return pos;
446 }
447 EXPORT_SYMBOL(pci_find_capability);
448 
449 /**
450  * pci_bus_find_capability - query for devices' capabilities
451  * @bus:   the PCI bus to query
452  * @devfn: PCI device to query
453  * @cap:   capability code
454  *
455  * Like pci_find_capability() but works for pci devices that do not have a
456  * pci_dev structure set up yet.
457  *
458  * Returns the address of the requested capability structure within the
459  * device's PCI configuration space or 0 in case the device does not
460  * support it.
461  */
462 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
463 {
464 	int pos;
465 	u8 hdr_type;
466 
467 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
468 
469 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
470 	if (pos)
471 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
472 
473 	return pos;
474 }
475 EXPORT_SYMBOL(pci_bus_find_capability);
476 
477 /**
478  * pci_find_next_ext_capability - Find an extended capability
479  * @dev: PCI device to query
480  * @start: address at which to start looking (0 to start at beginning of list)
481  * @cap: capability code
482  *
483  * Returns the address of the next matching extended capability structure
484  * within the device's PCI configuration space or 0 if the device does
485  * not support it.  Some capabilities can occur several times, e.g., the
486  * vendor-specific capability, and this provides a way to find them all.
487  */
488 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
489 {
490 	u32 header;
491 	int ttl;
492 	int pos = PCI_CFG_SPACE_SIZE;
493 
494 	/* minimum 8 bytes per capability */
495 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
496 
497 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
498 		return 0;
499 
500 	if (start)
501 		pos = start;
502 
503 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
504 		return 0;
505 
506 	/*
507 	 * If we have no capabilities, this is indicated by cap ID,
508 	 * cap version and next pointer all being 0.
509 	 */
510 	if (header == 0)
511 		return 0;
512 
513 	while (ttl-- > 0) {
514 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
515 			return pos;
516 
517 		pos = PCI_EXT_CAP_NEXT(header);
518 		if (pos < PCI_CFG_SPACE_SIZE)
519 			break;
520 
521 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
522 			break;
523 	}
524 
525 	return 0;
526 }
527 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
528 
529 /**
530  * pci_find_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @cap: capability code
533  *
534  * Returns the address of the requested extended capability structure
535  * within the device's PCI configuration space or 0 if the device does
536  * not support it.  Possible values for @cap:
537  *
538  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
539  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
540  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
541  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
542  */
543 int pci_find_ext_capability(struct pci_dev *dev, int cap)
544 {
545 	return pci_find_next_ext_capability(dev, 0, cap);
546 }
547 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
548 
549 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
550 {
551 	int rc, ttl = PCI_FIND_CAP_TTL;
552 	u8 cap, mask;
553 
554 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
555 		mask = HT_3BIT_CAP_MASK;
556 	else
557 		mask = HT_5BIT_CAP_MASK;
558 
559 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
560 				      PCI_CAP_ID_HT, &ttl);
561 	while (pos) {
562 		rc = pci_read_config_byte(dev, pos + 3, &cap);
563 		if (rc != PCIBIOS_SUCCESSFUL)
564 			return 0;
565 
566 		if ((cap & mask) == ht_cap)
567 			return pos;
568 
569 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
570 					      pos + PCI_CAP_LIST_NEXT,
571 					      PCI_CAP_ID_HT, &ttl);
572 	}
573 
574 	return 0;
575 }
576 /**
577  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
578  * @dev: PCI device to query
579  * @pos: Position from which to continue searching
580  * @ht_cap: Hypertransport capability code
581  *
582  * To be used in conjunction with pci_find_ht_capability() to search for
583  * all capabilities matching @ht_cap. @pos should always be a value returned
584  * from pci_find_ht_capability().
585  *
586  * NB. To be 100% safe against broken PCI devices, the caller should take
587  * steps to avoid an infinite loop.
588  */
589 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
590 {
591 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
592 }
593 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
594 
595 /**
596  * pci_find_ht_capability - query a device's Hypertransport capabilities
597  * @dev: PCI device to query
598  * @ht_cap: Hypertransport capability code
599  *
600  * Tell if a device supports a given Hypertransport capability.
601  * Returns an address within the device's PCI configuration space
602  * or 0 in case the device does not support the request capability.
603  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
604  * which has a Hypertransport capability matching @ht_cap.
605  */
606 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
607 {
608 	int pos;
609 
610 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
611 	if (pos)
612 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
613 
614 	return pos;
615 }
616 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
617 
618 /**
619  * pci_find_parent_resource - return resource region of parent bus of given region
620  * @dev: PCI device structure contains resources to be searched
621  * @res: child resource record for which parent is sought
622  *
623  *  For given resource region of given device, return the resource
624  *  region of parent bus the given region is contained in.
625  */
626 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
627 					  struct resource *res)
628 {
629 	const struct pci_bus *bus = dev->bus;
630 	struct resource *r;
631 	int i;
632 
633 	pci_bus_for_each_resource(bus, r, i) {
634 		if (!r)
635 			continue;
636 		if (resource_contains(r, res)) {
637 
638 			/*
639 			 * If the window is prefetchable but the BAR is
640 			 * not, the allocator made a mistake.
641 			 */
642 			if (r->flags & IORESOURCE_PREFETCH &&
643 			    !(res->flags & IORESOURCE_PREFETCH))
644 				return NULL;
645 
646 			/*
647 			 * If we're below a transparent bridge, there may
648 			 * be both a positively-decoded aperture and a
649 			 * subtractively-decoded region that contain the BAR.
650 			 * We want the positively-decoded one, so this depends
651 			 * on pci_bus_for_each_resource() giving us those
652 			 * first.
653 			 */
654 			return r;
655 		}
656 	}
657 	return NULL;
658 }
659 EXPORT_SYMBOL(pci_find_parent_resource);
660 
661 /**
662  * pci_find_resource - Return matching PCI device resource
663  * @dev: PCI device to query
664  * @res: Resource to look for
665  *
666  * Goes over standard PCI resources (BARs) and checks if the given resource
667  * is partially or fully contained in any of them. In that case the
668  * matching resource is returned, %NULL otherwise.
669  */
670 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
671 {
672 	int i;
673 
674 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
675 		struct resource *r = &dev->resource[i];
676 
677 		if (r->start && resource_contains(r, res))
678 			return r;
679 	}
680 
681 	return NULL;
682 }
683 EXPORT_SYMBOL(pci_find_resource);
684 
685 /**
686  * pci_find_pcie_root_port - return PCIe Root Port
687  * @dev: PCI device to query
688  *
689  * Traverse up the parent chain and return the PCIe Root Port PCI Device
690  * for a given PCI Device.
691  */
692 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
693 {
694 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
695 
696 	bridge = pci_upstream_bridge(dev);
697 	while (bridge && pci_is_pcie(bridge)) {
698 		highest_pcie_bridge = bridge;
699 		bridge = pci_upstream_bridge(bridge);
700 	}
701 
702 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
703 		return NULL;
704 
705 	return highest_pcie_bridge;
706 }
707 EXPORT_SYMBOL(pci_find_pcie_root_port);
708 
709 /**
710  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
711  * @dev: the PCI device to operate on
712  * @pos: config space offset of status word
713  * @mask: mask of bit(s) to care about in status word
714  *
715  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
716  */
717 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
718 {
719 	int i;
720 
721 	/* Wait for Transaction Pending bit clean */
722 	for (i = 0; i < 4; i++) {
723 		u16 status;
724 		if (i)
725 			msleep((1 << (i - 1)) * 100);
726 
727 		pci_read_config_word(dev, pos, &status);
728 		if (!(status & mask))
729 			return 1;
730 	}
731 
732 	return 0;
733 }
734 
735 /**
736  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
737  * @dev: PCI device to have its BARs restored
738  *
739  * Restore the BAR values for a given device, so as to make it
740  * accessible by its driver.
741  */
742 static void pci_restore_bars(struct pci_dev *dev)
743 {
744 	int i;
745 
746 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
747 		pci_update_resource(dev, i);
748 }
749 
750 static const struct pci_platform_pm_ops *pci_platform_pm;
751 
752 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
753 {
754 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
755 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
756 		return -EINVAL;
757 	pci_platform_pm = ops;
758 	return 0;
759 }
760 
761 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
762 {
763 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
764 }
765 
766 static inline int platform_pci_set_power_state(struct pci_dev *dev,
767 					       pci_power_t t)
768 {
769 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
770 }
771 
772 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
773 {
774 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
775 }
776 
777 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
778 {
779 	return pci_platform_pm ?
780 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
781 }
782 
783 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
784 {
785 	return pci_platform_pm ?
786 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
787 }
788 
789 static inline bool platform_pci_need_resume(struct pci_dev *dev)
790 {
791 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
792 }
793 
794 /**
795  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
796  *                           given PCI device
797  * @dev: PCI device to handle.
798  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
799  *
800  * RETURN VALUE:
801  * -EINVAL if the requested state is invalid.
802  * -EIO if device does not support PCI PM or its PM capabilities register has a
803  * wrong version, or device doesn't support the requested state.
804  * 0 if device already is in the requested state.
805  * 0 if device's power state has been successfully changed.
806  */
807 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
808 {
809 	u16 pmcsr;
810 	bool need_restore = false;
811 
812 	/* Check if we're already there */
813 	if (dev->current_state == state)
814 		return 0;
815 
816 	if (!dev->pm_cap)
817 		return -EIO;
818 
819 	if (state < PCI_D0 || state > PCI_D3hot)
820 		return -EINVAL;
821 
822 	/* Validate current state:
823 	 * Can enter D0 from any state, but if we can only go deeper
824 	 * to sleep if we're already in a low power state
825 	 */
826 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
827 	    && dev->current_state > state) {
828 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
829 			dev->current_state, state);
830 		return -EINVAL;
831 	}
832 
833 	/* check if this device supports the desired state */
834 	if ((state == PCI_D1 && !dev->d1_support)
835 	   || (state == PCI_D2 && !dev->d2_support))
836 		return -EIO;
837 
838 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
839 
840 	/* If we're (effectively) in D3, force entire word to 0.
841 	 * This doesn't affect PME_Status, disables PME_En, and
842 	 * sets PowerState to 0.
843 	 */
844 	switch (dev->current_state) {
845 	case PCI_D0:
846 	case PCI_D1:
847 	case PCI_D2:
848 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
849 		pmcsr |= state;
850 		break;
851 	case PCI_D3hot:
852 	case PCI_D3cold:
853 	case PCI_UNKNOWN: /* Boot-up */
854 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
855 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
856 			need_restore = true;
857 		/* Fall-through: force to D0 */
858 	default:
859 		pmcsr = 0;
860 		break;
861 	}
862 
863 	/* enter specified state */
864 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
865 
866 	/* Mandatory power management transition delays */
867 	/* see PCI PM 1.1 5.6.1 table 18 */
868 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
869 		pci_dev_d3_sleep(dev);
870 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
871 		udelay(PCI_PM_D2_DELAY);
872 
873 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
874 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
875 	if (dev->current_state != state && printk_ratelimit())
876 		pci_info(dev, "Refused to change power state, currently in D%d\n",
877 			 dev->current_state);
878 
879 	/*
880 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
881 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
882 	 * from D3hot to D0 _may_ perform an internal reset, thereby
883 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
884 	 * For example, at least some versions of the 3c905B and the
885 	 * 3c556B exhibit this behaviour.
886 	 *
887 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
888 	 * devices in a D3hot state at boot.  Consequently, we need to
889 	 * restore at least the BARs so that the device will be
890 	 * accessible to its driver.
891 	 */
892 	if (need_restore)
893 		pci_restore_bars(dev);
894 
895 	if (dev->bus->self)
896 		pcie_aspm_pm_state_change(dev->bus->self);
897 
898 	return 0;
899 }
900 
901 /**
902  * pci_update_current_state - Read power state of given device and cache it
903  * @dev: PCI device to handle.
904  * @state: State to cache in case the device doesn't have the PM capability
905  *
906  * The power state is read from the PMCSR register, which however is
907  * inaccessible in D3cold.  The platform firmware is therefore queried first
908  * to detect accessibility of the register.  In case the platform firmware
909  * reports an incorrect state or the device isn't power manageable by the
910  * platform at all, we try to detect D3cold by testing accessibility of the
911  * vendor ID in config space.
912  */
913 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
914 {
915 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
916 	    !pci_device_is_present(dev)) {
917 		dev->current_state = PCI_D3cold;
918 	} else if (dev->pm_cap) {
919 		u16 pmcsr;
920 
921 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
922 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
923 	} else {
924 		dev->current_state = state;
925 	}
926 }
927 
928 /**
929  * pci_power_up - Put the given device into D0 forcibly
930  * @dev: PCI device to power up
931  */
932 void pci_power_up(struct pci_dev *dev)
933 {
934 	if (platform_pci_power_manageable(dev))
935 		platform_pci_set_power_state(dev, PCI_D0);
936 
937 	pci_raw_set_power_state(dev, PCI_D0);
938 	pci_update_current_state(dev, PCI_D0);
939 }
940 
941 /**
942  * pci_platform_power_transition - Use platform to change device power state
943  * @dev: PCI device to handle.
944  * @state: State to put the device into.
945  */
946 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
947 {
948 	int error;
949 
950 	if (platform_pci_power_manageable(dev)) {
951 		error = platform_pci_set_power_state(dev, state);
952 		if (!error)
953 			pci_update_current_state(dev, state);
954 	} else
955 		error = -ENODEV;
956 
957 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
958 		dev->current_state = PCI_D0;
959 
960 	return error;
961 }
962 
963 /**
964  * pci_wakeup - Wake up a PCI device
965  * @pci_dev: Device to handle.
966  * @ign: ignored parameter
967  */
968 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
969 {
970 	pci_wakeup_event(pci_dev);
971 	pm_request_resume(&pci_dev->dev);
972 	return 0;
973 }
974 
975 /**
976  * pci_wakeup_bus - Walk given bus and wake up devices on it
977  * @bus: Top bus of the subtree to walk.
978  */
979 void pci_wakeup_bus(struct pci_bus *bus)
980 {
981 	if (bus)
982 		pci_walk_bus(bus, pci_wakeup, NULL);
983 }
984 
985 /**
986  * __pci_start_power_transition - Start power transition of a PCI device
987  * @dev: PCI device to handle.
988  * @state: State to put the device into.
989  */
990 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
991 {
992 	if (state == PCI_D0) {
993 		pci_platform_power_transition(dev, PCI_D0);
994 		/*
995 		 * Mandatory power management transition delays, see
996 		 * PCI Express Base Specification Revision 2.0 Section
997 		 * 6.6.1: Conventional Reset.  Do not delay for
998 		 * devices powered on/off by corresponding bridge,
999 		 * because have already delayed for the bridge.
1000 		 */
1001 		if (dev->runtime_d3cold) {
1002 			if (dev->d3cold_delay)
1003 				msleep(dev->d3cold_delay);
1004 			/*
1005 			 * When powering on a bridge from D3cold, the
1006 			 * whole hierarchy may be powered on into
1007 			 * D0uninitialized state, resume them to give
1008 			 * them a chance to suspend again
1009 			 */
1010 			pci_wakeup_bus(dev->subordinate);
1011 		}
1012 	}
1013 }
1014 
1015 /**
1016  * __pci_dev_set_current_state - Set current state of a PCI device
1017  * @dev: Device to handle
1018  * @data: pointer to state to be set
1019  */
1020 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1021 {
1022 	pci_power_t state = *(pci_power_t *)data;
1023 
1024 	dev->current_state = state;
1025 	return 0;
1026 }
1027 
1028 /**
1029  * pci_bus_set_current_state - Walk given bus and set current state of devices
1030  * @bus: Top bus of the subtree to walk.
1031  * @state: state to be set
1032  */
1033 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1034 {
1035 	if (bus)
1036 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1037 }
1038 
1039 /**
1040  * __pci_complete_power_transition - Complete power transition of a PCI device
1041  * @dev: PCI device to handle.
1042  * @state: State to put the device into.
1043  *
1044  * This function should not be called directly by device drivers.
1045  */
1046 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1047 {
1048 	int ret;
1049 
1050 	if (state <= PCI_D0)
1051 		return -EINVAL;
1052 	ret = pci_platform_power_transition(dev, state);
1053 	/* Power off the bridge may power off the whole hierarchy */
1054 	if (!ret && state == PCI_D3cold)
1055 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1059 
1060 /**
1061  * pci_set_power_state - Set the power state of a PCI device
1062  * @dev: PCI device to handle.
1063  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1064  *
1065  * Transition a device to a new power state, using the platform firmware and/or
1066  * the device's PCI PM registers.
1067  *
1068  * RETURN VALUE:
1069  * -EINVAL if the requested state is invalid.
1070  * -EIO if device does not support PCI PM or its PM capabilities register has a
1071  * wrong version, or device doesn't support the requested state.
1072  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1073  * 0 if device already is in the requested state.
1074  * 0 if the transition is to D3 but D3 is not supported.
1075  * 0 if device's power state has been successfully changed.
1076  */
1077 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1078 {
1079 	int error;
1080 
1081 	/* bound the state we're entering */
1082 	if (state > PCI_D3cold)
1083 		state = PCI_D3cold;
1084 	else if (state < PCI_D0)
1085 		state = PCI_D0;
1086 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1087 		/*
1088 		 * If the device or the parent bridge do not support PCI PM,
1089 		 * ignore the request if we're doing anything other than putting
1090 		 * it into D0 (which would only happen on boot).
1091 		 */
1092 		return 0;
1093 
1094 	/* Check if we're already there */
1095 	if (dev->current_state == state)
1096 		return 0;
1097 
1098 	__pci_start_power_transition(dev, state);
1099 
1100 	/* This device is quirked not to be put into D3, so
1101 	   don't put it in D3 */
1102 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1103 		return 0;
1104 
1105 	/*
1106 	 * To put device in D3cold, we put device into D3hot in native
1107 	 * way, then put device into D3cold with platform ops
1108 	 */
1109 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1110 					PCI_D3hot : state);
1111 
1112 	if (!__pci_complete_power_transition(dev, state))
1113 		error = 0;
1114 
1115 	return error;
1116 }
1117 EXPORT_SYMBOL(pci_set_power_state);
1118 
1119 /**
1120  * pci_choose_state - Choose the power state of a PCI device
1121  * @dev: PCI device to be suspended
1122  * @state: target sleep state for the whole system. This is the value
1123  *	that is passed to suspend() function.
1124  *
1125  * Returns PCI power state suitable for given device and given system
1126  * message.
