1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * pci_power_up - Put the given device into D0 1228 * @dev: PCI device to power up 1229 * 1230 * On success, return 0 or 1, depending on whether or not it is necessary to 1231 * restore the device's BARs subsequently (1 is returned in that case). 1232 * 1233 * On failure, return a negative error code. Always return failure if @dev 1234 * lacks a Power Management Capability, even if the platform was able to 1235 * put the device in D0 via non-PCI means. 1236 */ 1237 int pci_power_up(struct pci_dev *dev) 1238 { 1239 bool need_restore; 1240 pci_power_t state; 1241 u16 pmcsr; 1242 1243 platform_pci_set_power_state(dev, PCI_D0); 1244 1245 if (!dev->pm_cap) { 1246 state = platform_pci_get_power_state(dev); 1247 if (state == PCI_UNKNOWN) 1248 dev->current_state = PCI_D0; 1249 else 1250 dev->current_state = state; 1251 1252 return -EIO; 1253 } 1254 1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1256 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1258 pci_power_name(dev->current_state)); 1259 dev->current_state = PCI_D3cold; 1260 return -EIO; 1261 } 1262 1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1264 1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1267 1268 if (state == PCI_D0) 1269 goto end; 1270 1271 /* 1272 * Force the entire word to 0. This doesn't affect PME_Status, disables 1273 * PME_En, and sets PowerState to 0. 1274 */ 1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1276 1277 /* Mandatory transition delays; see PCI PM 1.2. */ 1278 if (state == PCI_D3hot) 1279 pci_dev_d3_sleep(dev); 1280 else if (state == PCI_D2) 1281 udelay(PCI_PM_D2_DELAY); 1282 1283 end: 1284 dev->current_state = PCI_D0; 1285 if (need_restore) 1286 return 1; 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1293 * @dev: PCI device to power up 1294 * 1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1296 * to confirm the state change, restore its BARs if they might be lost and 1297 * reconfigure ASPM in accordance with the new power state. 1298 * 1299 * If pci_restore_state() is going to be called right after a power state change 1300 * to D0, it is more efficient to use pci_power_up() directly instead of this 1301 * function. 1302 */ 1303 static int pci_set_full_power_state(struct pci_dev *dev) 1304 { 1305 u16 pmcsr; 1306 int ret; 1307 1308 ret = pci_power_up(dev); 1309 if (ret < 0) { 1310 if (dev->current_state == PCI_D0) 1311 return 0; 1312 1313 return ret; 1314 } 1315 1316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1318 if (dev->current_state != PCI_D0) { 1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1320 pci_power_name(dev->current_state)); 1321 } else if (ret > 0) { 1322 /* 1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1325 * from D3hot to D0 _may_ perform an internal reset, thereby 1326 * going to "D0 Uninitialized" rather than "D0 Initialized". 1327 * For example, at least some versions of the 3c905B and the 1328 * 3c556B exhibit this behaviour. 1329 * 1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1331 * devices in a D3hot state at boot. Consequently, we need to 1332 * restore at least the BARs so that the device will be 1333 * accessible to its driver. 1334 */ 1335 pci_restore_bars(dev); 1336 } 1337 1338 if (dev->bus->self) 1339 pcie_aspm_pm_state_change(dev->bus->self); 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * __pci_dev_set_current_state - Set current state of a PCI device 1346 * @dev: Device to handle 1347 * @data: pointer to state to be set 1348 */ 1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1350 { 1351 pci_power_t state = *(pci_power_t *)data; 1352 1353 dev->current_state = state; 1354 return 0; 1355 } 1356 1357 /** 1358 * pci_bus_set_current_state - Walk given bus and set current state of devices 1359 * @bus: Top bus of the subtree to walk. 1360 * @state: state to be set 1361 */ 1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1363 { 1364 if (bus) 1365 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1366 } 1367 1368 /** 1369 * pci_set_low_power_state - Put a PCI device into a low-power state. 1370 * @dev: PCI device to handle. 1371 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1372 * 1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1374 * 1375 * RETURN VALUE: 1376 * -EINVAL if the requested state is invalid. 1377 * -EIO if device does not support PCI PM or its PM capabilities register has a 1378 * wrong version, or device doesn't support the requested state. 1379 * 0 if device already is in the requested state. 1380 * 0 if device's power state has been successfully changed. 1381 */ 1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1383 { 1384 u16 pmcsr; 1385 1386 if (!dev->pm_cap) 1387 return -EIO; 1388 1389 /* 1390 * Validate transition: We can enter D0 from any state, but if 1391 * we're already in a low-power state, we can only go deeper. E.g., 1392 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1393 * we'd have to go from D3 to D0, then to D1. 1394 */ 1395 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1396 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1397 pci_power_name(dev->current_state), 1398 pci_power_name(state)); 1399 return -EINVAL; 1400 } 1401 1402 /* Check if this device supports the desired state */ 1403 if ((state == PCI_D1 && !dev->d1_support) 1404 || (state == PCI_D2 && !dev->d2_support)) 1405 return -EIO; 1406 1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1408 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1409 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1410 pci_power_name(dev->current_state), 1411 pci_power_name(state)); 1412 dev->current_state = PCI_D3cold; 1413 return -EIO; 1414 } 1415 1416 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1417 pmcsr |= state; 1418 1419 /* Enter specified state */ 1420 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1421 1422 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1423 if (state == PCI_D3hot) 1424 pci_dev_d3_sleep(dev); 1425 else if (state == PCI_D2) 1426 udelay(PCI_PM_D2_DELAY); 1427 1428 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1429 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1430 if (dev->current_state != state) 1431 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1432 pci_power_name(dev->current_state), 1433 pci_power_name(state)); 1434 1435 if (dev->bus->self) 1436 pcie_aspm_pm_state_change(dev->bus->self); 1437 1438 return 0; 1439 } 1440 1441 /** 1442 * pci_set_power_state - Set the power state of a PCI device 1443 * @dev: PCI device to handle. 1444 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1445 * 1446 * Transition a device to a new power state, using the platform firmware and/or 1447 * the device's PCI PM registers. 1448 * 1449 * RETURN VALUE: 1450 * -EINVAL if the requested state is invalid. 1451 * -EIO if device does not support PCI PM or its PM capabilities register has a 1452 * wrong version, or device doesn't support the requested state. 1453 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1454 * 0 if device already is in the requested state. 1455 * 0 if the transition is to D3 but D3 is not supported. 1456 * 0 if device's power state has been successfully changed. 1457 */ 1458 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1459 { 1460 int error; 1461 1462 /* Bound the state we're entering */ 1463 if (state > PCI_D3cold) 1464 state = PCI_D3cold; 1465 else if (state < PCI_D0) 1466 state = PCI_D0; 1467 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1468 1469 /* 1470 * If the device or the parent bridge do not support PCI 1471 * PM, ignore the request if we're doing anything other 1472 * than putting it into D0 (which would only happen on 1473 * boot). 1474 */ 1475 return 0; 1476 1477 /* Check if we're already there */ 1478 if (dev->current_state == state) 1479 return 0; 1480 1481 if (state == PCI_D0) 1482 return pci_set_full_power_state(dev); 1483 1484 /* 1485 * This device is quirked not to be put into D3, so don't put it in 1486 * D3 1487 */ 1488 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1489 return 0; 1490 1491 if (state == PCI_D3cold) { 1492 /* 1493 * To put the device in D3cold, put it into D3hot in the native 1494 * way, then put it into D3cold using platform ops. 1495 */ 1496 error = pci_set_low_power_state(dev, PCI_D3hot); 1497 1498 if (pci_platform_power_transition(dev, PCI_D3cold)) 1499 return error; 1500 1501 /* Powering off a bridge may power off the whole hierarchy */ 1502 if (dev->current_state == PCI_D3cold) 1503 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1504 } else { 1505 error = pci_set_low_power_state(dev, state); 1506 1507 if (pci_platform_power_transition(dev, state)) 1508 return error; 1509 } 1510 1511 return 0; 1512 } 1513 EXPORT_SYMBOL(pci_set_power_state); 1514 1515 #define PCI_EXP_SAVE_REGS 7 1516 1517 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1518 u16 cap, bool extended) 1519 { 1520 struct pci_cap_saved_state *tmp; 1521 1522 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1523 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1524 return tmp; 1525 } 1526 return NULL; 1527 } 1528 1529 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1530 { 1531 return _pci_find_saved_cap(dev, cap, false); 1532 } 1533 1534 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1535 { 1536 return _pci_find_saved_cap(dev, cap, true); 1537 } 1538 1539 static int pci_save_pcie_state(struct pci_dev *dev) 1540 { 1541 int i = 0; 1542 struct pci_cap_saved_state *save_state; 1543 u16 *cap; 1544 1545 if (!pci_is_pcie(dev)) 1546 return 0; 1547 1548 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1549 if (!save_state) { 1550 pci_err(dev, "buffer not found in %s\n", __func__); 1551 return -ENOMEM; 1552 } 1553 1554 cap = (u16 *)&save_state->cap.data[0]; 1555 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1556 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1557 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1558 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1559 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1560 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1561 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1562 1563 return 0; 1564 } 1565 1566 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1567 { 1568 #ifdef CONFIG_PCIEASPM 1569 struct pci_dev *bridge; 1570 u32 ctl; 1571 1572 bridge = pci_upstream_bridge(dev); 1573 if (bridge && bridge->ltr_path) { 1574 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1575 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1576 pci_dbg(bridge, "re-enabling LTR\n"); 1577 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1578 PCI_EXP_DEVCTL2_LTR_EN); 1579 } 1580 } 1581 #endif 1582 } 1583 1584 static void pci_restore_pcie_state(struct pci_dev *dev) 1585 { 1586 int i = 0; 1587 struct pci_cap_saved_state *save_state; 1588 u16 *cap; 1589 1590 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1591 if (!save_state) 1592 return; 1593 1594 /* 1595 * Downstream ports reset the LTR enable bit when link goes down. 1596 * Check and re-configure the bit here before restoring device. 1597 * PCIe r5.0, sec 7.5.3.16. 1598 */ 1599 pci_bridge_reconfigure_ltr(dev); 1600 1601 cap = (u16 *)&save_state->cap.data[0]; 1602 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1603 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1604 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1605 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1606 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1607 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1608 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1609 } 1610 1611 static int pci_save_pcix_state(struct pci_dev *dev) 1612 { 1613 int pos; 1614 struct pci_cap_saved_state *save_state; 1615 1616 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1617 if (!pos) 1618 return 0; 1619 1620 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1621 if (!save_state) { 1622 pci_err(dev, "buffer not found in %s\n", __func__); 1623 return -ENOMEM; 1624 } 1625 1626 pci_read_config_word(dev, pos + PCI_X_CMD, 1627 (u16 *)save_state->cap.data); 1628 1629 return 0; 1630 } 1631 1632 static void pci_restore_pcix_state(struct pci_dev *dev) 1633 { 1634 int i = 0, pos; 1635 struct pci_cap_saved_state *save_state; 1636 u16 *cap; 1637 1638 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1639 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1640 if (!save_state || !pos) 1641 return; 1642 cap = (u16 *)&save_state->cap.data[0]; 1643 1644 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1645 } 1646 1647 static void pci_save_ltr_state(struct pci_dev *dev) 1648 { 1649 int ltr; 1650 struct pci_cap_saved_state *save_state; 1651 u32 *cap; 1652 1653 if (!pci_is_pcie(dev)) 1654 return; 1655 1656 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1657 if (!ltr) 1658 return; 1659 1660 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1661 if (!save_state) { 1662 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1663 return; 1664 } 1665 1666 /* Some broken devices only support dword access to LTR */ 1667 cap = &save_state->cap.data[0]; 1668 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1669 } 1670 1671 static void pci_restore_ltr_state(struct pci_dev *dev) 1672 { 1673 struct pci_cap_saved_state *save_state; 1674 int ltr; 1675 u32 *cap; 1676 1677 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1678 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1679 if (!save_state || !ltr) 1680 return; 1681 1682 /* Some broken devices only support dword access to LTR */ 1683 cap = &save_state->cap.data[0]; 1684 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1685 } 1686 1687 /** 1688 * pci_save_state - save the PCI configuration space of a device before 1689 * suspending 1690 * @dev: PCI device that we're dealing with 1691 */ 1692 int pci_save_state(struct pci_dev *dev) 1693 { 1694 int i; 1695 /* XXX: 100% dword access ok here? */ 1696 for (i = 0; i < 16; i++) { 1697 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1698 pci_dbg(dev, "save config %#04x: %#010x\n", 1699 i * 4, dev->saved_config_space[i]); 1700 } 1701 dev->state_saved = true; 1702 1703 i = pci_save_pcie_state(dev); 1704 if (i != 0) 1705 return i; 1706 1707 i = pci_save_pcix_state(dev); 1708 if (i != 0) 1709 return i; 1710 1711 pci_save_ltr_state(dev); 1712 pci_save_dpc_state(dev); 1713 pci_save_aer_state(dev); 1714 pci_save_ptm_state(dev); 1715 return pci_save_vc_state(dev); 1716 } 1717 EXPORT_SYMBOL(pci_save_state); 1718 1719 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1720 u32 saved_val, int retry, bool force) 1721 { 1722 u32 val; 1723 1724 pci_read_config_dword(pdev, offset, &val); 1725 if (!force && val == saved_val) 1726 return; 1727 1728 for (;;) { 1729 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1730 offset, val, saved_val); 1731 pci_write_config_dword(pdev, offset, saved_val); 1732 if (retry-- <= 0) 1733 return; 1734 1735 pci_read_config_dword(pdev, offset, &val); 1736 if (val == saved_val) 1737 return; 1738 1739 mdelay(1); 1740 } 1741 } 1742 1743 static void pci_restore_config_space_range(struct pci_dev *pdev, 1744 int start, int end, int retry, 1745 bool force) 1746 { 1747 int index; 1748 1749 for (index = end; index >= start; index--) 1750 pci_restore_config_dword(pdev, 4 * index, 1751 pdev->saved_config_space[index], 1752 retry, force); 1753 } 1754 1755 static void pci_restore_config_space(struct pci_dev *pdev) 1756 { 1757 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1758 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1759 /* Restore BARs before the command register. */ 1760 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1761 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1762 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1763 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1764 1765 /* 1766 * Force rewriting of prefetch registers to avoid S3 resume 1767 * issues on Intel PCI bridges that occur when these 1768 * registers are not explicitly written. 1769 */ 1770 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1771 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1772 } else { 1773 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1774 } 1775 } 1776 1777 static void pci_restore_rebar_state(struct pci_dev *pdev) 1778 { 1779 unsigned int pos, nbars, i; 1780 u32 ctrl; 1781 1782 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1783 if (!pos) 1784 return; 1785 1786 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1787 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 1788 1789 for (i = 0; i < nbars; i++, pos += 8) { 1790 struct resource *res; 1791 int bar_idx, size; 1792 1793 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1794 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1795 res = pdev->resource + bar_idx; 1796 size = pci_rebar_bytes_to_size(resource_size(res)); 1797 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1798 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 1799 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1800 } 1801 } 1802 1803 /** 1804 * pci_restore_state - Restore the saved state of a PCI device 1805 * @dev: PCI device that we're dealing with 1806 */ 1807 void pci_restore_state(struct pci_dev *dev) 1808 { 1809 if (!dev->state_saved) 1810 return; 1811 1812 /* 1813 * Restore max latencies (in the LTR capability) before enabling 1814 * LTR itself (in the PCIe capability). 1815 */ 1816 pci_restore_ltr_state(dev); 1817 1818 pci_restore_pcie_state(dev); 1819 pci_restore_pasid_state(dev); 1820 pci_restore_pri_state(dev); 1821 pci_restore_ats_state(dev); 1822 pci_restore_vc_state(dev); 1823 pci_restore_rebar_state(dev); 1824 pci_restore_dpc_state(dev); 1825 pci_restore_ptm_state(dev); 1826 1827 pci_aer_clear_status(dev); 1828 pci_restore_aer_state(dev); 1829 1830 pci_restore_config_space(dev); 1831 1832 pci_restore_pcix_state(dev); 1833 pci_restore_msi_state(dev); 1834 1835 /* Restore ACS and IOV configuration state */ 1836 pci_enable_acs(dev); 1837 pci_restore_iov_state(dev); 1838 1839 dev->state_saved = false; 1840 } 1841 EXPORT_SYMBOL(pci_restore_state); 1842 1843 struct pci_saved_state { 1844 u32 config_space[16]; 1845 struct pci_cap_saved_data cap[]; 1846 }; 1847 1848 /** 1849 * pci_store_saved_state - Allocate and return an opaque struct containing 1850 * the device saved state. 1851 * @dev: PCI device that we're dealing with 1852 * 1853 * Return NULL if no state or error. 1854 */ 1855 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1856 { 1857 struct pci_saved_state *state; 1858 struct pci_cap_saved_state *tmp; 1859 struct pci_cap_saved_data *cap; 1860 size_t size; 1861 1862 if (!dev->state_saved) 1863 return NULL; 1864 1865 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1866 1867 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1868 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1869 1870 state = kzalloc(size, GFP_KERNEL); 1871 if (!state) 1872 return NULL; 1873 1874 memcpy(state->config_space, dev->saved_config_space, 1875 sizeof(state->config_space)); 1876 1877 cap = state->cap; 1878 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1879 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1880 memcpy(cap, &tmp->cap, len); 1881 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1882 } 1883 /* Empty cap_save terminates list */ 1884 1885 return state; 1886 } 1887 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1888 1889 /** 1890 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1891 * @dev: PCI device that we're dealing with 1892 * @state: Saved state returned from pci_store_saved_state() 1893 */ 1894 int pci_load_saved_state(struct pci_dev *dev, 1895 struct pci_saved_state *state) 1896 { 1897 struct pci_cap_saved_data *cap; 1898 1899 dev->state_saved = false; 1900 1901 if (!state) 1902 return 0; 1903 1904 memcpy(dev->saved_config_space, state->config_space, 1905 sizeof(state->config_space)); 1906 1907 cap = state->cap; 1908 while (cap->size) { 1909 struct pci_cap_saved_state *tmp; 1910 1911 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1912 if (!tmp || tmp->cap.size != cap->size) 1913 return -EINVAL; 1914 1915 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1916 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1917 sizeof(struct pci_cap_saved_data) + cap->size); 1918 } 1919 1920 dev->state_saved = true; 1921 return 0; 1922 } 1923 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1924 1925 /** 1926 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1927 * and free the memory allocated for it. 1928 * @dev: PCI device that we're dealing with 1929 * @state: Pointer to saved state returned from pci_store_saved_state() 1930 */ 1931 int pci_load_and_free_saved_state(struct pci_dev *dev, 1932 struct pci_saved_state **state) 1933 { 1934 int ret = pci_load_saved_state(dev, *state); 1935 kfree(*state); 1936 *state = NULL; 1937 return ret; 1938 } 1939 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1940 1941 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1942 { 1943 return pci_enable_resources(dev, bars); 1944 } 1945 1946 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1947 { 1948 int err; 1949 struct pci_dev *bridge; 1950 u16 cmd; 1951 u8 pin; 1952 1953 err = pci_set_power_state(dev, PCI_D0); 1954 if (err < 0 && err != -EIO) 1955 return err; 1956 1957 bridge = pci_upstream_bridge(dev); 1958 if (bridge) 1959 pcie_aspm_powersave_config_link(bridge); 1960 1961 err = pcibios_enable_device(dev, bars); 1962 if (err < 0) 1963 return err; 1964 pci_fixup_device(pci_fixup_enable, dev); 1965 1966 if (dev->msi_enabled || dev->msix_enabled) 1967 return 0; 1968 1969 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1970 if (pin) { 1971 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1972 if (cmd & PCI_COMMAND_INTX_DISABLE) 1973 pci_write_config_word(dev, PCI_COMMAND, 1974 cmd & ~PCI_COMMAND_INTX_DISABLE); 1975 } 1976 1977 return 0; 1978 } 1979 1980 /** 1981 * pci_reenable_device - Resume abandoned device 1982 * @dev: PCI device to be resumed 1983 * 1984 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1985 * to be called by normal code, write proper resume handler and use it instead. 