1 /* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20 21 #define pr_fmt(fmt) "OF: " fmt 22 23 #include <linux/console.h> 24 #include <linux/ctype.h> 25 #include <linux/cpu.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/of_graph.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/string.h> 33 #include <linux/proc_fs.h> 34 35 #include "of_private.h" 36 37 LIST_HEAD(aliases_lookup); 38 39 struct device_node *of_root; 40 EXPORT_SYMBOL(of_root); 41 struct device_node *of_chosen; 42 struct device_node *of_aliases; 43 struct device_node *of_stdout; 44 static const char *of_stdout_options; 45 46 struct kset *of_kset; 47 48 /* 49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 50 * This mutex must be held whenever modifications are being made to the 51 * device tree. The of_{attach,detach}_node() and 52 * of_{add,remove,update}_property() helpers make sure this happens. 53 */ 54 DEFINE_MUTEX(of_mutex); 55 56 /* use when traversing tree through the child, sibling, 57 * or parent members of struct device_node. 58 */ 59 DEFINE_RAW_SPINLOCK(devtree_lock); 60 61 int of_n_addr_cells(struct device_node *np) 62 { 63 const __be32 *ip; 64 65 do { 66 if (np->parent) 67 np = np->parent; 68 ip = of_get_property(np, "#address-cells", NULL); 69 if (ip) 70 return be32_to_cpup(ip); 71 } while (np->parent); 72 /* No #address-cells property for the root node */ 73 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 74 } 75 EXPORT_SYMBOL(of_n_addr_cells); 76 77 int of_n_size_cells(struct device_node *np) 78 { 79 const __be32 *ip; 80 81 do { 82 if (np->parent) 83 np = np->parent; 84 ip = of_get_property(np, "#size-cells", NULL); 85 if (ip) 86 return be32_to_cpup(ip); 87 } while (np->parent); 88 /* No #size-cells property for the root node */ 89 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 90 } 91 EXPORT_SYMBOL(of_n_size_cells); 92 93 #ifdef CONFIG_NUMA 94 int __weak of_node_to_nid(struct device_node *np) 95 { 96 return NUMA_NO_NODE; 97 } 98 #endif 99 100 #ifndef CONFIG_OF_DYNAMIC 101 static void of_node_release(struct kobject *kobj) 102 { 103 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 104 } 105 #endif /* CONFIG_OF_DYNAMIC */ 106 107 struct kobj_type of_node_ktype = { 108 .release = of_node_release, 109 }; 110 111 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 112 struct bin_attribute *bin_attr, char *buf, 113 loff_t offset, size_t count) 114 { 115 struct property *pp = container_of(bin_attr, struct property, attr); 116 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 117 } 118 119 /* always return newly allocated name, caller must free after use */ 120 static const char *safe_name(struct kobject *kobj, const char *orig_name) 121 { 122 const char *name = orig_name; 123 struct kernfs_node *kn; 124 int i = 0; 125 126 /* don't be a hero. After 16 tries give up */ 127 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 128 sysfs_put(kn); 129 if (name != orig_name) 130 kfree(name); 131 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 132 } 133 134 if (name == orig_name) { 135 name = kstrdup(orig_name, GFP_KERNEL); 136 } else { 137 pr_warn("Duplicate name in %s, renamed to \"%s\"\n", 138 kobject_name(kobj), name); 139 } 140 return name; 141 } 142 143 int __of_add_property_sysfs(struct device_node *np, struct property *pp) 144 { 145 int rc; 146 147 /* Important: Don't leak passwords */ 148 bool secure = strncmp(pp->name, "security-", 9) == 0; 149 150 if (!IS_ENABLED(CONFIG_SYSFS)) 151 return 0; 152 153 if (!of_kset || !of_node_is_attached(np)) 154 return 0; 155 156 sysfs_bin_attr_init(&pp->attr); 157 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 158 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 159 pp->attr.size = secure ? 