1127  */
1128 
1129 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1130 {
1131 	pci_power_t ret;
1132 
1133 	if (!dev->pm_cap)
1134 		return PCI_D0;
1135 
1136 	ret = platform_pci_choose_state(dev);
1137 	if (ret != PCI_POWER_ERROR)
1138 		return ret;
1139 
1140 	switch (state.event) {
1141 	case PM_EVENT_ON:
1142 		return PCI_D0;
1143 	case PM_EVENT_FREEZE:
1144 	case PM_EVENT_PRETHAW:
1145 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1146 	case PM_EVENT_SUSPEND:
1147 	case PM_EVENT_HIBERNATE:
1148 		return PCI_D3hot;
1149 	default:
1150 		pci_info(dev, "unrecognized suspend event %d\n",
1151 			 state.event);
1152 		BUG();
1153 	}
1154 	return PCI_D0;
1155 }
1156 EXPORT_SYMBOL(pci_choose_state);
1157 
1158 #define PCI_EXP_SAVE_REGS	7
1159 
1160 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1161 						       u16 cap, bool extended)
1162 {
1163 	struct pci_cap_saved_state *tmp;
1164 
1165 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1166 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1167 			return tmp;
1168 	}
1169 	return NULL;
1170 }
1171 
1172 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1173 {
1174 	return _pci_find_saved_cap(dev, cap, false);
1175 }
1176 
1177 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1178 {
1179 	return _pci_find_saved_cap(dev, cap, true);
1180 }
1181 
1182 static int pci_save_pcie_state(struct pci_dev *dev)
1183 {
1184 	int i = 0;
1185 	struct pci_cap_saved_state *save_state;
1186 	u16 *cap;
1187 
1188 	if (!pci_is_pcie(dev))
1189 		return 0;
1190 
1191 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1192 	if (!save_state) {
1193 		pci_err(dev, "buffer not found in %s\n", __func__);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	cap = (u16 *)&save_state->cap.data[0];
1198 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1199 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1200 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1201 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1202 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1203 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1204 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1205 
1206 	return 0;
1207 }
1208 
1209 static void pci_restore_pcie_state(struct pci_dev *dev)
1210 {
1211 	int i = 0;
1212 	struct pci_cap_saved_state *save_state;
1213 	u16 *cap;
1214 
1215 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1216 	if (!save_state)
1217 		return;
1218 
1219 	cap = (u16 *)&save_state->cap.data[0];
1220 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1221 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1222 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1223 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1224 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1225 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1226 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1227 }
1228 
1229 
1230 static int pci_save_pcix_state(struct pci_dev *dev)
1231 {
1232 	int pos;
1233 	struct pci_cap_saved_state *save_state;
1234 
1235 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1236 	if (!pos)
1237 		return 0;
1238 
1239 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1240 	if (!save_state) {
1241 		pci_err(dev, "buffer not found in %s\n", __func__);
1242 		return -ENOMEM;
1243 	}
1244 
1245 	pci_read_config_word(dev, pos + PCI_X_CMD,
1246 			     (u16 *)save_state->cap.data);
1247 
1248 	return 0;
1249 }
1250 
1251 static void pci_restore_pcix_state(struct pci_dev *dev)
1252 {
1253 	int i = 0, pos;
1254 	struct pci_cap_saved_state *save_state;
1255 	u16 *cap;
1256 
1257 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1258 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1259 	if (!save_state || !pos)
1260 		return;
1261 	cap = (u16 *)&save_state->cap.data[0];
1262 
1263 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1264 }
1265 
1266 
1267 /**
1268  * pci_save_state - save the PCI configuration space of a device before suspending
1269  * @dev: - PCI device that we're dealing with
1270  */
1271 int pci_save_state(struct pci_dev *dev)
1272 {
1273 	int i;
1274 	/* XXX: 100% dword access ok here? */
1275 	for (i = 0; i < 16; i++)
1276 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1277 	dev->state_saved = true;
1278 
1279 	i = pci_save_pcie_state(dev);
1280 	if (i != 0)
1281 		return i;
1282 
1283 	i = pci_save_pcix_state(dev);
1284 	if (i != 0)
1285 		return i;
1286 
1287 	return pci_save_vc_state(dev);
1288 }
1289 EXPORT_SYMBOL(pci_save_state);
1290 
1291 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1292 				     u32 saved_val, int retry, bool force)
1293 {
1294 	u32 val;
1295 
1296 	pci_read_config_dword(pdev, offset, &val);
1297 	if (!force && val == saved_val)
1298 		return;
1299 
1300 	for (;;) {
1301 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1302 			offset, val, saved_val);
1303 		pci_write_config_dword(pdev, offset, saved_val);
1304 		if (retry-- <= 0)
1305 			return;
1306 
1307 		pci_read_config_dword(pdev, offset, &val);
1308 		if (val == saved_val)
1309 			return;
1310 
1311 		mdelay(1);
1312 	}
1313 }
1314 
1315 static void pci_restore_config_space_range(struct pci_dev *pdev,
1316 					   int start, int end, int retry,
1317 					   bool force)
1318 {
1319 	int index;
1320 
1321 	for (index = end; index >= start; index--)
1322 		pci_restore_config_dword(pdev, 4 * index,
1323 					 pdev->saved_config_space[index],
1324 					 retry, force);
1325 }
1326 
1327 static void pci_restore_config_space(struct pci_dev *pdev)
1328 {
1329 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1330 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1331 		/* Restore BARs before the command register. */
1332 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1333 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1334 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1335 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1336 
1337 		/*
1338 		 * Force rewriting of prefetch registers to avoid S3 resume
1339 		 * issues on Intel PCI bridges that occur when these
1340 		 * registers are not explicitly written.
1341 		 */
1342 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1343 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1344 	} else {
1345 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1346 	}
1347 }
1348 
1349 static void pci_restore_rebar_state(struct pci_dev *pdev)
1350 {
1351 	unsigned int pos, nbars, i;
1352 	u32 ctrl;
1353 
1354 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1355 	if (!pos)
1356 		return;
1357 
1358 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1359 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1360 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1361 
1362 	for (i = 0; i < nbars; i++, pos += 8) {
1363 		struct resource *res;
1364 		int bar_idx, size;
1365 
1366 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1367 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1368 		res = pdev->resource + bar_idx;
1369 		size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1370 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1371 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1372 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1373 	}
1374 }
1375 
1376 /**
1377  * pci_restore_state - Restore the saved state of a PCI device
1378  * @dev: - PCI device that we're dealing with
1379  */
1380 void pci_restore_state(struct pci_dev *dev)
1381 {
1382 	if (!dev->state_saved)
1383 		return;
1384 
1385 	/* PCI Express register must be restored first */
1386 	pci_restore_pcie_state(dev);
1387 	pci_restore_pasid_state(dev);
1388 	pci_restore_pri_state(dev);
1389 	pci_restore_ats_state(dev);
1390 	pci_restore_vc_state(dev);
1391 	pci_restore_rebar_state(dev);
1392 
1393 	pci_cleanup_aer_error_status_regs(dev);
1394 
1395 	pci_restore_config_space(dev);
1396 
1397 	pci_restore_pcix_state(dev);
1398 	pci_restore_msi_state(dev);
1399 
1400 	/* Restore ACS and IOV configuration state */
1401 	pci_enable_acs(dev);
1402 	pci_restore_iov_state(dev);
1403 
1404 	dev->state_saved = false;
1405 }
1406 EXPORT_SYMBOL(pci_restore_state);
1407 
1408 struct pci_saved_state {
1409 	u32 config_space[16];
1410 	struct pci_cap_saved_data cap[0];
1411 };
1412 
1413 /**
1414  * pci_store_saved_state - Allocate and return an opaque struct containing
1415  *			   the device saved state.
1416  * @dev: PCI device that we're dealing with
1417  *
1418  * Return NULL if no state or error.
1419  */
1420 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1421 {
1422 	struct pci_saved_state *state;
1423 	struct pci_cap_saved_state *tmp;
1424 	struct pci_cap_saved_data *cap;
1425 	size_t size;
1426 
1427 	if (!dev->state_saved)
1428 		return NULL;
1429 
1430 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1431 
1432 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1433 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1434 
1435 	state = kzalloc(size, GFP_KERNEL);
1436 	if (!state)
1437 		return NULL;
1438 
1439 	memcpy(state->config_space, dev->saved_config_space,
1440 	       sizeof(state->config_space));
1441 
1442 	cap = state->cap;
1443 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1444 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1445 		memcpy(cap, &tmp->cap, len);
1446 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1447 	}
1448 	/* Empty cap_save terminates list */
1449 
1450 	return state;
1451 }
1452 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1453 
1454 /**
1455  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1456  * @dev: PCI device that we're dealing with
1457  * @state: Saved state returned from pci_store_saved_state()
1458  */
1459 int pci_load_saved_state(struct pci_dev *dev,
1460 			 struct pci_saved_state *state)
1461 {
1462 	struct pci_cap_saved_data *cap;
1463 
1464 	dev->state_saved = false;
1465 
1466 	if (!state)
1467 		return 0;
1468 
1469 	memcpy(dev->saved_config_space, state->config_space,
1470 	       sizeof(state->config_space));
1471 
1472 	cap = state->cap;
1473 	while (cap->size) {
1474 		struct pci_cap_saved_state *tmp;
1475 
1476 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1477 		if (!tmp || tmp->cap.size != cap->size)
1478 			return -EINVAL;
1479 
1480 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1481 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1482 		       sizeof(struct pci_cap_saved_data) + cap->size);
1483 	}
1484 
1485 	dev->state_saved = true;
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1489 
1490 /**
1491  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1492  *				   and free the memory allocated for it.
1493  * @dev: PCI device that we're dealing with
1494  * @state: Pointer to saved state returned from pci_store_saved_state()
1495  */
1496 int pci_load_and_free_saved_state(struct pci_dev *dev,
1497 				  struct pci_saved_state **state)
1498 {
1499 	int ret = pci_load_saved_state(dev, *state);
1500 	kfree(*state);
1501 	*state = NULL;
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1505 
1506 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1507 {
1508 	return pci_enable_resources(dev, bars);
1509 }
1510 
1511 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1512 {
1513 	int err;
1514 	struct pci_dev *bridge;
1515 	u16 cmd;
1516 	u8 pin;
1517 
1518 	err = pci_set_power_state(dev, PCI_D0);
1519 	if (err < 0 && err != -EIO)
1520 		return err;
1521 
1522 	bridge = pci_upstream_bridge(dev);
1523 	if (bridge)
1524 		pcie_aspm_powersave_config_link(bridge);
1525 
1526 	err = pcibios_enable_device(dev, bars);
1527 	if (err < 0)
1528 		return err;
1529 	pci_fixup_device(pci_fixup_enable, dev);
1530 
1531 	if (dev->msi_enabled || dev->msix_enabled)
1532 		return 0;
1533 
1534 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1535 	if (pin) {
1536 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1537 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1538 			pci_write_config_word(dev, PCI_COMMAND,
1539 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 /**
1546  * pci_reenable_device - Resume abandoned device
1547  * @dev: PCI device to be resumed
1548  *
1549  *  Note this function is a backend of pci_default_resume and is not supposed
1550  *  to be called by normal code, write proper resume handler and use it instead.
1551  */
1552 int pci_reenable_device(struct pci_dev *dev)
1553 {
1554 	if (pci_is_enabled(dev))
1555 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(pci_reenable_device);
1559 
1560 static void pci_enable_bridge(struct pci_dev *dev)
1561 {
1562 	struct pci_dev *bridge;
1563 	int retval;
1564 
1565 	bridge = pci_upstream_bridge(dev);
1566 	if (bridge)
1567 		pci_enable_bridge(bridge);
1568 
1569 	if (pci_is_enabled(dev)) {
1570 		if (!dev->is_busmaster)
1571 			pci_set_master(dev);
1572 		return;
1573 	}
1574 
1575 	retval = pci_enable_device(dev);
1576 	if (retval)
1577 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1578 			retval);
1579 	pci_set_master(dev);
1580 }
1581 
1582 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1583 {
1584 	struct pci_dev *bridge;
1585 	int err;
1586 	int i, bars = 0;
1587 
1588 	/*
1589 	 * Power state could be unknown at this point, either due to a fresh
1590 	 * boot or a device removal call.  So get the current power state
1591 	 * so that things like MSI message writing will behave as expected
1592 	 * (e.g. if the device really is in D0 at enable time).
1593 	 */
1594 	if (dev->pm_cap) {
1595 		u16 pmcsr;
1596 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1597 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1598 	}
1599 
1600 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1601 		return 0;		/* already enabled */
1602 
1603 	bridge = pci_upstream_bridge(dev);
1604 	if (bridge)
1605 		pci_enable_bridge(bridge);
1606 
1607 	/* only skip sriov related */
1608 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1609 		if (dev->resource[i].flags & flags)
1610 			bars |= (1 << i);
1611 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1612 		if (dev->resource[i].flags & flags)
1613 			bars |= (1 << i);
1614 
1615 	err = do_pci_enable_device(dev, bars);
1616 	if (err < 0)
1617 		atomic_dec(&dev->enable_cnt);
1618 	return err;
1619 }
1620 
1621 /**
1622  * pci_enable_device_io - Initialize a device for use with IO space
1623  * @dev: PCI device to be initialized
1624  *
1625  *  Initialize device before it's used by a driver. Ask low-level code
1626  *  to enable I/O resources. Wake up the device if it was suspended.
1627  *  Beware, this function can fail.
1628  */
1629 int pci_enable_device_io(struct pci_dev *dev)
1630 {
1631 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1632 }
1633 EXPORT_SYMBOL(pci_enable_device_io);
1634 
1635 /**
1636  * pci_enable_device_mem - Initialize a device for use with Memory space
1637  * @dev: PCI device to be initialized
1638  *
1639  *  Initialize device before it's used by a driver. Ask low-level code
1640  *  to enable Memory resources. Wake up the device if it was suspended.
1641  *  Beware, this function can fail.
1642  */
1643 int pci_enable_device_mem(struct pci_dev *dev)
1644 {
1645 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1646 }
1647 EXPORT_SYMBOL(pci_enable_device_mem);
1648 
1649 /**
1650  * pci_enable_device - Initialize device before it's used by a driver.
1651  * @dev: PCI device to be initialized
1652  *
1653  *  Initialize device before it's used by a driver. Ask low-level code
1654  *  to enable I/O and memory. Wake up the device if it was suspended.
1655  *  Beware, this function can fail.
1656  *
1657  *  Note we don't actually enable the device many times if we call
1658  *  this function repeatedly (we just increment the count).
1659  */
1660 int pci_enable_device(struct pci_dev *dev)
1661 {
1662 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1663 }
1664 EXPORT_SYMBOL(pci_enable_device);
1665 
1666 /*
1667  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1668  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1669  * there's no need to track it separately.  pci_devres is initialized
1670  * when a device is enabled using managed PCI device enable interface.
1671  */
1672 struct pci_devres {
1673 	unsigned int enabled:1;
1674 	unsigned int pinned:1;
1675 	unsigned int orig_intx:1;
1676 	unsigned int restore_intx:1;
1677 	unsigned int mwi:1;
1678 	u32 region_mask;
1679 };
1680 
1681 static void pcim_release(struct device *gendev, void *res)
1682 {
1683 	struct pci_dev *dev = to_pci_dev(gendev);
1684 	struct pci_devres *this = res;
1685 	int i;
1686 
1687 	if (dev->msi_enabled)
1688 		pci_disable_msi(dev);
1689 	if (dev->msix_enabled)
1690 		pci_disable_msix(dev);
1691 
1692 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1693 		if (this->region_mask & (1 << i))
1694 			pci_release_region(dev, i);
1695 
1696 	if (this->mwi)
1697 		pci_clear_mwi(dev);
1698 
1699 	if (this->restore_intx)
1700 		pci_intx(dev, this->orig_intx);
1701 
1702 	if (this->enabled && !this->pinned)
1703 		pci_disable_device(dev);
1704 }
1705 
1706 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1707 {
1708 	struct pci_devres *dr, *new_dr;
1709 
1710 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1711 	if (dr)
1712 		return dr;
1713 
1714 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1715 	if (!new_dr)
1716 		return NULL;
1717 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1718 }
1719 
1720 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1721 {
1722 	if (pci_is_managed(pdev))
1723 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1724 	return NULL;
1725 }
1726 
1727 /**
1728  * pcim_enable_device - Managed pci_enable_device()
1729  * @pdev: PCI device to be initialized
1730  *
1731  * Managed pci_enable_device().
1732  */
1733 int pcim_enable_device(struct pci_dev *pdev)
1734 {
1735 	struct pci_devres *dr;
1736 	int rc;
1737 
1738 	dr = get_pci_dr(pdev);
1739 	if (unlikely(!dr))
1740 		return -ENOMEM;
1741 	if (dr->enabled)
1742 		return 0;
1743 
1744 	rc = pci_enable_device(pdev);
1745 	if (!rc) {
1746 		pdev->is_managed = 1;
1747 		dr->enabled = 1;
1748 	}
1749 	return rc;
1750 }
1751 EXPORT_SYMBOL(pcim_enable_device);
1752 
1753 /**
1754  * pcim_pin_device - Pin managed PCI device
1755  * @pdev: PCI device to pin
1756  *
1757  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1758  * driver detach.  @pdev must have been enabled with
1759  * pcim_enable_device().
1760  */
1761 void pcim_pin_device(struct pci_dev *pdev)
1762 {
1763 	struct pci_devres *dr;
1764 
1765 	dr = find_pci_dr(pdev);
1766 	WARN_ON(!dr || !dr->enabled);
1767 	if (dr)
1768 		dr->pinned = 1;
1769 }
1770 EXPORT_SYMBOL(pcim_pin_device);
1771 
1772 /*
1773  * pcibios_add_device - provide arch specific hooks when adding device dev
1774  * @dev: the PCI device being added
1775  *
1776  * Permits the platform to provide architecture specific functionality when
1777  * devices are added. This is the default implementation. Architecture
1778  * implementations can override this.
1779  */
1780 int __weak pcibios_add_device(struct pci_dev *dev)
1781 {
1782 	return 0;
1783 }
1784 
1785 /**
1786  * pcibios_release_device - provide arch specific hooks when releasing device dev
1787  * @dev: the PCI device being released
1788  *
1789  * Permits the platform to provide architecture specific functionality when
1790  * devices are released. This is the default implementation. Architecture
1791  * implementations can override this.
1792  */
1793 void __weak pcibios_release_device(struct pci_dev *dev) {}
1794 
1795 /**
1796  * pcibios_disable_device - disable arch specific PCI resources for device dev
1797  * @dev: the PCI device to disable
1798  *
1799  * Disables architecture specific PCI resources for the device. This
1800  * is the default implementation. Architecture implementations can
1801  * override this.
1802  */
1803 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1804 
1805 /**
1806  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1807  * @irq: ISA IRQ to penalize
1808  * @active: IRQ active or not
1809  *
1810  * Permits the platform to provide architecture-specific functionality when
1811  * penalizing ISA IRQs. This is the default implementation. Architecture
1812  * implementations can override this.
1813  */
1814 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1815 
1816 static void do_pci_disable_device(struct pci_dev *dev)
1817 {
1818 	u16 pci_command;
1819 
1820 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1821 	if (pci_command & PCI_COMMAND_MASTER) {
1822 		pci_command &= ~PCI_COMMAND_MASTER;
1823 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1824 	}
1825 
1826 	pcibios_disable_device(dev);
1827 }
1828 
1829 /**
1830  * pci_disable_enabled_device - Disable device without updating enable_cnt
1831  * @dev: PCI device to disable
1832  *
1833  * NOTE: This function is a backend of PCI power management routines and is
1834  * not supposed to be called drivers.
1835  */
1836 void pci_disable_enabled_device(struct pci_dev *dev)
1837 {
1838 	if (pci_is_enabled(dev))
1839 		do_pci_disable_device(dev);
1840 }
1841 
1842 /**
1843  * pci_disable_device - Disable PCI device after use
1844  * @dev: PCI device to be disabled
1845  *
1846  * Signal to the system that the PCI device is not in use by the system
1847  * anymore.  This only involves disabling PCI bus-mastering, if active.
1848  *
1849  * Note we don't actually disable the device until all callers of
1850  * pci_enable_device() have called pci_disable_device().
1851  */
1852 void pci_disable_device(struct pci_dev *dev)
1853 {
1854 	struct pci_devres *dr;
1855 
1856 	dr = find_pci_dr(dev);
1857 	if (dr)
1858 		dr->enabled = 0;
1859 
1860 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1861 		      "disabling already-disabled device");
1862 
1863 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1864 		return;
1865 
1866 	do_pci_disable_device(dev);
1867 
1868 	dev->is_busmaster = 0;
1869 }
1870 EXPORT_SYMBOL(pci_disable_device);
1871 
1872 /**
1873  * pcibios_set_pcie_reset_state - set reset state for device dev
1874  * @dev: the PCIe device reset
1875  * @state: Reset state to enter into
1876  *
1877  *
1878  * Sets the PCIe reset state for the device. This is the default
1879  * implementation. Architecture implementations can override this.
1880  */
1881 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1882 					enum pcie_reset_state state)
1883 {
1884 	return -EINVAL;
1885 }
1886 
1887 /**
1888  * pci_set_pcie_reset_state - set reset state for device dev
1889  * @dev: the PCIe device reset
1890  * @state: Reset state to enter into
1891  *
1892  *
1893  * Sets the PCI reset state for the device.
1894  */
1895 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1896 {
1897 	return pcibios_set_pcie_reset_state(dev, state);
1898 }
1899 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1900 
1901 /**
1902  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1903  * @dev: PCIe root port or event collector.
1904  */
1905 void pcie_clear_root_pme_status(struct pci_dev *dev)
1906 {
1907 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1908 }
1909 
1910 /**
1911  * pci_check_pme_status - Check if given device has generated PME.
1912  * @dev: Device to check.
1913  *
1914  * Check the PME status of the device and if set, clear it and clear PME enable
1915  * (if set).  Return 'true' if PME status and PME enable were both set or
1916  * 'false' otherwise.
1917  */
1918 bool pci_check_pme_status(struct pci_dev *dev)
1919 {
1920 	int pmcsr_pos;
1921 	u16 pmcsr;
1922 	bool ret = false;
1923 
1924 	if (!dev->pm_cap)
1925 		return false;
1926 
1927 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1928 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1929 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1930 		return false;
1931 
1932 	/* Clear PME status. */
1933 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1934 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1935 		/* Disable PME to avoid interrupt flood. */
1936 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1937 		ret = true;
1938 	}
1939 
1940 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1941 
1942 	return ret;
1943 }
1944 
1945 /**
1946  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1947  * @dev: Device to handle.
1948  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1949  *
1950  * Check if @dev has generated PME and queue a resume request for it in that
1951  * case.