1986 */ 1987 int pci_reenable_device(struct pci_dev *dev) 1988 { 1989 if (pci_is_enabled(dev)) 1990 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL(pci_reenable_device); 1994 1995 static void pci_enable_bridge(struct pci_dev *dev) 1996 { 1997 struct pci_dev *bridge; 1998 int retval; 1999 2000 bridge = pci_upstream_bridge(dev); 2001 if (bridge) 2002 pci_enable_bridge(bridge); 2003 2004 if (pci_is_enabled(dev)) { 2005 if (!dev->is_busmaster) 2006 pci_set_master(dev); 2007 return; 2008 } 2009 2010 retval = pci_enable_device(dev); 2011 if (retval) 2012 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2013 retval); 2014 pci_set_master(dev); 2015 } 2016 2017 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2018 { 2019 struct pci_dev *bridge; 2020 int err; 2021 int i, bars = 0; 2022 2023 /* 2024 * Power state could be unknown at this point, either due to a fresh 2025 * boot or a device removal call. So get the current power state 2026 * so that things like MSI message writing will behave as expected 2027 * (e.g. if the device really is in D0 at enable time). 2028 */ 2029 pci_update_current_state(dev, dev->current_state); 2030 2031 if (atomic_inc_return(&dev->enable_cnt) > 1) 2032 return 0; /* already enabled */ 2033 2034 bridge = pci_upstream_bridge(dev); 2035 if (bridge) 2036 pci_enable_bridge(bridge); 2037 2038 /* only skip sriov related */ 2039 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2040 if (dev->resource[i].flags & flags) 2041 bars |= (1 << i); 2042 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2043 if (dev->resource[i].flags & flags) 2044 bars |= (1 << i); 2045 2046 err = do_pci_enable_device(dev, bars); 2047 if (err < 0) 2048 atomic_dec(&dev->enable_cnt); 2049 return err; 2050 } 2051 2052 /** 2053 * pci_enable_device_io - Initialize a device for use with IO space 2054 * @dev: PCI device to be initialized 2055 * 2056 * Initialize device before it's used by a driver. Ask low-level code 2057 * to enable I/O resources. Wake up the device if it was suspended. 2058 * Beware, this function can fail. 2059 */ 2060 int pci_enable_device_io(struct pci_dev *dev) 2061 { 2062 return pci_enable_device_flags(dev, IORESOURCE_IO); 2063 } 2064 EXPORT_SYMBOL(pci_enable_device_io); 2065 2066 /** 2067 * pci_enable_device_mem - Initialize a device for use with Memory space 2068 * @dev: PCI device to be initialized 2069 * 2070 * Initialize device before it's used by a driver. Ask low-level code 2071 * to enable Memory resources. Wake up the device if it was suspended. 2072 * Beware, this function can fail. 2073 */ 2074 int pci_enable_device_mem(struct pci_dev *dev) 2075 { 2076 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2077 } 2078 EXPORT_SYMBOL(pci_enable_device_mem); 2079 2080 /** 2081 * pci_enable_device - Initialize device before it's used by a driver. 2082 * @dev: PCI device to be initialized 2083 * 2084 * Initialize device before it's used by a driver. Ask low-level code 2085 * to enable I/O and memory. Wake up the device if it was suspended. 2086 * Beware, this function can fail. 2087 * 2088 * Note we don't actually enable the device many times if we call 2089 * this function repeatedly (we just increment the count). 2090 */ 2091 int pci_enable_device(struct pci_dev *dev) 2092 { 2093 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2094 } 2095 EXPORT_SYMBOL(pci_enable_device); 2096 2097 /* 2098 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2099 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2100 * there's no need to track it separately. pci_devres is initialized 2101 * when a device is enabled using managed PCI device enable interface. 2102 */ 2103 struct pci_devres { 2104 unsigned int enabled:1; 2105 unsigned int pinned:1; 2106 unsigned int orig_intx:1; 2107 unsigned int restore_intx:1; 2108 unsigned int mwi:1; 2109 u32 region_mask; 2110 }; 2111 2112 static void pcim_release(struct device *gendev, void *res) 2113 { 2114 struct pci_dev *dev = to_pci_dev(gendev); 2115 struct pci_devres *this = res; 2116 int i; 2117 2118 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2119 if (this->region_mask & (1 << i)) 2120 pci_release_region(dev, i); 2121 2122 if (this->mwi) 2123 pci_clear_mwi(dev); 2124 2125 if (this->restore_intx) 2126 pci_intx(dev, this->orig_intx); 2127 2128 if (this->enabled && !this->pinned) 2129 pci_disable_device(dev); 2130 } 2131 2132 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2133 { 2134 struct pci_devres *dr, *new_dr; 2135 2136 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2137 if (dr) 2138 return dr; 2139 2140 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2141 if (!new_dr) 2142 return NULL; 2143 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2144 } 2145 2146 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2147 { 2148 if (pci_is_managed(pdev)) 2149 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2150 return NULL; 2151 } 2152 2153 /** 2154 * pcim_enable_device - Managed pci_enable_device() 2155 * @pdev: PCI device to be initialized 2156 * 2157 * Managed pci_enable_device(). 2158 */ 2159 int pcim_enable_device(struct pci_dev *pdev) 2160 { 2161 struct pci_devres *dr; 2162 int rc; 2163 2164 dr = get_pci_dr(pdev); 2165 if (unlikely(!dr)) 2166 return -ENOMEM; 2167 if (dr->enabled) 2168 return 0; 2169 2170 rc = pci_enable_device(pdev); 2171 if (!rc) { 2172 pdev->is_managed = 1; 2173 dr->enabled = 1; 2174 } 2175 return rc; 2176 } 2177 EXPORT_SYMBOL(pcim_enable_device); 2178 2179 /** 2180 * pcim_pin_device - Pin managed PCI device 2181 * @pdev: PCI device to pin 2182 * 2183 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2184 * driver detach. @pdev must have been enabled with 2185 * pcim_enable_device(). 2186 */ 2187 void pcim_pin_device(struct pci_dev *pdev) 2188 { 2189 struct pci_devres *dr; 2190 2191 dr = find_pci_dr(pdev); 2192 WARN_ON(!dr || !dr->enabled); 2193 if (dr) 2194 dr->pinned = 1; 2195 } 2196 EXPORT_SYMBOL(pcim_pin_device); 2197 2198 /* 2199 * pcibios_device_add - provide arch specific hooks when adding device dev 2200 * @dev: the PCI device being added 2201 * 2202 * Permits the platform to provide architecture specific functionality when 2203 * devices are added. This is the default implementation. Architecture 2204 * implementations can override this. 2205 */ 2206 int __weak pcibios_device_add(struct pci_dev *dev) 2207 { 2208 return 0; 2209 } 2210 2211 /** 2212 * pcibios_release_device - provide arch specific hooks when releasing 2213 * device dev 2214 * @dev: the PCI device being released 2215 * 2216 * Permits the platform to provide architecture specific functionality when 2217 * devices are released. This is the default implementation. Architecture 2218 * implementations can override this. 2219 */ 2220 void __weak pcibios_release_device(struct pci_dev *dev) {} 2221 2222 /** 2223 * pcibios_disable_device - disable arch specific PCI resources for device dev 2224 * @dev: the PCI device to disable 2225 * 2226 * Disables architecture specific PCI resources for the device. This 2227 * is the default implementation. Architecture implementations can 2228 * override this. 2229 */ 2230 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2231 2232 /** 2233 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2234 * @irq: ISA IRQ to penalize 2235 * @active: IRQ active or not 2236 * 2237 * Permits the platform to provide architecture-specific functionality when 2238 * penalizing ISA IRQs. This is the default implementation. Architecture 2239 * implementations can override this. 2240 */ 2241 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2242 2243 static void do_pci_disable_device(struct pci_dev *dev) 2244 { 2245 u16 pci_command; 2246 2247 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2248 if (pci_command & PCI_COMMAND_MASTER) { 2249 pci_command &= ~PCI_COMMAND_MASTER; 2250 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2251 } 2252 2253 pcibios_disable_device(dev); 2254 } 2255 2256 /** 2257 * pci_disable_enabled_device - Disable device without updating enable_cnt 2258 * @dev: PCI device to disable 2259 * 2260 * NOTE: This function is a backend of PCI power management routines and is 2261 * not supposed to be called drivers. 2262 */ 2263 void pci_disable_enabled_device(struct pci_dev *dev) 2264 { 2265 if (pci_is_enabled(dev)) 2266 do_pci_disable_device(dev); 2267 } 2268 2269 /** 2270 * pci_disable_device - Disable PCI device after use 2271 * @dev: PCI device to be disabled 2272 * 2273 * Signal to the system that the PCI device is not in use by the system 2274 * anymore. This only involves disabling PCI bus-mastering, if active. 2275 * 2276 * Note we don't actually disable the device until all callers of 2277 * pci_enable_device() have called pci_disable_device(). 2278 */ 2279 void pci_disable_device(struct pci_dev *dev) 2280 { 2281 struct pci_devres *dr; 2282 2283 dr = find_pci_dr(dev); 2284 if (dr) 2285 dr->enabled = 0; 2286 2287 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2288 "disabling already-disabled device"); 2289 2290 if (atomic_dec_return(&dev->enable_cnt) != 0) 2291 return; 2292 2293 do_pci_disable_device(dev); 2294 2295 dev->is_busmaster = 0; 2296 } 2297 EXPORT_SYMBOL(pci_disable_device); 2298 2299 /** 2300 * pcibios_set_pcie_reset_state - set reset state for device dev 2301 * @dev: the PCIe device reset 2302 * @state: Reset state to enter into 2303 * 2304 * Set the PCIe reset state for the device. This is the default 2305 * implementation. Architecture implementations can override this. 2306 */ 2307 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2308 enum pcie_reset_state state) 2309 { 2310 return -EINVAL; 2311 } 2312 2313 /** 2314 * pci_set_pcie_reset_state - set reset state for device dev 2315 * @dev: the PCIe device reset 2316 * @state: Reset state to enter into 2317 * 2318 * Sets the PCI reset state for the device. 2319 */ 2320 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2321 { 2322 return pcibios_set_pcie_reset_state(dev, state); 2323 } 2324 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2325 2326 #ifdef CONFIG_PCIEAER 2327 void pcie_clear_device_status(struct pci_dev *dev) 2328 { 2329 u16 sta; 2330 2331 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2332 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2333 } 2334 #endif 2335 2336 /** 2337 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2338 * @dev: PCIe root port or event collector. 2339 */ 2340 void pcie_clear_root_pme_status(struct pci_dev *dev) 2341 { 2342 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2343 } 2344 2345 /** 2346 * pci_check_pme_status - Check if given device has generated PME. 2347 * @dev: Device to check. 2348 * 2349 * Check the PME status of the device and if set, clear it and clear PME enable 2350 * (if set). Return 'true' if PME status and PME enable were both set or 2351 * 'false' otherwise. 2352 */ 2353 bool pci_check_pme_status(struct pci_dev *dev) 2354 { 2355 int pmcsr_pos; 2356 u16 pmcsr; 2357 bool ret = false; 2358 2359 if (!dev->pm_cap) 2360 return false; 2361 2362 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2363 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2364 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2365 return false; 2366 2367 /* Clear PME status. */ 2368 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2369 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2370 /* Disable PME to avoid interrupt flood. */ 2371 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2372 ret = true; 2373 } 2374 2375 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2376 2377 return ret; 2378 } 2379 2380 /** 2381 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2382 * @dev: Device to handle. 2383 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2384 * 2385 * Check if @dev has generated PME and queue a resume request for it in that 2386 * case. 2387 */ 2388 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2389 { 2390 if (pme_poll_reset && dev->pme_poll) 2391 dev->pme_poll = false; 2392 2393 if (pci_check_pme_status(dev)) { 2394 pci_wakeup_event(dev); 2395 pm_request_resume(&dev->dev); 2396 } 2397 return 0; 2398 } 2399 2400 /** 2401 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2402 * @bus: Top bus of the subtree to walk. 2403 */ 2404 void pci_pme_wakeup_bus(struct pci_bus *bus) 2405 { 2406 if (bus) 2407 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2408 } 2409 2410 2411 /** 2412 * pci_pme_capable - check the capability of PCI device to generate PME# 2413 * @dev: PCI device to handle. 2414 * @state: PCI state from which device will issue PME#. 2415 */ 2416 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2417 { 2418 if (!dev->pm_cap) 2419 return false; 2420 2421 return !!(dev->pme_support & (1 << state)); 2422 } 2423 EXPORT_SYMBOL(pci_pme_capable); 2424 2425 static void pci_pme_list_scan(struct work_struct *work) 2426 { 2427 struct pci_pme_device *pme_dev, *n; 2428 2429 mutex_lock(&pci_pme_list_mutex); 2430 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2431 struct pci_dev *pdev = pme_dev->dev; 2432 2433 if (pdev->pme_poll) { 2434 struct pci_dev *bridge = pdev->bus->self; 2435 struct device *dev = &pdev->dev; 2436 int pm_status; 2437 2438 /* 2439 * If bridge is in low power state, the 2440 * configuration space of subordinate devices 2441 * may be not accessible 2442 */ 2443 if (bridge && bridge->current_state != PCI_D0) 2444 continue; 2445 2446 /* 2447 * If the device is in a low power state it 2448 * should not be polled either. 2449 */ 2450 pm_status = pm_runtime_get_if_active(dev, true); 2451 if (!pm_status) 2452 continue; 2453 2454 if (pdev->current_state != PCI_D3cold) 2455 pci_pme_wakeup(pdev, NULL); 2456 2457 if (pm_status > 0) 2458 pm_runtime_put(dev); 2459 } else { 2460 list_del(&pme_dev->list); 2461 kfree(pme_dev); 2462 } 2463 } 2464 if (!list_empty(&pci_pme_list)) 2465 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2466 msecs_to_jiffies(PME_TIMEOUT)); 2467 mutex_unlock(&pci_pme_list_mutex); 2468 } 2469 2470 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2471 { 2472 u16 pmcsr; 2473 2474 if (!dev->pme_support) 2475 return; 2476 2477 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2478 /* Clear PME_Status by writing 1 to it and enable PME# */ 2479 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2480 if (!enable) 2481 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2482 2483 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2484 } 2485 2486 /** 2487 * pci_pme_restore - Restore PME configuration after config space restore. 2488 * @dev: PCI device to update. 2489 */ 2490 void pci_pme_restore(struct pci_dev *dev) 2491 { 2492 u16 pmcsr; 2493 2494 if (!dev->pme_support) 2495 return; 2496 2497 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2498 if (dev->wakeup_prepared) { 2499 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2500 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2501 } else { 2502 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2503 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2504 } 2505 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2506 } 2507 2508 /** 2509 * pci_pme_active - enable or disable PCI device's PME# function 2510 * @dev: PCI device to handle. 2511 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2512 * 2513 * The caller must verify that the device is capable of generating PME# before 2514 * calling this function with @enable equal to 'true'. 2515 */ 2516 void pci_pme_active(struct pci_dev *dev, bool enable) 2517 { 2518 __pci_pme_active(dev, enable); 2519 2520 /* 2521 * PCI (as opposed to PCIe) PME requires that the device have 2522 * its PME# line hooked up correctly. Not all hardware vendors 2523 * do this, so the PME never gets delivered and the device 2524 * remains asleep. The easiest way around this is to 2525 * periodically walk the list of suspended devices and check 2526 * whether any have their PME flag set. The assumption is that 2527 * we'll wake up often enough anyway that this won't be a huge 2528 * hit, and the power savings from the devices will still be a 2529 * win. 2530 * 2531 * Although PCIe uses in-band PME message instead of PME# line 2532 * to report PME, PME does not work for some PCIe devices in 2533 * reality. For example, there are devices that set their PME 2534 * status bits, but don't really bother to send a PME message; 2535 * there are PCI Express Root Ports that don't bother to 2536 * trigger interrupts when they receive PME messages from the 2537 * devices below. So PME poll is used for PCIe devices too. 2538 */ 2539 2540 if (dev->pme_poll) { 2541 struct pci_pme_device *pme_dev; 2542 if (enable) { 2543 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2544 GFP_KERNEL); 2545 if (!pme_dev) { 2546 pci_warn(dev, "can't enable PME#\n"); 2547 return; 2548 } 2549 pme_dev->dev = dev; 2550 mutex_lock(&pci_pme_list_mutex); 2551 list_add(&pme_dev->list, &pci_pme_list); 2552 if (list_is_singular(&pci_pme_list)) 2553 queue_delayed_work(system_freezable_wq, 2554 &pci_pme_work, 2555 msecs_to_jiffies(PME_TIMEOUT)); 2556 mutex_unlock(&pci_pme_list_mutex); 2557 } else { 2558 mutex_lock(&pci_pme_list_mutex); 2559 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2560 if (pme_dev->dev == dev) { 2561 list_del(&pme_dev->list); 2562 kfree(pme_dev); 2563 break; 2564 } 2565 } 2566 mutex_unlock(&pci_pme_list_mutex); 2567 } 2568 } 2569 2570 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2571 } 2572 EXPORT_SYMBOL(pci_pme_active); 2573 2574 /** 2575 * __pci_enable_wake - enable PCI device as wakeup event source 2576 * @dev: PCI device affected 2577 * @state: PCI state from which device will issue wakeup events 2578 * @enable: True to enable event generation; false to disable 2579 * 2580 * This enables the device as a wakeup event source, or disables it. 2581 * When such events involves platform-specific hooks, those hooks are 2582 * called automatically by this routine. 2583 * 2584 * Devices with legacy power management (no standard PCI PM capabilities) 2585 * always require such platform hooks. 2586 * 2587 * RETURN VALUE: 2588 * 0 is returned on success 2589 * -EINVAL is returned if device is not supposed to wake up the system 2590 * Error code depending on the platform is returned if both the platform and 2591 * the native mechanism fail to enable the generation of wake-up events 2592 */ 2593 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2594 { 2595 int ret = 0; 2596 2597 /* 2598 * Bridges that are not power-manageable directly only signal 2599 * wakeup on behalf of subordinate devices which is set up 2600 * elsewhere, so skip them. However, bridges that are 2601 * power-manageable may signal wakeup for themselves (for example, 2602 * on a hotplug event) and they need to be covered here. 2603 */ 2604 if (!pci_power_manageable(dev)) 2605 return 0; 2606 2607 /* Don't do the same thing twice in a row for one device. */ 2608 if (!!enable == !!dev->wakeup_prepared) 2609 return 0; 2610 2611 /* 2612 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2613 * Anderson we should be doing PME# wake enable followed by ACPI wake 2614 * enable. To disable wake-up we call the platform first, for symmetry. 2615 */ 2616 2617 if (enable) { 2618 int error; 2619 2620 /* 2621 * Enable PME signaling if the device can signal PME from 2622 * D3cold regardless of whether or not it can signal PME from 2623 * the current target state, because that will allow it to 2624 * signal PME when the hierarchy above it goes into D3cold and 2625 * the device itself ends up in D3cold as a result of that. 2626 */ 2627 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2628 pci_pme_active(dev, true); 2629 else 2630 ret = 1; 2631 error = platform_pci_set_wakeup(dev, true); 2632 if (ret) 2633 ret = error; 2634 if (!ret) 2635 dev->wakeup_prepared = true; 2636 } else { 2637 platform_pci_set_wakeup(dev, false); 2638 pci_pme_active(dev, false); 2639 dev->wakeup_prepared = false; 2640 } 2641 2642 return ret; 2643 } 2644 2645 /** 2646 * pci_enable_wake - change wakeup settings for a PCI device 2647 * @pci_dev: Target device 2648 * @state: PCI state from which device will issue wakeup events 2649 * @enable: Whether or not to enable event generation 2650 * 2651 * If @enable is set, check device_may_wakeup() for the device before calling 2652 * __pci_enable_wake() for it. 2653 */ 2654 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2655 { 2656 if (enable && !device_may_wakeup(&pci_dev->dev)) 2657 return -EINVAL; 2658 2659 return __pci_enable_wake(pci_dev, state, enable); 2660 } 2661 EXPORT_SYMBOL(pci_enable_wake); 2662 2663 /** 2664 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2665 * @dev: PCI device to prepare 2666 * @enable: True to enable wake-up event generation; false to disable 2667 * 2668 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2669 * and this function allows them to set that up cleanly - pci_enable_wake() 2670 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2671 * ordering constraints. 