xref: /linux/drivers/opp/core.c (revision 9b924f4f0d8f9557f4ef8a8d1468d507a662cef1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 
31 /* OPP tables with uninitialized required OPPs */
32 LIST_HEAD(lazy_opp_tables);
33 
34 /* Lock to allow exclusive modification to the device and opp lists */
35 DEFINE_MUTEX(opp_table_lock);
36 /* Flag indicating that opp_tables list is being updated at the moment */
37 static bool opp_tables_busy;
38 
39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40 {
41 	struct opp_device *opp_dev;
42 	bool found = false;
43 
44 	mutex_lock(&opp_table->lock);
45 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 		if (opp_dev->dev == dev) {
47 			found = true;
48 			break;
49 		}
50 
51 	mutex_unlock(&opp_table->lock);
52 	return found;
53 }
54 
55 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56 {
57 	struct opp_table *opp_table;
58 
59 	list_for_each_entry(opp_table, &opp_tables, node) {
60 		if (_find_opp_dev(dev, opp_table)) {
61 			_get_opp_table_kref(opp_table);
62 			return opp_table;
63 		}
64 	}
65 
66 	return ERR_PTR(-ENODEV);
67 }
68 
69 /**
70  * _find_opp_table() - find opp_table struct using device pointer
71  * @dev:	device pointer used to lookup OPP table
72  *
73  * Search OPP table for one containing matching device.
74  *
75  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76  * -EINVAL based on type of error.
77  *
78  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79  */
80 struct opp_table *_find_opp_table(struct device *dev)
81 {
82 	struct opp_table *opp_table;
83 
84 	if (IS_ERR_OR_NULL(dev)) {
85 		pr_err("%s: Invalid parameters\n", __func__);
86 		return ERR_PTR(-EINVAL);
87 	}
88 
89 	mutex_lock(&opp_table_lock);
90 	opp_table = _find_opp_table_unlocked(dev);
91 	mutex_unlock(&opp_table_lock);
92 
93 	return opp_table;
94 }
95 
96 /**
97  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98  * @opp:	opp for which voltage has to be returned for
99  *
100  * Return: voltage in micro volt corresponding to the opp, else
101  * return 0
102  *
103  * This is useful only for devices with single power supply.
104  */
105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106 {
107 	if (IS_ERR_OR_NULL(opp)) {
108 		pr_err("%s: Invalid parameters\n", __func__);
109 		return 0;
110 	}
111 
112 	return opp->supplies[0].u_volt;
113 }
114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115 
116 /**
117  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118  * @opp:	opp for which frequency has to be returned for
119  *
120  * Return: frequency in hertz corresponding to the opp, else
121  * return 0
122  */
123 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124 {
125 	if (IS_ERR_OR_NULL(opp)) {
126 		pr_err("%s: Invalid parameters\n", __func__);
127 		return 0;
128 	}
129 
130 	return opp->rate;
131 }
132 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133 
134 /**
135  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136  * @opp:	opp for which level value has to be returned for
137  *
138  * Return: level read from device tree corresponding to the opp, else
139  * return 0.
140  */
141 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return 0;
146 	}
147 
148 	return opp->level;
149 }
150 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151 
152 /**
153  * dev_pm_opp_get_required_pstate() - Gets the required performance state
154  *                                    corresponding to an available opp
155  * @opp:	opp for which performance state has to be returned for
156  * @index:	index of the required opp
157  *
158  * Return: performance state read from device tree corresponding to the
159  * required opp, else return 0.
160  */
161 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 					    unsigned int index)
163 {
164 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 	    index >= opp->opp_table->required_opp_count) {
166 		pr_err("%s: Invalid parameters\n", __func__);
167 		return 0;
168 	}
169 
170 	/* required-opps not fully initialized yet */
171 	if (lazy_linking_pending(opp->opp_table))
172 		return 0;
173 
174 	return opp->required_opps[index]->pstate;
175 }
176 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177 
178 /**
179  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180  * @opp: opp for which turbo mode is being verified
181  *
182  * Turbo OPPs are not for normal use, and can be enabled (under certain
183  * conditions) for short duration of times to finish high throughput work
184  * quickly. Running on them for longer times may overheat the chip.
185  *
186  * Return: true if opp is turbo opp, else false.
187  */
188 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189 {
190 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return false;
193 	}
194 
195 	return opp->turbo;
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198 
199 /**
200  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201  * @dev:	device for which we do this operation
202  *
203  * Return: This function returns the max clock latency in nanoseconds.
204  */
205 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206 {
207 	struct opp_table *opp_table;
208 	unsigned long clock_latency_ns;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	clock_latency_ns = opp_table->clock_latency_ns_max;
215 
216 	dev_pm_opp_put_opp_table(opp_table);
217 
218 	return clock_latency_ns;
219 }
220 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221 
222 /**
223  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224  * @dev: device for which we do this operation
225  *
226  * Return: This function returns the max voltage latency in nanoseconds.
227  */
228 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229 {
230 	struct opp_table *opp_table;
231 	struct dev_pm_opp *opp;
232 	struct regulator *reg;
233 	unsigned long latency_ns = 0;
234 	int ret, i, count;
235 	struct {
236 		unsigned long min;
237 		unsigned long max;
238 	} *uV;
239 
240 	opp_table = _find_opp_table(dev);
241 	if (IS_ERR(opp_table))
242 		return 0;
243 
244 	/* Regulator may not be required for the device */
245 	if (!opp_table->regulators)
246 		goto put_opp_table;
247 
248 	count = opp_table->regulator_count;
249 
250 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 	if (!uV)
252 		goto put_opp_table;
253 
254 	mutex_lock(&opp_table->lock);
255 
256 	for (i = 0; i < count; i++) {
257 		uV[i].min = ~0;
258 		uV[i].max = 0;
259 
260 		list_for_each_entry(opp, &opp_table->opp_list, node) {
261 			if (!opp->available)
262 				continue;
263 
264 			if (opp->supplies[i].u_volt_min < uV[i].min)
265 				uV[i].min = opp->supplies[i].u_volt_min;
266 			if (opp->supplies[i].u_volt_max > uV[i].max)
267 				uV[i].max = opp->supplies[i].u_volt_max;
268 		}
269 	}
270 
271 	mutex_unlock(&opp_table->lock);
272 
273 	/*
274 	 * The caller needs to ensure that opp_table (and hence the regulator)
275 	 * isn't freed, while we are executing this routine.
276 	 */
277 	for (i = 0; i < count; i++) {
278 		reg = opp_table->regulators[i];
279 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 		if (ret > 0)
281 			latency_ns += ret * 1000;
282 	}
283 
284 	kfree(uV);
285 put_opp_table:
286 	dev_pm_opp_put_opp_table(opp_table);
287 
288 	return latency_ns;
289 }
290 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291 
292 /**
293  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294  *					     nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max transition latency, in nanoseconds, to
298  * switch from one OPP to other.
299  */
300 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301 {
302 	return dev_pm_opp_get_max_volt_latency(dev) +
303 		dev_pm_opp_get_max_clock_latency(dev);
304 }
305 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306 
307 /**
308  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309  * @dev:	device for which we do this operation
310  *
311  * Return: This function returns the frequency of the OPP marked as suspend_opp
312  * if one is available, else returns 0;
313  */
314 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315 {
316 	struct opp_table *opp_table;
317 	unsigned long freq = 0;
318 
319 	opp_table = _find_opp_table(dev);
320 	if (IS_ERR(opp_table))
321 		return 0;
322 
323 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325 
326 	dev_pm_opp_put_opp_table(opp_table);
327 
328 	return freq;
329 }
330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331 
332 int _get_opp_count(struct opp_table *opp_table)
333 {
334 	struct dev_pm_opp *opp;
335 	int count = 0;
336 
337 	mutex_lock(&opp_table->lock);
338 
339 	list_for_each_entry(opp, &opp_table->opp_list, node) {
340 		if (opp->available)
341 			count++;
342 	}
343 
344 	mutex_unlock(&opp_table->lock);
345 
346 	return count;
347 }
348 
349 /**
350  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351  * @dev:	device for which we do this operation
352  *
353  * Return: This function returns the number of available opps if there are any,
354  * else returns 0 if none or the corresponding error value.
355  */
356 int dev_pm_opp_get_opp_count(struct device *dev)
357 {
358 	struct opp_table *opp_table;
359 	int count;
360 
361 	opp_table = _find_opp_table(dev);
362 	if (IS_ERR(opp_table)) {
363 		count = PTR_ERR(opp_table);
364 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 			__func__, count);
366 		return count;
367 	}
368 
369 	count = _get_opp_count(opp_table);
370 	dev_pm_opp_put_opp_table(opp_table);
371 
372 	return count;
373 }
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375 
376 /**
377  * dev_pm_opp_find_freq_exact() - search for an exact frequency
378  * @dev:		device for which we do this operation
379  * @freq:		frequency to search for
380  * @available:		true/false - match for available opp
381  *
382  * Return: Searches for exact match in the opp table and returns pointer to the
383  * matching opp if found, else returns ERR_PTR in case of error and should
384  * be handled using IS_ERR. Error return values can be:
385  * EINVAL:	for bad pointer
386  * ERANGE:	no match found for search
387  * ENODEV:	if device not found in list of registered devices
388  *
389  * Note: available is a modifier for the search. if available=true, then the
390  * match is for exact matching frequency and is available in the stored OPP
391  * table. if false, the match is for exact frequency which is not available.
392  *
393  * This provides a mechanism to enable an opp which is not available currently
394  * or the opposite as well.
395  *
396  * The callers are required to call dev_pm_opp_put() for the returned OPP after
397  * use.