1952  */
1953 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1954 {
1955 	if (pme_poll_reset && dev->pme_poll)
1956 		dev->pme_poll = false;
1957 
1958 	if (pci_check_pme_status(dev)) {
1959 		pci_wakeup_event(dev);
1960 		pm_request_resume(&dev->dev);
1961 	}
1962 	return 0;
1963 }
1964 
1965 /**
1966  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1967  * @bus: Top bus of the subtree to walk.
1968  */
1969 void pci_pme_wakeup_bus(struct pci_bus *bus)
1970 {
1971 	if (bus)
1972 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1973 }
1974 
1975 
1976 /**
1977  * pci_pme_capable - check the capability of PCI device to generate PME#
1978  * @dev: PCI device to handle.
1979  * @state: PCI state from which device will issue PME#.
1980  */
1981 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1982 {
1983 	if (!dev->pm_cap)
1984 		return false;
1985 
1986 	return !!(dev->pme_support & (1 << state));
1987 }
1988 EXPORT_SYMBOL(pci_pme_capable);
1989 
1990 static void pci_pme_list_scan(struct work_struct *work)
1991 {
1992 	struct pci_pme_device *pme_dev, *n;
1993 
1994 	mutex_lock(&pci_pme_list_mutex);
1995 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1996 		if (pme_dev->dev->pme_poll) {
1997 			struct pci_dev *bridge;
1998 
1999 			bridge = pme_dev->dev->bus->self;
2000 			/*
2001 			 * If bridge is in low power state, the
2002 			 * configuration space of subordinate devices
2003 			 * may be not accessible
2004 			 */
2005 			if (bridge && bridge->current_state != PCI_D0)
2006 				continue;
2007 			pci_pme_wakeup(pme_dev->dev, NULL);
2008 		} else {
2009 			list_del(&pme_dev->list);
2010 			kfree(pme_dev);
2011 		}
2012 	}
2013 	if (!list_empty(&pci_pme_list))
2014 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2015 				   msecs_to_jiffies(PME_TIMEOUT));
2016 	mutex_unlock(&pci_pme_list_mutex);
2017 }
2018 
2019 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2020 {
2021 	u16 pmcsr;
2022 
2023 	if (!dev->pme_support)
2024 		return;
2025 
2026 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2027 	/* Clear PME_Status by writing 1 to it and enable PME# */
2028 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2029 	if (!enable)
2030 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2031 
2032 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2033 }
2034 
2035 /**
2036  * pci_pme_restore - Restore PME configuration after config space restore.
2037  * @dev: PCI device to update.
2038  */
2039 void pci_pme_restore(struct pci_dev *dev)
2040 {
2041 	u16 pmcsr;
2042 
2043 	if (!dev->pme_support)
2044 		return;
2045 
2046 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2047 	if (dev->wakeup_prepared) {
2048 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2049 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2050 	} else {
2051 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2052 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2053 	}
2054 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2055 }
2056 
2057 /**
2058  * pci_pme_active - enable or disable PCI device's PME# function
2059  * @dev: PCI device to handle.
2060  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2061  *
2062  * The caller must verify that the device is capable of generating PME# before
2063  * calling this function with @enable equal to 'true'.
2064  */
2065 void pci_pme_active(struct pci_dev *dev, bool enable)
2066 {
2067 	__pci_pme_active(dev, enable);
2068 
2069 	/*
2070 	 * PCI (as opposed to PCIe) PME requires that the device have
2071 	 * its PME# line hooked up correctly. Not all hardware vendors
2072 	 * do this, so the PME never gets delivered and the device
2073 	 * remains asleep. The easiest way around this is to
2074 	 * periodically walk the list of suspended devices and check
2075 	 * whether any have their PME flag set. The assumption is that
2076 	 * we'll wake up often enough anyway that this won't be a huge
2077 	 * hit, and the power savings from the devices will still be a
2078 	 * win.
2079 	 *
2080 	 * Although PCIe uses in-band PME message instead of PME# line
2081 	 * to report PME, PME does not work for some PCIe devices in
2082 	 * reality.  For example, there are devices that set their PME
2083 	 * status bits, but don't really bother to send a PME message;
2084 	 * there are PCI Express Root Ports that don't bother to
2085 	 * trigger interrupts when they receive PME messages from the
2086 	 * devices below.  So PME poll is used for PCIe devices too.
2087 	 */
2088 
2089 	if (dev->pme_poll) {
2090 		struct pci_pme_device *pme_dev;
2091 		if (enable) {
2092 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2093 					  GFP_KERNEL);
2094 			if (!pme_dev) {
2095 				pci_warn(dev, "can't enable PME#\n");
2096 				return;
2097 			}
2098 			pme_dev->dev = dev;
2099 			mutex_lock(&pci_pme_list_mutex);
2100 			list_add(&pme_dev->list, &pci_pme_list);
2101 			if (list_is_singular(&pci_pme_list))
2102 				queue_delayed_work(system_freezable_wq,
2103 						   &pci_pme_work,
2104 						   msecs_to_jiffies(PME_TIMEOUT));
2105 			mutex_unlock(&pci_pme_list_mutex);
2106 		} else {
2107 			mutex_lock(&pci_pme_list_mutex);
2108 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2109 				if (pme_dev->dev == dev) {
2110 					list_del(&pme_dev->list);
2111 					kfree(pme_dev);
2112 					break;
2113 				}
2114 			}
2115 			mutex_unlock(&pci_pme_list_mutex);
2116 		}
2117 	}
2118 
2119 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2120 }
2121 EXPORT_SYMBOL(pci_pme_active);
2122 
2123 /**
2124  * __pci_enable_wake - enable PCI device as wakeup event source
2125  * @dev: PCI device affected
2126  * @state: PCI state from which device will issue wakeup events
2127  * @enable: True to enable event generation; false to disable
2128  *
2129  * This enables the device as a wakeup event source, or disables it.
2130  * When such events involves platform-specific hooks, those hooks are
2131  * called automatically by this routine.
2132  *
2133  * Devices with legacy power management (no standard PCI PM capabilities)
2134  * always require such platform hooks.
2135  *
2136  * RETURN VALUE:
2137  * 0 is returned on success
2138  * -EINVAL is returned if device is not supposed to wake up the system
2139  * Error code depending on the platform is returned if both the platform and
2140  * the native mechanism fail to enable the generation of wake-up events
2141  */
2142 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2143 {
2144 	int ret = 0;
2145 
2146 	/*
2147 	 * Bridges can only signal wakeup on behalf of subordinate devices,
2148 	 * but that is set up elsewhere, so skip them.
2149 	 */
2150 	if (pci_has_subordinate(dev))
2151 		return 0;
2152 
2153 	/* Don't do the same thing twice in a row for one device. */
2154 	if (!!enable == !!dev->wakeup_prepared)
2155 		return 0;
2156 
2157 	/*
2158 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2159 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2160 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2161 	 */
2162 
2163 	if (enable) {
2164 		int error;
2165 
2166 		if (pci_pme_capable(dev, state))
2167 			pci_pme_active(dev, true);
2168 		else
2169 			ret = 1;
2170 		error = platform_pci_set_wakeup(dev, true);
2171 		if (ret)
2172 			ret = error;
2173 		if (!ret)
2174 			dev->wakeup_prepared = true;
2175 	} else {
2176 		platform_pci_set_wakeup(dev, false);
2177 		pci_pme_active(dev, false);
2178 		dev->wakeup_prepared = false;
2179 	}
2180 
2181 	return ret;
2182 }
2183 
2184 /**
2185  * pci_enable_wake - change wakeup settings for a PCI device
2186  * @pci_dev: Target device
2187  * @state: PCI state from which device will issue wakeup events
2188  * @enable: Whether or not to enable event generation
2189  *
2190  * If @enable is set, check device_may_wakeup() for the device before calling
2191  * __pci_enable_wake() for it.
2192  */
2193 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2194 {
2195 	if (enable && !device_may_wakeup(&pci_dev->dev))
2196 		return -EINVAL;
2197 
2198 	return __pci_enable_wake(pci_dev, state, enable);
2199 }
2200 EXPORT_SYMBOL(pci_enable_wake);
2201 
2202 /**
2203  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2204  * @dev: PCI device to prepare
2205  * @enable: True to enable wake-up event generation; false to disable
2206  *
2207  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2208  * and this function allows them to set that up cleanly - pci_enable_wake()
2209  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2210  * ordering constraints.
2211  *
2212  * This function only returns error code if the device is not allowed to wake
2213  * up the system from sleep or it is not capable of generating PME# from both
2214  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2215  */
2216 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2217 {
2218 	return pci_pme_capable(dev, PCI_D3cold) ?
2219 			pci_enable_wake(dev, PCI_D3cold, enable) :
2220 			pci_enable_wake(dev, PCI_D3hot, enable);
2221 }
2222 EXPORT_SYMBOL(pci_wake_from_d3);
2223 
2224 /**
2225  * pci_target_state - find an appropriate low power state for a given PCI dev
2226  * @dev: PCI device
2227  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2228  *
2229  * Use underlying platform code to find a supported low power state for @dev.
2230  * If the platform can't manage @dev, return the deepest state from which it
2231  * can generate wake events, based on any available PME info.
2232  */
2233 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2234 {
2235 	pci_power_t target_state = PCI_D3hot;
2236 
2237 	if (platform_pci_power_manageable(dev)) {
2238 		/*
2239 		 * Call the platform to find the target state for the device.
2240 		 */
2241 		pci_power_t state = platform_pci_choose_state(dev);
2242 
2243 		switch (state) {
2244 		case PCI_POWER_ERROR:
2245 		case PCI_UNKNOWN:
2246 			break;
2247 		case PCI_D1:
2248 		case PCI_D2:
2249 			if (pci_no_d1d2(dev))
2250 				break;
2251 			/* else: fall through */
2252 		default:
2253 			target_state = state;
2254 		}
2255 
2256 		return target_state;
2257 	}
2258 
2259 	if (!dev->pm_cap)
2260 		target_state = PCI_D0;
2261 
2262 	/*
2263 	 * If the device is in D3cold even though it's not power-manageable by
2264 	 * the platform, it may have been powered down by non-standard means.
2265 	 * Best to let it slumber.
2266 	 */
2267 	if (dev->current_state == PCI_D3cold)
2268 		target_state = PCI_D3cold;
2269 
2270 	if (wakeup) {
2271 		/*
2272 		 * Find the deepest state from which the device can generate
2273 		 * PME#.
2274 		 */
2275 		if (dev->pme_support) {
2276 			while (target_state
2277 			      && !(dev->pme_support & (1 << target_state)))
2278 				target_state--;
2279 		}
2280 	}
2281 
2282 	return target_state;
2283 }
2284 
2285 /**
2286  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2287  * @dev: Device to handle.
2288  *
2289  * Choose the power state appropriate for the device depending on whether
2290  * it can wake up the system and/or is power manageable by the platform
2291  * (PCI_D3hot is the default) and put the device into that state.
2292  */
2293 int pci_prepare_to_sleep(struct pci_dev *dev)
2294 {
2295 	bool wakeup = device_may_wakeup(&dev->dev);
2296 	pci_power_t target_state = pci_target_state(dev, wakeup);
2297 	int error;
2298 
2299 	if (target_state == PCI_POWER_ERROR)
2300 		return -EIO;
2301 
2302 	pci_enable_wake(dev, target_state, wakeup);
2303 
2304 	error = pci_set_power_state(dev, target_state);
2305 
2306 	if (error)
2307 		pci_enable_wake(dev, target_state, false);
2308 
2309 	return error;
2310 }
2311 EXPORT_SYMBOL(pci_prepare_to_sleep);
2312 
2313 /**
2314  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2315  * @dev: Device to handle.
2316  *
2317  * Disable device's system wake-up capability and put it into D0.
2318  */
2319 int pci_back_from_sleep(struct pci_dev *dev)
2320 {
2321 	pci_enable_wake(dev, PCI_D0, false);
2322 	return pci_set_power_state(dev, PCI_D0);
2323 }
2324 EXPORT_SYMBOL(pci_back_from_sleep);
2325 
2326 /**
2327  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2328  * @dev: PCI device being suspended.
2329  *
2330  * Prepare @dev to generate wake-up events at run time and put it into a low
2331  * power state.
2332  */
2333 int pci_finish_runtime_suspend(struct pci_dev *dev)
2334 {
2335 	pci_power_t target_state;
2336 	int error;
2337 
2338 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2339 	if (target_state == PCI_POWER_ERROR)
2340 		return -EIO;
2341 
2342 	dev->runtime_d3cold = target_state == PCI_D3cold;
2343 
2344 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2345 
2346 	error = pci_set_power_state(dev, target_state);
2347 
2348 	if (error) {
2349 		pci_enable_wake(dev, target_state, false);
2350 		dev->runtime_d3cold = false;
2351 	}
2352 
2353 	return error;
2354 }
2355 
2356 /**
2357  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2358  * @dev: Device to check.
2359  *
2360  * Return true if the device itself is capable of generating wake-up events
2361  * (through the platform or using the native PCIe PME) or if the device supports
2362  * PME and one of its upstream bridges can generate wake-up events.
2363  */
2364 bool pci_dev_run_wake(struct pci_dev *dev)
2365 {
2366 	struct pci_bus *bus = dev->bus;
2367 
2368 	if (!dev->pme_support)
2369 		return false;
2370 
2371 	/* PME-capable in principle, but not from the target power state */
2372 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2373 		return false;
2374 
2375 	if (device_can_wakeup(&dev->dev))
2376 		return true;
2377 
2378 	while (bus->parent) {
2379 		struct pci_dev *bridge = bus->self;
2380 
2381 		if (device_can_wakeup(&bridge->dev))
2382 			return true;
2383 
2384 		bus = bus->parent;
2385 	}
2386 
2387 	/* We have reached the root bus. */
2388 	if (bus->bridge)
2389 		return device_can_wakeup(bus->bridge);
2390 
2391 	return false;
2392 }
2393 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2394 
2395 /**
2396  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2397  * @pci_dev: Device to check.
2398  *
2399  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2400  * reconfigured due to wakeup settings difference between system and runtime
2401  * suspend and the current power state of it is suitable for the upcoming
2402  * (system) transition.
2403  *
2404  * If the device is not configured for system wakeup, disable PME for it before
2405  * returning 'true' to prevent it from waking up the system unnecessarily.
2406  */
2407 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2408 {
2409 	struct device *dev = &pci_dev->dev;
2410 	bool wakeup = device_may_wakeup(dev);
2411 
2412 	if (!pm_runtime_suspended(dev)
2413 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2414 	    || platform_pci_need_resume(pci_dev))
2415 		return false;
2416 
2417 	/*
2418 	 * At this point the device is good to go unless it's been configured
2419 	 * to generate PME at the runtime suspend time, but it is not supposed
2420 	 * to wake up the system.  In that case, simply disable PME for it
2421 	 * (it will have to be re-enabled on exit from system resume).
2422 	 *
2423 	 * If the device's power state is D3cold and the platform check above
2424 	 * hasn't triggered, the device's configuration is suitable and we don't
2425 	 * need to manipulate it at all.
2426 	 */
2427 	spin_lock_irq(&dev->power.lock);
2428 
2429 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2430 	    !wakeup)
2431 		__pci_pme_active(pci_dev, false);
2432 
2433 	spin_unlock_irq(&dev->power.lock);
2434 	return true;
2435 }
2436 
2437 /**
2438  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2439  * @pci_dev: Device to handle.
2440  *
2441  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2442  * it might have been disabled during the prepare phase of system suspend if
2443  * the device was not configured for system wakeup.
2444  */
2445 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2446 {
2447 	struct device *dev = &pci_dev->dev;
2448 
2449 	if (!pci_dev_run_wake(pci_dev))
2450 		return;
2451 
2452 	spin_lock_irq(&dev->power.lock);
2453 
2454 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2455 		__pci_pme_active(pci_dev, true);
2456 
2457 	spin_unlock_irq(&dev->power.lock);
2458 }
2459 
2460 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2461 {
2462 	struct device *dev = &pdev->dev;
2463 	struct device *parent = dev->parent;
2464 
2465 	if (parent)
2466 		pm_runtime_get_sync(parent);
2467 	pm_runtime_get_noresume(dev);
2468 	/*
2469 	 * pdev->current_state is set to PCI_D3cold during suspending,
2470 	 * so wait until suspending completes
2471 	 */
2472 	pm_runtime_barrier(dev);
2473 	/*
2474 	 * Only need to resume devices in D3cold, because config
2475 	 * registers are still accessible for devices suspended but
2476 	 * not in D3cold.
2477 	 */
2478 	if (pdev->current_state == PCI_D3cold)
2479 		pm_runtime_resume(dev);
2480 }
2481 
2482 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2483 {
2484 	struct device *dev = &pdev->dev;
2485 	struct device *parent = dev->parent;
2486 
2487 	pm_runtime_put(dev);
2488 	if (parent)
2489 		pm_runtime_put_sync(parent);
2490 }
2491 
2492 /**
2493  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2494  * @bridge: Bridge to check
2495  *
2496  * This function checks if it is possible to move the bridge to D3.
2497  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2498  */
2499 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2500 {
2501 	if (!pci_is_pcie(bridge))
2502 		return false;
2503 
2504 	switch (pci_pcie_type(bridge)) {
2505 	case PCI_EXP_TYPE_ROOT_PORT:
2506 	case PCI_EXP_TYPE_UPSTREAM:
2507 	case PCI_EXP_TYPE_DOWNSTREAM:
2508 		if (pci_bridge_d3_disable)
2509 			return false;
2510 
2511 		/*
2512 		 * Hotplug ports handled by firmware in System Management Mode
2513 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2514 		 */
2515 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2516 			return false;
2517 
2518 		if (pci_bridge_d3_force)
2519 			return true;
2520 
2521 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2522 		if (bridge->is_thunderbolt)
2523 			return true;
2524 
2525 		/*
2526 		 * Hotplug ports handled natively by the OS were not validated
2527 		 * by vendors for runtime D3 at least until 2018 because there
2528 		 * was no OS support.
2529 		 */
2530 		if (bridge->is_hotplug_bridge)
2531 			return false;
2532 
2533 		/*
2534 		 * It should be safe to put PCIe ports from 2015 or newer
2535 		 * to D3.
2536 		 */
2537 		if (dmi_get_bios_year() >= 2015)
2538 			return true;
2539 		break;
2540 	}
2541 
2542 	return false;
2543 }
2544 
2545 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2546 {
2547 	bool *d3cold_ok = data;
2548 
2549 	if (/* The device needs to be allowed to go D3cold ... */
2550 	    dev->no_d3cold || !dev->d3cold_allowed ||
2551 
2552 	    /* ... and if it is wakeup capable to do so from D3cold. */
2553 	    (device_may_wakeup(&dev->dev) &&
2554 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2555 
2556 	    /* If it is a bridge it must be allowed to go to D3. */
2557 	    !pci_power_manageable(dev))
2558 
2559 		*d3cold_ok = false;
2560 
2561 	return !*d3cold_ok;
2562 }
2563 
2564 /*
2565  * pci_bridge_d3_update - Update bridge D3 capabilities
2566  * @dev: PCI device which is changed
2567  *
2568  * Update upstream bridge PM capabilities accordingly depending on if the
2569  * device PM configuration was changed or the device is being removed.  The
2570  * change is also propagated upstream.
2571  */
2572 void pci_bridge_d3_update(struct pci_dev *dev)
2573 {
2574 	bool remove = !device_is_registered(&dev->dev);
2575 	struct pci_dev *bridge;
2576 	bool d3cold_ok = true;
2577 
2578 	bridge = pci_upstream_bridge(dev);
2579 	if (!bridge || !pci_bridge_d3_possible(bridge))
2580 		return;
2581 
2582 	/*
2583 	 * If D3 is currently allowed for the bridge, removing one of its
2584 	 * children won't change that.
2585 	 */
2586 	if (remove && bridge->bridge_d3)
2587 		return;
2588 
2589 	/*
2590 	 * If D3 is currently allowed for the bridge and a child is added or
2591 	 * changed, disallowance of D3 can only be caused by that child, so
2592 	 * we only need to check that single device, not any of its siblings.
2593 	 *
2594 	 * If D3 is currently not allowed for the bridge, checking the device
2595 	 * first may allow us to skip checking its siblings.
2596 	 */
2597 	if (!remove)
2598 		pci_dev_check_d3cold(dev, &d3cold_ok);
2599 
2600 	/*
2601 	 * If D3 is currently not allowed for the bridge, this may be caused
2602 	 * either by the device being changed/removed or any of its siblings,
2603 	 * so we need to go through all children to find out if one of them
2604 	 * continues to block D3.
