1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3_delay; 68 69 if (delay < pci_pm_d3_delay) 70 delay = pci_pm_d3_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 #ifdef CONFIG_PCI_DOMAINS 77 int pci_domains_supported = 1; 78 #endif 79 80 #define DEFAULT_CARDBUS_IO_SIZE (256) 81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 85 86 #define DEFAULT_HOTPLUG_IO_SIZE (256) 87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 91 92 #define DEFAULT_HOTPLUG_BUS_SIZE 1 93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 94 95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 96 97 /* 98 * The default CLS is used if arch didn't set CLS explicitly and not 99 * all pci devices agree on the same value. Arch can override either 100 * the dfl or actual value as it sees fit. Don't forget this is 101 * measured in 32-bit words, not bytes. 102 */ 103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 104 u8 pci_cache_line_size; 105 106 /* 107 * If we set up a device for bus mastering, we need to check the latency 108 * timer as certain BIOSes forget to set it properly. 109 */ 110 unsigned int pcibios_max_latency = 255; 111 112 /* If set, the PCIe ARI capability will not be used. */ 113 static bool pcie_ari_disabled; 114 115 /* Disable bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_disable; 117 /* Force bridge_d3 for all PCIe ports */ 118 static bool pci_bridge_d3_force; 119 120 static int __init pcie_port_pm_setup(char *str) 121 { 122 if (!strcmp(str, "off")) 123 pci_bridge_d3_disable = true; 124 else if (!strcmp(str, "force")) 125 pci_bridge_d3_force = true; 126 return 1; 127 } 128 __setup("pcie_port_pm=", pcie_port_pm_setup); 129 130 /* Time to wait after a reset for device to become responsive */ 131 #define PCIE_RESET_READY_POLL_MS 60000 132 133 /** 134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 135 * @bus: pointer to PCI bus structure to search 136 * 137 * Given a PCI bus, returns the highest PCI bus number present in the set 138 * including the given PCI bus and its list of child PCI buses. 139 */ 140 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 141 { 142 struct pci_bus *tmp; 143 unsigned char max, n; 144 145 max = bus->busn_res.end; 146 list_for_each_entry(tmp, &bus->children, node) { 147 n = pci_bus_max_busnr(tmp); 148 if (n > max) 149 max = n; 150 } 151 return max; 152 } 153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 154 155 #ifdef CONFIG_HAS_IOMEM 156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 157 { 158 struct resource *res = &pdev->resource[bar]; 159 160 /* 161 * Make sure the BAR is actually a memory resource, not an IO resource 162 */ 163 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 164 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 165 return NULL; 166 } 167 return ioremap_nocache(res->start, resource_size(res)); 168 } 169 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 170 171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 172 { 173 /* 174 * Make sure the BAR is actually a memory resource, not an IO resource 175 */ 176 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 177 WARN_ON(1); 178 return NULL; 179 } 180 return ioremap_wc(pci_resource_start(pdev, bar), 181 pci_resource_len(pdev, bar)); 182 } 183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 184 #endif 185 186 187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 188 u8 pos, int cap, int *ttl) 189 { 190 u8 id; 191 u16 ent; 192 193 pci_bus_read_config_byte(bus, devfn, pos, &pos); 194 195 while ((*ttl)--) { 196 if (pos < 0x40) 197 break; 198 pos &= ~3; 199 pci_bus_read_config_word(bus, devfn, pos, &ent); 200 201 id = ent & 0xff; 202 if (id == 0xff) 203 break; 204 if (id == cap) 205 return pos; 206 pos = (ent >> 8); 207 } 208 return 0; 209 } 210 211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 212 u8 pos, int cap) 213 { 214 int ttl = PCI_FIND_CAP_TTL; 215 216 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 217 } 218 219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 220 { 221 return __pci_find_next_cap(dev->bus, dev->devfn, 222 pos + PCI_CAP_LIST_NEXT, cap); 223 } 224 EXPORT_SYMBOL_GPL(pci_find_next_capability); 225 226 static int __pci_bus_find_cap_start(struct pci_bus *bus, 227 unsigned int devfn, u8 hdr_type) 228 { 229 u16 status; 230 231 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 232 if (!(status & PCI_STATUS_CAP_LIST)) 233 return 0; 234 235 switch (hdr_type) { 236 case PCI_HEADER_TYPE_NORMAL: 237 case PCI_HEADER_TYPE_BRIDGE: 238 return PCI_CAPABILITY_LIST; 239 case PCI_HEADER_TYPE_CARDBUS: 240 return PCI_CB_CAPABILITY_LIST; 241 } 242 243 return 0; 244 } 245 246 /** 247 * pci_find_capability - query for devices' capabilities 248 * @dev: PCI device to query 249 * @cap: capability code 250 * 251 * Tell if a device supports a given PCI capability. 252 * Returns the address of the requested capability structure within the 253 * device's PCI configuration space or 0 in case the device does not 254 * support it. Possible values for @cap: 255 * 256 * %PCI_CAP_ID_PM Power Management 257 * %PCI_CAP_ID_AGP Accelerated Graphics Port 258 * %PCI_CAP_ID_VPD Vital Product Data 259 * %PCI_CAP_ID_SLOTID Slot Identification 260 * %PCI_CAP_ID_MSI Message Signalled Interrupts 261 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 262 * %PCI_CAP_ID_PCIX PCI-X 263 * %PCI_CAP_ID_EXP PCI Express 264 */ 265 int pci_find_capability(struct pci_dev *dev, int cap) 266 { 267 int pos; 268 269 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 270 if (pos) 271 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 272 273 return pos; 274 } 275 EXPORT_SYMBOL(pci_find_capability); 276 277 /** 278 * pci_bus_find_capability - query for devices' capabilities 279 * @bus: the PCI bus to query 280 * @devfn: PCI device to query 281 * @cap: capability code 282 * 283 * Like pci_find_capability() but works for pci devices that do not have a 284 * pci_dev structure set up yet. 285 * 286 * Returns the address of the requested capability structure within the 287 * device's PCI configuration space or 0 in case the device does not 288 * support it. 289 */ 290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 291 { 292 int pos; 293 u8 hdr_type; 294 295 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 296 297 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 298 if (pos) 299 pos = __pci_find_next_cap(bus, devfn, pos, cap); 300 301 return pos; 302 } 303 EXPORT_SYMBOL(pci_bus_find_capability); 304 305 /** 306 * pci_find_next_ext_capability - Find an extended capability 307 * @dev: PCI device to query 308 * @start: address at which to start looking (0 to start at beginning of list) 309 * @cap: capability code 310 * 311 * Returns the address of the next matching extended capability structure 312 * within the device's PCI configuration space or 0 if the device does 313 * not support it. Some capabilities can occur several times, e.g., the 314 * vendor-specific capability, and this provides a way to find them all. 315 */ 316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 317 { 318 u32 header; 319 int ttl; 320 int pos = PCI_CFG_SPACE_SIZE; 321 322 /* minimum 8 bytes per capability */ 323 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 324 325 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 326 return 0; 327 328 if (start) 329 pos = start; 330 331 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 332 return 0; 333 334 /* 335 * If we have no capabilities, this is indicated by cap ID, 336 * cap version and next pointer all being 0. 337 */ 338 if (header == 0) 339 return 0; 340 341 while (ttl-- > 0) { 342 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 343 return pos; 344 345 pos = PCI_EXT_CAP_NEXT(header); 346 if (pos < PCI_CFG_SPACE_SIZE) 347 break; 348 349 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 350 break; 351 } 352 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 356 357 /** 358 * pci_find_ext_capability - Find an extended capability 359 * @dev: PCI device to query 360 * @cap: capability code 361 * 362 * Returns the address of the requested extended capability structure 363 * within the device's PCI configuration space or 0 if the device does 364 * not support it. Possible values for @cap: 365 * 366 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 367 * %PCI_EXT_CAP_ID_VC Virtual Channel 368 * %PCI_EXT_CAP_ID_DSN Device Serial Number 369 * %PCI_EXT_CAP_ID_PWR Power Budgeting 370 */ 371 int pci_find_ext_capability(struct pci_dev *dev, int cap) 372 { 373 return pci_find_next_ext_capability(dev, 0, cap); 374 } 375 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 376 377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 378 { 379 int rc, ttl = PCI_FIND_CAP_TTL; 380 u8 cap, mask; 381 382 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 383 mask = HT_3BIT_CAP_MASK; 384 else 385 mask = HT_5BIT_CAP_MASK; 386 387 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 388 PCI_CAP_ID_HT, &ttl); 389 while (pos) { 390 rc = pci_read_config_byte(dev, pos + 3, &cap); 391 if (rc != PCIBIOS_SUCCESSFUL) 392 return 0; 393 394 if ((cap & mask) == ht_cap) 395 return pos; 396 397 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 398 pos + PCI_CAP_LIST_NEXT, 399 PCI_CAP_ID_HT, &ttl); 400 } 401 402 return 0; 403 } 404 /** 405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 406 * @dev: PCI device to query 407 * @pos: Position from which to continue searching 408 * @ht_cap: Hypertransport capability code 409 * 410 * To be used in conjunction with pci_find_ht_capability() to search for 411 * all capabilities matching @ht_cap. @pos should always be a value returned 412 * from pci_find_ht_capability(). 413 * 414 * NB. To be 100% safe against broken PCI devices, the caller should take 415 * steps to avoid an infinite loop. 416 */ 417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 418 { 419 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 420 } 421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 422 423 /** 424 * pci_find_ht_capability - query a device's Hypertransport capabilities 425 * @dev: PCI device to query 426 * @ht_cap: Hypertransport capability code 427 * 428 * Tell if a device supports a given Hypertransport capability. 429 * Returns an address within the device's PCI configuration space 430 * or 0 in case the device does not support the request capability. 431 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 432 * which has a Hypertransport capability matching @ht_cap. 433 */ 434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 435 { 436 int pos; 437 438 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 439 if (pos) 440 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 441 442 return pos; 443 } 444 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 445 446 /** 447 * pci_find_parent_resource - return resource region of parent bus of given region 448 * @dev: PCI device structure contains resources to be searched 449 * @res: child resource record for which parent is sought 450 * 451 * For given resource region of given device, return the resource 452 * region of parent bus the given region is contained in. 453 */ 454 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 455 struct resource *res) 456 { 457 const struct pci_bus *bus = dev->bus; 458 struct resource *r; 459 int i; 460 461 pci_bus_for_each_resource(bus, r, i) { 462 if (!r) 463 continue; 464 if (resource_contains(r, res)) { 465 466 /* 467 * If the window is prefetchable but the BAR is 468 * not, the allocator made a mistake. 469 */ 470 if (r->flags & IORESOURCE_PREFETCH && 471 !(res->flags & IORESOURCE_PREFETCH)) 472 return NULL; 473 474 /* 475 * If we're below a transparent bridge, there may 476 * be both a positively-decoded aperture and a 477 * subtractively-decoded region that contain the BAR. 478 * We want the positively-decoded one, so this depends 479 * on pci_bus_for_each_resource() giving us those 480 * first. 481 */ 482 return r; 483 } 484 } 485 return NULL; 486 } 487 EXPORT_SYMBOL(pci_find_parent_resource); 488 489 /** 490 * pci_find_resource - Return matching PCI device resource 491 * @dev: PCI device to query 492 * @res: Resource to look for 493 * 494 * Goes over standard PCI resources (BARs) and checks if the given resource 495 * is partially or fully contained in any of them. In that case the 496 * matching resource is returned, %NULL otherwise. 497 */ 498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 499 { 500 int i; 501 502 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 503 struct resource *r = &dev->resource[i]; 504 505 if (r->start && resource_contains(r, res)) 506 return r; 507 } 508 509 return NULL; 510 } 511 EXPORT_SYMBOL(pci_find_resource); 512 513 /** 514 * pci_find_pcie_root_port - return PCIe Root Port 515 * @dev: PCI device to query 516 * 517 * Traverse up the parent chain and return the PCIe Root Port PCI Device 518 * for a given PCI Device. 519 */ 520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 521 { 522 struct pci_dev *bridge, *highest_pcie_bridge = dev; 523 524 bridge = pci_upstream_bridge(dev); 525 while (bridge && pci_is_pcie(bridge)) { 526 highest_pcie_bridge = bridge; 527 bridge = pci_upstream_bridge(bridge); 528 } 529 530 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 531 return NULL; 532 533 return highest_pcie_bridge; 534 } 535 EXPORT_SYMBOL(pci_find_pcie_root_port); 536 537 /** 538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 539 * @dev: the PCI device to operate on 540 * @pos: config space offset of status word 541 * @mask: mask of bit(s) to care about in status word 542 * 543 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 544 */ 545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 546 { 547 int i; 548 549 /* Wait for Transaction Pending bit clean */ 550 for (i = 0; i < 4; i++) { 551 u16 status; 552 if (i) 553 msleep((1 << (i - 1)) * 100); 554 555 pci_read_config_word(dev, pos, &status); 556 if (!(status & mask)) 557 return 1; 558 } 559 560 return 0; 561 } 562 563 /** 564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 565 * @dev: PCI device to have its BARs restored 566 * 567 * Restore the BAR values for a given device, so as to make it 568 * accessible by its driver. 569 */ 570 static void pci_restore_bars(struct pci_dev *dev) 571 { 572 int i; 573 574 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 575 pci_update_resource(dev, i); 576 } 577 578 static const struct pci_platform_pm_ops *pci_platform_pm; 579 580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 581 { 582 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 583 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 584 return -EINVAL; 585 pci_platform_pm = ops; 586 return 0; 587 } 588 589 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 590 { 591 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 592 } 593 594 static inline int platform_pci_set_power_state(struct pci_dev *dev, 595 pci_power_t t) 596 { 597 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 598 } 599 600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 603 } 604 605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 606 { 607 return pci_platform_pm ? 608 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 609 } 610 611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 612 { 613 return pci_platform_pm ? 614 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 615 } 616 617 static inline bool platform_pci_need_resume(struct pci_dev *dev) 618 { 619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 620 } 621 622 /** 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 624 * given PCI device 625 * @dev: PCI device to handle. 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 627 * 628 * RETURN VALUE: 629 * -EINVAL if the requested state is invalid. 630 * -EIO if device does not support PCI PM or its PM capabilities register has a 631 * wrong version, or device doesn't support the requested state. 632 * 0 if device already is in the requested state. 633 * 0 if device's power state has been successfully changed. 634 */ 635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 636 { 637 u16 pmcsr; 638 bool need_restore = false; 639 640 /* Check if we're already there */ 641 if (dev->current_state == state) 642 return 0; 643 644 if (!dev->pm_cap) 645 return -EIO; 646 647 if (state < PCI_D0 || state > PCI_D3hot) 648 return -EINVAL; 649 650 /* Validate current state: 651 * Can enter D0 from any state, but if we can only go deeper 652 * to sleep if we're already in a low power state 653 */ 654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 655 && dev->current_state > state) { 656 pci_err(dev, "invalid power transition (from state %d to %d)\n", 657 dev->current_state, state); 658 return -EINVAL; 659 } 660 661 /* check if this device supports the desired state */ 662 if ((state == PCI_D1 && !dev->d1_support) 663 || (state == PCI_D2 && !dev->d2_support)) 664 return -EIO; 665 666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 667 668 /* If we're (effectively) in D3, force entire word to 0. 669 * This doesn't affect PME_Status, disables PME_En, and 670 * sets PowerState to 0. 671 */ 672 switch (dev->current_state) { 673 case PCI_D0: 674 case PCI_D1: 675 case PCI_D2: 676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 677 pmcsr |= state; 678 break; 679 case PCI_D3hot: 680 case PCI_D3cold: 681 case PCI_UNKNOWN: /* Boot-up */ 682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 684 need_restore = true; 685 /* Fall-through: force to D0 */ 686 default: 687 pmcsr = 0; 688 break; 689 } 690 691 /* enter specified state */ 692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 693 694 /* Mandatory power management transition delays */ 695 /* see PCI PM 1.1 5.6.1 table 18 */ 696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 697 pci_dev_d3_sleep(dev); 698 else if (state == PCI_D2 || dev->current_state == PCI_D2) 699 udelay(PCI_PM_D2_DELAY); 700 701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 703 if (dev->current_state != state && printk_ratelimit()) 704 pci_info(dev, "Refused to change power state, currently in D%d\n", 705 dev->current_state); 706 707 /* 708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 710 * from D3hot to D0 _may_ perform an internal reset, thereby 711 * going to "D0 Uninitialized" rather than "D0 Initialized". 712 * For example, at least some versions of the 3c905B and the 713 * 3c556B exhibit this behaviour. 714 * 715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 716 * devices in a D3hot state at boot. Consequently, we need to 717 * restore at least the BARs so that the device will be 718 * accessible to its driver. 719 */ 720 if (need_restore) 721 pci_restore_bars(dev); 722 723 if (dev->bus->self) 724 pcie_aspm_pm_state_change(dev->bus->self); 725 726 return 0; 727 } 728 729 /** 730 * pci_update_current_state - Read power state of given device and cache it 731 * @dev: PCI device to handle. 732 * @state: State to cache in case the device doesn't have the PM capability 733 * 734 * The power state is read from the PMCSR register, which however is 735 * inaccessible in D3cold. The platform firmware is therefore queried first 736 * to detect accessibility of the register. In case the platform firmware 737 * reports an incorrect state or the device isn't power manageable by the 738 * platform at all, we try to detect D3cold by testing accessibility of the 739 * vendor ID in config space. 740 */ 741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 742 { 743 if (platform_pci_get_power_state(dev) == PCI_D3cold || 744 !pci_device_is_present(dev)) { 745 dev->current_state = PCI_D3cold; 746 } else if (dev->pm_cap) { 747 u16 pmcsr; 748 749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 751 } else { 752 dev->current_state = state; 753 } 754 } 755 756 /** 757 * pci_power_up - Put the given device into D0 forcibly 758 * @dev: PCI device to power up 759 */ 760 void pci_power_up(struct pci_dev *dev) 761 { 762 if (platform_pci_power_manageable(dev)) 763 platform_pci_set_power_state(dev, PCI_D0); 764 765 pci_raw_set_power_state(dev, PCI_D0); 766 pci_update_current_state(dev, PCI_D0); 767 } 768 769 /** 770 * pci_platform_power_transition - Use platform to change device power state 771 * @dev: PCI device to handle. 772 * @state: State to put the device into. 773 */ 774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 775 { 776 int error; 777 778 if (platform_pci_power_manageable(dev)) { 779 error = platform_pci_set_power_state(dev, state); 780 if (!error) 781 pci_update_current_state(dev, state); 782 } else 783 error = -ENODEV; 784 785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 786 dev->current_state = PCI_D0; 787 788 return error; 789 } 790 791 /** 792 * pci_wakeup - Wake up a PCI device 793 * @pci_dev: Device to handle. 794 * @ign: ignored parameter 795 */ 796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 797 { 798 pci_wakeup_event(pci_dev); 799 pm_request_resume(&pci_dev->dev); 800 return 0; 801 } 802 803 /** 804 * pci_wakeup_bus - Walk given bus and wake up devices on it 805 * @bus: Top bus of the subtree to walk. 806 */ 807 void pci_wakeup_bus(struct pci_bus *bus) 808 { 809 if (bus) 810 pci_walk_bus(bus, pci_wakeup, NULL); 811 } 812 813 /** 814 * __pci_start_power_transition - Start power transition of a PCI device 815 * @dev: PCI device to handle. 