xref: /linux/drivers/pci/pci.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3_delay;
68 
69 	if (delay < pci_pm_d3_delay)
70 		delay = pci_pm_d3_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
78 #endif
79 
80 #define DEFAULT_CARDBUS_IO_SIZE		(256)
81 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 
86 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 
92 #define DEFAULT_HOTPLUG_BUS_SIZE	1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
96 
97 /*
98  * The default CLS is used if arch didn't set CLS explicitly and not
99  * all pci devices agree on the same value.  Arch can override either
100  * the dfl or actual value as it sees fit.  Don't forget this is
101  * measured in 32-bit words, not bytes.
102  */
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
105 
106 /*
107  * If we set up a device for bus mastering, we need to check the latency
108  * timer as certain BIOSes forget to set it properly.
109  */
110 unsigned int pcibios_max_latency = 255;
111 
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
114 
115 /* Disable bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_disable;
117 /* Force bridge_d3 for all PCIe ports */
118 static bool pci_bridge_d3_force;
119 
120 static int __init pcie_port_pm_setup(char *str)
121 {
122 	if (!strcmp(str, "off"))
123 		pci_bridge_d3_disable = true;
124 	else if (!strcmp(str, "force"))
125 		pci_bridge_d3_force = true;
126 	return 1;
127 }
128 __setup("pcie_port_pm=", pcie_port_pm_setup);
129 
130 /* Time to wait after a reset for device to become responsive */
131 #define PCIE_RESET_READY_POLL_MS 60000
132 
133 /**
134  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
135  * @bus: pointer to PCI bus structure to search
136  *
137  * Given a PCI bus, returns the highest PCI bus number present in the set
138  * including the given PCI bus and its list of child PCI buses.
139  */
140 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
141 {
142 	struct pci_bus *tmp;
143 	unsigned char max, n;
144 
145 	max = bus->busn_res.end;
146 	list_for_each_entry(tmp, &bus->children, node) {
147 		n = pci_bus_max_busnr(tmp);
148 		if (n > max)
149 			max = n;
150 	}
151 	return max;
152 }
153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
154 
155 #ifdef CONFIG_HAS_IOMEM
156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
157 {
158 	struct resource *res = &pdev->resource[bar];
159 
160 	/*
161 	 * Make sure the BAR is actually a memory resource, not an IO resource
162 	 */
163 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
164 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
165 		return NULL;
166 	}
167 	return ioremap_nocache(res->start, resource_size(res));
168 }
169 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
170 
171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
172 {
173 	/*
174 	 * Make sure the BAR is actually a memory resource, not an IO resource
175 	 */
176 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
177 		WARN_ON(1);
178 		return NULL;
179 	}
180 	return ioremap_wc(pci_resource_start(pdev, bar),
181 			  pci_resource_len(pdev, bar));
182 }
183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
184 #endif
185 
186 
187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
188 				   u8 pos, int cap, int *ttl)
189 {
190 	u8 id;
191 	u16 ent;
192 
193 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
194 
195 	while ((*ttl)--) {
196 		if (pos < 0x40)
197 			break;
198 		pos &= ~3;
199 		pci_bus_read_config_word(bus, devfn, pos, &ent);
200 
201 		id = ent & 0xff;
202 		if (id == 0xff)
203 			break;
204 		if (id == cap)
205 			return pos;
206 		pos = (ent >> 8);
207 	}
208 	return 0;
209 }
210 
211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
212 			       u8 pos, int cap)
213 {
214 	int ttl = PCI_FIND_CAP_TTL;
215 
216 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
217 }
218 
219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
220 {
221 	return __pci_find_next_cap(dev->bus, dev->devfn,
222 				   pos + PCI_CAP_LIST_NEXT, cap);
223 }
224 EXPORT_SYMBOL_GPL(pci_find_next_capability);
225 
226 static int __pci_bus_find_cap_start(struct pci_bus *bus,
227 				    unsigned int devfn, u8 hdr_type)
228 {
229 	u16 status;
230 
231 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
232 	if (!(status & PCI_STATUS_CAP_LIST))
233 		return 0;
234 
235 	switch (hdr_type) {
236 	case PCI_HEADER_TYPE_NORMAL:
237 	case PCI_HEADER_TYPE_BRIDGE:
238 		return PCI_CAPABILITY_LIST;
239 	case PCI_HEADER_TYPE_CARDBUS:
240 		return PCI_CB_CAPABILITY_LIST;
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * pci_find_capability - query for devices' capabilities
248  * @dev: PCI device to query
249  * @cap: capability code
250  *
251  * Tell if a device supports a given PCI capability.
252  * Returns the address of the requested capability structure within the
253  * device's PCI configuration space or 0 in case the device does not
254  * support it.  Possible values for @cap:
255  *
256  *  %PCI_CAP_ID_PM           Power Management
257  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
258  *  %PCI_CAP_ID_VPD          Vital Product Data
259  *  %PCI_CAP_ID_SLOTID       Slot Identification
260  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
261  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
262  *  %PCI_CAP_ID_PCIX         PCI-X
263  *  %PCI_CAP_ID_EXP          PCI Express
264  */
265 int pci_find_capability(struct pci_dev *dev, int cap)
266 {
267 	int pos;
268 
269 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
270 	if (pos)
271 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
272 
273 	return pos;
274 }
275 EXPORT_SYMBOL(pci_find_capability);
276 
277 /**
278  * pci_bus_find_capability - query for devices' capabilities
279  * @bus:   the PCI bus to query
280  * @devfn: PCI device to query
281  * @cap:   capability code
282  *
283  * Like pci_find_capability() but works for pci devices that do not have a
284  * pci_dev structure set up yet.
285  *
286  * Returns the address of the requested capability structure within the
287  * device's PCI configuration space or 0 in case the device does not
288  * support it.
289  */
290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
291 {
292 	int pos;
293 	u8 hdr_type;
294 
295 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
296 
297 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
298 	if (pos)
299 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
300 
301 	return pos;
302 }
303 EXPORT_SYMBOL(pci_bus_find_capability);
304 
305 /**
306  * pci_find_next_ext_capability - Find an extended capability
307  * @dev: PCI device to query
308  * @start: address at which to start looking (0 to start at beginning of list)
309  * @cap: capability code
310  *
311  * Returns the address of the next matching extended capability structure
312  * within the device's PCI configuration space or 0 if the device does
313  * not support it.  Some capabilities can occur several times, e.g., the
314  * vendor-specific capability, and this provides a way to find them all.
315  */
316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
317 {
318 	u32 header;
319 	int ttl;
320 	int pos = PCI_CFG_SPACE_SIZE;
321 
322 	/* minimum 8 bytes per capability */
323 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
324 
325 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
326 		return 0;
327 
328 	if (start)
329 		pos = start;
330 
331 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
332 		return 0;
333 
334 	/*
335 	 * If we have no capabilities, this is indicated by cap ID,
336 	 * cap version and next pointer all being 0.
337 	 */
338 	if (header == 0)
339 		return 0;
340 
341 	while (ttl-- > 0) {
342 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
343 			return pos;
344 
345 		pos = PCI_EXT_CAP_NEXT(header);
346 		if (pos < PCI_CFG_SPACE_SIZE)
347 			break;
348 
349 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
350 			break;
351 	}
352 
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
356 
357 /**
358  * pci_find_ext_capability - Find an extended capability
359  * @dev: PCI device to query
360  * @cap: capability code
361  *
362  * Returns the address of the requested extended capability structure
363  * within the device's PCI configuration space or 0 if the device does
364  * not support it.  Possible values for @cap:
365  *
366  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
367  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
368  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
369  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
370  */
371 int pci_find_ext_capability(struct pci_dev *dev, int cap)
372 {
373 	return pci_find_next_ext_capability(dev, 0, cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
376 
377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
378 {
379 	int rc, ttl = PCI_FIND_CAP_TTL;
380 	u8 cap, mask;
381 
382 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
383 		mask = HT_3BIT_CAP_MASK;
384 	else
385 		mask = HT_5BIT_CAP_MASK;
386 
387 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
388 				      PCI_CAP_ID_HT, &ttl);
389 	while (pos) {
390 		rc = pci_read_config_byte(dev, pos + 3, &cap);
391 		if (rc != PCIBIOS_SUCCESSFUL)
392 			return 0;
393 
394 		if ((cap & mask) == ht_cap)
395 			return pos;
396 
397 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
398 					      pos + PCI_CAP_LIST_NEXT,
399 					      PCI_CAP_ID_HT, &ttl);
400 	}
401 
402 	return 0;
403 }
404 /**
405  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
406  * @dev: PCI device to query
407  * @pos: Position from which to continue searching
408  * @ht_cap: Hypertransport capability code
409  *
410  * To be used in conjunction with pci_find_ht_capability() to search for
411  * all capabilities matching @ht_cap. @pos should always be a value returned
412  * from pci_find_ht_capability().
413  *
414  * NB. To be 100% safe against broken PCI devices, the caller should take
415  * steps to avoid an infinite loop.
416  */
417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
418 {
419 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
420 }
421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
422 
423 /**
424  * pci_find_ht_capability - query a device's Hypertransport capabilities
425  * @dev: PCI device to query
426  * @ht_cap: Hypertransport capability code
427  *
428  * Tell if a device supports a given Hypertransport capability.
429  * Returns an address within the device's PCI configuration space
430  * or 0 in case the device does not support the request capability.
431  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
432  * which has a Hypertransport capability matching @ht_cap.
433  */
434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
435 {
436 	int pos;
437 
438 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
439 	if (pos)
440 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
441 
442 	return pos;
443 }
444 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
445 
446 /**
447  * pci_find_parent_resource - return resource region of parent bus of given region
448  * @dev: PCI device structure contains resources to be searched
449  * @res: child resource record for which parent is sought
450  *
451  *  For given resource region of given device, return the resource
452  *  region of parent bus the given region is contained in.
453  */
454 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
455 					  struct resource *res)
456 {
457 	const struct pci_bus *bus = dev->bus;
458 	struct resource *r;
459 	int i;
460 
461 	pci_bus_for_each_resource(bus, r, i) {
462 		if (!r)
463 			continue;
464 		if (resource_contains(r, res)) {
465 
466 			/*
467 			 * If the window is prefetchable but the BAR is
468 			 * not, the allocator made a mistake.
469 			 */
470 			if (r->flags & IORESOURCE_PREFETCH &&
471 			    !(res->flags & IORESOURCE_PREFETCH))
472 				return NULL;
473 
474 			/*
475 			 * If we're below a transparent bridge, there may
476 			 * be both a positively-decoded aperture and a
477 			 * subtractively-decoded region that contain the BAR.
478 			 * We want the positively-decoded one, so this depends
479 			 * on pci_bus_for_each_resource() giving us those
480 			 * first.
481 			 */
482 			return r;
483 		}
484 	}
485 	return NULL;
486 }
487 EXPORT_SYMBOL(pci_find_parent_resource);
488 
489 /**
490  * pci_find_resource - Return matching PCI device resource
491  * @dev: PCI device to query
492  * @res: Resource to look for
493  *
494  * Goes over standard PCI resources (BARs) and checks if the given resource
495  * is partially or fully contained in any of them. In that case the
496  * matching resource is returned, %NULL otherwise.
497  */
498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
499 {
500 	int i;
501 
502 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
503 		struct resource *r = &dev->resource[i];
504 
505 		if (r->start && resource_contains(r, res))
506 			return r;
507 	}
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(pci_find_resource);
512 
513 /**
514  * pci_find_pcie_root_port - return PCIe Root Port
515  * @dev: PCI device to query
516  *
517  * Traverse up the parent chain and return the PCIe Root Port PCI Device
518  * for a given PCI Device.
519  */
520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
521 {
522 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
523 
524 	bridge = pci_upstream_bridge(dev);
525 	while (bridge && pci_is_pcie(bridge)) {
526 		highest_pcie_bridge = bridge;
527 		bridge = pci_upstream_bridge(bridge);
528 	}
529 
530 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
531 		return NULL;
532 
533 	return highest_pcie_bridge;
534 }
535 EXPORT_SYMBOL(pci_find_pcie_root_port);
536 
537 /**
538  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
539  * @dev: the PCI device to operate on
540  * @pos: config space offset of status word
541  * @mask: mask of bit(s) to care about in status word
542  *
543  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
544  */
545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
546 {
547 	int i;
548 
549 	/* Wait for Transaction Pending bit clean */
550 	for (i = 0; i < 4; i++) {
551 		u16 status;
552 		if (i)
553 			msleep((1 << (i - 1)) * 100);
554 
555 		pci_read_config_word(dev, pos, &status);
556 		if (!(status & mask))
557 			return 1;
558 	}
559 
560 	return 0;
561 }
562 
563 /**
564  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
565  * @dev: PCI device to have its BARs restored
566  *
567  * Restore the BAR values for a given device, so as to make it
568  * accessible by its driver.
569  */
570 static void pci_restore_bars(struct pci_dev *dev)
571 {
572 	int i;
573 
574 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
575 		pci_update_resource(dev, i);
576 }
577 
578 static const struct pci_platform_pm_ops *pci_platform_pm;
579 
580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
581 {
582 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
583 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
584 		return -EINVAL;
585 	pci_platform_pm = ops;
586 	return 0;
587 }
588 
589 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
590 {
591 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
592 }
593 
594 static inline int platform_pci_set_power_state(struct pci_dev *dev,
595 					       pci_power_t t)
596 {
597 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
598 }
599 
600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
601 {
602 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
603 }
604 
605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
606 {
607 	return pci_platform_pm ?
608 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
609 }
610 
611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
612 {
613 	return pci_platform_pm ?
614 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
615 }
616 
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
618 {
619 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 }
621 
622 /**
623  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624  *                           given PCI device
625  * @dev: PCI device to handle.
626  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627  *
628  * RETURN VALUE:
629  * -EINVAL if the requested state is invalid.
630  * -EIO if device does not support PCI PM or its PM capabilities register has a
631  * wrong version, or device doesn't support the requested state.
632  * 0 if device already is in the requested state.
633  * 0 if device's power state has been successfully changed.
634  */
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636 {
637 	u16 pmcsr;
638 	bool need_restore = false;
639 
640 	/* Check if we're already there */
641 	if (dev->current_state == state)
642 		return 0;
643 
644 	if (!dev->pm_cap)
645 		return -EIO;
646 
647 	if (state < PCI_D0 || state > PCI_D3hot)
648 		return -EINVAL;
649 
650 	/* Validate current state:
651 	 * Can enter D0 from any state, but if we can only go deeper
652 	 * to sleep if we're already in a low power state
653 	 */
654 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 	    && dev->current_state > state) {
656 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
657 			dev->current_state, state);
658 		return -EINVAL;
659 	}
660 
661 	/* check if this device supports the desired state */
662 	if ((state == PCI_D1 && !dev->d1_support)
663 	   || (state == PCI_D2 && !dev->d2_support))
664 		return -EIO;
665 
666 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667 
668 	/* If we're (effectively) in D3, force entire word to 0.
669 	 * This doesn't affect PME_Status, disables PME_En, and
670 	 * sets PowerState to 0.
671 	 */
672 	switch (dev->current_state) {
673 	case PCI_D0:
674 	case PCI_D1:
675 	case PCI_D2:
676 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 		pmcsr |= state;
678 		break;
679 	case PCI_D3hot:
680 	case PCI_D3cold:
681 	case PCI_UNKNOWN: /* Boot-up */
682 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 			need_restore = true;
685 		/* Fall-through: force to D0 */
686 	default:
687 		pmcsr = 0;
688 		break;
689 	}
690 
691 	/* enter specified state */
692 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693 
694 	/* Mandatory power management transition delays */
695 	/* see PCI PM 1.1 5.6.1 table 18 */
696 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 		pci_dev_d3_sleep(dev);
698 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 		udelay(PCI_PM_D2_DELAY);
700 
701 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 	if (dev->current_state != state && printk_ratelimit())
704 		pci_info(dev, "Refused to change power state, currently in D%d\n",
705 			 dev->current_state);
706 
707 	/*
708 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 	 * from D3hot to D0 _may_ perform an internal reset, thereby
711 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 	 * For example, at least some versions of the 3c905B and the
713 	 * 3c556B exhibit this behaviour.
714 	 *
715 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 	 * devices in a D3hot state at boot.  Consequently, we need to
717 	 * restore at least the BARs so that the device will be
718 	 * accessible to its driver.
719 	 */
720 	if (need_restore)
721 		pci_restore_bars(dev);
722 
723 	if (dev->bus->self)
724 		pcie_aspm_pm_state_change(dev->bus->self);
725 
726 	return 0;
727 }
728 
729 /**
730  * pci_update_current_state - Read power state of given device and cache it
731  * @dev: PCI device to handle.
732  * @state: State to cache in case the device doesn't have the PM capability
733  *
734  * The power state is read from the PMCSR register, which however is
735  * inaccessible in D3cold.  The platform firmware is therefore queried first
736  * to detect accessibility of the register.  In case the platform firmware
737  * reports an incorrect state or the device isn't power manageable by the
738  * platform at all, we try to detect D3cold by testing accessibility of the
739  * vendor ID in config space.
740  */
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742 {
743 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 	    !pci_device_is_present(dev)) {
745 		dev->current_state = PCI_D3cold;
746 	} else if (dev->pm_cap) {
747 		u16 pmcsr;
748 
749 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 	} else {
752 		dev->current_state = state;
753 	}
754 }
755 
756 /**
757  * pci_power_up - Put the given device into D0 forcibly
758  * @dev: PCI device to power up
759  */
760 void pci_power_up(struct pci_dev *dev)
761 {
762 	if (platform_pci_power_manageable(dev))
763 		platform_pci_set_power_state(dev, PCI_D0);
764 
765 	pci_raw_set_power_state(dev, PCI_D0);
766 	pci_update_current_state(dev, PCI_D0);
767 }
768 
769 /**
770  * pci_platform_power_transition - Use platform to change device power state
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  */
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 	int error;
777 
778 	if (platform_pci_power_manageable(dev)) {
779 		error = platform_pci_set_power_state(dev, state);
780 		if (!error)
781 			pci_update_current_state(dev, state);
782 	} else
783 		error = -ENODEV;
784 
785 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 		dev->current_state = PCI_D0;
787 
788 	return error;
789 }
790 
791 /**
792  * pci_wakeup - Wake up a PCI device
793  * @pci_dev: Device to handle.
794  * @ign: ignored parameter
795  */
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797 {
798 	pci_wakeup_event(pci_dev);
799 	pm_request_resume(&pci_dev->dev);
800 	return 0;
801 }
802 
803 /**
804  * pci_wakeup_bus - Walk given bus and wake up devices on it
805  * @bus: Top bus of the subtree to walk.
806  */
807 void pci_wakeup_bus(struct pci_bus *bus)
808 {
809 	if (bus)
810 		pci_walk_bus(bus, pci_wakeup, NULL);
811 }
812 
813 /**
814  * __pci_start_power_transition - Start power transition of a PCI device
815  * @dev: PCI device to handle.
816  * @state: State to put the device into.
817  */
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819 {
820 	if (state == PCI_D0) {
821 		pci_platform_power_transition(dev, PCI_D0);
822 		/*
823 		 * Mandatory power management transition delays, see
824 		 * PCI Express Base Specification Revision 2.0 Section
825 		 * 6.6.1: Conventional Reset.  Do not delay for
826 		 * devices powered on/off by corresponding bridge,
827 		 * because have already delayed for the bridge.
828 		 */
829 		if (dev->runtime_d3cold) {
830 			if (dev->d3cold_delay)
831 				msleep(dev->d3cold_delay);
832 			/*
833 			 * When powering on a bridge from D3cold, the
834 			 * whole hierarchy may be powered on into
835 			 * D0uninitialized state, resume them to give
836 			 * them a chance to suspend again
837 			 */
838 			pci_wakeup_bus(dev->subordinate);
839 		}
840 	}
841 }
842 
843 /**
844  * __pci_dev_set_current_state - Set current state of a PCI device
845  * @dev: Device to handle
846  * @data: pointer to state to be set
847  */
848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
849 {
850 	pci_power_t state = *(pci_power_t *)data;
851 
852 	dev->current_state = state;
853 	return 0;
854 }
855 
856 /**
857  * pci_bus_set_current_state - Walk given bus and set current state of devices
858  * @bus: Top bus of the subtree to walk.
859  * @state: state to be set
860  */
861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
862 {
863 	if (bus)
864 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
865 }
866 
867 /**
868  * __pci_complete_power_transition - Complete power transition of a PCI device
869  * @dev: PCI device to handle.
870  * @state: State to put the device into.
871  *
872  * This function should not be called directly by device drivers.