2605 	 */
2606 	if (d3cold_ok && !bridge->bridge_d3)
2607 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2608 			     &d3cold_ok);
2609 
2610 	if (bridge->bridge_d3 != d3cold_ok) {
2611 		bridge->bridge_d3 = d3cold_ok;
2612 		/* Propagate change to upstream bridges */
2613 		pci_bridge_d3_update(bridge);
2614 	}
2615 }
2616 
2617 /**
2618  * pci_d3cold_enable - Enable D3cold for device
2619  * @dev: PCI device to handle
2620  *
2621  * This function can be used in drivers to enable D3cold from the device
2622  * they handle.  It also updates upstream PCI bridge PM capabilities
2623  * accordingly.
2624  */
2625 void pci_d3cold_enable(struct pci_dev *dev)
2626 {
2627 	if (dev->no_d3cold) {
2628 		dev->no_d3cold = false;
2629 		pci_bridge_d3_update(dev);
2630 	}
2631 }
2632 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2633 
2634 /**
2635  * pci_d3cold_disable - Disable D3cold for device
2636  * @dev: PCI device to handle
2637  *
2638  * This function can be used in drivers to disable D3cold from the device
2639  * they handle.  It also updates upstream PCI bridge PM capabilities
2640  * accordingly.
2641  */
2642 void pci_d3cold_disable(struct pci_dev *dev)
2643 {
2644 	if (!dev->no_d3cold) {
2645 		dev->no_d3cold = true;
2646 		pci_bridge_d3_update(dev);
2647 	}
2648 }
2649 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2650 
2651 /**
2652  * pci_pm_init - Initialize PM functions of given PCI device
2653  * @dev: PCI device to handle.
2654  */
2655 void pci_pm_init(struct pci_dev *dev)
2656 {
2657 	int pm;
2658 	u16 pmc;
2659 
2660 	pm_runtime_forbid(&dev->dev);
2661 	pm_runtime_set_active(&dev->dev);
2662 	pm_runtime_enable(&dev->dev);
2663 	device_enable_async_suspend(&dev->dev);
2664 	dev->wakeup_prepared = false;
2665 
2666 	dev->pm_cap = 0;
2667 	dev->pme_support = 0;
2668 
2669 	/* find PCI PM capability in list */
2670 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2671 	if (!pm)
2672 		return;
2673 	/* Check device's ability to generate PME# */
2674 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2675 
2676 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2677 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2678 			pmc & PCI_PM_CAP_VER_MASK);
2679 		return;
2680 	}
2681 
2682 	dev->pm_cap = pm;
2683 	dev->d3_delay = PCI_PM_D3_WAIT;
2684 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2685 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2686 	dev->d3cold_allowed = true;
2687 
2688 	dev->d1_support = false;
2689 	dev->d2_support = false;
2690 	if (!pci_no_d1d2(dev)) {
2691 		if (pmc & PCI_PM_CAP_D1)
2692 			dev->d1_support = true;
2693 		if (pmc & PCI_PM_CAP_D2)
2694 			dev->d2_support = true;
2695 
2696 		if (dev->d1_support || dev->d2_support)
2697 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2698 				   dev->d1_support ? " D1" : "",
2699 				   dev->d2_support ? " D2" : "");
2700 	}
2701 
2702 	pmc &= PCI_PM_CAP_PME_MASK;
2703 	if (pmc) {
2704 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2705 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2706 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2707 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2708 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2709 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2710 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2711 		dev->pme_poll = true;
2712 		/*
2713 		 * Make device's PM flags reflect the wake-up capability, but
2714 		 * let the user space enable it to wake up the system as needed.
2715 		 */
2716 		device_set_wakeup_capable(&dev->dev, true);
2717 		/* Disable the PME# generation functionality */
2718 		pci_pme_active(dev, false);
2719 	}
2720 }
2721 
2722 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2723 {
2724 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2725 
2726 	switch (prop) {
2727 	case PCI_EA_P_MEM:
2728 	case PCI_EA_P_VF_MEM:
2729 		flags |= IORESOURCE_MEM;
2730 		break;
2731 	case PCI_EA_P_MEM_PREFETCH:
2732 	case PCI_EA_P_VF_MEM_PREFETCH:
2733 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2734 		break;
2735 	case PCI_EA_P_IO:
2736 		flags |= IORESOURCE_IO;
2737 		break;
2738 	default:
2739 		return 0;
2740 	}
2741 
2742 	return flags;
2743 }
2744 
2745 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2746 					    u8 prop)
2747 {
2748 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2749 		return &dev->resource[bei];
2750 #ifdef CONFIG_PCI_IOV
2751 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2752 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2753 		return &dev->resource[PCI_IOV_RESOURCES +
2754 				      bei - PCI_EA_BEI_VF_BAR0];
2755 #endif
2756 	else if (bei == PCI_EA_BEI_ROM)
2757 		return &dev->resource[PCI_ROM_RESOURCE];
2758 	else
2759 		return NULL;
2760 }
2761 
2762 /* Read an Enhanced Allocation (EA) entry */
2763 static int pci_ea_read(struct pci_dev *dev, int offset)
2764 {
2765 	struct resource *res;
2766 	int ent_size, ent_offset = offset;
2767 	resource_size_t start, end;
2768 	unsigned long flags;
2769 	u32 dw0, bei, base, max_offset;
2770 	u8 prop;
2771 	bool support_64 = (sizeof(resource_size_t) >= 8);
2772 
2773 	pci_read_config_dword(dev, ent_offset, &dw0);
2774 	ent_offset += 4;
2775 
2776 	/* Entry size field indicates DWORDs after 1st */
2777 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2778 
2779 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2780 		goto out;
2781 
2782 	bei = (dw0 & PCI_EA_BEI) >> 4;
2783 	prop = (dw0 & PCI_EA_PP) >> 8;
2784 
2785 	/*
2786 	 * If the Property is in the reserved range, try the Secondary
2787 	 * Property instead.
2788 	 */
2789 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2790 		prop = (dw0 & PCI_EA_SP) >> 16;
2791 	if (prop > PCI_EA_P_BRIDGE_IO)
2792 		goto out;
2793 
2794 	res = pci_ea_get_resource(dev, bei, prop);
2795 	if (!res) {
2796 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2797 		goto out;
2798 	}
2799 
2800 	flags = pci_ea_flags(dev, prop);
2801 	if (!flags) {
2802 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2803 		goto out;
2804 	}
2805 
2806 	/* Read Base */
2807 	pci_read_config_dword(dev, ent_offset, &base);
2808 	start = (base & PCI_EA_FIELD_MASK);
2809 	ent_offset += 4;
2810 
2811 	/* Read MaxOffset */
2812 	pci_read_config_dword(dev, ent_offset, &max_offset);
2813 	ent_offset += 4;
2814 
2815 	/* Read Base MSBs (if 64-bit entry) */
2816 	if (base & PCI_EA_IS_64) {
2817 		u32 base_upper;
2818 
2819 		pci_read_config_dword(dev, ent_offset, &base_upper);
2820 		ent_offset += 4;
2821 
2822 		flags |= IORESOURCE_MEM_64;
2823 
2824 		/* entry starts above 32-bit boundary, can't use */
2825 		if (!support_64 && base_upper)
2826 			goto out;
2827 
2828 		if (support_64)
2829 			start |= ((u64)base_upper << 32);
2830 	}
2831 
2832 	end = start + (max_offset | 0x03);
2833 
2834 	/* Read MaxOffset MSBs (if 64-bit entry) */
2835 	if (max_offset & PCI_EA_IS_64) {
2836 		u32 max_offset_upper;
2837 
2838 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2839 		ent_offset += 4;
2840 
2841 		flags |= IORESOURCE_MEM_64;
2842 
2843 		/* entry too big, can't use */
2844 		if (!support_64 && max_offset_upper)
2845 			goto out;
2846 
2847 		if (support_64)
2848 			end += ((u64)max_offset_upper << 32);
2849 	}
2850 
2851 	if (end < start) {
2852 		pci_err(dev, "EA Entry crosses address boundary\n");
2853 		goto out;
2854 	}
2855 
2856 	if (ent_size != ent_offset - offset) {
2857 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2858 			ent_size, ent_offset - offset);
2859 		goto out;
2860 	}
2861 
2862 	res->name = pci_name(dev);
2863 	res->start = start;
2864 	res->end = end;
2865 	res->flags = flags;
2866 
2867 	if (bei <= PCI_EA_BEI_BAR5)
2868 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2869 			   bei, res, prop);
2870 	else if (bei == PCI_EA_BEI_ROM)
2871 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2872 			   res, prop);
2873 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2874 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2875 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2876 	else
2877 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2878 			   bei, res, prop);
2879 
2880 out:
2881 	return offset + ent_size;
2882 }
2883 
2884 /* Enhanced Allocation Initialization */
2885 void pci_ea_init(struct pci_dev *dev)
2886 {
2887 	int ea;
2888 	u8 num_ent;
2889 	int offset;
2890 	int i;
2891 
2892 	/* find PCI EA capability in list */
2893 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2894 	if (!ea)
2895 		return;
2896 
2897 	/* determine the number of entries */
2898 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2899 					&num_ent);
2900 	num_ent &= PCI_EA_NUM_ENT_MASK;
2901 
2902 	offset = ea + PCI_EA_FIRST_ENT;
2903 
2904 	/* Skip DWORD 2 for type 1 functions */
2905 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2906 		offset += 4;
2907 
2908 	/* parse each EA entry */
2909 	for (i = 0; i < num_ent; ++i)
2910 		offset = pci_ea_read(dev, offset);
2911 }
2912 
2913 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2914 	struct pci_cap_saved_state *new_cap)
2915 {
2916 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2917 }
2918 
2919 /**
2920  * _pci_add_cap_save_buffer - allocate buffer for saving given
2921  *                            capability registers
2922  * @dev: the PCI device
2923  * @cap: the capability to allocate the buffer for
2924  * @extended: Standard or Extended capability ID
2925  * @size: requested size of the buffer
2926  */
2927 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2928 				    bool extended, unsigned int size)
2929 {
2930 	int pos;
2931 	struct pci_cap_saved_state *save_state;
2932 
2933 	if (extended)
2934 		pos = pci_find_ext_capability(dev, cap);
2935 	else
2936 		pos = pci_find_capability(dev, cap);
2937 
2938 	if (!pos)
2939 		return 0;
2940 
2941 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2942 	if (!save_state)
2943 		return -ENOMEM;
2944 
2945 	save_state->cap.cap_nr = cap;
2946 	save_state->cap.cap_extended = extended;
2947 	save_state->cap.size = size;
2948 	pci_add_saved_cap(dev, save_state);
2949 
2950 	return 0;
2951 }
2952 
2953 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2954 {
2955 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2956 }
2957 
2958 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2959 {
2960 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2961 }
2962 
2963 /**
2964  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2965  * @dev: the PCI device
2966  */
2967 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2968 {
2969 	int error;
2970 
2971 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2972 					PCI_EXP_SAVE_REGS * sizeof(u16));
2973 	if (error)
2974 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2975 
2976 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2977 	if (error)
2978 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2979 
2980 	pci_allocate_vc_save_buffers(dev);
2981 }
2982 
2983 void pci_free_cap_save_buffers(struct pci_dev *dev)
2984 {
2985 	struct pci_cap_saved_state *tmp;
2986 	struct hlist_node *n;
2987 
2988 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2989 		kfree(tmp);
2990 }
2991 
2992 /**
2993  * pci_configure_ari - enable or disable ARI forwarding
2994  * @dev: the PCI device
2995  *
2996  * If @dev and its upstream bridge both support ARI, enable ARI in the
2997  * bridge.  Otherwise, disable ARI in the bridge.
2998  */
2999 void pci_configure_ari(struct pci_dev *dev)
3000 {
3001 	u32 cap;
3002 	struct pci_dev *bridge;
3003 
3004 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3005 		return;
3006 
3007 	bridge = dev->bus->self;
3008 	if (!bridge)
3009 		return;
3010 
3011 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3012 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3013 		return;
3014 
3015 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3016 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3017 					 PCI_EXP_DEVCTL2_ARI);
3018 		bridge->ari_enabled = 1;
3019 	} else {
3020 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3021 					   PCI_EXP_DEVCTL2_ARI);
3022 		bridge->ari_enabled = 0;
3023 	}
3024 }
3025 
3026 static int pci_acs_enable;
3027 
3028 /**
3029  * pci_request_acs - ask for ACS to be enabled if supported
3030  */
3031 void pci_request_acs(void)
3032 {
3033 	pci_acs_enable = 1;
3034 }
3035 
3036 static const char *disable_acs_redir_param;
3037 
3038 /**
3039  * pci_disable_acs_redir - disable ACS redirect capabilities
3040  * @dev: the PCI device
3041  *
3042  * For only devices specified in the disable_acs_redir parameter.
3043  */
3044 static void pci_disable_acs_redir(struct pci_dev *dev)
3045 {
3046 	int ret = 0;
3047 	const char *p;
3048 	int pos;
3049 	u16 ctrl;
3050 
3051 	if (!disable_acs_redir_param)
3052 		return;
3053 
3054 	p = disable_acs_redir_param;
3055 	while (*p) {
3056 		ret = pci_dev_str_match(dev, p, &p);
3057 		if (ret < 0) {
3058 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3059 				     disable_acs_redir_param);
3060 
3061 			break;
3062 		} else if (ret == 1) {
3063 			/* Found a match */
3064 			break;
3065 		}
3066 
3067 		if (*p != ';' && *p != ',') {
3068 			/* End of param or invalid format */
3069 			break;
3070 		}
3071 		p++;
3072 	}
3073 
3074 	if (ret != 1)
3075 		return;
3076 
3077 	if (!pci_dev_specific_disable_acs_redir(dev))
3078 		return;
3079 
3080 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3081 	if (!pos) {
3082 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3083 		return;
3084 	}
3085 
3086 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3087 
3088 	/* P2P Request & Completion Redirect */
3089 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3090 
3091 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3092 
3093 	pci_info(dev, "disabled ACS redirect\n");
3094 }
3095 
3096 /**
3097  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3098  * @dev: the PCI device
3099  */
3100 static void pci_std_enable_acs(struct pci_dev *dev)
3101 {
3102 	int pos;
3103 	u16 cap;
3104 	u16 ctrl;
3105 
3106 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3107 	if (!pos)
3108 		return;
3109 
3110 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3111 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3112 
3113 	/* Source Validation */
3114 	ctrl |= (cap & PCI_ACS_SV);
3115 
3116 	/* P2P Request Redirect */
3117 	ctrl |= (cap & PCI_ACS_RR);
3118 
3119 	/* P2P Completion Redirect */
3120 	ctrl |= (cap & PCI_ACS_CR);
3121 
3122 	/* Upstream Forwarding */
3123 	ctrl |= (cap & PCI_ACS_UF);
3124 
3125 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3126 }
3127 
3128 /**
3129  * pci_enable_acs - enable ACS if hardware support it
3130  * @dev: the PCI device
3131  */
3132 void pci_enable_acs(struct pci_dev *dev)
3133 {
3134 	if (!pci_acs_enable)
3135 		goto disable_acs_redir;
3136 
3137 	if (!pci_dev_specific_enable_acs(dev))
3138 		goto disable_acs_redir;
3139 
3140 	pci_std_enable_acs(dev);
3141 
3142 disable_acs_redir:
3143 	/*
3144 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3145 	 * enabled by the kernel because it may have been enabled by
3146 	 * platform firmware.  So if we are told to disable it, we should
3147 	 * always disable it after setting the kernel's default
3148 	 * preferences.
3149 	 */
3150 	pci_disable_acs_redir(dev);
3151 }
3152 
3153 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3154 {
3155 	int pos;
3156 	u16 cap, ctrl;
3157 
3158 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3159 	if (!pos)
3160 		return false;
3161 
3162 	/*
3163 	 * Except for egress control, capabilities are either required
3164 	 * or only required if controllable.  Features missing from the
3165 	 * capability field can therefore be assumed as hard-wired enabled.
3166 	 */
3167 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3168 	acs_flags &= (cap | PCI_ACS_EC);
3169 
3170 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3171 	return (ctrl & acs_flags) == acs_flags;
3172 }
3173 
3174 /**
3175  * pci_acs_enabled - test ACS against required flags for a given device
3176  * @pdev: device to test
3177  * @acs_flags: required PCI ACS flags
3178  *
3179  * Return true if the device supports the provided flags.  Automatically
3180  * filters out flags that are not implemented on multifunction devices.
3181  *
3182  * Note that this interface checks the effective ACS capabilities of the
3183  * device rather than the actual capabilities.  For instance, most single
3184  * function endpoints are not required to support ACS because they have no
3185  * opportunity for peer-to-peer access.  We therefore return 'true'
3186  * regardless of whether the device exposes an ACS capability.  This makes
3187  * it much easier for callers of this function to ignore the actual type
3188  * or topology of the device when testing ACS support.
3189  */
3190 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3191 {
3192 	int ret;
3193 
3194 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3195 	if (ret >= 0)
3196 		return ret > 0;
3197 
3198 	/*
3199 	 * Conventional PCI and PCI-X devices never support ACS, either
3200 	 * effectively or actually.  The shared bus topology implies that
3201 	 * any device on the bus can receive or snoop DMA.
3202 	 */
3203 	if (!pci_is_pcie(pdev))
3204 		return false;
3205 
3206 	switch (pci_pcie_type(pdev)) {
3207 	/*
3208 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3209 	 * but since their primary interface is PCI/X, we conservatively
3210 	 * handle them as we would a non-PCIe device.
3211 	 */
3212 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3213 	/*
3214 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3215 	 * applicable... must never implement an ACS Extended Capability...".
3216 	 * This seems arbitrary, but we take a conservative interpretation
3217 	 * of this statement.
3218 	 */
3219 	case PCI_EXP_TYPE_PCI_BRIDGE:
3220 	case PCI_EXP_TYPE_RC_EC:
3221 		return false;
3222 	/*
3223 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3224 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3225 	 * regardless of whether they are single- or multi-function devices.
3226 	 */
3227 	case PCI_EXP_TYPE_DOWNSTREAM:
3228 	case PCI_EXP_TYPE_ROOT_PORT:
3229 		return pci_acs_flags_enabled(pdev, acs_flags);
3230 	/*
3231 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3232 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3233 	 * capabilities, but only when they are part of a multifunction
3234 	 * device.  The footnote for section 6.12 indicates the specific
3235 	 * PCIe types included here.
3236 	 */
3237 	case PCI_EXP_TYPE_ENDPOINT:
3238 	case PCI_EXP_TYPE_UPSTREAM:
3239 	case PCI_EXP_TYPE_LEG_END:
3240 	case PCI_EXP_TYPE_RC_END:
3241 		if (!pdev->multifunction)
3242 			break;
3243 
3244 		return pci_acs_flags_enabled(pdev, acs_flags);
3245 	}
3246 
3247 	/*
3248 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3249 	 * to single function devices with the exception of downstream ports.
3250 	 */
3251 	return true;
3252 }
3253 
3254 /**
3255  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3256  * @start: starting downstream device
3257  * @end: ending upstream device or NULL to search to the root bus
3258  * @acs_flags: required flags
3259  *
3260  * Walk up a device tree from start to end testing PCI ACS support.  If
3261  * any step along the way does not support the required flags, return false.
3262  */
3263 bool pci_acs_path_enabled(struct pci_dev *start,
3264 			  struct pci_dev *end, u16 acs_flags)
3265 {
3266 	struct pci_dev *pdev, *parent = start;
3267 
3268 	do {
3269 		pdev = parent;
3270 
3271 		if (!pci_acs_enabled(pdev, acs_flags))
3272 			return false;
3273 
3274 		if (pci_is_root_bus(pdev->bus))
3275 			return (end == NULL);
3276 
3277 		parent = pdev->bus->self;
3278 	} while (pdev != end);
3279 
3280 	return true;
3281 }
3282 
3283 /**
3284  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3285  * @pdev: PCI device
3286  * @bar: BAR to find
3287  *
3288  * Helper to find the position of the ctrl register for a BAR.
3289  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3290  * Returns -ENOENT if no ctrl register for the BAR could be found.