816 * @state: State to put the device into. 817 */ 818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 819 { 820 if (state == PCI_D0) { 821 pci_platform_power_transition(dev, PCI_D0); 822 /* 823 * Mandatory power management transition delays, see 824 * PCI Express Base Specification Revision 2.0 Section 825 * 6.6.1: Conventional Reset. Do not delay for 826 * devices powered on/off by corresponding bridge, 827 * because have already delayed for the bridge. 828 */ 829 if (dev->runtime_d3cold) { 830 if (dev->d3cold_delay) 831 msleep(dev->d3cold_delay); 832 /* 833 * When powering on a bridge from D3cold, the 834 * whole hierarchy may be powered on into 835 * D0uninitialized state, resume them to give 836 * them a chance to suspend again 837 */ 838 pci_wakeup_bus(dev->subordinate); 839 } 840 } 841 } 842 843 /** 844 * __pci_dev_set_current_state - Set current state of a PCI device 845 * @dev: Device to handle 846 * @data: pointer to state to be set 847 */ 848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 849 { 850 pci_power_t state = *(pci_power_t *)data; 851 852 dev->current_state = state; 853 return 0; 854 } 855 856 /** 857 * pci_bus_set_current_state - Walk given bus and set current state of devices 858 * @bus: Top bus of the subtree to walk. 859 * @state: state to be set 860 */ 861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 862 { 863 if (bus) 864 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 865 } 866 867 /** 868 * __pci_complete_power_transition - Complete power transition of a PCI device 869 * @dev: PCI device to handle. 870 * @state: State to put the device into. 871 * 872 * This function should not be called directly by device drivers. 873 */ 874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 875 { 876 int ret; 877 878 if (state <= PCI_D0) 879 return -EINVAL; 880 ret = pci_platform_power_transition(dev, state); 881 /* Power off the bridge may power off the whole hierarchy */ 882 if (!ret && state == PCI_D3cold) 883 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 884 return ret; 885 } 886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 887 888 /** 889 * pci_set_power_state - Set the power state of a PCI device 890 * @dev: PCI device to handle. 891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 892 * 893 * Transition a device to a new power state, using the platform firmware and/or 894 * the device's PCI PM registers. 895 * 896 * RETURN VALUE: 897 * -EINVAL if the requested state is invalid. 898 * -EIO if device does not support PCI PM or its PM capabilities register has a 899 * wrong version, or device doesn't support the requested state. 900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 901 * 0 if device already is in the requested state. 902 * 0 if the transition is to D3 but D3 is not supported. 903 * 0 if device's power state has been successfully changed. 904 */ 905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 906 { 907 int error; 908 909 /* bound the state we're entering */ 910 if (state > PCI_D3cold) 911 state = PCI_D3cold; 912 else if (state < PCI_D0) 913 state = PCI_D0; 914 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 915 /* 916 * If the device or the parent bridge do not support PCI PM, 917 * ignore the request if we're doing anything other than putting 918 * it into D0 (which would only happen on boot). 919 */ 920 return 0; 921 922 /* Check if we're already there */ 923 if (dev->current_state == state) 924 return 0; 925 926 __pci_start_power_transition(dev, state); 927 928 /* This device is quirked not to be put into D3, so 929 don't put it in D3 */ 930 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 931 return 0; 932 933 /* 934 * To put device in D3cold, we put device into D3hot in native 935 * way, then put device into D3cold with platform ops 936 */ 937 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 938 PCI_D3hot : state); 939 940 if (!__pci_complete_power_transition(dev, state)) 941 error = 0; 942 943 return error; 944 } 945 EXPORT_SYMBOL(pci_set_power_state); 946 947 /** 948 * pci_choose_state - Choose the power state of a PCI device 949 * @dev: PCI device to be suspended 950 * @state: target sleep state for the whole system. This is the value 951 * that is passed to suspend() function. 952 * 953 * Returns PCI power state suitable for given device and given system 954 * message. 955 */ 956 957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 958 { 959 pci_power_t ret; 960 961 if (!dev->pm_cap) 962 return PCI_D0; 963 964 ret = platform_pci_choose_state(dev); 965 if (ret != PCI_POWER_ERROR) 966 return ret; 967 968 switch (state.event) { 969 case PM_EVENT_ON: 970 return PCI_D0; 971 case PM_EVENT_FREEZE: 972 case PM_EVENT_PRETHAW: 973 /* REVISIT both freeze and pre-thaw "should" use D0 */ 974 case PM_EVENT_SUSPEND: 975 case PM_EVENT_HIBERNATE: 976 return PCI_D3hot; 977 default: 978 pci_info(dev, "unrecognized suspend event %d\n", 979 state.event); 980 BUG(); 981 } 982 return PCI_D0; 983 } 984 EXPORT_SYMBOL(pci_choose_state); 985 986 #define PCI_EXP_SAVE_REGS 7 987 988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 989 u16 cap, bool extended) 990 { 991 struct pci_cap_saved_state *tmp; 992 993 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 994 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 995 return tmp; 996 } 997 return NULL; 998 } 999 1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1001 { 1002 return _pci_find_saved_cap(dev, cap, false); 1003 } 1004 1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1006 { 1007 return _pci_find_saved_cap(dev, cap, true); 1008 } 1009 1010 static int pci_save_pcie_state(struct pci_dev *dev) 1011 { 1012 int i = 0; 1013 struct pci_cap_saved_state *save_state; 1014 u16 *cap; 1015 1016 if (!pci_is_pcie(dev)) 1017 return 0; 1018 1019 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1020 if (!save_state) { 1021 pci_err(dev, "buffer not found in %s\n", __func__); 1022 return -ENOMEM; 1023 } 1024 1025 cap = (u16 *)&save_state->cap.data[0]; 1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1029 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1031 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1032 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1033 1034 return 0; 1035 } 1036 1037 static void pci_restore_pcie_state(struct pci_dev *dev) 1038 { 1039 int i = 0; 1040 struct pci_cap_saved_state *save_state; 1041 u16 *cap; 1042 1043 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1044 if (!save_state) 1045 return; 1046 1047 cap = (u16 *)&save_state->cap.data[0]; 1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1051 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1052 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1053 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1054 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1055 } 1056 1057 1058 static int pci_save_pcix_state(struct pci_dev *dev) 1059 { 1060 int pos; 1061 struct pci_cap_saved_state *save_state; 1062 1063 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1064 if (!pos) 1065 return 0; 1066 1067 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1068 if (!save_state) { 1069 pci_err(dev, "buffer not found in %s\n", __func__); 1070 return -ENOMEM; 1071 } 1072 1073 pci_read_config_word(dev, pos + PCI_X_CMD, 1074 (u16 *)save_state->cap.data); 1075 1076 return 0; 1077 } 1078 1079 static void pci_restore_pcix_state(struct pci_dev *dev) 1080 { 1081 int i = 0, pos; 1082 struct pci_cap_saved_state *save_state; 1083 u16 *cap; 1084 1085 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1086 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1087 if (!save_state || !pos) 1088 return; 1089 cap = (u16 *)&save_state->cap.data[0]; 1090 1091 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1092 } 1093 1094 1095 /** 1096 * pci_save_state - save the PCI configuration space of a device before suspending 1097 * @dev: - PCI device that we're dealing with 1098 */ 1099 int pci_save_state(struct pci_dev *dev) 1100 { 1101 int i; 1102 /* XXX: 100% dword access ok here? */ 1103 for (i = 0; i < 16; i++) 1104 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1105 dev->state_saved = true; 1106 1107 i = pci_save_pcie_state(dev); 1108 if (i != 0) 1109 return i; 1110 1111 i = pci_save_pcix_state(dev); 1112 if (i != 0) 1113 return i; 1114 1115 return pci_save_vc_state(dev); 1116 } 1117 EXPORT_SYMBOL(pci_save_state); 1118 1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1120 u32 saved_val, int retry) 1121 { 1122 u32 val; 1123 1124 pci_read_config_dword(pdev, offset, &val); 1125 if (val == saved_val) 1126 return; 1127 1128 for (;;) { 1129 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1130 offset, val, saved_val); 1131 pci_write_config_dword(pdev, offset, saved_val); 1132 if (retry-- <= 0) 1133 return; 1134 1135 pci_read_config_dword(pdev, offset, &val); 1136 if (val == saved_val) 1137 return; 1138 1139 mdelay(1); 1140 } 1141 } 1142 1143 static void pci_restore_config_space_range(struct pci_dev *pdev, 1144 int start, int end, int retry) 1145 { 1146 int index; 1147 1148 for (index = end; index >= start; index--) 1149 pci_restore_config_dword(pdev, 4 * index, 1150 pdev->saved_config_space[index], 1151 retry); 1152 } 1153 1154 static void pci_restore_config_space(struct pci_dev *pdev) 1155 { 1156 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1157 pci_restore_config_space_range(pdev, 10, 15, 0); 1158 /* Restore BARs before the command register. */ 1159 pci_restore_config_space_range(pdev, 4, 9, 10); 1160 pci_restore_config_space_range(pdev, 0, 3, 0); 1161 } else { 1162 pci_restore_config_space_range(pdev, 0, 15, 0); 1163 } 1164 } 1165 1166 /** 1167 * pci_restore_state - Restore the saved state of a PCI device 1168 * @dev: - PCI device that we're dealing with 1169 */ 1170 void pci_restore_state(struct pci_dev *dev) 1171 { 1172 if (!dev->state_saved) 1173 return; 1174 1175 /* PCI Express register must be restored first */ 1176 pci_restore_pcie_state(dev); 1177 pci_restore_pasid_state(dev); 1178 pci_restore_pri_state(dev); 1179 pci_restore_ats_state(dev); 1180 pci_restore_vc_state(dev); 1181 1182 pci_cleanup_aer_error_status_regs(dev); 1183 1184 pci_restore_config_space(dev); 1185 1186 pci_restore_pcix_state(dev); 1187 pci_restore_msi_state(dev); 1188 1189 /* Restore ACS and IOV configuration state */ 1190 pci_enable_acs(dev); 1191 pci_restore_iov_state(dev); 1192 1193 dev->state_saved = false; 1194 } 1195 EXPORT_SYMBOL(pci_restore_state); 1196 1197 struct pci_saved_state { 1198 u32 config_space[16]; 1199 struct pci_cap_saved_data cap[0]; 1200 }; 1201 1202 /** 1203 * pci_store_saved_state - Allocate and return an opaque struct containing 1204 * the device saved state. 1205 * @dev: PCI device that we're dealing with 1206 * 1207 * Return NULL if no state or error. 1208 */ 1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1210 { 1211 struct pci_saved_state *state; 1212 struct pci_cap_saved_state *tmp; 1213 struct pci_cap_saved_data *cap; 1214 size_t size; 1215 1216 if (!dev->state_saved) 1217 return NULL; 1218 1219 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1220 1221 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1222 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1223 1224 state = kzalloc(size, GFP_KERNEL); 1225 if (!state) 1226 return NULL; 1227 1228 memcpy(state->config_space, dev->saved_config_space, 1229 sizeof(state->config_space)); 1230 1231 cap = state->cap; 1232 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1233 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1234 memcpy(cap, &tmp->cap, len); 1235 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1236 } 1237 /* Empty cap_save terminates list */ 1238 1239 return state; 1240 } 1241 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1242 1243 /** 1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1245 * @dev: PCI device that we're dealing with 1246 * @state: Saved state returned from pci_store_saved_state() 1247 */ 1248 int pci_load_saved_state(struct pci_dev *dev, 1249 struct pci_saved_state *state) 1250 { 1251 struct pci_cap_saved_data *cap; 1252 1253 dev->state_saved = false; 1254 1255 if (!state) 1256 return 0; 1257 1258 memcpy(dev->saved_config_space, state->config_space, 1259 sizeof(state->config_space)); 1260 1261 cap = state->cap; 1262 while (cap->size) { 1263 struct pci_cap_saved_state *tmp; 1264 1265 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1266 if (!tmp || tmp->cap.size != cap->size) 1267 return -EINVAL; 1268 1269 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1270 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1271 sizeof(struct pci_cap_saved_data) + cap->size); 1272 } 1273 1274 dev->state_saved = true; 1275 return 0; 1276 } 1277 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1278 1279 /** 1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1281 * and free the memory allocated for it. 1282 * @dev: PCI device that we're dealing with 1283 * @state: Pointer to saved state returned from pci_store_saved_state() 1284 */ 1285 int pci_load_and_free_saved_state(struct pci_dev *dev, 1286 struct pci_saved_state **state) 1287 { 1288 int ret = pci_load_saved_state(dev, *state); 1289 kfree(*state); 1290 *state = NULL; 1291 return ret; 1292 } 1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1294 1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 return pci_enable_resources(dev, bars); 1298 } 1299 1300 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1301 { 1302 int err; 1303 struct pci_dev *bridge; 1304 u16 cmd; 1305 u8 pin; 1306 1307 err = pci_set_power_state(dev, PCI_D0); 1308 if (err < 0 && err != -EIO) 1309 return err; 1310 1311 bridge = pci_upstream_bridge(dev); 1312 if (bridge) 1313 pcie_aspm_powersave_config_link(bridge); 1314 1315 err = pcibios_enable_device(dev, bars); 1316 if (err < 0) 1317 return err; 1318 pci_fixup_device(pci_fixup_enable, dev); 1319 1320 if (dev->msi_enabled || dev->msix_enabled) 1321 return 0; 1322 1323 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1324 if (pin) { 1325 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1326 if (cmd & PCI_COMMAND_INTX_DISABLE) 1327 pci_write_config_word(dev, PCI_COMMAND, 1328 cmd & ~PCI_COMMAND_INTX_DISABLE); 1329 } 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * pci_reenable_device - Resume abandoned device 1336 * @dev: PCI device to be resumed 1337 * 1338 * Note this function is a backend of pci_default_resume and is not supposed 1339 * to be called by normal code, write proper resume handler and use it instead. 1340 */ 1341 int pci_reenable_device(struct pci_dev *dev) 1342 { 1343 if (pci_is_enabled(dev)) 1344 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1345 return 0; 1346 } 1347 EXPORT_SYMBOL(pci_reenable_device); 1348 1349 static void pci_enable_bridge(struct pci_dev *dev) 1350 { 1351 struct pci_dev *bridge; 1352 int retval; 1353 1354 bridge = pci_upstream_bridge(dev); 1355 if (bridge) 1356 pci_enable_bridge(bridge); 1357 1358 if (pci_is_enabled(dev)) { 1359 if (!dev->is_busmaster) 1360 pci_set_master(dev); 1361 return; 1362 } 1363 1364 retval = pci_enable_device(dev); 1365 if (retval) 1366 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1367 retval); 1368 pci_set_master(dev); 1369 } 1370 1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1372 { 1373 struct pci_dev *bridge; 1374 int err; 1375 int i, bars = 0; 1376 1377 /* 1378 * Power state could be unknown at this point, either due to a fresh 1379 * boot or a device removal call. So get the current power state 1380 * so that things like MSI message writing will behave as expected 1381 * (e.g. if the device really is in D0 at enable time). 1382 */ 1383 if (dev->pm_cap) { 1384 u16 pmcsr; 1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1386 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1387 } 1388 1389 if (atomic_inc_return(&dev->enable_cnt) > 1) 1390 return 0; /* already enabled */ 1391 1392 bridge = pci_upstream_bridge(dev); 1393 if (bridge) 1394 pci_enable_bridge(bridge); 1395 1396 /* only skip sriov related */ 1397 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1398 if (dev->resource[i].flags & flags) 1399 bars |= (1 << i); 1400 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1401 if (dev->resource[i].flags & flags) 1402 bars |= (1 << i); 1403 1404 err = do_pci_enable_device(dev, bars); 1405 if (err < 0) 1406 atomic_dec(&dev->enable_cnt); 1407 return err; 1408 } 1409 1410 /** 1411 * pci_enable_device_io - Initialize a device for use with IO space 1412 * @dev: PCI device to be initialized 1413 * 1414 * Initialize device before it's used by a driver. Ask low-level code 1415 * to enable I/O resources. Wake up the device if it was suspended. 1416 * Beware, this function can fail. 1417 */ 1418 int pci_enable_device_io(struct pci_dev *dev) 1419 { 1420 return pci_enable_device_flags(dev, IORESOURCE_IO); 1421 } 1422 EXPORT_SYMBOL(pci_enable_device_io); 1423 1424 /** 1425 * pci_enable_device_mem - Initialize a device for use with Memory space 1426 * @dev: PCI device to be initialized 1427 * 1428 * Initialize device before it's used by a driver. Ask low-level code 1429 * to enable Memory resources. Wake up the device if it was suspended. 1430 * Beware, this function can fail. 1431 */ 1432 int pci_enable_device_mem(struct pci_dev *dev) 1433 { 1434 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1435 } 1436 EXPORT_SYMBOL(pci_enable_device_mem); 1437 1438 /** 1439 * pci_enable_device - Initialize device before it's used by a driver. 1440 * @dev: PCI device to be initialized 1441 * 1442 * Initialize device before it's used by a driver. Ask low-level code 1443 * to enable I/O and memory. Wake up the device if it was suspended. 1444 * Beware, this function can fail. 1445 * 1446 * Note we don't actually enable the device many times if we call 1447 * this function repeatedly (we just increment the count). 1448 */ 1449 int pci_enable_device(struct pci_dev *dev) 1450 { 1451 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1452 } 1453 EXPORT_SYMBOL(pci_enable_device); 1454 1455 /* 1456 * Managed PCI resources. This manages device on/off, intx/msi/msix 1457 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1458 * there's no need to track it separately. pci_devres is initialized 1459 * when a device is enabled using managed PCI device enable interface. 1460 */ 1461 struct pci_devres { 1462 unsigned int enabled:1; 1463 unsigned int pinned:1; 1464 unsigned int orig_intx:1; 1465 unsigned int restore_intx:1; 1466 unsigned int mwi:1; 1467 u32 region_mask; 1468 }; 1469 1470 static void pcim_release(struct device *gendev, void *res) 1471 { 1472 struct pci_dev *dev = to_pci_dev(gendev); 1473 struct pci_devres *this = res; 1474 int i; 1475 1476 if (dev->msi_enabled) 1477 pci_disable_msi(dev); 1478 if (dev->msix_enabled) 1479 pci_disable_msix(dev); 1480 1481 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1482 if (this->region_mask & (1 << i)) 1483 pci_release_region(dev, i); 1484 1485 if (this->mwi) 1486 pci_clear_mwi(dev); 1487 1488 if (this->restore_intx) 1489 pci_intx(dev, this->orig_intx); 1490 1491 if (this->enabled && !this->pinned) 1492 pci_disable_device(dev); 1493 } 1494 1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1496 { 1497 struct pci_devres *dr, *new_dr; 1498 1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1500 if (dr) 1501 return dr; 1502 1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1504 if (!new_dr) 1505 return NULL; 1506 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1507 } 1508 1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1510 { 1511 if (pci_is_managed(pdev)) 1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1513 return NULL; 1514 } 1515 1516 /** 1517 * pcim_enable_device - Managed pci_enable_device() 1518 * @pdev: PCI device to be initialized 1519 * 1520 * Managed pci_enable_device(). 1521 */ 1522 int pcim_enable_device(struct pci_dev *pdev) 1523 { 1524 struct pci_devres *dr; 1525 int rc; 1526 1527 dr = get_pci_dr(pdev); 1528 if (unlikely(!dr)) 1529 return -ENOMEM; 1530 if (dr->enabled) 1531 return 0; 1532 1533 rc = pci_enable_device(pdev); 1534 if (!rc) { 1535 pdev->is_managed = 1; 1536 dr->enabled = 1; 1537 } 1538 return rc; 1539 } 1540 EXPORT_SYMBOL(pcim_enable_device); 1541 1542 /** 1543 * pcim_pin_device - Pin managed PCI device 1544 * @pdev: PCI device to pin 1545 * 1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1547 * driver detach. @pdev must have been enabled with 1548 * pcim_enable_device(). 