2672 * 2673 * This function only returns error code if the device is not allowed to wake 2674 * up the system from sleep or it is not capable of generating PME# from both 2675 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2676 */ 2677 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2678 { 2679 return pci_pme_capable(dev, PCI_D3cold) ? 2680 pci_enable_wake(dev, PCI_D3cold, enable) : 2681 pci_enable_wake(dev, PCI_D3hot, enable); 2682 } 2683 EXPORT_SYMBOL(pci_wake_from_d3); 2684 2685 /** 2686 * pci_target_state - find an appropriate low power state for a given PCI dev 2687 * @dev: PCI device 2688 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2689 * 2690 * Use underlying platform code to find a supported low power state for @dev. 2691 * If the platform can't manage @dev, return the deepest state from which it 2692 * can generate wake events, based on any available PME info. 2693 */ 2694 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2695 { 2696 if (platform_pci_power_manageable(dev)) { 2697 /* 2698 * Call the platform to find the target state for the device. 2699 */ 2700 pci_power_t state = platform_pci_choose_state(dev); 2701 2702 switch (state) { 2703 case PCI_POWER_ERROR: 2704 case PCI_UNKNOWN: 2705 return PCI_D3hot; 2706 2707 case PCI_D1: 2708 case PCI_D2: 2709 if (pci_no_d1d2(dev)) 2710 return PCI_D3hot; 2711 } 2712 2713 return state; 2714 } 2715 2716 /* 2717 * If the device is in D3cold even though it's not power-manageable by 2718 * the platform, it may have been powered down by non-standard means. 2719 * Best to let it slumber. 2720 */ 2721 if (dev->current_state == PCI_D3cold) 2722 return PCI_D3cold; 2723 else if (!dev->pm_cap) 2724 return PCI_D0; 2725 2726 if (wakeup && dev->pme_support) { 2727 pci_power_t state = PCI_D3hot; 2728 2729 /* 2730 * Find the deepest state from which the device can generate 2731 * PME#. 2732 */ 2733 while (state && !(dev->pme_support & (1 << state))) 2734 state--; 2735 2736 if (state) 2737 return state; 2738 else if (dev->pme_support & 1) 2739 return PCI_D0; 2740 } 2741 2742 return PCI_D3hot; 2743 } 2744 2745 /** 2746 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2747 * into a sleep state 2748 * @dev: Device to handle. 2749 * 2750 * Choose the power state appropriate for the device depending on whether 2751 * it can wake up the system and/or is power manageable by the platform 2752 * (PCI_D3hot is the default) and put the device into that state. 2753 */ 2754 int pci_prepare_to_sleep(struct pci_dev *dev) 2755 { 2756 bool wakeup = device_may_wakeup(&dev->dev); 2757 pci_power_t target_state = pci_target_state(dev, wakeup); 2758 int error; 2759 2760 if (target_state == PCI_POWER_ERROR) 2761 return -EIO; 2762 2763 pci_enable_wake(dev, target_state, wakeup); 2764 2765 error = pci_set_power_state(dev, target_state); 2766 2767 if (error) 2768 pci_enable_wake(dev, target_state, false); 2769 2770 return error; 2771 } 2772 EXPORT_SYMBOL(pci_prepare_to_sleep); 2773 2774 /** 2775 * pci_back_from_sleep - turn PCI device on during system-wide transition 2776 * into working state 2777 * @dev: Device to handle. 2778 * 2779 * Disable device's system wake-up capability and put it into D0. 2780 */ 2781 int pci_back_from_sleep(struct pci_dev *dev) 2782 { 2783 int ret = pci_set_power_state(dev, PCI_D0); 2784 2785 if (ret) 2786 return ret; 2787 2788 pci_enable_wake(dev, PCI_D0, false); 2789 return 0; 2790 } 2791 EXPORT_SYMBOL(pci_back_from_sleep); 2792 2793 /** 2794 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2795 * @dev: PCI device being suspended. 2796 * 2797 * Prepare @dev to generate wake-up events at run time and put it into a low 2798 * power state. 2799 */ 2800 int pci_finish_runtime_suspend(struct pci_dev *dev) 2801 { 2802 pci_power_t target_state; 2803 int error; 2804 2805 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2806 if (target_state == PCI_POWER_ERROR) 2807 return -EIO; 2808 2809 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2810 2811 error = pci_set_power_state(dev, target_state); 2812 2813 if (error) 2814 pci_enable_wake(dev, target_state, false); 2815 2816 return error; 2817 } 2818 2819 /** 2820 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2821 * @dev: Device to check. 2822 * 2823 * Return true if the device itself is capable of generating wake-up events 2824 * (through the platform or using the native PCIe PME) or if the device supports 2825 * PME and one of its upstream bridges can generate wake-up events. 2826 */ 2827 bool pci_dev_run_wake(struct pci_dev *dev) 2828 { 2829 struct pci_bus *bus = dev->bus; 2830 2831 if (!dev->pme_support) 2832 return false; 2833 2834 /* PME-capable in principle, but not from the target power state */ 2835 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2836 return false; 2837 2838 if (device_can_wakeup(&dev->dev)) 2839 return true; 2840 2841 while (bus->parent) { 2842 struct pci_dev *bridge = bus->self; 2843 2844 if (device_can_wakeup(&bridge->dev)) 2845 return true; 2846 2847 bus = bus->parent; 2848 } 2849 2850 /* We have reached the root bus. */ 2851 if (bus->bridge) 2852 return device_can_wakeup(bus->bridge); 2853 2854 return false; 2855 } 2856 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2857 2858 /** 2859 * pci_dev_need_resume - Check if it is necessary to resume the device. 2860 * @pci_dev: Device to check. 2861 * 2862 * Return 'true' if the device is not runtime-suspended or it has to be 2863 * reconfigured due to wakeup settings difference between system and runtime 2864 * suspend, or the current power state of it is not suitable for the upcoming 2865 * (system-wide) transition. 2866 */ 2867 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2868 { 2869 struct device *dev = &pci_dev->dev; 2870 pci_power_t target_state; 2871 2872 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2873 return true; 2874 2875 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2876 2877 /* 2878 * If the earlier platform check has not triggered, D3cold is just power 2879 * removal on top of D3hot, so no need to resume the device in that 2880 * case. 2881 */ 2882 return target_state != pci_dev->current_state && 2883 target_state != PCI_D3cold && 2884 pci_dev->current_state != PCI_D3hot; 2885 } 2886 2887 /** 2888 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2889 * @pci_dev: Device to check. 2890 * 2891 * If the device is suspended and it is not configured for system wakeup, 2892 * disable PME for it to prevent it from waking up the system unnecessarily. 2893 * 2894 * Note that if the device's power state is D3cold and the platform check in 2895 * pci_dev_need_resume() has not triggered, the device's configuration need not 2896 * be changed. 2897 */ 2898 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2899 { 2900 struct device *dev = &pci_dev->dev; 2901 2902 spin_lock_irq(&dev->power.lock); 2903 2904 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2905 pci_dev->current_state < PCI_D3cold) 2906 __pci_pme_active(pci_dev, false); 2907 2908 spin_unlock_irq(&dev->power.lock); 2909 } 2910 2911 /** 2912 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2913 * @pci_dev: Device to handle. 2914 * 2915 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2916 * it might have been disabled during the prepare phase of system suspend if 2917 * the device was not configured for system wakeup. 2918 */ 2919 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2920 { 2921 struct device *dev = &pci_dev->dev; 2922 2923 if (!pci_dev_run_wake(pci_dev)) 2924 return; 2925 2926 spin_lock_irq(&dev->power.lock); 2927 2928 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2929 __pci_pme_active(pci_dev, true); 2930 2931 spin_unlock_irq(&dev->power.lock); 2932 } 2933 2934 /** 2935 * pci_choose_state - Choose the power state of a PCI device. 2936 * @dev: Target PCI device. 2937 * @state: Target state for the whole system. 2938 * 2939 * Returns PCI power state suitable for @dev and @state. 2940 */ 2941 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2942 { 2943 if (state.event == PM_EVENT_ON) 2944 return PCI_D0; 2945 2946 return pci_target_state(dev, false); 2947 } 2948 EXPORT_SYMBOL(pci_choose_state); 2949 2950 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2951 { 2952 struct device *dev = &pdev->dev; 2953 struct device *parent = dev->parent; 2954 2955 if (parent) 2956 pm_runtime_get_sync(parent); 2957 pm_runtime_get_noresume(dev); 2958 /* 2959 * pdev->current_state is set to PCI_D3cold during suspending, 2960 * so wait until suspending completes 2961 */ 2962 pm_runtime_barrier(dev); 2963 /* 2964 * Only need to resume devices in D3cold, because config 2965 * registers are still accessible for devices suspended but 2966 * not in D3cold. 2967 */ 2968 if (pdev->current_state == PCI_D3cold) 2969 pm_runtime_resume(dev); 2970 } 2971 2972 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2973 { 2974 struct device *dev = &pdev->dev; 2975 struct device *parent = dev->parent; 2976 2977 pm_runtime_put(dev); 2978 if (parent) 2979 pm_runtime_put_sync(parent); 2980 } 2981 2982 static const struct dmi_system_id bridge_d3_blacklist[] = { 2983 #ifdef CONFIG_X86 2984 { 2985 /* 2986 * Gigabyte X299 root port is not marked as hotplug capable 2987 * which allows Linux to power manage it. However, this 2988 * confuses the BIOS SMI handler so don't power manage root 2989 * ports on that system. 2990 */ 2991 .ident = "X299 DESIGNARE EX-CF", 2992 .matches = { 2993 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2994 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2995 }, 2996 }, 2997 { 2998 /* 2999 * Downstream device is not accessible after putting a root port 3000 * into D3cold and back into D0 on Elo Continental Z2 board 3001 */ 3002 .ident = "Elo Continental Z2", 3003 .matches = { 3004 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3005 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3006 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3007 }, 3008 }, 3009 #endif 3010 { } 3011 }; 3012 3013 /** 3014 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3015 * @bridge: Bridge to check 3016 * 3017 * This function checks if it is possible to move the bridge to D3. 3018 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3019 */ 3020 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3021 { 3022 if (!pci_is_pcie(bridge)) 3023 return false; 3024 3025 switch (pci_pcie_type(bridge)) { 3026 case PCI_EXP_TYPE_ROOT_PORT: 3027 case PCI_EXP_TYPE_UPSTREAM: 3028 case PCI_EXP_TYPE_DOWNSTREAM: 3029 if (pci_bridge_d3_disable) 3030 return false; 3031 3032 /* 3033 * Hotplug ports handled by firmware in System Management Mode 3034 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3035 */ 3036 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3037 return false; 3038 3039 if (pci_bridge_d3_force) 3040 return true; 3041 3042 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3043 if (bridge->is_thunderbolt) 3044 return true; 3045 3046 /* Platform might know better if the bridge supports D3 */ 3047 if (platform_pci_bridge_d3(bridge)) 3048 return true; 3049 3050 /* 3051 * Hotplug ports handled natively by the OS were not validated 3052 * by vendors for runtime D3 at least until 2018 because there 3053 * was no OS support. 3054 */ 3055 if (bridge->is_hotplug_bridge) 3056 return false; 3057 3058 if (dmi_check_system(bridge_d3_blacklist)) 3059 return false; 3060 3061 /* 3062 * It should be safe to put PCIe ports from 2015 or newer 3063 * to D3. 3064 */ 3065 if (dmi_get_bios_year() >= 2015) 3066 return true; 3067 break; 3068 } 3069 3070 return false; 3071 } 3072 3073 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3074 { 3075 bool *d3cold_ok = data; 3076 3077 if (/* The device needs to be allowed to go D3cold ... */ 3078 dev->no_d3cold || !dev->d3cold_allowed || 3079 3080 /* ... and if it is wakeup capable to do so from D3cold. */ 3081 (device_may_wakeup(&dev->dev) && 3082 !pci_pme_capable(dev, PCI_D3cold)) || 3083 3084 /* If it is a bridge it must be allowed to go to D3. */ 3085 !pci_power_manageable(dev)) 3086 3087 *d3cold_ok = false; 3088 3089 return !*d3cold_ok; 3090 } 3091 3092 /* 3093 * pci_bridge_d3_update - Update bridge D3 capabilities 3094 * @dev: PCI device which is changed 3095 * 3096 * Update upstream bridge PM capabilities accordingly depending on if the 3097 * device PM configuration was changed or the device is being removed. The 3098 * change is also propagated upstream. 3099 */ 3100 void pci_bridge_d3_update(struct pci_dev *dev) 3101 { 3102 bool remove = !device_is_registered(&dev->dev); 3103 struct pci_dev *bridge; 3104 bool d3cold_ok = true; 3105 3106 bridge = pci_upstream_bridge(dev); 3107 if (!bridge || !pci_bridge_d3_possible(bridge)) 3108 return; 3109 3110 /* 3111 * If D3 is currently allowed for the bridge, removing one of its 3112 * children won't change that. 3113 */ 3114 if (remove && bridge->bridge_d3) 3115 return; 3116 3117 /* 3118 * If D3 is currently allowed for the bridge and a child is added or 3119 * changed, disallowance of D3 can only be caused by that child, so 3120 * we only need to check that single device, not any of its siblings. 3121 * 3122 * If D3 is currently not allowed for the bridge, checking the device 3123 * first may allow us to skip checking its siblings. 3124 */ 3125 if (!remove) 3126 pci_dev_check_d3cold(dev, &d3cold_ok); 3127 3128 /* 3129 * If D3 is currently not allowed for the bridge, this may be caused 3130 * either by the device being changed/removed or any of its siblings, 3131 * so we need to go through all children to find out if one of them 3132 * continues to block D3. 3133 */ 3134 if (d3cold_ok && !bridge->bridge_d3) 3135 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3136 &d3cold_ok); 3137 3138 if (bridge->bridge_d3 != d3cold_ok) { 3139 bridge->bridge_d3 = d3cold_ok; 3140 /* Propagate change to upstream bridges */ 3141 pci_bridge_d3_update(bridge); 3142 } 3143 } 3144 3145 /** 3146 * pci_d3cold_enable - Enable D3cold for device 3147 * @dev: PCI device to handle 3148 * 3149 * This function can be used in drivers to enable D3cold from the device 3150 * they handle. It also updates upstream PCI bridge PM capabilities 3151 * accordingly. 3152 */ 3153 void pci_d3cold_enable(struct pci_dev *dev) 3154 { 3155 if (dev->no_d3cold) { 3156 dev->no_d3cold = false; 3157 pci_bridge_d3_update(dev); 3158 } 3159 } 3160 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3161 3162 /** 3163 * pci_d3cold_disable - Disable D3cold for device 3164 * @dev: PCI device to handle 3165 * 3166 * This function can be used in drivers to disable D3cold from the device 3167 * they handle. It also updates upstream PCI bridge PM capabilities 3168 * accordingly. 3169 */ 3170 void pci_d3cold_disable(struct pci_dev *dev) 3171 { 3172 if (!dev->no_d3cold) { 3173 dev->no_d3cold = true; 3174 pci_bridge_d3_update(dev); 3175 } 3176 } 3177 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3178 3179 /** 3180 * pci_pm_init - Initialize PM functions of given PCI device 3181 * @dev: PCI device to handle. 3182 */ 3183 void pci_pm_init(struct pci_dev *dev) 3184 { 3185 int pm; 3186 u16 status; 3187 u16 pmc; 3188 3189 pm_runtime_forbid(&dev->dev); 3190 pm_runtime_set_active(&dev->dev); 3191 pm_runtime_enable(&dev->dev); 3192 device_enable_async_suspend(&dev->dev); 3193 dev->wakeup_prepared = false; 3194 3195 dev->pm_cap = 0; 3196 dev->pme_support = 0; 3197 3198 /* find PCI PM capability in list */ 3199 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3200 if (!pm) 3201 return; 3202 /* Check device's ability to generate PME# */ 3203 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3204 3205 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3206 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3207 pmc & PCI_PM_CAP_VER_MASK); 3208 return; 3209 } 3210 3211 dev->pm_cap = pm; 3212 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3213 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3214 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3215 dev->d3cold_allowed = true; 3216 3217 dev->d1_support = false; 3218 dev->d2_support = false; 3219 if (!pci_no_d1d2(dev)) { 3220 if (pmc & PCI_PM_CAP_D1) 3221 dev->d1_support = true; 3222 if (pmc & PCI_PM_CAP_D2) 3223 dev->d2_support = true; 3224 3225 if (dev->d1_support || dev->d2_support) 3226 pci_info(dev, "supports%s%s\n", 3227 dev->d1_support ? " D1" : "", 3228 dev->d2_support ? " D2" : ""); 3229 } 3230 3231 pmc &= PCI_PM_CAP_PME_MASK; 3232 if (pmc) { 3233 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3234 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3235 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3236 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3237 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3238 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3239 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc); 3240 dev->pme_poll = true; 3241 /* 3242 * Make device's PM flags reflect the wake-up capability, but 3243 * let the user space enable it to wake up the system as needed. 3244 */ 3245 device_set_wakeup_capable(&dev->dev, true); 3246 /* Disable the PME# generation functionality */ 3247 pci_pme_active(dev, false); 3248 } 3249 3250 pci_read_config_word(dev, PCI_STATUS, &status); 3251 if (status & PCI_STATUS_IMM_READY) 3252 dev->imm_ready = 1; 3253 } 3254 3255 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3256 { 3257 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3258 3259 switch (prop) { 3260 case PCI_EA_P_MEM: 3261 case PCI_EA_P_VF_MEM: 3262 flags |= IORESOURCE_MEM; 3263 break; 3264 case PCI_EA_P_MEM_PREFETCH: 3265 case PCI_EA_P_VF_MEM_PREFETCH: 3266 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3267 break; 3268 case PCI_EA_P_IO: 3269 flags |= IORESOURCE_IO; 3270 break; 3271 default: 3272 return 0; 3273 } 3274 3275 return flags; 3276 } 3277 3278 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3279 u8 prop) 3280 { 3281 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3282 return &dev->resource[bei]; 3283 #ifdef CONFIG_PCI_IOV 3284 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3285 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3286 return &dev->resource[PCI_IOV_RESOURCES + 3287 bei - PCI_EA_BEI_VF_BAR0]; 3288 #endif 3289 else if (bei == PCI_EA_BEI_ROM) 3290 return &dev->resource[PCI_ROM_RESOURCE]; 3291 else 3292 return NULL; 3293 } 3294 3295 /* Read an Enhanced Allocation (EA) entry */ 3296 static int pci_ea_read(struct pci_dev *dev, int offset) 3297 { 3298 struct resource *res; 3299 int ent_size, ent_offset = offset; 3300 resource_size_t start, end; 3301 unsigned long flags; 3302 u32 dw0, bei, base, max_offset; 3303 u8 prop; 3304 bool support_64 = (sizeof(resource_size_t) >= 8); 3305 3306 pci_read_config_dword(dev, ent_offset, &dw0); 3307 ent_offset += 4; 3308 3309 /* Entry size field indicates DWORDs after 1st */ 3310 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2; 3311 3312 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3313 goto out; 3314 3315 bei = FIELD_GET(PCI_EA_BEI, dw0); 3316 prop = FIELD_GET(PCI_EA_PP, dw0); 3317 3318 /* 3319 * If the Property is in the reserved range, try the Secondary 3320 * Property instead. 