398  */
399 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 					      unsigned long freq,
401 					      bool available)
402 {
403 	struct opp_table *opp_table;
404 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405 
406 	opp_table = _find_opp_table(dev);
407 	if (IS_ERR(opp_table)) {
408 		int r = PTR_ERR(opp_table);
409 
410 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 		return ERR_PTR(r);
412 	}
413 
414 	mutex_lock(&opp_table->lock);
415 
416 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 		if (temp_opp->available == available &&
418 				temp_opp->rate == freq) {
419 			opp = temp_opp;
420 
421 			/* Increment the reference count of OPP */
422 			dev_pm_opp_get(opp);
423 			break;
424 		}
425 	}
426 
427 	mutex_unlock(&opp_table->lock);
428 	dev_pm_opp_put_opp_table(opp_table);
429 
430 	return opp;
431 }
432 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433 
434 /**
435  * dev_pm_opp_find_level_exact() - search for an exact level
436  * @dev:		device for which we do this operation
437  * @level:		level to search for
438  *
439  * Return: Searches for exact match in the opp table and returns pointer to the
440  * matching opp if found, else returns ERR_PTR in case of error and should
441  * be handled using IS_ERR. Error return values can be:
442  * EINVAL:	for bad pointer
443  * ERANGE:	no match found for search
444  * ENODEV:	if device not found in list of registered devices
445  *
446  * The callers are required to call dev_pm_opp_put() for the returned OPP after
447  * use.
448  */
449 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 					       unsigned int level)
451 {
452 	struct opp_table *opp_table;
453 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454 
455 	opp_table = _find_opp_table(dev);
456 	if (IS_ERR(opp_table)) {
457 		int r = PTR_ERR(opp_table);
458 
459 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 		return ERR_PTR(r);
461 	}
462 
463 	mutex_lock(&opp_table->lock);
464 
465 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 		if (temp_opp->level == level) {
467 			opp = temp_opp;
468 
469 			/* Increment the reference count of OPP */
470 			dev_pm_opp_get(opp);
471 			break;
472 		}
473 	}
474 
475 	mutex_unlock(&opp_table->lock);
476 	dev_pm_opp_put_opp_table(opp_table);
477 
478 	return opp;
479 }
480 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481 
482 /**
483  * dev_pm_opp_find_level_ceil() - search for an rounded up level
484  * @dev:		device for which we do this operation
485  * @level:		level to search for
486  *
487  * Return: Searches for rounded up match in the opp table and returns pointer
488  * to the  matching opp if found, else returns ERR_PTR in case of error and
489  * should be handled using IS_ERR. Error return values can be:
490  * EINVAL:	for bad pointer
491  * ERANGE:	no match found for search
492  * ENODEV:	if device not found in list of registered devices
493  *
494  * The callers are required to call dev_pm_opp_put() for the returned OPP after
495  * use.
496  */
497 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 					      unsigned int *level)
499 {
500 	struct opp_table *opp_table;
501 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502 
503 	opp_table = _find_opp_table(dev);
504 	if (IS_ERR(opp_table)) {
505 		int r = PTR_ERR(opp_table);
506 
507 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 		return ERR_PTR(r);
509 	}
510 
511 	mutex_lock(&opp_table->lock);
512 
513 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 		if (temp_opp->available && temp_opp->level >= *level) {
515 			opp = temp_opp;
516 			*level = opp->level;
517 
518 			/* Increment the reference count of OPP */
519 			dev_pm_opp_get(opp);
520 			break;
521 		}
522 	}
523 
524 	mutex_unlock(&opp_table->lock);
525 	dev_pm_opp_put_opp_table(opp_table);
526 
527 	return opp;
528 }
529 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530 
531 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 						   unsigned long *freq)
533 {
534 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535 
536 	mutex_lock(&opp_table->lock);
537 
538 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 		if (temp_opp->available && temp_opp->rate >= *freq) {
540 			opp = temp_opp;
541 			*freq = opp->rate;
542 
543 			/* Increment the reference count of OPP */
544 			dev_pm_opp_get(opp);
545 			break;
546 		}
547 	}
548 
549 	mutex_unlock(&opp_table->lock);
550 
551 	return opp;
552 }
553 
554 /**
555  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556  * @dev:	device for which we do this operation
557  * @freq:	Start frequency
558  *
559  * Search for the matching ceil *available* OPP from a starting freq
560  * for a device.
561  *
562  * Return: matching *opp and refreshes *freq accordingly, else returns
563  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564  * values can be:
565  * EINVAL:	for bad pointer
566  * ERANGE:	no match found for search
567  * ENODEV:	if device not found in list of registered devices
568  *
569  * The callers are required to call dev_pm_opp_put() for the returned OPP after
570  * use.
571  */
572 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 					     unsigned long *freq)
574 {
575 	struct opp_table *opp_table;
576 	struct dev_pm_opp *opp;
577 
578 	if (!dev || !freq) {
579 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 		return ERR_PTR(-EINVAL);
581 	}
582 
583 	opp_table = _find_opp_table(dev);
584 	if (IS_ERR(opp_table))
585 		return ERR_CAST(opp_table);
586 
587 	opp = _find_freq_ceil(opp_table, freq);
588 
589 	dev_pm_opp_put_opp_table(opp_table);
590 
591 	return opp;
592 }
593 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594 
595 /**
596  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597  * @dev:	device for which we do this operation
598  * @freq:	Start frequency
599  *
600  * Search for the matching floor *available* OPP from a starting freq
601  * for a device.
602  *
603  * Return: matching *opp and refreshes *freq accordingly, else returns
604  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605  * values can be:
606  * EINVAL:	for bad pointer
607  * ERANGE:	no match found for search
608  * ENODEV:	if device not found in list of registered devices
609  *
610  * The callers are required to call dev_pm_opp_put() for the returned OPP after
611  * use.
612  */
613 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 					      unsigned long *freq)
615 {
616 	struct opp_table *opp_table;
617 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618 
619 	if (!dev || !freq) {
620 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 		return ERR_PTR(-EINVAL);
622 	}
623 
624 	opp_table = _find_opp_table(dev);
625 	if (IS_ERR(opp_table))
626 		return ERR_CAST(opp_table);
627 
628 	mutex_lock(&opp_table->lock);
629 
630 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 		if (temp_opp->available) {
632 			/* go to the next node, before choosing prev */
633 			if (temp_opp->rate > *freq)
634 				break;
635 			else
636 				opp = temp_opp;
637 		}
638 	}
639 
640 	/* Increment the reference count of OPP */
641 	if (!IS_ERR(opp))
642 		dev_pm_opp_get(opp);
643 	mutex_unlock(&opp_table->lock);
644 	dev_pm_opp_put_opp_table(opp_table);
645 
646 	if (!IS_ERR(opp))
647 		*freq = opp->rate;
648 
649 	return opp;
650 }
651 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652 
653 /**
654  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655  *					 target voltage.
656  * @dev:	Device for which we do this operation.
657  * @u_volt:	Target voltage.
658  *
659  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660  *
661  * Return: matching *opp, else returns ERR_PTR in case of error which should be
662  * handled using IS_ERR.
663  *
664  * Error return values can be:
665  * EINVAL:	bad parameters
666  *
667  * The callers are required to call dev_pm_opp_put() for the returned OPP after
668  * use.
669  */
670 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 						     unsigned long u_volt)
672 {
673 	struct opp_table *opp_table;
674 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675 
676 	if (!dev || !u_volt) {
677 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 			u_volt);
679 		return ERR_PTR(-EINVAL);
680 	}
681 
682 	opp_table = _find_opp_table(dev);
683 	if (IS_ERR(opp_table))
684 		return ERR_CAST(opp_table);
685 
686 	mutex_lock(&opp_table->lock);
687 
688 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 		if (temp_opp->available) {
690 			if (temp_opp->supplies[0].u_volt > u_volt)
691 				break;
692 			opp = temp_opp;
693 		}
694 	}
695 
696 	/* Increment the reference count of OPP */
697 	if (!IS_ERR(opp))
698 		dev_pm_opp_get(opp);
699 
700 	mutex_unlock(&opp_table->lock);
701 	dev_pm_opp_put_opp_table(opp_table);
702 
703 	return opp;
704 }
705 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706 
707 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 			    struct dev_pm_opp_supply *supply)
709 {
710 	int ret;
711 
712 	/* Regulator not available for device */
713 	if (IS_ERR(reg)) {
714 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 			PTR_ERR(reg));
716 		return 0;
717 	}
718 
719 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721 
722 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 					    supply->u_volt, supply->u_volt_max);
724 	if (ret)
725 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 			__func__, supply->u_volt_min, supply->u_volt,
727 			supply->u_volt_max, ret);
728 
729 	return ret;
730 }
731 
732 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 					    unsigned long freq)
734 {
735 	int ret;
736 
737 	/* We may reach here for devices which don't change frequency */
738 	if (IS_ERR(clk))
739 		return 0;
740 
741 	ret = clk_set_rate(clk, freq);
742 	if (ret) {
743 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 			ret);
745 	}
746 
747 	return ret;
748 }
749 
750 static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 				      struct device *dev,
752 				      struct dev_pm_opp *opp,
753 				      unsigned long freq,
754 				      int scaling_down)
755 {
756 	struct regulator *reg = opp_table->regulators[0];
757 	struct dev_pm_opp *old_opp = opp_table->current_opp;
758 	int ret;
759 
760 	/* This function only supports single regulator per device */
761 	if (WARN_ON(opp_table->regulator_count > 1)) {
762 		dev_err(dev, "multiple regulators are not supported\n");
763 		return -EINVAL;
764 	}
765 
766 	/* Scaling up? Scale voltage before frequency */
767 	if (!scaling_down) {
768 		ret = _set_opp_voltage(dev, reg, opp->supplies);
769 		if (ret)
770 			goto restore_voltage;
771 	}
772 
773 	/* Change frequency */
774 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 	if (ret)
776 		goto restore_voltage;
777 
778 	/* Scaling down? Scale voltage after frequency */
779 	if (scaling_down) {
780 		ret = _set_opp_voltage(dev, reg, opp->supplies);
781 		if (ret)
782 			goto restore_freq;
783 	}
784 
785 	/*
786 	 * Enable the regulator after setting its voltages, otherwise it breaks
787 	 * some boot-enabled regulators.