1549 */ 1550 void pcim_pin_device(struct pci_dev *pdev) 1551 { 1552 struct pci_devres *dr; 1553 1554 dr = find_pci_dr(pdev); 1555 WARN_ON(!dr || !dr->enabled); 1556 if (dr) 1557 dr->pinned = 1; 1558 } 1559 EXPORT_SYMBOL(pcim_pin_device); 1560 1561 /* 1562 * pcibios_add_device - provide arch specific hooks when adding device dev 1563 * @dev: the PCI device being added 1564 * 1565 * Permits the platform to provide architecture specific functionality when 1566 * devices are added. This is the default implementation. Architecture 1567 * implementations can override this. 1568 */ 1569 int __weak pcibios_add_device(struct pci_dev *dev) 1570 { 1571 return 0; 1572 } 1573 1574 /** 1575 * pcibios_release_device - provide arch specific hooks when releasing device dev 1576 * @dev: the PCI device being released 1577 * 1578 * Permits the platform to provide architecture specific functionality when 1579 * devices are released. This is the default implementation. Architecture 1580 * implementations can override this. 1581 */ 1582 void __weak pcibios_release_device(struct pci_dev *dev) {} 1583 1584 /** 1585 * pcibios_disable_device - disable arch specific PCI resources for device dev 1586 * @dev: the PCI device to disable 1587 * 1588 * Disables architecture specific PCI resources for the device. This 1589 * is the default implementation. Architecture implementations can 1590 * override this. 1591 */ 1592 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1593 1594 /** 1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1596 * @irq: ISA IRQ to penalize 1597 * @active: IRQ active or not 1598 * 1599 * Permits the platform to provide architecture-specific functionality when 1600 * penalizing ISA IRQs. This is the default implementation. Architecture 1601 * implementations can override this. 1602 */ 1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1604 1605 static void do_pci_disable_device(struct pci_dev *dev) 1606 { 1607 u16 pci_command; 1608 1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1610 if (pci_command & PCI_COMMAND_MASTER) { 1611 pci_command &= ~PCI_COMMAND_MASTER; 1612 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1613 } 1614 1615 pcibios_disable_device(dev); 1616 } 1617 1618 /** 1619 * pci_disable_enabled_device - Disable device without updating enable_cnt 1620 * @dev: PCI device to disable 1621 * 1622 * NOTE: This function is a backend of PCI power management routines and is 1623 * not supposed to be called drivers. 1624 */ 1625 void pci_disable_enabled_device(struct pci_dev *dev) 1626 { 1627 if (pci_is_enabled(dev)) 1628 do_pci_disable_device(dev); 1629 } 1630 1631 /** 1632 * pci_disable_device - Disable PCI device after use 1633 * @dev: PCI device to be disabled 1634 * 1635 * Signal to the system that the PCI device is not in use by the system 1636 * anymore. This only involves disabling PCI bus-mastering, if active. 1637 * 1638 * Note we don't actually disable the device until all callers of 1639 * pci_enable_device() have called pci_disable_device(). 1640 */ 1641 void pci_disable_device(struct pci_dev *dev) 1642 { 1643 struct pci_devres *dr; 1644 1645 dr = find_pci_dr(dev); 1646 if (dr) 1647 dr->enabled = 0; 1648 1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1650 "disabling already-disabled device"); 1651 1652 if (atomic_dec_return(&dev->enable_cnt) != 0) 1653 return; 1654 1655 do_pci_disable_device(dev); 1656 1657 dev->is_busmaster = 0; 1658 } 1659 EXPORT_SYMBOL(pci_disable_device); 1660 1661 /** 1662 * pcibios_set_pcie_reset_state - set reset state for device dev 1663 * @dev: the PCIe device reset 1664 * @state: Reset state to enter into 1665 * 1666 * 1667 * Sets the PCIe reset state for the device. This is the default 1668 * implementation. Architecture implementations can override this. 1669 */ 1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1671 enum pcie_reset_state state) 1672 { 1673 return -EINVAL; 1674 } 1675 1676 /** 1677 * pci_set_pcie_reset_state - set reset state for device dev 1678 * @dev: the PCIe device reset 1679 * @state: Reset state to enter into 1680 * 1681 * 1682 * Sets the PCI reset state for the device. 1683 */ 1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1685 { 1686 return pcibios_set_pcie_reset_state(dev, state); 1687 } 1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1689 1690 /** 1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1692 * @dev: PCIe root port or event collector. 1693 */ 1694 void pcie_clear_root_pme_status(struct pci_dev *dev) 1695 { 1696 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1697 } 1698 1699 /** 1700 * pci_check_pme_status - Check if given device has generated PME. 1701 * @dev: Device to check. 1702 * 1703 * Check the PME status of the device and if set, clear it and clear PME enable 1704 * (if set). Return 'true' if PME status and PME enable were both set or 1705 * 'false' otherwise. 1706 */ 1707 bool pci_check_pme_status(struct pci_dev *dev) 1708 { 1709 int pmcsr_pos; 1710 u16 pmcsr; 1711 bool ret = false; 1712 1713 if (!dev->pm_cap) 1714 return false; 1715 1716 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1717 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1718 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1719 return false; 1720 1721 /* Clear PME status. */ 1722 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1723 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1724 /* Disable PME to avoid interrupt flood. */ 1725 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1726 ret = true; 1727 } 1728 1729 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1730 1731 return ret; 1732 } 1733 1734 /** 1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1736 * @dev: Device to handle. 1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1738 * 1739 * Check if @dev has generated PME and queue a resume request for it in that 1740 * case. 1741 */ 1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1743 { 1744 if (pme_poll_reset && dev->pme_poll) 1745 dev->pme_poll = false; 1746 1747 if (pci_check_pme_status(dev)) { 1748 pci_wakeup_event(dev); 1749 pm_request_resume(&dev->dev); 1750 } 1751 return 0; 1752 } 1753 1754 /** 1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1756 * @bus: Top bus of the subtree to walk. 1757 */ 1758 void pci_pme_wakeup_bus(struct pci_bus *bus) 1759 { 1760 if (bus) 1761 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1762 } 1763 1764 1765 /** 1766 * pci_pme_capable - check the capability of PCI device to generate PME# 1767 * @dev: PCI device to handle. 1768 * @state: PCI state from which device will issue PME#. 1769 */ 1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1771 { 1772 if (!dev->pm_cap) 1773 return false; 1774 1775 return !!(dev->pme_support & (1 << state)); 1776 } 1777 EXPORT_SYMBOL(pci_pme_capable); 1778 1779 static void pci_pme_list_scan(struct work_struct *work) 1780 { 1781 struct pci_pme_device *pme_dev, *n; 1782 1783 mutex_lock(&pci_pme_list_mutex); 1784 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1785 if (pme_dev->dev->pme_poll) { 1786 struct pci_dev *bridge; 1787 1788 bridge = pme_dev->dev->bus->self; 1789 /* 1790 * If bridge is in low power state, the 1791 * configuration space of subordinate devices 1792 * may be not accessible 1793 */ 1794 if (bridge && bridge->current_state != PCI_D0) 1795 continue; 1796 pci_pme_wakeup(pme_dev->dev, NULL); 1797 } else { 1798 list_del(&pme_dev->list); 1799 kfree(pme_dev); 1800 } 1801 } 1802 if (!list_empty(&pci_pme_list)) 1803 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1804 msecs_to_jiffies(PME_TIMEOUT)); 1805 mutex_unlock(&pci_pme_list_mutex); 1806 } 1807 1808 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1809 { 1810 u16 pmcsr; 1811 1812 if (!dev->pme_support) 1813 return; 1814 1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1816 /* Clear PME_Status by writing 1 to it and enable PME# */ 1817 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1818 if (!enable) 1819 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1820 1821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1822 } 1823 1824 /** 1825 * pci_pme_restore - Restore PME configuration after config space restore. 1826 * @dev: PCI device to update. 1827 */ 1828 void pci_pme_restore(struct pci_dev *dev) 1829 { 1830 u16 pmcsr; 1831 1832 if (!dev->pme_support) 1833 return; 1834 1835 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1836 if (dev->wakeup_prepared) { 1837 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1838 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1839 } else { 1840 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1841 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1842 } 1843 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1844 } 1845 1846 /** 1847 * pci_pme_active - enable or disable PCI device's PME# function 1848 * @dev: PCI device to handle. 1849 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1850 * 1851 * The caller must verify that the device is capable of generating PME# before 1852 * calling this function with @enable equal to 'true'. 1853 */ 1854 void pci_pme_active(struct pci_dev *dev, bool enable) 1855 { 1856 __pci_pme_active(dev, enable); 1857 1858 /* 1859 * PCI (as opposed to PCIe) PME requires that the device have 1860 * its PME# line hooked up correctly. Not all hardware vendors 1861 * do this, so the PME never gets delivered and the device 1862 * remains asleep. The easiest way around this is to 1863 * periodically walk the list of suspended devices and check 1864 * whether any have their PME flag set. The assumption is that 1865 * we'll wake up often enough anyway that this won't be a huge 1866 * hit, and the power savings from the devices will still be a 1867 * win. 1868 * 1869 * Although PCIe uses in-band PME message instead of PME# line 1870 * to report PME, PME does not work for some PCIe devices in 1871 * reality. For example, there are devices that set their PME 1872 * status bits, but don't really bother to send a PME message; 1873 * there are PCI Express Root Ports that don't bother to 1874 * trigger interrupts when they receive PME messages from the 1875 * devices below. So PME poll is used for PCIe devices too. 1876 */ 1877 1878 if (dev->pme_poll) { 1879 struct pci_pme_device *pme_dev; 1880 if (enable) { 1881 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1882 GFP_KERNEL); 1883 if (!pme_dev) { 1884 pci_warn(dev, "can't enable PME#\n"); 1885 return; 1886 } 1887 pme_dev->dev = dev; 1888 mutex_lock(&pci_pme_list_mutex); 1889 list_add(&pme_dev->list, &pci_pme_list); 1890 if (list_is_singular(&pci_pme_list)) 1891 queue_delayed_work(system_freezable_wq, 1892 &pci_pme_work, 1893 msecs_to_jiffies(PME_TIMEOUT)); 1894 mutex_unlock(&pci_pme_list_mutex); 1895 } else { 1896 mutex_lock(&pci_pme_list_mutex); 1897 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1898 if (pme_dev->dev == dev) { 1899 list_del(&pme_dev->list); 1900 kfree(pme_dev); 1901 break; 1902 } 1903 } 1904 mutex_unlock(&pci_pme_list_mutex); 1905 } 1906 } 1907 1908 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1909 } 1910 EXPORT_SYMBOL(pci_pme_active); 1911 1912 /** 1913 * __pci_enable_wake - enable PCI device as wakeup event source 1914 * @dev: PCI device affected 1915 * @state: PCI state from which device will issue wakeup events 1916 * @enable: True to enable event generation; false to disable 1917 * 1918 * This enables the device as a wakeup event source, or disables it. 1919 * When such events involves platform-specific hooks, those hooks are 1920 * called automatically by this routine. 1921 * 1922 * Devices with legacy power management (no standard PCI PM capabilities) 1923 * always require such platform hooks. 1924 * 1925 * RETURN VALUE: 1926 * 0 is returned on success 1927 * -EINVAL is returned if device is not supposed to wake up the system 1928 * Error code depending on the platform is returned if both the platform and 1929 * the native mechanism fail to enable the generation of wake-up events 1930 */ 1931 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1932 { 1933 int ret = 0; 1934 1935 /* 1936 * Bridges can only signal wakeup on behalf of subordinate devices, 1937 * but that is set up elsewhere, so skip them. 1938 */ 1939 if (pci_has_subordinate(dev)) 1940 return 0; 1941 1942 /* Don't do the same thing twice in a row for one device. */ 1943 if (!!enable == !!dev->wakeup_prepared) 1944 return 0; 1945 1946 /* 1947 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1948 * Anderson we should be doing PME# wake enable followed by ACPI wake 1949 * enable. To disable wake-up we call the platform first, for symmetry. 1950 */ 1951 1952 if (enable) { 1953 int error; 1954 1955 if (pci_pme_capable(dev, state)) 1956 pci_pme_active(dev, true); 1957 else 1958 ret = 1; 1959 error = platform_pci_set_wakeup(dev, true); 1960 if (ret) 1961 ret = error; 1962 if (!ret) 1963 dev->wakeup_prepared = true; 1964 } else { 1965 platform_pci_set_wakeup(dev, false); 1966 pci_pme_active(dev, false); 1967 dev->wakeup_prepared = false; 1968 } 1969 1970 return ret; 1971 } 1972 1973 /** 1974 * pci_enable_wake - change wakeup settings for a PCI device 1975 * @pci_dev: Target device 1976 * @state: PCI state from which device will issue wakeup events 1977 * @enable: Whether or not to enable event generation 1978 * 1979 * If @enable is set, check device_may_wakeup() for the device before calling 1980 * __pci_enable_wake() for it. 1981 */ 1982 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 1983 { 1984 if (enable && !device_may_wakeup(&pci_dev->dev)) 1985 return -EINVAL; 1986 1987 return __pci_enable_wake(pci_dev, state, enable); 1988 } 1989 EXPORT_SYMBOL(pci_enable_wake); 1990 1991 /** 1992 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1993 * @dev: PCI device to prepare 1994 * @enable: True to enable wake-up event generation; false to disable 1995 * 1996 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1997 * and this function allows them to set that up cleanly - pci_enable_wake() 1998 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1999 * ordering constraints. 2000 * 2001 * This function only returns error code if the device is not allowed to wake 2002 * up the system from sleep or it is not capable of generating PME# from both 2003 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2004 */ 2005 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2006 { 2007 return pci_pme_capable(dev, PCI_D3cold) ? 2008 pci_enable_wake(dev, PCI_D3cold, enable) : 2009 pci_enable_wake(dev, PCI_D3hot, enable); 2010 } 2011 EXPORT_SYMBOL(pci_wake_from_d3); 2012 2013 /** 2014 * pci_target_state - find an appropriate low power state for a given PCI dev 2015 * @dev: PCI device 2016 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2017 * 2018 * Use underlying platform code to find a supported low power state for @dev. 2019 * If the platform can't manage @dev, return the deepest state from which it 2020 * can generate wake events, based on any available PME info. 2021 */ 2022 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2023 { 2024 pci_power_t target_state = PCI_D3hot; 2025 2026 if (platform_pci_power_manageable(dev)) { 2027 /* 2028 * Call the platform to find the target state for the device. 2029 */ 2030 pci_power_t state = platform_pci_choose_state(dev); 2031 2032 switch (state) { 2033 case PCI_POWER_ERROR: 2034 case PCI_UNKNOWN: 2035 break; 2036 case PCI_D1: 2037 case PCI_D2: 2038 if (pci_no_d1d2(dev)) 2039 break; 2040 default: 2041 target_state = state; 2042 } 2043 2044 return target_state; 2045 } 2046 2047 if (!dev->pm_cap) 2048 target_state = PCI_D0; 2049 2050 /* 2051 * If the device is in D3cold even though it's not power-manageable by 2052 * the platform, it may have been powered down by non-standard means. 2053 * Best to let it slumber. 2054 */ 2055 if (dev->current_state == PCI_D3cold) 2056 target_state = PCI_D3cold; 2057 2058 if (wakeup) { 2059 /* 2060 * Find the deepest state from which the device can generate 2061 * PME#. 2062 */ 2063 if (dev->pme_support) { 2064 while (target_state 2065 && !(dev->pme_support & (1 << target_state))) 2066 target_state--; 2067 } 2068 } 2069 2070 return target_state; 2071 } 2072 2073 /** 2074 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2075 * @dev: Device to handle. 2076 * 2077 * Choose the power state appropriate for the device depending on whether 2078 * it can wake up the system and/or is power manageable by the platform 2079 * (PCI_D3hot is the default) and put the device into that state. 2080 */ 2081 int pci_prepare_to_sleep(struct pci_dev *dev) 2082 { 2083 bool wakeup = device_may_wakeup(&dev->dev); 2084 pci_power_t target_state = pci_target_state(dev, wakeup); 2085 int error; 2086 2087 if (target_state == PCI_POWER_ERROR) 2088 return -EIO; 2089 2090 pci_enable_wake(dev, target_state, wakeup); 2091 2092 error = pci_set_power_state(dev, target_state); 2093 2094 if (error) 2095 pci_enable_wake(dev, target_state, false); 2096 2097 return error; 2098 } 2099 EXPORT_SYMBOL(pci_prepare_to_sleep); 2100 2101 /** 2102 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2103 * @dev: Device to handle. 2104 * 2105 * Disable device's system wake-up capability and put it into D0. 2106 */ 2107 int pci_back_from_sleep(struct pci_dev *dev) 2108 { 2109 pci_enable_wake(dev, PCI_D0, false); 2110 return pci_set_power_state(dev, PCI_D0); 2111 } 2112 EXPORT_SYMBOL(pci_back_from_sleep); 2113 2114 /** 2115 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2116 * @dev: PCI device being suspended. 2117 * 2118 * Prepare @dev to generate wake-up events at run time and put it into a low 2119 * power state. 2120 */ 2121 int pci_finish_runtime_suspend(struct pci_dev *dev) 2122 { 2123 pci_power_t target_state; 2124 int error; 2125 2126 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2127 if (target_state == PCI_POWER_ERROR) 2128 return -EIO; 2129 2130 dev->runtime_d3cold = target_state == PCI_D3cold; 2131 2132 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2133 2134 error = pci_set_power_state(dev, target_state); 2135 2136 if (error) { 2137 pci_enable_wake(dev, target_state, false); 2138 dev->runtime_d3cold = false; 2139 } 2140 2141 return error; 2142 } 2143 2144 /** 2145 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2146 * @dev: Device to check. 2147 * 2148 * Return true if the device itself is capable of generating wake-up events 2149 * (through the platform or using the native PCIe PME) or if the device supports 2150 * PME and one of its upstream bridges can generate wake-up events. 2151 */ 2152 bool pci_dev_run_wake(struct pci_dev *dev) 2153 { 2154 struct pci_bus *bus = dev->bus; 2155 2156 if (!dev->pme_support) 2157 return false; 2158 2159 /* PME-capable in principle, but not from the target power state */ 2160 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2161 return false; 2162 2163 if (device_can_wakeup(&dev->dev)) 2164 return true; 2165 2166 while (bus->parent) { 2167 struct pci_dev *bridge = bus->self; 2168 2169 if (device_can_wakeup(&bridge->dev)) 2170 return true; 2171 2172 bus = bus->parent; 2173 } 2174 2175 /* We have reached the root bus. */ 2176 if (bus->bridge) 2177 return device_can_wakeup(bus->bridge); 2178 2179 return false; 2180 } 2181 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2182 2183 /** 2184 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2185 * @pci_dev: Device to check. 2186 * 2187 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2188 * reconfigured due to wakeup settings difference between system and runtime 2189 * suspend and the current power state of it is suitable for the upcoming 2190 * (system) transition. 2191 * 2192 * If the device is not configured for system wakeup, disable PME for it before 2193 * returning 'true' to prevent it from waking up the system unnecessarily. 2194 */ 2195 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2196 { 2197 struct device *dev = &pci_dev->dev; 2198 bool wakeup = device_may_wakeup(dev); 2199 2200 if (!pm_runtime_suspended(dev) 2201 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2202 || platform_pci_need_resume(pci_dev)) 2203 return false; 2204 2205 /* 2206 * At this point the device is good to go unless it's been configured 2207 * to generate PME at the runtime suspend time, but it is not supposed 2208 * to wake up the system. In that case, simply disable PME for it 2209 * (it will have to be re-enabled on exit from system resume). 2210 * 2211 * If the device's power state is D3cold and the platform check above 2212 * hasn't triggered, the device's configuration is suitable and we don't 2213 * need to manipulate it at all. 2214 */ 2215 spin_lock_irq(&dev->power.lock); 2216 2217 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2218 !wakeup) 2219 __pci_pme_active(pci_dev, false); 2220 2221 spin_unlock_irq(&dev->power.lock); 2222 return true; 2223 } 2224 2225 /** 2226 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2227 * @pci_dev: Device to handle. 2228 * 2229 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2230 * it might have been disabled during the prepare phase of system suspend if 2231 * the device was not configured for system wakeup. 