0 : pp->length; 160 pp->attr.read = of_node_property_read; 161 162 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 163 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 164 return rc; 165 } 166 167 int __of_attach_node_sysfs(struct device_node *np) 168 { 169 const char *name; 170 struct kobject *parent; 171 struct property *pp; 172 int rc; 173 174 if (!IS_ENABLED(CONFIG_SYSFS)) 175 return 0; 176 177 if (!of_kset) 178 return 0; 179 180 np->kobj.kset = of_kset; 181 if (!np->parent) { 182 /* Nodes without parents are new top level trees */ 183 name = safe_name(&of_kset->kobj, "base"); 184 parent = NULL; 185 } else { 186 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 187 parent = &np->parent->kobj; 188 } 189 if (!name) 190 return -ENOMEM; 191 rc = kobject_add(&np->kobj, parent, "%s", name); 192 kfree(name); 193 if (rc) 194 return rc; 195 196 for_each_property_of_node(np, pp) 197 __of_add_property_sysfs(np, pp); 198 199 return 0; 200 } 201 202 void __init of_core_init(void) 203 { 204 struct device_node *np; 205 206 /* Create the kset, and register existing nodes */ 207 mutex_lock(&of_mutex); 208 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 209 if (!of_kset) { 210 mutex_unlock(&of_mutex); 211 pr_err("failed to register existing nodes\n"); 212 return; 213 } 214 for_each_of_allnodes(np) 215 __of_attach_node_sysfs(np); 216 mutex_unlock(&of_mutex); 217 218 /* Symlink in /proc as required by userspace ABI */ 219 if (of_root) 220 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 221 } 222 223 static struct property *__of_find_property(const struct device_node *np, 224 const char *name, int *lenp) 225 { 226 struct property *pp; 227 228 if (!np) 229 return NULL; 230 231 for (pp = np->properties; pp; pp = pp->next) { 232 if (of_prop_cmp(pp->name, name) == 0) { 233 if (lenp) 234 *lenp = pp->length; 235 break; 236 } 237 } 238 239 return pp; 240 } 241 242 struct property *of_find_property(const struct device_node *np, 243 const char *name, 244 int *lenp) 245 { 246 struct property *pp; 247 unsigned long flags; 248 249 raw_spin_lock_irqsave(&devtree_lock, flags); 250 pp = __of_find_property(np, name, lenp); 251 raw_spin_unlock_irqrestore(&devtree_lock, flags); 252 253 return pp; 254 } 255 EXPORT_SYMBOL(of_find_property); 256 257 struct device_node *__of_find_all_nodes(struct device_node *prev) 258 { 259 struct device_node *np; 260 if (!prev) { 261 np = of_root; 262 } else if (prev->child) { 263 np = prev->child; 264 } else { 265 /* Walk back up looking for a sibling, or the end of the structure */ 266 np = prev; 267 while (np->parent && !np->sibling) 268 np = np->parent; 269 np = np->sibling; /* Might be null at the end of the tree */ 270 } 271 return np; 272 } 273 274 /** 275 * of_find_all_nodes - Get next node in global list 276 * @prev: Previous node or NULL to start iteration 277 * of_node_put() will be called on it 278 * 279 * Returns a node pointer with refcount incremented, use 280 * of_node_put() on it when done. 281 */ 282 struct device_node *of_find_all_nodes(struct device_node *prev) 283 { 284 struct device_node *np; 285 unsigned long flags; 286 287 raw_spin_lock_irqsave(&devtree_lock, flags); 288 np = __of_find_all_nodes(prev); 289 of_node_get(np); 290 of_node_put(prev); 291 raw_spin_unlock_irqrestore(&devtree_lock, flags); 292 return np; 293 } 294 EXPORT_SYMBOL(of_find_all_nodes); 295 296 /* 297 * Find a property with a given name for a given node 298 * and return the value. 299 */ 300 const void *__of_get_property(const struct device_node *np, 301 const char *name, int *lenp) 302 { 303 struct property *pp = __of_find_property(np, name, lenp); 304 305 return pp ? pp->value : NULL; 306 } 307 308 /* 309 * Find a property with a given name for a given node 310 * and return the value. 311 */ 312 const void *of_get_property(const struct device_node *np, const char *name, 313 int *lenp) 314 { 315 struct property *pp = of_find_property(np, name, lenp); 316 317 return pp ? pp->value : NULL; 318 } 319 EXPORT_SYMBOL(of_get_property); 320 321 /* 322 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 323 * 324 * @cpu: logical cpu index of a core/thread 325 * @phys_id: physical identifier of a core/thread 326 * 327 * CPU logical to physical index mapping is architecture specific. 328 * However this __weak function provides a default match of physical 329 * id to logical cpu index. phys_id provided here is usually values read 330 * from the device tree which must match the hardware internal registers. 331 * 332 * Returns true if the physical identifier and the logical cpu index 333 * correspond to the same core/thread, false otherwise. 