873  */
874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
875 {
876 	int ret;
877 
878 	if (state <= PCI_D0)
879 		return -EINVAL;
880 	ret = pci_platform_power_transition(dev, state);
881 	/* Power off the bridge may power off the whole hierarchy */
882 	if (!ret && state == PCI_D3cold)
883 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
884 	return ret;
885 }
886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
887 
888 /**
889  * pci_set_power_state - Set the power state of a PCI device
890  * @dev: PCI device to handle.
891  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
892  *
893  * Transition a device to a new power state, using the platform firmware and/or
894  * the device's PCI PM registers.
895  *
896  * RETURN VALUE:
897  * -EINVAL if the requested state is invalid.
898  * -EIO if device does not support PCI PM or its PM capabilities register has a
899  * wrong version, or device doesn't support the requested state.
900  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
901  * 0 if device already is in the requested state.
902  * 0 if the transition is to D3 but D3 is not supported.
903  * 0 if device's power state has been successfully changed.
904  */
905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
906 {
907 	int error;
908 
909 	/* bound the state we're entering */
910 	if (state > PCI_D3cold)
911 		state = PCI_D3cold;
912 	else if (state < PCI_D0)
913 		state = PCI_D0;
914 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
915 		/*
916 		 * If the device or the parent bridge do not support PCI PM,
917 		 * ignore the request if we're doing anything other than putting
918 		 * it into D0 (which would only happen on boot).
919 		 */
920 		return 0;
921 
922 	/* Check if we're already there */
923 	if (dev->current_state == state)
924 		return 0;
925 
926 	__pci_start_power_transition(dev, state);
927 
928 	/* This device is quirked not to be put into D3, so
929 	   don't put it in D3 */
930 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
931 		return 0;
932 
933 	/*
934 	 * To put device in D3cold, we put device into D3hot in native
935 	 * way, then put device into D3cold with platform ops
936 	 */
937 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
938 					PCI_D3hot : state);
939 
940 	if (!__pci_complete_power_transition(dev, state))
941 		error = 0;
942 
943 	return error;
944 }
945 EXPORT_SYMBOL(pci_set_power_state);
946 
947 /**
948  * pci_choose_state - Choose the power state of a PCI device
949  * @dev: PCI device to be suspended
950  * @state: target sleep state for the whole system. This is the value
951  *	that is passed to suspend() function.
952  *
953  * Returns PCI power state suitable for given device and given system
954  * message.
955  */
956 
957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
958 {
959 	pci_power_t ret;
960 
961 	if (!dev->pm_cap)
962 		return PCI_D0;
963 
964 	ret = platform_pci_choose_state(dev);
965 	if (ret != PCI_POWER_ERROR)
966 		return ret;
967 
968 	switch (state.event) {
969 	case PM_EVENT_ON:
970 		return PCI_D0;
971 	case PM_EVENT_FREEZE:
972 	case PM_EVENT_PRETHAW:
973 		/* REVISIT both freeze and pre-thaw "should" use D0 */
974 	case PM_EVENT_SUSPEND:
975 	case PM_EVENT_HIBERNATE:
976 		return PCI_D3hot;
977 	default:
978 		pci_info(dev, "unrecognized suspend event %d\n",
979 			 state.event);
980 		BUG();
981 	}
982 	return PCI_D0;
983 }
984 EXPORT_SYMBOL(pci_choose_state);
985 
986 #define PCI_EXP_SAVE_REGS	7
987 
988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
989 						       u16 cap, bool extended)
990 {
991 	struct pci_cap_saved_state *tmp;
992 
993 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
994 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
995 			return tmp;
996 	}
997 	return NULL;
998 }
999 
1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001 {
1002 	return _pci_find_saved_cap(dev, cap, false);
1003 }
1004 
1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006 {
1007 	return _pci_find_saved_cap(dev, cap, true);
1008 }
1009 
1010 static int pci_save_pcie_state(struct pci_dev *dev)
1011 {
1012 	int i = 0;
1013 	struct pci_cap_saved_state *save_state;
1014 	u16 *cap;
1015 
1016 	if (!pci_is_pcie(dev))
1017 		return 0;
1018 
1019 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020 	if (!save_state) {
1021 		pci_err(dev, "buffer not found in %s\n", __func__);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	cap = (u16 *)&save_state->cap.data[0];
1026 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1030 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033 
1034 	return 0;
1035 }
1036 
1037 static void pci_restore_pcie_state(struct pci_dev *dev)
1038 {
1039 	int i = 0;
1040 	struct pci_cap_saved_state *save_state;
1041 	u16 *cap;
1042 
1043 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044 	if (!save_state)
1045 		return;
1046 
1047 	cap = (u16 *)&save_state->cap.data[0];
1048 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055 }
1056 
1057 
1058 static int pci_save_pcix_state(struct pci_dev *dev)
1059 {
1060 	int pos;
1061 	struct pci_cap_saved_state *save_state;
1062 
1063 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064 	if (!pos)
1065 		return 0;
1066 
1067 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068 	if (!save_state) {
1069 		pci_err(dev, "buffer not found in %s\n", __func__);
1070 		return -ENOMEM;
1071 	}
1072 
1073 	pci_read_config_word(dev, pos + PCI_X_CMD,
1074 			     (u16 *)save_state->cap.data);
1075 
1076 	return 0;
1077 }
1078 
1079 static void pci_restore_pcix_state(struct pci_dev *dev)
1080 {
1081 	int i = 0, pos;
1082 	struct pci_cap_saved_state *save_state;
1083 	u16 *cap;
1084 
1085 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087 	if (!save_state || !pos)
1088 		return;
1089 	cap = (u16 *)&save_state->cap.data[0];
1090 
1091 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092 }
1093 
1094 
1095 /**
1096  * pci_save_state - save the PCI configuration space of a device before suspending
1097  * @dev: - PCI device that we're dealing with
1098  */
1099 int pci_save_state(struct pci_dev *dev)
1100 {
1101 	int i;
1102 	/* XXX: 100% dword access ok here? */
1103 	for (i = 0; i < 16; i++)
1104 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105 	dev->state_saved = true;
1106 
1107 	i = pci_save_pcie_state(dev);
1108 	if (i != 0)
1109 		return i;
1110 
1111 	i = pci_save_pcix_state(dev);
1112 	if (i != 0)
1113 		return i;
1114 
1115 	return pci_save_vc_state(dev);
1116 }
1117 EXPORT_SYMBOL(pci_save_state);
1118 
1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120 				     u32 saved_val, int retry)
1121 {
1122 	u32 val;
1123 
1124 	pci_read_config_dword(pdev, offset, &val);
1125 	if (val == saved_val)
1126 		return;
1127 
1128 	for (;;) {
1129 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130 			offset, val, saved_val);
1131 		pci_write_config_dword(pdev, offset, saved_val);
1132 		if (retry-- <= 0)
1133 			return;
1134 
1135 		pci_read_config_dword(pdev, offset, &val);
1136 		if (val == saved_val)
1137 			return;
1138 
1139 		mdelay(1);
1140 	}
1141 }
1142 
1143 static void pci_restore_config_space_range(struct pci_dev *pdev,
1144 					   int start, int end, int retry)
1145 {
1146 	int index;
1147 
1148 	for (index = end; index >= start; index--)
1149 		pci_restore_config_dword(pdev, 4 * index,
1150 					 pdev->saved_config_space[index],
1151 					 retry);
1152 }
1153 
1154 static void pci_restore_config_space(struct pci_dev *pdev)
1155 {
1156 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157 		pci_restore_config_space_range(pdev, 10, 15, 0);
1158 		/* Restore BARs before the command register. */
1159 		pci_restore_config_space_range(pdev, 4, 9, 10);
1160 		pci_restore_config_space_range(pdev, 0, 3, 0);
1161 	} else {
1162 		pci_restore_config_space_range(pdev, 0, 15, 0);
1163 	}
1164 }
1165 
1166 /**
1167  * pci_restore_state - Restore the saved state of a PCI device
1168  * @dev: - PCI device that we're dealing with
1169  */
1170 void pci_restore_state(struct pci_dev *dev)
1171 {
1172 	if (!dev->state_saved)
1173 		return;
1174 
1175 	/* PCI Express register must be restored first */
1176 	pci_restore_pcie_state(dev);
1177 	pci_restore_pasid_state(dev);
1178 	pci_restore_pri_state(dev);
1179 	pci_restore_ats_state(dev);
1180 	pci_restore_vc_state(dev);
1181 
1182 	pci_cleanup_aer_error_status_regs(dev);
1183 
1184 	pci_restore_config_space(dev);
1185 
1186 	pci_restore_pcix_state(dev);
1187 	pci_restore_msi_state(dev);
1188 
1189 	/* Restore ACS and IOV configuration state */
1190 	pci_enable_acs(dev);
1191 	pci_restore_iov_state(dev);
1192 
1193 	dev->state_saved = false;
1194 }
1195 EXPORT_SYMBOL(pci_restore_state);
1196 
1197 struct pci_saved_state {
1198 	u32 config_space[16];
1199 	struct pci_cap_saved_data cap[0];
1200 };
1201 
1202 /**
1203  * pci_store_saved_state - Allocate and return an opaque struct containing
1204  *			   the device saved state.
1205  * @dev: PCI device that we're dealing with
1206  *
1207  * Return NULL if no state or error.
1208  */
1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210 {
1211 	struct pci_saved_state *state;
1212 	struct pci_cap_saved_state *tmp;
1213 	struct pci_cap_saved_data *cap;
1214 	size_t size;
1215 
1216 	if (!dev->state_saved)
1217 		return NULL;
1218 
1219 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220 
1221 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223 
1224 	state = kzalloc(size, GFP_KERNEL);
1225 	if (!state)
1226 		return NULL;
1227 
1228 	memcpy(state->config_space, dev->saved_config_space,
1229 	       sizeof(state->config_space));
1230 
1231 	cap = state->cap;
1232 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234 		memcpy(cap, &tmp->cap, len);
1235 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236 	}
1237 	/* Empty cap_save terminates list */
1238 
1239 	return state;
1240 }
1241 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242 
1243 /**
1244  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245  * @dev: PCI device that we're dealing with
1246  * @state: Saved state returned from pci_store_saved_state()
1247  */
1248 int pci_load_saved_state(struct pci_dev *dev,
1249 			 struct pci_saved_state *state)
1250 {
1251 	struct pci_cap_saved_data *cap;
1252 
1253 	dev->state_saved = false;
1254 
1255 	if (!state)
1256 		return 0;
1257 
1258 	memcpy(dev->saved_config_space, state->config_space,
1259 	       sizeof(state->config_space));
1260 
1261 	cap = state->cap;
1262 	while (cap->size) {
1263 		struct pci_cap_saved_state *tmp;
1264 
1265 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266 		if (!tmp || tmp->cap.size != cap->size)
1267 			return -EINVAL;
1268 
1269 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271 		       sizeof(struct pci_cap_saved_data) + cap->size);
1272 	}
1273 
1274 	dev->state_saved = true;
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1278 
1279 /**
1280  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281  *				   and free the memory allocated for it.
1282  * @dev: PCI device that we're dealing with
1283  * @state: Pointer to saved state returned from pci_store_saved_state()
1284  */
1285 int pci_load_and_free_saved_state(struct pci_dev *dev,
1286 				  struct pci_saved_state **state)
1287 {
1288 	int ret = pci_load_saved_state(dev, *state);
1289 	kfree(*state);
1290 	*state = NULL;
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294 
1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 	return pci_enable_resources(dev, bars);
1298 }
1299 
1300 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301 {
1302 	int err;
1303 	struct pci_dev *bridge;
1304 	u16 cmd;
1305 	u8 pin;
1306 
1307 	err = pci_set_power_state(dev, PCI_D0);
1308 	if (err < 0 && err != -EIO)
1309 		return err;
1310 
1311 	bridge = pci_upstream_bridge(dev);
1312 	if (bridge)
1313 		pcie_aspm_powersave_config_link(bridge);
1314 
1315 	err = pcibios_enable_device(dev, bars);
1316 	if (err < 0)
1317 		return err;
1318 	pci_fixup_device(pci_fixup_enable, dev);
1319 
1320 	if (dev->msi_enabled || dev->msix_enabled)
1321 		return 0;
1322 
1323 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324 	if (pin) {
1325 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1327 			pci_write_config_word(dev, PCI_COMMAND,
1328 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * pci_reenable_device - Resume abandoned device
1336  * @dev: PCI device to be resumed
1337  *
1338  *  Note this function is a backend of pci_default_resume and is not supposed
1339  *  to be called by normal code, write proper resume handler and use it instead.
1340  */
1341 int pci_reenable_device(struct pci_dev *dev)
1342 {
1343 	if (pci_is_enabled(dev))
1344 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL(pci_reenable_device);
1348 
1349 static void pci_enable_bridge(struct pci_dev *dev)
1350 {
1351 	struct pci_dev *bridge;
1352 	int retval;
1353 
1354 	bridge = pci_upstream_bridge(dev);
1355 	if (bridge)
1356 		pci_enable_bridge(bridge);
1357 
1358 	if (pci_is_enabled(dev)) {
1359 		if (!dev->is_busmaster)
1360 			pci_set_master(dev);
1361 		return;
1362 	}
1363 
1364 	retval = pci_enable_device(dev);
1365 	if (retval)
1366 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1367 			retval);
1368 	pci_set_master(dev);
1369 }
1370 
1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1372 {
1373 	struct pci_dev *bridge;
1374 	int err;
1375 	int i, bars = 0;
1376 
1377 	/*
1378 	 * Power state could be unknown at this point, either due to a fresh
1379 	 * boot or a device removal call.  So get the current power state
1380 	 * so that things like MSI message writing will behave as expected
1381 	 * (e.g. if the device really is in D0 at enable time).
1382 	 */
1383 	if (dev->pm_cap) {
1384 		u16 pmcsr;
1385 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387 	}
1388 
1389 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1390 		return 0;		/* already enabled */
1391 
1392 	bridge = pci_upstream_bridge(dev);
1393 	if (bridge)
1394 		pci_enable_bridge(bridge);
1395 
1396 	/* only skip sriov related */
1397 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398 		if (dev->resource[i].flags & flags)
1399 			bars |= (1 << i);
1400 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401 		if (dev->resource[i].flags & flags)
1402 			bars |= (1 << i);
1403 
1404 	err = do_pci_enable_device(dev, bars);
1405 	if (err < 0)
1406 		atomic_dec(&dev->enable_cnt);
1407 	return err;
1408 }
1409 
1410 /**
1411  * pci_enable_device_io - Initialize a device for use with IO space
1412  * @dev: PCI device to be initialized
1413  *
1414  *  Initialize device before it's used by a driver. Ask low-level code
1415  *  to enable I/O resources. Wake up the device if it was suspended.
1416  *  Beware, this function can fail.
1417  */
1418 int pci_enable_device_io(struct pci_dev *dev)
1419 {
1420 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1421 }
1422 EXPORT_SYMBOL(pci_enable_device_io);
1423 
1424 /**
1425  * pci_enable_device_mem - Initialize a device for use with Memory space
1426  * @dev: PCI device to be initialized
1427  *
1428  *  Initialize device before it's used by a driver. Ask low-level code
1429  *  to enable Memory resources. Wake up the device if it was suspended.
1430  *  Beware, this function can fail.
1431  */
1432 int pci_enable_device_mem(struct pci_dev *dev)
1433 {
1434 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1435 }
1436 EXPORT_SYMBOL(pci_enable_device_mem);
1437 
1438 /**
1439  * pci_enable_device - Initialize device before it's used by a driver.
1440  * @dev: PCI device to be initialized
1441  *
1442  *  Initialize device before it's used by a driver. Ask low-level code
1443  *  to enable I/O and memory. Wake up the device if it was suspended.
1444  *  Beware, this function can fail.
1445  *
1446  *  Note we don't actually enable the device many times if we call
1447  *  this function repeatedly (we just increment the count).
1448  */
1449 int pci_enable_device(struct pci_dev *dev)
1450 {
1451 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1452 }
1453 EXPORT_SYMBOL(pci_enable_device);
1454 
1455 /*
1456  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1457  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1458  * there's no need to track it separately.  pci_devres is initialized
1459  * when a device is enabled using managed PCI device enable interface.
1460  */
1461 struct pci_devres {
1462 	unsigned int enabled:1;
1463 	unsigned int pinned:1;
1464 	unsigned int orig_intx:1;
1465 	unsigned int restore_intx:1;
1466 	unsigned int mwi:1;
1467 	u32 region_mask;
1468 };
1469 
1470 static void pcim_release(struct device *gendev, void *res)
1471 {
1472 	struct pci_dev *dev = to_pci_dev(gendev);
1473 	struct pci_devres *this = res;
1474 	int i;
1475 
1476 	if (dev->msi_enabled)
1477 		pci_disable_msi(dev);
1478 	if (dev->msix_enabled)
1479 		pci_disable_msix(dev);
1480 
1481 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482 		if (this->region_mask & (1 << i))
1483 			pci_release_region(dev, i);
1484 
1485 	if (this->mwi)
1486 		pci_clear_mwi(dev);
1487 
1488 	if (this->restore_intx)
1489 		pci_intx(dev, this->orig_intx);
1490 
1491 	if (this->enabled && !this->pinned)
1492 		pci_disable_device(dev);
1493 }
1494 
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496 {
1497 	struct pci_devres *dr, *new_dr;
1498 
1499 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 	if (dr)
1501 		return dr;
1502 
1503 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504 	if (!new_dr)
1505 		return NULL;
1506 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507 }
1508 
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510 {
1511 	if (pci_is_managed(pdev))
1512 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513 	return NULL;
1514 }
1515 
1516 /**
1517  * pcim_enable_device - Managed pci_enable_device()
1518  * @pdev: PCI device to be initialized
1519  *
1520  * Managed pci_enable_device().
1521  */
1522 int pcim_enable_device(struct pci_dev *pdev)
1523 {
1524 	struct pci_devres *dr;
1525 	int rc;
1526 
1527 	dr = get_pci_dr(pdev);
1528 	if (unlikely(!dr))
1529 		return -ENOMEM;
1530 	if (dr->enabled)
1531 		return 0;
1532 
1533 	rc = pci_enable_device(pdev);
1534 	if (!rc) {
1535 		pdev->is_managed = 1;
1536 		dr->enabled = 1;
1537 	}
1538 	return rc;
1539 }
1540 EXPORT_SYMBOL(pcim_enable_device);
1541 
1542 /**
1543  * pcim_pin_device - Pin managed PCI device
1544  * @pdev: PCI device to pin
1545  *
1546  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547  * driver detach.  @pdev must have been enabled with
1548  * pcim_enable_device().
1549  */
1550 void pcim_pin_device(struct pci_dev *pdev)
1551 {
1552 	struct pci_devres *dr;
1553 
1554 	dr = find_pci_dr(pdev);
1555 	WARN_ON(!dr || !dr->enabled);
1556 	if (dr)
1557 		dr->pinned = 1;
1558 }
1559 EXPORT_SYMBOL(pcim_pin_device);
1560 
1561 /*
1562  * pcibios_add_device - provide arch specific hooks when adding device dev
1563  * @dev: the PCI device being added
1564  *
1565  * Permits the platform to provide architecture specific functionality when
1566  * devices are added. This is the default implementation. Architecture
1567  * implementations can override this.
1568  */
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1570 {
1571 	return 0;
1572 }
1573 
1574 /**
1575  * pcibios_release_device - provide arch specific hooks when releasing device dev
1576  * @dev: the PCI device being released
1577  *
1578  * Permits the platform to provide architecture specific functionality when
1579  * devices are released. This is the default implementation. Architecture
1580  * implementations can override this.
1581  */
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1583 
1584 /**
1585  * pcibios_disable_device - disable arch specific PCI resources for device dev
1586  * @dev: the PCI device to disable
1587  *
1588  * Disables architecture specific PCI resources for the device. This
1589  * is the default implementation. Architecture implementations can
1590  * override this.
1591  */
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593 
1594 /**
1595  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596  * @irq: ISA IRQ to penalize
1597  * @active: IRQ active or not
1598  *
1599  * Permits the platform to provide architecture-specific functionality when
1600  * penalizing ISA IRQs. This is the default implementation. Architecture
1601  * implementations can override this.
1602  */
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604 
1605 static void do_pci_disable_device(struct pci_dev *dev)
1606 {
1607 	u16 pci_command;
1608 
1609 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 	if (pci_command & PCI_COMMAND_MASTER) {
1611 		pci_command &= ~PCI_COMMAND_MASTER;
1612 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613 	}
1614 
1615 	pcibios_disable_device(dev);
1616 }
1617 
1618 /**
1619  * pci_disable_enabled_device - Disable device without updating enable_cnt
1620  * @dev: PCI device to disable
1621  *
1622  * NOTE: This function is a backend of PCI power management routines and is
1623  * not supposed to be called drivers.