2232 */ 2233 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2234 { 2235 struct device *dev = &pci_dev->dev; 2236 2237 if (!pci_dev_run_wake(pci_dev)) 2238 return; 2239 2240 spin_lock_irq(&dev->power.lock); 2241 2242 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2243 __pci_pme_active(pci_dev, true); 2244 2245 spin_unlock_irq(&dev->power.lock); 2246 } 2247 2248 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2249 { 2250 struct device *dev = &pdev->dev; 2251 struct device *parent = dev->parent; 2252 2253 if (parent) 2254 pm_runtime_get_sync(parent); 2255 pm_runtime_get_noresume(dev); 2256 /* 2257 * pdev->current_state is set to PCI_D3cold during suspending, 2258 * so wait until suspending completes 2259 */ 2260 pm_runtime_barrier(dev); 2261 /* 2262 * Only need to resume devices in D3cold, because config 2263 * registers are still accessible for devices suspended but 2264 * not in D3cold. 2265 */ 2266 if (pdev->current_state == PCI_D3cold) 2267 pm_runtime_resume(dev); 2268 } 2269 2270 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2271 { 2272 struct device *dev = &pdev->dev; 2273 struct device *parent = dev->parent; 2274 2275 pm_runtime_put(dev); 2276 if (parent) 2277 pm_runtime_put_sync(parent); 2278 } 2279 2280 /** 2281 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2282 * @bridge: Bridge to check 2283 * 2284 * This function checks if it is possible to move the bridge to D3. 2285 * Currently we only allow D3 for recent enough PCIe ports. 2286 */ 2287 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2288 { 2289 if (!pci_is_pcie(bridge)) 2290 return false; 2291 2292 switch (pci_pcie_type(bridge)) { 2293 case PCI_EXP_TYPE_ROOT_PORT: 2294 case PCI_EXP_TYPE_UPSTREAM: 2295 case PCI_EXP_TYPE_DOWNSTREAM: 2296 if (pci_bridge_d3_disable) 2297 return false; 2298 2299 /* 2300 * Hotplug interrupts cannot be delivered if the link is down, 2301 * so parents of a hotplug port must stay awake. In addition, 2302 * hotplug ports handled by firmware in System Management Mode 2303 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2304 * For simplicity, disallow in general for now. 2305 */ 2306 if (bridge->is_hotplug_bridge) 2307 return false; 2308 2309 if (pci_bridge_d3_force) 2310 return true; 2311 2312 /* 2313 * It should be safe to put PCIe ports from 2015 or newer 2314 * to D3. 2315 */ 2316 if (dmi_get_bios_year() >= 2015) 2317 return true; 2318 break; 2319 } 2320 2321 return false; 2322 } 2323 2324 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2325 { 2326 bool *d3cold_ok = data; 2327 2328 if (/* The device needs to be allowed to go D3cold ... */ 2329 dev->no_d3cold || !dev->d3cold_allowed || 2330 2331 /* ... and if it is wakeup capable to do so from D3cold. */ 2332 (device_may_wakeup(&dev->dev) && 2333 !pci_pme_capable(dev, PCI_D3cold)) || 2334 2335 /* If it is a bridge it must be allowed to go to D3. */ 2336 !pci_power_manageable(dev)) 2337 2338 *d3cold_ok = false; 2339 2340 return !*d3cold_ok; 2341 } 2342 2343 /* 2344 * pci_bridge_d3_update - Update bridge D3 capabilities 2345 * @dev: PCI device which is changed 2346 * 2347 * Update upstream bridge PM capabilities accordingly depending on if the 2348 * device PM configuration was changed or the device is being removed. The 2349 * change is also propagated upstream. 2350 */ 2351 void pci_bridge_d3_update(struct pci_dev *dev) 2352 { 2353 bool remove = !device_is_registered(&dev->dev); 2354 struct pci_dev *bridge; 2355 bool d3cold_ok = true; 2356 2357 bridge = pci_upstream_bridge(dev); 2358 if (!bridge || !pci_bridge_d3_possible(bridge)) 2359 return; 2360 2361 /* 2362 * If D3 is currently allowed for the bridge, removing one of its 2363 * children won't change that. 2364 */ 2365 if (remove && bridge->bridge_d3) 2366 return; 2367 2368 /* 2369 * If D3 is currently allowed for the bridge and a child is added or 2370 * changed, disallowance of D3 can only be caused by that child, so 2371 * we only need to check that single device, not any of its siblings. 2372 * 2373 * If D3 is currently not allowed for the bridge, checking the device 2374 * first may allow us to skip checking its siblings. 2375 */ 2376 if (!remove) 2377 pci_dev_check_d3cold(dev, &d3cold_ok); 2378 2379 /* 2380 * If D3 is currently not allowed for the bridge, this may be caused 2381 * either by the device being changed/removed or any of its siblings, 2382 * so we need to go through all children to find out if one of them 2383 * continues to block D3. 2384 */ 2385 if (d3cold_ok && !bridge->bridge_d3) 2386 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2387 &d3cold_ok); 2388 2389 if (bridge->bridge_d3 != d3cold_ok) { 2390 bridge->bridge_d3 = d3cold_ok; 2391 /* Propagate change to upstream bridges */ 2392 pci_bridge_d3_update(bridge); 2393 } 2394 } 2395 2396 /** 2397 * pci_d3cold_enable - Enable D3cold for device 2398 * @dev: PCI device to handle 2399 * 2400 * This function can be used in drivers to enable D3cold from the device 2401 * they handle. It also updates upstream PCI bridge PM capabilities 2402 * accordingly. 2403 */ 2404 void pci_d3cold_enable(struct pci_dev *dev) 2405 { 2406 if (dev->no_d3cold) { 2407 dev->no_d3cold = false; 2408 pci_bridge_d3_update(dev); 2409 } 2410 } 2411 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2412 2413 /** 2414 * pci_d3cold_disable - Disable D3cold for device 2415 * @dev: PCI device to handle 2416 * 2417 * This function can be used in drivers to disable D3cold from the device 2418 * they handle. It also updates upstream PCI bridge PM capabilities 2419 * accordingly. 2420 */ 2421 void pci_d3cold_disable(struct pci_dev *dev) 2422 { 2423 if (!dev->no_d3cold) { 2424 dev->no_d3cold = true; 2425 pci_bridge_d3_update(dev); 2426 } 2427 } 2428 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2429 2430 /** 2431 * pci_pm_init - Initialize PM functions of given PCI device 2432 * @dev: PCI device to handle. 2433 */ 2434 void pci_pm_init(struct pci_dev *dev) 2435 { 2436 int pm; 2437 u16 pmc; 2438 2439 pm_runtime_forbid(&dev->dev); 2440 pm_runtime_set_active(&dev->dev); 2441 pm_runtime_enable(&dev->dev); 2442 device_enable_async_suspend(&dev->dev); 2443 dev->wakeup_prepared = false; 2444 2445 dev->pm_cap = 0; 2446 dev->pme_support = 0; 2447 2448 /* find PCI PM capability in list */ 2449 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2450 if (!pm) 2451 return; 2452 /* Check device's ability to generate PME# */ 2453 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2454 2455 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2456 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2457 pmc & PCI_PM_CAP_VER_MASK); 2458 return; 2459 } 2460 2461 dev->pm_cap = pm; 2462 dev->d3_delay = PCI_PM_D3_WAIT; 2463 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2464 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2465 dev->d3cold_allowed = true; 2466 2467 dev->d1_support = false; 2468 dev->d2_support = false; 2469 if (!pci_no_d1d2(dev)) { 2470 if (pmc & PCI_PM_CAP_D1) 2471 dev->d1_support = true; 2472 if (pmc & PCI_PM_CAP_D2) 2473 dev->d2_support = true; 2474 2475 if (dev->d1_support || dev->d2_support) 2476 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2477 dev->d1_support ? " D1" : "", 2478 dev->d2_support ? " D2" : ""); 2479 } 2480 2481 pmc &= PCI_PM_CAP_PME_MASK; 2482 if (pmc) { 2483 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2484 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2485 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2486 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2487 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2488 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2489 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2490 dev->pme_poll = true; 2491 /* 2492 * Make device's PM flags reflect the wake-up capability, but 2493 * let the user space enable it to wake up the system as needed. 2494 */ 2495 device_set_wakeup_capable(&dev->dev, true); 2496 /* Disable the PME# generation functionality */ 2497 pci_pme_active(dev, false); 2498 } 2499 } 2500 2501 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2502 { 2503 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2504 2505 switch (prop) { 2506 case PCI_EA_P_MEM: 2507 case PCI_EA_P_VF_MEM: 2508 flags |= IORESOURCE_MEM; 2509 break; 2510 case PCI_EA_P_MEM_PREFETCH: 2511 case PCI_EA_P_VF_MEM_PREFETCH: 2512 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2513 break; 2514 case PCI_EA_P_IO: 2515 flags |= IORESOURCE_IO; 2516 break; 2517 default: 2518 return 0; 2519 } 2520 2521 return flags; 2522 } 2523 2524 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2525 u8 prop) 2526 { 2527 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2528 return &dev->resource[bei]; 2529 #ifdef CONFIG_PCI_IOV 2530 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2531 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2532 return &dev->resource[PCI_IOV_RESOURCES + 2533 bei - PCI_EA_BEI_VF_BAR0]; 2534 #endif 2535 else if (bei == PCI_EA_BEI_ROM) 2536 return &dev->resource[PCI_ROM_RESOURCE]; 2537 else 2538 return NULL; 2539 } 2540 2541 /* Read an Enhanced Allocation (EA) entry */ 2542 static int pci_ea_read(struct pci_dev *dev, int offset) 2543 { 2544 struct resource *res; 2545 int ent_size, ent_offset = offset; 2546 resource_size_t start, end; 2547 unsigned long flags; 2548 u32 dw0, bei, base, max_offset; 2549 u8 prop; 2550 bool support_64 = (sizeof(resource_size_t) >= 8); 2551 2552 pci_read_config_dword(dev, ent_offset, &dw0); 2553 ent_offset += 4; 2554 2555 /* Entry size field indicates DWORDs after 1st */ 2556 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2557 2558 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2559 goto out; 2560 2561 bei = (dw0 & PCI_EA_BEI) >> 4; 2562 prop = (dw0 & PCI_EA_PP) >> 8; 2563 2564 /* 2565 * If the Property is in the reserved range, try the Secondary 2566 * Property instead. 2567 */ 2568 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2569 prop = (dw0 & PCI_EA_SP) >> 16; 2570 if (prop > PCI_EA_P_BRIDGE_IO) 2571 goto out; 2572 2573 res = pci_ea_get_resource(dev, bei, prop); 2574 if (!res) { 2575 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2576 goto out; 2577 } 2578 2579 flags = pci_ea_flags(dev, prop); 2580 if (!flags) { 2581 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2582 goto out; 2583 } 2584 2585 /* Read Base */ 2586 pci_read_config_dword(dev, ent_offset, &base); 2587 start = (base & PCI_EA_FIELD_MASK); 2588 ent_offset += 4; 2589 2590 /* Read MaxOffset */ 2591 pci_read_config_dword(dev, ent_offset, &max_offset); 2592 ent_offset += 4; 2593 2594 /* Read Base MSBs (if 64-bit entry) */ 2595 if (base & PCI_EA_IS_64) { 2596 u32 base_upper; 2597 2598 pci_read_config_dword(dev, ent_offset, &base_upper); 2599 ent_offset += 4; 2600 2601 flags |= IORESOURCE_MEM_64; 2602 2603 /* entry starts above 32-bit boundary, can't use */ 2604 if (!support_64 && base_upper) 2605 goto out; 2606 2607 if (support_64) 2608 start |= ((u64)base_upper << 32); 2609 } 2610 2611 end = start + (max_offset | 0x03); 2612 2613 /* Read MaxOffset MSBs (if 64-bit entry) */ 2614 if (max_offset & PCI_EA_IS_64) { 2615 u32 max_offset_upper; 2616 2617 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2618 ent_offset += 4; 2619 2620 flags |= IORESOURCE_MEM_64; 2621 2622 /* entry too big, can't use */ 2623 if (!support_64 && max_offset_upper) 2624 goto out; 2625 2626 if (support_64) 2627 end += ((u64)max_offset_upper << 32); 2628 } 2629 2630 if (end < start) { 2631 pci_err(dev, "EA Entry crosses address boundary\n"); 2632 goto out; 2633 } 2634 2635 if (ent_size != ent_offset - offset) { 2636 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2637 ent_size, ent_offset - offset); 2638 goto out; 2639 } 2640 2641 res->name = pci_name(dev); 2642 res->start = start; 2643 res->end = end; 2644 res->flags = flags; 2645 2646 if (bei <= PCI_EA_BEI_BAR5) 2647 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2648 bei, res, prop); 2649 else if (bei == PCI_EA_BEI_ROM) 2650 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2651 res, prop); 2652 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2653 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2654 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2655 else 2656 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2657 bei, res, prop); 2658 2659 out: 2660 return offset + ent_size; 2661 } 2662 2663 /* Enhanced Allocation Initialization */ 2664 void pci_ea_init(struct pci_dev *dev) 2665 { 2666 int ea; 2667 u8 num_ent; 2668 int offset; 2669 int i; 2670 2671 /* find PCI EA capability in list */ 2672 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2673 if (!ea) 2674 return; 2675 2676 /* determine the number of entries */ 2677 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2678 &num_ent); 2679 num_ent &= PCI_EA_NUM_ENT_MASK; 2680 2681 offset = ea + PCI_EA_FIRST_ENT; 2682 2683 /* Skip DWORD 2 for type 1 functions */ 2684 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2685 offset += 4; 2686 2687 /* parse each EA entry */ 2688 for (i = 0; i < num_ent; ++i) 2689 offset = pci_ea_read(dev, offset); 2690 } 2691 2692 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2693 struct pci_cap_saved_state *new_cap) 2694 { 2695 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2696 } 2697 2698 /** 2699 * _pci_add_cap_save_buffer - allocate buffer for saving given 2700 * capability registers 2701 * @dev: the PCI device 2702 * @cap: the capability to allocate the buffer for 2703 * @extended: Standard or Extended capability ID 2704 * @size: requested size of the buffer 2705 */ 2706 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2707 bool extended, unsigned int size) 2708 { 2709 int pos; 2710 struct pci_cap_saved_state *save_state; 2711 2712 if (extended) 2713 pos = pci_find_ext_capability(dev, cap); 2714 else 2715 pos = pci_find_capability(dev, cap); 2716 2717 if (!pos) 2718 return 0; 2719 2720 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2721 if (!save_state) 2722 return -ENOMEM; 2723 2724 save_state->cap.cap_nr = cap; 2725 save_state->cap.cap_extended = extended; 2726 save_state->cap.size = size; 2727 pci_add_saved_cap(dev, save_state); 2728 2729 return 0; 2730 } 2731 2732 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2733 { 2734 return _pci_add_cap_save_buffer(dev, cap, false, size); 2735 } 2736 2737 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2738 { 2739 return _pci_add_cap_save_buffer(dev, cap, true, size); 2740 } 2741 2742 /** 2743 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2744 * @dev: the PCI device 2745 */ 2746 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2747 { 2748 int error; 2749 2750 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2751 PCI_EXP_SAVE_REGS * sizeof(u16)); 2752 if (error) 2753 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2754 2755 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2756 if (error) 2757 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2758 2759 pci_allocate_vc_save_buffers(dev); 2760 } 2761 2762 void pci_free_cap_save_buffers(struct pci_dev *dev) 2763 { 2764 struct pci_cap_saved_state *tmp; 2765 struct hlist_node *n; 2766 2767 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2768 kfree(tmp); 2769 } 2770 2771 /** 2772 * pci_configure_ari - enable or disable ARI forwarding 2773 * @dev: the PCI device 2774 * 2775 * If @dev and its upstream bridge both support ARI, enable ARI in the 2776 * bridge. Otherwise, disable ARI in the bridge. 2777 */ 2778 void pci_configure_ari(struct pci_dev *dev) 2779 { 2780 u32 cap; 2781 struct pci_dev *bridge; 2782 2783 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2784 return; 2785 2786 bridge = dev->bus->self; 2787 if (!bridge) 2788 return; 2789 2790 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2791 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2792 return; 2793 2794 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2795 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2796 PCI_EXP_DEVCTL2_ARI); 2797 bridge->ari_enabled = 1; 2798 } else { 2799 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2800 PCI_EXP_DEVCTL2_ARI); 2801 bridge->ari_enabled = 0; 2802 } 2803 } 2804 2805 static int pci_acs_enable; 2806 2807 /** 2808 * pci_request_acs - ask for ACS to be enabled if supported 2809 */ 2810 void pci_request_acs(void) 2811 { 2812 pci_acs_enable = 1; 2813 } 2814 2815 /** 2816 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2817 * @dev: the PCI device 2818 */ 2819 static void pci_std_enable_acs(struct pci_dev *dev) 2820 { 2821 int pos; 2822 u16 cap; 2823 u16 ctrl; 2824 2825 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2826 if (!pos) 2827 return; 2828 2829 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2830 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2831 2832 /* Source Validation */ 2833 ctrl |= (cap & PCI_ACS_SV); 2834 2835 /* P2P Request Redirect */ 2836 ctrl |= (cap & PCI_ACS_RR); 2837 2838 /* P2P Completion Redirect */ 2839 ctrl |= (cap & PCI_ACS_CR); 2840 2841 /* Upstream Forwarding */ 2842 ctrl |= (cap & PCI_ACS_UF); 2843 2844 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2845 } 2846 2847 /** 2848 * pci_enable_acs - enable ACS if hardware support it 2849 * @dev: the PCI device 2850 */ 2851 void pci_enable_acs(struct pci_dev *dev) 2852 { 2853 if (!pci_acs_enable) 2854 return; 2855 2856 if (!pci_dev_specific_enable_acs(dev)) 2857 return; 2858 2859 pci_std_enable_acs(dev); 2860 } 2861 2862 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2863 { 2864 int pos; 2865 u16 cap, ctrl; 2866 2867 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2868 if (!pos) 2869 return false; 2870 2871 /* 2872 * Except for egress control, capabilities are either required 2873 * or only required if controllable. Features missing from the 2874 * capability field can therefore be assumed as hard-wired enabled. 2875 */ 2876 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2877 acs_flags &= (cap | PCI_ACS_EC); 2878 2879 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2880 return (ctrl & acs_flags) == acs_flags; 2881 } 2882 2883 /** 2884 * pci_acs_enabled - test ACS against required flags for a given device 2885 * @pdev: device to test 2886 * @acs_flags: required PCI ACS flags 2887 * 2888 * Return true if the device supports the provided flags. Automatically 2889 * filters out flags that are not implemented on multifunction devices. 2890 * 2891 * Note that this interface checks the effective ACS capabilities of the 2892 * device rather than the actual capabilities. For instance, most single 2893 * function endpoints are not required to support ACS because they have no 2894 * opportunity for peer-to-peer access. We therefore return 'true' 2895 * regardless of whether the device exposes an ACS capability. This makes 2896 * it much easier for callers of this function to ignore the actual type 2897 * or topology of the device when testing ACS support. 2898 */ 2899 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2900 { 2901 int ret; 2902 2903 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2904 if (ret >= 0) 2905 return ret > 0; 2906 2907 /* 2908 * Conventional PCI and PCI-X devices never support ACS, either 2909 * effectively or actually. The shared bus topology implies that 2910 * any device on the bus can receive or snoop DMA. 2911 */ 2912 if (!pci_is_pcie(pdev)) 2913 return false; 2914 2915 switch (pci_pcie_type(pdev)) { 2916 /* 2917 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2918 * but since their primary interface is PCI/X, we conservatively 2919 * handle them as we would a non-PCIe device. 2920 */ 2921 case PCI_EXP_TYPE_PCIE_BRIDGE: 2922 /* 2923 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2924 * applicable... must never implement an ACS Extended Capability...". 2925 * This seems arbitrary, but we take a conservative interpretation 2926 * of this statement. 2927 */ 2928 case PCI_EXP_TYPE_PCI_BRIDGE: 2929 case PCI_EXP_TYPE_RC_EC: 2930 return false; 2931 /* 2932 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2933 * implement ACS in order to indicate their peer-to-peer capabilities, 2934 * regardless of whether they are single- or multi-function devices. 2935 */ 2936 case PCI_EXP_TYPE_DOWNSTREAM: 2937 case PCI_EXP_TYPE_ROOT_PORT: 2938 return pci_acs_flags_enabled(pdev, acs_flags); 2939 /* 2940 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2941 * implemented by the remaining PCIe types to indicate peer-to-peer 2942 * capabilities, but only when they are part of a multifunction 2943 * device. The footnote for section 6.12 indicates the specific 2944 * PCIe types included here. 2945 */ 2946 case PCI_EXP_TYPE_ENDPOINT: 2947 case PCI_EXP_TYPE_UPSTREAM: 2948 case PCI_EXP_TYPE_LEG_END: 2949 case PCI_EXP_TYPE_RC_END: 2950 if (!pdev->multifunction) 2951 break; 2952 2953 return pci_acs_flags_enabled(pdev, acs_flags); 2954 } 2955 2956 /* 2957 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2958 * to single function devices with the exception of downstream ports. 2959 */ 2960 return true; 2961 } 2962 2963 /** 2964 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2965 * @start: starting downstream device 2966 * @end: ending upstream device or NULL to search to the root bus 2967 * @acs_flags: required flags 2968 * 2969 * Walk up a device tree from start to end testing PCI ACS support. If 2970 * any step along the way does not support the required flags, return false. 2971 */ 2972 bool pci_acs_path_enabled(struct pci_dev *start, 2973 struct pci_dev *end, u16 acs_flags) 2974 { 2975 struct pci_dev *pdev, *parent = start; 2976 2977 do { 2978 pdev = parent; 2979 2980 if (!pci_acs_enabled(pdev, acs_flags)) 2981 return false; 2982 2983 if (pci_is_root_bus(pdev->bus)) 2984 return (end == NULL); 2985 2986 parent = pdev->bus->self; 2987 } while (pdev != end); 2988 2989 return true; 2990 } 2991 2992 /** 2993 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2994 * @pdev: PCI device 2995 * @bar: BAR to find 2996 * 2997 * Helper to find the position of the ctrl register for a BAR. 2998 * Returns -ENOTSUPP if resizable BARs are not supported at all. 2999 * Returns -ENOENT if no ctrl register for the BAR could be found. 