3291  */
3292 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3293 {
3294 	unsigned int pos, nbars, i;
3295 	u32 ctrl;
3296 
3297 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3298 	if (!pos)
3299 		return -ENOTSUPP;
3300 
3301 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3302 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3303 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3304 
3305 	for (i = 0; i < nbars; i++, pos += 8) {
3306 		int bar_idx;
3307 
3308 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3309 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3310 		if (bar_idx == bar)
3311 			return pos;
3312 	}
3313 
3314 	return -ENOENT;
3315 }
3316 
3317 /**
3318  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3319  * @pdev: PCI device
3320  * @bar: BAR to query
3321  *
3322  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3323  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3324  */
3325 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3326 {
3327 	int pos;
3328 	u32 cap;
3329 
3330 	pos = pci_rebar_find_pos(pdev, bar);
3331 	if (pos < 0)
3332 		return 0;
3333 
3334 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3335 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3336 }
3337 
3338 /**
3339  * pci_rebar_get_current_size - get the current size of a BAR
3340  * @pdev: PCI device
3341  * @bar: BAR to set size to
3342  *
3343  * Read the size of a BAR from the resizable BAR config.
3344  * Returns size if found or negative error code.
3345  */
3346 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3347 {
3348 	int pos;
3349 	u32 ctrl;
3350 
3351 	pos = pci_rebar_find_pos(pdev, bar);
3352 	if (pos < 0)
3353 		return pos;
3354 
3355 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3356 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3357 }
3358 
3359 /**
3360  * pci_rebar_set_size - set a new size for a BAR
3361  * @pdev: PCI device
3362  * @bar: BAR to set size to
3363  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3364  *
3365  * Set the new size of a BAR as defined in the spec.
3366  * Returns zero if resizing was successful, error code otherwise.
3367  */
3368 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3369 {
3370 	int pos;
3371 	u32 ctrl;
3372 
3373 	pos = pci_rebar_find_pos(pdev, bar);
3374 	if (pos < 0)
3375 		return pos;
3376 
3377 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3378 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3379 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3380 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3381 	return 0;
3382 }
3383 
3384 /**
3385  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3386  * @dev: the PCI device
3387  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3388  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3389  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3390  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3391  *
3392  * Return 0 if all upstream bridges support AtomicOp routing, egress
3393  * blocking is disabled on all upstream ports, and the root port supports
3394  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3395  * AtomicOp completion), or negative otherwise.
3396  */
3397 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3398 {
3399 	struct pci_bus *bus = dev->bus;
3400 	struct pci_dev *bridge;
3401 	u32 cap, ctl2;
3402 
3403 	if (!pci_is_pcie(dev))
3404 		return -EINVAL;
3405 
3406 	/*
3407 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3408 	 * AtomicOp requesters.  For now, we only support endpoints as
3409 	 * requesters and root ports as completers.  No endpoints as
3410 	 * completers, and no peer-to-peer.
3411 	 */
3412 
3413 	switch (pci_pcie_type(dev)) {
3414 	case PCI_EXP_TYPE_ENDPOINT:
3415 	case PCI_EXP_TYPE_LEG_END:
3416 	case PCI_EXP_TYPE_RC_END:
3417 		break;
3418 	default:
3419 		return -EINVAL;
3420 	}
3421 
3422 	while (bus->parent) {
3423 		bridge = bus->self;
3424 
3425 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3426 
3427 		switch (pci_pcie_type(bridge)) {
3428 		/* Ensure switch ports support AtomicOp routing */
3429 		case PCI_EXP_TYPE_UPSTREAM:
3430 		case PCI_EXP_TYPE_DOWNSTREAM:
3431 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3432 				return -EINVAL;
3433 			break;
3434 
3435 		/* Ensure root port supports all the sizes we care about */
3436 		case PCI_EXP_TYPE_ROOT_PORT:
3437 			if ((cap & cap_mask) != cap_mask)
3438 				return -EINVAL;
3439 			break;
3440 		}
3441 
3442 		/* Ensure upstream ports don't block AtomicOps on egress */
3443 		if (!bridge->has_secondary_link) {
3444 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3445 						   &ctl2);
3446 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3447 				return -EINVAL;
3448 		}
3449 
3450 		bus = bus->parent;
3451 	}
3452 
3453 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3454 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3455 	return 0;
3456 }
3457 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3458 
3459 /**
3460  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3461  * @dev: the PCI device
3462  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3463  *
3464  * Perform INTx swizzling for a device behind one level of bridge.  This is
3465  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3466  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3467  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3468  * the PCI Express Base Specification, Revision 2.1)
3469  */
3470 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3471 {
3472 	int slot;
3473 
3474 	if (pci_ari_enabled(dev->bus))
3475 		slot = 0;
3476 	else
3477 		slot = PCI_SLOT(dev->devfn);
3478 
3479 	return (((pin - 1) + slot) % 4) + 1;
3480 }
3481 
3482 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3483 {
3484 	u8 pin;
3485 
3486 	pin = dev->pin;
3487 	if (!pin)
3488 		return -1;
3489 
3490 	while (!pci_is_root_bus(dev->bus)) {
3491 		pin = pci_swizzle_interrupt_pin(dev, pin);
3492 		dev = dev->bus->self;
3493 	}
3494 	*bridge = dev;
3495 	return pin;
3496 }
3497 
3498 /**
3499  * pci_common_swizzle - swizzle INTx all the way to root bridge
3500  * @dev: the PCI device
3501  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3502  *
3503  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3504  * bridges all the way up to a PCI root bus.
3505  */
3506 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3507 {
3508 	u8 pin = *pinp;
3509 
3510 	while (!pci_is_root_bus(dev->bus)) {
3511 		pin = pci_swizzle_interrupt_pin(dev, pin);
3512 		dev = dev->bus->self;
3513 	}
3514 	*pinp = pin;
3515 	return PCI_SLOT(dev->devfn);
3516 }
3517 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3518 
3519 /**
3520  *	pci_release_region - Release a PCI bar
3521  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3522  *	@bar: BAR to release
3523  *
3524  *	Releases the PCI I/O and memory resources previously reserved by a
3525  *	successful call to pci_request_region.  Call this function only
3526  *	after all use of the PCI regions has ceased.
3527  */
3528 void pci_release_region(struct pci_dev *pdev, int bar)
3529 {
3530 	struct pci_devres *dr;
3531 
3532 	if (pci_resource_len(pdev, bar) == 0)
3533 		return;
3534 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3535 		release_region(pci_resource_start(pdev, bar),
3536 				pci_resource_len(pdev, bar));
3537 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3538 		release_mem_region(pci_resource_start(pdev, bar),
3539 				pci_resource_len(pdev, bar));
3540 
3541 	dr = find_pci_dr(pdev);
3542 	if (dr)
3543 		dr->region_mask &= ~(1 << bar);
3544 }
3545 EXPORT_SYMBOL(pci_release_region);
3546 
3547 /**
3548  *	__pci_request_region - Reserved PCI I/O and memory resource
3549  *	@pdev: PCI device whose resources are to be reserved
3550  *	@bar: BAR to be reserved
3551  *	@res_name: Name to be associated with resource.
3552  *	@exclusive: whether the region access is exclusive or not
3553  *
3554  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3555  *	being reserved by owner @res_name.  Do not access any
3556  *	address inside the PCI regions unless this call returns
3557  *	successfully.
3558  *
3559  *	If @exclusive is set, then the region is marked so that userspace
3560  *	is explicitly not allowed to map the resource via /dev/mem or
3561  *	sysfs MMIO access.
3562  *
3563  *	Returns 0 on success, or %EBUSY on error.  A warning
3564  *	message is also printed on failure.
3565  */
3566 static int __pci_request_region(struct pci_dev *pdev, int bar,
3567 				const char *res_name, int exclusive)
3568 {
3569 	struct pci_devres *dr;
3570 
3571 	if (pci_resource_len(pdev, bar) == 0)
3572 		return 0;
3573 
3574 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3575 		if (!request_region(pci_resource_start(pdev, bar),
3576 			    pci_resource_len(pdev, bar), res_name))
3577 			goto err_out;
3578 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3579 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3580 					pci_resource_len(pdev, bar), res_name,
3581 					exclusive))
3582 			goto err_out;
3583 	}
3584 
3585 	dr = find_pci_dr(pdev);
3586 	if (dr)
3587 		dr->region_mask |= 1 << bar;
3588 
3589 	return 0;
3590 
3591 err_out:
3592 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3593 		 &pdev->resource[bar]);
3594 	return -EBUSY;
3595 }
3596 
3597 /**
3598  *	pci_request_region - Reserve PCI I/O and memory resource
3599  *	@pdev: PCI device whose resources are to be reserved
3600  *	@bar: BAR to be reserved
3601  *	@res_name: Name to be associated with resource
3602  *
3603  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3604  *	being reserved by owner @res_name.  Do not access any
3605  *	address inside the PCI regions unless this call returns
3606  *	successfully.
3607  *
3608  *	Returns 0 on success, or %EBUSY on error.  A warning
3609  *	message is also printed on failure.
3610  */
3611 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3612 {
3613 	return __pci_request_region(pdev, bar, res_name, 0);
3614 }
3615 EXPORT_SYMBOL(pci_request_region);
3616 
3617 /**
3618  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3619  *	@pdev: PCI device whose resources are to be reserved
3620  *	@bar: BAR to be reserved
3621  *	@res_name: Name to be associated with resource.
3622  *
3623  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3624  *	being reserved by owner @res_name.  Do not access any
3625  *	address inside the PCI regions unless this call returns
3626  *	successfully.
3627  *
3628  *	Returns 0 on success, or %EBUSY on error.  A warning
3629  *	message is also printed on failure.
3630  *
3631  *	The key difference that _exclusive makes it that userspace is
3632  *	explicitly not allowed to map the resource via /dev/mem or
3633  *	sysfs.
3634  */
3635 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3636 				 const char *res_name)
3637 {
3638 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3639 }
3640 EXPORT_SYMBOL(pci_request_region_exclusive);
3641 
3642 /**
3643  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3644  * @pdev: PCI device whose resources were previously reserved
3645  * @bars: Bitmask of BARs to be released
3646  *
3647  * Release selected PCI I/O and memory resources previously reserved.
3648  * Call this function only after all use of the PCI regions has ceased.
3649  */
3650 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3651 {
3652 	int i;
3653 
3654 	for (i = 0; i < 6; i++)
3655 		if (bars & (1 << i))
3656 			pci_release_region(pdev, i);
3657 }
3658 EXPORT_SYMBOL(pci_release_selected_regions);
3659 
3660 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3661 					  const char *res_name, int excl)
3662 {
3663 	int i;
3664 
3665 	for (i = 0; i < 6; i++)
3666 		if (bars & (1 << i))
3667 			if (__pci_request_region(pdev, i, res_name, excl))
3668 				goto err_out;
3669 	return 0;
3670 
3671 err_out:
3672 	while (--i >= 0)
3673 		if (bars & (1 << i))
3674 			pci_release_region(pdev, i);
3675 
3676 	return -EBUSY;
3677 }
3678 
3679 
3680 /**
3681  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3682  * @pdev: PCI device whose resources are to be reserved
3683  * @bars: Bitmask of BARs to be requested
3684  * @res_name: Name to be associated with resource
3685  */
3686 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3687 				 const char *res_name)
3688 {
3689 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3690 }
3691 EXPORT_SYMBOL(pci_request_selected_regions);
3692 
3693 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3694 					   const char *res_name)
3695 {
3696 	return __pci_request_selected_regions(pdev, bars, res_name,
3697 			IORESOURCE_EXCLUSIVE);
3698 }
3699 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3700 
3701 /**
3702  *	pci_release_regions - Release reserved PCI I/O and memory resources
3703  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3704  *
3705  *	Releases all PCI I/O and memory resources previously reserved by a
3706  *	successful call to pci_request_regions.  Call this function only
3707  *	after all use of the PCI regions has ceased.
3708  */
3709 
3710 void pci_release_regions(struct pci_dev *pdev)
3711 {
3712 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3713 }
3714 EXPORT_SYMBOL(pci_release_regions);
3715 
3716 /**
3717  *	pci_request_regions - Reserved PCI I/O and memory resources
3718  *	@pdev: PCI device whose resources are to be reserved
3719  *	@res_name: Name to be associated with resource.
3720  *
3721  *	Mark all PCI regions associated with PCI device @pdev as
3722  *	being reserved by owner @res_name.  Do not access any
3723  *	address inside the PCI regions unless this call returns
3724  *	successfully.
3725  *
3726  *	Returns 0 on success, or %EBUSY on error.  A warning
3727  *	message is also printed on failure.
3728  */
3729 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3730 {
3731 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3732 }
3733 EXPORT_SYMBOL(pci_request_regions);
3734 
3735 /**
3736  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3737  *	@pdev: PCI device whose resources are to be reserved
3738  *	@res_name: Name to be associated with resource.
3739  *
3740  *	Mark all PCI regions associated with PCI device @pdev as
3741  *	being reserved by owner @res_name.  Do not access any
3742  *	address inside the PCI regions unless this call returns
3743  *	successfully.
3744  *
3745  *	pci_request_regions_exclusive() will mark the region so that
3746  *	/dev/mem and the sysfs MMIO access will not be allowed.
3747  *
3748  *	Returns 0 on success, or %EBUSY on error.  A warning
3749  *	message is also printed on failure.
3750  */
3751 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3752 {
3753 	return pci_request_selected_regions_exclusive(pdev,
3754 					((1 << 6) - 1), res_name);
3755 }
3756 EXPORT_SYMBOL(pci_request_regions_exclusive);
3757 
3758 /*
3759  * Record the PCI IO range (expressed as CPU physical address + size).
3760  * Return a negative value if an error has occured, zero otherwise
3761  */
3762 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3763 			resource_size_t	size)
3764 {
3765 	int ret = 0;
3766 #ifdef PCI_IOBASE
3767 	struct logic_pio_hwaddr *range;
3768 
3769 	if (!size || addr + size < addr)
3770 		return -EINVAL;
3771 
3772 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3773 	if (!range)
3774 		return -ENOMEM;
3775 
3776 	range->fwnode = fwnode;
3777 	range->size = size;
3778 	range->hw_start = addr;
3779 	range->flags = LOGIC_PIO_CPU_MMIO;
3780 
3781 	ret = logic_pio_register_range(range);
3782 	if (ret)
3783 		kfree(range);
3784 #endif
3785 
3786 	return ret;
3787 }
3788 
3789 phys_addr_t pci_pio_to_address(unsigned long pio)
3790 {
3791 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3792 
3793 #ifdef PCI_IOBASE
3794 	if (pio >= MMIO_UPPER_LIMIT)
3795 		return address;
3796 
3797 	address = logic_pio_to_hwaddr(pio);
3798 #endif
3799 
3800 	return address;
3801 }
3802 
3803 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3804 {
3805 #ifdef PCI_IOBASE
3806 	return logic_pio_trans_cpuaddr(address);
3807 #else
3808 	if (address > IO_SPACE_LIMIT)
3809 		return (unsigned long)-1;
3810 
3811 	return (unsigned long) address;
3812 #endif
3813 }
3814 
3815 /**
3816  *	pci_remap_iospace - Remap the memory mapped I/O space
3817  *	@res: Resource describing the I/O space
3818  *	@phys_addr: physical address of range to be mapped
3819  *
3820  *	Remap the memory mapped I/O space described by the @res
3821  *	and the CPU physical address @phys_addr into virtual address space.
3822  *	Only architectures that have memory mapped IO functions defined
3823  *	(and the PCI_IOBASE value defined) should call this function.
3824  */
3825 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3826 {
3827 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3828 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3829 
3830 	if (!(res->flags & IORESOURCE_IO))
3831 		return -EINVAL;
3832 
3833 	if (res->end > IO_SPACE_LIMIT)
3834 		return -EINVAL;
3835 
3836 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3837 				  pgprot_device(PAGE_KERNEL));
3838 #else
3839 	/* this architecture does not have memory mapped I/O space,
3840 	   so this function should never be called */
3841 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3842 	return -ENODEV;
3843 #endif
3844 }
3845 EXPORT_SYMBOL(pci_remap_iospace);
3846 
3847 /**
3848  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3849  *	@res: resource to be unmapped
3850  *
3851  *	Unmap the CPU virtual address @res from virtual address space.
3852  *	Only architectures that have memory mapped IO functions defined
3853  *	(and the PCI_IOBASE value defined) should call this function.
3854  */
3855 void pci_unmap_iospace(struct resource *res)
3856 {
3857 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3858 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3859 
3860 	unmap_kernel_range(vaddr, resource_size(res));
3861 #endif
3862 }
3863 EXPORT_SYMBOL(pci_unmap_iospace);
3864 
3865 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3866 {
3867 	struct resource **res = ptr;
3868 
3869 	pci_unmap_iospace(*res);
3870 }
3871 
3872 /**
3873  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3874  * @dev: Generic device to remap IO address for
3875  * @res: Resource describing the I/O space
3876  * @phys_addr: physical address of range to be mapped
3877  *
3878  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3879  * detach.
3880  */
3881 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3882 			   phys_addr_t phys_addr)
3883 {
3884 	const struct resource **ptr;
3885 	int error;
3886 
3887 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3888 	if (!ptr)
3889 		return -ENOMEM;
3890 
3891 	error = pci_remap_iospace(res, phys_addr);
3892 	if (error) {
3893 		devres_free(ptr);
3894 	} else	{
3895 		*ptr = res;
3896 		devres_add(dev, ptr);
3897 	}
3898 
3899 	return error;
3900 }
3901 EXPORT_SYMBOL(devm_pci_remap_iospace);
3902 
3903 /**
3904  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3905  * @dev: Generic device to remap IO address for
3906  * @offset: Resource address to map
3907  * @size: Size of map
3908  *
3909  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3910  * detach.
3911  */
3912 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3913 				      resource_size_t offset,
3914 				      resource_size_t size)
3915 {
3916 	void __iomem **ptr, *addr;
3917 
3918 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3919 	if (!ptr)
3920 		return NULL;
3921 
3922 	addr = pci_remap_cfgspace(offset, size);
3923 	if (addr) {
3924 		*ptr = addr;
3925 		devres_add(dev, ptr);
3926 	} else
3927 		devres_free(ptr);
3928 
3929 	return addr;
3930 }
3931 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3932 
3933 /**
3934  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3935  * @dev: generic device to handle the resource for
3936  * @res: configuration space resource to be handled
3937  *
3938  * Checks that a resource is a valid memory region, requests the memory
3939  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3940  * proper PCI configuration space memory attributes are guaranteed.
3941  *
3942  * All operations are managed and will be undone on driver detach.
3943  *
3944  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3945  * on failure. Usage example::
3946  *
3947  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3948  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3949  *	if (IS_ERR(base))
3950  *		return PTR_ERR(base);
3951  */
3952 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3953 					  struct resource *res)
3954 {
3955 	resource_size_t size;
3956 	const char *name;
3957 	void __iomem *dest_ptr;
3958 
3959 	BUG_ON(!dev);
3960 
3961 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3962 		dev_err(dev, "invalid resource\n");
3963 		return IOMEM_ERR_PTR(-EINVAL);
3964 	}
3965 
3966 	size = resource_size(res);
3967 	name = res->name ?: dev_name(dev);
3968 
3969 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3970 		dev_err(dev, "can't request region for resource %pR\n", res);
3971 		return IOMEM_ERR_PTR(-EBUSY);
3972 	}
3973 
3974 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3975 	if (!dest_ptr) {
3976 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3977 		devm_release_mem_region(dev, res->start, size);
3978 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3979 	}
3980 
3981 	return dest_ptr;
3982 }
3983 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3984 
3985 static void __pci_set_master(struct pci_dev *dev, bool enable)
3986 {
3987 	u16 old_cmd, cmd;
3988 
3989 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3990 	if (enable)
3991 		cmd = old_cmd | PCI_COMMAND_MASTER;
3992 	else
3993 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3994 	if (cmd != old_cmd) {
3995 		pci_dbg(dev, "%s bus mastering\n",
3996 			enable ? "enabling" : "disabling");
3997 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3998 	}
3999 	dev->is_busmaster = enable;
4000 }
4001 
4002 /**
4003  * pcibios_setup - process "pci=" kernel boot arguments
4004  * @str: string used to pass in "pci=" kernel boot arguments
4005  *
4006  * Process kernel boot arguments.  This is the default implementation.
4007  * Architecture specific implementations can override this as necessary.
4008  */
4009 char * __weak __init pcibios_setup(char *str)
4010 {
4011 	return str;
4012 }
4013 
4014 /**
4015  * pcibios_set_master - enable PCI bus-mastering for device dev
4016  * @dev: the PCI device to enable
4017  *
4018  * Enables PCI bus-mastering for the device.  This is the default
4019  * implementation.  Architecture specific implementations can override
4020  * this if necessary.