1624  */
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1626 {
1627 	if (pci_is_enabled(dev))
1628 		do_pci_disable_device(dev);
1629 }
1630 
1631 /**
1632  * pci_disable_device - Disable PCI device after use
1633  * @dev: PCI device to be disabled
1634  *
1635  * Signal to the system that the PCI device is not in use by the system
1636  * anymore.  This only involves disabling PCI bus-mastering, if active.
1637  *
1638  * Note we don't actually disable the device until all callers of
1639  * pci_enable_device() have called pci_disable_device().
1640  */
1641 void pci_disable_device(struct pci_dev *dev)
1642 {
1643 	struct pci_devres *dr;
1644 
1645 	dr = find_pci_dr(dev);
1646 	if (dr)
1647 		dr->enabled = 0;
1648 
1649 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 		      "disabling already-disabled device");
1651 
1652 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653 		return;
1654 
1655 	do_pci_disable_device(dev);
1656 
1657 	dev->is_busmaster = 0;
1658 }
1659 EXPORT_SYMBOL(pci_disable_device);
1660 
1661 /**
1662  * pcibios_set_pcie_reset_state - set reset state for device dev
1663  * @dev: the PCIe device reset
1664  * @state: Reset state to enter into
1665  *
1666  *
1667  * Sets the PCIe reset state for the device. This is the default
1668  * implementation. Architecture implementations can override this.
1669  */
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 					enum pcie_reset_state state)
1672 {
1673 	return -EINVAL;
1674 }
1675 
1676 /**
1677  * pci_set_pcie_reset_state - set reset state for device dev
1678  * @dev: the PCIe device reset
1679  * @state: Reset state to enter into
1680  *
1681  *
1682  * Sets the PCI reset state for the device.
1683  */
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685 {
1686 	return pcibios_set_pcie_reset_state(dev, state);
1687 }
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689 
1690 /**
1691  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692  * @dev: PCIe root port or event collector.
1693  */
1694 void pcie_clear_root_pme_status(struct pci_dev *dev)
1695 {
1696 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1697 }
1698 
1699 /**
1700  * pci_check_pme_status - Check if given device has generated PME.
1701  * @dev: Device to check.
1702  *
1703  * Check the PME status of the device and if set, clear it and clear PME enable
1704  * (if set).  Return 'true' if PME status and PME enable were both set or
1705  * 'false' otherwise.
1706  */
1707 bool pci_check_pme_status(struct pci_dev *dev)
1708 {
1709 	int pmcsr_pos;
1710 	u16 pmcsr;
1711 	bool ret = false;
1712 
1713 	if (!dev->pm_cap)
1714 		return false;
1715 
1716 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1719 		return false;
1720 
1721 	/* Clear PME status. */
1722 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724 		/* Disable PME to avoid interrupt flood. */
1725 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1726 		ret = true;
1727 	}
1728 
1729 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1730 
1731 	return ret;
1732 }
1733 
1734 /**
1735  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736  * @dev: Device to handle.
1737  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1738  *
1739  * Check if @dev has generated PME and queue a resume request for it in that
1740  * case.
1741  */
1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1743 {
1744 	if (pme_poll_reset && dev->pme_poll)
1745 		dev->pme_poll = false;
1746 
1747 	if (pci_check_pme_status(dev)) {
1748 		pci_wakeup_event(dev);
1749 		pm_request_resume(&dev->dev);
1750 	}
1751 	return 0;
1752 }
1753 
1754 /**
1755  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756  * @bus: Top bus of the subtree to walk.
1757  */
1758 void pci_pme_wakeup_bus(struct pci_bus *bus)
1759 {
1760 	if (bus)
1761 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1762 }
1763 
1764 
1765 /**
1766  * pci_pme_capable - check the capability of PCI device to generate PME#
1767  * @dev: PCI device to handle.
1768  * @state: PCI state from which device will issue PME#.
1769  */
1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1771 {
1772 	if (!dev->pm_cap)
1773 		return false;
1774 
1775 	return !!(dev->pme_support & (1 << state));
1776 }
1777 EXPORT_SYMBOL(pci_pme_capable);
1778 
1779 static void pci_pme_list_scan(struct work_struct *work)
1780 {
1781 	struct pci_pme_device *pme_dev, *n;
1782 
1783 	mutex_lock(&pci_pme_list_mutex);
1784 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785 		if (pme_dev->dev->pme_poll) {
1786 			struct pci_dev *bridge;
1787 
1788 			bridge = pme_dev->dev->bus->self;
1789 			/*
1790 			 * If bridge is in low power state, the
1791 			 * configuration space of subordinate devices
1792 			 * may be not accessible
1793 			 */
1794 			if (bridge && bridge->current_state != PCI_D0)
1795 				continue;
1796 			pci_pme_wakeup(pme_dev->dev, NULL);
1797 		} else {
1798 			list_del(&pme_dev->list);
1799 			kfree(pme_dev);
1800 		}
1801 	}
1802 	if (!list_empty(&pci_pme_list))
1803 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804 				   msecs_to_jiffies(PME_TIMEOUT));
1805 	mutex_unlock(&pci_pme_list_mutex);
1806 }
1807 
1808 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1809 {
1810 	u16 pmcsr;
1811 
1812 	if (!dev->pme_support)
1813 		return;
1814 
1815 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 	/* Clear PME_Status by writing 1 to it and enable PME# */
1817 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818 	if (!enable)
1819 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1820 
1821 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1822 }
1823 
1824 /**
1825  * pci_pme_restore - Restore PME configuration after config space restore.
1826  * @dev: PCI device to update.
1827  */
1828 void pci_pme_restore(struct pci_dev *dev)
1829 {
1830 	u16 pmcsr;
1831 
1832 	if (!dev->pme_support)
1833 		return;
1834 
1835 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836 	if (dev->wakeup_prepared) {
1837 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1839 	} else {
1840 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1842 	}
1843 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1844 }
1845 
1846 /**
1847  * pci_pme_active - enable or disable PCI device's PME# function
1848  * @dev: PCI device to handle.
1849  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1850  *
1851  * The caller must verify that the device is capable of generating PME# before
1852  * calling this function with @enable equal to 'true'.
1853  */
1854 void pci_pme_active(struct pci_dev *dev, bool enable)
1855 {
1856 	__pci_pme_active(dev, enable);
1857 
1858 	/*
1859 	 * PCI (as opposed to PCIe) PME requires that the device have
1860 	 * its PME# line hooked up correctly. Not all hardware vendors
1861 	 * do this, so the PME never gets delivered and the device
1862 	 * remains asleep. The easiest way around this is to
1863 	 * periodically walk the list of suspended devices and check
1864 	 * whether any have their PME flag set. The assumption is that
1865 	 * we'll wake up often enough anyway that this won't be a huge
1866 	 * hit, and the power savings from the devices will still be a
1867 	 * win.
1868 	 *
1869 	 * Although PCIe uses in-band PME message instead of PME# line
1870 	 * to report PME, PME does not work for some PCIe devices in
1871 	 * reality.  For example, there are devices that set their PME
1872 	 * status bits, but don't really bother to send a PME message;
1873 	 * there are PCI Express Root Ports that don't bother to
1874 	 * trigger interrupts when they receive PME messages from the
1875 	 * devices below.  So PME poll is used for PCIe devices too.
1876 	 */
1877 
1878 	if (dev->pme_poll) {
1879 		struct pci_pme_device *pme_dev;
1880 		if (enable) {
1881 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1882 					  GFP_KERNEL);
1883 			if (!pme_dev) {
1884 				pci_warn(dev, "can't enable PME#\n");
1885 				return;
1886 			}
1887 			pme_dev->dev = dev;
1888 			mutex_lock(&pci_pme_list_mutex);
1889 			list_add(&pme_dev->list, &pci_pme_list);
1890 			if (list_is_singular(&pci_pme_list))
1891 				queue_delayed_work(system_freezable_wq,
1892 						   &pci_pme_work,
1893 						   msecs_to_jiffies(PME_TIMEOUT));
1894 			mutex_unlock(&pci_pme_list_mutex);
1895 		} else {
1896 			mutex_lock(&pci_pme_list_mutex);
1897 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898 				if (pme_dev->dev == dev) {
1899 					list_del(&pme_dev->list);
1900 					kfree(pme_dev);
1901 					break;
1902 				}
1903 			}
1904 			mutex_unlock(&pci_pme_list_mutex);
1905 		}
1906 	}
1907 
1908 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1909 }
1910 EXPORT_SYMBOL(pci_pme_active);
1911 
1912 /**
1913  * __pci_enable_wake - enable PCI device as wakeup event source
1914  * @dev: PCI device affected
1915  * @state: PCI state from which device will issue wakeup events
1916  * @enable: True to enable event generation; false to disable
1917  *
1918  * This enables the device as a wakeup event source, or disables it.
1919  * When such events involves platform-specific hooks, those hooks are
1920  * called automatically by this routine.
1921  *
1922  * Devices with legacy power management (no standard PCI PM capabilities)
1923  * always require such platform hooks.
1924  *
1925  * RETURN VALUE:
1926  * 0 is returned on success
1927  * -EINVAL is returned if device is not supposed to wake up the system
1928  * Error code depending on the platform is returned if both the platform and
1929  * the native mechanism fail to enable the generation of wake-up events
1930  */
1931 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1932 {
1933 	int ret = 0;
1934 
1935 	/*
1936 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1937 	 * but that is set up elsewhere, so skip them.
1938 	 */
1939 	if (pci_has_subordinate(dev))
1940 		return 0;
1941 
1942 	/* Don't do the same thing twice in a row for one device. */
1943 	if (!!enable == !!dev->wakeup_prepared)
1944 		return 0;
1945 
1946 	/*
1947 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1950 	 */
1951 
1952 	if (enable) {
1953 		int error;
1954 
1955 		if (pci_pme_capable(dev, state))
1956 			pci_pme_active(dev, true);
1957 		else
1958 			ret = 1;
1959 		error = platform_pci_set_wakeup(dev, true);
1960 		if (ret)
1961 			ret = error;
1962 		if (!ret)
1963 			dev->wakeup_prepared = true;
1964 	} else {
1965 		platform_pci_set_wakeup(dev, false);
1966 		pci_pme_active(dev, false);
1967 		dev->wakeup_prepared = false;
1968 	}
1969 
1970 	return ret;
1971 }
1972 
1973 /**
1974  * pci_enable_wake - change wakeup settings for a PCI device
1975  * @pci_dev: Target device
1976  * @state: PCI state from which device will issue wakeup events
1977  * @enable: Whether or not to enable event generation
1978  *
1979  * If @enable is set, check device_may_wakeup() for the device before calling
1980  * __pci_enable_wake() for it.
1981  */
1982 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1983 {
1984 	if (enable && !device_may_wakeup(&pci_dev->dev))
1985 		return -EINVAL;
1986 
1987 	return __pci_enable_wake(pci_dev, state, enable);
1988 }
1989 EXPORT_SYMBOL(pci_enable_wake);
1990 
1991 /**
1992  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1993  * @dev: PCI device to prepare
1994  * @enable: True to enable wake-up event generation; false to disable
1995  *
1996  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1997  * and this function allows them to set that up cleanly - pci_enable_wake()
1998  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1999  * ordering constraints.
2000  *
2001  * This function only returns error code if the device is not allowed to wake
2002  * up the system from sleep or it is not capable of generating PME# from both
2003  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2004  */
2005 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2006 {
2007 	return pci_pme_capable(dev, PCI_D3cold) ?
2008 			pci_enable_wake(dev, PCI_D3cold, enable) :
2009 			pci_enable_wake(dev, PCI_D3hot, enable);
2010 }
2011 EXPORT_SYMBOL(pci_wake_from_d3);
2012 
2013 /**
2014  * pci_target_state - find an appropriate low power state for a given PCI dev
2015  * @dev: PCI device
2016  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2017  *
2018  * Use underlying platform code to find a supported low power state for @dev.
2019  * If the platform can't manage @dev, return the deepest state from which it
2020  * can generate wake events, based on any available PME info.
2021  */
2022 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2023 {
2024 	pci_power_t target_state = PCI_D3hot;
2025 
2026 	if (platform_pci_power_manageable(dev)) {
2027 		/*
2028 		 * Call the platform to find the target state for the device.
2029 		 */
2030 		pci_power_t state = platform_pci_choose_state(dev);
2031 
2032 		switch (state) {
2033 		case PCI_POWER_ERROR:
2034 		case PCI_UNKNOWN:
2035 			break;
2036 		case PCI_D1:
2037 		case PCI_D2:
2038 			if (pci_no_d1d2(dev))
2039 				break;
2040 		default:
2041 			target_state = state;
2042 		}
2043 
2044 		return target_state;
2045 	}
2046 
2047 	if (!dev->pm_cap)
2048 		target_state = PCI_D0;
2049 
2050 	/*
2051 	 * If the device is in D3cold even though it's not power-manageable by
2052 	 * the platform, it may have been powered down by non-standard means.
2053 	 * Best to let it slumber.
2054 	 */
2055 	if (dev->current_state == PCI_D3cold)
2056 		target_state = PCI_D3cold;
2057 
2058 	if (wakeup) {
2059 		/*
2060 		 * Find the deepest state from which the device can generate
2061 		 * PME#.
2062 		 */
2063 		if (dev->pme_support) {
2064 			while (target_state
2065 			      && !(dev->pme_support & (1 << target_state)))
2066 				target_state--;
2067 		}
2068 	}
2069 
2070 	return target_state;
2071 }
2072 
2073 /**
2074  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2075  * @dev: Device to handle.
2076  *
2077  * Choose the power state appropriate for the device depending on whether
2078  * it can wake up the system and/or is power manageable by the platform
2079  * (PCI_D3hot is the default) and put the device into that state.
2080  */
2081 int pci_prepare_to_sleep(struct pci_dev *dev)
2082 {
2083 	bool wakeup = device_may_wakeup(&dev->dev);
2084 	pci_power_t target_state = pci_target_state(dev, wakeup);
2085 	int error;
2086 
2087 	if (target_state == PCI_POWER_ERROR)
2088 		return -EIO;
2089 
2090 	pci_enable_wake(dev, target_state, wakeup);
2091 
2092 	error = pci_set_power_state(dev, target_state);
2093 
2094 	if (error)
2095 		pci_enable_wake(dev, target_state, false);
2096 
2097 	return error;
2098 }
2099 EXPORT_SYMBOL(pci_prepare_to_sleep);
2100 
2101 /**
2102  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2103  * @dev: Device to handle.
2104  *
2105  * Disable device's system wake-up capability and put it into D0.
2106  */
2107 int pci_back_from_sleep(struct pci_dev *dev)
2108 {
2109 	pci_enable_wake(dev, PCI_D0, false);
2110 	return pci_set_power_state(dev, PCI_D0);
2111 }
2112 EXPORT_SYMBOL(pci_back_from_sleep);
2113 
2114 /**
2115  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2116  * @dev: PCI device being suspended.
2117  *
2118  * Prepare @dev to generate wake-up events at run time and put it into a low
2119  * power state.
2120  */
2121 int pci_finish_runtime_suspend(struct pci_dev *dev)
2122 {
2123 	pci_power_t target_state;
2124 	int error;
2125 
2126 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2127 	if (target_state == PCI_POWER_ERROR)
2128 		return -EIO;
2129 
2130 	dev->runtime_d3cold = target_state == PCI_D3cold;
2131 
2132 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2133 
2134 	error = pci_set_power_state(dev, target_state);
2135 
2136 	if (error) {
2137 		pci_enable_wake(dev, target_state, false);
2138 		dev->runtime_d3cold = false;
2139 	}
2140 
2141 	return error;
2142 }
2143 
2144 /**
2145  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2146  * @dev: Device to check.
2147  *
2148  * Return true if the device itself is capable of generating wake-up events
2149  * (through the platform or using the native PCIe PME) or if the device supports
2150  * PME and one of its upstream bridges can generate wake-up events.
2151  */
2152 bool pci_dev_run_wake(struct pci_dev *dev)
2153 {
2154 	struct pci_bus *bus = dev->bus;
2155 
2156 	if (!dev->pme_support)
2157 		return false;
2158 
2159 	/* PME-capable in principle, but not from the target power state */
2160 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2161 		return false;
2162 
2163 	if (device_can_wakeup(&dev->dev))
2164 		return true;
2165 
2166 	while (bus->parent) {
2167 		struct pci_dev *bridge = bus->self;
2168 
2169 		if (device_can_wakeup(&bridge->dev))
2170 			return true;
2171 
2172 		bus = bus->parent;
2173 	}
2174 
2175 	/* We have reached the root bus. */
2176 	if (bus->bridge)
2177 		return device_can_wakeup(bus->bridge);
2178 
2179 	return false;
2180 }
2181 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2182 
2183 /**
2184  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2185  * @pci_dev: Device to check.
2186  *
2187  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2188  * reconfigured due to wakeup settings difference between system and runtime
2189  * suspend and the current power state of it is suitable for the upcoming
2190  * (system) transition.
2191  *
2192  * If the device is not configured for system wakeup, disable PME for it before
2193  * returning 'true' to prevent it from waking up the system unnecessarily.
2194  */
2195 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2196 {
2197 	struct device *dev = &pci_dev->dev;
2198 	bool wakeup = device_may_wakeup(dev);
2199 
2200 	if (!pm_runtime_suspended(dev)
2201 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2202 	    || platform_pci_need_resume(pci_dev))
2203 		return false;
2204 
2205 	/*
2206 	 * At this point the device is good to go unless it's been configured
2207 	 * to generate PME at the runtime suspend time, but it is not supposed
2208 	 * to wake up the system.  In that case, simply disable PME for it
2209 	 * (it will have to be re-enabled on exit from system resume).
2210 	 *
2211 	 * If the device's power state is D3cold and the platform check above
2212 	 * hasn't triggered, the device's configuration is suitable and we don't
2213 	 * need to manipulate it at all.
2214 	 */
2215 	spin_lock_irq(&dev->power.lock);
2216 
2217 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2218 	    !wakeup)
2219 		__pci_pme_active(pci_dev, false);
2220 
2221 	spin_unlock_irq(&dev->power.lock);
2222 	return true;
2223 }
2224 
2225 /**
2226  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2227  * @pci_dev: Device to handle.
2228  *
2229  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2230  * it might have been disabled during the prepare phase of system suspend if
2231  * the device was not configured for system wakeup.
2232  */
2233 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2234 {
2235 	struct device *dev = &pci_dev->dev;
2236 
2237 	if (!pci_dev_run_wake(pci_dev))
2238 		return;
2239 
2240 	spin_lock_irq(&dev->power.lock);
2241 
2242 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2243 		__pci_pme_active(pci_dev, true);
2244 
2245 	spin_unlock_irq(&dev->power.lock);
2246 }
2247 
2248 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2249 {
2250 	struct device *dev = &pdev->dev;
2251 	struct device *parent = dev->parent;
2252 
2253 	if (parent)
2254 		pm_runtime_get_sync(parent);
2255 	pm_runtime_get_noresume(dev);
2256 	/*
2257 	 * pdev->current_state is set to PCI_D3cold during suspending,
2258 	 * so wait until suspending completes
2259 	 */
2260 	pm_runtime_barrier(dev);
2261 	/*
2262 	 * Only need to resume devices in D3cold, because config
2263 	 * registers are still accessible for devices suspended but
2264 	 * not in D3cold.
2265 	 */
2266 	if (pdev->current_state == PCI_D3cold)
2267 		pm_runtime_resume(dev);
2268 }
2269 
2270 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2271 {
2272 	struct device *dev = &pdev->dev;
2273 	struct device *parent = dev->parent;
2274 
2275 	pm_runtime_put(dev);
2276 	if (parent)
2277 		pm_runtime_put_sync(parent);
2278 }
2279 
2280 /**
2281  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2282  * @bridge: Bridge to check
2283  *
2284  * This function checks if it is possible to move the bridge to D3.
2285  * Currently we only allow D3 for recent enough PCIe ports.
2286  */
2287 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2288 {
2289 	if (!pci_is_pcie(bridge))
2290 		return false;
2291 
2292 	switch (pci_pcie_type(bridge)) {
2293 	case PCI_EXP_TYPE_ROOT_PORT:
2294 	case PCI_EXP_TYPE_UPSTREAM:
2295 	case PCI_EXP_TYPE_DOWNSTREAM:
2296 		if (pci_bridge_d3_disable)
2297 			return false;
2298 
2299 		/*
2300 		 * Hotplug interrupts cannot be delivered if the link is down,
2301 		 * so parents of a hotplug port must stay awake. In addition,
2302 		 * hotplug ports handled by firmware in System Management Mode
2303 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2304 		 * For simplicity, disallow in general for now.
2305 		 */
2306 		if (bridge->is_hotplug_bridge)
2307 			return false;
2308 
2309 		if (pci_bridge_d3_force)
2310 			return true;
2311 
2312 		/*
2313 		 * It should be safe to put PCIe ports from 2015 or newer
2314 		 * to D3.