3000 */ 3001 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3002 { 3003 unsigned int pos, nbars, i; 3004 u32 ctrl; 3005 3006 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3007 if (!pos) 3008 return -ENOTSUPP; 3009 3010 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3011 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3012 PCI_REBAR_CTRL_NBAR_SHIFT; 3013 3014 for (i = 0; i < nbars; i++, pos += 8) { 3015 int bar_idx; 3016 3017 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3018 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3019 if (bar_idx == bar) 3020 return pos; 3021 } 3022 3023 return -ENOENT; 3024 } 3025 3026 /** 3027 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3028 * @pdev: PCI device 3029 * @bar: BAR to query 3030 * 3031 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3032 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3033 */ 3034 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3035 { 3036 int pos; 3037 u32 cap; 3038 3039 pos = pci_rebar_find_pos(pdev, bar); 3040 if (pos < 0) 3041 return 0; 3042 3043 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3044 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3045 } 3046 3047 /** 3048 * pci_rebar_get_current_size - get the current size of a BAR 3049 * @pdev: PCI device 3050 * @bar: BAR to set size to 3051 * 3052 * Read the size of a BAR from the resizable BAR config. 3053 * Returns size if found or negative error code. 3054 */ 3055 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3056 { 3057 int pos; 3058 u32 ctrl; 3059 3060 pos = pci_rebar_find_pos(pdev, bar); 3061 if (pos < 0) 3062 return pos; 3063 3064 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3065 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3066 } 3067 3068 /** 3069 * pci_rebar_set_size - set a new size for a BAR 3070 * @pdev: PCI device 3071 * @bar: BAR to set size to 3072 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3073 * 3074 * Set the new size of a BAR as defined in the spec. 3075 * Returns zero if resizing was successful, error code otherwise. 3076 */ 3077 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3078 { 3079 int pos; 3080 u32 ctrl; 3081 3082 pos = pci_rebar_find_pos(pdev, bar); 3083 if (pos < 0) 3084 return pos; 3085 3086 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3087 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3088 ctrl |= size << 8; 3089 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3090 return 0; 3091 } 3092 3093 /** 3094 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3095 * @dev: the PCI device 3096 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3097 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3098 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3099 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3100 * 3101 * Return 0 if all upstream bridges support AtomicOp routing, egress 3102 * blocking is disabled on all upstream ports, and the root port supports 3103 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3104 * AtomicOp completion), or negative otherwise. 3105 */ 3106 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3107 { 3108 struct pci_bus *bus = dev->bus; 3109 struct pci_dev *bridge; 3110 u32 cap, ctl2; 3111 3112 if (!pci_is_pcie(dev)) 3113 return -EINVAL; 3114 3115 /* 3116 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3117 * AtomicOp requesters. For now, we only support endpoints as 3118 * requesters and root ports as completers. No endpoints as 3119 * completers, and no peer-to-peer. 3120 */ 3121 3122 switch (pci_pcie_type(dev)) { 3123 case PCI_EXP_TYPE_ENDPOINT: 3124 case PCI_EXP_TYPE_LEG_END: 3125 case PCI_EXP_TYPE_RC_END: 3126 break; 3127 default: 3128 return -EINVAL; 3129 } 3130 3131 while (bus->parent) { 3132 bridge = bus->self; 3133 3134 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3135 3136 switch (pci_pcie_type(bridge)) { 3137 /* Ensure switch ports support AtomicOp routing */ 3138 case PCI_EXP_TYPE_UPSTREAM: 3139 case PCI_EXP_TYPE_DOWNSTREAM: 3140 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3141 return -EINVAL; 3142 break; 3143 3144 /* Ensure root port supports all the sizes we care about */ 3145 case PCI_EXP_TYPE_ROOT_PORT: 3146 if ((cap & cap_mask) != cap_mask) 3147 return -EINVAL; 3148 break; 3149 } 3150 3151 /* Ensure upstream ports don't block AtomicOps on egress */ 3152 if (!bridge->has_secondary_link) { 3153 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3154 &ctl2); 3155 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3156 return -EINVAL; 3157 } 3158 3159 bus = bus->parent; 3160 } 3161 3162 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3163 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3164 return 0; 3165 } 3166 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3167 3168 /** 3169 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3170 * @dev: the PCI device 3171 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3172 * 3173 * Perform INTx swizzling for a device behind one level of bridge. This is 3174 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3175 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3176 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3177 * the PCI Express Base Specification, Revision 2.1) 3178 */ 3179 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3180 { 3181 int slot; 3182 3183 if (pci_ari_enabled(dev->bus)) 3184 slot = 0; 3185 else 3186 slot = PCI_SLOT(dev->devfn); 3187 3188 return (((pin - 1) + slot) % 4) + 1; 3189 } 3190 3191 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3192 { 3193 u8 pin; 3194 3195 pin = dev->pin; 3196 if (!pin) 3197 return -1; 3198 3199 while (!pci_is_root_bus(dev->bus)) { 3200 pin = pci_swizzle_interrupt_pin(dev, pin); 3201 dev = dev->bus->self; 3202 } 3203 *bridge = dev; 3204 return pin; 3205 } 3206 3207 /** 3208 * pci_common_swizzle - swizzle INTx all the way to root bridge 3209 * @dev: the PCI device 3210 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3211 * 3212 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3213 * bridges all the way up to a PCI root bus. 3214 */ 3215 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3216 { 3217 u8 pin = *pinp; 3218 3219 while (!pci_is_root_bus(dev->bus)) { 3220 pin = pci_swizzle_interrupt_pin(dev, pin); 3221 dev = dev->bus->self; 3222 } 3223 *pinp = pin; 3224 return PCI_SLOT(dev->devfn); 3225 } 3226 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3227 3228 /** 3229 * pci_release_region - Release a PCI bar 3230 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3231 * @bar: BAR to release 3232 * 3233 * Releases the PCI I/O and memory resources previously reserved by a 3234 * successful call to pci_request_region. Call this function only 3235 * after all use of the PCI regions has ceased. 3236 */ 3237 void pci_release_region(struct pci_dev *pdev, int bar) 3238 { 3239 struct pci_devres *dr; 3240 3241 if (pci_resource_len(pdev, bar) == 0) 3242 return; 3243 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3244 release_region(pci_resource_start(pdev, bar), 3245 pci_resource_len(pdev, bar)); 3246 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3247 release_mem_region(pci_resource_start(pdev, bar), 3248 pci_resource_len(pdev, bar)); 3249 3250 dr = find_pci_dr(pdev); 3251 if (dr) 3252 dr->region_mask &= ~(1 << bar); 3253 } 3254 EXPORT_SYMBOL(pci_release_region); 3255 3256 /** 3257 * __pci_request_region - Reserved PCI I/O and memory resource 3258 * @pdev: PCI device whose resources are to be reserved 3259 * @bar: BAR to be reserved 3260 * @res_name: Name to be associated with resource. 3261 * @exclusive: whether the region access is exclusive or not 3262 * 3263 * Mark the PCI region associated with PCI device @pdev BR @bar as 3264 * being reserved by owner @res_name. Do not access any 3265 * address inside the PCI regions unless this call returns 3266 * successfully. 3267 * 3268 * If @exclusive is set, then the region is marked so that userspace 3269 * is explicitly not allowed to map the resource via /dev/mem or 3270 * sysfs MMIO access. 3271 * 3272 * Returns 0 on success, or %EBUSY on error. A warning 3273 * message is also printed on failure. 3274 */ 3275 static int __pci_request_region(struct pci_dev *pdev, int bar, 3276 const char *res_name, int exclusive) 3277 { 3278 struct pci_devres *dr; 3279 3280 if (pci_resource_len(pdev, bar) == 0) 3281 return 0; 3282 3283 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3284 if (!request_region(pci_resource_start(pdev, bar), 3285 pci_resource_len(pdev, bar), res_name)) 3286 goto err_out; 3287 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3288 if (!__request_mem_region(pci_resource_start(pdev, bar), 3289 pci_resource_len(pdev, bar), res_name, 3290 exclusive)) 3291 goto err_out; 3292 } 3293 3294 dr = find_pci_dr(pdev); 3295 if (dr) 3296 dr->region_mask |= 1 << bar; 3297 3298 return 0; 3299 3300 err_out: 3301 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3302 &pdev->resource[bar]); 3303 return -EBUSY; 3304 } 3305 3306 /** 3307 * pci_request_region - Reserve PCI I/O and memory resource 3308 * @pdev: PCI device whose resources are to be reserved 3309 * @bar: BAR to be reserved 3310 * @res_name: Name to be associated with resource 3311 * 3312 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3313 * being reserved by owner @res_name. Do not access any 3314 * address inside the PCI regions unless this call returns 3315 * successfully. 3316 * 3317 * Returns 0 on success, or %EBUSY on error. A warning 3318 * message is also printed on failure. 3319 */ 3320 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3321 { 3322 return __pci_request_region(pdev, bar, res_name, 0); 3323 } 3324 EXPORT_SYMBOL(pci_request_region); 3325 3326 /** 3327 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3328 * @pdev: PCI device whose resources are to be reserved 3329 * @bar: BAR to be reserved 3330 * @res_name: Name to be associated with resource. 3331 * 3332 * Mark the PCI region associated with PCI device @pdev BR @bar as 3333 * being reserved by owner @res_name. Do not access any 3334 * address inside the PCI regions unless this call returns 3335 * successfully. 3336 * 3337 * Returns 0 on success, or %EBUSY on error. A warning 3338 * message is also printed on failure. 3339 * 3340 * The key difference that _exclusive makes it that userspace is 3341 * explicitly not allowed to map the resource via /dev/mem or 3342 * sysfs. 3343 */ 3344 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3345 const char *res_name) 3346 { 3347 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3348 } 3349 EXPORT_SYMBOL(pci_request_region_exclusive); 3350 3351 /** 3352 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3353 * @pdev: PCI device whose resources were previously reserved 3354 * @bars: Bitmask of BARs to be released 3355 * 3356 * Release selected PCI I/O and memory resources previously reserved. 3357 * Call this function only after all use of the PCI regions has ceased. 3358 */ 3359 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3360 { 3361 int i; 3362 3363 for (i = 0; i < 6; i++) 3364 if (bars & (1 << i)) 3365 pci_release_region(pdev, i); 3366 } 3367 EXPORT_SYMBOL(pci_release_selected_regions); 3368 3369 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3370 const char *res_name, int excl) 3371 { 3372 int i; 3373 3374 for (i = 0; i < 6; i++) 3375 if (bars & (1 << i)) 3376 if (__pci_request_region(pdev, i, res_name, excl)) 3377 goto err_out; 3378 return 0; 3379 3380 err_out: 3381 while (--i >= 0) 3382 if (bars & (1 << i)) 3383 pci_release_region(pdev, i); 3384 3385 return -EBUSY; 3386 } 3387 3388 3389 /** 3390 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3391 * @pdev: PCI device whose resources are to be reserved 3392 * @bars: Bitmask of BARs to be requested 3393 * @res_name: Name to be associated with resource 3394 */ 3395 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3396 const char *res_name) 3397 { 3398 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3399 } 3400 EXPORT_SYMBOL(pci_request_selected_regions); 3401 3402 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3403 const char *res_name) 3404 { 3405 return __pci_request_selected_regions(pdev, bars, res_name, 3406 IORESOURCE_EXCLUSIVE); 3407 } 3408 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3409 3410 /** 3411 * pci_release_regions - Release reserved PCI I/O and memory resources 3412 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3413 * 3414 * Releases all PCI I/O and memory resources previously reserved by a 3415 * successful call to pci_request_regions. Call this function only 3416 * after all use of the PCI regions has ceased. 3417 */ 3418 3419 void pci_release_regions(struct pci_dev *pdev) 3420 { 3421 pci_release_selected_regions(pdev, (1 << 6) - 1); 3422 } 3423 EXPORT_SYMBOL(pci_release_regions); 3424 3425 /** 3426 * pci_request_regions - Reserved PCI I/O and memory resources 3427 * @pdev: PCI device whose resources are to be reserved 3428 * @res_name: Name to be associated with resource. 3429 * 3430 * Mark all PCI regions associated with PCI device @pdev as 3431 * being reserved by owner @res_name. Do not access any 3432 * address inside the PCI regions unless this call returns 3433 * successfully. 3434 * 3435 * Returns 0 on success, or %EBUSY on error. A warning 3436 * message is also printed on failure. 3437 */ 3438 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3439 { 3440 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3441 } 3442 EXPORT_SYMBOL(pci_request_regions); 3443 3444 /** 3445 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3446 * @pdev: PCI device whose resources are to be reserved 3447 * @res_name: Name to be associated with resource. 3448 * 3449 * Mark all PCI regions associated with PCI device @pdev as 3450 * being reserved by owner @res_name. Do not access any 3451 * address inside the PCI regions unless this call returns 3452 * successfully. 3453 * 3454 * pci_request_regions_exclusive() will mark the region so that 3455 * /dev/mem and the sysfs MMIO access will not be allowed. 3456 * 3457 * Returns 0 on success, or %EBUSY on error. A warning 3458 * message is also printed on failure. 3459 */ 3460 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3461 { 3462 return pci_request_selected_regions_exclusive(pdev, 3463 ((1 << 6) - 1), res_name); 3464 } 3465 EXPORT_SYMBOL(pci_request_regions_exclusive); 3466 3467 /* 3468 * Record the PCI IO range (expressed as CPU physical address + size). 3469 * Return a negative value if an error has occured, zero otherwise 3470 */ 3471 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3472 resource_size_t size) 3473 { 3474 int ret = 0; 3475 #ifdef PCI_IOBASE 3476 struct logic_pio_hwaddr *range; 3477 3478 if (!size || addr + size < addr) 3479 return -EINVAL; 3480 3481 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3482 if (!range) 3483 return -ENOMEM; 3484 3485 range->fwnode = fwnode; 3486 range->size = size; 3487 range->hw_start = addr; 3488 range->flags = LOGIC_PIO_CPU_MMIO; 3489 3490 ret = logic_pio_register_range(range); 3491 if (ret) 3492 kfree(range); 3493 #endif 3494 3495 return ret; 3496 } 3497 3498 phys_addr_t pci_pio_to_address(unsigned long pio) 3499 { 3500 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3501 3502 #ifdef PCI_IOBASE 3503 if (pio >= MMIO_UPPER_LIMIT) 3504 return address; 3505 3506 address = logic_pio_to_hwaddr(pio); 3507 #endif 3508 3509 return address; 3510 } 3511 3512 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3513 { 3514 #ifdef PCI_IOBASE 3515 return logic_pio_trans_cpuaddr(address); 3516 #else 3517 if (address > IO_SPACE_LIMIT) 3518 return (unsigned long)-1; 3519 3520 return (unsigned long) address; 3521 #endif 3522 } 3523 3524 /** 3525 * pci_remap_iospace - Remap the memory mapped I/O space 3526 * @res: Resource describing the I/O space 3527 * @phys_addr: physical address of range to be mapped 3528 * 3529 * Remap the memory mapped I/O space described by the @res 3530 * and the CPU physical address @phys_addr into virtual address space. 3531 * Only architectures that have memory mapped IO functions defined 3532 * (and the PCI_IOBASE value defined) should call this function. 3533 */ 3534 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3535 { 3536 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3537 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3538 3539 if (!(res->flags & IORESOURCE_IO)) 3540 return -EINVAL; 3541 3542 if (res->end > IO_SPACE_LIMIT) 3543 return -EINVAL; 3544 3545 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3546 pgprot_device(PAGE_KERNEL)); 3547 #else 3548 /* this architecture does not have memory mapped I/O space, 3549 so this function should never be called */ 3550 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3551 return -ENODEV; 3552 #endif 3553 } 3554 EXPORT_SYMBOL(pci_remap_iospace); 3555 3556 /** 3557 * pci_unmap_iospace - Unmap the memory mapped I/O space 3558 * @res: resource to be unmapped 3559 * 3560 * Unmap the CPU virtual address @res from virtual address space. 3561 * Only architectures that have memory mapped IO functions defined 3562 * (and the PCI_IOBASE value defined) should call this function. 3563 */ 3564 void pci_unmap_iospace(struct resource *res) 3565 { 3566 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3567 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3568 3569 unmap_kernel_range(vaddr, resource_size(res)); 3570 #endif 3571 } 3572 EXPORT_SYMBOL(pci_unmap_iospace); 3573 3574 /** 3575 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3576 * @dev: Generic device to remap IO address for 3577 * @offset: Resource address to map 3578 * @size: Size of map 3579 * 3580 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3581 * detach. 3582 */ 3583 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3584 resource_size_t offset, 3585 resource_size_t size) 3586 { 3587 void __iomem **ptr, *addr; 3588 3589 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3590 if (!ptr) 3591 return NULL; 3592 3593 addr = pci_remap_cfgspace(offset, size); 3594 if (addr) { 3595 *ptr = addr; 3596 devres_add(dev, ptr); 3597 } else 3598 devres_free(ptr); 3599 3600 return addr; 3601 } 3602 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3603 3604 /** 3605 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3606 * @dev: generic device to handle the resource for 3607 * @res: configuration space resource to be handled 3608 * 3609 * Checks that a resource is a valid memory region, requests the memory 3610 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3611 * proper PCI configuration space memory attributes are guaranteed. 3612 * 3613 * All operations are managed and will be undone on driver detach. 3614 * 3615 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3616 * on failure. Usage example:: 3617 * 3618 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3619 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3620 * if (IS_ERR(base)) 3621 * return PTR_ERR(base); 3622 */ 3623 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3624 struct resource *res) 3625 { 3626 resource_size_t size; 3627 const char *name; 3628 void __iomem *dest_ptr; 3629 3630 BUG_ON(!dev); 3631 3632 if (!res || resource_type(res) != IORESOURCE_MEM) { 3633 dev_err(dev, "invalid resource\n"); 3634 return IOMEM_ERR_PTR(-EINVAL); 3635 } 3636 3637 size = resource_size(res); 3638 name = res->name ?: dev_name(dev); 3639 3640 if (!devm_request_mem_region(dev, res->start, size, name)) { 3641 dev_err(dev, "can't request region for resource %pR\n", res); 3642 return IOMEM_ERR_PTR(-EBUSY); 3643 } 3644 3645 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3646 if (!dest_ptr) { 3647 dev_err(dev, "ioremap failed for resource %pR\n", res); 3648 devm_release_mem_region(dev, res->start, size); 3649 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3650 } 3651 3652 return dest_ptr; 3653 } 3654 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3655 3656 static void __pci_set_master(struct pci_dev *dev, bool enable) 3657 { 3658 u16 old_cmd, cmd; 3659 3660 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3661 if (enable) 3662 cmd = old_cmd | PCI_COMMAND_MASTER; 3663 else 3664 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3665 if (cmd != old_cmd) { 3666 pci_dbg(dev, "%s bus mastering\n", 3667 enable ? "enabling" : "disabling"); 3668 pci_write_config_word(dev, PCI_COMMAND, cmd); 3669 } 3670 dev->is_busmaster = enable; 3671 } 3672 3673 /** 3674 * pcibios_setup - process "pci=" kernel boot arguments 3675 * @str: string used to pass in "pci=" kernel boot arguments 3676 * 3677 * Process kernel boot arguments. This is the default implementation. 3678 * Architecture specific implementations can override this as necessary. 