4021  */
4022 void __weak pcibios_set_master(struct pci_dev *dev)
4023 {
4024 	u8 lat;
4025 
4026 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4027 	if (pci_is_pcie(dev))
4028 		return;
4029 
4030 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4031 	if (lat < 16)
4032 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4033 	else if (lat > pcibios_max_latency)
4034 		lat = pcibios_max_latency;
4035 	else
4036 		return;
4037 
4038 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4039 }
4040 
4041 /**
4042  * pci_set_master - enables bus-mastering for device dev
4043  * @dev: the PCI device to enable
4044  *
4045  * Enables bus-mastering on the device and calls pcibios_set_master()
4046  * to do the needed arch specific settings.
4047  */
4048 void pci_set_master(struct pci_dev *dev)
4049 {
4050 	__pci_set_master(dev, true);
4051 	pcibios_set_master(dev);
4052 }
4053 EXPORT_SYMBOL(pci_set_master);
4054 
4055 /**
4056  * pci_clear_master - disables bus-mastering for device dev
4057  * @dev: the PCI device to disable
4058  */
4059 void pci_clear_master(struct pci_dev *dev)
4060 {
4061 	__pci_set_master(dev, false);
4062 }
4063 EXPORT_SYMBOL(pci_clear_master);
4064 
4065 /**
4066  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4067  * @dev: the PCI device for which MWI is to be enabled
4068  *
4069  * Helper function for pci_set_mwi.
4070  * Originally copied from drivers/net/acenic.c.
4071  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4072  *
4073  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4074  */
4075 int pci_set_cacheline_size(struct pci_dev *dev)
4076 {
4077 	u8 cacheline_size;
4078 
4079 	if (!pci_cache_line_size)
4080 		return -EINVAL;
4081 
4082 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4083 	   equal to or multiple of the right value. */
4084 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4085 	if (cacheline_size >= pci_cache_line_size &&
4086 	    (cacheline_size % pci_cache_line_size) == 0)
4087 		return 0;
4088 
4089 	/* Write the correct value. */
4090 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4091 	/* Read it back. */
4092 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4093 	if (cacheline_size == pci_cache_line_size)
4094 		return 0;
4095 
4096 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4097 		   pci_cache_line_size << 2);
4098 
4099 	return -EINVAL;
4100 }
4101 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4102 
4103 /**
4104  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4105  * @dev: the PCI device for which MWI is enabled
4106  *
4107  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4108  *
4109  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4110  */
4111 int pci_set_mwi(struct pci_dev *dev)
4112 {
4113 #ifdef PCI_DISABLE_MWI
4114 	return 0;
4115 #else
4116 	int rc;
4117 	u16 cmd;
4118 
4119 	rc = pci_set_cacheline_size(dev);
4120 	if (rc)
4121 		return rc;
4122 
4123 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4124 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4125 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4126 		cmd |= PCI_COMMAND_INVALIDATE;
4127 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4128 	}
4129 	return 0;
4130 #endif
4131 }
4132 EXPORT_SYMBOL(pci_set_mwi);
4133 
4134 /**
4135  * pcim_set_mwi - a device-managed pci_set_mwi()
4136  * @dev: the PCI device for which MWI is enabled
4137  *
4138  * Managed pci_set_mwi().
4139  *
4140  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4141  */
4142 int pcim_set_mwi(struct pci_dev *dev)
4143 {
4144 	struct pci_devres *dr;
4145 
4146 	dr = find_pci_dr(dev);
4147 	if (!dr)
4148 		return -ENOMEM;
4149 
4150 	dr->mwi = 1;
4151 	return pci_set_mwi(dev);
4152 }
4153 EXPORT_SYMBOL(pcim_set_mwi);
4154 
4155 /**
4156  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4157  * @dev: the PCI device for which MWI is enabled
4158  *
4159  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4160  * Callers are not required to check the return value.
4161  *
4162  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4163  */
4164 int pci_try_set_mwi(struct pci_dev *dev)
4165 {
4166 #ifdef PCI_DISABLE_MWI
4167 	return 0;
4168 #else
4169 	return pci_set_mwi(dev);
4170 #endif
4171 }
4172 EXPORT_SYMBOL(pci_try_set_mwi);
4173 
4174 /**
4175  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4176  * @dev: the PCI device to disable
4177  *
4178  * Disables PCI Memory-Write-Invalidate transaction on the device
4179  */
4180 void pci_clear_mwi(struct pci_dev *dev)
4181 {
4182 #ifndef PCI_DISABLE_MWI
4183 	u16 cmd;
4184 
4185 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4186 	if (cmd & PCI_COMMAND_INVALIDATE) {
4187 		cmd &= ~PCI_COMMAND_INVALIDATE;
4188 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4189 	}
4190 #endif
4191 }
4192 EXPORT_SYMBOL(pci_clear_mwi);
4193 
4194 /**
4195  * pci_intx - enables/disables PCI INTx for device dev
4196  * @pdev: the PCI device to operate on
4197  * @enable: boolean: whether to enable or disable PCI INTx
4198  *
4199  * Enables/disables PCI INTx for device dev
4200  */
4201 void pci_intx(struct pci_dev *pdev, int enable)
4202 {
4203 	u16 pci_command, new;
4204 
4205 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4206 
4207 	if (enable)
4208 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4209 	else
4210 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4211 
4212 	if (new != pci_command) {
4213 		struct pci_devres *dr;
4214 
4215 		pci_write_config_word(pdev, PCI_COMMAND, new);
4216 
4217 		dr = find_pci_dr(pdev);
4218 		if (dr && !dr->restore_intx) {
4219 			dr->restore_intx = 1;
4220 			dr->orig_intx = !enable;
4221 		}
4222 	}
4223 }
4224 EXPORT_SYMBOL_GPL(pci_intx);
4225 
4226 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4227 {
4228 	struct pci_bus *bus = dev->bus;
4229 	bool mask_updated = true;
4230 	u32 cmd_status_dword;
4231 	u16 origcmd, newcmd;
4232 	unsigned long flags;
4233 	bool irq_pending;
4234 
4235 	/*
4236 	 * We do a single dword read to retrieve both command and status.
4237 	 * Document assumptions that make this possible.
4238 	 */
4239 	BUILD_BUG_ON(PCI_COMMAND % 4);
4240 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4241 
4242 	raw_spin_lock_irqsave(&pci_lock, flags);
4243 
4244 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4245 
4246 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4247 
4248 	/*
4249 	 * Check interrupt status register to see whether our device
4250 	 * triggered the interrupt (when masking) or the next IRQ is
4251 	 * already pending (when unmasking).
4252 	 */
4253 	if (mask != irq_pending) {
4254 		mask_updated = false;
4255 		goto done;
4256 	}
4257 
4258 	origcmd = cmd_status_dword;
4259 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4260 	if (mask)
4261 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4262 	if (newcmd != origcmd)
4263 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4264 
4265 done:
4266 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4267 
4268 	return mask_updated;
4269 }
4270 
4271 /**
4272  * pci_check_and_mask_intx - mask INTx on pending interrupt
4273  * @dev: the PCI device to operate on
4274  *
4275  * Check if the device dev has its INTx line asserted, mask it and
4276  * return true in that case. False is returned if no interrupt was
4277  * pending.
4278  */
4279 bool pci_check_and_mask_intx(struct pci_dev *dev)
4280 {
4281 	return pci_check_and_set_intx_mask(dev, true);
4282 }
4283 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4284 
4285 /**
4286  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4287  * @dev: the PCI device to operate on
4288  *
4289  * Check if the device dev has its INTx line asserted, unmask it if not
4290  * and return true. False is returned and the mask remains active if
4291  * there was still an interrupt pending.
4292  */
4293 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4294 {
4295 	return pci_check_and_set_intx_mask(dev, false);
4296 }
4297 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4298 
4299 /**
4300  * pci_wait_for_pending_transaction - waits for pending transaction
4301  * @dev: the PCI device to operate on
4302  *
4303  * Return 0 if transaction is pending 1 otherwise.
4304  */
4305 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4306 {
4307 	if (!pci_is_pcie(dev))
4308 		return 1;
4309 
4310 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4311 				    PCI_EXP_DEVSTA_TRPND);
4312 }
4313 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4314 
4315 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4316 {
4317 	int delay = 1;
4318 	u32 id;
4319 
4320 	/*
4321 	 * After reset, the device should not silently discard config
4322 	 * requests, but it may still indicate that it needs more time by
4323 	 * responding to them with CRS completions.  The Root Port will
4324 	 * generally synthesize ~0 data to complete the read (except when
4325 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4326 	 * case it synthesizes 0x0001 data).
4327 	 *
4328 	 * Wait for the device to return a non-CRS completion.  Read the
4329 	 * Command register instead of Vendor ID so we don't have to
4330 	 * contend with the CRS SV value.
4331 	 */
4332 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4333 	while (id == ~0) {
4334 		if (delay > timeout) {
4335 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4336 				 delay - 1, reset_type);
4337 			return -ENOTTY;
4338 		}
4339 
4340 		if (delay > 1000)
4341 			pci_info(dev, "not ready %dms after %s; waiting\n",
4342 				 delay - 1, reset_type);
4343 
4344 		msleep(delay);
4345 		delay *= 2;
4346 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4347 	}
4348 
4349 	if (delay > 1000)
4350 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4351 			 reset_type);
4352 
4353 	return 0;
4354 }
4355 
4356 /**
4357  * pcie_has_flr - check if a device supports function level resets
4358  * @dev:	device to check
4359  *
4360  * Returns true if the device advertises support for PCIe function level
4361  * resets.
4362  */
4363 bool pcie_has_flr(struct pci_dev *dev)
4364 {
4365 	u32 cap;
4366 
4367 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4368 		return false;
4369 
4370 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4371 	return cap & PCI_EXP_DEVCAP_FLR;
4372 }
4373 EXPORT_SYMBOL_GPL(pcie_has_flr);
4374 
4375 /**
4376  * pcie_flr - initiate a PCIe function level reset
4377  * @dev:	device to reset
4378  *
4379  * Initiate a function level reset on @dev.  The caller should ensure the
4380  * device supports FLR before calling this function, e.g. by using the
4381  * pcie_has_flr() helper.
4382  */
4383 int pcie_flr(struct pci_dev *dev)
4384 {
4385 	if (!pci_wait_for_pending_transaction(dev))
4386 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4387 
4388 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4389 
4390 	/*
4391 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4392 	 * 100ms, but may silently discard requests while the FLR is in
4393 	 * progress.  Wait 100ms before trying to access the device.
4394 	 */
4395 	msleep(100);
4396 
4397 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4398 }
4399 EXPORT_SYMBOL_GPL(pcie_flr);
4400 
4401 static int pci_af_flr(struct pci_dev *dev, int probe)
4402 {
4403 	int pos;
4404 	u8 cap;
4405 
4406 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4407 	if (!pos)
4408 		return -ENOTTY;
4409 
4410 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4411 		return -ENOTTY;
4412 
4413 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4414 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4415 		return -ENOTTY;
4416 
4417 	if (probe)
4418 		return 0;
4419 
4420 	/*
4421 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4422 	 * is used, so we use the conrol offset rather than status and shift
4423 	 * the test bit to match.
4424 	 */
4425 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4426 				 PCI_AF_STATUS_TP << 8))
4427 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4428 
4429 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4430 
4431 	/*
4432 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4433 	 * updated 27 July 2006; a device must complete an FLR within
4434 	 * 100ms, but may silently discard requests while the FLR is in
4435 	 * progress.  Wait 100ms before trying to access the device.
4436 	 */
4437 	msleep(100);
4438 
4439 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4440 }
4441 
4442 /**
4443  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4444  * @dev: Device to reset.
4445  * @probe: If set, only check if the device can be reset this way.
4446  *
4447  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4448  * unset, it will be reinitialized internally when going from PCI_D3hot to
4449  * PCI_D0.  If that's the case and the device is not in a low-power state
4450  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4451  *
4452  * NOTE: This causes the caller to sleep for twice the device power transition
4453  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4454  * by default (i.e. unless the @dev's d3_delay field has a different value).
4455  * Moreover, only devices in D0 can be reset by this function.
4456  */
4457 static int pci_pm_reset(struct pci_dev *dev, int probe)
4458 {
4459 	u16 csr;
4460 
4461 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4462 		return -ENOTTY;
4463 
4464 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4465 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4466 		return -ENOTTY;
4467 
4468 	if (probe)
4469 		return 0;
4470 
4471 	if (dev->current_state != PCI_D0)
4472 		return -EINVAL;
4473 
4474 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4475 	csr |= PCI_D3hot;
4476 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4477 	pci_dev_d3_sleep(dev);
4478 
4479 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4480 	csr |= PCI_D0;
4481 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4482 	pci_dev_d3_sleep(dev);
4483 
4484 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4485 }
4486 /**
4487  * pcie_wait_for_link - Wait until link is active or inactive
4488  * @pdev: Bridge device
4489  * @active: waiting for active or inactive?
4490  *
4491  * Use this to wait till link becomes active or inactive.
4492  */
4493 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4494 {
4495 	int timeout = 1000;
4496 	bool ret;
4497 	u16 lnk_status;
4498 
4499 	for (;;) {
4500 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4501 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4502 		if (ret == active)
4503 			return true;
4504 		if (timeout <= 0)
4505 			break;
4506 		msleep(10);
4507 		timeout -= 10;
4508 	}
4509 
4510 	pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4511 		 active ? "set" : "cleared");
4512 
4513 	return false;
4514 }
4515 
4516 void pci_reset_secondary_bus(struct pci_dev *dev)
4517 {
4518 	u16 ctrl;
4519 
4520 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4521 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4522 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4523 
4524 	/*
4525 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4526 	 * this to 2ms to ensure that we meet the minimum requirement.
4527 	 */
4528 	msleep(2);
4529 
4530 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4531 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4532 
4533 	/*
4534 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4535 	 * Assuming a minimum 33MHz clock this results in a 1s
4536 	 * delay before we can consider subordinate devices to
4537 	 * be re-initialized.  PCIe has some ways to shorten this,
4538 	 * but we don't make use of them yet.
4539 	 */
4540 	ssleep(1);
4541 }
4542 
4543 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4544 {
4545 	pci_reset_secondary_bus(dev);
4546 }
4547 
4548 /**
4549  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4550  * @dev: Bridge device
4551  *
4552  * Use the bridge control register to assert reset on the secondary bus.
4553  * Devices on the secondary bus are left in power-on state.
4554  */
4555 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4556 {
4557 	pcibios_reset_secondary_bus(dev);
4558 
4559 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4560 }
4561 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4562 
4563 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4564 {
4565 	struct pci_dev *pdev;
4566 
4567 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4568 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4569 		return -ENOTTY;
4570 
4571 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4572 		if (pdev != dev)
4573 			return -ENOTTY;
4574 
4575 	if (probe)
4576 		return 0;
4577 
4578 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4579 }
4580 
4581 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4582 {
4583 	int rc = -ENOTTY;
4584 
4585 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4586 		return rc;
4587 
4588 	if (hotplug->ops->reset_slot)
4589 		rc = hotplug->ops->reset_slot(hotplug, probe);
4590 
4591 	module_put(hotplug->ops->owner);
4592 
4593 	return rc;
4594 }
4595 
4596 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4597 {
4598 	struct pci_dev *pdev;
4599 
4600 	if (dev->subordinate || !dev->slot ||
4601 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4602 		return -ENOTTY;
4603 
4604 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4605 		if (pdev != dev && pdev->slot == dev->slot)
4606 			return -ENOTTY;
4607 
4608 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4609 }
4610 
4611 static void pci_dev_lock(struct pci_dev *dev)
4612 {
4613 	pci_cfg_access_lock(dev);
4614 	/* block PM suspend, driver probe, etc. */
4615 	device_lock(&dev->dev);
4616 }
4617 
4618 /* Return 1 on successful lock, 0 on contention */
4619 static int pci_dev_trylock(struct pci_dev *dev)
4620 {
4621 	if (pci_cfg_access_trylock(dev)) {
4622 		if (device_trylock(&dev->dev))
4623 			return 1;
4624 		pci_cfg_access_unlock(dev);
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 static void pci_dev_unlock(struct pci_dev *dev)
4631 {
4632 	device_unlock(&dev->dev);
4633 	pci_cfg_access_unlock(dev);
4634 }
4635 
4636 static void pci_dev_save_and_disable(struct pci_dev *dev)
4637 {
4638 	const struct pci_error_handlers *err_handler =
4639 			dev->driver ? dev->driver->err_handler : NULL;
4640 
4641 	/*
4642 	 * dev->driver->err_handler->reset_prepare() is protected against
4643 	 * races with ->remove() by the device lock, which must be held by
4644 	 * the caller.
4645 	 */
4646 	if (err_handler && err_handler->reset_prepare)
4647 		err_handler->reset_prepare(dev);
4648 
4649 	/*
4650 	 * Wake-up device prior to save.  PM registers default to D0 after
4651 	 * reset and a simple register restore doesn't reliably return
4652 	 * to a non-D0 state anyway.
4653 	 */
4654 	pci_set_power_state(dev, PCI_D0);
4655 
4656 	pci_save_state(dev);
4657 	/*
4658 	 * Disable the device by clearing the Command register, except for
4659 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4660 	 * BARs, but also prevents the device from being Bus Master, preventing
4661 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4662 	 * compliant devices, INTx-disable prevents legacy interrupts.
4663 	 */
4664 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4665 }
4666 
4667 static void pci_dev_restore(struct pci_dev *dev)
4668 {
4669 	const struct pci_error_handlers *err_handler =
4670 			dev->driver ? dev->driver->err_handler : NULL;
4671 
4672 	pci_restore_state(dev);
4673 
4674 	/*
4675 	 * dev->driver->err_handler->reset_done() is protected against
4676 	 * races with ->remove() by the device lock, which must be held by
4677 	 * the caller.
4678 	 */
4679 	if (err_handler && err_handler->reset_done)
4680 		err_handler->reset_done(dev);
4681 }
4682 
4683 /**
4684  * __pci_reset_function_locked - reset a PCI device function while holding
4685  * the @dev mutex lock.
4686  * @dev: PCI device to reset
4687  *
4688  * Some devices allow an individual function to be reset without affecting
4689  * other functions in the same device.  The PCI device must be responsive
4690  * to PCI config space in order to use this function.
4691  *
4692  * The device function is presumed to be unused and the caller is holding
4693  * the device mutex lock when this function is called.
4694  * Resetting the device will make the contents of PCI configuration space
4695  * random, so any caller of this must be prepared to reinitialise the
4696  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4697  * etc.
4698  *
4699  * Returns 0 if the device function was successfully reset or negative if the
4700  * device doesn't support resetting a single function.
4701  */
4702 int __pci_reset_function_locked(struct pci_dev *dev)
4703 {
4704 	int rc;
4705 
4706 	might_sleep();
4707 
4708 	/*
4709 	 * A reset method returns -ENOTTY if it doesn't support this device
4710 	 * and we should try the next method.
4711 	 *
4712 	 * If it returns 0 (success), we're finished.  If it returns any
4713 	 * other error, we're also finished: this indicates that further
4714 	 * reset mechanisms might be broken on the device.
4715 	 */
4716 	rc = pci_dev_specific_reset(dev, 0);
4717 	if (rc != -ENOTTY)
4718 		return rc;
4719 	if (pcie_has_flr(dev)) {
4720 		rc = pcie_flr(dev);
4721 		if (rc != -ENOTTY)
4722 			return rc;
4723 	}
4724 	rc = pci_af_flr(dev, 0);
4725 	if (rc != -ENOTTY)
4726 		return rc;
4727 	rc = pci_pm_reset(dev, 0);
4728 	if (rc != -ENOTTY)
4729 		return rc;
4730 	rc = pci_dev_reset_slot_function(dev, 0);
4731 	if (rc != -ENOTTY)
4732 		return rc;
4733 	return pci_parent_bus_reset(dev, 0);
4734 }
4735 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4736 
4737 /**
4738  * pci_probe_reset_function - check whether the device can be safely reset
4739  * @dev: PCI device to reset
4740  *
4741  * Some devices allow an individual function to be reset without affecting
4742  * other functions in the same device.  The PCI device must be responsive
4743  * to PCI config space in order to use this function.
4744  *
4745  * Returns 0 if the device function can be reset or negative if the
4746  * device doesn't support resetting a single function.
4747  */
4748 int pci_probe_reset_function(struct pci_dev *dev)
4749 {
4750 	int rc;
4751 
4752 	might_sleep();
4753 
4754 	rc = pci_dev_specific_reset(dev, 1);
4755 	if (rc != -ENOTTY)
4756 		return rc;
4757 	if (pcie_has_flr(dev))
4758 		return 0;
4759 	rc = pci_af_flr(dev, 1);
4760 	if (rc != -ENOTTY)
4761 		return rc;
4762 	rc = pci_pm_reset(dev, 1);
4763 	if (rc != -ENOTTY)
4764 		return rc;
4765 	rc = pci_dev_reset_slot_function(dev, 1);
4766 	if (rc != -ENOTTY)
4767 		return rc;
4768 
4769 	return pci_parent_bus_reset(dev, 1);
4770 }
4771 
4772 /**
4773  * pci_reset_function - quiesce and reset a PCI device function
4774  * @dev: PCI device to reset
4775  *
4776  * Some devices allow an individual function to be reset without affecting
4777  * other functions in the same device.  The PCI device must be responsive
4778  * to PCI config space in order to use this function.