2315 		 */
2316 		if (dmi_get_bios_year() >= 2015)
2317 			return true;
2318 		break;
2319 	}
2320 
2321 	return false;
2322 }
2323 
2324 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2325 {
2326 	bool *d3cold_ok = data;
2327 
2328 	if (/* The device needs to be allowed to go D3cold ... */
2329 	    dev->no_d3cold || !dev->d3cold_allowed ||
2330 
2331 	    /* ... and if it is wakeup capable to do so from D3cold. */
2332 	    (device_may_wakeup(&dev->dev) &&
2333 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2334 
2335 	    /* If it is a bridge it must be allowed to go to D3. */
2336 	    !pci_power_manageable(dev))
2337 
2338 		*d3cold_ok = false;
2339 
2340 	return !*d3cold_ok;
2341 }
2342 
2343 /*
2344  * pci_bridge_d3_update - Update bridge D3 capabilities
2345  * @dev: PCI device which is changed
2346  *
2347  * Update upstream bridge PM capabilities accordingly depending on if the
2348  * device PM configuration was changed or the device is being removed.  The
2349  * change is also propagated upstream.
2350  */
2351 void pci_bridge_d3_update(struct pci_dev *dev)
2352 {
2353 	bool remove = !device_is_registered(&dev->dev);
2354 	struct pci_dev *bridge;
2355 	bool d3cold_ok = true;
2356 
2357 	bridge = pci_upstream_bridge(dev);
2358 	if (!bridge || !pci_bridge_d3_possible(bridge))
2359 		return;
2360 
2361 	/*
2362 	 * If D3 is currently allowed for the bridge, removing one of its
2363 	 * children won't change that.
2364 	 */
2365 	if (remove && bridge->bridge_d3)
2366 		return;
2367 
2368 	/*
2369 	 * If D3 is currently allowed for the bridge and a child is added or
2370 	 * changed, disallowance of D3 can only be caused by that child, so
2371 	 * we only need to check that single device, not any of its siblings.
2372 	 *
2373 	 * If D3 is currently not allowed for the bridge, checking the device
2374 	 * first may allow us to skip checking its siblings.
2375 	 */
2376 	if (!remove)
2377 		pci_dev_check_d3cold(dev, &d3cold_ok);
2378 
2379 	/*
2380 	 * If D3 is currently not allowed for the bridge, this may be caused
2381 	 * either by the device being changed/removed or any of its siblings,
2382 	 * so we need to go through all children to find out if one of them
2383 	 * continues to block D3.
2384 	 */
2385 	if (d3cold_ok && !bridge->bridge_d3)
2386 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2387 			     &d3cold_ok);
2388 
2389 	if (bridge->bridge_d3 != d3cold_ok) {
2390 		bridge->bridge_d3 = d3cold_ok;
2391 		/* Propagate change to upstream bridges */
2392 		pci_bridge_d3_update(bridge);
2393 	}
2394 }
2395 
2396 /**
2397  * pci_d3cold_enable - Enable D3cold for device
2398  * @dev: PCI device to handle
2399  *
2400  * This function can be used in drivers to enable D3cold from the device
2401  * they handle.  It also updates upstream PCI bridge PM capabilities
2402  * accordingly.
2403  */
2404 void pci_d3cold_enable(struct pci_dev *dev)
2405 {
2406 	if (dev->no_d3cold) {
2407 		dev->no_d3cold = false;
2408 		pci_bridge_d3_update(dev);
2409 	}
2410 }
2411 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2412 
2413 /**
2414  * pci_d3cold_disable - Disable D3cold for device
2415  * @dev: PCI device to handle
2416  *
2417  * This function can be used in drivers to disable D3cold from the device
2418  * they handle.  It also updates upstream PCI bridge PM capabilities
2419  * accordingly.
2420  */
2421 void pci_d3cold_disable(struct pci_dev *dev)
2422 {
2423 	if (!dev->no_d3cold) {
2424 		dev->no_d3cold = true;
2425 		pci_bridge_d3_update(dev);
2426 	}
2427 }
2428 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2429 
2430 /**
2431  * pci_pm_init - Initialize PM functions of given PCI device
2432  * @dev: PCI device to handle.
2433  */
2434 void pci_pm_init(struct pci_dev *dev)
2435 {
2436 	int pm;
2437 	u16 pmc;
2438 
2439 	pm_runtime_forbid(&dev->dev);
2440 	pm_runtime_set_active(&dev->dev);
2441 	pm_runtime_enable(&dev->dev);
2442 	device_enable_async_suspend(&dev->dev);
2443 	dev->wakeup_prepared = false;
2444 
2445 	dev->pm_cap = 0;
2446 	dev->pme_support = 0;
2447 
2448 	/* find PCI PM capability in list */
2449 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2450 	if (!pm)
2451 		return;
2452 	/* Check device's ability to generate PME# */
2453 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2454 
2455 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2456 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2457 			pmc & PCI_PM_CAP_VER_MASK);
2458 		return;
2459 	}
2460 
2461 	dev->pm_cap = pm;
2462 	dev->d3_delay = PCI_PM_D3_WAIT;
2463 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2464 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2465 	dev->d3cold_allowed = true;
2466 
2467 	dev->d1_support = false;
2468 	dev->d2_support = false;
2469 	if (!pci_no_d1d2(dev)) {
2470 		if (pmc & PCI_PM_CAP_D1)
2471 			dev->d1_support = true;
2472 		if (pmc & PCI_PM_CAP_D2)
2473 			dev->d2_support = true;
2474 
2475 		if (dev->d1_support || dev->d2_support)
2476 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2477 				   dev->d1_support ? " D1" : "",
2478 				   dev->d2_support ? " D2" : "");
2479 	}
2480 
2481 	pmc &= PCI_PM_CAP_PME_MASK;
2482 	if (pmc) {
2483 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2484 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2485 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2486 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2487 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2488 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2489 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2490 		dev->pme_poll = true;
2491 		/*
2492 		 * Make device's PM flags reflect the wake-up capability, but
2493 		 * let the user space enable it to wake up the system as needed.
2494 		 */
2495 		device_set_wakeup_capable(&dev->dev, true);
2496 		/* Disable the PME# generation functionality */
2497 		pci_pme_active(dev, false);
2498 	}
2499 }
2500 
2501 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2502 {
2503 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2504 
2505 	switch (prop) {
2506 	case PCI_EA_P_MEM:
2507 	case PCI_EA_P_VF_MEM:
2508 		flags |= IORESOURCE_MEM;
2509 		break;
2510 	case PCI_EA_P_MEM_PREFETCH:
2511 	case PCI_EA_P_VF_MEM_PREFETCH:
2512 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2513 		break;
2514 	case PCI_EA_P_IO:
2515 		flags |= IORESOURCE_IO;
2516 		break;
2517 	default:
2518 		return 0;
2519 	}
2520 
2521 	return flags;
2522 }
2523 
2524 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2525 					    u8 prop)
2526 {
2527 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2528 		return &dev->resource[bei];
2529 #ifdef CONFIG_PCI_IOV
2530 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2531 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2532 		return &dev->resource[PCI_IOV_RESOURCES +
2533 				      bei - PCI_EA_BEI_VF_BAR0];
2534 #endif
2535 	else if (bei == PCI_EA_BEI_ROM)
2536 		return &dev->resource[PCI_ROM_RESOURCE];
2537 	else
2538 		return NULL;
2539 }
2540 
2541 /* Read an Enhanced Allocation (EA) entry */
2542 static int pci_ea_read(struct pci_dev *dev, int offset)
2543 {
2544 	struct resource *res;
2545 	int ent_size, ent_offset = offset;
2546 	resource_size_t start, end;
2547 	unsigned long flags;
2548 	u32 dw0, bei, base, max_offset;
2549 	u8 prop;
2550 	bool support_64 = (sizeof(resource_size_t) >= 8);
2551 
2552 	pci_read_config_dword(dev, ent_offset, &dw0);
2553 	ent_offset += 4;
2554 
2555 	/* Entry size field indicates DWORDs after 1st */
2556 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2557 
2558 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2559 		goto out;
2560 
2561 	bei = (dw0 & PCI_EA_BEI) >> 4;
2562 	prop = (dw0 & PCI_EA_PP) >> 8;
2563 
2564 	/*
2565 	 * If the Property is in the reserved range, try the Secondary
2566 	 * Property instead.
2567 	 */
2568 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2569 		prop = (dw0 & PCI_EA_SP) >> 16;
2570 	if (prop > PCI_EA_P_BRIDGE_IO)
2571 		goto out;
2572 
2573 	res = pci_ea_get_resource(dev, bei, prop);
2574 	if (!res) {
2575 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2576 		goto out;
2577 	}
2578 
2579 	flags = pci_ea_flags(dev, prop);
2580 	if (!flags) {
2581 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2582 		goto out;
2583 	}
2584 
2585 	/* Read Base */
2586 	pci_read_config_dword(dev, ent_offset, &base);
2587 	start = (base & PCI_EA_FIELD_MASK);
2588 	ent_offset += 4;
2589 
2590 	/* Read MaxOffset */
2591 	pci_read_config_dword(dev, ent_offset, &max_offset);
2592 	ent_offset += 4;
2593 
2594 	/* Read Base MSBs (if 64-bit entry) */
2595 	if (base & PCI_EA_IS_64) {
2596 		u32 base_upper;
2597 
2598 		pci_read_config_dword(dev, ent_offset, &base_upper);
2599 		ent_offset += 4;
2600 
2601 		flags |= IORESOURCE_MEM_64;
2602 
2603 		/* entry starts above 32-bit boundary, can't use */
2604 		if (!support_64 && base_upper)
2605 			goto out;
2606 
2607 		if (support_64)
2608 			start |= ((u64)base_upper << 32);
2609 	}
2610 
2611 	end = start + (max_offset | 0x03);
2612 
2613 	/* Read MaxOffset MSBs (if 64-bit entry) */
2614 	if (max_offset & PCI_EA_IS_64) {
2615 		u32 max_offset_upper;
2616 
2617 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2618 		ent_offset += 4;
2619 
2620 		flags |= IORESOURCE_MEM_64;
2621 
2622 		/* entry too big, can't use */
2623 		if (!support_64 && max_offset_upper)
2624 			goto out;
2625 
2626 		if (support_64)
2627 			end += ((u64)max_offset_upper << 32);
2628 	}
2629 
2630 	if (end < start) {
2631 		pci_err(dev, "EA Entry crosses address boundary\n");
2632 		goto out;
2633 	}
2634 
2635 	if (ent_size != ent_offset - offset) {
2636 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2637 			ent_size, ent_offset - offset);
2638 		goto out;
2639 	}
2640 
2641 	res->name = pci_name(dev);
2642 	res->start = start;
2643 	res->end = end;
2644 	res->flags = flags;
2645 
2646 	if (bei <= PCI_EA_BEI_BAR5)
2647 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2648 			   bei, res, prop);
2649 	else if (bei == PCI_EA_BEI_ROM)
2650 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2651 			   res, prop);
2652 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2653 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2654 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2655 	else
2656 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2657 			   bei, res, prop);
2658 
2659 out:
2660 	return offset + ent_size;
2661 }
2662 
2663 /* Enhanced Allocation Initialization */
2664 void pci_ea_init(struct pci_dev *dev)
2665 {
2666 	int ea;
2667 	u8 num_ent;
2668 	int offset;
2669 	int i;
2670 
2671 	/* find PCI EA capability in list */
2672 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2673 	if (!ea)
2674 		return;
2675 
2676 	/* determine the number of entries */
2677 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2678 					&num_ent);
2679 	num_ent &= PCI_EA_NUM_ENT_MASK;
2680 
2681 	offset = ea + PCI_EA_FIRST_ENT;
2682 
2683 	/* Skip DWORD 2 for type 1 functions */
2684 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2685 		offset += 4;
2686 
2687 	/* parse each EA entry */
2688 	for (i = 0; i < num_ent; ++i)
2689 		offset = pci_ea_read(dev, offset);
2690 }
2691 
2692 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2693 	struct pci_cap_saved_state *new_cap)
2694 {
2695 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2696 }
2697 
2698 /**
2699  * _pci_add_cap_save_buffer - allocate buffer for saving given
2700  *                            capability registers
2701  * @dev: the PCI device
2702  * @cap: the capability to allocate the buffer for
2703  * @extended: Standard or Extended capability ID
2704  * @size: requested size of the buffer
2705  */
2706 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2707 				    bool extended, unsigned int size)
2708 {
2709 	int pos;
2710 	struct pci_cap_saved_state *save_state;
2711 
2712 	if (extended)
2713 		pos = pci_find_ext_capability(dev, cap);
2714 	else
2715 		pos = pci_find_capability(dev, cap);
2716 
2717 	if (!pos)
2718 		return 0;
2719 
2720 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2721 	if (!save_state)
2722 		return -ENOMEM;
2723 
2724 	save_state->cap.cap_nr = cap;
2725 	save_state->cap.cap_extended = extended;
2726 	save_state->cap.size = size;
2727 	pci_add_saved_cap(dev, save_state);
2728 
2729 	return 0;
2730 }
2731 
2732 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2733 {
2734 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2735 }
2736 
2737 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2738 {
2739 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2740 }
2741 
2742 /**
2743  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2744  * @dev: the PCI device
2745  */
2746 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2747 {
2748 	int error;
2749 
2750 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2751 					PCI_EXP_SAVE_REGS * sizeof(u16));
2752 	if (error)
2753 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2754 
2755 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2756 	if (error)
2757 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2758 
2759 	pci_allocate_vc_save_buffers(dev);
2760 }
2761 
2762 void pci_free_cap_save_buffers(struct pci_dev *dev)
2763 {
2764 	struct pci_cap_saved_state *tmp;
2765 	struct hlist_node *n;
2766 
2767 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2768 		kfree(tmp);
2769 }
2770 
2771 /**
2772  * pci_configure_ari - enable or disable ARI forwarding
2773  * @dev: the PCI device
2774  *
2775  * If @dev and its upstream bridge both support ARI, enable ARI in the
2776  * bridge.  Otherwise, disable ARI in the bridge.
2777  */
2778 void pci_configure_ari(struct pci_dev *dev)
2779 {
2780 	u32 cap;
2781 	struct pci_dev *bridge;
2782 
2783 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2784 		return;
2785 
2786 	bridge = dev->bus->self;
2787 	if (!bridge)
2788 		return;
2789 
2790 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2791 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2792 		return;
2793 
2794 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2795 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2796 					 PCI_EXP_DEVCTL2_ARI);
2797 		bridge->ari_enabled = 1;
2798 	} else {
2799 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2800 					   PCI_EXP_DEVCTL2_ARI);
2801 		bridge->ari_enabled = 0;
2802 	}
2803 }
2804 
2805 static int pci_acs_enable;
2806 
2807 /**
2808  * pci_request_acs - ask for ACS to be enabled if supported
2809  */
2810 void pci_request_acs(void)
2811 {
2812 	pci_acs_enable = 1;
2813 }
2814 
2815 /**
2816  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2817  * @dev: the PCI device
2818  */
2819 static void pci_std_enable_acs(struct pci_dev *dev)
2820 {
2821 	int pos;
2822 	u16 cap;
2823 	u16 ctrl;
2824 
2825 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2826 	if (!pos)
2827 		return;
2828 
2829 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2830 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2831 
2832 	/* Source Validation */
2833 	ctrl |= (cap & PCI_ACS_SV);
2834 
2835 	/* P2P Request Redirect */
2836 	ctrl |= (cap & PCI_ACS_RR);
2837 
2838 	/* P2P Completion Redirect */
2839 	ctrl |= (cap & PCI_ACS_CR);
2840 
2841 	/* Upstream Forwarding */
2842 	ctrl |= (cap & PCI_ACS_UF);
2843 
2844 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2845 }
2846 
2847 /**
2848  * pci_enable_acs - enable ACS if hardware support it
2849  * @dev: the PCI device
2850  */
2851 void pci_enable_acs(struct pci_dev *dev)
2852 {
2853 	if (!pci_acs_enable)
2854 		return;
2855 
2856 	if (!pci_dev_specific_enable_acs(dev))
2857 		return;
2858 
2859 	pci_std_enable_acs(dev);
2860 }
2861 
2862 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2863 {
2864 	int pos;
2865 	u16 cap, ctrl;
2866 
2867 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2868 	if (!pos)
2869 		return false;
2870 
2871 	/*
2872 	 * Except for egress control, capabilities are either required
2873 	 * or only required if controllable.  Features missing from the
2874 	 * capability field can therefore be assumed as hard-wired enabled.
2875 	 */
2876 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2877 	acs_flags &= (cap | PCI_ACS_EC);
2878 
2879 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2880 	return (ctrl & acs_flags) == acs_flags;
2881 }
2882 
2883 /**
2884  * pci_acs_enabled - test ACS against required flags for a given device
2885  * @pdev: device to test
2886  * @acs_flags: required PCI ACS flags
2887  *
2888  * Return true if the device supports the provided flags.  Automatically
2889  * filters out flags that are not implemented on multifunction devices.
2890  *
2891  * Note that this interface checks the effective ACS capabilities of the
2892  * device rather than the actual capabilities.  For instance, most single
2893  * function endpoints are not required to support ACS because they have no
2894  * opportunity for peer-to-peer access.  We therefore return 'true'
2895  * regardless of whether the device exposes an ACS capability.  This makes
2896  * it much easier for callers of this function to ignore the actual type
2897  * or topology of the device when testing ACS support.
2898  */
2899 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2900 {
2901 	int ret;
2902 
2903 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2904 	if (ret >= 0)
2905 		return ret > 0;
2906 
2907 	/*
2908 	 * Conventional PCI and PCI-X devices never support ACS, either
2909 	 * effectively or actually.  The shared bus topology implies that
2910 	 * any device on the bus can receive or snoop DMA.
2911 	 */
2912 	if (!pci_is_pcie(pdev))
2913 		return false;
2914 
2915 	switch (pci_pcie_type(pdev)) {
2916 	/*
2917 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2918 	 * but since their primary interface is PCI/X, we conservatively
2919 	 * handle them as we would a non-PCIe device.
2920 	 */
2921 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2922 	/*
2923 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2924 	 * applicable... must never implement an ACS Extended Capability...".
2925 	 * This seems arbitrary, but we take a conservative interpretation
2926 	 * of this statement.
2927 	 */
2928 	case PCI_EXP_TYPE_PCI_BRIDGE:
2929 	case PCI_EXP_TYPE_RC_EC:
2930 		return false;
2931 	/*
2932 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2933 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2934 	 * regardless of whether they are single- or multi-function devices.
2935 	 */
2936 	case PCI_EXP_TYPE_DOWNSTREAM:
2937 	case PCI_EXP_TYPE_ROOT_PORT:
2938 		return pci_acs_flags_enabled(pdev, acs_flags);
2939 	/*
2940 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2941 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2942 	 * capabilities, but only when they are part of a multifunction
2943 	 * device.  The footnote for section 6.12 indicates the specific
2944 	 * PCIe types included here.
2945 	 */
2946 	case PCI_EXP_TYPE_ENDPOINT:
2947 	case PCI_EXP_TYPE_UPSTREAM:
2948 	case PCI_EXP_TYPE_LEG_END:
2949 	case PCI_EXP_TYPE_RC_END:
2950 		if (!pdev->multifunction)
2951 			break;
2952 
2953 		return pci_acs_flags_enabled(pdev, acs_flags);
2954 	}
2955 
2956 	/*
2957 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2958 	 * to single function devices with the exception of downstream ports.
2959 	 */
2960 	return true;
2961 }
2962 
2963 /**
2964  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2965  * @start: starting downstream device
2966  * @end: ending upstream device or NULL to search to the root bus
2967  * @acs_flags: required flags
2968  *
2969  * Walk up a device tree from start to end testing PCI ACS support.  If
2970  * any step along the way does not support the required flags, return false.
2971  */
2972 bool pci_acs_path_enabled(struct pci_dev *start,
2973 			  struct pci_dev *end, u16 acs_flags)
2974 {
2975 	struct pci_dev *pdev, *parent = start;
2976 
2977 	do {
2978 		pdev = parent;
2979 
2980 		if (!pci_acs_enabled(pdev, acs_flags))
2981 			return false;
2982 
2983 		if (pci_is_root_bus(pdev->bus))
2984 			return (end == NULL);
2985 
2986 		parent = pdev->bus->self;
2987 	} while (pdev != end);
2988 
2989 	return true;
2990 }
2991 
2992 /**
2993  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2994  * @pdev: PCI device
2995  * @bar: BAR to find
2996  *
2997  * Helper to find the position of the ctrl register for a BAR.
2998  * Returns -ENOTSUPP if resizable BARs are not supported at all.
2999  * Returns -ENOENT if no ctrl register for the BAR could be found.