788 	 */
789 	if (unlikely(!opp_table->enabled)) {
790 		ret = regulator_enable(reg);
791 		if (ret < 0)
792 			dev_warn(dev, "Failed to enable regulator: %d", ret);
793 	}
794 
795 	return 0;
796 
797 restore_freq:
798 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 			__func__, old_opp->rate);
801 restore_voltage:
802 	/* This shouldn't harm even if the voltages weren't updated earlier */
803 	_set_opp_voltage(dev, reg, old_opp->supplies);
804 
805 	return ret;
806 }
807 
808 static int _set_opp_bw(const struct opp_table *opp_table,
809 		       struct dev_pm_opp *opp, struct device *dev)
810 {
811 	u32 avg, peak;
812 	int i, ret;
813 
814 	if (!opp_table->paths)
815 		return 0;
816 
817 	for (i = 0; i < opp_table->path_count; i++) {
818 		if (!opp) {
819 			avg = 0;
820 			peak = 0;
821 		} else {
822 			avg = opp->bandwidth[i].avg;
823 			peak = opp->bandwidth[i].peak;
824 		}
825 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 		if (ret) {
827 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 				opp ? "set" : "remove", i, ret);
829 			return ret;
830 		}
831 	}
832 
833 	return 0;
834 }
835 
836 static int _set_opp_custom(const struct opp_table *opp_table,
837 			   struct device *dev, struct dev_pm_opp *opp,
838 			   unsigned long freq)
839 {
840 	struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 	struct dev_pm_opp *old_opp = opp_table->current_opp;
842 	int size;
843 
844 	/*
845 	 * We support this only if dev_pm_opp_set_regulators() was called
846 	 * earlier.
847 	 */
848 	if (opp_table->sod_supplies) {
849 		size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 		memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 		memcpy(data->new_opp.supplies, opp->supplies, size);
852 		data->regulator_count = opp_table->regulator_count;
853 	} else {
854 		data->regulator_count = 0;
855 	}
856 
857 	data->regulators = opp_table->regulators;
858 	data->clk = opp_table->clk;
859 	data->dev = dev;
860 	data->old_opp.rate = old_opp->rate;
861 	data->new_opp.rate = freq;
862 
863 	return opp_table->set_opp(data);
864 }
865 
866 static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 			     struct dev_pm_opp *opp, int i)
868 {
869 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 	int ret;
871 
872 	if (!pd_dev)
873 		return 0;
874 
875 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 	if (ret) {
877 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 			dev_name(pd_dev), pstate, ret);
879 	}
880 
881 	return ret;
882 }
883 
884 /* This is only called for PM domain for now */
885 static int _set_required_opps(struct device *dev,
886 			      struct opp_table *opp_table,
887 			      struct dev_pm_opp *opp, bool up)
888 {
889 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 	int i, ret = 0;
892 
893 	if (!required_opp_tables)
894 		return 0;
895 
896 	/* required-opps not fully initialized yet */
897 	if (lazy_linking_pending(opp_table))
898 		return -EBUSY;
899 
900 	/* Single genpd case */
901 	if (!genpd_virt_devs)
902 		return _set_required_opp(dev, dev, opp, 0);
903 
904 	/* Multiple genpd case */
905 
906 	/*
907 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
908 	 * after it is freed from another thread.
909 	 */
910 	mutex_lock(&opp_table->genpd_virt_dev_lock);
911 
912 	/* Scaling up? Set required OPPs in normal order, else reverse */
913 	if (up) {
914 		for (i = 0; i < opp_table->required_opp_count; i++) {
915 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
916 			if (ret)
917 				break;
918 		}
919 	} else {
920 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
921 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
922 			if (ret)
923 				break;
924 		}
925 	}
926 
927 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
928 
929 	return ret;
930 }
931 
932 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
933 {
934 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
935 	unsigned long freq;
936 
937 	if (!IS_ERR(opp_table->clk)) {
938 		freq = clk_get_rate(opp_table->clk);
939 		opp = _find_freq_ceil(opp_table, &freq);
940 	}
941 
942 	/*
943 	 * Unable to find the current OPP ? Pick the first from the list since
944 	 * it is in ascending order, otherwise rest of the code will need to
945 	 * make special checks to validate current_opp.
946 	 */
947 	if (IS_ERR(opp)) {
948 		mutex_lock(&opp_table->lock);
949 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
950 		dev_pm_opp_get(opp);
951 		mutex_unlock(&opp_table->lock);
952 	}
953 
954 	opp_table->current_opp = opp;
955 }
956 
957 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
958 {
959 	int ret;
960 
961 	if (!opp_table->enabled)
962 		return 0;
963 
964 	/*
965 	 * Some drivers need to support cases where some platforms may
966 	 * have OPP table for the device, while others don't and
967 	 * opp_set_rate() just needs to behave like clk_set_rate().
968 	 */
969 	if (!_get_opp_count(opp_table))
970 		return 0;
971 
972 	ret = _set_opp_bw(opp_table, NULL, dev);
973 	if (ret)
974 		return ret;
975 
976 	if (opp_table->regulators)
977 		regulator_disable(opp_table->regulators[0]);
978 
979 	ret = _set_required_opps(dev, opp_table, NULL, false);
980 
981 	opp_table->enabled = false;
982 	return ret;
983 }
984 
985 static int _set_opp(struct device *dev, struct opp_table *opp_table,
986 		    struct dev_pm_opp *opp, unsigned long freq)
987 {
988 	struct dev_pm_opp *old_opp;
989 	int scaling_down, ret;
990 
991 	if (unlikely(!opp))
992 		return _disable_opp_table(dev, opp_table);
993 
994 	/* Find the currently set OPP if we don't know already */
995 	if (unlikely(!opp_table->current_opp))
996 		_find_current_opp(dev, opp_table);
997 
998 	old_opp = opp_table->current_opp;
999 
1000 	/* Return early if nothing to do */
1001 	if (old_opp == opp && opp_table->current_rate == freq &&
1002 	    opp_table->enabled) {
1003 		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1004 		return 0;
1005 	}
1006 
1007 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1008 		__func__, opp_table->current_rate, freq, old_opp->level,
1009 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1010 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1011 
1012 	scaling_down = _opp_compare_key(old_opp, opp);
1013 	if (scaling_down == -1)
1014 		scaling_down = 0;
1015 
1016 	/* Scaling up? Configure required OPPs before frequency */
1017 	if (!scaling_down) {
1018 		ret = _set_required_opps(dev, opp_table, opp, true);
1019 		if (ret) {
1020 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1021 			return ret;
1022 		}
1023 
1024 		ret = _set_opp_bw(opp_table, opp, dev);
1025 		if (ret) {
1026 			dev_err(dev, "Failed to set bw: %d\n", ret);
1027 			return ret;
1028 		}
1029 	}
1030 
1031 	if (opp_table->set_opp) {
1032 		ret = _set_opp_custom(opp_table, dev, opp, freq);
1033 	} else if (opp_table->regulators) {
1034 		ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1035 						 scaling_down);
1036 	} else {
1037 		/* Only frequency scaling */
1038 		ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1039 	}
1040 
1041 	if (ret)
1042 		return ret;
1043 
1044 	/* Scaling down? Configure required OPPs after frequency */
1045 	if (scaling_down) {
1046 		ret = _set_opp_bw(opp_table, opp, dev);
1047 		if (ret) {
1048 			dev_err(dev, "Failed to set bw: %d\n", ret);
1049 			return ret;
1050 		}
1051 
1052 		ret = _set_required_opps(dev, opp_table, opp, false);
1053 		if (ret) {
1054 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1055 			return ret;
1056 		}
1057 	}
1058 
1059 	opp_table->enabled = true;
1060 	dev_pm_opp_put(old_opp);
1061 
1062 	/* Make sure current_opp doesn't get freed */
1063 	dev_pm_opp_get(opp);
1064 	opp_table->current_opp = opp;
1065 	opp_table->current_rate = freq;
1066 
1067 	return ret;
1068 }
1069 
1070 /**
1071  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1072  * @dev:	 device for which we do this operation
1073  * @target_freq: frequency to achieve
1074  *
1075  * This configures the power-supplies to the levels specified by the OPP
1076  * corresponding to the target_freq, and programs the clock to a value <=
1077  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1078  * provided by the opp, should have already rounded to the target OPP's
1079  * frequency.
1080  */
1081 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1082 {
1083 	struct opp_table *opp_table;
1084 	unsigned long freq = 0, temp_freq;
1085 	struct dev_pm_opp *opp = NULL;
1086 	int ret;
1087 
1088 	opp_table = _find_opp_table(dev);
1089 	if (IS_ERR(opp_table)) {
1090 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1091 		return PTR_ERR(opp_table);
1092 	}
1093 
1094 	if (target_freq) {
1095 		/*
1096 		 * For IO devices which require an OPP on some platforms/SoCs
1097 		 * while just needing to scale the clock on some others
1098 		 * we look for empty OPP tables with just a clock handle and
1099 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1100 		 * equivalent to a clk_set_rate()
1101 		 */
1102 		if (!_get_opp_count(opp_table)) {
1103 			ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1104 			goto put_opp_table;
1105 		}
1106 
1107 		freq = clk_round_rate(opp_table->clk, target_freq);
1108 		if ((long)freq <= 0)
1109 			freq = target_freq;
1110 
1111 		/*
1112 		 * The clock driver may support finer resolution of the
1113 		 * frequencies than the OPP table, don't update the frequency we
1114 		 * pass to clk_set_rate() here.
1115 		 */
1116 		temp_freq = freq;
1117 		opp = _find_freq_ceil(opp_table, &temp_freq);
1118 		if (IS_ERR(opp)) {
1119 			ret = PTR_ERR(opp);
1120 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1121 				__func__, freq, ret);
1122 			goto put_opp_table;
1123 		}
1124 	}
1125 
1126 	ret = _set_opp(dev, opp_table, opp, freq);
1127 
1128 	if (target_freq)
1129 		dev_pm_opp_put(opp);
1130 put_opp_table:
1131 	dev_pm_opp_put_opp_table(opp_table);
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1135 
1136 /**
1137  * dev_pm_opp_set_opp() - Configure device for OPP
1138  * @dev: device for which we do this operation
1139  * @opp: OPP to set to
1140  *
1141  * This configures the device based on the properties of the OPP passed to this
1142  * routine.
1143  *
1144  * Return: 0 on success, a negative error number otherwise.