3321 */ 3322 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3323 prop = FIELD_GET(PCI_EA_SP, dw0); 3324 if (prop > PCI_EA_P_BRIDGE_IO) 3325 goto out; 3326 3327 res = pci_ea_get_resource(dev, bei, prop); 3328 if (!res) { 3329 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3330 goto out; 3331 } 3332 3333 flags = pci_ea_flags(dev, prop); 3334 if (!flags) { 3335 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3336 goto out; 3337 } 3338 3339 /* Read Base */ 3340 pci_read_config_dword(dev, ent_offset, &base); 3341 start = (base & PCI_EA_FIELD_MASK); 3342 ent_offset += 4; 3343 3344 /* Read MaxOffset */ 3345 pci_read_config_dword(dev, ent_offset, &max_offset); 3346 ent_offset += 4; 3347 3348 /* Read Base MSBs (if 64-bit entry) */ 3349 if (base & PCI_EA_IS_64) { 3350 u32 base_upper; 3351 3352 pci_read_config_dword(dev, ent_offset, &base_upper); 3353 ent_offset += 4; 3354 3355 flags |= IORESOURCE_MEM_64; 3356 3357 /* entry starts above 32-bit boundary, can't use */ 3358 if (!support_64 && base_upper) 3359 goto out; 3360 3361 if (support_64) 3362 start |= ((u64)base_upper << 32); 3363 } 3364 3365 end = start + (max_offset | 0x03); 3366 3367 /* Read MaxOffset MSBs (if 64-bit entry) */ 3368 if (max_offset & PCI_EA_IS_64) { 3369 u32 max_offset_upper; 3370 3371 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3372 ent_offset += 4; 3373 3374 flags |= IORESOURCE_MEM_64; 3375 3376 /* entry too big, can't use */ 3377 if (!support_64 && max_offset_upper) 3378 goto out; 3379 3380 if (support_64) 3381 end += ((u64)max_offset_upper << 32); 3382 } 3383 3384 if (end < start) { 3385 pci_err(dev, "EA Entry crosses address boundary\n"); 3386 goto out; 3387 } 3388 3389 if (ent_size != ent_offset - offset) { 3390 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3391 ent_size, ent_offset - offset); 3392 goto out; 3393 } 3394 3395 res->name = pci_name(dev); 3396 res->start = start; 3397 res->end = end; 3398 res->flags = flags; 3399 3400 if (bei <= PCI_EA_BEI_BAR5) 3401 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3402 bei, res, prop); 3403 else if (bei == PCI_EA_BEI_ROM) 3404 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3405 res, prop); 3406 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3407 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3408 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3409 else 3410 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3411 bei, res, prop); 3412 3413 out: 3414 return offset + ent_size; 3415 } 3416 3417 /* Enhanced Allocation Initialization */ 3418 void pci_ea_init(struct pci_dev *dev) 3419 { 3420 int ea; 3421 u8 num_ent; 3422 int offset; 3423 int i; 3424 3425 /* find PCI EA capability in list */ 3426 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3427 if (!ea) 3428 return; 3429 3430 /* determine the number of entries */ 3431 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3432 &num_ent); 3433 num_ent &= PCI_EA_NUM_ENT_MASK; 3434 3435 offset = ea + PCI_EA_FIRST_ENT; 3436 3437 /* Skip DWORD 2 for type 1 functions */ 3438 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3439 offset += 4; 3440 3441 /* parse each EA entry */ 3442 for (i = 0; i < num_ent; ++i) 3443 offset = pci_ea_read(dev, offset); 3444 } 3445 3446 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3447 struct pci_cap_saved_state *new_cap) 3448 { 3449 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3450 } 3451 3452 /** 3453 * _pci_add_cap_save_buffer - allocate buffer for saving given 3454 * capability registers 3455 * @dev: the PCI device 3456 * @cap: the capability to allocate the buffer for 3457 * @extended: Standard or Extended capability ID 3458 * @size: requested size of the buffer 3459 */ 3460 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3461 bool extended, unsigned int size) 3462 { 3463 int pos; 3464 struct pci_cap_saved_state *save_state; 3465 3466 if (extended) 3467 pos = pci_find_ext_capability(dev, cap); 3468 else 3469 pos = pci_find_capability(dev, cap); 3470 3471 if (!pos) 3472 return 0; 3473 3474 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3475 if (!save_state) 3476 return -ENOMEM; 3477 3478 save_state->cap.cap_nr = cap; 3479 save_state->cap.cap_extended = extended; 3480 save_state->cap.size = size; 3481 pci_add_saved_cap(dev, save_state); 3482 3483 return 0; 3484 } 3485 3486 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3487 { 3488 return _pci_add_cap_save_buffer(dev, cap, false, size); 3489 } 3490 3491 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3492 { 3493 return _pci_add_cap_save_buffer(dev, cap, true, size); 3494 } 3495 3496 /** 3497 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3498 * @dev: the PCI device 3499 */ 3500 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3501 { 3502 int error; 3503 3504 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3505 PCI_EXP_SAVE_REGS * sizeof(u16)); 3506 if (error) 3507 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3508 3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3510 if (error) 3511 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3512 3513 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3514 2 * sizeof(u16)); 3515 if (error) 3516 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3517 3518 pci_allocate_vc_save_buffers(dev); 3519 } 3520 3521 void pci_free_cap_save_buffers(struct pci_dev *dev) 3522 { 3523 struct pci_cap_saved_state *tmp; 3524 struct hlist_node *n; 3525 3526 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3527 kfree(tmp); 3528 } 3529 3530 /** 3531 * pci_configure_ari - enable or disable ARI forwarding 3532 * @dev: the PCI device 3533 * 3534 * If @dev and its upstream bridge both support ARI, enable ARI in the 3535 * bridge. Otherwise, disable ARI in the bridge. 3536 */ 3537 void pci_configure_ari(struct pci_dev *dev) 3538 { 3539 u32 cap; 3540 struct pci_dev *bridge; 3541 3542 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3543 return; 3544 3545 bridge = dev->bus->self; 3546 if (!bridge) 3547 return; 3548 3549 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3550 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3551 return; 3552 3553 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3554 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3555 PCI_EXP_DEVCTL2_ARI); 3556 bridge->ari_enabled = 1; 3557 } else { 3558 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3559 PCI_EXP_DEVCTL2_ARI); 3560 bridge->ari_enabled = 0; 3561 } 3562 } 3563 3564 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3565 { 3566 int pos; 3567 u16 cap, ctrl; 3568 3569 pos = pdev->acs_cap; 3570 if (!pos) 3571 return false; 3572 3573 /* 3574 * Except for egress control, capabilities are either required 3575 * or only required if controllable. Features missing from the 3576 * capability field can therefore be assumed as hard-wired enabled. 3577 */ 3578 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3579 acs_flags &= (cap | PCI_ACS_EC); 3580 3581 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3582 return (ctrl & acs_flags) == acs_flags; 3583 } 3584 3585 /** 3586 * pci_acs_enabled - test ACS against required flags for a given device 3587 * @pdev: device to test 3588 * @acs_flags: required PCI ACS flags 3589 * 3590 * Return true if the device supports the provided flags. Automatically 3591 * filters out flags that are not implemented on multifunction devices. 3592 * 3593 * Note that this interface checks the effective ACS capabilities of the 3594 * device rather than the actual capabilities. For instance, most single 3595 * function endpoints are not required to support ACS because they have no 3596 * opportunity for peer-to-peer access. We therefore return 'true' 3597 * regardless of whether the device exposes an ACS capability. This makes 3598 * it much easier for callers of this function to ignore the actual type 3599 * or topology of the device when testing ACS support. 3600 */ 3601 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3602 { 3603 int ret; 3604 3605 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3606 if (ret >= 0) 3607 return ret > 0; 3608 3609 /* 3610 * Conventional PCI and PCI-X devices never support ACS, either 3611 * effectively or actually. The shared bus topology implies that 3612 * any device on the bus can receive or snoop DMA. 3613 */ 3614 if (!pci_is_pcie(pdev)) 3615 return false; 3616 3617 switch (pci_pcie_type(pdev)) { 3618 /* 3619 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3620 * but since their primary interface is PCI/X, we conservatively 3621 * handle them as we would a non-PCIe device. 3622 */ 3623 case PCI_EXP_TYPE_PCIE_BRIDGE: 3624 /* 3625 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3626 * applicable... must never implement an ACS Extended Capability...". 3627 * This seems arbitrary, but we take a conservative interpretation 3628 * of this statement. 3629 */ 3630 case PCI_EXP_TYPE_PCI_BRIDGE: 3631 case PCI_EXP_TYPE_RC_EC: 3632 return false; 3633 /* 3634 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3635 * implement ACS in order to indicate their peer-to-peer capabilities, 3636 * regardless of whether they are single- or multi-function devices. 3637 */ 3638 case PCI_EXP_TYPE_DOWNSTREAM: 3639 case PCI_EXP_TYPE_ROOT_PORT: 3640 return pci_acs_flags_enabled(pdev, acs_flags); 3641 /* 3642 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3643 * implemented by the remaining PCIe types to indicate peer-to-peer 3644 * capabilities, but only when they are part of a multifunction 3645 * device. The footnote for section 6.12 indicates the specific 3646 * PCIe types included here. 3647 */ 3648 case PCI_EXP_TYPE_ENDPOINT: 3649 case PCI_EXP_TYPE_UPSTREAM: 3650 case PCI_EXP_TYPE_LEG_END: 3651 case PCI_EXP_TYPE_RC_END: 3652 if (!pdev->multifunction) 3653 break; 3654 3655 return pci_acs_flags_enabled(pdev, acs_flags); 3656 } 3657 3658 /* 3659 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3660 * to single function devices with the exception of downstream ports. 3661 */ 3662 return true; 3663 } 3664 3665 /** 3666 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3667 * @start: starting downstream device 3668 * @end: ending upstream device or NULL to search to the root bus 3669 * @acs_flags: required flags 3670 * 3671 * Walk up a device tree from start to end testing PCI ACS support. If 3672 * any step along the way does not support the required flags, return false. 3673 */ 3674 bool pci_acs_path_enabled(struct pci_dev *start, 3675 struct pci_dev *end, u16 acs_flags) 3676 { 3677 struct pci_dev *pdev, *parent = start; 3678 3679 do { 3680 pdev = parent; 3681 3682 if (!pci_acs_enabled(pdev, acs_flags)) 3683 return false; 3684 3685 if (pci_is_root_bus(pdev->bus)) 3686 return (end == NULL); 3687 3688 parent = pdev->bus->self; 3689 } while (pdev != end); 3690 3691 return true; 3692 } 3693 3694 /** 3695 * pci_acs_init - Initialize ACS if hardware supports it 3696 * @dev: the PCI device 3697 */ 3698 void pci_acs_init(struct pci_dev *dev) 3699 { 3700 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3701 3702 /* 3703 * Attempt to enable ACS regardless of capability because some Root 3704 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3705 * the standard ACS capability but still support ACS via those 3706 * quirks. 3707 */ 3708 pci_enable_acs(dev); 3709 } 3710 3711 /** 3712 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3713 * @pdev: PCI device 3714 * @bar: BAR to find 3715 * 3716 * Helper to find the position of the ctrl register for a BAR. 3717 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3718 * Returns -ENOENT if no ctrl register for the BAR could be found. 3719 */ 3720 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3721 { 3722 unsigned int pos, nbars, i; 3723 u32 ctrl; 3724 3725 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3726 if (!pos) 3727 return -ENOTSUPP; 3728 3729 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3730 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl); 3731 3732 for (i = 0; i < nbars; i++, pos += 8) { 3733 int bar_idx; 3734 3735 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3736 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl); 3737 if (bar_idx == bar) 3738 return pos; 3739 } 3740 3741 return -ENOENT; 3742 } 3743 3744 /** 3745 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3746 * @pdev: PCI device 3747 * @bar: BAR to query 3748 * 3749 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3750 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3751 */ 3752 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3753 { 3754 int pos; 3755 u32 cap; 3756 3757 pos = pci_rebar_find_pos(pdev, bar); 3758 if (pos < 0) 3759 return 0; 3760 3761 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3762 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3763 3764 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3765 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3766 bar == 0 && cap == 0x700) 3767 return 0x3f00; 3768 3769 return cap; 3770 } 3771 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3772 3773 /** 3774 * pci_rebar_get_current_size - get the current size of a BAR 3775 * @pdev: PCI device 3776 * @bar: BAR to set size to 3777 * 3778 * Read the size of a BAR from the resizable BAR config. 3779 * Returns size if found or negative error code. 3780 */ 3781 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3782 { 3783 int pos; 3784 u32 ctrl; 3785 3786 pos = pci_rebar_find_pos(pdev, bar); 3787 if (pos < 0) 3788 return pos; 3789 3790 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3791 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl); 3792 } 3793 3794 /** 3795 * pci_rebar_set_size - set a new size for a BAR 3796 * @pdev: PCI device 3797 * @bar: BAR to set size to 3798 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3799 * 3800 * Set the new size of a BAR as defined in the spec. 3801 * Returns zero if resizing was successful, error code otherwise. 3802 */ 3803 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3804 { 3805 int pos; 3806 u32 ctrl; 3807 3808 pos = pci_rebar_find_pos(pdev, bar); 3809 if (pos < 0) 3810 return pos; 3811 3812 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3813 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3814 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size); 3815 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3816 return 0; 3817 } 3818 3819 /** 3820 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3821 * @dev: the PCI device 3822 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3823 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3824 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3825 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3826 * 3827 * Return 0 if all upstream bridges support AtomicOp routing, egress 3828 * blocking is disabled on all upstream ports, and the root port supports 3829 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3830 * AtomicOp completion), or negative otherwise. 3831 */ 3832 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3833 { 3834 struct pci_bus *bus = dev->bus; 3835 struct pci_dev *bridge; 3836 u32 cap, ctl2; 3837 3838 /* 3839 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3840 * in Device Control 2 is reserved in VFs and the PF value applies 3841 * to all associated VFs. 3842 */ 3843 if (dev->is_virtfn) 3844 return -EINVAL; 3845 3846 if (!pci_is_pcie(dev)) 3847 return -EINVAL; 3848 3849 /* 3850 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3851 * AtomicOp requesters. For now, we only support endpoints as 3852 * requesters and root ports as completers. No endpoints as 3853 * completers, and no peer-to-peer. 3854 */ 3855 3856 switch (pci_pcie_type(dev)) { 3857 case PCI_EXP_TYPE_ENDPOINT: 3858 case PCI_EXP_TYPE_LEG_END: 3859 case PCI_EXP_TYPE_RC_END: 3860 break; 3861 default: 3862 return -EINVAL; 3863 } 3864 3865 while (bus->parent) { 3866 bridge = bus->self; 3867 3868 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3869 3870 switch (pci_pcie_type(bridge)) { 3871 /* Ensure switch ports support AtomicOp routing */ 3872 case PCI_EXP_TYPE_UPSTREAM: 3873 case PCI_EXP_TYPE_DOWNSTREAM: 3874 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3875 return -EINVAL; 3876 break; 3877 3878 /* Ensure root port supports all the sizes we care about */ 3879 case PCI_EXP_TYPE_ROOT_PORT: 3880 if ((cap & cap_mask) != cap_mask) 3881 return -EINVAL; 3882 break; 3883 } 3884 3885 /* Ensure upstream ports don't block AtomicOps on egress */ 3886 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3887 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3888 &ctl2); 3889 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3890 return -EINVAL; 3891 } 3892 3893 bus = bus->parent; 3894 } 3895 3896 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3897 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3898 return 0; 3899 } 3900 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3901 3902 /** 3903 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3904 * @dev: the PCI device 3905 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3906 * 3907 * Perform INTx swizzling for a device behind one level of bridge. This is 3908 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3909 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3910 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3911 * the PCI Express Base Specification, Revision 2.1) 3912 */ 3913 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3914 { 3915 int slot; 3916 3917 if (pci_ari_enabled(dev->bus)) 3918 slot = 0; 3919 else 3920 slot = PCI_SLOT(dev->devfn); 3921 3922 return (((pin - 1) + slot) % 4) + 1; 3923 } 3924 3925 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3926 { 3927 u8 pin; 3928 3929 pin = dev->pin; 3930 if (!pin) 3931 return -1; 3932 3933 while (!pci_is_root_bus(dev->bus)) { 3934 pin = pci_swizzle_interrupt_pin(dev, pin); 3935 dev = dev->bus->self; 3936 } 3937 *bridge = dev; 3938 return pin; 3939 } 3940 3941 /** 3942 * pci_common_swizzle - swizzle INTx all the way to root bridge 3943 * @dev: the PCI device 3944 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3945 * 3946 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3947 * bridges all the way up to a PCI root bus. 3948 */ 3949 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3950 { 3951 u8 pin = *pinp; 3952 3953 while (!pci_is_root_bus(dev->bus)) { 3954 pin = pci_swizzle_interrupt_pin(dev, pin); 3955 dev = dev->bus->self; 3956 } 3957 *pinp = pin; 3958 return PCI_SLOT(dev->devfn); 3959 } 3960 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3961 3962 /** 3963 * pci_release_region - Release a PCI bar 3964 * @pdev: PCI device whose resources were previously reserved by 3965 * pci_request_region() 3966 * @bar: BAR to release 3967 * 3968 * Releases the PCI I/O and memory resources previously reserved by a 3969 * successful call to pci_request_region(). Call this function only 3970 * after all use of the PCI regions has ceased. 3971 */ 3972 void pci_release_region(struct pci_dev *pdev, int bar) 3973 { 3974 struct pci_devres *dr; 3975 3976 if (pci_resource_len(pdev, bar) == 0) 3977 return; 3978 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3979 release_region(pci_resource_start(pdev, bar), 3980 pci_resource_len(pdev, bar)); 3981 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3982 release_mem_region(pci_resource_start(pdev, bar), 3983 pci_resource_len(pdev, bar)); 3984 3985 dr = find_pci_dr(pdev); 3986 if (dr) 3987 dr->region_mask &= ~(1 << bar); 3988 } 3989 EXPORT_SYMBOL(pci_release_region); 3990 3991 /** 3992 * __pci_request_region - Reserved PCI I/O and memory resource 3993 * @pdev: PCI device whose resources are to be reserved 3994 * @bar: BAR to be reserved 3995 * @res_name: Name to be associated with resource. 3996 * @exclusive: whether the region access is exclusive or not 3997 * 3998 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3999 * being reserved by owner @res_name. Do not access any 4000 * address inside the PCI regions unless this call returns 4001 * successfully. 4002 * 4003 * If @exclusive is set, then the region is marked so that userspace 4004 * is explicitly not allowed to map the resource via /dev/mem or 4005 * sysfs MMIO access. 4006 * 4007 * Returns 0 on success, or %EBUSY on error. A warning 4008 * message is also printed on failure. 4009 */ 4010 static int __pci_request_region(struct pci_dev *pdev, int bar, 4011 const char *res_name, int exclusive) 4012 { 4013 struct pci_devres *dr; 4014 4015 if (pci_resource_len(pdev, bar) == 0) 4016 return 0; 4017 4018 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4019 if (!request_region(pci_resource_start(pdev, bar), 4020 pci_resource_len(pdev, bar), res_name)) 4021 goto err_out; 4022 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4023 if (!__request_mem_region(pci_resource_start(pdev, bar), 4024 pci_resource_len(pdev, bar), res_name, 4025 exclusive)) 4026 goto err_out; 4027 } 4028 4029 dr = find_pci_dr(pdev); 4030 if (dr) 4031 dr->region_mask |= 1 << bar; 4032 4033 return 0; 4034 4035 err_out: 4036 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4037 &pdev->resource[bar]); 4038 return -EBUSY; 4039 } 4040 4041 /** 4042 * pci_request_region - Reserve PCI I/O and memory resource 4043 * @pdev: PCI device whose resources are to be reserved 4044 * @bar: BAR to be reserved 4045 * @res_name: Name to be associated with resource 4046 * 4047 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4048 * being reserved by owner @res_name. Do not access any 4049 * address inside the PCI regions unless this call returns 4050 * successfully. 4051 * 4052 * Returns 0 on success, or %EBUSY on error. A warning 4053 * message is also printed on failure. 4054 */ 4055 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4056 { 4057 return __pci_request_region(pdev, bar, res_name, 0); 4058 } 4059 EXPORT_SYMBOL(pci_request_region); 4060 4061 /** 4062 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4063 * @pdev: PCI device whose resources were previously reserved 4064 * @bars: Bitmask of BARs to be released 4065 * 4066 * Release selected PCI I/O and memory resources previously reserved. 4067 * Call this function only after all use of the PCI regions has ceased. 4068 */ 4069 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4070 { 4071 int i; 4072 4073 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4074 if (bars & (1 << i)) 4075 pci_release_region(pdev, i); 4076 } 4077 EXPORT_SYMBOL(pci_release_selected_regions); 4078 4079 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4080 const char *res_name, int excl) 4081 { 4082 int i; 4083 4084 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4085 if (bars & (1 << i)) 4086 if (__pci_request_region(pdev, i, res_name, excl)) 4087 goto err_out; 4088 return 0; 4089 4090 err_out: 4091 while (--i >= 0) 4092 if (bars & (1 << i)) 4093 pci_release_region(pdev, i); 4094 4095 return -EBUSY; 4096 } 4097 4098 4099 /** 4100 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4101 * @pdev: PCI device whose resources are to be reserved 4102 * @bars: Bitmask of BARs to be requested 4103 * @res_name: Name to be associated with resource 4104 */ 4105 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4106 const char *res_name) 4107 { 4108 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4109 } 4110 EXPORT_SYMBOL(pci_request_selected_regions); 4111 4112 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4113 const char *res_name) 4114 { 4115 return __pci_request_selected_regions(pdev, bars, res_name, 4116 IORESOURCE_EXCLUSIVE); 4117 } 4118 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4119 4120 /** 4121 * pci_release_regions - Release reserved PCI I/O and memory resources 4122 * @pdev: PCI device whose resources were previously reserved by 4123 * pci_request_regions() 4124 * 4125 * Releases all PCI I/O and memory resources previously reserved by a 4126 * successful call to pci_request_regions(). Call this function only 4127 * after all use of the PCI regions has ceased. 4128 */ 4129 4130 void pci_release_regions(struct pci_dev *pdev) 4131 { 4132 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4133 } 4134 EXPORT_SYMBOL(pci_release_regions); 4135 4136 /** 4137 * pci_request_regions - Reserve PCI I/O and memory resources 4138 * @pdev: PCI device whose resources are to be reserved 4139 * @res_name: Name to be associated with resource. 