3000  */
3001 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3002 {
3003 	unsigned int pos, nbars, i;
3004 	u32 ctrl;
3005 
3006 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3007 	if (!pos)
3008 		return -ENOTSUPP;
3009 
3010 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3011 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3012 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3013 
3014 	for (i = 0; i < nbars; i++, pos += 8) {
3015 		int bar_idx;
3016 
3017 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3018 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3019 		if (bar_idx == bar)
3020 			return pos;
3021 	}
3022 
3023 	return -ENOENT;
3024 }
3025 
3026 /**
3027  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3028  * @pdev: PCI device
3029  * @bar: BAR to query
3030  *
3031  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3032  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3033  */
3034 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3035 {
3036 	int pos;
3037 	u32 cap;
3038 
3039 	pos = pci_rebar_find_pos(pdev, bar);
3040 	if (pos < 0)
3041 		return 0;
3042 
3043 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3044 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3045 }
3046 
3047 /**
3048  * pci_rebar_get_current_size - get the current size of a BAR
3049  * @pdev: PCI device
3050  * @bar: BAR to set size to
3051  *
3052  * Read the size of a BAR from the resizable BAR config.
3053  * Returns size if found or negative error code.
3054  */
3055 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3056 {
3057 	int pos;
3058 	u32 ctrl;
3059 
3060 	pos = pci_rebar_find_pos(pdev, bar);
3061 	if (pos < 0)
3062 		return pos;
3063 
3064 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3065 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3066 }
3067 
3068 /**
3069  * pci_rebar_set_size - set a new size for a BAR
3070  * @pdev: PCI device
3071  * @bar: BAR to set size to
3072  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3073  *
3074  * Set the new size of a BAR as defined in the spec.
3075  * Returns zero if resizing was successful, error code otherwise.
3076  */
3077 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3078 {
3079 	int pos;
3080 	u32 ctrl;
3081 
3082 	pos = pci_rebar_find_pos(pdev, bar);
3083 	if (pos < 0)
3084 		return pos;
3085 
3086 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3087 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3088 	ctrl |= size << 8;
3089 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3090 	return 0;
3091 }
3092 
3093 /**
3094  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3095  * @dev: the PCI device
3096  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3097  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3098  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3099  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3100  *
3101  * Return 0 if all upstream bridges support AtomicOp routing, egress
3102  * blocking is disabled on all upstream ports, and the root port supports
3103  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3104  * AtomicOp completion), or negative otherwise.
3105  */
3106 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3107 {
3108 	struct pci_bus *bus = dev->bus;
3109 	struct pci_dev *bridge;
3110 	u32 cap, ctl2;
3111 
3112 	if (!pci_is_pcie(dev))
3113 		return -EINVAL;
3114 
3115 	/*
3116 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3117 	 * AtomicOp requesters.  For now, we only support endpoints as
3118 	 * requesters and root ports as completers.  No endpoints as
3119 	 * completers, and no peer-to-peer.
3120 	 */
3121 
3122 	switch (pci_pcie_type(dev)) {
3123 	case PCI_EXP_TYPE_ENDPOINT:
3124 	case PCI_EXP_TYPE_LEG_END:
3125 	case PCI_EXP_TYPE_RC_END:
3126 		break;
3127 	default:
3128 		return -EINVAL;
3129 	}
3130 
3131 	while (bus->parent) {
3132 		bridge = bus->self;
3133 
3134 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3135 
3136 		switch (pci_pcie_type(bridge)) {
3137 		/* Ensure switch ports support AtomicOp routing */
3138 		case PCI_EXP_TYPE_UPSTREAM:
3139 		case PCI_EXP_TYPE_DOWNSTREAM:
3140 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3141 				return -EINVAL;
3142 			break;
3143 
3144 		/* Ensure root port supports all the sizes we care about */
3145 		case PCI_EXP_TYPE_ROOT_PORT:
3146 			if ((cap & cap_mask) != cap_mask)
3147 				return -EINVAL;
3148 			break;
3149 		}
3150 
3151 		/* Ensure upstream ports don't block AtomicOps on egress */
3152 		if (!bridge->has_secondary_link) {
3153 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3154 						   &ctl2);
3155 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3156 				return -EINVAL;
3157 		}
3158 
3159 		bus = bus->parent;
3160 	}
3161 
3162 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3163 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3164 	return 0;
3165 }
3166 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3167 
3168 /**
3169  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3170  * @dev: the PCI device
3171  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3172  *
3173  * Perform INTx swizzling for a device behind one level of bridge.  This is
3174  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3175  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3176  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3177  * the PCI Express Base Specification, Revision 2.1)
3178  */
3179 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3180 {
3181 	int slot;
3182 
3183 	if (pci_ari_enabled(dev->bus))
3184 		slot = 0;
3185 	else
3186 		slot = PCI_SLOT(dev->devfn);
3187 
3188 	return (((pin - 1) + slot) % 4) + 1;
3189 }
3190 
3191 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3192 {
3193 	u8 pin;
3194 
3195 	pin = dev->pin;
3196 	if (!pin)
3197 		return -1;
3198 
3199 	while (!pci_is_root_bus(dev->bus)) {
3200 		pin = pci_swizzle_interrupt_pin(dev, pin);
3201 		dev = dev->bus->self;
3202 	}
3203 	*bridge = dev;
3204 	return pin;
3205 }
3206 
3207 /**
3208  * pci_common_swizzle - swizzle INTx all the way to root bridge
3209  * @dev: the PCI device
3210  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3211  *
3212  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3213  * bridges all the way up to a PCI root bus.
3214  */
3215 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3216 {
3217 	u8 pin = *pinp;
3218 
3219 	while (!pci_is_root_bus(dev->bus)) {
3220 		pin = pci_swizzle_interrupt_pin(dev, pin);
3221 		dev = dev->bus->self;
3222 	}
3223 	*pinp = pin;
3224 	return PCI_SLOT(dev->devfn);
3225 }
3226 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3227 
3228 /**
3229  *	pci_release_region - Release a PCI bar
3230  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3231  *	@bar: BAR to release
3232  *
3233  *	Releases the PCI I/O and memory resources previously reserved by a
3234  *	successful call to pci_request_region.  Call this function only
3235  *	after all use of the PCI regions has ceased.
3236  */
3237 void pci_release_region(struct pci_dev *pdev, int bar)
3238 {
3239 	struct pci_devres *dr;
3240 
3241 	if (pci_resource_len(pdev, bar) == 0)
3242 		return;
3243 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3244 		release_region(pci_resource_start(pdev, bar),
3245 				pci_resource_len(pdev, bar));
3246 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3247 		release_mem_region(pci_resource_start(pdev, bar),
3248 				pci_resource_len(pdev, bar));
3249 
3250 	dr = find_pci_dr(pdev);
3251 	if (dr)
3252 		dr->region_mask &= ~(1 << bar);
3253 }
3254 EXPORT_SYMBOL(pci_release_region);
3255 
3256 /**
3257  *	__pci_request_region - Reserved PCI I/O and memory resource
3258  *	@pdev: PCI device whose resources are to be reserved
3259  *	@bar: BAR to be reserved
3260  *	@res_name: Name to be associated with resource.
3261  *	@exclusive: whether the region access is exclusive or not
3262  *
3263  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3264  *	being reserved by owner @res_name.  Do not access any
3265  *	address inside the PCI regions unless this call returns
3266  *	successfully.
3267  *
3268  *	If @exclusive is set, then the region is marked so that userspace
3269  *	is explicitly not allowed to map the resource via /dev/mem or
3270  *	sysfs MMIO access.
3271  *
3272  *	Returns 0 on success, or %EBUSY on error.  A warning
3273  *	message is also printed on failure.
3274  */
3275 static int __pci_request_region(struct pci_dev *pdev, int bar,
3276 				const char *res_name, int exclusive)
3277 {
3278 	struct pci_devres *dr;
3279 
3280 	if (pci_resource_len(pdev, bar) == 0)
3281 		return 0;
3282 
3283 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3284 		if (!request_region(pci_resource_start(pdev, bar),
3285 			    pci_resource_len(pdev, bar), res_name))
3286 			goto err_out;
3287 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3288 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3289 					pci_resource_len(pdev, bar), res_name,
3290 					exclusive))
3291 			goto err_out;
3292 	}
3293 
3294 	dr = find_pci_dr(pdev);
3295 	if (dr)
3296 		dr->region_mask |= 1 << bar;
3297 
3298 	return 0;
3299 
3300 err_out:
3301 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3302 		 &pdev->resource[bar]);
3303 	return -EBUSY;
3304 }
3305 
3306 /**
3307  *	pci_request_region - Reserve PCI I/O and memory resource
3308  *	@pdev: PCI device whose resources are to be reserved
3309  *	@bar: BAR to be reserved
3310  *	@res_name: Name to be associated with resource
3311  *
3312  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3313  *	being reserved by owner @res_name.  Do not access any
3314  *	address inside the PCI regions unless this call returns
3315  *	successfully.
3316  *
3317  *	Returns 0 on success, or %EBUSY on error.  A warning
3318  *	message is also printed on failure.
3319  */
3320 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3321 {
3322 	return __pci_request_region(pdev, bar, res_name, 0);
3323 }
3324 EXPORT_SYMBOL(pci_request_region);
3325 
3326 /**
3327  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3328  *	@pdev: PCI device whose resources are to be reserved
3329  *	@bar: BAR to be reserved
3330  *	@res_name: Name to be associated with resource.
3331  *
3332  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3333  *	being reserved by owner @res_name.  Do not access any
3334  *	address inside the PCI regions unless this call returns
3335  *	successfully.
3336  *
3337  *	Returns 0 on success, or %EBUSY on error.  A warning
3338  *	message is also printed on failure.
3339  *
3340  *	The key difference that _exclusive makes it that userspace is
3341  *	explicitly not allowed to map the resource via /dev/mem or
3342  *	sysfs.
3343  */
3344 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3345 				 const char *res_name)
3346 {
3347 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3348 }
3349 EXPORT_SYMBOL(pci_request_region_exclusive);
3350 
3351 /**
3352  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3353  * @pdev: PCI device whose resources were previously reserved
3354  * @bars: Bitmask of BARs to be released
3355  *
3356  * Release selected PCI I/O and memory resources previously reserved.
3357  * Call this function only after all use of the PCI regions has ceased.
3358  */
3359 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3360 {
3361 	int i;
3362 
3363 	for (i = 0; i < 6; i++)
3364 		if (bars & (1 << i))
3365 			pci_release_region(pdev, i);
3366 }
3367 EXPORT_SYMBOL(pci_release_selected_regions);
3368 
3369 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3370 					  const char *res_name, int excl)
3371 {
3372 	int i;
3373 
3374 	for (i = 0; i < 6; i++)
3375 		if (bars & (1 << i))
3376 			if (__pci_request_region(pdev, i, res_name, excl))
3377 				goto err_out;
3378 	return 0;
3379 
3380 err_out:
3381 	while (--i >= 0)
3382 		if (bars & (1 << i))
3383 			pci_release_region(pdev, i);
3384 
3385 	return -EBUSY;
3386 }
3387 
3388 
3389 /**
3390  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3391  * @pdev: PCI device whose resources are to be reserved
3392  * @bars: Bitmask of BARs to be requested
3393  * @res_name: Name to be associated with resource
3394  */
3395 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3396 				 const char *res_name)
3397 {
3398 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3399 }
3400 EXPORT_SYMBOL(pci_request_selected_regions);
3401 
3402 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3403 					   const char *res_name)
3404 {
3405 	return __pci_request_selected_regions(pdev, bars, res_name,
3406 			IORESOURCE_EXCLUSIVE);
3407 }
3408 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3409 
3410 /**
3411  *	pci_release_regions - Release reserved PCI I/O and memory resources
3412  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3413  *
3414  *	Releases all PCI I/O and memory resources previously reserved by a
3415  *	successful call to pci_request_regions.  Call this function only
3416  *	after all use of the PCI regions has ceased.
3417  */
3418 
3419 void pci_release_regions(struct pci_dev *pdev)
3420 {
3421 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3422 }
3423 EXPORT_SYMBOL(pci_release_regions);
3424 
3425 /**
3426  *	pci_request_regions - Reserved PCI I/O and memory resources
3427  *	@pdev: PCI device whose resources are to be reserved
3428  *	@res_name: Name to be associated with resource.
3429  *
3430  *	Mark all PCI regions associated with PCI device @pdev as
3431  *	being reserved by owner @res_name.  Do not access any
3432  *	address inside the PCI regions unless this call returns
3433  *	successfully.
3434  *
3435  *	Returns 0 on success, or %EBUSY on error.  A warning
3436  *	message is also printed on failure.
3437  */
3438 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3439 {
3440 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3441 }
3442 EXPORT_SYMBOL(pci_request_regions);
3443 
3444 /**
3445  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3446  *	@pdev: PCI device whose resources are to be reserved
3447  *	@res_name: Name to be associated with resource.
3448  *
3449  *	Mark all PCI regions associated with PCI device @pdev as
3450  *	being reserved by owner @res_name.  Do not access any
3451  *	address inside the PCI regions unless this call returns
3452  *	successfully.
3453  *
3454  *	pci_request_regions_exclusive() will mark the region so that
3455  *	/dev/mem and the sysfs MMIO access will not be allowed.
3456  *
3457  *	Returns 0 on success, or %EBUSY on error.  A warning
3458  *	message is also printed on failure.
3459  */
3460 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3461 {
3462 	return pci_request_selected_regions_exclusive(pdev,
3463 					((1 << 6) - 1), res_name);
3464 }
3465 EXPORT_SYMBOL(pci_request_regions_exclusive);
3466 
3467 /*
3468  * Record the PCI IO range (expressed as CPU physical address + size).
3469  * Return a negative value if an error has occured, zero otherwise
3470  */
3471 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3472 			resource_size_t	size)
3473 {
3474 	int ret = 0;
3475 #ifdef PCI_IOBASE
3476 	struct logic_pio_hwaddr *range;
3477 
3478 	if (!size || addr + size < addr)
3479 		return -EINVAL;
3480 
3481 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3482 	if (!range)
3483 		return -ENOMEM;
3484 
3485 	range->fwnode = fwnode;
3486 	range->size = size;
3487 	range->hw_start = addr;
3488 	range->flags = LOGIC_PIO_CPU_MMIO;
3489 
3490 	ret = logic_pio_register_range(range);
3491 	if (ret)
3492 		kfree(range);
3493 #endif
3494 
3495 	return ret;
3496 }
3497 
3498 phys_addr_t pci_pio_to_address(unsigned long pio)
3499 {
3500 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3501 
3502 #ifdef PCI_IOBASE
3503 	if (pio >= MMIO_UPPER_LIMIT)
3504 		return address;
3505 
3506 	address = logic_pio_to_hwaddr(pio);
3507 #endif
3508 
3509 	return address;
3510 }
3511 
3512 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3513 {
3514 #ifdef PCI_IOBASE
3515 	return logic_pio_trans_cpuaddr(address);
3516 #else
3517 	if (address > IO_SPACE_LIMIT)
3518 		return (unsigned long)-1;
3519 
3520 	return (unsigned long) address;
3521 #endif
3522 }
3523 
3524 /**
3525  *	pci_remap_iospace - Remap the memory mapped I/O space
3526  *	@res: Resource describing the I/O space
3527  *	@phys_addr: physical address of range to be mapped
3528  *
3529  *	Remap the memory mapped I/O space described by the @res
3530  *	and the CPU physical address @phys_addr into virtual address space.
3531  *	Only architectures that have memory mapped IO functions defined
3532  *	(and the PCI_IOBASE value defined) should call this function.
3533  */
3534 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3535 {
3536 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3537 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3538 
3539 	if (!(res->flags & IORESOURCE_IO))
3540 		return -EINVAL;
3541 
3542 	if (res->end > IO_SPACE_LIMIT)
3543 		return -EINVAL;
3544 
3545 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3546 				  pgprot_device(PAGE_KERNEL));
3547 #else
3548 	/* this architecture does not have memory mapped I/O space,
3549 	   so this function should never be called */
3550 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3551 	return -ENODEV;
3552 #endif
3553 }
3554 EXPORT_SYMBOL(pci_remap_iospace);
3555 
3556 /**
3557  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3558  *	@res: resource to be unmapped
3559  *
3560  *	Unmap the CPU virtual address @res from virtual address space.
3561  *	Only architectures that have memory mapped IO functions defined
3562  *	(and the PCI_IOBASE value defined) should call this function.
3563  */
3564 void pci_unmap_iospace(struct resource *res)
3565 {
3566 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3567 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3568 
3569 	unmap_kernel_range(vaddr, resource_size(res));
3570 #endif
3571 }
3572 EXPORT_SYMBOL(pci_unmap_iospace);
3573 
3574 /**
3575  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3576  * @dev: Generic device to remap IO address for
3577  * @offset: Resource address to map
3578  * @size: Size of map
3579  *
3580  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3581  * detach.
3582  */
3583 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3584 				      resource_size_t offset,
3585 				      resource_size_t size)
3586 {
3587 	void __iomem **ptr, *addr;
3588 
3589 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3590 	if (!ptr)
3591 		return NULL;
3592 
3593 	addr = pci_remap_cfgspace(offset, size);
3594 	if (addr) {
3595 		*ptr = addr;
3596 		devres_add(dev, ptr);
3597 	} else
3598 		devres_free(ptr);
3599 
3600 	return addr;
3601 }
3602 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3603 
3604 /**
3605  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3606  * @dev: generic device to handle the resource for
3607  * @res: configuration space resource to be handled
3608  *
3609  * Checks that a resource is a valid memory region, requests the memory
3610  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3611  * proper PCI configuration space memory attributes are guaranteed.
3612  *
3613  * All operations are managed and will be undone on driver detach.
3614  *
3615  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3616  * on failure. Usage example::
3617  *
3618  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3619  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3620  *	if (IS_ERR(base))
3621  *		return PTR_ERR(base);
3622  */
3623 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3624 					  struct resource *res)
3625 {
3626 	resource_size_t size;
3627 	const char *name;
3628 	void __iomem *dest_ptr;
3629 
3630 	BUG_ON(!dev);
3631 
3632 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3633 		dev_err(dev, "invalid resource\n");
3634 		return IOMEM_ERR_PTR(-EINVAL);
3635 	}
3636 
3637 	size = resource_size(res);
3638 	name = res->name ?: dev_name(dev);
3639 
3640 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3641 		dev_err(dev, "can't request region for resource %pR\n", res);
3642 		return IOMEM_ERR_PTR(-EBUSY);
3643 	}
3644 
3645 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3646 	if (!dest_ptr) {
3647 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3648 		devm_release_mem_region(dev, res->start, size);
3649 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3650 	}
3651 
3652 	return dest_ptr;
3653 }
3654 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3655 
3656 static void __pci_set_master(struct pci_dev *dev, bool enable)
3657 {
3658 	u16 old_cmd, cmd;
3659 
3660 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3661 	if (enable)
3662 		cmd = old_cmd | PCI_COMMAND_MASTER;
3663 	else
3664 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3665 	if (cmd != old_cmd) {
3666 		pci_dbg(dev, "%s bus mastering\n",
3667 			enable ? "enabling" : "disabling");
3668 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3669 	}
3670 	dev->is_busmaster = enable;
3671 }
3672 
3673 /**
3674  * pcibios_setup - process "pci=" kernel boot arguments
3675  * @str: string used to pass in "pci=" kernel boot arguments
3676  *
3677  * Process kernel boot arguments.  This is the default implementation.
3678  * Architecture specific implementations can override this as necessary.
3679  */
3680 char * __weak __init pcibios_setup(char *str)
3681 {
3682 	return str;
3683 }
3684 
3685 /**
3686  * pcibios_set_master - enable PCI bus-mastering for device dev
3687  * @dev: the PCI device to enable
3688  *
3689  * Enables PCI bus-mastering for the device.  This is the default
3690  * implementation.  Architecture specific implementations can override
3691  * this if necessary.
3692  */
3693 void __weak pcibios_set_master(struct pci_dev *dev)
3694 {
3695 	u8 lat;
3696 
3697 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3698 	if (pci_is_pcie(dev))
3699 		return;
3700 
3701 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3702 	if (lat < 16)
3703 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3704 	else if (lat > pcibios_max_latency)
3705 		lat = pcibios_max_latency;
3706 	else
3707 		return;
3708 
3709 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3710 }
3711 
3712 /**
3713  * pci_set_master - enables bus-mastering for device dev
3714  * @dev: the PCI device to enable
3715  *
3716  * Enables bus-mastering on the device and calls pcibios_set_master()
3717  * to do the needed arch specific settings.
3718  */
3719 void pci_set_master(struct pci_dev *dev)
3720 {
3721 	__pci_set_master(dev, true);
3722 	pcibios_set_master(dev);
3723 }
3724 EXPORT_SYMBOL(pci_set_master);
3725 
3726 /**
3727  * pci_clear_master - disables bus-mastering for device dev
3728  * @dev: the PCI device to disable
3729  */
3730 void pci_clear_master(struct pci_dev *dev)
3731 {
3732 	__pci_set_master(dev, false);
3733 }
3734 EXPORT_SYMBOL(pci_clear_master);
3735 
3736 /**
3737  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3738  * @dev: the PCI device for which MWI is to be enabled
3739  *
3740  * Helper function for pci_set_mwi.