1145  */
1146 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1147 {
1148 	struct opp_table *opp_table;
1149 	int ret;
1150 
1151 	opp_table = _find_opp_table(dev);
1152 	if (IS_ERR(opp_table)) {
1153 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1154 		return PTR_ERR(opp_table);
1155 	}
1156 
1157 	ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1158 	dev_pm_opp_put_opp_table(opp_table);
1159 
1160 	return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1163 
1164 /* OPP-dev Helpers */
1165 static void _remove_opp_dev(struct opp_device *opp_dev,
1166 			    struct opp_table *opp_table)
1167 {
1168 	opp_debug_unregister(opp_dev, opp_table);
1169 	list_del(&opp_dev->node);
1170 	kfree(opp_dev);
1171 }
1172 
1173 struct opp_device *_add_opp_dev(const struct device *dev,
1174 				struct opp_table *opp_table)
1175 {
1176 	struct opp_device *opp_dev;
1177 
1178 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1179 	if (!opp_dev)
1180 		return NULL;
1181 
1182 	/* Initialize opp-dev */
1183 	opp_dev->dev = dev;
1184 
1185 	mutex_lock(&opp_table->lock);
1186 	list_add(&opp_dev->node, &opp_table->dev_list);
1187 	mutex_unlock(&opp_table->lock);
1188 
1189 	/* Create debugfs entries for the opp_table */
1190 	opp_debug_register(opp_dev, opp_table);
1191 
1192 	return opp_dev;
1193 }
1194 
1195 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1196 {
1197 	struct opp_table *opp_table;
1198 	struct opp_device *opp_dev;
1199 	int ret;
1200 
1201 	/*
1202 	 * Allocate a new OPP table. In the infrequent case where a new
1203 	 * device is needed to be added, we pay this penalty.
1204 	 */
1205 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1206 	if (!opp_table)
1207 		return ERR_PTR(-ENOMEM);
1208 
1209 	mutex_init(&opp_table->lock);
1210 	mutex_init(&opp_table->genpd_virt_dev_lock);
1211 	INIT_LIST_HEAD(&opp_table->dev_list);
1212 	INIT_LIST_HEAD(&opp_table->lazy);
1213 
1214 	/* Mark regulator count uninitialized */
1215 	opp_table->regulator_count = -1;
1216 
1217 	opp_dev = _add_opp_dev(dev, opp_table);
1218 	if (!opp_dev) {
1219 		ret = -ENOMEM;
1220 		goto err;
1221 	}
1222 
1223 	_of_init_opp_table(opp_table, dev, index);
1224 
1225 	/* Find interconnect path(s) for the device */
1226 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1227 	if (ret) {
1228 		if (ret == -EPROBE_DEFER)
1229 			goto remove_opp_dev;
1230 
1231 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1232 			 __func__, ret);
1233 	}
1234 
1235 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1236 	INIT_LIST_HEAD(&opp_table->opp_list);
1237 	kref_init(&opp_table->kref);
1238 
1239 	return opp_table;
1240 
1241 remove_opp_dev:
1242 	_remove_opp_dev(opp_dev, opp_table);
1243 err:
1244 	kfree(opp_table);
1245 	return ERR_PTR(ret);
1246 }
1247 
1248 void _get_opp_table_kref(struct opp_table *opp_table)
1249 {
1250 	kref_get(&opp_table->kref);
1251 }
1252 
1253 static struct opp_table *_update_opp_table_clk(struct device *dev,
1254 					       struct opp_table *opp_table,
1255 					       bool getclk)
1256 {
1257 	int ret;
1258 
1259 	/*
1260 	 * Return early if we don't need to get clk or we have already tried it
1261 	 * earlier.
1262 	 */
1263 	if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1264 		return opp_table;
1265 
1266 	/* Find clk for the device */
1267 	opp_table->clk = clk_get(dev, NULL);
1268 
1269 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1270 	if (!ret)
1271 		return opp_table;
1272 
1273 	if (ret == -ENOENT) {
1274 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1275 		return opp_table;
1276 	}
1277 
1278 	dev_pm_opp_put_opp_table(opp_table);
1279 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1280 
1281 	return ERR_PTR(ret);
1282 }
1283 
1284 /*
1285  * We need to make sure that the OPP table for a device doesn't get added twice,
1286  * if this routine gets called in parallel with the same device pointer.
1287  *
1288  * The simplest way to enforce that is to perform everything (find existing
1289  * table and if not found, create a new one) under the opp_table_lock, so only
1290  * one creator gets access to the same. But that expands the critical section
1291  * under the lock and may end up causing circular dependencies with frameworks
1292  * like debugfs, interconnect or clock framework as they may be direct or
1293  * indirect users of OPP core.
1294  *
1295  * And for that reason we have to go for a bit tricky implementation here, which
1296  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1297  * of adding an OPP table and others should wait for it to finish.
1298  */
1299 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1300 					 bool getclk)
1301 {
1302 	struct opp_table *opp_table;
1303 
1304 again:
1305 	mutex_lock(&opp_table_lock);
1306 
1307 	opp_table = _find_opp_table_unlocked(dev);
1308 	if (!IS_ERR(opp_table))
1309 		goto unlock;
1310 
1311 	/*
1312 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1313 	 * another user, wait for it to finish.
1314 	 */
1315 	if (unlikely(opp_tables_busy)) {
1316 		mutex_unlock(&opp_table_lock);
1317 		cpu_relax();
1318 		goto again;
1319 	}
1320 
1321 	opp_tables_busy = true;
1322 	opp_table = _managed_opp(dev, index);
1323 
1324 	/* Drop the lock to reduce the size of critical section */
1325 	mutex_unlock(&opp_table_lock);
1326 
1327 	if (opp_table) {
1328 		if (!_add_opp_dev(dev, opp_table)) {
1329 			dev_pm_opp_put_opp_table(opp_table);
1330 			opp_table = ERR_PTR(-ENOMEM);
1331 		}
1332 
1333 		mutex_lock(&opp_table_lock);
1334 	} else {
1335 		opp_table = _allocate_opp_table(dev, index);
1336 
1337 		mutex_lock(&opp_table_lock);
1338 		if (!IS_ERR(opp_table))
1339 			list_add(&opp_table->node, &opp_tables);
1340 	}
1341 
1342 	opp_tables_busy = false;
1343 
1344 unlock:
1345 	mutex_unlock(&opp_table_lock);
1346 
1347 	return _update_opp_table_clk(dev, opp_table, getclk);
1348 }
1349 
1350 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1351 {
1352 	return _add_opp_table_indexed(dev, 0, getclk);
1353 }
1354 
1355 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1356 {
1357 	return _find_opp_table(dev);
1358 }
1359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1360 
1361 static void _opp_table_kref_release(struct kref *kref)
1362 {
1363 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1364 	struct opp_device *opp_dev, *temp;
1365 	int i;
1366 
1367 	/* Drop the lock as soon as we can */
1368 	list_del(&opp_table->node);
1369 	mutex_unlock(&opp_table_lock);
1370 
1371 	if (opp_table->current_opp)
1372 		dev_pm_opp_put(opp_table->current_opp);
1373 
1374 	_of_clear_opp_table(opp_table);
1375 
1376 	/* Release clk */
1377 	if (!IS_ERR(opp_table->clk))
1378 		clk_put(opp_table->clk);
1379 
1380 	if (opp_table->paths) {
1381 		for (i = 0; i < opp_table->path_count; i++)
1382 			icc_put(opp_table->paths[i]);
1383 		kfree(opp_table->paths);
1384 	}
1385 
1386 	WARN_ON(!list_empty(&opp_table->opp_list));
1387 
1388 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1389 		/*
1390 		 * The OPP table is getting removed, drop the performance state
1391 		 * constraints.
1392 		 */
1393 		if (opp_table->genpd_performance_state)
1394 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1395 
1396 		_remove_opp_dev(opp_dev, opp_table);
1397 	}
1398 
1399 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1400 	mutex_destroy(&opp_table->lock);
1401 	kfree(opp_table);
1402 }
1403 
1404 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1405 {
1406 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1407 		       &opp_table_lock);
1408 }
1409 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1410 
1411 void _opp_free(struct dev_pm_opp *opp)
1412 {
1413 	kfree(opp);
1414 }
1415 
1416 static void _opp_kref_release(struct kref *kref)
1417 {
1418 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1419 	struct opp_table *opp_table = opp->opp_table;
1420 
1421 	list_del(&opp->node);
1422 	mutex_unlock(&opp_table->lock);
1423 
1424 	/*
1425 	 * Notify the changes in the availability of the operable
1426 	 * frequency/voltage list.
1427 	 */
1428 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1429 	_of_opp_free_required_opps(opp_table, opp);
1430 	opp_debug_remove_one(opp);
1431 	kfree(opp);
1432 }
1433 
1434 void dev_pm_opp_get(struct dev_pm_opp *opp)
1435 {
1436 	kref_get(&opp->kref);
1437 }
1438 
1439 void dev_pm_opp_put(struct dev_pm_opp *opp)
1440 {
1441 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1442 }
1443 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1444 
1445 /**
1446  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1447  * @dev:	device for which we do this operation
1448  * @freq:	OPP to remove with matching 'freq'
1449  *
1450  * This function removes an opp from the opp table.
1451  */
1452 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1453 {
1454 	struct dev_pm_opp *opp;
1455 	struct opp_table *opp_table;
1456 	bool found = false;
1457 
1458 	opp_table = _find_opp_table(dev);
1459 	if (IS_ERR(opp_table))
1460 		return;
1461 
1462 	mutex_lock(&opp_table->lock);
1463 
1464 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1465 		if (opp->rate == freq) {
1466 			found = true;
1467 			break;
1468 		}
1469 	}
1470 
1471 	mutex_unlock(&opp_table->lock);
1472 
1473 	if (found) {
1474 		dev_pm_opp_put(opp);
1475 
1476 		/* Drop the reference taken by dev_pm_opp_add() */
1477 		dev_pm_opp_put_opp_table(opp_table);
1478 	} else {
1479 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1480 			 __func__, freq);
1481 	}
1482 
1483 	/* Drop the reference taken by _find_opp_table() */
1484 	dev_pm_opp_put_opp_table(opp_table);
1485 }
1486 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1487 
1488 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1489 					bool dynamic)
1490 {
1491 	struct dev_pm_opp *opp = NULL, *temp;
1492 
1493 	mutex_lock(&opp_table->lock);
1494 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1495 		/*
1496 		 * Refcount must be dropped only once for each OPP by OPP core,
1497 		 * do that with help of "removed" flag.
1498 		 */
1499 		if (!temp->removed && dynamic == temp->dynamic) {
1500 			opp = temp;
1501 			break;
1502 		}
1503 	}
1504 
1505 	mutex_unlock(&opp_table->lock);
1506 	return opp;
1507 }
1508 
1509 /*
1510  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1511  * happen lock less to avoid circular dependency issues. This routine must be
1512  * called without the opp_table->lock held.