4779  *
4780  * This function does not just reset the PCI portion of a device, but
4781  * clears all the state associated with the device.  This function differs
4782  * from __pci_reset_function_locked() in that it saves and restores device state
4783  * over the reset and takes the PCI device lock.
4784  *
4785  * Returns 0 if the device function was successfully reset or negative if the
4786  * device doesn't support resetting a single function.
4787  */
4788 int pci_reset_function(struct pci_dev *dev)
4789 {
4790 	int rc;
4791 
4792 	if (!dev->reset_fn)
4793 		return -ENOTTY;
4794 
4795 	pci_dev_lock(dev);
4796 	pci_dev_save_and_disable(dev);
4797 
4798 	rc = __pci_reset_function_locked(dev);
4799 
4800 	pci_dev_restore(dev);
4801 	pci_dev_unlock(dev);
4802 
4803 	return rc;
4804 }
4805 EXPORT_SYMBOL_GPL(pci_reset_function);
4806 
4807 /**
4808  * pci_reset_function_locked - quiesce and reset a PCI device function
4809  * @dev: PCI device to reset
4810  *
4811  * Some devices allow an individual function to be reset without affecting
4812  * other functions in the same device.  The PCI device must be responsive
4813  * to PCI config space in order to use this function.
4814  *
4815  * This function does not just reset the PCI portion of a device, but
4816  * clears all the state associated with the device.  This function differs
4817  * from __pci_reset_function_locked() in that it saves and restores device state
4818  * over the reset.  It also differs from pci_reset_function() in that it
4819  * requires the PCI device lock to be held.
4820  *
4821  * Returns 0 if the device function was successfully reset or negative if the
4822  * device doesn't support resetting a single function.
4823  */
4824 int pci_reset_function_locked(struct pci_dev *dev)
4825 {
4826 	int rc;
4827 
4828 	if (!dev->reset_fn)
4829 		return -ENOTTY;
4830 
4831 	pci_dev_save_and_disable(dev);
4832 
4833 	rc = __pci_reset_function_locked(dev);
4834 
4835 	pci_dev_restore(dev);
4836 
4837 	return rc;
4838 }
4839 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4840 
4841 /**
4842  * pci_try_reset_function - quiesce and reset a PCI device function
4843  * @dev: PCI device to reset
4844  *
4845  * Same as above, except return -EAGAIN if unable to lock device.
4846  */
4847 int pci_try_reset_function(struct pci_dev *dev)
4848 {
4849 	int rc;
4850 
4851 	if (!dev->reset_fn)
4852 		return -ENOTTY;
4853 
4854 	if (!pci_dev_trylock(dev))
4855 		return -EAGAIN;
4856 
4857 	pci_dev_save_and_disable(dev);
4858 	rc = __pci_reset_function_locked(dev);
4859 	pci_dev_restore(dev);
4860 	pci_dev_unlock(dev);
4861 
4862 	return rc;
4863 }
4864 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4865 
4866 /* Do any devices on or below this bus prevent a bus reset? */
4867 static bool pci_bus_resetable(struct pci_bus *bus)
4868 {
4869 	struct pci_dev *dev;
4870 
4871 
4872 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4873 		return false;
4874 
4875 	list_for_each_entry(dev, &bus->devices, bus_list) {
4876 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4877 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4878 			return false;
4879 	}
4880 
4881 	return true;
4882 }
4883 
4884 /* Lock devices from the top of the tree down */
4885 static void pci_bus_lock(struct pci_bus *bus)
4886 {
4887 	struct pci_dev *dev;
4888 
4889 	list_for_each_entry(dev, &bus->devices, bus_list) {
4890 		pci_dev_lock(dev);
4891 		if (dev->subordinate)
4892 			pci_bus_lock(dev->subordinate);
4893 	}
4894 }
4895 
4896 /* Unlock devices from the bottom of the tree up */
4897 static void pci_bus_unlock(struct pci_bus *bus)
4898 {
4899 	struct pci_dev *dev;
4900 
4901 	list_for_each_entry(dev, &bus->devices, bus_list) {
4902 		if (dev->subordinate)
4903 			pci_bus_unlock(dev->subordinate);
4904 		pci_dev_unlock(dev);
4905 	}
4906 }
4907 
4908 /* Return 1 on successful lock, 0 on contention */
4909 static int pci_bus_trylock(struct pci_bus *bus)
4910 {
4911 	struct pci_dev *dev;
4912 
4913 	list_for_each_entry(dev, &bus->devices, bus_list) {
4914 		if (!pci_dev_trylock(dev))
4915 			goto unlock;
4916 		if (dev->subordinate) {
4917 			if (!pci_bus_trylock(dev->subordinate)) {
4918 				pci_dev_unlock(dev);
4919 				goto unlock;
4920 			}
4921 		}
4922 	}
4923 	return 1;
4924 
4925 unlock:
4926 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4927 		if (dev->subordinate)
4928 			pci_bus_unlock(dev->subordinate);
4929 		pci_dev_unlock(dev);
4930 	}
4931 	return 0;
4932 }
4933 
4934 /* Do any devices on or below this slot prevent a bus reset? */
4935 static bool pci_slot_resetable(struct pci_slot *slot)
4936 {
4937 	struct pci_dev *dev;
4938 
4939 	if (slot->bus->self &&
4940 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4941 		return false;
4942 
4943 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4944 		if (!dev->slot || dev->slot != slot)
4945 			continue;
4946 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4947 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4948 			return false;
4949 	}
4950 
4951 	return true;
4952 }
4953 
4954 /* Lock devices from the top of the tree down */
4955 static void pci_slot_lock(struct pci_slot *slot)
4956 {
4957 	struct pci_dev *dev;
4958 
4959 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4960 		if (!dev->slot || dev->slot != slot)
4961 			continue;
4962 		pci_dev_lock(dev);
4963 		if (dev->subordinate)
4964 			pci_bus_lock(dev->subordinate);
4965 	}
4966 }
4967 
4968 /* Unlock devices from the bottom of the tree up */
4969 static void pci_slot_unlock(struct pci_slot *slot)
4970 {
4971 	struct pci_dev *dev;
4972 
4973 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4974 		if (!dev->slot || dev->slot != slot)
4975 			continue;
4976 		if (dev->subordinate)
4977 			pci_bus_unlock(dev->subordinate);
4978 		pci_dev_unlock(dev);
4979 	}
4980 }
4981 
4982 /* Return 1 on successful lock, 0 on contention */
4983 static int pci_slot_trylock(struct pci_slot *slot)
4984 {
4985 	struct pci_dev *dev;
4986 
4987 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4988 		if (!dev->slot || dev->slot != slot)
4989 			continue;
4990 		if (!pci_dev_trylock(dev))
4991 			goto unlock;
4992 		if (dev->subordinate) {
4993 			if (!pci_bus_trylock(dev->subordinate)) {
4994 				pci_dev_unlock(dev);
4995 				goto unlock;
4996 			}
4997 		}
4998 	}
4999 	return 1;
5000 
5001 unlock:
5002 	list_for_each_entry_continue_reverse(dev,
5003 					     &slot->bus->devices, bus_list) {
5004 		if (!dev->slot || dev->slot != slot)
5005 			continue;
5006 		if (dev->subordinate)
5007 			pci_bus_unlock(dev->subordinate);
5008 		pci_dev_unlock(dev);
5009 	}
5010 	return 0;
5011 }
5012 
5013 /* Save and disable devices from the top of the tree down */
5014 static void pci_bus_save_and_disable(struct pci_bus *bus)
5015 {
5016 	struct pci_dev *dev;
5017 
5018 	list_for_each_entry(dev, &bus->devices, bus_list) {
5019 		pci_dev_lock(dev);
5020 		pci_dev_save_and_disable(dev);
5021 		pci_dev_unlock(dev);
5022 		if (dev->subordinate)
5023 			pci_bus_save_and_disable(dev->subordinate);
5024 	}
5025 }
5026 
5027 /*
5028  * Restore devices from top of the tree down - parent bridges need to be
5029  * restored before we can get to subordinate devices.
5030  */
5031 static void pci_bus_restore(struct pci_bus *bus)
5032 {
5033 	struct pci_dev *dev;
5034 
5035 	list_for_each_entry(dev, &bus->devices, bus_list) {
5036 		pci_dev_lock(dev);
5037 		pci_dev_restore(dev);
5038 		pci_dev_unlock(dev);
5039 		if (dev->subordinate)
5040 			pci_bus_restore(dev->subordinate);
5041 	}
5042 }
5043 
5044 /* Save and disable devices from the top of the tree down */
5045 static void pci_slot_save_and_disable(struct pci_slot *slot)
5046 {
5047 	struct pci_dev *dev;
5048 
5049 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5050 		if (!dev->slot || dev->slot != slot)
5051 			continue;
5052 		pci_dev_save_and_disable(dev);
5053 		if (dev->subordinate)
5054 			pci_bus_save_and_disable(dev->subordinate);
5055 	}
5056 }
5057 
5058 /*
5059  * Restore devices from top of the tree down - parent bridges need to be
5060  * restored before we can get to subordinate devices.
5061  */
5062 static void pci_slot_restore(struct pci_slot *slot)
5063 {
5064 	struct pci_dev *dev;
5065 
5066 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5067 		if (!dev->slot || dev->slot != slot)
5068 			continue;
5069 		pci_dev_lock(dev);
5070 		pci_dev_restore(dev);
5071 		pci_dev_unlock(dev);
5072 		if (dev->subordinate)
5073 			pci_bus_restore(dev->subordinate);
5074 	}
5075 }
5076 
5077 static int pci_slot_reset(struct pci_slot *slot, int probe)
5078 {
5079 	int rc;
5080 
5081 	if (!slot || !pci_slot_resetable(slot))
5082 		return -ENOTTY;
5083 
5084 	if (!probe)
5085 		pci_slot_lock(slot);
5086 
5087 	might_sleep();
5088 
5089 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5090 
5091 	if (!probe)
5092 		pci_slot_unlock(slot);
5093 
5094 	return rc;
5095 }
5096 
5097 /**
5098  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5099  * @slot: PCI slot to probe
5100  *
5101  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5102  */
5103 int pci_probe_reset_slot(struct pci_slot *slot)
5104 {
5105 	return pci_slot_reset(slot, 1);
5106 }
5107 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5108 
5109 /**
5110  * __pci_reset_slot - Try to reset a PCI slot
5111  * @slot: PCI slot to reset
5112  *
5113  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5114  * independent of other slots.  For instance, some slots may support slot power
5115  * control.  In the case of a 1:1 bus to slot architecture, this function may
5116  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5117  * Generally a slot reset should be attempted before a bus reset.  All of the
5118  * function of the slot and any subordinate buses behind the slot are reset
5119  * through this function.  PCI config space of all devices in the slot and
5120  * behind the slot is saved before and restored after reset.
5121  *
5122  * Same as above except return -EAGAIN if the slot cannot be locked
5123  */
5124 static int __pci_reset_slot(struct pci_slot *slot)
5125 {
5126 	int rc;
5127 
5128 	rc = pci_slot_reset(slot, 1);
5129 	if (rc)
5130 		return rc;
5131 
5132 	pci_slot_save_and_disable(slot);
5133 
5134 	if (pci_slot_trylock(slot)) {
5135 		might_sleep();
5136 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5137 		pci_slot_unlock(slot);
5138 	} else
5139 		rc = -EAGAIN;
5140 
5141 	pci_slot_restore(slot);
5142 
5143 	return rc;
5144 }
5145 
5146 static int pci_bus_reset(struct pci_bus *bus, int probe)
5147 {
5148 	int ret;
5149 
5150 	if (!bus->self || !pci_bus_resetable(bus))
5151 		return -ENOTTY;
5152 
5153 	if (probe)
5154 		return 0;
5155 
5156 	pci_bus_lock(bus);
5157 
5158 	might_sleep();
5159 
5160 	ret = pci_bridge_secondary_bus_reset(bus->self);
5161 
5162 	pci_bus_unlock(bus);
5163 
5164 	return ret;
5165 }
5166 
5167 /**
5168  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5169  * @bus: PCI bus to probe
5170  *
5171  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5172  */
5173 int pci_probe_reset_bus(struct pci_bus *bus)
5174 {
5175 	return pci_bus_reset(bus, 1);
5176 }
5177 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5178 
5179 /**
5180  * __pci_reset_bus - Try to reset a PCI bus
5181  * @bus: top level PCI bus to reset
5182  *
5183  * Same as above except return -EAGAIN if the bus cannot be locked
5184  */
5185 static int __pci_reset_bus(struct pci_bus *bus)
5186 {
5187 	int rc;
5188 
5189 	rc = pci_bus_reset(bus, 1);
5190 	if (rc)
5191 		return rc;
5192 
5193 	pci_bus_save_and_disable(bus);
5194 
5195 	if (pci_bus_trylock(bus)) {
5196 		might_sleep();
5197 		rc = pci_bridge_secondary_bus_reset(bus->self);
5198 		pci_bus_unlock(bus);
5199 	} else
5200 		rc = -EAGAIN;
5201 
5202 	pci_bus_restore(bus);
5203 
5204 	return rc;
5205 }
5206 
5207 /**
5208  * pci_reset_bus - Try to reset a PCI bus
5209  * @pdev: top level PCI device to reset via slot/bus
5210  *
5211  * Same as above except return -EAGAIN if the bus cannot be locked
5212  */
5213 int pci_reset_bus(struct pci_dev *pdev)
5214 {
5215 	return (!pci_probe_reset_slot(pdev->slot)) ?
5216 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5217 }
5218 EXPORT_SYMBOL_GPL(pci_reset_bus);
5219 
5220 /**
5221  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5222  * @dev: PCI device to query
5223  *
5224  * Returns mmrbc: maximum designed memory read count in bytes
5225  *    or appropriate error value.
5226  */
5227 int pcix_get_max_mmrbc(struct pci_dev *dev)
5228 {
5229 	int cap;
5230 	u32 stat;
5231 
5232 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5233 	if (!cap)
5234 		return -EINVAL;
5235 
5236 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5237 		return -EINVAL;
5238 
5239 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5240 }
5241 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5242 
5243 /**
5244  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5245  * @dev: PCI device to query
5246  *
5247  * Returns mmrbc: maximum memory read count in bytes
5248  *    or appropriate error value.
5249  */
5250 int pcix_get_mmrbc(struct pci_dev *dev)
5251 {
5252 	int cap;
5253 	u16 cmd;
5254 
5255 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5256 	if (!cap)
5257 		return -EINVAL;
5258 
5259 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5260 		return -EINVAL;
5261 
5262 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5263 }
5264 EXPORT_SYMBOL(pcix_get_mmrbc);
5265 
5266 /**
5267  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5268  * @dev: PCI device to query
5269  * @mmrbc: maximum memory read count in bytes
5270  *    valid values are 512, 1024, 2048, 4096
5271  *
5272  * If possible sets maximum memory read byte count, some bridges have erratas
5273  * that prevent this.
5274  */
5275 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5276 {
5277 	int cap;
5278 	u32 stat, v, o;
5279 	u16 cmd;
5280 
5281 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5282 		return -EINVAL;
5283 
5284 	v = ffs(mmrbc) - 10;
5285 
5286 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5287 	if (!cap)
5288 		return -EINVAL;
5289 
5290 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5291 		return -EINVAL;
5292 
5293 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5294 		return -E2BIG;
5295 
5296 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5297 		return -EINVAL;
5298 
5299 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5300 	if (o != v) {
5301 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5302 			return -EIO;
5303 
5304 		cmd &= ~PCI_X_CMD_MAX_READ;
5305 		cmd |= v << 2;
5306 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5307 			return -EIO;
5308 	}
5309 	return 0;
5310 }
5311 EXPORT_SYMBOL(pcix_set_mmrbc);
5312 
5313 /**
5314  * pcie_get_readrq - get PCI Express read request size
5315  * @dev: PCI device to query
5316  *
5317  * Returns maximum memory read request in bytes
5318  *    or appropriate error value.
5319  */
5320 int pcie_get_readrq(struct pci_dev *dev)
5321 {
5322 	u16 ctl;
5323 
5324 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5325 
5326 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5327 }
5328 EXPORT_SYMBOL(pcie_get_readrq);
5329 
5330 /**
5331  * pcie_set_readrq - set PCI Express maximum memory read request
5332  * @dev: PCI device to query
5333  * @rq: maximum memory read count in bytes
5334  *    valid values are 128, 256, 512, 1024, 2048, 4096
5335  *
5336  * If possible sets maximum memory read request in bytes
5337  */
5338 int pcie_set_readrq(struct pci_dev *dev, int rq)
5339 {
5340 	u16 v;
5341 
5342 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5343 		return -EINVAL;
5344 
5345 	/*
5346 	 * If using the "performance" PCIe config, we clamp the
5347 	 * read rq size to the max packet size to prevent the
5348 	 * host bridge generating requests larger than we can
5349 	 * cope with
5350 	 */
5351 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5352 		int mps = pcie_get_mps(dev);
5353 
5354 		if (mps < rq)
5355 			rq = mps;
5356 	}
5357 
5358 	v = (ffs(rq) - 8) << 12;
5359 
5360 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5361 						  PCI_EXP_DEVCTL_READRQ, v);
5362 }
5363 EXPORT_SYMBOL(pcie_set_readrq);
5364 
5365 /**
5366  * pcie_get_mps - get PCI Express maximum payload size
5367  * @dev: PCI device to query
5368  *
5369  * Returns maximum payload size in bytes
5370  */
5371 int pcie_get_mps(struct pci_dev *dev)
5372 {
5373 	u16 ctl;
5374 
5375 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5376 
5377 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5378 }
5379 EXPORT_SYMBOL(pcie_get_mps);
5380 
5381 /**
5382  * pcie_set_mps - set PCI Express maximum payload size
5383  * @dev: PCI device to query
5384  * @mps: maximum payload size in bytes
5385  *    valid values are 128, 256, 512, 1024, 2048, 4096
5386  *
5387  * If possible sets maximum payload size
5388  */
5389 int pcie_set_mps(struct pci_dev *dev, int mps)
5390 {
5391 	u16 v;
5392 
5393 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5394 		return -EINVAL;
5395 
5396 	v = ffs(mps) - 8;
5397 	if (v > dev->pcie_mpss)
5398 		return -EINVAL;
5399 	v <<= 5;
5400 
5401 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5402 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5403 }
5404 EXPORT_SYMBOL(pcie_set_mps);
5405 
5406 /**
5407  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5408  *			      device and its bandwidth limitation
5409  * @dev: PCI device to query
5410  * @limiting_dev: storage for device causing the bandwidth limitation
5411  * @speed: storage for speed of limiting device
5412  * @width: storage for width of limiting device
5413  *
5414  * Walk up the PCI device chain and find the point where the minimum
5415  * bandwidth is available.  Return the bandwidth available there and (if
5416  * limiting_dev, speed, and width pointers are supplied) information about
5417  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5418  * raw bandwidth.
5419  */
5420 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5421 			     enum pci_bus_speed *speed,
5422 			     enum pcie_link_width *width)
5423 {
5424 	u16 lnksta;
5425 	enum pci_bus_speed next_speed;
5426 	enum pcie_link_width next_width;
5427 	u32 bw, next_bw;
5428 
5429 	if (speed)
5430 		*speed = PCI_SPEED_UNKNOWN;
5431 	if (width)
5432 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5433 
5434 	bw = 0;
5435 
5436 	while (dev) {
5437 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5438 
5439 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5440 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5441 			PCI_EXP_LNKSTA_NLW_SHIFT;
5442 
5443 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5444 
5445 		/* Check if current device limits the total bandwidth */
5446 		if (!bw || next_bw <= bw) {
5447 			bw = next_bw;
5448 
5449 			if (limiting_dev)
5450 				*limiting_dev = dev;
5451 			if (speed)
5452 				*speed = next_speed;
5453 			if (width)
5454 				*width = next_width;
5455 		}
5456 
5457 		dev = pci_upstream_bridge(dev);
5458 	}
5459 
5460 	return bw;
5461 }
5462 EXPORT_SYMBOL(pcie_bandwidth_available);
5463 
5464 /**
5465  * pcie_get_speed_cap - query for the PCI device's link speed capability
5466  * @dev: PCI device to query
5467  *
5468  * Query the PCI device speed capability.  Return the maximum link speed
5469  * supported by the device.