3741  * Originally copied from drivers/net/acenic.c.
3742  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3743  *
3744  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3745  */
3746 int pci_set_cacheline_size(struct pci_dev *dev)
3747 {
3748 	u8 cacheline_size;
3749 
3750 	if (!pci_cache_line_size)
3751 		return -EINVAL;
3752 
3753 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3754 	   equal to or multiple of the right value. */
3755 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3756 	if (cacheline_size >= pci_cache_line_size &&
3757 	    (cacheline_size % pci_cache_line_size) == 0)
3758 		return 0;
3759 
3760 	/* Write the correct value. */
3761 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3762 	/* Read it back. */
3763 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3764 	if (cacheline_size == pci_cache_line_size)
3765 		return 0;
3766 
3767 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3768 		   pci_cache_line_size << 2);
3769 
3770 	return -EINVAL;
3771 }
3772 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3773 
3774 /**
3775  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3776  * @dev: the PCI device for which MWI is enabled
3777  *
3778  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3779  *
3780  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3781  */
3782 int pci_set_mwi(struct pci_dev *dev)
3783 {
3784 #ifdef PCI_DISABLE_MWI
3785 	return 0;
3786 #else
3787 	int rc;
3788 	u16 cmd;
3789 
3790 	rc = pci_set_cacheline_size(dev);
3791 	if (rc)
3792 		return rc;
3793 
3794 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3795 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3796 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3797 		cmd |= PCI_COMMAND_INVALIDATE;
3798 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3799 	}
3800 	return 0;
3801 #endif
3802 }
3803 EXPORT_SYMBOL(pci_set_mwi);
3804 
3805 /**
3806  * pcim_set_mwi - a device-managed pci_set_mwi()
3807  * @dev: the PCI device for which MWI is enabled
3808  *
3809  * Managed pci_set_mwi().
3810  *
3811  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3812  */
3813 int pcim_set_mwi(struct pci_dev *dev)
3814 {
3815 	struct pci_devres *dr;
3816 
3817 	dr = find_pci_dr(dev);
3818 	if (!dr)
3819 		return -ENOMEM;
3820 
3821 	dr->mwi = 1;
3822 	return pci_set_mwi(dev);
3823 }
3824 EXPORT_SYMBOL(pcim_set_mwi);
3825 
3826 /**
3827  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3828  * @dev: the PCI device for which MWI is enabled
3829  *
3830  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3831  * Callers are not required to check the return value.
3832  *
3833  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3834  */
3835 int pci_try_set_mwi(struct pci_dev *dev)
3836 {
3837 #ifdef PCI_DISABLE_MWI
3838 	return 0;
3839 #else
3840 	return pci_set_mwi(dev);
3841 #endif
3842 }
3843 EXPORT_SYMBOL(pci_try_set_mwi);
3844 
3845 /**
3846  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3847  * @dev: the PCI device to disable
3848  *
3849  * Disables PCI Memory-Write-Invalidate transaction on the device
3850  */
3851 void pci_clear_mwi(struct pci_dev *dev)
3852 {
3853 #ifndef PCI_DISABLE_MWI
3854 	u16 cmd;
3855 
3856 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3857 	if (cmd & PCI_COMMAND_INVALIDATE) {
3858 		cmd &= ~PCI_COMMAND_INVALIDATE;
3859 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3860 	}
3861 #endif
3862 }
3863 EXPORT_SYMBOL(pci_clear_mwi);
3864 
3865 /**
3866  * pci_intx - enables/disables PCI INTx for device dev
3867  * @pdev: the PCI device to operate on
3868  * @enable: boolean: whether to enable or disable PCI INTx
3869  *
3870  * Enables/disables PCI INTx for device dev
3871  */
3872 void pci_intx(struct pci_dev *pdev, int enable)
3873 {
3874 	u16 pci_command, new;
3875 
3876 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3877 
3878 	if (enable)
3879 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3880 	else
3881 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3882 
3883 	if (new != pci_command) {
3884 		struct pci_devres *dr;
3885 
3886 		pci_write_config_word(pdev, PCI_COMMAND, new);
3887 
3888 		dr = find_pci_dr(pdev);
3889 		if (dr && !dr->restore_intx) {
3890 			dr->restore_intx = 1;
3891 			dr->orig_intx = !enable;
3892 		}
3893 	}
3894 }
3895 EXPORT_SYMBOL_GPL(pci_intx);
3896 
3897 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3898 {
3899 	struct pci_bus *bus = dev->bus;
3900 	bool mask_updated = true;
3901 	u32 cmd_status_dword;
3902 	u16 origcmd, newcmd;
3903 	unsigned long flags;
3904 	bool irq_pending;
3905 
3906 	/*
3907 	 * We do a single dword read to retrieve both command and status.
3908 	 * Document assumptions that make this possible.
3909 	 */
3910 	BUILD_BUG_ON(PCI_COMMAND % 4);
3911 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3912 
3913 	raw_spin_lock_irqsave(&pci_lock, flags);
3914 
3915 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3916 
3917 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3918 
3919 	/*
3920 	 * Check interrupt status register to see whether our device
3921 	 * triggered the interrupt (when masking) or the next IRQ is
3922 	 * already pending (when unmasking).
3923 	 */
3924 	if (mask != irq_pending) {
3925 		mask_updated = false;
3926 		goto done;
3927 	}
3928 
3929 	origcmd = cmd_status_dword;
3930 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3931 	if (mask)
3932 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3933 	if (newcmd != origcmd)
3934 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3935 
3936 done:
3937 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3938 
3939 	return mask_updated;
3940 }
3941 
3942 /**
3943  * pci_check_and_mask_intx - mask INTx on pending interrupt
3944  * @dev: the PCI device to operate on
3945  *
3946  * Check if the device dev has its INTx line asserted, mask it and
3947  * return true in that case. False is returned if no interrupt was
3948  * pending.
3949  */
3950 bool pci_check_and_mask_intx(struct pci_dev *dev)
3951 {
3952 	return pci_check_and_set_intx_mask(dev, true);
3953 }
3954 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3955 
3956 /**
3957  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3958  * @dev: the PCI device to operate on
3959  *
3960  * Check if the device dev has its INTx line asserted, unmask it if not
3961  * and return true. False is returned and the mask remains active if
3962  * there was still an interrupt pending.
3963  */
3964 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3965 {
3966 	return pci_check_and_set_intx_mask(dev, false);
3967 }
3968 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3969 
3970 /**
3971  * pci_wait_for_pending_transaction - waits for pending transaction
3972  * @dev: the PCI device to operate on
3973  *
3974  * Return 0 if transaction is pending 1 otherwise.
3975  */
3976 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3977 {
3978 	if (!pci_is_pcie(dev))
3979 		return 1;
3980 
3981 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3982 				    PCI_EXP_DEVSTA_TRPND);
3983 }
3984 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3985 
3986 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3987 {
3988 	int delay = 1;
3989 	u32 id;
3990 
3991 	/*
3992 	 * After reset, the device should not silently discard config
3993 	 * requests, but it may still indicate that it needs more time by
3994 	 * responding to them with CRS completions.  The Root Port will
3995 	 * generally synthesize ~0 data to complete the read (except when
3996 	 * CRS SV is enabled and the read was for the Vendor ID; in that
3997 	 * case it synthesizes 0x0001 data).
3998 	 *
3999 	 * Wait for the device to return a non-CRS completion.  Read the
4000 	 * Command register instead of Vendor ID so we don't have to
4001 	 * contend with the CRS SV value.
4002 	 */
4003 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4004 	while (id == ~0) {
4005 		if (delay > timeout) {
4006 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4007 				 delay - 1, reset_type);
4008 			return -ENOTTY;
4009 		}
4010 
4011 		if (delay > 1000)
4012 			pci_info(dev, "not ready %dms after %s; waiting\n",
4013 				 delay - 1, reset_type);
4014 
4015 		msleep(delay);
4016 		delay *= 2;
4017 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4018 	}
4019 
4020 	if (delay > 1000)
4021 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4022 			 reset_type);
4023 
4024 	return 0;
4025 }
4026 
4027 /**
4028  * pcie_has_flr - check if a device supports function level resets
4029  * @dev:	device to check
4030  *
4031  * Returns true if the device advertises support for PCIe function level
4032  * resets.
4033  */
4034 static bool pcie_has_flr(struct pci_dev *dev)
4035 {
4036 	u32 cap;
4037 
4038 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4039 		return false;
4040 
4041 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4042 	return cap & PCI_EXP_DEVCAP_FLR;
4043 }
4044 
4045 /**
4046  * pcie_flr - initiate a PCIe function level reset
4047  * @dev:	device to reset
4048  *
4049  * Initiate a function level reset on @dev.  The caller should ensure the
4050  * device supports FLR before calling this function, e.g. by using the
4051  * pcie_has_flr() helper.
4052  */
4053 int pcie_flr(struct pci_dev *dev)
4054 {
4055 	if (!pci_wait_for_pending_transaction(dev))
4056 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4057 
4058 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4059 
4060 	/*
4061 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4062 	 * 100ms, but may silently discard requests while the FLR is in
4063 	 * progress.  Wait 100ms before trying to access the device.
4064 	 */
4065 	msleep(100);
4066 
4067 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4068 }
4069 EXPORT_SYMBOL_GPL(pcie_flr);
4070 
4071 static int pci_af_flr(struct pci_dev *dev, int probe)
4072 {
4073 	int pos;
4074 	u8 cap;
4075 
4076 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4077 	if (!pos)
4078 		return -ENOTTY;
4079 
4080 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4081 		return -ENOTTY;
4082 
4083 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4084 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4085 		return -ENOTTY;
4086 
4087 	if (probe)
4088 		return 0;
4089 
4090 	/*
4091 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4092 	 * is used, so we use the conrol offset rather than status and shift
4093 	 * the test bit to match.
4094 	 */
4095 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4096 				 PCI_AF_STATUS_TP << 8))
4097 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4098 
4099 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4100 
4101 	/*
4102 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4103 	 * updated 27 July 2006; a device must complete an FLR within
4104 	 * 100ms, but may silently discard requests while the FLR is in
4105 	 * progress.  Wait 100ms before trying to access the device.
4106 	 */
4107 	msleep(100);
4108 
4109 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4110 }
4111 
4112 /**
4113  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4114  * @dev: Device to reset.
4115  * @probe: If set, only check if the device can be reset this way.
4116  *
4117  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4118  * unset, it will be reinitialized internally when going from PCI_D3hot to
4119  * PCI_D0.  If that's the case and the device is not in a low-power state
4120  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4121  *
4122  * NOTE: This causes the caller to sleep for twice the device power transition
4123  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4124  * by default (i.e. unless the @dev's d3_delay field has a different value).
4125  * Moreover, only devices in D0 can be reset by this function.
4126  */
4127 static int pci_pm_reset(struct pci_dev *dev, int probe)
4128 {
4129 	u16 csr;
4130 
4131 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4132 		return -ENOTTY;
4133 
4134 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4135 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4136 		return -ENOTTY;
4137 
4138 	if (probe)
4139 		return 0;
4140 
4141 	if (dev->current_state != PCI_D0)
4142 		return -EINVAL;
4143 
4144 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4145 	csr |= PCI_D3hot;
4146 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4147 	pci_dev_d3_sleep(dev);
4148 
4149 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4150 	csr |= PCI_D0;
4151 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4152 	pci_dev_d3_sleep(dev);
4153 
4154 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4155 }
4156 
4157 void pci_reset_secondary_bus(struct pci_dev *dev)
4158 {
4159 	u16 ctrl;
4160 
4161 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4162 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4163 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4164 
4165 	/*
4166 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4167 	 * this to 2ms to ensure that we meet the minimum requirement.
4168 	 */
4169 	msleep(2);
4170 
4171 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4172 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4173 
4174 	/*
4175 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4176 	 * Assuming a minimum 33MHz clock this results in a 1s
4177 	 * delay before we can consider subordinate devices to
4178 	 * be re-initialized.  PCIe has some ways to shorten this,
4179 	 * but we don't make use of them yet.
4180 	 */
4181 	ssleep(1);
4182 }
4183 
4184 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4185 {
4186 	pci_reset_secondary_bus(dev);
4187 }
4188 
4189 /**
4190  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4191  * @dev: Bridge device
4192  *
4193  * Use the bridge control register to assert reset on the secondary bus.
4194  * Devices on the secondary bus are left in power-on state.
4195  */
4196 int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4197 {
4198 	pcibios_reset_secondary_bus(dev);
4199 
4200 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4201 }
4202 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4203 
4204 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4205 {
4206 	struct pci_dev *pdev;
4207 
4208 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4209 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4210 		return -ENOTTY;
4211 
4212 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4213 		if (pdev != dev)
4214 			return -ENOTTY;
4215 
4216 	if (probe)
4217 		return 0;
4218 
4219 	pci_reset_bridge_secondary_bus(dev->bus->self);
4220 
4221 	return 0;
4222 }
4223 
4224 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4225 {
4226 	int rc = -ENOTTY;
4227 
4228 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4229 		return rc;
4230 
4231 	if (hotplug->ops->reset_slot)
4232 		rc = hotplug->ops->reset_slot(hotplug, probe);
4233 
4234 	module_put(hotplug->ops->owner);
4235 
4236 	return rc;
4237 }
4238 
4239 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4240 {
4241 	struct pci_dev *pdev;
4242 
4243 	if (dev->subordinate || !dev->slot ||
4244 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4245 		return -ENOTTY;
4246 
4247 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4248 		if (pdev != dev && pdev->slot == dev->slot)
4249 			return -ENOTTY;
4250 
4251 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4252 }
4253 
4254 static void pci_dev_lock(struct pci_dev *dev)
4255 {
4256 	pci_cfg_access_lock(dev);
4257 	/* block PM suspend, driver probe, etc. */
4258 	device_lock(&dev->dev);
4259 }
4260 
4261 /* Return 1 on successful lock, 0 on contention */
4262 static int pci_dev_trylock(struct pci_dev *dev)
4263 {
4264 	if (pci_cfg_access_trylock(dev)) {
4265 		if (device_trylock(&dev->dev))
4266 			return 1;
4267 		pci_cfg_access_unlock(dev);
4268 	}
4269 
4270 	return 0;
4271 }
4272 
4273 static void pci_dev_unlock(struct pci_dev *dev)
4274 {
4275 	device_unlock(&dev->dev);
4276 	pci_cfg_access_unlock(dev);
4277 }
4278 
4279 static void pci_dev_save_and_disable(struct pci_dev *dev)
4280 {
4281 	const struct pci_error_handlers *err_handler =
4282 			dev->driver ? dev->driver->err_handler : NULL;
4283 
4284 	/*
4285 	 * dev->driver->err_handler->reset_prepare() is protected against
4286 	 * races with ->remove() by the device lock, which must be held by
4287 	 * the caller.
4288 	 */
4289 	if (err_handler && err_handler->reset_prepare)
4290 		err_handler->reset_prepare(dev);
4291 
4292 	/*
4293 	 * Wake-up device prior to save.  PM registers default to D0 after
4294 	 * reset and a simple register restore doesn't reliably return
4295 	 * to a non-D0 state anyway.
4296 	 */
4297 	pci_set_power_state(dev, PCI_D0);
4298 
4299 	pci_save_state(dev);
4300 	/*
4301 	 * Disable the device by clearing the Command register, except for
4302 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4303 	 * BARs, but also prevents the device from being Bus Master, preventing
4304 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4305 	 * compliant devices, INTx-disable prevents legacy interrupts.
4306 	 */
4307 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4308 }
4309 
4310 static void pci_dev_restore(struct pci_dev *dev)
4311 {
4312 	const struct pci_error_handlers *err_handler =
4313 			dev->driver ? dev->driver->err_handler : NULL;
4314 
4315 	pci_restore_state(dev);
4316 
4317 	/*
4318 	 * dev->driver->err_handler->reset_done() is protected against
4319 	 * races with ->remove() by the device lock, which must be held by
4320 	 * the caller.
4321 	 */
4322 	if (err_handler && err_handler->reset_done)
4323 		err_handler->reset_done(dev);
4324 }
4325 
4326 /**
4327  * __pci_reset_function_locked - reset a PCI device function while holding
4328  * the @dev mutex lock.
4329  * @dev: PCI device to reset
4330  *
4331  * Some devices allow an individual function to be reset without affecting
4332  * other functions in the same device.  The PCI device must be responsive
4333  * to PCI config space in order to use this function.
4334  *
4335  * The device function is presumed to be unused and the caller is holding
4336  * the device mutex lock when this function is called.
4337  * Resetting the device will make the contents of PCI configuration space
4338  * random, so any caller of this must be prepared to reinitialise the
4339  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4340  * etc.
4341  *
4342  * Returns 0 if the device function was successfully reset or negative if the
4343  * device doesn't support resetting a single function.
4344  */
4345 int __pci_reset_function_locked(struct pci_dev *dev)
4346 {
4347 	int rc;
4348 
4349 	might_sleep();
4350 
4351 	/*
4352 	 * A reset method returns -ENOTTY if it doesn't support this device
4353 	 * and we should try the next method.
4354 	 *
4355 	 * If it returns 0 (success), we're finished.  If it returns any
4356 	 * other error, we're also finished: this indicates that further
4357 	 * reset mechanisms might be broken on the device.
4358 	 */
4359 	rc = pci_dev_specific_reset(dev, 0);
4360 	if (rc != -ENOTTY)
4361 		return rc;
4362 	if (pcie_has_flr(dev)) {
4363 		rc = pcie_flr(dev);
4364 		if (rc != -ENOTTY)
4365 			return rc;
4366 	}
4367 	rc = pci_af_flr(dev, 0);
4368 	if (rc != -ENOTTY)
4369 		return rc;
4370 	rc = pci_pm_reset(dev, 0);
4371 	if (rc != -ENOTTY)
4372 		return rc;
4373 	rc = pci_dev_reset_slot_function(dev, 0);
4374 	if (rc != -ENOTTY)
4375 		return rc;
4376 	return pci_parent_bus_reset(dev, 0);
4377 }
4378 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4379 
4380 /**
4381  * pci_probe_reset_function - check whether the device can be safely reset
4382  * @dev: PCI device to reset
4383  *
4384  * Some devices allow an individual function to be reset without affecting
4385  * other functions in the same device.  The PCI device must be responsive
4386  * to PCI config space in order to use this function.
4387  *
4388  * Returns 0 if the device function can be reset or negative if the
4389  * device doesn't support resetting a single function.
4390  */
4391 int pci_probe_reset_function(struct pci_dev *dev)
4392 {
4393 	int rc;
4394 
4395 	might_sleep();
4396 
4397 	rc = pci_dev_specific_reset(dev, 1);
4398 	if (rc != -ENOTTY)
4399 		return rc;
4400 	if (pcie_has_flr(dev))
4401 		return 0;
4402 	rc = pci_af_flr(dev, 1);
4403 	if (rc != -ENOTTY)
4404 		return rc;
4405 	rc = pci_pm_reset(dev, 1);
4406 	if (rc != -ENOTTY)
4407 		return rc;
4408 	rc = pci_dev_reset_slot_function(dev, 1);
4409 	if (rc != -ENOTTY)
4410 		return rc;
4411 
4412 	return pci_parent_bus_reset(dev, 1);
4413 }
4414 
4415 /**
4416  * pci_reset_function - quiesce and reset a PCI device function
4417  * @dev: PCI device to reset
4418  *
4419  * Some devices allow an individual function to be reset without affecting
4420  * other functions in the same device.  The PCI device must be responsive
4421  * to PCI config space in order to use this function.
4422  *
4423  * This function does not just reset the PCI portion of a device, but
4424  * clears all the state associated with the device.  This function differs
4425  * from __pci_reset_function_locked() in that it saves and restores device state
4426  * over the reset and takes the PCI device lock.
4427  *
4428  * Returns 0 if the device function was successfully reset or negative if the
4429  * device doesn't support resetting a single function.
4430  */
4431 int pci_reset_function(struct pci_dev *dev)
4432 {
4433 	int rc;
4434 
4435 	if (!dev->reset_fn)
4436 		return -ENOTTY;
4437 
4438 	pci_dev_lock(dev);
4439 	pci_dev_save_and_disable(dev);
4440 
4441 	rc = __pci_reset_function_locked(dev);
4442 
4443 	pci_dev_restore(dev);
4444 	pci_dev_unlock(dev);
4445 
4446 	return rc;
4447 }
4448 EXPORT_SYMBOL_GPL(pci_reset_function);
4449 
4450 /**
4451  * pci_reset_function_locked - quiesce and reset a PCI device function
4452  * @dev: PCI device to reset
4453  *
4454  * Some devices allow an individual function to be reset without affecting
4455  * other functions in the same device.  The PCI device must be responsive
4456  * to PCI config space in order to use this function.