1513  */
1514 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1515 {
1516 	struct dev_pm_opp *opp;
1517 
1518 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1519 		opp->removed = true;
1520 		dev_pm_opp_put(opp);
1521 
1522 		/* Drop the references taken by dev_pm_opp_add() */
1523 		if (dynamic)
1524 			dev_pm_opp_put_opp_table(opp_table);
1525 	}
1526 }
1527 
1528 bool _opp_remove_all_static(struct opp_table *opp_table)
1529 {
1530 	mutex_lock(&opp_table->lock);
1531 
1532 	if (!opp_table->parsed_static_opps) {
1533 		mutex_unlock(&opp_table->lock);
1534 		return false;
1535 	}
1536 
1537 	if (--opp_table->parsed_static_opps) {
1538 		mutex_unlock(&opp_table->lock);
1539 		return true;
1540 	}
1541 
1542 	mutex_unlock(&opp_table->lock);
1543 
1544 	_opp_remove_all(opp_table, false);
1545 	return true;
1546 }
1547 
1548 /**
1549  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1550  * @dev:	device for which we do this operation
1551  *
1552  * This function removes all dynamically created OPPs from the opp table.
1553  */
1554 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1555 {
1556 	struct opp_table *opp_table;
1557 
1558 	opp_table = _find_opp_table(dev);
1559 	if (IS_ERR(opp_table))
1560 		return;
1561 
1562 	_opp_remove_all(opp_table, true);
1563 
1564 	/* Drop the reference taken by _find_opp_table() */
1565 	dev_pm_opp_put_opp_table(opp_table);
1566 }
1567 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1568 
1569 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1570 {
1571 	struct dev_pm_opp *opp;
1572 	int supply_count, supply_size, icc_size;
1573 
1574 	/* Allocate space for at least one supply */
1575 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1576 	supply_size = sizeof(*opp->supplies) * supply_count;
1577 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1578 
1579 	/* allocate new OPP node and supplies structures */
1580 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1581 
1582 	if (!opp)
1583 		return NULL;
1584 
1585 	/* Put the supplies at the end of the OPP structure as an empty array */
1586 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1587 	if (icc_size)
1588 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1589 	INIT_LIST_HEAD(&opp->node);
1590 
1591 	return opp;
1592 }
1593 
1594 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1595 					 struct opp_table *opp_table)
1596 {
1597 	struct regulator *reg;
1598 	int i;
1599 
1600 	if (!opp_table->regulators)
1601 		return true;
1602 
1603 	for (i = 0; i < opp_table->regulator_count; i++) {
1604 		reg = opp_table->regulators[i];
1605 
1606 		if (!regulator_is_supported_voltage(reg,
1607 					opp->supplies[i].u_volt_min,
1608 					opp->supplies[i].u_volt_max)) {
1609 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1610 				__func__, opp->supplies[i].u_volt_min,
1611 				opp->supplies[i].u_volt_max);
1612 			return false;
1613 		}
1614 	}
1615 
1616 	return true;
1617 }
1618 
1619 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1620 {
1621 	if (opp1->rate != opp2->rate)
1622 		return opp1->rate < opp2->rate ? -1 : 1;
1623 	if (opp1->bandwidth && opp2->bandwidth &&
1624 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1625 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1626 	if (opp1->level != opp2->level)
1627 		return opp1->level < opp2->level ? -1 : 1;
1628 	return 0;
1629 }
1630 
1631 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1632 			     struct opp_table *opp_table,
1633 			     struct list_head **head)
1634 {
1635 	struct dev_pm_opp *opp;
1636 	int opp_cmp;
1637 
1638 	/*
1639 	 * Insert new OPP in order of increasing frequency and discard if
1640 	 * already present.
1641 	 *
1642 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1643 	 * loop, don't replace it with head otherwise it will become an infinite
1644 	 * loop.
1645 	 */
1646 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1647 		opp_cmp = _opp_compare_key(new_opp, opp);
1648 		if (opp_cmp > 0) {
1649 			*head = &opp->node;
1650 			continue;
1651 		}
1652 
1653 		if (opp_cmp < 0)
1654 			return 0;
1655 
1656 		/* Duplicate OPPs */
1657 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1658 			 __func__, opp->rate, opp->supplies[0].u_volt,
1659 			 opp->available, new_opp->rate,
1660 			 new_opp->supplies[0].u_volt, new_opp->available);
1661 
1662 		/* Should we compare voltages for all regulators here ? */
1663 		return opp->available &&
1664 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 void _required_opps_available(struct dev_pm_opp *opp, int count)
1671 {
1672 	int i;
1673 
1674 	for (i = 0; i < count; i++) {
1675 		if (opp->required_opps[i]->available)
1676 			continue;
1677 
1678 		opp->available = false;
1679 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1680 			 __func__, opp->required_opps[i]->np, opp->rate);
1681 		return;
1682 	}
1683 }
1684 
1685 /*
1686  * Returns:
1687  * 0: On success. And appropriate error message for duplicate OPPs.
1688  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1689  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1690  *  sure we don't print error messages unnecessarily if different parts of
1691  *  kernel try to initialize the OPP table.
1692  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1693  *  should be considered an error by the callers of _opp_add().
1694  */
1695 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1696 	     struct opp_table *opp_table, bool rate_not_available)
1697 {
1698 	struct list_head *head;
1699 	int ret;
1700 
1701 	mutex_lock(&opp_table->lock);
1702 	head = &opp_table->opp_list;
1703 
1704 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1705 	if (ret) {
1706 		mutex_unlock(&opp_table->lock);
1707 		return ret;
1708 	}
1709 
1710 	list_add(&new_opp->node, head);
1711 	mutex_unlock(&opp_table->lock);
1712 
1713 	new_opp->opp_table = opp_table;
1714 	kref_init(&new_opp->kref);
1715 
1716 	opp_debug_create_one(new_opp, opp_table);
1717 
1718 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1719 		new_opp->available = false;
1720 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1721 			 __func__, new_opp->rate);
1722 	}
1723 
1724 	/* required-opps not fully initialized yet */
1725 	if (lazy_linking_pending(opp_table))
1726 		return 0;
1727 
1728 	_required_opps_available(new_opp, opp_table->required_opp_count);
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1735  * @opp_table:	OPP table
1736  * @dev:	device for which we do this operation
1737  * @freq:	Frequency in Hz for this OPP
1738  * @u_volt:	Voltage in uVolts for this OPP
1739  * @dynamic:	Dynamically added OPPs.
1740  *
1741  * This function adds an opp definition to the opp table and returns status.
1742  * The opp is made available by default and it can be controlled using
1743  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1744  *
1745  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1746  * and freed by dev_pm_opp_of_remove_table.
1747  *
1748  * Return:
1749  * 0		On success OR
1750  *		Duplicate OPPs (both freq and volt are same) and opp->available
1751  * -EEXIST	Freq are same and volt are different OR
1752  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1753  * -ENOMEM	Memory allocation failure
1754  */
1755 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1756 		unsigned long freq, long u_volt, bool dynamic)
1757 {
1758 	struct dev_pm_opp *new_opp;
1759 	unsigned long tol;
1760 	int ret;
1761 
1762 	new_opp = _opp_allocate(opp_table);
1763 	if (!new_opp)
1764 		return -ENOMEM;
1765 
1766 	/* populate the opp table */
1767 	new_opp->rate = freq;
1768 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1769 	new_opp->supplies[0].u_volt = u_volt;
1770 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1771 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1772 	new_opp->available = true;
1773 	new_opp->dynamic = dynamic;
1774 
1775 	ret = _opp_add(dev, new_opp, opp_table, false);
1776 	if (ret) {
1777 		/* Don't return error for duplicate OPPs */
1778 		if (ret == -EBUSY)
1779 			ret = 0;
1780 		goto free_opp;
1781 	}
1782 
1783 	/*
1784 	 * Notify the changes in the availability of the operable
1785 	 * frequency/voltage list.
1786 	 */
1787 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1788 	return 0;
1789 
1790 free_opp:
1791 	_opp_free(new_opp);
1792 
1793 	return ret;
1794 }
1795 
1796 /**
1797  * dev_pm_opp_set_supported_hw() - Set supported platforms
1798  * @dev: Device for which supported-hw has to be set.
1799  * @versions: Array of hierarchy of versions to match.
1800  * @count: Number of elements in the array.
1801  *
1802  * This is required only for the V2 bindings, and it enables a platform to
1803  * specify the hierarchy of versions it supports. OPP layer will then enable
1804  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1805  * property.
1806  */
1807 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1808 			const u32 *versions, unsigned int count)
1809 {
1810 	struct opp_table *opp_table;
1811 
1812 	opp_table = _add_opp_table(dev, false);
1813 	if (IS_ERR(opp_table))
1814 		return opp_table;
1815 
1816 	/* Make sure there are no concurrent readers while updating opp_table */
1817 	WARN_ON(!list_empty(&opp_table->opp_list));
1818 
1819 	/* Another CPU that shares the OPP table has set the property ? */
1820 	if (opp_table->supported_hw)
1821 		return opp_table;
1822 
1823 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1824 					GFP_KERNEL);
1825 	if (!opp_table->supported_hw) {
1826 		dev_pm_opp_put_opp_table(opp_table);
1827 		return ERR_PTR(-ENOMEM);
1828 	}
1829 
1830 	opp_table->supported_hw_count = count;
1831 
1832 	return opp_table;
1833 }
1834 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1835 
1836 /**
1837  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1838  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1839  *
1840  * This is required only for the V2 bindings, and is called for a matching
1841  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1842  * will not be freed.
1843  */
1844 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1845 {
1846 	if (unlikely(!opp_table))
1847 		return;
1848 
1849 	/* Make sure there are no concurrent readers while updating opp_table */
1850 	WARN_ON(!list_empty(&opp_table->opp_list));
1851 
1852 	kfree(opp_table->supported_hw);
1853 	opp_table->supported_hw = NULL;
1854 	opp_table->supported_hw_count = 0;
1855 
1856 	dev_pm_opp_put_opp_table(opp_table);
1857 }
1858 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1859 
1860 /**
1861  * dev_pm_opp_set_prop_name() - Set prop-extn name
1862  * @dev: Device for which the prop-name has to be set.