3679 */ 3680 char * __weak __init pcibios_setup(char *str) 3681 { 3682 return str; 3683 } 3684 3685 /** 3686 * pcibios_set_master - enable PCI bus-mastering for device dev 3687 * @dev: the PCI device to enable 3688 * 3689 * Enables PCI bus-mastering for the device. This is the default 3690 * implementation. Architecture specific implementations can override 3691 * this if necessary. 3692 */ 3693 void __weak pcibios_set_master(struct pci_dev *dev) 3694 { 3695 u8 lat; 3696 3697 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3698 if (pci_is_pcie(dev)) 3699 return; 3700 3701 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3702 if (lat < 16) 3703 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3704 else if (lat > pcibios_max_latency) 3705 lat = pcibios_max_latency; 3706 else 3707 return; 3708 3709 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3710 } 3711 3712 /** 3713 * pci_set_master - enables bus-mastering for device dev 3714 * @dev: the PCI device to enable 3715 * 3716 * Enables bus-mastering on the device and calls pcibios_set_master() 3717 * to do the needed arch specific settings. 3718 */ 3719 void pci_set_master(struct pci_dev *dev) 3720 { 3721 __pci_set_master(dev, true); 3722 pcibios_set_master(dev); 3723 } 3724 EXPORT_SYMBOL(pci_set_master); 3725 3726 /** 3727 * pci_clear_master - disables bus-mastering for device dev 3728 * @dev: the PCI device to disable 3729 */ 3730 void pci_clear_master(struct pci_dev *dev) 3731 { 3732 __pci_set_master(dev, false); 3733 } 3734 EXPORT_SYMBOL(pci_clear_master); 3735 3736 /** 3737 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3738 * @dev: the PCI device for which MWI is to be enabled 3739 * 3740 * Helper function for pci_set_mwi. 3741 * Originally copied from drivers/net/acenic.c. 3742 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3743 * 3744 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3745 */ 3746 int pci_set_cacheline_size(struct pci_dev *dev) 3747 { 3748 u8 cacheline_size; 3749 3750 if (!pci_cache_line_size) 3751 return -EINVAL; 3752 3753 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3754 equal to or multiple of the right value. */ 3755 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3756 if (cacheline_size >= pci_cache_line_size && 3757 (cacheline_size % pci_cache_line_size) == 0) 3758 return 0; 3759 3760 /* Write the correct value. */ 3761 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3762 /* Read it back. */ 3763 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3764 if (cacheline_size == pci_cache_line_size) 3765 return 0; 3766 3767 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 3768 pci_cache_line_size << 2); 3769 3770 return -EINVAL; 3771 } 3772 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3773 3774 /** 3775 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3776 * @dev: the PCI device for which MWI is enabled 3777 * 3778 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3779 * 3780 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3781 */ 3782 int pci_set_mwi(struct pci_dev *dev) 3783 { 3784 #ifdef PCI_DISABLE_MWI 3785 return 0; 3786 #else 3787 int rc; 3788 u16 cmd; 3789 3790 rc = pci_set_cacheline_size(dev); 3791 if (rc) 3792 return rc; 3793 3794 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3795 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3796 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 3797 cmd |= PCI_COMMAND_INVALIDATE; 3798 pci_write_config_word(dev, PCI_COMMAND, cmd); 3799 } 3800 return 0; 3801 #endif 3802 } 3803 EXPORT_SYMBOL(pci_set_mwi); 3804 3805 /** 3806 * pcim_set_mwi - a device-managed pci_set_mwi() 3807 * @dev: the PCI device for which MWI is enabled 3808 * 3809 * Managed pci_set_mwi(). 3810 * 3811 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3812 */ 3813 int pcim_set_mwi(struct pci_dev *dev) 3814 { 3815 struct pci_devres *dr; 3816 3817 dr = find_pci_dr(dev); 3818 if (!dr) 3819 return -ENOMEM; 3820 3821 dr->mwi = 1; 3822 return pci_set_mwi(dev); 3823 } 3824 EXPORT_SYMBOL(pcim_set_mwi); 3825 3826 /** 3827 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3828 * @dev: the PCI device for which MWI is enabled 3829 * 3830 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3831 * Callers are not required to check the return value. 3832 * 3833 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3834 */ 3835 int pci_try_set_mwi(struct pci_dev *dev) 3836 { 3837 #ifdef PCI_DISABLE_MWI 3838 return 0; 3839 #else 3840 return pci_set_mwi(dev); 3841 #endif 3842 } 3843 EXPORT_SYMBOL(pci_try_set_mwi); 3844 3845 /** 3846 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3847 * @dev: the PCI device to disable 3848 * 3849 * Disables PCI Memory-Write-Invalidate transaction on the device 3850 */ 3851 void pci_clear_mwi(struct pci_dev *dev) 3852 { 3853 #ifndef PCI_DISABLE_MWI 3854 u16 cmd; 3855 3856 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3857 if (cmd & PCI_COMMAND_INVALIDATE) { 3858 cmd &= ~PCI_COMMAND_INVALIDATE; 3859 pci_write_config_word(dev, PCI_COMMAND, cmd); 3860 } 3861 #endif 3862 } 3863 EXPORT_SYMBOL(pci_clear_mwi); 3864 3865 /** 3866 * pci_intx - enables/disables PCI INTx for device dev 3867 * @pdev: the PCI device to operate on 3868 * @enable: boolean: whether to enable or disable PCI INTx 3869 * 3870 * Enables/disables PCI INTx for device dev 3871 */ 3872 void pci_intx(struct pci_dev *pdev, int enable) 3873 { 3874 u16 pci_command, new; 3875 3876 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3877 3878 if (enable) 3879 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3880 else 3881 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3882 3883 if (new != pci_command) { 3884 struct pci_devres *dr; 3885 3886 pci_write_config_word(pdev, PCI_COMMAND, new); 3887 3888 dr = find_pci_dr(pdev); 3889 if (dr && !dr->restore_intx) { 3890 dr->restore_intx = 1; 3891 dr->orig_intx = !enable; 3892 } 3893 } 3894 } 3895 EXPORT_SYMBOL_GPL(pci_intx); 3896 3897 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3898 { 3899 struct pci_bus *bus = dev->bus; 3900 bool mask_updated = true; 3901 u32 cmd_status_dword; 3902 u16 origcmd, newcmd; 3903 unsigned long flags; 3904 bool irq_pending; 3905 3906 /* 3907 * We do a single dword read to retrieve both command and status. 3908 * Document assumptions that make this possible. 3909 */ 3910 BUILD_BUG_ON(PCI_COMMAND % 4); 3911 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3912 3913 raw_spin_lock_irqsave(&pci_lock, flags); 3914 3915 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3916 3917 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3918 3919 /* 3920 * Check interrupt status register to see whether our device 3921 * triggered the interrupt (when masking) or the next IRQ is 3922 * already pending (when unmasking). 3923 */ 3924 if (mask != irq_pending) { 3925 mask_updated = false; 3926 goto done; 3927 } 3928 3929 origcmd = cmd_status_dword; 3930 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3931 if (mask) 3932 newcmd |= PCI_COMMAND_INTX_DISABLE; 3933 if (newcmd != origcmd) 3934 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3935 3936 done: 3937 raw_spin_unlock_irqrestore(&pci_lock, flags); 3938 3939 return mask_updated; 3940 } 3941 3942 /** 3943 * pci_check_and_mask_intx - mask INTx on pending interrupt 3944 * @dev: the PCI device to operate on 3945 * 3946 * Check if the device dev has its INTx line asserted, mask it and 3947 * return true in that case. False is returned if no interrupt was 3948 * pending. 3949 */ 3950 bool pci_check_and_mask_intx(struct pci_dev *dev) 3951 { 3952 return pci_check_and_set_intx_mask(dev, true); 3953 } 3954 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3955 3956 /** 3957 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3958 * @dev: the PCI device to operate on 3959 * 3960 * Check if the device dev has its INTx line asserted, unmask it if not 3961 * and return true. False is returned and the mask remains active if 3962 * there was still an interrupt pending. 3963 */ 3964 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3965 { 3966 return pci_check_and_set_intx_mask(dev, false); 3967 } 3968 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3969 3970 /** 3971 * pci_wait_for_pending_transaction - waits for pending transaction 3972 * @dev: the PCI device to operate on 3973 * 3974 * Return 0 if transaction is pending 1 otherwise. 3975 */ 3976 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3977 { 3978 if (!pci_is_pcie(dev)) 3979 return 1; 3980 3981 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3982 PCI_EXP_DEVSTA_TRPND); 3983 } 3984 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3985 3986 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 3987 { 3988 int delay = 1; 3989 u32 id; 3990 3991 /* 3992 * After reset, the device should not silently discard config 3993 * requests, but it may still indicate that it needs more time by 3994 * responding to them with CRS completions. The Root Port will 3995 * generally synthesize ~0 data to complete the read (except when 3996 * CRS SV is enabled and the read was for the Vendor ID; in that 3997 * case it synthesizes 0x0001 data). 3998 * 3999 * Wait for the device to return a non-CRS completion. Read the 4000 * Command register instead of Vendor ID so we don't have to 4001 * contend with the CRS SV value. 4002 */ 4003 pci_read_config_dword(dev, PCI_COMMAND, &id); 4004 while (id == ~0) { 4005 if (delay > timeout) { 4006 pci_warn(dev, "not ready %dms after %s; giving up\n", 4007 delay - 1, reset_type); 4008 return -ENOTTY; 4009 } 4010 4011 if (delay > 1000) 4012 pci_info(dev, "not ready %dms after %s; waiting\n", 4013 delay - 1, reset_type); 4014 4015 msleep(delay); 4016 delay *= 2; 4017 pci_read_config_dword(dev, PCI_COMMAND, &id); 4018 } 4019 4020 if (delay > 1000) 4021 pci_info(dev, "ready %dms after %s\n", delay - 1, 4022 reset_type); 4023 4024 return 0; 4025 } 4026 4027 /** 4028 * pcie_has_flr - check if a device supports function level resets 4029 * @dev: device to check 4030 * 4031 * Returns true if the device advertises support for PCIe function level 4032 * resets. 4033 */ 4034 static bool pcie_has_flr(struct pci_dev *dev) 4035 { 4036 u32 cap; 4037 4038 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4039 return false; 4040 4041 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4042 return cap & PCI_EXP_DEVCAP_FLR; 4043 } 4044 4045 /** 4046 * pcie_flr - initiate a PCIe function level reset 4047 * @dev: device to reset 4048 * 4049 * Initiate a function level reset on @dev. The caller should ensure the 4050 * device supports FLR before calling this function, e.g. by using the 4051 * pcie_has_flr() helper. 4052 */ 4053 int pcie_flr(struct pci_dev *dev) 4054 { 4055 if (!pci_wait_for_pending_transaction(dev)) 4056 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4057 4058 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4059 4060 /* 4061 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4062 * 100ms, but may silently discard requests while the FLR is in 4063 * progress. Wait 100ms before trying to access the device. 4064 */ 4065 msleep(100); 4066 4067 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4068 } 4069 EXPORT_SYMBOL_GPL(pcie_flr); 4070 4071 static int pci_af_flr(struct pci_dev *dev, int probe) 4072 { 4073 int pos; 4074 u8 cap; 4075 4076 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4077 if (!pos) 4078 return -ENOTTY; 4079 4080 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4081 return -ENOTTY; 4082 4083 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4084 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4085 return -ENOTTY; 4086 4087 if (probe) 4088 return 0; 4089 4090 /* 4091 * Wait for Transaction Pending bit to clear. A word-aligned test 4092 * is used, so we use the conrol offset rather than status and shift 4093 * the test bit to match. 4094 */ 4095 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4096 PCI_AF_STATUS_TP << 8)) 4097 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4098 4099 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4100 4101 /* 4102 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4103 * updated 27 July 2006; a device must complete an FLR within 4104 * 100ms, but may silently discard requests while the FLR is in 4105 * progress. Wait 100ms before trying to access the device. 4106 */ 4107 msleep(100); 4108 4109 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4110 } 4111 4112 /** 4113 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4114 * @dev: Device to reset. 4115 * @probe: If set, only check if the device can be reset this way. 4116 * 4117 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4118 * unset, it will be reinitialized internally when going from PCI_D3hot to 4119 * PCI_D0. If that's the case and the device is not in a low-power state 4120 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4121 * 4122 * NOTE: This causes the caller to sleep for twice the device power transition 4123 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4124 * by default (i.e. unless the @dev's d3_delay field has a different value). 4125 * Moreover, only devices in D0 can be reset by this function. 4126 */ 4127 static int pci_pm_reset(struct pci_dev *dev, int probe) 4128 { 4129 u16 csr; 4130 4131 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4132 return -ENOTTY; 4133 4134 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4135 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4136 return -ENOTTY; 4137 4138 if (probe) 4139 return 0; 4140 4141 if (dev->current_state != PCI_D0) 4142 return -EINVAL; 4143 4144 csr &= ~PCI_PM_CTRL_STATE_MASK; 4145 csr |= PCI_D3hot; 4146 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4147 pci_dev_d3_sleep(dev); 4148 4149 csr &= ~PCI_PM_CTRL_STATE_MASK; 4150 csr |= PCI_D0; 4151 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4152 pci_dev_d3_sleep(dev); 4153 4154 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4155 } 4156 4157 void pci_reset_secondary_bus(struct pci_dev *dev) 4158 { 4159 u16 ctrl; 4160 4161 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4162 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4163 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4164 4165 /* 4166 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4167 * this to 2ms to ensure that we meet the minimum requirement. 4168 */ 4169 msleep(2); 4170 4171 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4172 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4173 4174 /* 4175 * Trhfa for conventional PCI is 2^25 clock cycles. 4176 * Assuming a minimum 33MHz clock this results in a 1s 4177 * delay before we can consider subordinate devices to 4178 * be re-initialized. PCIe has some ways to shorten this, 4179 * but we don't make use of them yet. 4180 */ 4181 ssleep(1); 4182 } 4183 4184 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4185 { 4186 pci_reset_secondary_bus(dev); 4187 } 4188 4189 /** 4190 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4191 * @dev: Bridge device 4192 * 4193 * Use the bridge control register to assert reset on the secondary bus. 4194 * Devices on the secondary bus are left in power-on state. 4195 */ 4196 int pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4197 { 4198 pcibios_reset_secondary_bus(dev); 4199 4200 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4201 } 4202 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4203 4204 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4205 { 4206 struct pci_dev *pdev; 4207 4208 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4209 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4210 return -ENOTTY; 4211 4212 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4213 if (pdev != dev) 4214 return -ENOTTY; 4215 4216 if (probe) 4217 return 0; 4218 4219 pci_reset_bridge_secondary_bus(dev->bus->self); 4220 4221 return 0; 4222 } 4223 4224 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4225 { 4226 int rc = -ENOTTY; 4227 4228 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4229 return rc; 4230 4231 if (hotplug->ops->reset_slot) 4232 rc = hotplug->ops->reset_slot(hotplug, probe); 4233 4234 module_put(hotplug->ops->owner); 4235 4236 return rc; 4237 } 4238 4239 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4240 { 4241 struct pci_dev *pdev; 4242 4243 if (dev->subordinate || !dev->slot || 4244 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4245 return -ENOTTY; 4246 4247 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4248 if (pdev != dev && pdev->slot == dev->slot) 4249 return -ENOTTY; 4250 4251 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4252 } 4253 4254 static void pci_dev_lock(struct pci_dev *dev) 4255 { 4256 pci_cfg_access_lock(dev); 4257 /* block PM suspend, driver probe, etc. */ 4258 device_lock(&dev->dev); 4259 } 4260 4261 /* Return 1 on successful lock, 0 on contention */ 4262 static int pci_dev_trylock(struct pci_dev *dev) 4263 { 4264 if (pci_cfg_access_trylock(dev)) { 4265 if (device_trylock(&dev->dev)) 4266 return 1; 4267 pci_cfg_access_unlock(dev); 4268 } 4269 4270 return 0; 4271 } 4272 4273 static void pci_dev_unlock(struct pci_dev *dev) 4274 { 4275 device_unlock(&dev->dev); 4276 pci_cfg_access_unlock(dev); 4277 } 4278 4279 static void pci_dev_save_and_disable(struct pci_dev *dev) 4280 { 4281 const struct pci_error_handlers *err_handler = 4282 dev->driver ? dev->driver->err_handler : NULL; 4283 4284 /* 4285 * dev->driver->err_handler->reset_prepare() is protected against 4286 * races with ->remove() by the device lock, which must be held by 4287 * the caller. 4288 */ 4289 if (err_handler && err_handler->reset_prepare) 4290 err_handler->reset_prepare(dev); 4291 4292 /* 4293 * Wake-up device prior to save. PM registers default to D0 after 4294 * reset and a simple register restore doesn't reliably return 4295 * to a non-D0 state anyway. 4296 */ 4297 pci_set_power_state(dev, PCI_D0); 4298 4299 pci_save_state(dev); 4300 /* 4301 * Disable the device by clearing the Command register, except for 4302 * INTx-disable which is set. This not only disables MMIO and I/O port 4303 * BARs, but also prevents the device from being Bus Master, preventing 4304 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4305 * compliant devices, INTx-disable prevents legacy interrupts. 4306 */ 4307 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4308 } 4309 4310 static void pci_dev_restore(struct pci_dev *dev) 4311 { 4312 const struct pci_error_handlers *err_handler = 4313 dev->driver ? dev->driver->err_handler : NULL; 4314 4315 pci_restore_state(dev); 4316 4317 /* 4318 * dev->driver->err_handler->reset_done() is protected against 4319 * races with ->remove() by the device lock, which must be held by 4320 * the caller. 4321 */ 4322 if (err_handler && err_handler->reset_done) 4323 err_handler->reset_done(dev); 4324 } 4325 4326 /** 4327 * __pci_reset_function_locked - reset a PCI device function while holding 4328 * the @dev mutex lock. 4329 * @dev: PCI device to reset 4330 * 4331 * Some devices allow an individual function to be reset without affecting 4332 * other functions in the same device. The PCI device must be responsive 4333 * to PCI config space in order to use this function. 4334 * 4335 * The device function is presumed to be unused and the caller is holding 4336 * the device mutex lock when this function is called. 4337 * Resetting the device will make the contents of PCI configuration space 4338 * random, so any caller of this must be prepared to reinitialise the 4339 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4340 * etc. 4341 * 4342 * Returns 0 if the device function was successfully reset or negative if the 4343 * device doesn't support resetting a single function. 4344 */ 4345 int __pci_reset_function_locked(struct pci_dev *dev) 4346 { 4347 int rc; 4348 4349 might_sleep(); 4350 4351 /* 4352 * A reset method returns -ENOTTY if it doesn't support this device 4353 * and we should try the next method. 4354 * 4355 * If it returns 0 (success), we're finished. If it returns any 4356 * other error, we're also finished: this indicates that further 4357 * reset mechanisms might be broken on the device. 4358 */ 4359 rc = pci_dev_specific_reset(dev, 0); 4360 if (rc != -ENOTTY) 4361 return rc; 4362 if (pcie_has_flr(dev)) { 4363 rc = pcie_flr(dev); 4364 if (rc != -ENOTTY) 4365 return rc; 4366 } 4367 rc = pci_af_flr(dev, 0); 4368 if (rc != -ENOTTY) 4369 return rc; 4370 rc = pci_pm_reset(dev, 0); 4371 if (rc != -ENOTTY) 4372 return rc; 4373 rc = pci_dev_reset_slot_function(dev, 0); 4374 if (rc != -ENOTTY) 4375 return rc; 4376 return pci_parent_bus_reset(dev, 0); 4377 } 4378 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4379 4380 /** 4381 * pci_probe_reset_function - check whether the device can be safely reset 4382 * @dev: PCI device to reset 4383 * 4384 * Some devices allow an individual function to be reset without affecting 4385 * other functions in the same device. The PCI device must be responsive 4386 * to PCI config space in order to use this function. 4387 * 4388 * Returns 0 if the device function can be reset or negative if the 4389 * device doesn't support resetting a single function. 