4457  *
4458  * This function does not just reset the PCI portion of a device, but
4459  * clears all the state associated with the device.  This function differs
4460  * from __pci_reset_function_locked() in that it saves and restores device state
4461  * over the reset.  It also differs from pci_reset_function() in that it
4462  * requires the PCI device lock to be held.
4463  *
4464  * Returns 0 if the device function was successfully reset or negative if the
4465  * device doesn't support resetting a single function.
4466  */
4467 int pci_reset_function_locked(struct pci_dev *dev)
4468 {
4469 	int rc;
4470 
4471 	if (!dev->reset_fn)
4472 		return -ENOTTY;
4473 
4474 	pci_dev_save_and_disable(dev);
4475 
4476 	rc = __pci_reset_function_locked(dev);
4477 
4478 	pci_dev_restore(dev);
4479 
4480 	return rc;
4481 }
4482 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4483 
4484 /**
4485  * pci_try_reset_function - quiesce and reset a PCI device function
4486  * @dev: PCI device to reset
4487  *
4488  * Same as above, except return -EAGAIN if unable to lock device.
4489  */
4490 int pci_try_reset_function(struct pci_dev *dev)
4491 {
4492 	int rc;
4493 
4494 	if (!dev->reset_fn)
4495 		return -ENOTTY;
4496 
4497 	if (!pci_dev_trylock(dev))
4498 		return -EAGAIN;
4499 
4500 	pci_dev_save_and_disable(dev);
4501 	rc = __pci_reset_function_locked(dev);
4502 	pci_dev_restore(dev);
4503 	pci_dev_unlock(dev);
4504 
4505 	return rc;
4506 }
4507 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4508 
4509 /* Do any devices on or below this bus prevent a bus reset? */
4510 static bool pci_bus_resetable(struct pci_bus *bus)
4511 {
4512 	struct pci_dev *dev;
4513 
4514 
4515 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4516 		return false;
4517 
4518 	list_for_each_entry(dev, &bus->devices, bus_list) {
4519 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4520 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4521 			return false;
4522 	}
4523 
4524 	return true;
4525 }
4526 
4527 /* Lock devices from the top of the tree down */
4528 static void pci_bus_lock(struct pci_bus *bus)
4529 {
4530 	struct pci_dev *dev;
4531 
4532 	list_for_each_entry(dev, &bus->devices, bus_list) {
4533 		pci_dev_lock(dev);
4534 		if (dev->subordinate)
4535 			pci_bus_lock(dev->subordinate);
4536 	}
4537 }
4538 
4539 /* Unlock devices from the bottom of the tree up */
4540 static void pci_bus_unlock(struct pci_bus *bus)
4541 {
4542 	struct pci_dev *dev;
4543 
4544 	list_for_each_entry(dev, &bus->devices, bus_list) {
4545 		if (dev->subordinate)
4546 			pci_bus_unlock(dev->subordinate);
4547 		pci_dev_unlock(dev);
4548 	}
4549 }
4550 
4551 /* Return 1 on successful lock, 0 on contention */
4552 static int pci_bus_trylock(struct pci_bus *bus)
4553 {
4554 	struct pci_dev *dev;
4555 
4556 	list_for_each_entry(dev, &bus->devices, bus_list) {
4557 		if (!pci_dev_trylock(dev))
4558 			goto unlock;
4559 		if (dev->subordinate) {
4560 			if (!pci_bus_trylock(dev->subordinate)) {
4561 				pci_dev_unlock(dev);
4562 				goto unlock;
4563 			}
4564 		}
4565 	}
4566 	return 1;
4567 
4568 unlock:
4569 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4570 		if (dev->subordinate)
4571 			pci_bus_unlock(dev->subordinate);
4572 		pci_dev_unlock(dev);
4573 	}
4574 	return 0;
4575 }
4576 
4577 /* Do any devices on or below this slot prevent a bus reset? */
4578 static bool pci_slot_resetable(struct pci_slot *slot)
4579 {
4580 	struct pci_dev *dev;
4581 
4582 	if (slot->bus->self &&
4583 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4584 		return false;
4585 
4586 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4587 		if (!dev->slot || dev->slot != slot)
4588 			continue;
4589 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4590 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4591 			return false;
4592 	}
4593 
4594 	return true;
4595 }
4596 
4597 /* Lock devices from the top of the tree down */
4598 static void pci_slot_lock(struct pci_slot *slot)
4599 {
4600 	struct pci_dev *dev;
4601 
4602 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4603 		if (!dev->slot || dev->slot != slot)
4604 			continue;
4605 		pci_dev_lock(dev);
4606 		if (dev->subordinate)
4607 			pci_bus_lock(dev->subordinate);
4608 	}
4609 }
4610 
4611 /* Unlock devices from the bottom of the tree up */
4612 static void pci_slot_unlock(struct pci_slot *slot)
4613 {
4614 	struct pci_dev *dev;
4615 
4616 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4617 		if (!dev->slot || dev->slot != slot)
4618 			continue;
4619 		if (dev->subordinate)
4620 			pci_bus_unlock(dev->subordinate);
4621 		pci_dev_unlock(dev);
4622 	}
4623 }
4624 
4625 /* Return 1 on successful lock, 0 on contention */
4626 static int pci_slot_trylock(struct pci_slot *slot)
4627 {
4628 	struct pci_dev *dev;
4629 
4630 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4631 		if (!dev->slot || dev->slot != slot)
4632 			continue;
4633 		if (!pci_dev_trylock(dev))
4634 			goto unlock;
4635 		if (dev->subordinate) {
4636 			if (!pci_bus_trylock(dev->subordinate)) {
4637 				pci_dev_unlock(dev);
4638 				goto unlock;
4639 			}
4640 		}
4641 	}
4642 	return 1;
4643 
4644 unlock:
4645 	list_for_each_entry_continue_reverse(dev,
4646 					     &slot->bus->devices, bus_list) {
4647 		if (!dev->slot || dev->slot != slot)
4648 			continue;
4649 		if (dev->subordinate)
4650 			pci_bus_unlock(dev->subordinate);
4651 		pci_dev_unlock(dev);
4652 	}
4653 	return 0;
4654 }
4655 
4656 /* Save and disable devices from the top of the tree down */
4657 static void pci_bus_save_and_disable(struct pci_bus *bus)
4658 {
4659 	struct pci_dev *dev;
4660 
4661 	list_for_each_entry(dev, &bus->devices, bus_list) {
4662 		pci_dev_lock(dev);
4663 		pci_dev_save_and_disable(dev);
4664 		pci_dev_unlock(dev);
4665 		if (dev->subordinate)
4666 			pci_bus_save_and_disable(dev->subordinate);
4667 	}
4668 }
4669 
4670 /*
4671  * Restore devices from top of the tree down - parent bridges need to be
4672  * restored before we can get to subordinate devices.
4673  */
4674 static void pci_bus_restore(struct pci_bus *bus)
4675 {
4676 	struct pci_dev *dev;
4677 
4678 	list_for_each_entry(dev, &bus->devices, bus_list) {
4679 		pci_dev_lock(dev);
4680 		pci_dev_restore(dev);
4681 		pci_dev_unlock(dev);
4682 		if (dev->subordinate)
4683 			pci_bus_restore(dev->subordinate);
4684 	}
4685 }
4686 
4687 /* Save and disable devices from the top of the tree down */
4688 static void pci_slot_save_and_disable(struct pci_slot *slot)
4689 {
4690 	struct pci_dev *dev;
4691 
4692 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4693 		if (!dev->slot || dev->slot != slot)
4694 			continue;
4695 		pci_dev_save_and_disable(dev);
4696 		if (dev->subordinate)
4697 			pci_bus_save_and_disable(dev->subordinate);
4698 	}
4699 }
4700 
4701 /*
4702  * Restore devices from top of the tree down - parent bridges need to be
4703  * restored before we can get to subordinate devices.
4704  */
4705 static void pci_slot_restore(struct pci_slot *slot)
4706 {
4707 	struct pci_dev *dev;
4708 
4709 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4710 		if (!dev->slot || dev->slot != slot)
4711 			continue;
4712 		pci_dev_lock(dev);
4713 		pci_dev_restore(dev);
4714 		pci_dev_unlock(dev);
4715 		if (dev->subordinate)
4716 			pci_bus_restore(dev->subordinate);
4717 	}
4718 }
4719 
4720 static int pci_slot_reset(struct pci_slot *slot, int probe)
4721 {
4722 	int rc;
4723 
4724 	if (!slot || !pci_slot_resetable(slot))
4725 		return -ENOTTY;
4726 
4727 	if (!probe)
4728 		pci_slot_lock(slot);
4729 
4730 	might_sleep();
4731 
4732 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4733 
4734 	if (!probe)
4735 		pci_slot_unlock(slot);
4736 
4737 	return rc;
4738 }
4739 
4740 /**
4741  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4742  * @slot: PCI slot to probe
4743  *
4744  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4745  */
4746 int pci_probe_reset_slot(struct pci_slot *slot)
4747 {
4748 	return pci_slot_reset(slot, 1);
4749 }
4750 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4751 
4752 /**
4753  * pci_reset_slot - reset a PCI slot
4754  * @slot: PCI slot to reset
4755  *
4756  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4757  * independent of other slots.  For instance, some slots may support slot power
4758  * control.  In the case of a 1:1 bus to slot architecture, this function may
4759  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4760  * Generally a slot reset should be attempted before a bus reset.  All of the
4761  * function of the slot and any subordinate buses behind the slot are reset
4762  * through this function.  PCI config space of all devices in the slot and
4763  * behind the slot is saved before and restored after reset.
4764  *
4765  * Return 0 on success, non-zero on error.
4766  */
4767 int pci_reset_slot(struct pci_slot *slot)
4768 {
4769 	int rc;
4770 
4771 	rc = pci_slot_reset(slot, 1);
4772 	if (rc)
4773 		return rc;
4774 
4775 	pci_slot_save_and_disable(slot);
4776 
4777 	rc = pci_slot_reset(slot, 0);
4778 
4779 	pci_slot_restore(slot);
4780 
4781 	return rc;
4782 }
4783 EXPORT_SYMBOL_GPL(pci_reset_slot);
4784 
4785 /**
4786  * pci_try_reset_slot - Try to reset a PCI slot
4787  * @slot: PCI slot to reset
4788  *
4789  * Same as above except return -EAGAIN if the slot cannot be locked
4790  */
4791 int pci_try_reset_slot(struct pci_slot *slot)
4792 {
4793 	int rc;
4794 
4795 	rc = pci_slot_reset(slot, 1);
4796 	if (rc)
4797 		return rc;
4798 
4799 	pci_slot_save_and_disable(slot);
4800 
4801 	if (pci_slot_trylock(slot)) {
4802 		might_sleep();
4803 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4804 		pci_slot_unlock(slot);
4805 	} else
4806 		rc = -EAGAIN;
4807 
4808 	pci_slot_restore(slot);
4809 
4810 	return rc;
4811 }
4812 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4813 
4814 static int pci_bus_reset(struct pci_bus *bus, int probe)
4815 {
4816 	if (!bus->self || !pci_bus_resetable(bus))
4817 		return -ENOTTY;
4818 
4819 	if (probe)
4820 		return 0;
4821 
4822 	pci_bus_lock(bus);
4823 
4824 	might_sleep();
4825 
4826 	pci_reset_bridge_secondary_bus(bus->self);
4827 
4828 	pci_bus_unlock(bus);
4829 
4830 	return 0;
4831 }
4832 
4833 /**
4834  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4835  * @bus: PCI bus to probe
4836  *
4837  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4838  */
4839 int pci_probe_reset_bus(struct pci_bus *bus)
4840 {
4841 	return pci_bus_reset(bus, 1);
4842 }
4843 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4844 
4845 /**
4846  * pci_reset_bus - reset a PCI bus
4847  * @bus: top level PCI bus to reset
4848  *
4849  * Do a bus reset on the given bus and any subordinate buses, saving
4850  * and restoring state of all devices.
4851  *
4852  * Return 0 on success, non-zero on error.
4853  */
4854 int pci_reset_bus(struct pci_bus *bus)
4855 {
4856 	int rc;
4857 
4858 	rc = pci_bus_reset(bus, 1);
4859 	if (rc)
4860 		return rc;
4861 
4862 	pci_bus_save_and_disable(bus);
4863 
4864 	rc = pci_bus_reset(bus, 0);
4865 
4866 	pci_bus_restore(bus);
4867 
4868 	return rc;
4869 }
4870 EXPORT_SYMBOL_GPL(pci_reset_bus);
4871 
4872 /**
4873  * pci_try_reset_bus - Try to reset a PCI bus
4874  * @bus: top level PCI bus to reset
4875  *
4876  * Same as above except return -EAGAIN if the bus cannot be locked
4877  */
4878 int pci_try_reset_bus(struct pci_bus *bus)
4879 {
4880 	int rc;
4881 
4882 	rc = pci_bus_reset(bus, 1);
4883 	if (rc)
4884 		return rc;
4885 
4886 	pci_bus_save_and_disable(bus);
4887 
4888 	if (pci_bus_trylock(bus)) {
4889 		might_sleep();
4890 		pci_reset_bridge_secondary_bus(bus->self);
4891 		pci_bus_unlock(bus);
4892 	} else
4893 		rc = -EAGAIN;
4894 
4895 	pci_bus_restore(bus);
4896 
4897 	return rc;
4898 }
4899 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4900 
4901 /**
4902  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4903  * @dev: PCI device to query
4904  *
4905  * Returns mmrbc: maximum designed memory read count in bytes
4906  *    or appropriate error value.
4907  */
4908 int pcix_get_max_mmrbc(struct pci_dev *dev)
4909 {
4910 	int cap;
4911 	u32 stat;
4912 
4913 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4914 	if (!cap)
4915 		return -EINVAL;
4916 
4917 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4918 		return -EINVAL;
4919 
4920 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4921 }
4922 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4923 
4924 /**
4925  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4926  * @dev: PCI device to query
4927  *
4928  * Returns mmrbc: maximum memory read count in bytes
4929  *    or appropriate error value.
4930  */
4931 int pcix_get_mmrbc(struct pci_dev *dev)
4932 {
4933 	int cap;
4934 	u16 cmd;
4935 
4936 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4937 	if (!cap)
4938 		return -EINVAL;
4939 
4940 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4941 		return -EINVAL;
4942 
4943 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4944 }
4945 EXPORT_SYMBOL(pcix_get_mmrbc);
4946 
4947 /**
4948  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4949  * @dev: PCI device to query
4950  * @mmrbc: maximum memory read count in bytes
4951  *    valid values are 512, 1024, 2048, 4096
4952  *
4953  * If possible sets maximum memory read byte count, some bridges have erratas
4954  * that prevent this.
4955  */
4956 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4957 {
4958 	int cap;
4959 	u32 stat, v, o;
4960 	u16 cmd;
4961 
4962 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4963 		return -EINVAL;
4964 
4965 	v = ffs(mmrbc) - 10;
4966 
4967 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4968 	if (!cap)
4969 		return -EINVAL;
4970 
4971 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4972 		return -EINVAL;
4973 
4974 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4975 		return -E2BIG;
4976 
4977 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4978 		return -EINVAL;
4979 
4980 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4981 	if (o != v) {
4982 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4983 			return -EIO;
4984 
4985 		cmd &= ~PCI_X_CMD_MAX_READ;
4986 		cmd |= v << 2;
4987 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4988 			return -EIO;
4989 	}
4990 	return 0;
4991 }
4992 EXPORT_SYMBOL(pcix_set_mmrbc);
4993 
4994 /**
4995  * pcie_get_readrq - get PCI Express read request size
4996  * @dev: PCI device to query
4997  *
4998  * Returns maximum memory read request in bytes
4999  *    or appropriate error value.
5000  */
5001 int pcie_get_readrq(struct pci_dev *dev)
5002 {
5003 	u16 ctl;
5004 
5005 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5006 
5007 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5008 }
5009 EXPORT_SYMBOL(pcie_get_readrq);
5010 
5011 /**
5012  * pcie_set_readrq - set PCI Express maximum memory read request
5013  * @dev: PCI device to query
5014  * @rq: maximum memory read count in bytes
5015  *    valid values are 128, 256, 512, 1024, 2048, 4096
5016  *
5017  * If possible sets maximum memory read request in bytes
5018  */
5019 int pcie_set_readrq(struct pci_dev *dev, int rq)
5020 {
5021 	u16 v;
5022 
5023 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5024 		return -EINVAL;
5025 
5026 	/*
5027 	 * If using the "performance" PCIe config, we clamp the
5028 	 * read rq size to the max packet size to prevent the
5029 	 * host bridge generating requests larger than we can
5030 	 * cope with
5031 	 */
5032 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5033 		int mps = pcie_get_mps(dev);
5034 
5035 		if (mps < rq)
5036 			rq = mps;
5037 	}
5038 
5039 	v = (ffs(rq) - 8) << 12;
5040 
5041 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5042 						  PCI_EXP_DEVCTL_READRQ, v);
5043 }
5044 EXPORT_SYMBOL(pcie_set_readrq);
5045 
5046 /**
5047  * pcie_get_mps - get PCI Express maximum payload size
5048  * @dev: PCI device to query
5049  *
5050  * Returns maximum payload size in bytes
5051  */
5052 int pcie_get_mps(struct pci_dev *dev)
5053 {
5054 	u16 ctl;
5055 
5056 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5057 
5058 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5059 }
5060 EXPORT_SYMBOL(pcie_get_mps);
5061 
5062 /**
5063  * pcie_set_mps - set PCI Express maximum payload size
5064  * @dev: PCI device to query
5065  * @mps: maximum payload size in bytes
5066  *    valid values are 128, 256, 512, 1024, 2048, 4096
5067  *
5068  * If possible sets maximum payload size
5069  */
5070 int pcie_set_mps(struct pci_dev *dev, int mps)
5071 {
5072 	u16 v;
5073 
5074 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5075 		return -EINVAL;
5076 
5077 	v = ffs(mps) - 8;
5078 	if (v > dev->pcie_mpss)
5079 		return -EINVAL;
5080 	v <<= 5;
5081 
5082 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5083 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5084 }
5085 EXPORT_SYMBOL(pcie_set_mps);
5086 
5087 /**
5088  * pcie_get_minimum_link - determine minimum link settings of a PCI device
5089  * @dev: PCI device to query
5090  * @speed: storage for minimum speed
5091  * @width: storage for minimum width
5092  *
5093  * This function will walk up the PCI device chain and determine the minimum
5094  * link width and speed of the device.
5095  */
5096 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5097 			  enum pcie_link_width *width)
5098 {
5099 	int ret;
5100 
5101 	*speed = PCI_SPEED_UNKNOWN;
5102 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5103 
5104 	while (dev) {
5105 		u16 lnksta;
5106 		enum pci_bus_speed next_speed;
5107 		enum pcie_link_width next_width;
5108 
5109 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5110 		if (ret)
5111 			return ret;
5112 
5113 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5114 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5115 			PCI_EXP_LNKSTA_NLW_SHIFT;
5116 
5117 		if (next_speed < *speed)
5118 			*speed = next_speed;
5119 
5120 		if (next_width < *width)
5121 			*width = next_width;
5122 
5123 		dev = dev->bus->self;
5124 	}
5125 
5126 	return 0;
5127 }
5128 EXPORT_SYMBOL(pcie_get_minimum_link);
5129 
5130 /**
5131  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5132  *			      device and its bandwidth limitation
5133  * @dev: PCI device to query
5134  * @limiting_dev: storage for device causing the bandwidth limitation
5135  * @speed: storage for speed of limiting device
5136  * @width: storage for width of limiting device
5137  *
5138  * Walk up the PCI device chain and find the point where the minimum
5139  * bandwidth is available.  Return the bandwidth available there and (if
5140  * limiting_dev, speed, and width pointers are supplied) information about
5141  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5142  * raw bandwidth.
5143  */
5144 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5145 			     enum pci_bus_speed *speed,
5146 			     enum pcie_link_width *width)
5147 {
5148 	u16 lnksta;
5149 	enum pci_bus_speed next_speed;
5150 	enum pcie_link_width next_width;
5151 	u32 bw, next_bw;
5152 
5153 	if (speed)
5154 		*speed = PCI_SPEED_UNKNOWN;
5155 	if (width)
5156 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5157 
5158 	bw = 0;
5159 
5160 	while (dev) {
5161 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5162 
5163 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5164 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5165 			PCI_EXP_LNKSTA_NLW_SHIFT;
5166 
5167 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5168 
5169 		/* Check if current device limits the total bandwidth */
5170 		if (!bw || next_bw <= bw) {
5171 			bw = next_bw;
5172 
5173 			if (limiting_dev)
5174 				*limiting_dev = dev;
5175 			if (speed)
5176 				*speed = next_speed;
5177 			if (width)
5178 				*width = next_width;
5179 		}
5180 
5181 		dev = pci_upstream_bridge(dev);
5182 	}
5183 
5184 	return bw;
5185 }
5186 EXPORT_SYMBOL(pcie_bandwidth_available);
5187 
5188 /**
5189  * pcie_get_speed_cap - query for the PCI device's link speed capability
5190  * @dev: PCI device to query
5191  *
5192  * Query the PCI device speed capability.  Return the maximum link speed
5193  * supported by the device.