4140 * 4141 * Mark all PCI regions associated with PCI device @pdev as 4142 * being reserved by owner @res_name. Do not access any 4143 * address inside the PCI regions unless this call returns 4144 * successfully. 4145 * 4146 * Returns 0 on success, or %EBUSY on error. A warning 4147 * message is also printed on failure. 4148 */ 4149 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4150 { 4151 return pci_request_selected_regions(pdev, 4152 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4153 } 4154 EXPORT_SYMBOL(pci_request_regions); 4155 4156 /** 4157 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4158 * @pdev: PCI device whose resources are to be reserved 4159 * @res_name: Name to be associated with resource. 4160 * 4161 * Mark all PCI regions associated with PCI device @pdev as being reserved 4162 * by owner @res_name. Do not access any address inside the PCI regions 4163 * unless this call returns successfully. 4164 * 4165 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4166 * and the sysfs MMIO access will not be allowed. 4167 * 4168 * Returns 0 on success, or %EBUSY on error. A warning message is also 4169 * printed on failure. 4170 */ 4171 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4172 { 4173 return pci_request_selected_regions_exclusive(pdev, 4174 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4175 } 4176 EXPORT_SYMBOL(pci_request_regions_exclusive); 4177 4178 /* 4179 * Record the PCI IO range (expressed as CPU physical address + size). 4180 * Return a negative value if an error has occurred, zero otherwise 4181 */ 4182 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4183 resource_size_t size) 4184 { 4185 int ret = 0; 4186 #ifdef PCI_IOBASE 4187 struct logic_pio_hwaddr *range; 4188 4189 if (!size || addr + size < addr) 4190 return -EINVAL; 4191 4192 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4193 if (!range) 4194 return -ENOMEM; 4195 4196 range->fwnode = fwnode; 4197 range->size = size; 4198 range->hw_start = addr; 4199 range->flags = LOGIC_PIO_CPU_MMIO; 4200 4201 ret = logic_pio_register_range(range); 4202 if (ret) 4203 kfree(range); 4204 4205 /* Ignore duplicates due to deferred probing */ 4206 if (ret == -EEXIST) 4207 ret = 0; 4208 #endif 4209 4210 return ret; 4211 } 4212 4213 phys_addr_t pci_pio_to_address(unsigned long pio) 4214 { 4215 #ifdef PCI_IOBASE 4216 if (pio < MMIO_UPPER_LIMIT) 4217 return logic_pio_to_hwaddr(pio); 4218 #endif 4219 4220 return (phys_addr_t) OF_BAD_ADDR; 4221 } 4222 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4223 4224 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4225 { 4226 #ifdef PCI_IOBASE 4227 return logic_pio_trans_cpuaddr(address); 4228 #else 4229 if (address > IO_SPACE_LIMIT) 4230 return (unsigned long)-1; 4231 4232 return (unsigned long) address; 4233 #endif 4234 } 4235 4236 /** 4237 * pci_remap_iospace - Remap the memory mapped I/O space 4238 * @res: Resource describing the I/O space 4239 * @phys_addr: physical address of range to be mapped 4240 * 4241 * Remap the memory mapped I/O space described by the @res and the CPU 4242 * physical address @phys_addr into virtual address space. Only 4243 * architectures that have memory mapped IO functions defined (and the 4244 * PCI_IOBASE value defined) should call this function. 4245 */ 4246 #ifndef pci_remap_iospace 4247 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4248 { 4249 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4250 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4251 4252 if (!(res->flags & IORESOURCE_IO)) 4253 return -EINVAL; 4254 4255 if (res->end > IO_SPACE_LIMIT) 4256 return -EINVAL; 4257 4258 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4259 pgprot_device(PAGE_KERNEL)); 4260 #else 4261 /* 4262 * This architecture does not have memory mapped I/O space, 4263 * so this function should never be called 4264 */ 4265 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4266 return -ENODEV; 4267 #endif 4268 } 4269 EXPORT_SYMBOL(pci_remap_iospace); 4270 #endif 4271 4272 /** 4273 * pci_unmap_iospace - Unmap the memory mapped I/O space 4274 * @res: resource to be unmapped 4275 * 4276 * Unmap the CPU virtual address @res from virtual address space. Only 4277 * architectures that have memory mapped IO functions defined (and the 4278 * PCI_IOBASE value defined) should call this function. 4279 */ 4280 void pci_unmap_iospace(struct resource *res) 4281 { 4282 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4283 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4284 4285 vunmap_range(vaddr, vaddr + resource_size(res)); 4286 #endif 4287 } 4288 EXPORT_SYMBOL(pci_unmap_iospace); 4289 4290 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4291 { 4292 struct resource **res = ptr; 4293 4294 pci_unmap_iospace(*res); 4295 } 4296 4297 /** 4298 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4299 * @dev: Generic device to remap IO address for 4300 * @res: Resource describing the I/O space 4301 * @phys_addr: physical address of range to be mapped 4302 * 4303 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4304 * detach. 4305 */ 4306 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4307 phys_addr_t phys_addr) 4308 { 4309 const struct resource **ptr; 4310 int error; 4311 4312 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4313 if (!ptr) 4314 return -ENOMEM; 4315 4316 error = pci_remap_iospace(res, phys_addr); 4317 if (error) { 4318 devres_free(ptr); 4319 } else { 4320 *ptr = res; 4321 devres_add(dev, ptr); 4322 } 4323 4324 return error; 4325 } 4326 EXPORT_SYMBOL(devm_pci_remap_iospace); 4327 4328 /** 4329 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4330 * @dev: Generic device to remap IO address for 4331 * @offset: Resource address to map 4332 * @size: Size of map 4333 * 4334 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4335 * detach. 4336 */ 4337 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4338 resource_size_t offset, 4339 resource_size_t size) 4340 { 4341 void __iomem **ptr, *addr; 4342 4343 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4344 if (!ptr) 4345 return NULL; 4346 4347 addr = pci_remap_cfgspace(offset, size); 4348 if (addr) { 4349 *ptr = addr; 4350 devres_add(dev, ptr); 4351 } else 4352 devres_free(ptr); 4353 4354 return addr; 4355 } 4356 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4357 4358 /** 4359 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4360 * @dev: generic device to handle the resource for 4361 * @res: configuration space resource to be handled 4362 * 4363 * Checks that a resource is a valid memory region, requests the memory 4364 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4365 * proper PCI configuration space memory attributes are guaranteed. 4366 * 4367 * All operations are managed and will be undone on driver detach. 4368 * 4369 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4370 * on failure. Usage example:: 4371 * 4372 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4373 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4374 * if (IS_ERR(base)) 4375 * return PTR_ERR(base); 4376 */ 4377 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4378 struct resource *res) 4379 { 4380 resource_size_t size; 4381 const char *name; 4382 void __iomem *dest_ptr; 4383 4384 BUG_ON(!dev); 4385 4386 if (!res || resource_type(res) != IORESOURCE_MEM) { 4387 dev_err(dev, "invalid resource\n"); 4388 return IOMEM_ERR_PTR(-EINVAL); 4389 } 4390 4391 size = resource_size(res); 4392 4393 if (res->name) 4394 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4395 res->name); 4396 else 4397 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4398 if (!name) 4399 return IOMEM_ERR_PTR(-ENOMEM); 4400 4401 if (!devm_request_mem_region(dev, res->start, size, name)) { 4402 dev_err(dev, "can't request region for resource %pR\n", res); 4403 return IOMEM_ERR_PTR(-EBUSY); 4404 } 4405 4406 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4407 if (!dest_ptr) { 4408 dev_err(dev, "ioremap failed for resource %pR\n", res); 4409 devm_release_mem_region(dev, res->start, size); 4410 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4411 } 4412 4413 return dest_ptr; 4414 } 4415 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4416 4417 static void __pci_set_master(struct pci_dev *dev, bool enable) 4418 { 4419 u16 old_cmd, cmd; 4420 4421 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4422 if (enable) 4423 cmd = old_cmd | PCI_COMMAND_MASTER; 4424 else 4425 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4426 if (cmd != old_cmd) { 4427 pci_dbg(dev, "%s bus mastering\n", 4428 enable ? "enabling" : "disabling"); 4429 pci_write_config_word(dev, PCI_COMMAND, cmd); 4430 } 4431 dev->is_busmaster = enable; 4432 } 4433 4434 /** 4435 * pcibios_setup - process "pci=" kernel boot arguments 4436 * @str: string used to pass in "pci=" kernel boot arguments 4437 * 4438 * Process kernel boot arguments. This is the default implementation. 4439 * Architecture specific implementations can override this as necessary. 4440 */ 4441 char * __weak __init pcibios_setup(char *str) 4442 { 4443 return str; 4444 } 4445 4446 /** 4447 * pcibios_set_master - enable PCI bus-mastering for device dev 4448 * @dev: the PCI device to enable 4449 * 4450 * Enables PCI bus-mastering for the device. This is the default 4451 * implementation. Architecture specific implementations can override 4452 * this if necessary. 4453 */ 4454 void __weak pcibios_set_master(struct pci_dev *dev) 4455 { 4456 u8 lat; 4457 4458 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4459 if (pci_is_pcie(dev)) 4460 return; 4461 4462 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4463 if (lat < 16) 4464 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4465 else if (lat > pcibios_max_latency) 4466 lat = pcibios_max_latency; 4467 else 4468 return; 4469 4470 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4471 } 4472 4473 /** 4474 * pci_set_master - enables bus-mastering for device dev 4475 * @dev: the PCI device to enable 4476 * 4477 * Enables bus-mastering on the device and calls pcibios_set_master() 4478 * to do the needed arch specific settings. 4479 */ 4480 void pci_set_master(struct pci_dev *dev) 4481 { 4482 __pci_set_master(dev, true); 4483 pcibios_set_master(dev); 4484 } 4485 EXPORT_SYMBOL(pci_set_master); 4486 4487 /** 4488 * pci_clear_master - disables bus-mastering for device dev 4489 * @dev: the PCI device to disable 4490 */ 4491 void pci_clear_master(struct pci_dev *dev) 4492 { 4493 __pci_set_master(dev, false); 4494 } 4495 EXPORT_SYMBOL(pci_clear_master); 4496 4497 /** 4498 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4499 * @dev: the PCI device for which MWI is to be enabled 4500 * 4501 * Helper function for pci_set_mwi. 4502 * Originally copied from drivers/net/acenic.c. 4503 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4504 * 4505 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4506 */ 4507 int pci_set_cacheline_size(struct pci_dev *dev) 4508 { 4509 u8 cacheline_size; 4510 4511 if (!pci_cache_line_size) 4512 return -EINVAL; 4513 4514 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4515 equal to or multiple of the right value. */ 4516 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4517 if (cacheline_size >= pci_cache_line_size && 4518 (cacheline_size % pci_cache_line_size) == 0) 4519 return 0; 4520 4521 /* Write the correct value. */ 4522 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4523 /* Read it back. */ 4524 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4525 if (cacheline_size == pci_cache_line_size) 4526 return 0; 4527 4528 pci_dbg(dev, "cache line size of %d is not supported\n", 4529 pci_cache_line_size << 2); 4530 4531 return -EINVAL; 4532 } 4533 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4534 4535 /** 4536 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4537 * @dev: the PCI device for which MWI is enabled 4538 * 4539 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4540 * 4541 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4542 */ 4543 int pci_set_mwi(struct pci_dev *dev) 4544 { 4545 #ifdef PCI_DISABLE_MWI 4546 return 0; 4547 #else 4548 int rc; 4549 u16 cmd; 4550 4551 rc = pci_set_cacheline_size(dev); 4552 if (rc) 4553 return rc; 4554 4555 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4556 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4557 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4558 cmd |= PCI_COMMAND_INVALIDATE; 4559 pci_write_config_word(dev, PCI_COMMAND, cmd); 4560 } 4561 return 0; 4562 #endif 4563 } 4564 EXPORT_SYMBOL(pci_set_mwi); 4565 4566 /** 4567 * pcim_set_mwi - a device-managed pci_set_mwi() 4568 * @dev: the PCI device for which MWI is enabled 4569 * 4570 * Managed pci_set_mwi(). 4571 * 4572 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4573 */ 4574 int pcim_set_mwi(struct pci_dev *dev) 4575 { 4576 struct pci_devres *dr; 4577 4578 dr = find_pci_dr(dev); 4579 if (!dr) 4580 return -ENOMEM; 4581 4582 dr->mwi = 1; 4583 return pci_set_mwi(dev); 4584 } 4585 EXPORT_SYMBOL(pcim_set_mwi); 4586 4587 /** 4588 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4589 * @dev: the PCI device for which MWI is enabled 4590 * 4591 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4592 * Callers are not required to check the return value. 4593 * 4594 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4595 */ 4596 int pci_try_set_mwi(struct pci_dev *dev) 4597 { 4598 #ifdef PCI_DISABLE_MWI 4599 return 0; 4600 #else 4601 return pci_set_mwi(dev); 4602 #endif 4603 } 4604 EXPORT_SYMBOL(pci_try_set_mwi); 4605 4606 /** 4607 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4608 * @dev: the PCI device to disable 4609 * 4610 * Disables PCI Memory-Write-Invalidate transaction on the device 4611 */ 4612 void pci_clear_mwi(struct pci_dev *dev) 4613 { 4614 #ifndef PCI_DISABLE_MWI 4615 u16 cmd; 4616 4617 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4618 if (cmd & PCI_COMMAND_INVALIDATE) { 4619 cmd &= ~PCI_COMMAND_INVALIDATE; 4620 pci_write_config_word(dev, PCI_COMMAND, cmd); 4621 } 4622 #endif 4623 } 4624 EXPORT_SYMBOL(pci_clear_mwi); 4625 4626 /** 4627 * pci_disable_parity - disable parity checking for device 4628 * @dev: the PCI device to operate on 4629 * 4630 * Disable parity checking for device @dev 4631 */ 4632 void pci_disable_parity(struct pci_dev *dev) 4633 { 4634 u16 cmd; 4635 4636 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4637 if (cmd & PCI_COMMAND_PARITY) { 4638 cmd &= ~PCI_COMMAND_PARITY; 4639 pci_write_config_word(dev, PCI_COMMAND, cmd); 4640 } 4641 } 4642 4643 /** 4644 * pci_intx - enables/disables PCI INTx for device dev 4645 * @pdev: the PCI device to operate on 4646 * @enable: boolean: whether to enable or disable PCI INTx 4647 * 4648 * Enables/disables PCI INTx for device @pdev 4649 */ 4650 void pci_intx(struct pci_dev *pdev, int enable) 4651 { 4652 u16 pci_command, new; 4653 4654 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4655 4656 if (enable) 4657 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4658 else 4659 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4660 4661 if (new != pci_command) { 4662 struct pci_devres *dr; 4663 4664 pci_write_config_word(pdev, PCI_COMMAND, new); 4665 4666 dr = find_pci_dr(pdev); 4667 if (dr && !dr->restore_intx) { 4668 dr->restore_intx = 1; 4669 dr->orig_intx = !enable; 4670 } 4671 } 4672 } 4673 EXPORT_SYMBOL_GPL(pci_intx); 4674 4675 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4676 { 4677 struct pci_bus *bus = dev->bus; 4678 bool mask_updated = true; 4679 u32 cmd_status_dword; 4680 u16 origcmd, newcmd; 4681 unsigned long flags; 4682 bool irq_pending; 4683 4684 /* 4685 * We do a single dword read to retrieve both command and status. 4686 * Document assumptions that make this possible. 4687 */ 4688 BUILD_BUG_ON(PCI_COMMAND % 4); 4689 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4690 4691 raw_spin_lock_irqsave(&pci_lock, flags); 4692 4693 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4694 4695 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4696 4697 /* 4698 * Check interrupt status register to see whether our device 4699 * triggered the interrupt (when masking) or the next IRQ is 4700 * already pending (when unmasking). 4701 */ 4702 if (mask != irq_pending) { 4703 mask_updated = false; 4704 goto done; 4705 } 4706 4707 origcmd = cmd_status_dword; 4708 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4709 if (mask) 4710 newcmd |= PCI_COMMAND_INTX_DISABLE; 4711 if (newcmd != origcmd) 4712 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4713 4714 done: 4715 raw_spin_unlock_irqrestore(&pci_lock, flags); 4716 4717 return mask_updated; 4718 } 4719 4720 /** 4721 * pci_check_and_mask_intx - mask INTx on pending interrupt 4722 * @dev: the PCI device to operate on 4723 * 4724 * Check if the device dev has its INTx line asserted, mask it and return 4725 * true in that case. False is returned if no interrupt was pending. 4726 */ 4727 bool pci_check_and_mask_intx(struct pci_dev *dev) 4728 { 4729 return pci_check_and_set_intx_mask(dev, true); 4730 } 4731 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4732 4733 /** 4734 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4735 * @dev: the PCI device to operate on 4736 * 4737 * Check if the device dev has its INTx line asserted, unmask it if not and 4738 * return true. False is returned and the mask remains active if there was 4739 * still an interrupt pending. 4740 */ 4741 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4742 { 4743 return pci_check_and_set_intx_mask(dev, false); 4744 } 4745 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4746 4747 /** 4748 * pci_wait_for_pending_transaction - wait for pending transaction 4749 * @dev: the PCI device to operate on 4750 * 4751 * Return 0 if transaction is pending 1 otherwise. 4752 */ 4753 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4754 { 4755 if (!pci_is_pcie(dev)) 4756 return 1; 4757 4758 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4759 PCI_EXP_DEVSTA_TRPND); 4760 } 4761 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4762 4763 /** 4764 * pcie_flr - initiate a PCIe function level reset 4765 * @dev: device to reset 4766 * 4767 * Initiate a function level reset unconditionally on @dev without 4768 * checking any flags and DEVCAP 4769 */ 4770 int pcie_flr(struct pci_dev *dev) 4771 { 4772 if (!pci_wait_for_pending_transaction(dev)) 4773 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4774 4775 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4776 4777 if (dev->imm_ready) 4778 return 0; 4779 4780 /* 4781 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4782 * 100ms, but may silently discard requests while the FLR is in 4783 * progress. Wait 100ms before trying to access the device. 4784 */ 4785 msleep(100); 4786 4787 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4788 } 4789 EXPORT_SYMBOL_GPL(pcie_flr); 4790 4791 /** 4792 * pcie_reset_flr - initiate a PCIe function level reset 4793 * @dev: device to reset 4794 * @probe: if true, return 0 if device can be reset this way 4795 * 4796 * Initiate a function level reset on @dev. 4797 */ 4798 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4799 { 4800 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4801 return -ENOTTY; 4802 4803 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4804 return -ENOTTY; 4805 4806 if (probe) 4807 return 0; 4808 4809 return pcie_flr(dev); 4810 } 4811 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4812 4813 static int pci_af_flr(struct pci_dev *dev, bool probe) 4814 { 4815 int pos; 4816 u8 cap; 4817 4818 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4819 if (!pos) 4820 return -ENOTTY; 4821 4822 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4823 return -ENOTTY; 4824 4825 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4826 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4827 return -ENOTTY; 4828 4829 if (probe) 4830 return 0; 4831 4832 /* 4833 * Wait for Transaction Pending bit to clear. A word-aligned test 4834 * is used, so we use the control offset rather than status and shift 4835 * the test bit to match. 4836 */ 4837 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4838 PCI_AF_STATUS_TP << 8)) 4839 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4840 4841 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4842 4843 if (dev->imm_ready) 4844 return 0; 4845 4846 /* 4847 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4848 * updated 27 July 2006; a device must complete an FLR within 4849 * 100ms, but may silently discard requests while the FLR is in 4850 * progress. Wait 100ms before trying to access the device. 4851 */ 4852 msleep(100); 4853 4854 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4855 } 4856 4857 /** 4858 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4859 * @dev: Device to reset. 4860 * @probe: if true, return 0 if the device can be reset this way. 4861 * 4862 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4863 * unset, it will be reinitialized internally when going from PCI_D3hot to 4864 * PCI_D0. If that's the case and the device is not in a low-power state 4865 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4866 * 4867 * NOTE: This causes the caller to sleep for twice the device power transition 4868 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4869 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4870 * Moreover, only devices in D0 can be reset by this function. 