4390 */ 4391 int pci_probe_reset_function(struct pci_dev *dev) 4392 { 4393 int rc; 4394 4395 might_sleep(); 4396 4397 rc = pci_dev_specific_reset(dev, 1); 4398 if (rc != -ENOTTY) 4399 return rc; 4400 if (pcie_has_flr(dev)) 4401 return 0; 4402 rc = pci_af_flr(dev, 1); 4403 if (rc != -ENOTTY) 4404 return rc; 4405 rc = pci_pm_reset(dev, 1); 4406 if (rc != -ENOTTY) 4407 return rc; 4408 rc = pci_dev_reset_slot_function(dev, 1); 4409 if (rc != -ENOTTY) 4410 return rc; 4411 4412 return pci_parent_bus_reset(dev, 1); 4413 } 4414 4415 /** 4416 * pci_reset_function - quiesce and reset a PCI device function 4417 * @dev: PCI device to reset 4418 * 4419 * Some devices allow an individual function to be reset without affecting 4420 * other functions in the same device. The PCI device must be responsive 4421 * to PCI config space in order to use this function. 4422 * 4423 * This function does not just reset the PCI portion of a device, but 4424 * clears all the state associated with the device. This function differs 4425 * from __pci_reset_function_locked() in that it saves and restores device state 4426 * over the reset and takes the PCI device lock. 4427 * 4428 * Returns 0 if the device function was successfully reset or negative if the 4429 * device doesn't support resetting a single function. 4430 */ 4431 int pci_reset_function(struct pci_dev *dev) 4432 { 4433 int rc; 4434 4435 if (!dev->reset_fn) 4436 return -ENOTTY; 4437 4438 pci_dev_lock(dev); 4439 pci_dev_save_and_disable(dev); 4440 4441 rc = __pci_reset_function_locked(dev); 4442 4443 pci_dev_restore(dev); 4444 pci_dev_unlock(dev); 4445 4446 return rc; 4447 } 4448 EXPORT_SYMBOL_GPL(pci_reset_function); 4449 4450 /** 4451 * pci_reset_function_locked - quiesce and reset a PCI device function 4452 * @dev: PCI device to reset 4453 * 4454 * Some devices allow an individual function to be reset without affecting 4455 * other functions in the same device. The PCI device must be responsive 4456 * to PCI config space in order to use this function. 4457 * 4458 * This function does not just reset the PCI portion of a device, but 4459 * clears all the state associated with the device. This function differs 4460 * from __pci_reset_function_locked() in that it saves and restores device state 4461 * over the reset. It also differs from pci_reset_function() in that it 4462 * requires the PCI device lock to be held. 4463 * 4464 * Returns 0 if the device function was successfully reset or negative if the 4465 * device doesn't support resetting a single function. 4466 */ 4467 int pci_reset_function_locked(struct pci_dev *dev) 4468 { 4469 int rc; 4470 4471 if (!dev->reset_fn) 4472 return -ENOTTY; 4473 4474 pci_dev_save_and_disable(dev); 4475 4476 rc = __pci_reset_function_locked(dev); 4477 4478 pci_dev_restore(dev); 4479 4480 return rc; 4481 } 4482 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4483 4484 /** 4485 * pci_try_reset_function - quiesce and reset a PCI device function 4486 * @dev: PCI device to reset 4487 * 4488 * Same as above, except return -EAGAIN if unable to lock device. 4489 */ 4490 int pci_try_reset_function(struct pci_dev *dev) 4491 { 4492 int rc; 4493 4494 if (!dev->reset_fn) 4495 return -ENOTTY; 4496 4497 if (!pci_dev_trylock(dev)) 4498 return -EAGAIN; 4499 4500 pci_dev_save_and_disable(dev); 4501 rc = __pci_reset_function_locked(dev); 4502 pci_dev_restore(dev); 4503 pci_dev_unlock(dev); 4504 4505 return rc; 4506 } 4507 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4508 4509 /* Do any devices on or below this bus prevent a bus reset? */ 4510 static bool pci_bus_resetable(struct pci_bus *bus) 4511 { 4512 struct pci_dev *dev; 4513 4514 4515 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4516 return false; 4517 4518 list_for_each_entry(dev, &bus->devices, bus_list) { 4519 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4520 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4521 return false; 4522 } 4523 4524 return true; 4525 } 4526 4527 /* Lock devices from the top of the tree down */ 4528 static void pci_bus_lock(struct pci_bus *bus) 4529 { 4530 struct pci_dev *dev; 4531 4532 list_for_each_entry(dev, &bus->devices, bus_list) { 4533 pci_dev_lock(dev); 4534 if (dev->subordinate) 4535 pci_bus_lock(dev->subordinate); 4536 } 4537 } 4538 4539 /* Unlock devices from the bottom of the tree up */ 4540 static void pci_bus_unlock(struct pci_bus *bus) 4541 { 4542 struct pci_dev *dev; 4543 4544 list_for_each_entry(dev, &bus->devices, bus_list) { 4545 if (dev->subordinate) 4546 pci_bus_unlock(dev->subordinate); 4547 pci_dev_unlock(dev); 4548 } 4549 } 4550 4551 /* Return 1 on successful lock, 0 on contention */ 4552 static int pci_bus_trylock(struct pci_bus *bus) 4553 { 4554 struct pci_dev *dev; 4555 4556 list_for_each_entry(dev, &bus->devices, bus_list) { 4557 if (!pci_dev_trylock(dev)) 4558 goto unlock; 4559 if (dev->subordinate) { 4560 if (!pci_bus_trylock(dev->subordinate)) { 4561 pci_dev_unlock(dev); 4562 goto unlock; 4563 } 4564 } 4565 } 4566 return 1; 4567 4568 unlock: 4569 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4570 if (dev->subordinate) 4571 pci_bus_unlock(dev->subordinate); 4572 pci_dev_unlock(dev); 4573 } 4574 return 0; 4575 } 4576 4577 /* Do any devices on or below this slot prevent a bus reset? */ 4578 static bool pci_slot_resetable(struct pci_slot *slot) 4579 { 4580 struct pci_dev *dev; 4581 4582 if (slot->bus->self && 4583 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4584 return false; 4585 4586 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4587 if (!dev->slot || dev->slot != slot) 4588 continue; 4589 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4590 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4591 return false; 4592 } 4593 4594 return true; 4595 } 4596 4597 /* Lock devices from the top of the tree down */ 4598 static void pci_slot_lock(struct pci_slot *slot) 4599 { 4600 struct pci_dev *dev; 4601 4602 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4603 if (!dev->slot || dev->slot != slot) 4604 continue; 4605 pci_dev_lock(dev); 4606 if (dev->subordinate) 4607 pci_bus_lock(dev->subordinate); 4608 } 4609 } 4610 4611 /* Unlock devices from the bottom of the tree up */ 4612 static void pci_slot_unlock(struct pci_slot *slot) 4613 { 4614 struct pci_dev *dev; 4615 4616 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4617 if (!dev->slot || dev->slot != slot) 4618 continue; 4619 if (dev->subordinate) 4620 pci_bus_unlock(dev->subordinate); 4621 pci_dev_unlock(dev); 4622 } 4623 } 4624 4625 /* Return 1 on successful lock, 0 on contention */ 4626 static int pci_slot_trylock(struct pci_slot *slot) 4627 { 4628 struct pci_dev *dev; 4629 4630 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4631 if (!dev->slot || dev->slot != slot) 4632 continue; 4633 if (!pci_dev_trylock(dev)) 4634 goto unlock; 4635 if (dev->subordinate) { 4636 if (!pci_bus_trylock(dev->subordinate)) { 4637 pci_dev_unlock(dev); 4638 goto unlock; 4639 } 4640 } 4641 } 4642 return 1; 4643 4644 unlock: 4645 list_for_each_entry_continue_reverse(dev, 4646 &slot->bus->devices, bus_list) { 4647 if (!dev->slot || dev->slot != slot) 4648 continue; 4649 if (dev->subordinate) 4650 pci_bus_unlock(dev->subordinate); 4651 pci_dev_unlock(dev); 4652 } 4653 return 0; 4654 } 4655 4656 /* Save and disable devices from the top of the tree down */ 4657 static void pci_bus_save_and_disable(struct pci_bus *bus) 4658 { 4659 struct pci_dev *dev; 4660 4661 list_for_each_entry(dev, &bus->devices, bus_list) { 4662 pci_dev_lock(dev); 4663 pci_dev_save_and_disable(dev); 4664 pci_dev_unlock(dev); 4665 if (dev->subordinate) 4666 pci_bus_save_and_disable(dev->subordinate); 4667 } 4668 } 4669 4670 /* 4671 * Restore devices from top of the tree down - parent bridges need to be 4672 * restored before we can get to subordinate devices. 4673 */ 4674 static void pci_bus_restore(struct pci_bus *bus) 4675 { 4676 struct pci_dev *dev; 4677 4678 list_for_each_entry(dev, &bus->devices, bus_list) { 4679 pci_dev_lock(dev); 4680 pci_dev_restore(dev); 4681 pci_dev_unlock(dev); 4682 if (dev->subordinate) 4683 pci_bus_restore(dev->subordinate); 4684 } 4685 } 4686 4687 /* Save and disable devices from the top of the tree down */ 4688 static void pci_slot_save_and_disable(struct pci_slot *slot) 4689 { 4690 struct pci_dev *dev; 4691 4692 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4693 if (!dev->slot || dev->slot != slot) 4694 continue; 4695 pci_dev_save_and_disable(dev); 4696 if (dev->subordinate) 4697 pci_bus_save_and_disable(dev->subordinate); 4698 } 4699 } 4700 4701 /* 4702 * Restore devices from top of the tree down - parent bridges need to be 4703 * restored before we can get to subordinate devices. 4704 */ 4705 static void pci_slot_restore(struct pci_slot *slot) 4706 { 4707 struct pci_dev *dev; 4708 4709 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4710 if (!dev->slot || dev->slot != slot) 4711 continue; 4712 pci_dev_lock(dev); 4713 pci_dev_restore(dev); 4714 pci_dev_unlock(dev); 4715 if (dev->subordinate) 4716 pci_bus_restore(dev->subordinate); 4717 } 4718 } 4719 4720 static int pci_slot_reset(struct pci_slot *slot, int probe) 4721 { 4722 int rc; 4723 4724 if (!slot || !pci_slot_resetable(slot)) 4725 return -ENOTTY; 4726 4727 if (!probe) 4728 pci_slot_lock(slot); 4729 4730 might_sleep(); 4731 4732 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4733 4734 if (!probe) 4735 pci_slot_unlock(slot); 4736 4737 return rc; 4738 } 4739 4740 /** 4741 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4742 * @slot: PCI slot to probe 4743 * 4744 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4745 */ 4746 int pci_probe_reset_slot(struct pci_slot *slot) 4747 { 4748 return pci_slot_reset(slot, 1); 4749 } 4750 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4751 4752 /** 4753 * pci_reset_slot - reset a PCI slot 4754 * @slot: PCI slot to reset 4755 * 4756 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4757 * independent of other slots. For instance, some slots may support slot power 4758 * control. In the case of a 1:1 bus to slot architecture, this function may 4759 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4760 * Generally a slot reset should be attempted before a bus reset. All of the 4761 * function of the slot and any subordinate buses behind the slot are reset 4762 * through this function. PCI config space of all devices in the slot and 4763 * behind the slot is saved before and restored after reset. 4764 * 4765 * Return 0 on success, non-zero on error. 4766 */ 4767 int pci_reset_slot(struct pci_slot *slot) 4768 { 4769 int rc; 4770 4771 rc = pci_slot_reset(slot, 1); 4772 if (rc) 4773 return rc; 4774 4775 pci_slot_save_and_disable(slot); 4776 4777 rc = pci_slot_reset(slot, 0); 4778 4779 pci_slot_restore(slot); 4780 4781 return rc; 4782 } 4783 EXPORT_SYMBOL_GPL(pci_reset_slot); 4784 4785 /** 4786 * pci_try_reset_slot - Try to reset a PCI slot 4787 * @slot: PCI slot to reset 4788 * 4789 * Same as above except return -EAGAIN if the slot cannot be locked 4790 */ 4791 int pci_try_reset_slot(struct pci_slot *slot) 4792 { 4793 int rc; 4794 4795 rc = pci_slot_reset(slot, 1); 4796 if (rc) 4797 return rc; 4798 4799 pci_slot_save_and_disable(slot); 4800 4801 if (pci_slot_trylock(slot)) { 4802 might_sleep(); 4803 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4804 pci_slot_unlock(slot); 4805 } else 4806 rc = -EAGAIN; 4807 4808 pci_slot_restore(slot); 4809 4810 return rc; 4811 } 4812 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4813 4814 static int pci_bus_reset(struct pci_bus *bus, int probe) 4815 { 4816 if (!bus->self || !pci_bus_resetable(bus)) 4817 return -ENOTTY; 4818 4819 if (probe) 4820 return 0; 4821 4822 pci_bus_lock(bus); 4823 4824 might_sleep(); 4825 4826 pci_reset_bridge_secondary_bus(bus->self); 4827 4828 pci_bus_unlock(bus); 4829 4830 return 0; 4831 } 4832 4833 /** 4834 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4835 * @bus: PCI bus to probe 4836 * 4837 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4838 */ 4839 int pci_probe_reset_bus(struct pci_bus *bus) 4840 { 4841 return pci_bus_reset(bus, 1); 4842 } 4843 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4844 4845 /** 4846 * pci_reset_bus - reset a PCI bus 4847 * @bus: top level PCI bus to reset 4848 * 4849 * Do a bus reset on the given bus and any subordinate buses, saving 4850 * and restoring state of all devices. 4851 * 4852 * Return 0 on success, non-zero on error. 4853 */ 4854 int pci_reset_bus(struct pci_bus *bus) 4855 { 4856 int rc; 4857 4858 rc = pci_bus_reset(bus, 1); 4859 if (rc) 4860 return rc; 4861 4862 pci_bus_save_and_disable(bus); 4863 4864 rc = pci_bus_reset(bus, 0); 4865 4866 pci_bus_restore(bus); 4867 4868 return rc; 4869 } 4870 EXPORT_SYMBOL_GPL(pci_reset_bus); 4871 4872 /** 4873 * pci_try_reset_bus - Try to reset a PCI bus 4874 * @bus: top level PCI bus to reset 4875 * 4876 * Same as above except return -EAGAIN if the bus cannot be locked 4877 */ 4878 int pci_try_reset_bus(struct pci_bus *bus) 4879 { 4880 int rc; 4881 4882 rc = pci_bus_reset(bus, 1); 4883 if (rc) 4884 return rc; 4885 4886 pci_bus_save_and_disable(bus); 4887 4888 if (pci_bus_trylock(bus)) { 4889 might_sleep(); 4890 pci_reset_bridge_secondary_bus(bus->self); 4891 pci_bus_unlock(bus); 4892 } else 4893 rc = -EAGAIN; 4894 4895 pci_bus_restore(bus); 4896 4897 return rc; 4898 } 4899 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4900 4901 /** 4902 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4903 * @dev: PCI device to query 4904 * 4905 * Returns mmrbc: maximum designed memory read count in bytes 4906 * or appropriate error value. 4907 */ 4908 int pcix_get_max_mmrbc(struct pci_dev *dev) 4909 { 4910 int cap; 4911 u32 stat; 4912 4913 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4914 if (!cap) 4915 return -EINVAL; 4916 4917 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4918 return -EINVAL; 4919 4920 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4921 } 4922 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4923 4924 /** 4925 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4926 * @dev: PCI device to query 4927 * 4928 * Returns mmrbc: maximum memory read count in bytes 4929 * or appropriate error value. 4930 */ 4931 int pcix_get_mmrbc(struct pci_dev *dev) 4932 { 4933 int cap; 4934 u16 cmd; 4935 4936 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4937 if (!cap) 4938 return -EINVAL; 4939 4940 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4941 return -EINVAL; 4942 4943 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4944 } 4945 EXPORT_SYMBOL(pcix_get_mmrbc); 4946 4947 /** 4948 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4949 * @dev: PCI device to query 4950 * @mmrbc: maximum memory read count in bytes 4951 * valid values are 512, 1024, 2048, 4096 4952 * 4953 * If possible sets maximum memory read byte count, some bridges have erratas 4954 * that prevent this. 4955 */ 4956 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4957 { 4958 int cap; 4959 u32 stat, v, o; 4960 u16 cmd; 4961 4962 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4963 return -EINVAL; 4964 4965 v = ffs(mmrbc) - 10; 4966 4967 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4968 if (!cap) 4969 return -EINVAL; 4970 4971 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4972 return -EINVAL; 4973 4974 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4975 return -E2BIG; 4976 4977 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4978 return -EINVAL; 4979 4980 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4981 if (o != v) { 4982 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4983 return -EIO; 4984 4985 cmd &= ~PCI_X_CMD_MAX_READ; 4986 cmd |= v << 2; 4987 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4988 return -EIO; 4989 } 4990 return 0; 4991 } 4992 EXPORT_SYMBOL(pcix_set_mmrbc); 4993 4994 /** 4995 * pcie_get_readrq - get PCI Express read request size 4996 * @dev: PCI device to query 4997 * 4998 * Returns maximum memory read request in bytes 4999 * or appropriate error value. 5000 */ 5001 int pcie_get_readrq(struct pci_dev *dev) 5002 { 5003 u16 ctl; 5004 5005 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5006 5007 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5008 } 5009 EXPORT_SYMBOL(pcie_get_readrq); 5010 5011 /** 5012 * pcie_set_readrq - set PCI Express maximum memory read request 5013 * @dev: PCI device to query 5014 * @rq: maximum memory read count in bytes 5015 * valid values are 128, 256, 512, 1024, 2048, 4096 5016 * 5017 * If possible sets maximum memory read request in bytes 5018 */ 5019 int pcie_set_readrq(struct pci_dev *dev, int rq) 5020 { 5021 u16 v; 5022 5023 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5024 return -EINVAL; 5025 5026 /* 5027 * If using the "performance" PCIe config, we clamp the 5028 * read rq size to the max packet size to prevent the 5029 * host bridge generating requests larger than we can 5030 * cope with 5031 */ 5032 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5033 int mps = pcie_get_mps(dev); 5034 5035 if (mps < rq) 5036 rq = mps; 5037 } 5038 5039 v = (ffs(rq) - 8) << 12; 5040 5041 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5042 PCI_EXP_DEVCTL_READRQ, v); 5043 } 5044 EXPORT_SYMBOL(pcie_set_readrq); 5045 5046 /** 5047 * pcie_get_mps - get PCI Express maximum payload size 5048 * @dev: PCI device to query 5049 * 5050 * Returns maximum payload size in bytes 5051 */ 5052 int pcie_get_mps(struct pci_dev *dev) 5053 { 5054 u16 ctl; 5055 5056 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5057 5058 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5059 } 5060 EXPORT_SYMBOL(pcie_get_mps); 5061 5062 /** 5063 * pcie_set_mps - set PCI Express maximum payload size 5064 * @dev: PCI device to query 5065 * @mps: maximum payload size in bytes 5066 * valid values are 128, 256, 512, 1024, 2048, 4096 5067 * 5068 * If possible sets maximum payload size 5069 */ 5070 int pcie_set_mps(struct pci_dev *dev, int mps) 5071 { 5072 u16 v; 5073 5074 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5075 return -EINVAL; 5076 5077 v = ffs(mps) - 8; 5078 if (v > dev->pcie_mpss) 5079 return -EINVAL; 5080 v <<= 5; 5081 5082 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5083 PCI_EXP_DEVCTL_PAYLOAD, v); 5084 } 5085 EXPORT_SYMBOL(pcie_set_mps); 5086 5087 /** 5088 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5089 * @dev: PCI device to query 5090 * @speed: storage for minimum speed 5091 * @width: storage for minimum width 5092 * 5093 * This function will walk up the PCI device chain and determine the minimum 5094 * link width and speed of the device. 5095 */ 5096 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5097 enum pcie_link_width *width) 5098 { 5099 int ret; 5100 5101 *speed = PCI_SPEED_UNKNOWN; 5102 *width = PCIE_LNK_WIDTH_UNKNOWN; 5103 5104 while (dev) { 5105 u16 lnksta; 5106 enum pci_bus_speed next_speed; 5107 enum pcie_link_width next_width; 5108 5109 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5110 if (ret) 5111 return ret; 5112 5113 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5114 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5115 PCI_EXP_LNKSTA_NLW_SHIFT; 5116 5117 if (next_speed < *speed) 5118 *speed = next_speed; 5119 5120 if (next_width < *width) 5121 *width = next_width; 5122 5123 dev = dev->bus->self; 5124 } 5125 5126 return 0; 5127 } 5128 EXPORT_SYMBOL(pcie_get_minimum_link); 5129 5130 /** 5131 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5132 * device and its bandwidth limitation 5133 * @dev: PCI device to query 5134 * @limiting_dev: storage for device causing the bandwidth limitation 5135 * @speed: storage for speed of limiting device 5136 * @width: storage for width of limiting device 5137 * 5138 * Walk up the PCI device chain and find the point where the minimum 5139 * bandwidth is available. Return the bandwidth available there and (if 5140 * limiting_dev, speed, and width pointers are supplied) information about 5141 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5142 * raw bandwidth. 5143 */ 5144 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5145 enum pci_bus_speed *speed, 5146 enum pcie_link_width *width) 5147 { 5148 u16 lnksta; 5149 enum pci_bus_speed next_speed; 5150 enum pcie_link_width next_width; 5151 u32 bw, next_bw; 5152 5153 if (speed) 5154 *speed = PCI_SPEED_UNKNOWN; 5155 if (width) 5156 *width = PCIE_LNK_WIDTH_UNKNOWN; 5157 5158 bw = 0; 5159 5160 while (dev) { 5161 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5162 5163 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5164 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5165 PCI_EXP_LNKSTA_NLW_SHIFT; 5166 5167 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5168 5169 /* Check if current device limits the total bandwidth */ 5170 if (!bw || next_bw <= bw) { 5171 bw = next_bw; 5172 5173 if (limiting_dev) 5174 *limiting_dev = dev; 5175 if (speed) 5176 *speed = next_speed; 5177 if (width) 5178 *width = next_width; 5179 } 5180 5181 dev = pci_upstream_bridge(dev); 5182 } 5183 5184 return bw; 5185 } 5186 EXPORT_SYMBOL(pcie_bandwidth_available); 5187 5188 /** 5189 * pcie_get_speed_cap - query for the PCI device's link speed capability 5190 * @dev: PCI device to query 5191 * 5192 * Query the PCI device speed capability. Return the maximum link speed 5193 * supported by the device. 