1863  * @name: name to postfix to properties.
1864  *
1865  * This is required only for the V2 bindings, and it enables a platform to
1866  * specify the extn to be used for certain property names. The properties to
1867  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1868  * should postfix the property name with -<name> while looking for them.
1869  */
1870 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1871 {
1872 	struct opp_table *opp_table;
1873 
1874 	opp_table = _add_opp_table(dev, false);
1875 	if (IS_ERR(opp_table))
1876 		return opp_table;
1877 
1878 	/* Make sure there are no concurrent readers while updating opp_table */
1879 	WARN_ON(!list_empty(&opp_table->opp_list));
1880 
1881 	/* Another CPU that shares the OPP table has set the property ? */
1882 	if (opp_table->prop_name)
1883 		return opp_table;
1884 
1885 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1886 	if (!opp_table->prop_name) {
1887 		dev_pm_opp_put_opp_table(opp_table);
1888 		return ERR_PTR(-ENOMEM);
1889 	}
1890 
1891 	return opp_table;
1892 }
1893 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1894 
1895 /**
1896  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1897  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1898  *
1899  * This is required only for the V2 bindings, and is called for a matching
1900  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1901  * will not be freed.
1902  */
1903 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1904 {
1905 	if (unlikely(!opp_table))
1906 		return;
1907 
1908 	/* Make sure there are no concurrent readers while updating opp_table */
1909 	WARN_ON(!list_empty(&opp_table->opp_list));
1910 
1911 	kfree(opp_table->prop_name);
1912 	opp_table->prop_name = NULL;
1913 
1914 	dev_pm_opp_put_opp_table(opp_table);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1917 
1918 /**
1919  * dev_pm_opp_set_regulators() - Set regulator names for the device
1920  * @dev: Device for which regulator name is being set.
1921  * @names: Array of pointers to the names of the regulator.
1922  * @count: Number of regulators.
1923  *
1924  * In order to support OPP switching, OPP layer needs to know the name of the
1925  * device's regulators, as the core would be required to switch voltages as
1926  * well.
1927  *
1928  * This must be called before any OPPs are initialized for the device.
1929  */
1930 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1931 					    const char * const names[],
1932 					    unsigned int count)
1933 {
1934 	struct dev_pm_opp_supply *supplies;
1935 	struct opp_table *opp_table;
1936 	struct regulator *reg;
1937 	int ret, i;
1938 
1939 	opp_table = _add_opp_table(dev, false);
1940 	if (IS_ERR(opp_table))
1941 		return opp_table;
1942 
1943 	/* This should be called before OPPs are initialized */
1944 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1945 		ret = -EBUSY;
1946 		goto err;
1947 	}
1948 
1949 	/* Another CPU that shares the OPP table has set the regulators ? */
1950 	if (opp_table->regulators)
1951 		return opp_table;
1952 
1953 	opp_table->regulators = kmalloc_array(count,
1954 					      sizeof(*opp_table->regulators),
1955 					      GFP_KERNEL);
1956 	if (!opp_table->regulators) {
1957 		ret = -ENOMEM;
1958 		goto err;
1959 	}
1960 
1961 	for (i = 0; i < count; i++) {
1962 		reg = regulator_get_optional(dev, names[i]);
1963 		if (IS_ERR(reg)) {
1964 			ret = PTR_ERR(reg);
1965 			if (ret != -EPROBE_DEFER)
1966 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1967 					__func__, names[i], ret);
1968 			goto free_regulators;
1969 		}
1970 
1971 		opp_table->regulators[i] = reg;
1972 	}
1973 
1974 	opp_table->regulator_count = count;
1975 
1976 	supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
1977 	if (!supplies) {
1978 		ret = -ENOMEM;
1979 		goto free_regulators;
1980 	}
1981 
1982 	mutex_lock(&opp_table->lock);
1983 	opp_table->sod_supplies = supplies;
1984 	if (opp_table->set_opp_data) {
1985 		opp_table->set_opp_data->old_opp.supplies = supplies;
1986 		opp_table->set_opp_data->new_opp.supplies = supplies + count;
1987 	}
1988 	mutex_unlock(&opp_table->lock);
1989 
1990 	return opp_table;
1991 
1992 free_regulators:
1993 	while (i != 0)
1994 		regulator_put(opp_table->regulators[--i]);
1995 
1996 	kfree(opp_table->regulators);
1997 	opp_table->regulators = NULL;
1998 	opp_table->regulator_count = -1;
1999 err:
2000 	dev_pm_opp_put_opp_table(opp_table);
2001 
2002 	return ERR_PTR(ret);
2003 }
2004 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2005 
2006 /**
2007  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2008  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2009  */
2010 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2011 {
2012 	int i;
2013 
2014 	if (unlikely(!opp_table))
2015 		return;
2016 
2017 	if (!opp_table->regulators)
2018 		goto put_opp_table;
2019 
2020 	/* Make sure there are no concurrent readers while updating opp_table */
2021 	WARN_ON(!list_empty(&opp_table->opp_list));
2022 
2023 	if (opp_table->enabled) {
2024 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2025 			regulator_disable(opp_table->regulators[i]);
2026 	}
2027 
2028 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2029 		regulator_put(opp_table->regulators[i]);
2030 
2031 	mutex_lock(&opp_table->lock);
2032 	if (opp_table->set_opp_data) {
2033 		opp_table->set_opp_data->old_opp.supplies = NULL;
2034 		opp_table->set_opp_data->new_opp.supplies = NULL;
2035 	}
2036 
2037 	kfree(opp_table->sod_supplies);
2038 	opp_table->sod_supplies = NULL;
2039 	mutex_unlock(&opp_table->lock);
2040 
2041 	kfree(opp_table->regulators);
2042 	opp_table->regulators = NULL;
2043 	opp_table->regulator_count = -1;
2044 
2045 put_opp_table:
2046 	dev_pm_opp_put_opp_table(opp_table);
2047 }
2048 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2049 
2050 /**
2051  * dev_pm_opp_set_clkname() - Set clk name for the device
2052  * @dev: Device for which clk name is being set.
2053  * @name: Clk name.
2054  *
2055  * In order to support OPP switching, OPP layer needs to get pointer to the
2056  * clock for the device. Simple cases work fine without using this routine (i.e.
2057  * by passing connection-id as NULL), but for a device with multiple clocks
2058  * available, the OPP core needs to know the exact name of the clk to use.
2059  *
2060  * This must be called before any OPPs are initialized for the device.
2061  */
2062 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2063 {
2064 	struct opp_table *opp_table;
2065 	int ret;
2066 
2067 	opp_table = _add_opp_table(dev, false);
2068 	if (IS_ERR(opp_table))
2069 		return opp_table;
2070 
2071 	/* This should be called before OPPs are initialized */
2072 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2073 		ret = -EBUSY;
2074 		goto err;
2075 	}
2076 
2077 	/* clk shouldn't be initialized at this point */
2078 	if (WARN_ON(opp_table->clk)) {
2079 		ret = -EBUSY;
2080 		goto err;
2081 	}
2082 
2083 	/* Find clk for the device */
2084 	opp_table->clk = clk_get(dev, name);
2085 	if (IS_ERR(opp_table->clk)) {
2086 		ret = PTR_ERR(opp_table->clk);
2087 		if (ret != -EPROBE_DEFER) {
2088 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2089 				ret);
2090 		}
2091 		goto err;
2092 	}
2093 
2094 	return opp_table;
2095 
2096 err:
2097 	dev_pm_opp_put_opp_table(opp_table);
2098 
2099 	return ERR_PTR(ret);
2100 }
2101 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2102 
2103 /**
2104  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2105  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2106  */
2107 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2108 {
2109 	if (unlikely(!opp_table))
2110 		return;
2111 
2112 	/* Make sure there are no concurrent readers while updating opp_table */
2113 	WARN_ON(!list_empty(&opp_table->opp_list));
2114 
2115 	clk_put(opp_table->clk);
2116 	opp_table->clk = ERR_PTR(-EINVAL);
2117 
2118 	dev_pm_opp_put_opp_table(opp_table);
2119 }
2120 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2121 
2122 /**
2123  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2124  * @dev: Device for which the helper is getting registered.
2125  * @set_opp: Custom set OPP helper.
2126  *
2127  * This is useful to support complex platforms (like platforms with multiple
2128  * regulators per device), instead of the generic OPP set rate helper.
2129  *
2130  * This must be called before any OPPs are initialized for the device.
2131  */
2132 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2133 			int (*set_opp)(struct dev_pm_set_opp_data *data))
2134 {
2135 	struct dev_pm_set_opp_data *data;
2136 	struct opp_table *opp_table;
2137 
2138 	if (!set_opp)
2139 		return ERR_PTR(-EINVAL);
2140 
2141 	opp_table = _add_opp_table(dev, false);
2142 	if (IS_ERR(opp_table))
2143 		return opp_table;
2144 
2145 	/* This should be called before OPPs are initialized */
2146 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2147 		dev_pm_opp_put_opp_table(opp_table);
2148 		return ERR_PTR(-EBUSY);
2149 	}
2150 
2151 	/* Another CPU that shares the OPP table has set the helper ? */
2152 	if (opp_table->set_opp)
2153 		return opp_table;
2154 
2155 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2156 	if (!data)
2157 		return ERR_PTR(-ENOMEM);
2158 
2159 	mutex_lock(&opp_table->lock);
2160 	opp_table->set_opp_data = data;
2161 	if (opp_table->sod_supplies) {
2162 		data->old_opp.supplies = opp_table->sod_supplies;
2163 		data->new_opp.supplies = opp_table->sod_supplies +
2164 					 opp_table->regulator_count;
2165 	}
2166 	mutex_unlock(&opp_table->lock);
2167 
2168 	opp_table->set_opp = set_opp;
2169 
2170 	return opp_table;
2171 }
2172 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2173 
2174 /**
2175  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2176  *					   set_opp helper
2177  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2178  *
2179  * Release resources blocked for platform specific set_opp helper.