4871 */ 4872 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4873 { 4874 u16 csr; 4875 4876 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4877 return -ENOTTY; 4878 4879 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4880 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4881 return -ENOTTY; 4882 4883 if (probe) 4884 return 0; 4885 4886 if (dev->current_state != PCI_D0) 4887 return -EINVAL; 4888 4889 csr &= ~PCI_PM_CTRL_STATE_MASK; 4890 csr |= PCI_D3hot; 4891 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4892 pci_dev_d3_sleep(dev); 4893 4894 csr &= ~PCI_PM_CTRL_STATE_MASK; 4895 csr |= PCI_D0; 4896 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4897 pci_dev_d3_sleep(dev); 4898 4899 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4900 } 4901 4902 /** 4903 * pcie_wait_for_link_status - Wait for link status change 4904 * @pdev: Device whose link to wait for. 4905 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4906 * @active: Waiting for active or inactive? 4907 * 4908 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4909 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4910 */ 4911 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4912 bool use_lt, bool active) 4913 { 4914 u16 lnksta_mask, lnksta_match; 4915 unsigned long end_jiffies; 4916 u16 lnksta; 4917 4918 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4919 lnksta_match = active ? lnksta_mask : 0; 4920 4921 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4922 do { 4923 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4924 if ((lnksta & lnksta_mask) == lnksta_match) 4925 return 0; 4926 msleep(1); 4927 } while (time_before(jiffies, end_jiffies)); 4928 4929 return -ETIMEDOUT; 4930 } 4931 4932 /** 4933 * pcie_retrain_link - Request a link retrain and wait for it to complete 4934 * @pdev: Device whose link to retrain. 4935 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4936 * 4937 * Retrain completion status is retrieved from the Link Status Register 4938 * according to @use_lt. It is not verified whether the use of the DLLLA 4939 * bit is valid. 4940 * 4941 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4942 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4943 */ 4944 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4945 { 4946 int rc; 4947 4948 /* 4949 * Ensure the updated LNKCTL parameters are used during link 4950 * training by checking that there is no ongoing link training to 4951 * avoid LTSSM race as recommended in Implementation Note at the 4952 * end of PCIe r6.0.1 sec 7.5.3.7. 4953 */ 4954 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4955 if (rc) 4956 return rc; 4957 4958 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4959 if (pdev->clear_retrain_link) { 4960 /* 4961 * Due to an erratum in some devices the Retrain Link bit 4962 * needs to be cleared again manually to allow the link 4963 * training to succeed. 4964 */ 4965 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4966 } 4967 4968 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4969 } 4970 4971 /** 4972 * pcie_wait_for_link_delay - Wait until link is active or inactive 4973 * @pdev: Bridge device 4974 * @active: waiting for active or inactive? 4975 * @delay: Delay to wait after link has become active (in ms) 4976 * 4977 * Use this to wait till link becomes active or inactive. 4978 */ 4979 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4980 int delay) 4981 { 4982 int rc; 4983 4984 /* 4985 * Some controllers might not implement link active reporting. In this 4986 * case, we wait for 1000 ms + any delay requested by the caller. 4987 */ 4988 if (!pdev->link_active_reporting) { 4989 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4990 return true; 4991 } 4992 4993 /* 4994 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4995 * after which we should expect an link active if the reset was 4996 * successful. If so, software must wait a minimum 100ms before sending 4997 * configuration requests to devices downstream this port. 4998 * 4999 * If the link fails to activate, either the device was physically 5000 * removed or the link is permanently failed. 5001 */ 5002 if (active) 5003 msleep(20); 5004 rc = pcie_wait_for_link_status(pdev, false, active); 5005 if (active) { 5006 if (rc) 5007 rc = pcie_failed_link_retrain(pdev); 5008 if (rc) 5009 return false; 5010 5011 msleep(delay); 5012 return true; 5013 } 5014 5015 if (rc) 5016 return false; 5017 5018 return true; 5019 } 5020 5021 /** 5022 * pcie_wait_for_link - Wait until link is active or inactive 5023 * @pdev: Bridge device 5024 * @active: waiting for active or inactive? 5025 * 5026 * Use this to wait till link becomes active or inactive. 5027 */ 5028 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5029 { 5030 return pcie_wait_for_link_delay(pdev, active, 100); 5031 } 5032 5033 /* 5034 * Find maximum D3cold delay required by all the devices on the bus. The 5035 * spec says 100 ms, but firmware can lower it and we allow drivers to 5036 * increase it as well. 5037 * 5038 * Called with @pci_bus_sem locked for reading. 5039 */ 5040 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5041 { 5042 const struct pci_dev *pdev; 5043 int min_delay = 100; 5044 int max_delay = 0; 5045 5046 list_for_each_entry(pdev, &bus->devices, bus_list) { 5047 if (pdev->d3cold_delay < min_delay) 5048 min_delay = pdev->d3cold_delay; 5049 if (pdev->d3cold_delay > max_delay) 5050 max_delay = pdev->d3cold_delay; 5051 } 5052 5053 return max(min_delay, max_delay); 5054 } 5055 5056 /** 5057 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5058 * @dev: PCI bridge 5059 * @reset_type: reset type in human-readable form 5060 * 5061 * Handle necessary delays before access to the devices on the secondary 5062 * side of the bridge are permitted after D3cold to D0 transition 5063 * or Conventional Reset. 5064 * 5065 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5066 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5067 * 4.3.2. 5068 * 5069 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5070 * failed to become accessible. 5071 */ 5072 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5073 { 5074 struct pci_dev *child; 5075 int delay; 5076 5077 if (pci_dev_is_disconnected(dev)) 5078 return 0; 5079 5080 if (!pci_is_bridge(dev)) 5081 return 0; 5082 5083 down_read(&pci_bus_sem); 5084 5085 /* 5086 * We only deal with devices that are present currently on the bus. 5087 * For any hot-added devices the access delay is handled in pciehp 5088 * board_added(). In case of ACPI hotplug the firmware is expected 5089 * to configure the devices before OS is notified. 5090 */ 5091 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5092 up_read(&pci_bus_sem); 5093 return 0; 5094 } 5095 5096 /* Take d3cold_delay requirements into account */ 5097 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5098 if (!delay) { 5099 up_read(&pci_bus_sem); 5100 return 0; 5101 } 5102 5103 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5104 bus_list); 5105 up_read(&pci_bus_sem); 5106 5107 /* 5108 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5109 * accessing the device after reset (that is 1000 ms + 100 ms). 5110 */ 5111 if (!pci_is_pcie(dev)) { 5112 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5113 msleep(1000 + delay); 5114 return 0; 5115 } 5116 5117 /* 5118 * For PCIe downstream and root ports that do not support speeds 5119 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5120 * speeds (gen3) we need to wait first for the data link layer to 5121 * become active. 5122 * 5123 * However, 100 ms is the minimum and the PCIe spec says the 5124 * software must allow at least 1s before it can determine that the 5125 * device that did not respond is a broken device. Also device can 5126 * take longer than that to respond if it indicates so through Request 5127 * Retry Status completions. 5128 * 5129 * Therefore we wait for 100 ms and check for the device presence 5130 * until the timeout expires. 5131 */ 5132 if (!pcie_downstream_port(dev)) 5133 return 0; 5134 5135 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5136 u16 status; 5137 5138 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5139 msleep(delay); 5140 5141 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5142 return 0; 5143 5144 /* 5145 * If the port supports active link reporting we now check 5146 * whether the link is active and if not bail out early with 5147 * the assumption that the device is not present anymore. 5148 */ 5149 if (!dev->link_active_reporting) 5150 return -ENOTTY; 5151 5152 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5153 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5154 return -ENOTTY; 5155 5156 return pci_dev_wait(child, reset_type, 5157 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5158 } 5159 5160 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5161 delay); 5162 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5163 /* Did not train, no need to wait any further */ 5164 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5165 return -ENOTTY; 5166 } 5167 5168 return pci_dev_wait(child, reset_type, 5169 PCIE_RESET_READY_POLL_MS - delay); 5170 } 5171 5172 void pci_reset_secondary_bus(struct pci_dev *dev) 5173 { 5174 u16 ctrl; 5175 5176 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5177 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5178 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5179 5180 /* 5181 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5182 * this to 2ms to ensure that we meet the minimum requirement. 5183 */ 5184 msleep(2); 5185 5186 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5187 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5188 } 5189 5190 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5191 { 5192 pci_reset_secondary_bus(dev); 5193 } 5194 5195 /** 5196 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5197 * @dev: Bridge device 5198 * 5199 * Use the bridge control register to assert reset on the secondary bus. 5200 * Devices on the secondary bus are left in power-on state. 5201 */ 5202 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5203 { 5204 pcibios_reset_secondary_bus(dev); 5205 5206 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5207 } 5208 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5209 5210 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5211 { 5212 struct pci_dev *pdev; 5213 5214 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5215 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5216 return -ENOTTY; 5217 5218 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5219 if (pdev != dev) 5220 return -ENOTTY; 5221 5222 if (probe) 5223 return 0; 5224 5225 return pci_bridge_secondary_bus_reset(dev->bus->self); 5226 } 5227 5228 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5229 { 5230 int rc = -ENOTTY; 5231 5232 if (!hotplug || !try_module_get(hotplug->owner)) 5233 return rc; 5234 5235 if (hotplug->ops->reset_slot) 5236 rc = hotplug->ops->reset_slot(hotplug, probe); 5237 5238 module_put(hotplug->owner); 5239 5240 return rc; 5241 } 5242 5243 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5244 { 5245 if (dev->multifunction || dev->subordinate || !dev->slot || 5246 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5247 return -ENOTTY; 5248 5249 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5250 } 5251 5252 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5253 { 5254 int rc; 5255 5256 rc = pci_dev_reset_slot_function(dev, probe); 5257 if (rc != -ENOTTY) 5258 return rc; 5259 return pci_parent_bus_reset(dev, probe); 5260 } 5261 5262 void pci_dev_lock(struct pci_dev *dev) 5263 { 5264 /* block PM suspend, driver probe, etc. */ 5265 device_lock(&dev->dev); 5266 pci_cfg_access_lock(dev); 5267 } 5268 EXPORT_SYMBOL_GPL(pci_dev_lock); 5269 5270 /* Return 1 on successful lock, 0 on contention */ 5271 int pci_dev_trylock(struct pci_dev *dev) 5272 { 5273 if (device_trylock(&dev->dev)) { 5274 if (pci_cfg_access_trylock(dev)) 5275 return 1; 5276 device_unlock(&dev->dev); 5277 } 5278 5279 return 0; 5280 } 5281 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5282 5283 void pci_dev_unlock(struct pci_dev *dev) 5284 { 5285 pci_cfg_access_unlock(dev); 5286 device_unlock(&dev->dev); 5287 } 5288 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5289 5290 static void pci_dev_save_and_disable(struct pci_dev *dev) 5291 { 5292 const struct pci_error_handlers *err_handler = 5293 dev->driver ? dev->driver->err_handler : NULL; 5294 5295 /* 5296 * dev->driver->err_handler->reset_prepare() is protected against 5297 * races with ->remove() by the device lock, which must be held by 5298 * the caller. 5299 */ 5300 if (err_handler && err_handler->reset_prepare) 5301 err_handler->reset_prepare(dev); 5302 5303 /* 5304 * Wake-up device prior to save. PM registers default to D0 after 5305 * reset and a simple register restore doesn't reliably return 5306 * to a non-D0 state anyway. 5307 */ 5308 pci_set_power_state(dev, PCI_D0); 5309 5310 pci_save_state(dev); 5311 /* 5312 * Disable the device by clearing the Command register, except for 5313 * INTx-disable which is set. This not only disables MMIO and I/O port 5314 * BARs, but also prevents the device from being Bus Master, preventing 5315 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5316 * compliant devices, INTx-disable prevents legacy interrupts. 5317 */ 5318 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5319 } 5320 5321 static void pci_dev_restore(struct pci_dev *dev) 5322 { 5323 const struct pci_error_handlers *err_handler = 5324 dev->driver ? dev->driver->err_handler : NULL; 5325 5326 pci_restore_state(dev); 5327 5328 /* 5329 * dev->driver->err_handler->reset_done() is protected against 5330 * races with ->remove() by the device lock, which must be held by 5331 * the caller. 5332 */ 5333 if (err_handler && err_handler->reset_done) 5334 err_handler->reset_done(dev); 5335 } 5336 5337 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5338 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5339 { }, 5340 { pci_dev_specific_reset, .name = "device_specific" }, 5341 { pci_dev_acpi_reset, .name = "acpi" }, 5342 { pcie_reset_flr, .name = "flr" }, 5343 { pci_af_flr, .name = "af_flr" }, 5344 { pci_pm_reset, .name = "pm" }, 5345 { pci_reset_bus_function, .name = "bus" }, 5346 }; 5347 5348 static ssize_t reset_method_show(struct device *dev, 5349 struct device_attribute *attr, char *buf) 5350 { 5351 struct pci_dev *pdev = to_pci_dev(dev); 5352 ssize_t len = 0; 5353 int i, m; 5354 5355 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5356 m = pdev->reset_methods[i]; 5357 if (!m) 5358 break; 5359 5360 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5361 pci_reset_fn_methods[m].name); 5362 } 5363 5364 if (len) 5365 len += sysfs_emit_at(buf, len, "\n"); 5366 5367 return len; 5368 } 5369 5370 static int reset_method_lookup(const char *name) 5371 { 5372 int m; 5373 5374 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5375 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5376 return m; 5377 } 5378 5379 return 0; /* not found */ 5380 } 5381 5382 static ssize_t reset_method_store(struct device *dev, 5383 struct device_attribute *attr, 5384 const char *buf, size_t count) 5385 { 5386 struct pci_dev *pdev = to_pci_dev(dev); 5387 char *options, *name; 5388 int m, n; 5389 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5390 5391 if (sysfs_streq(buf, "")) { 5392 pdev->reset_methods[0] = 0; 5393 pci_warn(pdev, "All device reset methods disabled by user"); 5394 return count; 5395 } 5396 5397 if (sysfs_streq(buf, "default")) { 5398 pci_init_reset_methods(pdev); 5399 return count; 5400 } 5401 5402 options = kstrndup(buf, count, GFP_KERNEL); 5403 if (!options) 5404 return -ENOMEM; 5405 5406 n = 0; 5407 while ((name = strsep(&options, " ")) != NULL) { 5408 if (sysfs_streq(name, "")) 5409 continue; 5410 5411 name = strim(name); 5412 5413 m = reset_method_lookup(name); 5414 if (!m) { 5415 pci_err(pdev, "Invalid reset method '%s'", name); 5416 goto error; 5417 } 5418 5419 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5420 pci_err(pdev, "Unsupported reset method '%s'", name); 5421 goto error; 5422 } 5423 5424 if (n == PCI_NUM_RESET_METHODS - 1) { 5425 pci_err(pdev, "Too many reset methods\n"); 5426 goto error; 5427 } 5428 5429 reset_methods[n++] = m; 5430 } 5431 5432 reset_methods[n] = 0; 5433 5434 /* Warn if dev-specific supported but not highest priority */ 5435 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5436 reset_methods[0] != 1) 5437 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5438 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5439 kfree(options); 5440 return count; 5441 5442 error: 5443 /* Leave previous methods unchanged */ 5444 kfree(options); 5445 return -EINVAL; 5446 } 5447 static DEVICE_ATTR_RW(reset_method); 5448 5449 static struct attribute *pci_dev_reset_method_attrs[] = { 5450 &dev_attr_reset_method.attr, 5451 NULL, 5452 }; 5453 5454 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5455 struct attribute *a, int n) 5456 { 5457 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5458 5459 if (!pci_reset_supported(pdev)) 5460 return 0; 5461 5462 return a->mode; 5463 } 5464 5465 const struct attribute_group pci_dev_reset_method_attr_group = { 5466 .attrs = pci_dev_reset_method_attrs, 5467 .is_visible = pci_dev_reset_method_attr_is_visible, 5468 }; 5469 5470 /** 5471 * __pci_reset_function_locked - reset a PCI device function while holding 5472 * the @dev mutex lock. 5473 * @dev: PCI device to reset 5474 * 5475 * Some devices allow an individual function to be reset without affecting 5476 * other functions in the same device. The PCI device must be responsive 5477 * to PCI config space in order to use this function. 5478 * 5479 * The device function is presumed to be unused and the caller is holding 5480 * the device mutex lock when this function is called. 5481 * 5482 * Resetting the device will make the contents of PCI configuration space 5483 * random, so any caller of this must be prepared to reinitialise the 5484 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5485 * etc. 5486 * 5487 * Returns 0 if the device function was successfully reset or negative if the 5488 * device doesn't support resetting a single function. 5489 */ 5490 int __pci_reset_function_locked(struct pci_dev *dev) 5491 { 5492 int i, m, rc; 5493 5494 might_sleep(); 5495 5496 /* 5497 * A reset method returns -ENOTTY if it doesn't support this device and 5498 * we should try the next method. 5499 * 5500 * If it returns 0 (success), we're finished. If it returns any other 5501 * error, we're also finished: this indicates that further reset 5502 * mechanisms might be broken on the device. 5503 */ 5504 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5505 m = dev->reset_methods[i]; 5506 if (!m) 5507 return -ENOTTY; 5508 5509 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5510 if (!rc) 5511 return 0; 5512 if (rc != -ENOTTY) 5513 return rc; 5514 } 5515 5516 return -ENOTTY; 5517 } 5518 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5519 5520 /** 5521 * pci_init_reset_methods - check whether device can be safely reset 5522 * and store supported reset mechanisms. 5523 * @dev: PCI device to check for reset mechanisms 5524 * 5525 * Some devices allow an individual function to be reset without affecting 5526 * other functions in the same device. The PCI device must be in D0-D3hot 5527 * state. 5528 * 5529 * Stores reset mechanisms supported by device in reset_methods byte array 5530 * which is a member of struct pci_dev. 5531 */ 5532 void pci_init_reset_methods(struct pci_dev *dev) 5533 { 5534 int m, i, rc; 5535 5536 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5537 5538 might_sleep(); 5539 5540 i = 0; 5541 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5542 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5543 if (!rc) 5544 dev->reset_methods[i++] = m; 5545 else if (rc != -ENOTTY) 5546 break; 5547 } 5548 5549 dev->reset_methods[i] = 0; 5550 } 5551 5552 /** 5553 * pci_reset_function - quiesce and reset a PCI device function 5554 * @dev: PCI device to reset 5555 * 5556 * Some devices allow an individual function to be reset without affecting 5557 * other functions in the same device. The PCI device must be responsive 5558 * to PCI config space in order to use this function. 5559 * 5560 * This function does not just reset the PCI portion of a device, but 5561 * clears all the state associated with the device. This function differs 5562 * from __pci_reset_function_locked() in that it saves and restores device state 5563 * over the reset and takes the PCI device lock. 5564 * 5565 * Returns 0 if the device function was successfully reset or negative if the 5566 * device doesn't support resetting a single function. 5567 */ 5568 int pci_reset_function(struct pci_dev *dev) 5569 { 5570 int rc; 5571 5572 if (!pci_reset_supported(dev)) 5573 return -ENOTTY; 5574 5575 pci_dev_lock(dev); 5576 pci_dev_save_and_disable(dev); 5577 5578 rc = __pci_reset_function_locked(dev); 5579 5580 pci_dev_restore(dev); 5581 pci_dev_unlock(dev); 5582 5583 return rc; 5584 } 5585 EXPORT_SYMBOL_GPL(pci_reset_function); 5586 5587 /** 5588 * pci_reset_function_locked - quiesce and reset a PCI device function 5589 * @dev: PCI device to reset 5590 * 5591 * Some devices allow an individual function to be reset without affecting 5592 * other functions in the same device. The PCI device must be responsive 5593 * to PCI config space in order to use this function. 