5194 */ 5195 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5196 { 5197 u32 lnkcap2, lnkcap; 5198 5199 /* 5200 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link 5201 * Speeds Vector in Link Capabilities 2 when supported, falling 5202 * back to Max Link Speed in Link Capabilities otherwise. 5203 */ 5204 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5205 if (lnkcap2) { /* PCIe r3.0-compliant */ 5206 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5207 return PCIE_SPEED_16_0GT; 5208 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5209 return PCIE_SPEED_8_0GT; 5210 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5211 return PCIE_SPEED_5_0GT; 5212 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5213 return PCIE_SPEED_2_5GT; 5214 return PCI_SPEED_UNKNOWN; 5215 } 5216 5217 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5218 if (lnkcap) { 5219 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB) 5220 return PCIE_SPEED_16_0GT; 5221 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB) 5222 return PCIE_SPEED_8_0GT; 5223 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB) 5224 return PCIE_SPEED_5_0GT; 5225 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB) 5226 return PCIE_SPEED_2_5GT; 5227 } 5228 5229 return PCI_SPEED_UNKNOWN; 5230 } 5231 5232 /** 5233 * pcie_get_width_cap - query for the PCI device's link width capability 5234 * @dev: PCI device to query 5235 * 5236 * Query the PCI device width capability. Return the maximum link width 5237 * supported by the device. 5238 */ 5239 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5240 { 5241 u32 lnkcap; 5242 5243 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5244 if (lnkcap) 5245 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5246 5247 return PCIE_LNK_WIDTH_UNKNOWN; 5248 } 5249 5250 /** 5251 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5252 * @dev: PCI device 5253 * @speed: storage for link speed 5254 * @width: storage for link width 5255 * 5256 * Calculate a PCI device's link bandwidth by querying for its link speed 5257 * and width, multiplying them, and applying encoding overhead. The result 5258 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5259 */ 5260 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5261 enum pcie_link_width *width) 5262 { 5263 *speed = pcie_get_speed_cap(dev); 5264 *width = pcie_get_width_cap(dev); 5265 5266 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5267 return 0; 5268 5269 return *width * PCIE_SPEED2MBS_ENC(*speed); 5270 } 5271 5272 /** 5273 * pcie_print_link_status - Report the PCI device's link speed and width 5274 * @dev: PCI device to query 5275 * 5276 * Report the available bandwidth at the device. If this is less than the 5277 * device is capable of, report the device's maximum possible bandwidth and 5278 * the upstream link that limits its performance to less than that. 5279 */ 5280 void pcie_print_link_status(struct pci_dev *dev) 5281 { 5282 enum pcie_link_width width, width_cap; 5283 enum pci_bus_speed speed, speed_cap; 5284 struct pci_dev *limiting_dev = NULL; 5285 u32 bw_avail, bw_cap; 5286 5287 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5288 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5289 5290 if (bw_avail >= bw_cap) 5291 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5292 bw_cap / 1000, bw_cap % 1000, 5293 PCIE_SPEED2STR(speed_cap), width_cap); 5294 else 5295 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5296 bw_avail / 1000, bw_avail % 1000, 5297 PCIE_SPEED2STR(speed), width, 5298 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5299 bw_cap / 1000, bw_cap % 1000, 5300 PCIE_SPEED2STR(speed_cap), width_cap); 5301 } 5302 EXPORT_SYMBOL(pcie_print_link_status); 5303 5304 /** 5305 * pci_select_bars - Make BAR mask from the type of resource 5306 * @dev: the PCI device for which BAR mask is made 5307 * @flags: resource type mask to be selected 5308 * 5309 * This helper routine makes bar mask from the type of resource. 5310 */ 5311 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5312 { 5313 int i, bars = 0; 5314 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5315 if (pci_resource_flags(dev, i) & flags) 5316 bars |= (1 << i); 5317 return bars; 5318 } 5319 EXPORT_SYMBOL(pci_select_bars); 5320 5321 /* Some architectures require additional programming to enable VGA */ 5322 static arch_set_vga_state_t arch_set_vga_state; 5323 5324 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5325 { 5326 arch_set_vga_state = func; /* NULL disables */ 5327 } 5328 5329 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5330 unsigned int command_bits, u32 flags) 5331 { 5332 if (arch_set_vga_state) 5333 return arch_set_vga_state(dev, decode, command_bits, 5334 flags); 5335 return 0; 5336 } 5337 5338 /** 5339 * pci_set_vga_state - set VGA decode state on device and parents if requested 5340 * @dev: the PCI device 5341 * @decode: true = enable decoding, false = disable decoding 5342 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5343 * @flags: traverse ancestors and change bridges 5344 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5345 */ 5346 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5347 unsigned int command_bits, u32 flags) 5348 { 5349 struct pci_bus *bus; 5350 struct pci_dev *bridge; 5351 u16 cmd; 5352 int rc; 5353 5354 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5355 5356 /* ARCH specific VGA enables */ 5357 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5358 if (rc) 5359 return rc; 5360 5361 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5362 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5363 if (decode == true) 5364 cmd |= command_bits; 5365 else 5366 cmd &= ~command_bits; 5367 pci_write_config_word(dev, PCI_COMMAND, cmd); 5368 } 5369 5370 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5371 return 0; 5372 5373 bus = dev->bus; 5374 while (bus) { 5375 bridge = bus->self; 5376 if (bridge) { 5377 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5378 &cmd); 5379 if (decode == true) 5380 cmd |= PCI_BRIDGE_CTL_VGA; 5381 else 5382 cmd &= ~PCI_BRIDGE_CTL_VGA; 5383 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5384 cmd); 5385 } 5386 bus = bus->parent; 5387 } 5388 return 0; 5389 } 5390 5391 /** 5392 * pci_add_dma_alias - Add a DMA devfn alias for a device 5393 * @dev: the PCI device for which alias is added 5394 * @devfn: alias slot and function 5395 * 5396 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5397 * It should be called early, preferably as PCI fixup header quirk. 5398 */ 5399 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5400 { 5401 if (!dev->dma_alias_mask) 5402 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5403 sizeof(long), GFP_KERNEL); 5404 if (!dev->dma_alias_mask) { 5405 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5406 return; 5407 } 5408 5409 set_bit(devfn, dev->dma_alias_mask); 5410 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5411 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5412 } 5413 5414 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5415 { 5416 return (dev1->dma_alias_mask && 5417 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5418 (dev2->dma_alias_mask && 5419 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5420 } 5421 5422 bool pci_device_is_present(struct pci_dev *pdev) 5423 { 5424 u32 v; 5425 5426 if (pci_dev_is_disconnected(pdev)) 5427 return false; 5428 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5429 } 5430 EXPORT_SYMBOL_GPL(pci_device_is_present); 5431 5432 void pci_ignore_hotplug(struct pci_dev *dev) 5433 { 5434 struct pci_dev *bridge = dev->bus->self; 5435 5436 dev->ignore_hotplug = 1; 5437 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5438 if (bridge) 5439 bridge->ignore_hotplug = 1; 5440 } 5441 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5442 5443 resource_size_t __weak pcibios_default_alignment(void) 5444 { 5445 return 0; 5446 } 5447 5448 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5449 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5450 static DEFINE_SPINLOCK(resource_alignment_lock); 5451 5452 /** 5453 * pci_specified_resource_alignment - get resource alignment specified by user. 5454 * @dev: the PCI device to get 5455 * @resize: whether or not to change resources' size when reassigning alignment 5456 * 5457 * RETURNS: Resource alignment if it is specified. 5458 * Zero if it is not specified. 5459 */ 5460 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5461 bool *resize) 5462 { 5463 int seg, bus, slot, func, align_order, count; 5464 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5465 resource_size_t align = pcibios_default_alignment(); 5466 char *p; 5467 5468 spin_lock(&resource_alignment_lock); 5469 p = resource_alignment_param; 5470 if (!*p && !align) 5471 goto out; 5472 if (pci_has_flag(PCI_PROBE_ONLY)) { 5473 align = 0; 5474 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5475 goto out; 5476 } 5477 5478 while (*p) { 5479 count = 0; 5480 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5481 p[count] == '@') { 5482 p += count + 1; 5483 } else { 5484 align_order = -1; 5485 } 5486 if (strncmp(p, "pci:", 4) == 0) { 5487 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5488 p += 4; 5489 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5490 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5491 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5492 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5493 p); 5494 break; 5495 } 5496 subsystem_vendor = subsystem_device = 0; 5497 } 5498 p += count; 5499 if ((!vendor || (vendor == dev->vendor)) && 5500 (!device || (device == dev->device)) && 5501 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5502 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5503 *resize = true; 5504 if (align_order == -1) 5505 align = PAGE_SIZE; 5506 else 5507 align = 1 << align_order; 5508 /* Found */ 5509 break; 5510 } 5511 } 5512 else { 5513 if (sscanf(p, "%x:%x:%x.%x%n", 5514 &seg, &bus, &slot, &func, &count) != 4) { 5515 seg = 0; 5516 if (sscanf(p, "%x:%x.%x%n", 5517 &bus, &slot, &func, &count) != 3) { 5518 /* Invalid format */ 5519 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5520 p); 5521 break; 5522 } 5523 } 5524 p += count; 5525 if (seg == pci_domain_nr(dev->bus) && 5526 bus == dev->bus->number && 5527 slot == PCI_SLOT(dev->devfn) && 5528 func == PCI_FUNC(dev->devfn)) { 5529 *resize = true; 5530 if (align_order == -1) 5531 align = PAGE_SIZE; 5532 else 5533 align = 1 << align_order; 5534 /* Found */ 5535 break; 5536 } 5537 } 5538 if (*p != ';' && *p != ',') { 5539 /* End of param or invalid format */ 5540 break; 5541 } 5542 p++; 5543 } 5544 out: 5545 spin_unlock(&resource_alignment_lock); 5546 return align; 5547 } 5548 5549 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5550 resource_size_t align, bool resize) 5551 { 5552 struct resource *r = &dev->resource[bar]; 5553 resource_size_t size; 5554 5555 if (!(r->flags & IORESOURCE_MEM)) 5556 return; 5557 5558 if (r->flags & IORESOURCE_PCI_FIXED) { 5559 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5560 bar, r, (unsigned long long)align); 5561 return; 5562 } 5563 5564 size = resource_size(r); 5565 if (size >= align) 5566 return; 5567 5568 /* 5569 * Increase the alignment of the resource. There are two ways we 5570 * can do this: 5571 * 5572 * 1) Increase the size of the resource. BARs are aligned on their 5573 * size, so when we reallocate space for this resource, we'll 5574 * allocate it with the larger alignment. This also prevents 5575 * assignment of any other BARs inside the alignment region, so 5576 * if we're requesting page alignment, this means no other BARs 5577 * will share the page. 5578 * 5579 * The disadvantage is that this makes the resource larger than 5580 * the hardware BAR, which may break drivers that compute things 5581 * based on the resource size, e.g., to find registers at a 5582 * fixed offset before the end of the BAR. 5583 * 5584 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5585 * set r->start to the desired alignment. By itself this 5586 * doesn't prevent other BARs being put inside the alignment 5587 * region, but if we realign *every* resource of every device in 5588 * the system, none of them will share an alignment region. 5589 * 5590 * When the user has requested alignment for only some devices via 5591 * the "pci=resource_alignment" argument, "resize" is true and we 5592 * use the first method. Otherwise we assume we're aligning all 5593 * devices and we use the second. 5594 */ 5595 5596 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5597 bar, r, (unsigned long long)align); 5598 5599 if (resize) { 5600 r->start = 0; 5601 r->end = align - 1; 5602 } else { 5603 r->flags &= ~IORESOURCE_SIZEALIGN; 5604 r->flags |= IORESOURCE_STARTALIGN; 5605 r->start = align; 5606 r->end = r->start + size - 1; 5607 } 5608 r->flags |= IORESOURCE_UNSET; 5609 } 5610 5611 /* 5612 * This function disables memory decoding and releases memory resources 5613 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5614 * It also rounds up size to specified alignment. 5615 * Later on, the kernel will assign page-aligned memory resource back 5616 * to the device. 5617 */ 5618 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5619 { 5620 int i; 5621 struct resource *r; 5622 resource_size_t align; 5623 u16 command; 5624 bool resize = false; 5625 5626 /* 5627 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5628 * 3.4.1.11. Their resources are allocated from the space 5629 * described by the VF BARx register in the PF's SR-IOV capability. 5630 * We can't influence their alignment here. 5631 */ 5632 if (dev->is_virtfn) 5633 return; 5634 5635 /* check if specified PCI is target device to reassign */ 5636 align = pci_specified_resource_alignment(dev, &resize); 5637 if (!align) 5638 return; 5639 5640 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5641 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5642 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5643 return; 5644 } 5645 5646 pci_read_config_word(dev, PCI_COMMAND, &command); 5647 command &= ~PCI_COMMAND_MEMORY; 5648 pci_write_config_word(dev, PCI_COMMAND, command); 5649 5650 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5651 pci_request_resource_alignment(dev, i, align, resize); 5652 5653 /* 5654 * Need to disable bridge's resource window, 5655 * to enable the kernel to reassign new resource 5656 * window later on. 5657 */ 5658 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5659 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5660 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5661 r = &dev->resource[i]; 5662 if (!(r->flags & IORESOURCE_MEM)) 5663 continue; 5664 r->flags |= IORESOURCE_UNSET; 5665 r->end = resource_size(r) - 1; 5666 r->start = 0; 5667 } 5668 pci_disable_bridge_window(dev); 5669 } 5670 } 5671 5672 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5673 { 5674 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5675 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5676 spin_lock(&resource_alignment_lock); 5677 strncpy(resource_alignment_param, buf, count); 5678 resource_alignment_param[count] = '\0'; 5679 spin_unlock(&resource_alignment_lock); 5680 return count; 5681 } 5682 5683 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5684 { 5685 size_t count; 5686 spin_lock(&resource_alignment_lock); 5687 count = snprintf(buf, size, "%s", resource_alignment_param); 5688 spin_unlock(&resource_alignment_lock); 5689 return count; 5690 } 5691 5692 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5693 { 5694 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5695 } 5696 5697 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5698 const char *buf, size_t count) 5699 { 5700 return pci_set_resource_alignment_param(buf, count); 5701 } 5702 5703 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5704 pci_resource_alignment_store); 5705 5706 static int __init pci_resource_alignment_sysfs_init(void) 5707 { 5708 return bus_create_file(&pci_bus_type, 5709 &bus_attr_resource_alignment); 5710 } 5711 late_initcall(pci_resource_alignment_sysfs_init); 5712 5713 static void pci_no_domains(void) 5714 { 5715 #ifdef CONFIG_PCI_DOMAINS 5716 pci_domains_supported = 0; 5717 #endif 5718 } 5719 5720 #ifdef CONFIG_PCI_DOMAINS 5721 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5722 5723 int pci_get_new_domain_nr(void) 5724 { 5725 return atomic_inc_return(&__domain_nr); 5726 } 5727 5728 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5729 static int of_pci_bus_find_domain_nr(struct device *parent) 5730 { 5731 static int use_dt_domains = -1; 5732 int domain = -1; 5733 5734 if (parent) 5735 domain = of_get_pci_domain_nr(parent->of_node); 5736 /* 5737 * Check DT domain and use_dt_domains values. 5738 * 5739 * If DT domain property is valid (domain >= 0) and 5740 * use_dt_domains != 0, the DT assignment is valid since this means 5741 * we have not previously allocated a domain number by using 5742 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5743 * 1, to indicate that we have just assigned a domain number from 5744 * DT. 5745 * 5746 * If DT domain property value is not valid (ie domain < 0), and we 5747 * have not previously assigned a domain number from DT 5748 * (use_dt_domains != 1) we should assign a domain number by 5749 * using the: 5750 * 5751 * pci_get_new_domain_nr() 5752 * 5753 * API and update the use_dt_domains value to keep track of method we 5754 * are using to assign domain numbers (use_dt_domains = 0). 5755 * 5756 * All other combinations imply we have a platform that is trying 5757 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5758 * which is a recipe for domain mishandling and it is prevented by 5759 * invalidating the domain value (domain = -1) and printing a 5760 * corresponding error. 5761 */ 5762 if (domain >= 0 && use_dt_domains) { 5763 use_dt_domains = 1; 5764 } else if (domain < 0 && use_dt_domains != 1) { 5765 use_dt_domains = 0; 5766 domain = pci_get_new_domain_nr(); 5767 } else { 5768 if (parent) 5769 pr_err("Node %pOF has ", parent->of_node); 5770 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 5771 domain = -1; 5772 } 5773 5774 return domain; 5775 } 5776 5777 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5778 { 5779 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5780 acpi_pci_bus_find_domain_nr(bus); 5781 } 5782 #endif 5783 #endif 5784 5785 /** 5786 * pci_ext_cfg_avail - can we access extended PCI config space? 5787 * 5788 * Returns 1 if we can access PCI extended config space (offsets 5789 * greater than 0xff). This is the default implementation. Architecture 5790 * implementations can override this. 5791 */ 5792 int __weak pci_ext_cfg_avail(void) 5793 { 5794 return 1; 5795 } 5796 5797 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5798 { 5799 } 5800 EXPORT_SYMBOL(pci_fixup_cardbus); 5801 5802 static int __init pci_setup(char *str) 5803 { 5804 while (str) { 5805 char *k = strchr(str, ','); 5806 if (k) 5807 *k++ = 0; 5808 if (*str && (str = pcibios_setup(str)) && *str) { 5809 if (!strcmp(str, "nomsi")) { 5810 pci_no_msi(); 5811 } else if (!strcmp(str, "noaer")) { 5812 pci_no_aer(); 5813 } else if (!strncmp(str, "realloc=", 8)) { 5814 pci_realloc_get_opt(str + 8); 5815 } else if (!strncmp(str, "realloc", 7)) { 5816 pci_realloc_get_opt("on"); 5817 } else if (!strcmp(str, "nodomains")) { 5818 pci_no_domains(); 5819 } else if (!strncmp(str, "noari", 5)) { 5820 pcie_ari_disabled = true; 5821 } else if (!strncmp(str, "cbiosize=", 9)) { 5822 pci_cardbus_io_size = memparse(str + 9, &str); 5823 } else if (!strncmp(str, "cbmemsize=", 10)) { 5824 pci_cardbus_mem_size = memparse(str + 10, &str); 5825 } else if (!strncmp(str, "resource_alignment=", 19)) { 5826 pci_set_resource_alignment_param(str + 19, 5827 strlen(str + 19)); 5828 } else if (!strncmp(str, "ecrc=", 5)) { 5829 pcie_ecrc_get_policy(str + 5); 5830 } else if (!strncmp(str, "hpiosize=", 9)) { 5831 pci_hotplug_io_size = memparse(str + 9, &str); 5832 } else if (!strncmp(str, "hpmemsize=", 10)) { 5833 pci_hotplug_mem_size = memparse(str + 10, &str); 5834 } else if (!strncmp(str, "hpbussize=", 10)) { 5835 pci_hotplug_bus_size = 5836 simple_strtoul(str + 10, &str, 0); 5837 if (pci_hotplug_bus_size > 0xff) 5838 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5839 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5840 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5841 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5842 pcie_bus_config = PCIE_BUS_SAFE; 5843 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5844 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5845 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5846 pcie_bus_config = PCIE_BUS_PEER2PEER; 5847 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5848 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5849 } else { 5850 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5851 str); 5852 } 5853 } 5854 str = k; 5855 } 5856 return 0; 5857 } 5858 early_param("pci", pci_setup); 5859