2180  */
2181 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2182 {
2183 	if (unlikely(!opp_table))
2184 		return;
2185 
2186 	/* Make sure there are no concurrent readers while updating opp_table */
2187 	WARN_ON(!list_empty(&opp_table->opp_list));
2188 
2189 	opp_table->set_opp = NULL;
2190 
2191 	mutex_lock(&opp_table->lock);
2192 	kfree(opp_table->set_opp_data);
2193 	opp_table->set_opp_data = NULL;
2194 	mutex_unlock(&opp_table->lock);
2195 
2196 	dev_pm_opp_put_opp_table(opp_table);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2199 
2200 static void devm_pm_opp_unregister_set_opp_helper(void *data)
2201 {
2202 	dev_pm_opp_unregister_set_opp_helper(data);
2203 }
2204 
2205 /**
2206  * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2207  * @dev: Device for which the helper is getting registered.
2208  * @set_opp: Custom set OPP helper.
2209  *
2210  * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2211  *
2212  * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2213  */
2214 struct opp_table *
2215 devm_pm_opp_register_set_opp_helper(struct device *dev,
2216 				    int (*set_opp)(struct dev_pm_set_opp_data *data))
2217 {
2218 	struct opp_table *opp_table;
2219 	int err;
2220 
2221 	opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2222 	if (IS_ERR(opp_table))
2223 		return opp_table;
2224 
2225 	err = devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2226 				       opp_table);
2227 	if (err)
2228 		return ERR_PTR(err);
2229 
2230 	return opp_table;
2231 }
2232 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2233 
2234 static void _opp_detach_genpd(struct opp_table *opp_table)
2235 {
2236 	int index;
2237 
2238 	if (!opp_table->genpd_virt_devs)
2239 		return;
2240 
2241 	for (index = 0; index < opp_table->required_opp_count; index++) {
2242 		if (!opp_table->genpd_virt_devs[index])
2243 			continue;
2244 
2245 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2246 		opp_table->genpd_virt_devs[index] = NULL;
2247 	}
2248 
2249 	kfree(opp_table->genpd_virt_devs);
2250 	opp_table->genpd_virt_devs = NULL;
2251 }
2252 
2253 /**
2254  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2255  * @dev: Consumer device for which the genpd is getting attached.
2256  * @names: Null terminated array of pointers containing names of genpd to attach.
2257  * @virt_devs: Pointer to return the array of virtual devices.
2258  *
2259  * Multiple generic power domains for a device are supported with the help of
2260  * virtual genpd devices, which are created for each consumer device - genpd
2261  * pair. These are the device structures which are attached to the power domain
2262  * and are required by the OPP core to set the performance state of the genpd.
2263  * The same API also works for the case where single genpd is available and so
2264  * we don't need to support that separately.
2265  *
2266  * This helper will normally be called by the consumer driver of the device
2267  * "dev", as only that has details of the genpd names.
2268  *
2269  * This helper needs to be called once with a list of all genpd to attach.
2270  * Otherwise the original device structure will be used instead by the OPP core.
2271  *
2272  * The order of entries in the names array must match the order in which
2273  * "required-opps" are added in DT.
2274  */
2275 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2276 		const char **names, struct device ***virt_devs)
2277 {
2278 	struct opp_table *opp_table;
2279 	struct device *virt_dev;
2280 	int index = 0, ret = -EINVAL;
2281 	const char **name = names;
2282 
2283 	opp_table = _add_opp_table(dev, false);
2284 	if (IS_ERR(opp_table))
2285 		return opp_table;
2286 
2287 	if (opp_table->genpd_virt_devs)
2288 		return opp_table;
2289 
2290 	/*
2291 	 * If the genpd's OPP table isn't already initialized, parsing of the
2292 	 * required-opps fail for dev. We should retry this after genpd's OPP
2293 	 * table is added.
2294 	 */
2295 	if (!opp_table->required_opp_count) {
2296 		ret = -EPROBE_DEFER;
2297 		goto put_table;
2298 	}
2299 
2300 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2301 
2302 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2303 					     sizeof(*opp_table->genpd_virt_devs),
2304 					     GFP_KERNEL);
2305 	if (!opp_table->genpd_virt_devs)
2306 		goto unlock;
2307 
2308 	while (*name) {
2309 		if (index >= opp_table->required_opp_count) {
2310 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2311 				*name, opp_table->required_opp_count, index);
2312 			goto err;
2313 		}
2314 
2315 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2316 		if (IS_ERR(virt_dev)) {
2317 			ret = PTR_ERR(virt_dev);
2318 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2319 			goto err;
2320 		}
2321 
2322 		opp_table->genpd_virt_devs[index] = virt_dev;
2323 		index++;
2324 		name++;
2325 	}
2326 
2327 	if (virt_devs)
2328 		*virt_devs = opp_table->genpd_virt_devs;
2329 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2330 
2331 	return opp_table;
2332 
2333 err:
2334 	_opp_detach_genpd(opp_table);
2335 unlock:
2336 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2337 
2338 put_table:
2339 	dev_pm_opp_put_opp_table(opp_table);
2340 
2341 	return ERR_PTR(ret);
2342 }
2343 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2344 
2345 /**
2346  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2347  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2348  *
2349  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2350  * OPP table.
2351  */
2352 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2353 {
2354 	if (unlikely(!opp_table))
2355 		return;
2356 
2357 	/*
2358 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2359 	 * used in parallel.
2360 	 */
2361 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2362 	_opp_detach_genpd(opp_table);
2363 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2364 
2365 	dev_pm_opp_put_opp_table(opp_table);
2366 }
2367 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2368 
2369 static void devm_pm_opp_detach_genpd(void *data)
2370 {
2371 	dev_pm_opp_detach_genpd(data);
2372 }
2373 
2374 /**
2375  * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2376  *			      device pointer
2377  * @dev: Consumer device for which the genpd is getting attached.
2378  * @names: Null terminated array of pointers containing names of genpd to attach.
2379  * @virt_devs: Pointer to return the array of virtual devices.
2380  *
2381  * This is a resource-managed version of dev_pm_opp_attach_genpd().
2382  *
2383  * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2384  */
2385 struct opp_table *
2386 devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2387 			 struct device ***virt_devs)
2388 {
2389 	struct opp_table *opp_table;
2390 	int err;
2391 
2392 	opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2393 	if (IS_ERR(opp_table))
2394 		return opp_table;
2395 
2396 	err = devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2397 				       opp_table);
2398 	if (err)
2399 		return ERR_PTR(err);
2400 
2401 	return opp_table;
2402 }
2403 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2404 
2405 /**
2406  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2407  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2408  * @dst_table: Required OPP table of the @src_table.
2409  * @src_opp: OPP from the @src_table.
2410  *
2411  * This function returns the OPP (present in @dst_table) pointed out by the
2412  * "required-opps" property of the @src_opp (present in @src_table).
2413  *
2414  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2415  * use.
2416  *
2417  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2418  */
2419 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2420 						 struct opp_table *dst_table,
2421 						 struct dev_pm_opp *src_opp)
2422 {
2423 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2424 	int i;
2425 
2426 	if (!src_table || !dst_table || !src_opp ||
2427 	    !src_table->required_opp_tables)
2428 		return ERR_PTR(-EINVAL);
2429 
2430 	/* required-opps not fully initialized yet */
2431 	if (lazy_linking_pending(src_table))
2432 		return ERR_PTR(-EBUSY);
2433 
2434 	for (i = 0; i < src_table->required_opp_count; i++) {
2435 		if (src_table->required_opp_tables[i] == dst_table) {
2436 			mutex_lock(&src_table->lock);
2437 
2438 			list_for_each_entry(opp, &src_table->opp_list, node) {
2439 				if (opp == src_opp) {
2440 					dest_opp = opp->required_opps[i];
2441 					dev_pm_opp_get(dest_opp);
2442 					break;
2443 				}
2444 			}
2445 
2446 			mutex_unlock(&src_table->lock);
2447 			break;
2448 		}
2449 	}
2450 
2451 	if (IS_ERR(dest_opp)) {
2452 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2453 		       src_table, dst_table);
2454 	}
2455 
2456 	return dest_opp;
2457 }
2458 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2459 
2460 /**
2461  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2462  * @src_table: OPP table which has dst_table as one of its required OPP table.
2463  * @dst_table: Required OPP table of the src_table.
2464  * @pstate: Current performance state of the src_table.
2465  *
2466  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2467  * "required-opps" property of the OPP (present in @src_table) which has
2468  * performance state set to @pstate.
2469  *
2470  * Return: Zero or positive performance state on success, otherwise negative
2471  * value on errors.
2472  */
2473 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2474 				       struct opp_table *dst_table,
2475 				       unsigned int pstate)
2476 {
2477 	struct dev_pm_opp *opp;
2478 	int dest_pstate = -EINVAL;
2479 	int i;
2480 
2481 	/*
2482 	 * Normally the src_table will have the "required_opps" property set to
2483 	 * point to one of the OPPs in the dst_table, but in some cases the
2484 	 * genpd and its master have one to one mapping of performance states
2485 	 * and so none of them have the "required-opps" property set. Return the
2486 	 * pstate of the src_table as it is in such cases.
2487 	 */
2488 	if (!src_table || !src_table->required_opp_count)
2489 		return pstate;
2490 
2491 	/* required-opps not fully initialized yet */
2492 	if (lazy_linking_pending(src_table))
2493 		return -EBUSY;
2494 
2495 	for (i = 0; i < src_table->required_opp_count; i++) {
2496 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2497 			break;
2498 	}
2499 
2500 	if (unlikely(i == src_table->required_opp_count)) {
2501 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2502 		       __func__, src_table, dst_table);
2503 		return -EINVAL;
2504 	}
2505 
2506 	mutex_lock(&src_table->lock);
2507 
2508 	list_for_each_entry(opp, &src_table->opp_list, node) {
2509 		if (opp->pstate == pstate) {
2510 			dest_pstate = opp->required_opps[i]->pstate;
2511 			goto unlock;
2512 		}
2513 	}
2514 
2515 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2516 	       dst_table);
2517 
2518 unlock:
2519 	mutex_unlock(&src_table->lock);
2520 
2521 	return dest_pstate;
2522 }
2523 
2524 /**
2525  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2526  * @dev:	device for which we do this operation
2527  * @freq:	Frequency in Hz for this OPP
2528  * @u_volt:	Voltage in uVolts for this OPP
2529  *
2530  * This function adds an opp definition to the opp table and returns status.