5594 * 5595 * This function does not just reset the PCI portion of a device, but 5596 * clears all the state associated with the device. This function differs 5597 * from __pci_reset_function_locked() in that it saves and restores device state 5598 * over the reset. It also differs from pci_reset_function() in that it 5599 * requires the PCI device lock to be held. 5600 * 5601 * Returns 0 if the device function was successfully reset or negative if the 5602 * device doesn't support resetting a single function. 5603 */ 5604 int pci_reset_function_locked(struct pci_dev *dev) 5605 { 5606 int rc; 5607 5608 if (!pci_reset_supported(dev)) 5609 return -ENOTTY; 5610 5611 pci_dev_save_and_disable(dev); 5612 5613 rc = __pci_reset_function_locked(dev); 5614 5615 pci_dev_restore(dev); 5616 5617 return rc; 5618 } 5619 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5620 5621 /** 5622 * pci_try_reset_function - quiesce and reset a PCI device function 5623 * @dev: PCI device to reset 5624 * 5625 * Same as above, except return -EAGAIN if unable to lock device. 5626 */ 5627 int pci_try_reset_function(struct pci_dev *dev) 5628 { 5629 int rc; 5630 5631 if (!pci_reset_supported(dev)) 5632 return -ENOTTY; 5633 5634 if (!pci_dev_trylock(dev)) 5635 return -EAGAIN; 5636 5637 pci_dev_save_and_disable(dev); 5638 rc = __pci_reset_function_locked(dev); 5639 pci_dev_restore(dev); 5640 pci_dev_unlock(dev); 5641 5642 return rc; 5643 } 5644 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5645 5646 /* Do any devices on or below this bus prevent a bus reset? */ 5647 static bool pci_bus_resettable(struct pci_bus *bus) 5648 { 5649 struct pci_dev *dev; 5650 5651 5652 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5653 return false; 5654 5655 list_for_each_entry(dev, &bus->devices, bus_list) { 5656 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5657 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5658 return false; 5659 } 5660 5661 return true; 5662 } 5663 5664 /* Lock devices from the top of the tree down */ 5665 static void pci_bus_lock(struct pci_bus *bus) 5666 { 5667 struct pci_dev *dev; 5668 5669 list_for_each_entry(dev, &bus->devices, bus_list) { 5670 pci_dev_lock(dev); 5671 if (dev->subordinate) 5672 pci_bus_lock(dev->subordinate); 5673 } 5674 } 5675 5676 /* Unlock devices from the bottom of the tree up */ 5677 static void pci_bus_unlock(struct pci_bus *bus) 5678 { 5679 struct pci_dev *dev; 5680 5681 list_for_each_entry(dev, &bus->devices, bus_list) { 5682 if (dev->subordinate) 5683 pci_bus_unlock(dev->subordinate); 5684 pci_dev_unlock(dev); 5685 } 5686 } 5687 5688 /* Return 1 on successful lock, 0 on contention */ 5689 static int pci_bus_trylock(struct pci_bus *bus) 5690 { 5691 struct pci_dev *dev; 5692 5693 list_for_each_entry(dev, &bus->devices, bus_list) { 5694 if (!pci_dev_trylock(dev)) 5695 goto unlock; 5696 if (dev->subordinate) { 5697 if (!pci_bus_trylock(dev->subordinate)) { 5698 pci_dev_unlock(dev); 5699 goto unlock; 5700 } 5701 } 5702 } 5703 return 1; 5704 5705 unlock: 5706 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5707 if (dev->subordinate) 5708 pci_bus_unlock(dev->subordinate); 5709 pci_dev_unlock(dev); 5710 } 5711 return 0; 5712 } 5713 5714 /* Do any devices on or below this slot prevent a bus reset? */ 5715 static bool pci_slot_resettable(struct pci_slot *slot) 5716 { 5717 struct pci_dev *dev; 5718 5719 if (slot->bus->self && 5720 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5721 return false; 5722 5723 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5724 if (!dev->slot || dev->slot != slot) 5725 continue; 5726 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5727 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5728 return false; 5729 } 5730 5731 return true; 5732 } 5733 5734 /* Lock devices from the top of the tree down */ 5735 static void pci_slot_lock(struct pci_slot *slot) 5736 { 5737 struct pci_dev *dev; 5738 5739 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5740 if (!dev->slot || dev->slot != slot) 5741 continue; 5742 pci_dev_lock(dev); 5743 if (dev->subordinate) 5744 pci_bus_lock(dev->subordinate); 5745 } 5746 } 5747 5748 /* Unlock devices from the bottom of the tree up */ 5749 static void pci_slot_unlock(struct pci_slot *slot) 5750 { 5751 struct pci_dev *dev; 5752 5753 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5754 if (!dev->slot || dev->slot != slot) 5755 continue; 5756 if (dev->subordinate) 5757 pci_bus_unlock(dev->subordinate); 5758 pci_dev_unlock(dev); 5759 } 5760 } 5761 5762 /* Return 1 on successful lock, 0 on contention */ 5763 static int pci_slot_trylock(struct pci_slot *slot) 5764 { 5765 struct pci_dev *dev; 5766 5767 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5768 if (!dev->slot || dev->slot != slot) 5769 continue; 5770 if (!pci_dev_trylock(dev)) 5771 goto unlock; 5772 if (dev->subordinate) { 5773 if (!pci_bus_trylock(dev->subordinate)) { 5774 pci_dev_unlock(dev); 5775 goto unlock; 5776 } 5777 } 5778 } 5779 return 1; 5780 5781 unlock: 5782 list_for_each_entry_continue_reverse(dev, 5783 &slot->bus->devices, bus_list) { 5784 if (!dev->slot || dev->slot != slot) 5785 continue; 5786 if (dev->subordinate) 5787 pci_bus_unlock(dev->subordinate); 5788 pci_dev_unlock(dev); 5789 } 5790 return 0; 5791 } 5792 5793 /* 5794 * Save and disable devices from the top of the tree down while holding 5795 * the @dev mutex lock for the entire tree. 5796 */ 5797 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5798 { 5799 struct pci_dev *dev; 5800 5801 list_for_each_entry(dev, &bus->devices, bus_list) { 5802 pci_dev_save_and_disable(dev); 5803 if (dev->subordinate) 5804 pci_bus_save_and_disable_locked(dev->subordinate); 5805 } 5806 } 5807 5808 /* 5809 * Restore devices from top of the tree down while holding @dev mutex lock 5810 * for the entire tree. Parent bridges need to be restored before we can 5811 * get to subordinate devices. 5812 */ 5813 static void pci_bus_restore_locked(struct pci_bus *bus) 5814 { 5815 struct pci_dev *dev; 5816 5817 list_for_each_entry(dev, &bus->devices, bus_list) { 5818 pci_dev_restore(dev); 5819 if (dev->subordinate) 5820 pci_bus_restore_locked(dev->subordinate); 5821 } 5822 } 5823 5824 /* 5825 * Save and disable devices from the top of the tree down while holding 5826 * the @dev mutex lock for the entire tree. 5827 */ 5828 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5829 { 5830 struct pci_dev *dev; 5831 5832 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5833 if (!dev->slot || dev->slot != slot) 5834 continue; 5835 pci_dev_save_and_disable(dev); 5836 if (dev->subordinate) 5837 pci_bus_save_and_disable_locked(dev->subordinate); 5838 } 5839 } 5840 5841 /* 5842 * Restore devices from top of the tree down while holding @dev mutex lock 5843 * for the entire tree. Parent bridges need to be restored before we can 5844 * get to subordinate devices. 5845 */ 5846 static void pci_slot_restore_locked(struct pci_slot *slot) 5847 { 5848 struct pci_dev *dev; 5849 5850 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5851 if (!dev->slot || dev->slot != slot) 5852 continue; 5853 pci_dev_restore(dev); 5854 if (dev->subordinate) 5855 pci_bus_restore_locked(dev->subordinate); 5856 } 5857 } 5858 5859 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5860 { 5861 int rc; 5862 5863 if (!slot || !pci_slot_resettable(slot)) 5864 return -ENOTTY; 5865 5866 if (!probe) 5867 pci_slot_lock(slot); 5868 5869 might_sleep(); 5870 5871 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5872 5873 if (!probe) 5874 pci_slot_unlock(slot); 5875 5876 return rc; 5877 } 5878 5879 /** 5880 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5881 * @slot: PCI slot to probe 5882 * 5883 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5884 */ 5885 int pci_probe_reset_slot(struct pci_slot *slot) 5886 { 5887 return pci_slot_reset(slot, PCI_RESET_PROBE); 5888 } 5889 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5890 5891 /** 5892 * __pci_reset_slot - Try to reset a PCI slot 5893 * @slot: PCI slot to reset 5894 * 5895 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5896 * independent of other slots. For instance, some slots may support slot power 5897 * control. In the case of a 1:1 bus to slot architecture, this function may 5898 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5899 * Generally a slot reset should be attempted before a bus reset. All of the 5900 * function of the slot and any subordinate buses behind the slot are reset 5901 * through this function. PCI config space of all devices in the slot and 5902 * behind the slot is saved before and restored after reset. 5903 * 5904 * Same as above except return -EAGAIN if the slot cannot be locked 5905 */ 5906 static int __pci_reset_slot(struct pci_slot *slot) 5907 { 5908 int rc; 5909 5910 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5911 if (rc) 5912 return rc; 5913 5914 if (pci_slot_trylock(slot)) { 5915 pci_slot_save_and_disable_locked(slot); 5916 might_sleep(); 5917 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5918 pci_slot_restore_locked(slot); 5919 pci_slot_unlock(slot); 5920 } else 5921 rc = -EAGAIN; 5922 5923 return rc; 5924 } 5925 5926 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5927 { 5928 int ret; 5929 5930 if (!bus->self || !pci_bus_resettable(bus)) 5931 return -ENOTTY; 5932 5933 if (probe) 5934 return 0; 5935 5936 pci_bus_lock(bus); 5937 5938 might_sleep(); 5939 5940 ret = pci_bridge_secondary_bus_reset(bus->self); 5941 5942 pci_bus_unlock(bus); 5943 5944 return ret; 5945 } 5946 5947 /** 5948 * pci_bus_error_reset - reset the bridge's subordinate bus 5949 * @bridge: The parent device that connects to the bus to reset 5950 * 5951 * This function will first try to reset the slots on this bus if the method is 5952 * available. If slot reset fails or is not available, this will fall back to a 5953 * secondary bus reset. 5954 */ 5955 int pci_bus_error_reset(struct pci_dev *bridge) 5956 { 5957 struct pci_bus *bus = bridge->subordinate; 5958 struct pci_slot *slot; 5959 5960 if (!bus) 5961 return -ENOTTY; 5962 5963 mutex_lock(&pci_slot_mutex); 5964 if (list_empty(&bus->slots)) 5965 goto bus_reset; 5966 5967 list_for_each_entry(slot, &bus->slots, list) 5968 if (pci_probe_reset_slot(slot)) 5969 goto bus_reset; 5970 5971 list_for_each_entry(slot, &bus->slots, list) 5972 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5973 goto bus_reset; 5974 5975 mutex_unlock(&pci_slot_mutex); 5976 return 0; 5977 bus_reset: 5978 mutex_unlock(&pci_slot_mutex); 5979 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5980 } 5981 5982 /** 5983 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5984 * @bus: PCI bus to probe 5985 * 5986 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5987 */ 5988 int pci_probe_reset_bus(struct pci_bus *bus) 5989 { 5990 return pci_bus_reset(bus, PCI_RESET_PROBE); 5991 } 5992 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5993 5994 /** 5995 * __pci_reset_bus - Try to reset a PCI bus 5996 * @bus: top level PCI bus to reset 5997 * 5998 * Same as above except return -EAGAIN if the bus cannot be locked 5999 */ 6000 static int __pci_reset_bus(struct pci_bus *bus) 6001 { 6002 int rc; 6003 6004 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6005 if (rc) 6006 return rc; 6007 6008 if (pci_bus_trylock(bus)) { 6009 pci_bus_save_and_disable_locked(bus); 6010 might_sleep(); 6011 rc = pci_bridge_secondary_bus_reset(bus->self); 6012 pci_bus_restore_locked(bus); 6013 pci_bus_unlock(bus); 6014 } else 6015 rc = -EAGAIN; 6016 6017 return rc; 6018 } 6019 6020 /** 6021 * pci_reset_bus - Try to reset a PCI bus 6022 * @pdev: top level PCI device to reset via slot/bus 6023 * 6024 * Same as above except return -EAGAIN if the bus cannot be locked 6025 */ 6026 int pci_reset_bus(struct pci_dev *pdev) 6027 { 6028 return (!pci_probe_reset_slot(pdev->slot)) ? 6029 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6030 } 6031 EXPORT_SYMBOL_GPL(pci_reset_bus); 6032 6033 /** 6034 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6035 * @dev: PCI device to query 6036 * 6037 * Returns mmrbc: maximum designed memory read count in bytes or 6038 * appropriate error value. 6039 */ 6040 int pcix_get_max_mmrbc(struct pci_dev *dev) 6041 { 6042 int cap; 6043 u32 stat; 6044 6045 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6046 if (!cap) 6047 return -EINVAL; 6048 6049 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6050 return -EINVAL; 6051 6052 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat); 6053 } 6054 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6055 6056 /** 6057 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6058 * @dev: PCI device to query 6059 * 6060 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6061 * value. 6062 */ 6063 int pcix_get_mmrbc(struct pci_dev *dev) 6064 { 6065 int cap; 6066 u16 cmd; 6067 6068 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6069 if (!cap) 6070 return -EINVAL; 6071 6072 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6073 return -EINVAL; 6074 6075 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6076 } 6077 EXPORT_SYMBOL(pcix_get_mmrbc); 6078 6079 /** 6080 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6081 * @dev: PCI device to query 6082 * @mmrbc: maximum memory read count in bytes 6083 * valid values are 512, 1024, 2048, 4096 6084 * 6085 * If possible sets maximum memory read byte count, some bridges have errata 6086 * that prevent this. 6087 */ 6088 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6089 { 6090 int cap; 6091 u32 stat, v, o; 6092 u16 cmd; 6093 6094 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6095 return -EINVAL; 6096 6097 v = ffs(mmrbc) - 10; 6098 6099 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6100 if (!cap) 6101 return -EINVAL; 6102 6103 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6104 return -EINVAL; 6105 6106 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat)) 6107 return -E2BIG; 6108 6109 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6110 return -EINVAL; 6111 6112 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd); 6113 if (o != v) { 6114 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6115 return -EIO; 6116 6117 cmd &= ~PCI_X_CMD_MAX_READ; 6118 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v); 6119 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6120 return -EIO; 6121 } 6122 return 0; 6123 } 6124 EXPORT_SYMBOL(pcix_set_mmrbc); 6125 6126 /** 6127 * pcie_get_readrq - get PCI Express read request size 6128 * @dev: PCI device to query 6129 * 6130 * Returns maximum memory read request in bytes or appropriate error value. 6131 */ 6132 int pcie_get_readrq(struct pci_dev *dev) 6133 { 6134 u16 ctl; 6135 6136 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6137 6138 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl); 6139 } 6140 EXPORT_SYMBOL(pcie_get_readrq); 6141 6142 /** 6143 * pcie_set_readrq - set PCI Express maximum memory read request 6144 * @dev: PCI device to query 6145 * @rq: maximum memory read count in bytes 6146 * valid values are 128, 256, 512, 1024, 2048, 4096 6147 * 6148 * If possible sets maximum memory read request in bytes 6149 */ 6150 int pcie_set_readrq(struct pci_dev *dev, int rq) 6151 { 6152 u16 v; 6153 int ret; 6154 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6155 6156 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6157 return -EINVAL; 6158 6159 /* 6160 * If using the "performance" PCIe config, we clamp the read rq 6161 * size to the max packet size to keep the host bridge from 6162 * generating requests larger than we can cope with. 6163 */ 6164 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6165 int mps = pcie_get_mps(dev); 6166 6167 if (mps < rq) 6168 rq = mps; 6169 } 6170 6171 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8); 6172 6173 if (bridge->no_inc_mrrs) { 6174 int max_mrrs = pcie_get_readrq(dev); 6175 6176 if (rq > max_mrrs) { 6177 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6178 return -EINVAL; 6179 } 6180 } 6181 6182 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6183 PCI_EXP_DEVCTL_READRQ, v); 6184 6185 return pcibios_err_to_errno(ret); 6186 } 6187 EXPORT_SYMBOL(pcie_set_readrq); 6188 6189 /** 6190 * pcie_get_mps - get PCI Express maximum payload size 6191 * @dev: PCI device to query 6192 * 6193 * Returns maximum payload size in bytes 6194 */ 6195 int pcie_get_mps(struct pci_dev *dev) 6196 { 6197 u16 ctl; 6198 6199 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6200 6201 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl); 6202 } 6203 EXPORT_SYMBOL(pcie_get_mps); 6204 6205 /** 6206 * pcie_set_mps - set PCI Express maximum payload size 6207 * @dev: PCI device to query 6208 * @mps: maximum payload size in bytes 6209 * valid values are 128, 256, 512, 1024, 2048, 4096 6210 * 6211 * If possible sets maximum payload size 6212 */ 6213 int pcie_set_mps(struct pci_dev *dev, int mps) 6214 { 6215 u16 v; 6216 int ret; 6217 6218 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6219 return -EINVAL; 6220 6221 v = ffs(mps) - 8; 6222 if (v > dev->pcie_mpss) 6223 return -EINVAL; 6224 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v); 6225 6226 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6227 PCI_EXP_DEVCTL_PAYLOAD, v); 6228 6229 return pcibios_err_to_errno(ret); 6230 } 6231 EXPORT_SYMBOL(pcie_set_mps); 6232 6233 /** 6234 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6235 * device and its bandwidth limitation 6236 * @dev: PCI device to query 6237 * @limiting_dev: storage for device causing the bandwidth limitation 6238 * @speed: storage for speed of limiting device 6239 * @width: storage for width of limiting device 6240 * 6241 * Walk up the PCI device chain and find the point where the minimum 6242 * bandwidth is available. Return the bandwidth available there and (if 6243 * limiting_dev, speed, and width pointers are supplied) information about 6244 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6245 * raw bandwidth. 6246 */ 6247 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6248 enum pci_bus_speed *speed, 6249 enum pcie_link_width *width) 6250 { 6251 u16 lnksta; 6252 enum pci_bus_speed next_speed; 6253 enum pcie_link_width next_width; 6254 u32 bw, next_bw; 6255 6256 if (speed) 6257 *speed = PCI_SPEED_UNKNOWN; 6258 if (width) 6259 *width = PCIE_LNK_WIDTH_UNKNOWN; 6260 6261 bw = 0; 6262 6263 while (dev) { 6264 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6265 6266 next_speed = pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, 6267 lnksta)]; 6268 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6269 6270 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6271 6272 /* Check if current device limits the total bandwidth */ 6273 if (!bw || next_bw <= bw) { 6274 bw = next_bw; 6275 6276 if (limiting_dev) 6277 *limiting_dev = dev; 6278 if (speed) 6279 *speed = next_speed; 6280 if (width) 6281 *width = next_width; 6282 } 6283 6284 dev = pci_upstream_bridge(dev); 6285 } 6286 6287 return bw; 6288 } 6289 EXPORT_SYMBOL(pcie_bandwidth_available); 6290 6291 /** 6292 * pcie_get_speed_cap - query for the PCI device's link speed capability 6293 * @dev: PCI device to query 6294 * 6295 * Query the PCI device speed capability. Return the maximum link speed 6296 * supported by the device. 6297 */ 6298 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6299 { 6300 u32 lnkcap2, lnkcap; 6301 6302 /* 6303 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6304 * implementation note there recommends using the Supported Link 6305 * Speeds Vector in Link Capabilities 2 when supported. 6306 * 6307 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6308 * should use the Supported Link Speeds field in Link Capabilities, 6309 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6310 */ 6311 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6312 6313 /* PCIe r3.0-compliant */ 6314 if (lnkcap2) 6315 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6316 6317 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6318 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6319 return PCIE_SPEED_5_0GT; 6320 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6321 return PCIE_SPEED_2_5GT; 6322 6323 return PCI_SPEED_UNKNOWN; 6324 } 6325 EXPORT_SYMBOL(pcie_get_speed_cap); 6326 6327 /** 6328 * pcie_get_width_cap - query for the PCI device's link width capability 6329 * @dev: PCI device to query 6330 * 6331 * Query the PCI device width capability. Return the maximum link width 6332 * supported by the device. 6333 */ 6334 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6335 { 6336 u32 lnkcap; 6337 6338 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6339 if (lnkcap) 6340 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6341 6342 return PCIE_LNK_WIDTH_UNKNOWN; 6343 } 6344 EXPORT_SYMBOL(pcie_get_width_cap); 6345 6346 /** 6347 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6348 * @dev: PCI device 6349 * @speed: storage for link speed 6350 * @width: storage for link width 6351 * 6352 * Calculate a PCI device's link bandwidth by querying for its link speed 6353 * and width, multiplying them, and applying encoding overhead. The result 6354 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6355 */ 6356 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6357 enum pcie_link_width *width) 6358 { 6359 *speed = pcie_get_speed_cap(dev); 6360 *width = pcie_get_width_cap(dev); 6361 6362 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6363 return 0; 6364 6365 return *width * PCIE_SPEED2MBS_ENC(*speed); 6366 } 6367 6368 /** 6369 * __pcie_print_link_status - Report the PCI device's link speed and width 6370 * @dev: PCI device to query 6371 * @verbose: Print info even when enough bandwidth is available 6372 * 6373 * If the available bandwidth at the device is less than the device is 6374 * capable of, report the device's maximum possible bandwidth and the 6375 * upstream link that limits its performance. If @verbose, always print 6376 * the available bandwidth, even if the device isn't constrained. 