5470  */
5471 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5472 {
5473 	u32 lnkcap2, lnkcap;
5474 
5475 	/*
5476 	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5477 	 * Speeds Vector in Link Capabilities 2 when supported, falling
5478 	 * back to Max Link Speed in Link Capabilities otherwise.
5479 	 */
5480 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5481 	if (lnkcap2) { /* PCIe r3.0-compliant */
5482 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5483 			return PCIE_SPEED_16_0GT;
5484 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5485 			return PCIE_SPEED_8_0GT;
5486 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5487 			return PCIE_SPEED_5_0GT;
5488 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5489 			return PCIE_SPEED_2_5GT;
5490 		return PCI_SPEED_UNKNOWN;
5491 	}
5492 
5493 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5494 	if (lnkcap) {
5495 		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5496 			return PCIE_SPEED_16_0GT;
5497 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5498 			return PCIE_SPEED_8_0GT;
5499 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5500 			return PCIE_SPEED_5_0GT;
5501 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5502 			return PCIE_SPEED_2_5GT;
5503 	}
5504 
5505 	return PCI_SPEED_UNKNOWN;
5506 }
5507 EXPORT_SYMBOL(pcie_get_speed_cap);
5508 
5509 /**
5510  * pcie_get_width_cap - query for the PCI device's link width capability
5511  * @dev: PCI device to query
5512  *
5513  * Query the PCI device width capability.  Return the maximum link width
5514  * supported by the device.
5515  */
5516 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5517 {
5518 	u32 lnkcap;
5519 
5520 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5521 	if (lnkcap)
5522 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5523 
5524 	return PCIE_LNK_WIDTH_UNKNOWN;
5525 }
5526 EXPORT_SYMBOL(pcie_get_width_cap);
5527 
5528 /**
5529  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5530  * @dev: PCI device
5531  * @speed: storage for link speed
5532  * @width: storage for link width
5533  *
5534  * Calculate a PCI device's link bandwidth by querying for its link speed
5535  * and width, multiplying them, and applying encoding overhead.  The result
5536  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5537  */
5538 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5539 			   enum pcie_link_width *width)
5540 {
5541 	*speed = pcie_get_speed_cap(dev);
5542 	*width = pcie_get_width_cap(dev);
5543 
5544 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5545 		return 0;
5546 
5547 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5548 }
5549 
5550 /**
5551  * __pcie_print_link_status - Report the PCI device's link speed and width
5552  * @dev: PCI device to query
5553  * @verbose: Print info even when enough bandwidth is available
5554  *
5555  * If the available bandwidth at the device is less than the device is
5556  * capable of, report the device's maximum possible bandwidth and the
5557  * upstream link that limits its performance.  If @verbose, always print
5558  * the available bandwidth, even if the device isn't constrained.
5559  */
5560 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5561 {
5562 	enum pcie_link_width width, width_cap;
5563 	enum pci_bus_speed speed, speed_cap;
5564 	struct pci_dev *limiting_dev = NULL;
5565 	u32 bw_avail, bw_cap;
5566 
5567 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5568 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5569 
5570 	if (bw_avail >= bw_cap && verbose)
5571 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5572 			 bw_cap / 1000, bw_cap % 1000,
5573 			 PCIE_SPEED2STR(speed_cap), width_cap);
5574 	else if (bw_avail < bw_cap)
5575 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5576 			 bw_avail / 1000, bw_avail % 1000,
5577 			 PCIE_SPEED2STR(speed), width,
5578 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5579 			 bw_cap / 1000, bw_cap % 1000,
5580 			 PCIE_SPEED2STR(speed_cap), width_cap);
5581 }
5582 
5583 /**
5584  * pcie_print_link_status - Report the PCI device's link speed and width
5585  * @dev: PCI device to query
5586  *
5587  * Report the available bandwidth at the device.
5588  */
5589 void pcie_print_link_status(struct pci_dev *dev)
5590 {
5591 	__pcie_print_link_status(dev, true);
5592 }
5593 EXPORT_SYMBOL(pcie_print_link_status);
5594 
5595 /**
5596  * pci_select_bars - Make BAR mask from the type of resource
5597  * @dev: the PCI device for which BAR mask is made
5598  * @flags: resource type mask to be selected
5599  *
5600  * This helper routine makes bar mask from the type of resource.
5601  */
5602 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5603 {
5604 	int i, bars = 0;
5605 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5606 		if (pci_resource_flags(dev, i) & flags)
5607 			bars |= (1 << i);
5608 	return bars;
5609 }
5610 EXPORT_SYMBOL(pci_select_bars);
5611 
5612 /* Some architectures require additional programming to enable VGA */
5613 static arch_set_vga_state_t arch_set_vga_state;
5614 
5615 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5616 {
5617 	arch_set_vga_state = func;	/* NULL disables */
5618 }
5619 
5620 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5621 				  unsigned int command_bits, u32 flags)
5622 {
5623 	if (arch_set_vga_state)
5624 		return arch_set_vga_state(dev, decode, command_bits,
5625 						flags);
5626 	return 0;
5627 }
5628 
5629 /**
5630  * pci_set_vga_state - set VGA decode state on device and parents if requested
5631  * @dev: the PCI device
5632  * @decode: true = enable decoding, false = disable decoding
5633  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5634  * @flags: traverse ancestors and change bridges
5635  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5636  */
5637 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5638 		      unsigned int command_bits, u32 flags)
5639 {
5640 	struct pci_bus *bus;
5641 	struct pci_dev *bridge;
5642 	u16 cmd;
5643 	int rc;
5644 
5645 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5646 
5647 	/* ARCH specific VGA enables */
5648 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5649 	if (rc)
5650 		return rc;
5651 
5652 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5653 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5654 		if (decode == true)
5655 			cmd |= command_bits;
5656 		else
5657 			cmd &= ~command_bits;
5658 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5659 	}
5660 
5661 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5662 		return 0;
5663 
5664 	bus = dev->bus;
5665 	while (bus) {
5666 		bridge = bus->self;
5667 		if (bridge) {
5668 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5669 					     &cmd);
5670 			if (decode == true)
5671 				cmd |= PCI_BRIDGE_CTL_VGA;
5672 			else
5673 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5674 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5675 					      cmd);
5676 		}
5677 		bus = bus->parent;
5678 	}
5679 	return 0;
5680 }
5681 
5682 /**
5683  * pci_add_dma_alias - Add a DMA devfn alias for a device
5684  * @dev: the PCI device for which alias is added
5685  * @devfn: alias slot and function
5686  *
5687  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5688  * which is used to program permissible bus-devfn source addresses for DMA
5689  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5690  * and are useful for devices generating DMA requests beyond or different
5691  * from their logical bus-devfn.  Examples include device quirks where the
5692  * device simply uses the wrong devfn, as well as non-transparent bridges
5693  * where the alias may be a proxy for devices in another domain.
5694  *
5695  * IOMMU group creation is performed during device discovery or addition,
5696  * prior to any potential DMA mapping and therefore prior to driver probing
5697  * (especially for userspace assigned devices where IOMMU group definition
5698  * cannot be left as a userspace activity).  DMA aliases should therefore
5699  * be configured via quirks, such as the PCI fixup header quirk.
5700  */
5701 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5702 {
5703 	if (!dev->dma_alias_mask)
5704 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5705 					      sizeof(long), GFP_KERNEL);
5706 	if (!dev->dma_alias_mask) {
5707 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5708 		return;
5709 	}
5710 
5711 	set_bit(devfn, dev->dma_alias_mask);
5712 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5713 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5714 }
5715 
5716 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5717 {
5718 	return (dev1->dma_alias_mask &&
5719 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5720 	       (dev2->dma_alias_mask &&
5721 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5722 }
5723 
5724 bool pci_device_is_present(struct pci_dev *pdev)
5725 {
5726 	u32 v;
5727 
5728 	if (pci_dev_is_disconnected(pdev))
5729 		return false;
5730 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5731 }
5732 EXPORT_SYMBOL_GPL(pci_device_is_present);
5733 
5734 void pci_ignore_hotplug(struct pci_dev *dev)
5735 {
5736 	struct pci_dev *bridge = dev->bus->self;
5737 
5738 	dev->ignore_hotplug = 1;
5739 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5740 	if (bridge)
5741 		bridge->ignore_hotplug = 1;
5742 }
5743 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5744 
5745 resource_size_t __weak pcibios_default_alignment(void)
5746 {
5747 	return 0;
5748 }
5749 
5750 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5751 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5752 static DEFINE_SPINLOCK(resource_alignment_lock);
5753 
5754 /**
5755  * pci_specified_resource_alignment - get resource alignment specified by user.
5756  * @dev: the PCI device to get
5757  * @resize: whether or not to change resources' size when reassigning alignment
5758  *
5759  * RETURNS: Resource alignment if it is specified.
5760  *          Zero if it is not specified.
5761  */
5762 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5763 							bool *resize)
5764 {
5765 	int align_order, count;
5766 	resource_size_t align = pcibios_default_alignment();
5767 	const char *p;
5768 	int ret;
5769 
5770 	spin_lock(&resource_alignment_lock);
5771 	p = resource_alignment_param;
5772 	if (!*p && !align)
5773 		goto out;
5774 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5775 		align = 0;
5776 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5777 		goto out;
5778 	}
5779 
5780 	while (*p) {
5781 		count = 0;
5782 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5783 							p[count] == '@') {
5784 			p += count + 1;
5785 		} else {
5786 			align_order = -1;
5787 		}
5788 
5789 		ret = pci_dev_str_match(dev, p, &p);
5790 		if (ret == 1) {
5791 			*resize = true;
5792 			if (align_order == -1)
5793 				align = PAGE_SIZE;
5794 			else
5795 				align = 1 << align_order;
5796 			break;
5797 		} else if (ret < 0) {
5798 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5799 			       p);
5800 			break;
5801 		}
5802 
5803 		if (*p != ';' && *p != ',') {
5804 			/* End of param or invalid format */
5805 			break;
5806 		}
5807 		p++;
5808 	}
5809 out:
5810 	spin_unlock(&resource_alignment_lock);
5811 	return align;
5812 }
5813 
5814 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5815 					   resource_size_t align, bool resize)
5816 {
5817 	struct resource *r = &dev->resource[bar];
5818 	resource_size_t size;
5819 
5820 	if (!(r->flags & IORESOURCE_MEM))
5821 		return;
5822 
5823 	if (r->flags & IORESOURCE_PCI_FIXED) {
5824 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5825 			 bar, r, (unsigned long long)align);
5826 		return;
5827 	}
5828 
5829 	size = resource_size(r);
5830 	if (size >= align)
5831 		return;
5832 
5833 	/*
5834 	 * Increase the alignment of the resource.  There are two ways we
5835 	 * can do this:
5836 	 *
5837 	 * 1) Increase the size of the resource.  BARs are aligned on their
5838 	 *    size, so when we reallocate space for this resource, we'll
5839 	 *    allocate it with the larger alignment.  This also prevents
5840 	 *    assignment of any other BARs inside the alignment region, so
5841 	 *    if we're requesting page alignment, this means no other BARs
5842 	 *    will share the page.
5843 	 *
5844 	 *    The disadvantage is that this makes the resource larger than
5845 	 *    the hardware BAR, which may break drivers that compute things
5846 	 *    based on the resource size, e.g., to find registers at a
5847 	 *    fixed offset before the end of the BAR.
5848 	 *
5849 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5850 	 *    set r->start to the desired alignment.  By itself this
5851 	 *    doesn't prevent other BARs being put inside the alignment
5852 	 *    region, but if we realign *every* resource of every device in
5853 	 *    the system, none of them will share an alignment region.
5854 	 *
5855 	 * When the user has requested alignment for only some devices via
5856 	 * the "pci=resource_alignment" argument, "resize" is true and we
5857 	 * use the first method.  Otherwise we assume we're aligning all
5858 	 * devices and we use the second.
5859 	 */
5860 
5861 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5862 		 bar, r, (unsigned long long)align);
5863 
5864 	if (resize) {
5865 		r->start = 0;
5866 		r->end = align - 1;
5867 	} else {
5868 		r->flags &= ~IORESOURCE_SIZEALIGN;
5869 		r->flags |= IORESOURCE_STARTALIGN;
5870 		r->start = align;
5871 		r->end = r->start + size - 1;
5872 	}
5873 	r->flags |= IORESOURCE_UNSET;
5874 }
5875 
5876 /*
5877  * This function disables memory decoding and releases memory resources
5878  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5879  * It also rounds up size to specified alignment.
5880  * Later on, the kernel will assign page-aligned memory resource back
5881  * to the device.
5882  */
5883 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5884 {
5885 	int i;
5886 	struct resource *r;
5887 	resource_size_t align;
5888 	u16 command;
5889 	bool resize = false;
5890 
5891 	/*
5892 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5893 	 * 3.4.1.11.  Their resources are allocated from the space
5894 	 * described by the VF BARx register in the PF's SR-IOV capability.
5895 	 * We can't influence their alignment here.
5896 	 */
5897 	if (dev->is_virtfn)
5898 		return;
5899 
5900 	/* check if specified PCI is target device to reassign */
5901 	align = pci_specified_resource_alignment(dev, &resize);
5902 	if (!align)
5903 		return;
5904 
5905 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5906 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5907 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5908 		return;
5909 	}
5910 
5911 	pci_read_config_word(dev, PCI_COMMAND, &command);
5912 	command &= ~PCI_COMMAND_MEMORY;
5913 	pci_write_config_word(dev, PCI_COMMAND, command);
5914 
5915 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5916 		pci_request_resource_alignment(dev, i, align, resize);
5917 
5918 	/*
5919 	 * Need to disable bridge's resource window,
5920 	 * to enable the kernel to reassign new resource
5921 	 * window later on.
5922 	 */
5923 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5924 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5925 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5926 			r = &dev->resource[i];
5927 			if (!(r->flags & IORESOURCE_MEM))
5928 				continue;
5929 			r->flags |= IORESOURCE_UNSET;
5930 			r->end = resource_size(r) - 1;
5931 			r->start = 0;
5932 		}
5933 		pci_disable_bridge_window(dev);
5934 	}
5935 }
5936 
5937 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5938 {
5939 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5940 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5941 	spin_lock(&resource_alignment_lock);
5942 	strncpy(resource_alignment_param, buf, count);
5943 	resource_alignment_param[count] = '\0';
5944 	spin_unlock(&resource_alignment_lock);
5945 	return count;
5946 }
5947 
5948 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5949 {
5950 	size_t count;
5951 	spin_lock(&resource_alignment_lock);
5952 	count = snprintf(buf, size, "%s", resource_alignment_param);
5953 	spin_unlock(&resource_alignment_lock);
5954 	return count;
5955 }
5956 
5957 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5958 {
5959 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5960 }
5961 
5962 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5963 					const char *buf, size_t count)
5964 {
5965 	return pci_set_resource_alignment_param(buf, count);
5966 }
5967 
5968 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5969 					pci_resource_alignment_store);
5970 
5971 static int __init pci_resource_alignment_sysfs_init(void)
5972 {
5973 	return bus_create_file(&pci_bus_type,
5974 					&bus_attr_resource_alignment);
5975 }
5976 late_initcall(pci_resource_alignment_sysfs_init);
5977 
5978 static void pci_no_domains(void)
5979 {
5980 #ifdef CONFIG_PCI_DOMAINS
5981 	pci_domains_supported = 0;
5982 #endif
5983 }
5984 
5985 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5986 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5987 
5988 static int pci_get_new_domain_nr(void)
5989 {
5990 	return atomic_inc_return(&__domain_nr);
5991 }
5992 
5993 static int of_pci_bus_find_domain_nr(struct device *parent)
5994 {
5995 	static int use_dt_domains = -1;
5996 	int domain = -1;
5997 
5998 	if (parent)
5999 		domain = of_get_pci_domain_nr(parent->of_node);
6000 	/*
6001 	 * Check DT domain and use_dt_domains values.
6002 	 *
6003 	 * If DT domain property is valid (domain >= 0) and
6004 	 * use_dt_domains != 0, the DT assignment is valid since this means
6005 	 * we have not previously allocated a domain number by using
6006 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6007 	 * 1, to indicate that we have just assigned a domain number from
6008 	 * DT.
6009 	 *
6010 	 * If DT domain property value is not valid (ie domain < 0), and we
6011 	 * have not previously assigned a domain number from DT
6012 	 * (use_dt_domains != 1) we should assign a domain number by
6013 	 * using the:
6014 	 *
6015 	 * pci_get_new_domain_nr()
6016 	 *
6017 	 * API and update the use_dt_domains value to keep track of method we
6018 	 * are using to assign domain numbers (use_dt_domains = 0).
6019 	 *
6020 	 * All other combinations imply we have a platform that is trying
6021 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6022 	 * which is a recipe for domain mishandling and it is prevented by
6023 	 * invalidating the domain value (domain = -1) and printing a
6024 	 * corresponding error.
6025 	 */
6026 	if (domain >= 0 && use_dt_domains) {
6027 		use_dt_domains = 1;
6028 	} else if (domain < 0 && use_dt_domains != 1) {
6029 		use_dt_domains = 0;
6030 		domain = pci_get_new_domain_nr();
6031 	} else {
6032 		if (parent)
6033 			pr_err("Node %pOF has ", parent->of_node);
6034 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6035 		domain = -1;
6036 	}
6037 
6038 	return domain;
6039 }
6040 
6041 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6042 {
6043 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6044 			       acpi_pci_bus_find_domain_nr(bus);
6045 }
6046 #endif
6047 
6048 /**
6049  * pci_ext_cfg_avail - can we access extended PCI config space?
6050  *
6051  * Returns 1 if we can access PCI extended config space (offsets
6052  * greater than 0xff). This is the default implementation. Architecture
6053  * implementations can override this.
6054  */
6055 int __weak pci_ext_cfg_avail(void)
6056 {
6057 	return 1;
6058 }
6059 
6060 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6061 {
6062 }
6063 EXPORT_SYMBOL(pci_fixup_cardbus);
6064 
6065 static int __init pci_setup(char *str)
6066 {
6067 	while (str) {
6068 		char *k = strchr(str, ',');
6069 		if (k)
6070 			*k++ = 0;
6071 		if (*str && (str = pcibios_setup(str)) && *str) {
6072 			if (!strcmp(str, "nomsi")) {
6073 				pci_no_msi();
6074 			} else if (!strncmp(str, "noats", 5)) {
6075 				pr_info("PCIe: ATS is disabled\n");
6076 				pcie_ats_disabled = true;
6077 			} else if (!strcmp(str, "noaer")) {
6078 				pci_no_aer();
6079 			} else if (!strcmp(str, "earlydump")) {
6080 				pci_early_dump = true;
6081 			} else if (!strncmp(str, "realloc=", 8)) {
6082 				pci_realloc_get_opt(str + 8);
6083 			} else if (!strncmp(str, "realloc", 7)) {
6084 				pci_realloc_get_opt("on");
6085 			} else if (!strcmp(str, "nodomains")) {
6086 				pci_no_domains();
6087 			} else if (!strncmp(str, "noari", 5)) {
6088 				pcie_ari_disabled = true;
6089 			} else if (!strncmp(str, "cbiosize=", 9)) {
6090 				pci_cardbus_io_size = memparse(str + 9, &str);
6091 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6092 				pci_cardbus_mem_size = memparse(str + 10, &str);
6093 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6094 				pci_set_resource_alignment_param(str + 19,
6095 							strlen(str + 19));
6096 			} else if (!strncmp(str, "ecrc=", 5)) {
6097 				pcie_ecrc_get_policy(str + 5);
6098 			} else if (!strncmp(str, "hpiosize=", 9)) {
6099 				pci_hotplug_io_size = memparse(str + 9, &str);
6100 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6101 				pci_hotplug_mem_size = memparse(str + 10, &str);
6102 			} else if (!strncmp(str, "hpbussize=", 10)) {
6103 				pci_hotplug_bus_size =
6104 					simple_strtoul(str + 10, &str, 0);
6105 				if (pci_hotplug_bus_size > 0xff)
6106 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6107 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6108 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6109 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6110 				pcie_bus_config = PCIE_BUS_SAFE;
6111 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6112 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6113 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6114 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6115 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6116 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6117 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6118 				disable_acs_redir_param = str + 18;
6119 			} else {
6120 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
6121 						str);
6122 			}
6123 		}
6124 		str = k;
6125 	}
6126 	return 0;
6127 }
6128 early_param("pci", pci_setup);
6129