2531  * The opp is made available by default and it can be controlled using
2532  * dev_pm_opp_enable/disable functions.
2533  *
2534  * Return:
2535  * 0		On success OR
2536  *		Duplicate OPPs (both freq and volt are same) and opp->available
2537  * -EEXIST	Freq are same and volt are different OR
2538  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2539  * -ENOMEM	Memory allocation failure
2540  */
2541 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2542 {
2543 	struct opp_table *opp_table;
2544 	int ret;
2545 
2546 	opp_table = _add_opp_table(dev, true);
2547 	if (IS_ERR(opp_table))
2548 		return PTR_ERR(opp_table);
2549 
2550 	/* Fix regulator count for dynamic OPPs */
2551 	opp_table->regulator_count = 1;
2552 
2553 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2554 	if (ret)
2555 		dev_pm_opp_put_opp_table(opp_table);
2556 
2557 	return ret;
2558 }
2559 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2560 
2561 /**
2562  * _opp_set_availability() - helper to set the availability of an opp
2563  * @dev:		device for which we do this operation
2564  * @freq:		OPP frequency to modify availability
2565  * @availability_req:	availability status requested for this opp
2566  *
2567  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2568  * which is isolated here.
2569  *
2570  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2571  * copy operation, returns 0 if no modification was done OR modification was
2572  * successful.
2573  */
2574 static int _opp_set_availability(struct device *dev, unsigned long freq,
2575 				 bool availability_req)
2576 {
2577 	struct opp_table *opp_table;
2578 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2579 	int r = 0;
2580 
2581 	/* Find the opp_table */
2582 	opp_table = _find_opp_table(dev);
2583 	if (IS_ERR(opp_table)) {
2584 		r = PTR_ERR(opp_table);
2585 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2586 		return r;
2587 	}
2588 
2589 	mutex_lock(&opp_table->lock);
2590 
2591 	/* Do we have the frequency? */
2592 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2593 		if (tmp_opp->rate == freq) {
2594 			opp = tmp_opp;
2595 			break;
2596 		}
2597 	}
2598 
2599 	if (IS_ERR(opp)) {
2600 		r = PTR_ERR(opp);
2601 		goto unlock;
2602 	}
2603 
2604 	/* Is update really needed? */
2605 	if (opp->available == availability_req)
2606 		goto unlock;
2607 
2608 	opp->available = availability_req;
2609 
2610 	dev_pm_opp_get(opp);
2611 	mutex_unlock(&opp_table->lock);
2612 
2613 	/* Notify the change of the OPP availability */
2614 	if (availability_req)
2615 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2616 					     opp);
2617 	else
2618 		blocking_notifier_call_chain(&opp_table->head,
2619 					     OPP_EVENT_DISABLE, opp);
2620 
2621 	dev_pm_opp_put(opp);
2622 	goto put_table;
2623 
2624 unlock:
2625 	mutex_unlock(&opp_table->lock);
2626 put_table:
2627 	dev_pm_opp_put_opp_table(opp_table);
2628 	return r;
2629 }
2630 
2631 /**
2632  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2633  * @dev:		device for which we do this operation
2634  * @freq:		OPP frequency to adjust voltage of
2635  * @u_volt:		new OPP target voltage
2636  * @u_volt_min:		new OPP min voltage
2637  * @u_volt_max:		new OPP max voltage
2638  *
2639  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2640  * copy operation, returns 0 if no modifcation was done OR modification was
2641  * successful.
2642  */
2643 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2644 			      unsigned long u_volt, unsigned long u_volt_min,
2645 			      unsigned long u_volt_max)
2646 
2647 {
2648 	struct opp_table *opp_table;
2649 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2650 	int r = 0;
2651 
2652 	/* Find the opp_table */
2653 	opp_table = _find_opp_table(dev);
2654 	if (IS_ERR(opp_table)) {
2655 		r = PTR_ERR(opp_table);
2656 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2657 		return r;
2658 	}
2659 
2660 	mutex_lock(&opp_table->lock);
2661 
2662 	/* Do we have the frequency? */
2663 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2664 		if (tmp_opp->rate == freq) {
2665 			opp = tmp_opp;
2666 			break;
2667 		}
2668 	}
2669 
2670 	if (IS_ERR(opp)) {
2671 		r = PTR_ERR(opp);
2672 		goto adjust_unlock;
2673 	}
2674 
2675 	/* Is update really needed? */
2676 	if (opp->supplies->u_volt == u_volt)
2677 		goto adjust_unlock;
2678 
2679 	opp->supplies->u_volt = u_volt;
2680 	opp->supplies->u_volt_min = u_volt_min;
2681 	opp->supplies->u_volt_max = u_volt_max;
2682 
2683 	dev_pm_opp_get(opp);
2684 	mutex_unlock(&opp_table->lock);
2685 
2686 	/* Notify the voltage change of the OPP */
2687 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2688 				     opp);
2689 
2690 	dev_pm_opp_put(opp);
2691 	goto adjust_put_table;
2692 
2693 adjust_unlock:
2694 	mutex_unlock(&opp_table->lock);
2695 adjust_put_table:
2696 	dev_pm_opp_put_opp_table(opp_table);
2697 	return r;
2698 }
2699 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2700 
2701 /**
2702  * dev_pm_opp_enable() - Enable a specific OPP
2703  * @dev:	device for which we do this operation
2704  * @freq:	OPP frequency to enable
2705  *
2706  * Enables a provided opp. If the operation is valid, this returns 0, else the
2707  * corresponding error value. It is meant to be used for users an OPP available
2708  * after being temporarily made unavailable with dev_pm_opp_disable.
2709  *
2710  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2711  * copy operation, returns 0 if no modification was done OR modification was
2712  * successful.
2713  */
2714 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2715 {
2716 	return _opp_set_availability(dev, freq, true);
2717 }
2718 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2719 
2720 /**
2721  * dev_pm_opp_disable() - Disable a specific OPP
2722  * @dev:	device for which we do this operation
2723  * @freq:	OPP frequency to disable
2724  *
2725  * Disables a provided opp. If the operation is valid, this returns
2726  * 0, else the corresponding error value. It is meant to be a temporary
2727  * control by users to make this OPP not available until the circumstances are
2728  * right to make it available again (with a call to dev_pm_opp_enable).
2729  *
2730  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2731  * copy operation, returns 0 if no modification was done OR modification was
2732  * successful.
2733  */
2734 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2735 {
2736 	return _opp_set_availability(dev, freq, false);
2737 }
2738 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2739 
2740 /**
2741  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2742  * @dev:	Device for which notifier needs to be registered
2743  * @nb:		Notifier block to be registered
2744  *
2745  * Return: 0 on success or a negative error value.
2746  */
2747 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2748 {
2749 	struct opp_table *opp_table;
2750 	int ret;
2751 
2752 	opp_table = _find_opp_table(dev);
2753 	if (IS_ERR(opp_table))
2754 		return PTR_ERR(opp_table);
2755 
2756 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2757 
2758 	dev_pm_opp_put_opp_table(opp_table);
2759 
2760 	return ret;
2761 }
2762 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2763 
2764 /**
2765  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2766  * @dev:	Device for which notifier needs to be unregistered
2767  * @nb:		Notifier block to be unregistered
2768  *
2769  * Return: 0 on success or a negative error value.
2770  */
2771 int dev_pm_opp_unregister_notifier(struct device *dev,
2772 				   struct notifier_block *nb)
2773 {
2774 	struct opp_table *opp_table;
2775 	int ret;
2776 
2777 	opp_table = _find_opp_table(dev);
2778 	if (IS_ERR(opp_table))
2779 		return PTR_ERR(opp_table);
2780 
2781 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2782 
2783 	dev_pm_opp_put_opp_table(opp_table);
2784 
2785 	return ret;
2786 }
2787 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2788 
2789 /**
2790  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2791  * @dev:	device pointer used to lookup OPP table.
2792  *
2793  * Free both OPPs created using static entries present in DT and the
2794  * dynamically added entries.
2795  */
2796 void dev_pm_opp_remove_table(struct device *dev)
2797 {
2798 	struct opp_table *opp_table;
2799 
2800 	/* Check for existing table for 'dev' */
2801 	opp_table = _find_opp_table(dev);
2802 	if (IS_ERR(opp_table)) {
2803 		int error = PTR_ERR(opp_table);
2804 
2805 		if (error != -ENODEV)
2806 			WARN(1, "%s: opp_table: %d\n",
2807 			     IS_ERR_OR_NULL(dev) ?
2808 					"Invalid device" : dev_name(dev),
2809 			     error);
2810 		return;
2811 	}
2812 
2813 	/*
2814 	 * Drop the extra reference only if the OPP table was successfully added
2815 	 * with dev_pm_opp_of_add_table() earlier.
2816 	 **/
2817 	if (_opp_remove_all_static(opp_table))
2818 		dev_pm_opp_put_opp_table(opp_table);
2819 
2820 	/* Drop reference taken by _find_opp_table() */
2821 	dev_pm_opp_put_opp_table(opp_table);
2822 }
2823 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2824 
2825 /**
2826  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2827  * @dev:	device for which we do this operation
2828  *
2829  * Sync voltage state of the OPP table regulators.
2830  *
2831  * Return: 0 on success or a negative error value.
2832  */
2833 int dev_pm_opp_sync_regulators(struct device *dev)
2834 {
2835 	struct opp_table *opp_table;
2836 	struct regulator *reg;
2837 	int i, ret = 0;
2838 
2839 	/* Device may not have OPP table */
2840 	opp_table = _find_opp_table(dev);
2841 	if (IS_ERR(opp_table))
2842 		return 0;
2843 
2844 	/* Regulator may not be required for the device */
2845 	if (unlikely(!opp_table->regulators))
2846 		goto put_table;
2847 
2848 	/* Nothing to sync if voltage wasn't changed */
2849 	if (!opp_table->enabled)
2850 		goto put_table;
2851 
2852 	for (i = 0; i < opp_table->regulator_count; i++) {
2853 		reg = opp_table->regulators[i];
2854 		ret = regulator_sync_voltage(reg);
2855 		if (ret)
2856 			break;
2857 	}
2858 put_table:
2859 	/* Drop reference taken by _find_opp_table() */
2860 	dev_pm_opp_put_opp_table(opp_table);
2861 
2862 	return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2865