6377 */ 6378 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6379 { 6380 enum pcie_link_width width, width_cap; 6381 enum pci_bus_speed speed, speed_cap; 6382 struct pci_dev *limiting_dev = NULL; 6383 u32 bw_avail, bw_cap; 6384 6385 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6386 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6387 6388 if (bw_avail >= bw_cap && verbose) 6389 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6390 bw_cap / 1000, bw_cap % 1000, 6391 pci_speed_string(speed_cap), width_cap); 6392 else if (bw_avail < bw_cap) 6393 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6394 bw_avail / 1000, bw_avail % 1000, 6395 pci_speed_string(speed), width, 6396 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6397 bw_cap / 1000, bw_cap % 1000, 6398 pci_speed_string(speed_cap), width_cap); 6399 } 6400 6401 /** 6402 * pcie_print_link_status - Report the PCI device's link speed and width 6403 * @dev: PCI device to query 6404 * 6405 * Report the available bandwidth at the device. 6406 */ 6407 void pcie_print_link_status(struct pci_dev *dev) 6408 { 6409 __pcie_print_link_status(dev, true); 6410 } 6411 EXPORT_SYMBOL(pcie_print_link_status); 6412 6413 /** 6414 * pci_select_bars - Make BAR mask from the type of resource 6415 * @dev: the PCI device for which BAR mask is made 6416 * @flags: resource type mask to be selected 6417 * 6418 * This helper routine makes bar mask from the type of resource. 6419 */ 6420 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6421 { 6422 int i, bars = 0; 6423 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6424 if (pci_resource_flags(dev, i) & flags) 6425 bars |= (1 << i); 6426 return bars; 6427 } 6428 EXPORT_SYMBOL(pci_select_bars); 6429 6430 /* Some architectures require additional programming to enable VGA */ 6431 static arch_set_vga_state_t arch_set_vga_state; 6432 6433 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6434 { 6435 arch_set_vga_state = func; /* NULL disables */ 6436 } 6437 6438 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6439 unsigned int command_bits, u32 flags) 6440 { 6441 if (arch_set_vga_state) 6442 return arch_set_vga_state(dev, decode, command_bits, 6443 flags); 6444 return 0; 6445 } 6446 6447 /** 6448 * pci_set_vga_state - set VGA decode state on device and parents if requested 6449 * @dev: the PCI device 6450 * @decode: true = enable decoding, false = disable decoding 6451 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6452 * @flags: traverse ancestors and change bridges 6453 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6454 */ 6455 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6456 unsigned int command_bits, u32 flags) 6457 { 6458 struct pci_bus *bus; 6459 struct pci_dev *bridge; 6460 u16 cmd; 6461 int rc; 6462 6463 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6464 6465 /* ARCH specific VGA enables */ 6466 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6467 if (rc) 6468 return rc; 6469 6470 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6471 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6472 if (decode) 6473 cmd |= command_bits; 6474 else 6475 cmd &= ~command_bits; 6476 pci_write_config_word(dev, PCI_COMMAND, cmd); 6477 } 6478 6479 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6480 return 0; 6481 6482 bus = dev->bus; 6483 while (bus) { 6484 bridge = bus->self; 6485 if (bridge) { 6486 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6487 &cmd); 6488 if (decode) 6489 cmd |= PCI_BRIDGE_CTL_VGA; 6490 else 6491 cmd &= ~PCI_BRIDGE_CTL_VGA; 6492 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6493 cmd); 6494 } 6495 bus = bus->parent; 6496 } 6497 return 0; 6498 } 6499 6500 #ifdef CONFIG_ACPI 6501 bool pci_pr3_present(struct pci_dev *pdev) 6502 { 6503 struct acpi_device *adev; 6504 6505 if (acpi_disabled) 6506 return false; 6507 6508 adev = ACPI_COMPANION(&pdev->dev); 6509 if (!adev) 6510 return false; 6511 6512 return adev->power.flags.power_resources && 6513 acpi_has_method(adev->handle, "_PR3"); 6514 } 6515 EXPORT_SYMBOL_GPL(pci_pr3_present); 6516 #endif 6517 6518 /** 6519 * pci_add_dma_alias - Add a DMA devfn alias for a device 6520 * @dev: the PCI device for which alias is added 6521 * @devfn_from: alias slot and function 6522 * @nr_devfns: number of subsequent devfns to alias 6523 * 6524 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6525 * which is used to program permissible bus-devfn source addresses for DMA 6526 * requests in an IOMMU. These aliases factor into IOMMU group creation 6527 * and are useful for devices generating DMA requests beyond or different 6528 * from their logical bus-devfn. Examples include device quirks where the 6529 * device simply uses the wrong devfn, as well as non-transparent bridges 6530 * where the alias may be a proxy for devices in another domain. 6531 * 6532 * IOMMU group creation is performed during device discovery or addition, 6533 * prior to any potential DMA mapping and therefore prior to driver probing 6534 * (especially for userspace assigned devices where IOMMU group definition 6535 * cannot be left as a userspace activity). DMA aliases should therefore 6536 * be configured via quirks, such as the PCI fixup header quirk. 6537 */ 6538 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6539 unsigned int nr_devfns) 6540 { 6541 int devfn_to; 6542 6543 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6544 devfn_to = devfn_from + nr_devfns - 1; 6545 6546 if (!dev->dma_alias_mask) 6547 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6548 if (!dev->dma_alias_mask) { 6549 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6550 return; 6551 } 6552 6553 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6554 6555 if (nr_devfns == 1) 6556 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6557 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6558 else if (nr_devfns > 1) 6559 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6560 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6561 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6562 } 6563 6564 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6565 { 6566 return (dev1->dma_alias_mask && 6567 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6568 (dev2->dma_alias_mask && 6569 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6570 pci_real_dma_dev(dev1) == dev2 || 6571 pci_real_dma_dev(dev2) == dev1; 6572 } 6573 6574 bool pci_device_is_present(struct pci_dev *pdev) 6575 { 6576 u32 v; 6577 6578 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6579 pdev = pci_physfn(pdev); 6580 if (pci_dev_is_disconnected(pdev)) 6581 return false; 6582 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6583 } 6584 EXPORT_SYMBOL_GPL(pci_device_is_present); 6585 6586 void pci_ignore_hotplug(struct pci_dev *dev) 6587 { 6588 struct pci_dev *bridge = dev->bus->self; 6589 6590 dev->ignore_hotplug = 1; 6591 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6592 if (bridge) 6593 bridge->ignore_hotplug = 1; 6594 } 6595 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6596 6597 /** 6598 * pci_real_dma_dev - Get PCI DMA device for PCI device 6599 * @dev: the PCI device that may have a PCI DMA alias 6600 * 6601 * Permits the platform to provide architecture-specific functionality to 6602 * devices needing to alias DMA to another PCI device on another PCI bus. If 6603 * the PCI device is on the same bus, it is recommended to use 6604 * pci_add_dma_alias(). This is the default implementation. Architecture 6605 * implementations can override this. 6606 */ 6607 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6608 { 6609 return dev; 6610 } 6611 6612 resource_size_t __weak pcibios_default_alignment(void) 6613 { 6614 return 0; 6615 } 6616 6617 /* 6618 * Arches that don't want to expose struct resource to userland as-is in 6619 * sysfs and /proc can implement their own pci_resource_to_user(). 6620 */ 6621 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6622 const struct resource *rsrc, 6623 resource_size_t *start, resource_size_t *end) 6624 { 6625 *start = rsrc->start; 6626 *end = rsrc->end; 6627 } 6628 6629 static char *resource_alignment_param; 6630 static DEFINE_SPINLOCK(resource_alignment_lock); 6631 6632 /** 6633 * pci_specified_resource_alignment - get resource alignment specified by user. 6634 * @dev: the PCI device to get 6635 * @resize: whether or not to change resources' size when reassigning alignment 6636 * 6637 * RETURNS: Resource alignment if it is specified. 6638 * Zero if it is not specified. 6639 */ 6640 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6641 bool *resize) 6642 { 6643 int align_order, count; 6644 resource_size_t align = pcibios_default_alignment(); 6645 const char *p; 6646 int ret; 6647 6648 spin_lock(&resource_alignment_lock); 6649 p = resource_alignment_param; 6650 if (!p || !*p) 6651 goto out; 6652 if (pci_has_flag(PCI_PROBE_ONLY)) { 6653 align = 0; 6654 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6655 goto out; 6656 } 6657 6658 while (*p) { 6659 count = 0; 6660 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6661 p[count] == '@') { 6662 p += count + 1; 6663 if (align_order > 63) { 6664 pr_err("PCI: Invalid requested alignment (order %d)\n", 6665 align_order); 6666 align_order = PAGE_SHIFT; 6667 } 6668 } else { 6669 align_order = PAGE_SHIFT; 6670 } 6671 6672 ret = pci_dev_str_match(dev, p, &p); 6673 if (ret == 1) { 6674 *resize = true; 6675 align = 1ULL << align_order; 6676 break; 6677 } else if (ret < 0) { 6678 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6679 p); 6680 break; 6681 } 6682 6683 if (*p != ';' && *p != ',') { 6684 /* End of param or invalid format */ 6685 break; 6686 } 6687 p++; 6688 } 6689 out: 6690 spin_unlock(&resource_alignment_lock); 6691 return align; 6692 } 6693 6694 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6695 resource_size_t align, bool resize) 6696 { 6697 struct resource *r = &dev->resource[bar]; 6698 resource_size_t size; 6699 6700 if (!(r->flags & IORESOURCE_MEM)) 6701 return; 6702 6703 if (r->flags & IORESOURCE_PCI_FIXED) { 6704 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6705 bar, r, (unsigned long long)align); 6706 return; 6707 } 6708 6709 size = resource_size(r); 6710 if (size >= align) 6711 return; 6712 6713 /* 6714 * Increase the alignment of the resource. There are two ways we 6715 * can do this: 6716 * 6717 * 1) Increase the size of the resource. BARs are aligned on their 6718 * size, so when we reallocate space for this resource, we'll 6719 * allocate it with the larger alignment. This also prevents 6720 * assignment of any other BARs inside the alignment region, so 6721 * if we're requesting page alignment, this means no other BARs 6722 * will share the page. 6723 * 6724 * The disadvantage is that this makes the resource larger than 6725 * the hardware BAR, which may break drivers that compute things 6726 * based on the resource size, e.g., to find registers at a 6727 * fixed offset before the end of the BAR. 6728 * 6729 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6730 * set r->start to the desired alignment. By itself this 6731 * doesn't prevent other BARs being put inside the alignment 6732 * region, but if we realign *every* resource of every device in 6733 * the system, none of them will share an alignment region. 6734 * 6735 * When the user has requested alignment for only some devices via 6736 * the "pci=resource_alignment" argument, "resize" is true and we 6737 * use the first method. Otherwise we assume we're aligning all 6738 * devices and we use the second. 6739 */ 6740 6741 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6742 bar, r, (unsigned long long)align); 6743 6744 if (resize) { 6745 r->start = 0; 6746 r->end = align - 1; 6747 } else { 6748 r->flags &= ~IORESOURCE_SIZEALIGN; 6749 r->flags |= IORESOURCE_STARTALIGN; 6750 r->start = align; 6751 r->end = r->start + size - 1; 6752 } 6753 r->flags |= IORESOURCE_UNSET; 6754 } 6755 6756 /* 6757 * This function disables memory decoding and releases memory resources 6758 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6759 * It also rounds up size to specified alignment. 6760 * Later on, the kernel will assign page-aligned memory resource back 6761 * to the device. 6762 */ 6763 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6764 { 6765 int i; 6766 struct resource *r; 6767 resource_size_t align; 6768 u16 command; 6769 bool resize = false; 6770 6771 /* 6772 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6773 * 3.4.1.11. Their resources are allocated from the space 6774 * described by the VF BARx register in the PF's SR-IOV capability. 6775 * We can't influence their alignment here. 6776 */ 6777 if (dev->is_virtfn) 6778 return; 6779 6780 /* check if specified PCI is target device to reassign */ 6781 align = pci_specified_resource_alignment(dev, &resize); 6782 if (!align) 6783 return; 6784 6785 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6786 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6787 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6788 return; 6789 } 6790 6791 pci_read_config_word(dev, PCI_COMMAND, &command); 6792 command &= ~PCI_COMMAND_MEMORY; 6793 pci_write_config_word(dev, PCI_COMMAND, command); 6794 6795 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6796 pci_request_resource_alignment(dev, i, align, resize); 6797 6798 /* 6799 * Need to disable bridge's resource window, 6800 * to enable the kernel to reassign new resource 6801 * window later on. 6802 */ 6803 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6804 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6805 r = &dev->resource[i]; 6806 if (!(r->flags & IORESOURCE_MEM)) 6807 continue; 6808 r->flags |= IORESOURCE_UNSET; 6809 r->end = resource_size(r) - 1; 6810 r->start = 0; 6811 } 6812 pci_disable_bridge_window(dev); 6813 } 6814 } 6815 6816 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6817 { 6818 size_t count = 0; 6819 6820 spin_lock(&resource_alignment_lock); 6821 if (resource_alignment_param) 6822 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6823 spin_unlock(&resource_alignment_lock); 6824 6825 return count; 6826 } 6827 6828 static ssize_t resource_alignment_store(const struct bus_type *bus, 6829 const char *buf, size_t count) 6830 { 6831 char *param, *old, *end; 6832 6833 if (count >= (PAGE_SIZE - 1)) 6834 return -EINVAL; 6835 6836 param = kstrndup(buf, count, GFP_KERNEL); 6837 if (!param) 6838 return -ENOMEM; 6839 6840 end = strchr(param, '\n'); 6841 if (end) 6842 *end = '\0'; 6843 6844 spin_lock(&resource_alignment_lock); 6845 old = resource_alignment_param; 6846 if (strlen(param)) { 6847 resource_alignment_param = param; 6848 } else { 6849 kfree(param); 6850 resource_alignment_param = NULL; 6851 } 6852 spin_unlock(&resource_alignment_lock); 6853 6854 kfree(old); 6855 6856 return count; 6857 } 6858 6859 static BUS_ATTR_RW(resource_alignment); 6860 6861 static int __init pci_resource_alignment_sysfs_init(void) 6862 { 6863 return bus_create_file(&pci_bus_type, 6864 &bus_attr_resource_alignment); 6865 } 6866 late_initcall(pci_resource_alignment_sysfs_init); 6867 6868 static void pci_no_domains(void) 6869 { 6870 #ifdef CONFIG_PCI_DOMAINS 6871 pci_domains_supported = 0; 6872 #endif 6873 } 6874 6875 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6876 static DEFINE_IDA(pci_domain_nr_static_ida); 6877 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6878 6879 static void of_pci_reserve_static_domain_nr(void) 6880 { 6881 struct device_node *np; 6882 int domain_nr; 6883 6884 for_each_node_by_type(np, "pci") { 6885 domain_nr = of_get_pci_domain_nr(np); 6886 if (domain_nr < 0) 6887 continue; 6888 /* 6889 * Permanently allocate domain_nr in dynamic_ida 6890 * to prevent it from dynamic allocation. 6891 */ 6892 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6893 domain_nr, domain_nr, GFP_KERNEL); 6894 } 6895 } 6896 6897 static int of_pci_bus_find_domain_nr(struct device *parent) 6898 { 6899 static bool static_domains_reserved = false; 6900 int domain_nr; 6901 6902 /* On the first call scan device tree for static allocations. */ 6903 if (!static_domains_reserved) { 6904 of_pci_reserve_static_domain_nr(); 6905 static_domains_reserved = true; 6906 } 6907 6908 if (parent) { 6909 /* 6910 * If domain is in DT, allocate it in static IDA. This 6911 * prevents duplicate static allocations in case of errors 6912 * in DT. 6913 */ 6914 domain_nr = of_get_pci_domain_nr(parent->of_node); 6915 if (domain_nr >= 0) 6916 return ida_alloc_range(&pci_domain_nr_static_ida, 6917 domain_nr, domain_nr, 6918 GFP_KERNEL); 6919 } 6920 6921 /* 6922 * If domain was not specified in DT, choose a free ID from dynamic 6923 * allocations. All domain numbers from DT are permanently in 6924 * dynamic allocations to prevent assigning them to other DT nodes 6925 * without static domain. 6926 */ 6927 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6928 } 6929 6930 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6931 { 6932 if (bus->domain_nr < 0) 6933 return; 6934 6935 /* Release domain from IDA where it was allocated. */ 6936 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6937 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6938 else 6939 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6940 } 6941 6942 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6943 { 6944 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6945 acpi_pci_bus_find_domain_nr(bus); 6946 } 6947 6948 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6949 { 6950 if (!acpi_disabled) 6951 return; 6952 of_pci_bus_release_domain_nr(bus, parent); 6953 } 6954 #endif 6955 6956 /** 6957 * pci_ext_cfg_avail - can we access extended PCI config space? 6958 * 6959 * Returns 1 if we can access PCI extended config space (offsets 6960 * greater than 0xff). This is the default implementation. Architecture 6961 * implementations can override this. 6962 */ 6963 int __weak pci_ext_cfg_avail(void) 6964 { 6965 return 1; 6966 } 6967 6968 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6969 { 6970 } 6971 EXPORT_SYMBOL(pci_fixup_cardbus); 6972 6973 static int __init pci_setup(char *str) 6974 { 6975 while (str) { 6976 char *k = strchr(str, ','); 6977 if (k) 6978 *k++ = 0; 6979 if (*str && (str = pcibios_setup(str)) && *str) { 6980 if (!strcmp(str, "nomsi")) { 6981 pci_no_msi(); 6982 } else if (!strncmp(str, "noats", 5)) { 6983 pr_info("PCIe: ATS is disabled\n"); 6984 pcie_ats_disabled = true; 6985 } else if (!strcmp(str, "noaer")) { 6986 pci_no_aer(); 6987 } else if (!strcmp(str, "earlydump")) { 6988 pci_early_dump = true; 6989 } else if (!strncmp(str, "realloc=", 8)) { 6990 pci_realloc_get_opt(str + 8); 6991 } else if (!strncmp(str, "realloc", 7)) { 6992 pci_realloc_get_opt("on"); 6993 } else if (!strcmp(str, "nodomains")) { 6994 pci_no_domains(); 6995 } else if (!strncmp(str, "noari", 5)) { 6996 pcie_ari_disabled = true; 6997 } else if (!strncmp(str, "cbiosize=", 9)) { 6998 pci_cardbus_io_size = memparse(str + 9, &str); 6999 } else if (!strncmp(str, "cbmemsize=", 10)) { 7000 pci_cardbus_mem_size = memparse(str + 10, &str); 7001 } else if (!strncmp(str, "resource_alignment=", 19)) { 7002 resource_alignment_param = str + 19; 7003 } else if (!strncmp(str, "ecrc=", 5)) { 7004 pcie_ecrc_get_policy(str + 5); 7005 } else if (!strncmp(str, "hpiosize=", 9)) { 7006 pci_hotplug_io_size = memparse(str + 9, &str); 7007 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7008 pci_hotplug_mmio_size = memparse(str + 11, &str); 7009 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7010 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7011 } else if (!strncmp(str, "hpmemsize=", 10)) { 7012 pci_hotplug_mmio_size = memparse(str + 10, &str); 7013 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7014 } else if (!strncmp(str, "hpbussize=", 10)) { 7015 pci_hotplug_bus_size = 7016 simple_strtoul(str + 10, &str, 0); 7017 if (pci_hotplug_bus_size > 0xff) 7018 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7019 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7020 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7021 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7022 pcie_bus_config = PCIE_BUS_SAFE; 7023 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7024 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7025 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7026 pcie_bus_config = PCIE_BUS_PEER2PEER; 7027 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7028 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7029 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7030 disable_acs_redir_param = str + 18; 7031 } else { 7032 pr_err("PCI: Unknown option `%s'\n", str); 7033 } 7034 } 7035 str = k; 7036 } 7037 return 0; 7038 } 7039 early_param("pci", pci_setup); 7040 7041 /* 7042 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7043 * in pci_setup(), above, to point to data in the __initdata section which 7044 * will be freed after the init sequence is complete. We can't allocate memory 7045 * in pci_setup() because some architectures do not have any memory allocation 7046 * service available during an early_param() call. So we allocate memory and 7047 * copy the variable here before the init section is freed. 7048 * 7049 */ 7050 static int __init pci_realloc_setup_params(void) 7051 { 7052 resource_alignment_param = kstrdup(resource_alignment_param, 7053 GFP_KERNEL); 7054 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7055 7056 return 0; 7057 } 7058 pure_initcall(pci_realloc_setup_params); 7059