5194  */
5195 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5196 {
5197 	u32 lnkcap2, lnkcap;
5198 
5199 	/*
5200 	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5201 	 * Speeds Vector in Link Capabilities 2 when supported, falling
5202 	 * back to Max Link Speed in Link Capabilities otherwise.
5203 	 */
5204 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5205 	if (lnkcap2) { /* PCIe r3.0-compliant */
5206 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5207 			return PCIE_SPEED_16_0GT;
5208 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5209 			return PCIE_SPEED_8_0GT;
5210 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5211 			return PCIE_SPEED_5_0GT;
5212 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5213 			return PCIE_SPEED_2_5GT;
5214 		return PCI_SPEED_UNKNOWN;
5215 	}
5216 
5217 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5218 	if (lnkcap) {
5219 		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5220 			return PCIE_SPEED_16_0GT;
5221 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5222 			return PCIE_SPEED_8_0GT;
5223 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5224 			return PCIE_SPEED_5_0GT;
5225 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5226 			return PCIE_SPEED_2_5GT;
5227 	}
5228 
5229 	return PCI_SPEED_UNKNOWN;
5230 }
5231 
5232 /**
5233  * pcie_get_width_cap - query for the PCI device's link width capability
5234  * @dev: PCI device to query
5235  *
5236  * Query the PCI device width capability.  Return the maximum link width
5237  * supported by the device.
5238  */
5239 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5240 {
5241 	u32 lnkcap;
5242 
5243 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5244 	if (lnkcap)
5245 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5246 
5247 	return PCIE_LNK_WIDTH_UNKNOWN;
5248 }
5249 
5250 /**
5251  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5252  * @dev: PCI device
5253  * @speed: storage for link speed
5254  * @width: storage for link width
5255  *
5256  * Calculate a PCI device's link bandwidth by querying for its link speed
5257  * and width, multiplying them, and applying encoding overhead.  The result
5258  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5259  */
5260 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5261 			   enum pcie_link_width *width)
5262 {
5263 	*speed = pcie_get_speed_cap(dev);
5264 	*width = pcie_get_width_cap(dev);
5265 
5266 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5267 		return 0;
5268 
5269 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5270 }
5271 
5272 /**
5273  * pcie_print_link_status - Report the PCI device's link speed and width
5274  * @dev: PCI device to query
5275  *
5276  * Report the available bandwidth at the device.  If this is less than the
5277  * device is capable of, report the device's maximum possible bandwidth and
5278  * the upstream link that limits its performance to less than that.
5279  */
5280 void pcie_print_link_status(struct pci_dev *dev)
5281 {
5282 	enum pcie_link_width width, width_cap;
5283 	enum pci_bus_speed speed, speed_cap;
5284 	struct pci_dev *limiting_dev = NULL;
5285 	u32 bw_avail, bw_cap;
5286 
5287 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5288 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5289 
5290 	if (bw_avail >= bw_cap)
5291 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5292 			 bw_cap / 1000, bw_cap % 1000,
5293 			 PCIE_SPEED2STR(speed_cap), width_cap);
5294 	else
5295 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5296 			 bw_avail / 1000, bw_avail % 1000,
5297 			 PCIE_SPEED2STR(speed), width,
5298 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5299 			 bw_cap / 1000, bw_cap % 1000,
5300 			 PCIE_SPEED2STR(speed_cap), width_cap);
5301 }
5302 EXPORT_SYMBOL(pcie_print_link_status);
5303 
5304 /**
5305  * pci_select_bars - Make BAR mask from the type of resource
5306  * @dev: the PCI device for which BAR mask is made
5307  * @flags: resource type mask to be selected
5308  *
5309  * This helper routine makes bar mask from the type of resource.
5310  */
5311 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5312 {
5313 	int i, bars = 0;
5314 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5315 		if (pci_resource_flags(dev, i) & flags)
5316 			bars |= (1 << i);
5317 	return bars;
5318 }
5319 EXPORT_SYMBOL(pci_select_bars);
5320 
5321 /* Some architectures require additional programming to enable VGA */
5322 static arch_set_vga_state_t arch_set_vga_state;
5323 
5324 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5325 {
5326 	arch_set_vga_state = func;	/* NULL disables */
5327 }
5328 
5329 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5330 				  unsigned int command_bits, u32 flags)
5331 {
5332 	if (arch_set_vga_state)
5333 		return arch_set_vga_state(dev, decode, command_bits,
5334 						flags);
5335 	return 0;
5336 }
5337 
5338 /**
5339  * pci_set_vga_state - set VGA decode state on device and parents if requested
5340  * @dev: the PCI device
5341  * @decode: true = enable decoding, false = disable decoding
5342  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5343  * @flags: traverse ancestors and change bridges
5344  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5345  */
5346 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5347 		      unsigned int command_bits, u32 flags)
5348 {
5349 	struct pci_bus *bus;
5350 	struct pci_dev *bridge;
5351 	u16 cmd;
5352 	int rc;
5353 
5354 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5355 
5356 	/* ARCH specific VGA enables */
5357 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5358 	if (rc)
5359 		return rc;
5360 
5361 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5362 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5363 		if (decode == true)
5364 			cmd |= command_bits;
5365 		else
5366 			cmd &= ~command_bits;
5367 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5368 	}
5369 
5370 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5371 		return 0;
5372 
5373 	bus = dev->bus;
5374 	while (bus) {
5375 		bridge = bus->self;
5376 		if (bridge) {
5377 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5378 					     &cmd);
5379 			if (decode == true)
5380 				cmd |= PCI_BRIDGE_CTL_VGA;
5381 			else
5382 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5383 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5384 					      cmd);
5385 		}
5386 		bus = bus->parent;
5387 	}
5388 	return 0;
5389 }
5390 
5391 /**
5392  * pci_add_dma_alias - Add a DMA devfn alias for a device
5393  * @dev: the PCI device for which alias is added
5394  * @devfn: alias slot and function
5395  *
5396  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5397  * It should be called early, preferably as PCI fixup header quirk.
5398  */
5399 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5400 {
5401 	if (!dev->dma_alias_mask)
5402 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5403 					      sizeof(long), GFP_KERNEL);
5404 	if (!dev->dma_alias_mask) {
5405 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5406 		return;
5407 	}
5408 
5409 	set_bit(devfn, dev->dma_alias_mask);
5410 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5411 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5412 }
5413 
5414 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5415 {
5416 	return (dev1->dma_alias_mask &&
5417 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5418 	       (dev2->dma_alias_mask &&
5419 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5420 }
5421 
5422 bool pci_device_is_present(struct pci_dev *pdev)
5423 {
5424 	u32 v;
5425 
5426 	if (pci_dev_is_disconnected(pdev))
5427 		return false;
5428 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5429 }
5430 EXPORT_SYMBOL_GPL(pci_device_is_present);
5431 
5432 void pci_ignore_hotplug(struct pci_dev *dev)
5433 {
5434 	struct pci_dev *bridge = dev->bus->self;
5435 
5436 	dev->ignore_hotplug = 1;
5437 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5438 	if (bridge)
5439 		bridge->ignore_hotplug = 1;
5440 }
5441 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5442 
5443 resource_size_t __weak pcibios_default_alignment(void)
5444 {
5445 	return 0;
5446 }
5447 
5448 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5449 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5450 static DEFINE_SPINLOCK(resource_alignment_lock);
5451 
5452 /**
5453  * pci_specified_resource_alignment - get resource alignment specified by user.
5454  * @dev: the PCI device to get
5455  * @resize: whether or not to change resources' size when reassigning alignment
5456  *
5457  * RETURNS: Resource alignment if it is specified.
5458  *          Zero if it is not specified.
5459  */
5460 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5461 							bool *resize)
5462 {
5463 	int seg, bus, slot, func, align_order, count;
5464 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5465 	resource_size_t align = pcibios_default_alignment();
5466 	char *p;
5467 
5468 	spin_lock(&resource_alignment_lock);
5469 	p = resource_alignment_param;
5470 	if (!*p && !align)
5471 		goto out;
5472 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5473 		align = 0;
5474 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5475 		goto out;
5476 	}
5477 
5478 	while (*p) {
5479 		count = 0;
5480 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5481 							p[count] == '@') {
5482 			p += count + 1;
5483 		} else {
5484 			align_order = -1;
5485 		}
5486 		if (strncmp(p, "pci:", 4) == 0) {
5487 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5488 			p += 4;
5489 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5490 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5491 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5492 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5493 						p);
5494 					break;
5495 				}
5496 				subsystem_vendor = subsystem_device = 0;
5497 			}
5498 			p += count;
5499 			if ((!vendor || (vendor == dev->vendor)) &&
5500 				(!device || (device == dev->device)) &&
5501 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5502 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5503 				*resize = true;
5504 				if (align_order == -1)
5505 					align = PAGE_SIZE;
5506 				else
5507 					align = 1 << align_order;
5508 				/* Found */
5509 				break;
5510 			}
5511 		}
5512 		else {
5513 			if (sscanf(p, "%x:%x:%x.%x%n",
5514 				&seg, &bus, &slot, &func, &count) != 4) {
5515 				seg = 0;
5516 				if (sscanf(p, "%x:%x.%x%n",
5517 						&bus, &slot, &func, &count) != 3) {
5518 					/* Invalid format */
5519 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5520 						p);
5521 					break;
5522 				}
5523 			}
5524 			p += count;
5525 			if (seg == pci_domain_nr(dev->bus) &&
5526 				bus == dev->bus->number &&
5527 				slot == PCI_SLOT(dev->devfn) &&
5528 				func == PCI_FUNC(dev->devfn)) {
5529 				*resize = true;
5530 				if (align_order == -1)
5531 					align = PAGE_SIZE;
5532 				else
5533 					align = 1 << align_order;
5534 				/* Found */
5535 				break;
5536 			}
5537 		}
5538 		if (*p != ';' && *p != ',') {
5539 			/* End of param or invalid format */
5540 			break;
5541 		}
5542 		p++;
5543 	}
5544 out:
5545 	spin_unlock(&resource_alignment_lock);
5546 	return align;
5547 }
5548 
5549 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5550 					   resource_size_t align, bool resize)
5551 {
5552 	struct resource *r = &dev->resource[bar];
5553 	resource_size_t size;
5554 
5555 	if (!(r->flags & IORESOURCE_MEM))
5556 		return;
5557 
5558 	if (r->flags & IORESOURCE_PCI_FIXED) {
5559 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5560 			 bar, r, (unsigned long long)align);
5561 		return;
5562 	}
5563 
5564 	size = resource_size(r);
5565 	if (size >= align)
5566 		return;
5567 
5568 	/*
5569 	 * Increase the alignment of the resource.  There are two ways we
5570 	 * can do this:
5571 	 *
5572 	 * 1) Increase the size of the resource.  BARs are aligned on their
5573 	 *    size, so when we reallocate space for this resource, we'll
5574 	 *    allocate it with the larger alignment.  This also prevents
5575 	 *    assignment of any other BARs inside the alignment region, so
5576 	 *    if we're requesting page alignment, this means no other BARs
5577 	 *    will share the page.
5578 	 *
5579 	 *    The disadvantage is that this makes the resource larger than
5580 	 *    the hardware BAR, which may break drivers that compute things
5581 	 *    based on the resource size, e.g., to find registers at a
5582 	 *    fixed offset before the end of the BAR.
5583 	 *
5584 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5585 	 *    set r->start to the desired alignment.  By itself this
5586 	 *    doesn't prevent other BARs being put inside the alignment
5587 	 *    region, but if we realign *every* resource of every device in
5588 	 *    the system, none of them will share an alignment region.
5589 	 *
5590 	 * When the user has requested alignment for only some devices via
5591 	 * the "pci=resource_alignment" argument, "resize" is true and we
5592 	 * use the first method.  Otherwise we assume we're aligning all
5593 	 * devices and we use the second.
5594 	 */
5595 
5596 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5597 		 bar, r, (unsigned long long)align);
5598 
5599 	if (resize) {
5600 		r->start = 0;
5601 		r->end = align - 1;
5602 	} else {
5603 		r->flags &= ~IORESOURCE_SIZEALIGN;
5604 		r->flags |= IORESOURCE_STARTALIGN;
5605 		r->start = align;
5606 		r->end = r->start + size - 1;
5607 	}
5608 	r->flags |= IORESOURCE_UNSET;
5609 }
5610 
5611 /*
5612  * This function disables memory decoding and releases memory resources
5613  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5614  * It also rounds up size to specified alignment.
5615  * Later on, the kernel will assign page-aligned memory resource back
5616  * to the device.
5617  */
5618 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5619 {
5620 	int i;
5621 	struct resource *r;
5622 	resource_size_t align;
5623 	u16 command;
5624 	bool resize = false;
5625 
5626 	/*
5627 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5628 	 * 3.4.1.11.  Their resources are allocated from the space
5629 	 * described by the VF BARx register in the PF's SR-IOV capability.
5630 	 * We can't influence their alignment here.
5631 	 */
5632 	if (dev->is_virtfn)
5633 		return;
5634 
5635 	/* check if specified PCI is target device to reassign */
5636 	align = pci_specified_resource_alignment(dev, &resize);
5637 	if (!align)
5638 		return;
5639 
5640 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5641 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5642 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5643 		return;
5644 	}
5645 
5646 	pci_read_config_word(dev, PCI_COMMAND, &command);
5647 	command &= ~PCI_COMMAND_MEMORY;
5648 	pci_write_config_word(dev, PCI_COMMAND, command);
5649 
5650 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5651 		pci_request_resource_alignment(dev, i, align, resize);
5652 
5653 	/*
5654 	 * Need to disable bridge's resource window,
5655 	 * to enable the kernel to reassign new resource
5656 	 * window later on.
5657 	 */
5658 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5659 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5660 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5661 			r = &dev->resource[i];
5662 			if (!(r->flags & IORESOURCE_MEM))
5663 				continue;
5664 			r->flags |= IORESOURCE_UNSET;
5665 			r->end = resource_size(r) - 1;
5666 			r->start = 0;
5667 		}
5668 		pci_disable_bridge_window(dev);
5669 	}
5670 }
5671 
5672 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5673 {
5674 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5675 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5676 	spin_lock(&resource_alignment_lock);
5677 	strncpy(resource_alignment_param, buf, count);
5678 	resource_alignment_param[count] = '\0';
5679 	spin_unlock(&resource_alignment_lock);
5680 	return count;
5681 }
5682 
5683 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5684 {
5685 	size_t count;
5686 	spin_lock(&resource_alignment_lock);
5687 	count = snprintf(buf, size, "%s", resource_alignment_param);
5688 	spin_unlock(&resource_alignment_lock);
5689 	return count;
5690 }
5691 
5692 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5693 {
5694 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5695 }
5696 
5697 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5698 					const char *buf, size_t count)
5699 {
5700 	return pci_set_resource_alignment_param(buf, count);
5701 }
5702 
5703 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5704 					pci_resource_alignment_store);
5705 
5706 static int __init pci_resource_alignment_sysfs_init(void)
5707 {
5708 	return bus_create_file(&pci_bus_type,
5709 					&bus_attr_resource_alignment);
5710 }
5711 late_initcall(pci_resource_alignment_sysfs_init);
5712 
5713 static void pci_no_domains(void)
5714 {
5715 #ifdef CONFIG_PCI_DOMAINS
5716 	pci_domains_supported = 0;
5717 #endif
5718 }
5719 
5720 #ifdef CONFIG_PCI_DOMAINS
5721 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5722 
5723 int pci_get_new_domain_nr(void)
5724 {
5725 	return atomic_inc_return(&__domain_nr);
5726 }
5727 
5728 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5729 static int of_pci_bus_find_domain_nr(struct device *parent)
5730 {
5731 	static int use_dt_domains = -1;
5732 	int domain = -1;
5733 
5734 	if (parent)
5735 		domain = of_get_pci_domain_nr(parent->of_node);
5736 	/*
5737 	 * Check DT domain and use_dt_domains values.
5738 	 *
5739 	 * If DT domain property is valid (domain >= 0) and
5740 	 * use_dt_domains != 0, the DT assignment is valid since this means
5741 	 * we have not previously allocated a domain number by using
5742 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5743 	 * 1, to indicate that we have just assigned a domain number from
5744 	 * DT.
5745 	 *
5746 	 * If DT domain property value is not valid (ie domain < 0), and we
5747 	 * have not previously assigned a domain number from DT
5748 	 * (use_dt_domains != 1) we should assign a domain number by
5749 	 * using the:
5750 	 *
5751 	 * pci_get_new_domain_nr()
5752 	 *
5753 	 * API and update the use_dt_domains value to keep track of method we
5754 	 * are using to assign domain numbers (use_dt_domains = 0).
5755 	 *
5756 	 * All other combinations imply we have a platform that is trying
5757 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5758 	 * which is a recipe for domain mishandling and it is prevented by
5759 	 * invalidating the domain value (domain = -1) and printing a
5760 	 * corresponding error.
5761 	 */
5762 	if (domain >= 0 && use_dt_domains) {
5763 		use_dt_domains = 1;
5764 	} else if (domain < 0 && use_dt_domains != 1) {
5765 		use_dt_domains = 0;
5766 		domain = pci_get_new_domain_nr();
5767 	} else {
5768 		if (parent)
5769 			pr_err("Node %pOF has ", parent->of_node);
5770 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5771 		domain = -1;
5772 	}
5773 
5774 	return domain;
5775 }
5776 
5777 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5778 {
5779 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5780 			       acpi_pci_bus_find_domain_nr(bus);
5781 }
5782 #endif
5783 #endif
5784 
5785 /**
5786  * pci_ext_cfg_avail - can we access extended PCI config space?
5787  *
5788  * Returns 1 if we can access PCI extended config space (offsets
5789  * greater than 0xff). This is the default implementation. Architecture
5790  * implementations can override this.
5791  */
5792 int __weak pci_ext_cfg_avail(void)
5793 {
5794 	return 1;
5795 }
5796 
5797 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5798 {
5799 }
5800 EXPORT_SYMBOL(pci_fixup_cardbus);
5801 
5802 static int __init pci_setup(char *str)
5803 {
5804 	while (str) {
5805 		char *k = strchr(str, ',');
5806 		if (k)
5807 			*k++ = 0;
5808 		if (*str && (str = pcibios_setup(str)) && *str) {
5809 			if (!strcmp(str, "nomsi")) {
5810 				pci_no_msi();
5811 			} else if (!strcmp(str, "noaer")) {
5812 				pci_no_aer();
5813 			} else if (!strncmp(str, "realloc=", 8)) {
5814 				pci_realloc_get_opt(str + 8);
5815 			} else if (!strncmp(str, "realloc", 7)) {
5816 				pci_realloc_get_opt("on");
5817 			} else if (!strcmp(str, "nodomains")) {
5818 				pci_no_domains();
5819 			} else if (!strncmp(str, "noari", 5)) {
5820 				pcie_ari_disabled = true;
5821 			} else if (!strncmp(str, "cbiosize=", 9)) {
5822 				pci_cardbus_io_size = memparse(str + 9, &str);
5823 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5824 				pci_cardbus_mem_size = memparse(str + 10, &str);
5825 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5826 				pci_set_resource_alignment_param(str + 19,
5827 							strlen(str + 19));
5828 			} else if (!strncmp(str, "ecrc=", 5)) {
5829 				pcie_ecrc_get_policy(str + 5);
5830 			} else if (!strncmp(str, "hpiosize=", 9)) {
5831 				pci_hotplug_io_size = memparse(str + 9, &str);
5832 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5833 				pci_hotplug_mem_size = memparse(str + 10, &str);
5834 			} else if (!strncmp(str, "hpbussize=", 10)) {
5835 				pci_hotplug_bus_size =
5836 					simple_strtoul(str + 10, &str, 0);
5837 				if (pci_hotplug_bus_size > 0xff)
5838 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5839 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5840 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5841 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5842 				pcie_bus_config = PCIE_BUS_SAFE;
5843 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5844 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5845 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5846 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5847 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5848 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5849 			} else {
5850 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5851 						str);
5852 			}
5853 		}
5854 		str = k;
5855 	}
5856 	return 0;
5857 }
5858 early_param("pci", pci_setup);
5859