334 */ 335 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 336 { 337 return (u32)phys_id == cpu; 338 } 339 340 /** 341 * Checks if the given "prop_name" property holds the physical id of the 342 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 343 * NULL, local thread number within the core is returned in it. 344 */ 345 static bool __of_find_n_match_cpu_property(struct device_node *cpun, 346 const char *prop_name, int cpu, unsigned int *thread) 347 { 348 const __be32 *cell; 349 int ac, prop_len, tid; 350 u64 hwid; 351 352 ac = of_n_addr_cells(cpun); 353 cell = of_get_property(cpun, prop_name, &prop_len); 354 if (!cell || !ac) 355 return false; 356 prop_len /= sizeof(*cell) * ac; 357 for (tid = 0; tid < prop_len; tid++) { 358 hwid = of_read_number(cell, ac); 359 if (arch_match_cpu_phys_id(cpu, hwid)) { 360 if (thread) 361 *thread = tid; 362 return true; 363 } 364 cell += ac; 365 } 366 return false; 367 } 368 369 /* 370 * arch_find_n_match_cpu_physical_id - See if the given device node is 371 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 372 * else false. If 'thread' is non-NULL, the local thread number within the 373 * core is returned in it. 374 */ 375 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 376 int cpu, unsigned int *thread) 377 { 378 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 379 * for thread ids on PowerPC. If it doesn't exist fallback to 380 * standard "reg" property. 381 */ 382 if (IS_ENABLED(CONFIG_PPC) && 383 __of_find_n_match_cpu_property(cpun, 384 "ibm,ppc-interrupt-server#s", 385 cpu, thread)) 386 return true; 387 388 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); 389 } 390 391 /** 392 * of_get_cpu_node - Get device node associated with the given logical CPU 393 * 394 * @cpu: CPU number(logical index) for which device node is required 395 * @thread: if not NULL, local thread number within the physical core is 396 * returned 397 * 398 * The main purpose of this function is to retrieve the device node for the 399 * given logical CPU index. It should be used to initialize the of_node in 400 * cpu device. Once of_node in cpu device is populated, all the further 401 * references can use that instead. 402 * 403 * CPU logical to physical index mapping is architecture specific and is built 404 * before booting secondary cores. This function uses arch_match_cpu_phys_id 405 * which can be overridden by architecture specific implementation. 406 * 407 * Returns a node pointer for the logical cpu with refcount incremented, use 408 * of_node_put() on it when done. Returns NULL if not found. 409 */ 410 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 411 { 412 struct device_node *cpun; 413 414 for_each_node_by_type(cpun, "cpu") { 415 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 416 return cpun; 417 } 418 return NULL; 419 } 420 EXPORT_SYMBOL(of_get_cpu_node); 421 422 /** 423 * __of_device_is_compatible() - Check if the node matches given constraints 424 * @device: pointer to node 425 * @compat: required compatible string, NULL or "" for any match 426 * @type: required device_type value, NULL or "" for any match 427 * @name: required node name, NULL or "" for any match 428 * 429 * Checks if the given @compat, @type and @name strings match the 430 * properties of the given @device. A constraints can be skipped by 431 * passing NULL or an empty string as the constraint. 432 * 433 * Returns 0 for no match, and a positive integer on match. The return 434 * value is a relative score with larger values indicating better 435 * matches. The score is weighted for the most specific compatible value 436 * to get the highest score. Matching type is next, followed by matching 437 * name. Practically speaking, this results in the following priority 438 * order for matches: 439 * 440 * 1. specific compatible && type && name 441 * 2. specific compatible && type 442 * 3. specific compatible && name 443 * 4. specific compatible 444 * 5. general compatible && type && name 445 * 6. general compatible && type 446 * 7. general compatible && name 447 * 8. general compatible 448 * 9. type && name 449 * 10. type 450 * 11. name 451 */ 452 static int __of_device_is_compatible(const struct device_node *device, 453 const char *compat, const char *type, const char *name) 454 { 455 struct property *prop; 456 const char *cp; 457 int index = 0, score = 0; 458 459 /* Compatible match has highest priority */ 460 if (compat && compat[0]) { 461 prop = __of_find_property(device, "compatible", NULL); 462 for (cp = of_prop_next_string(prop, NULL); cp; 463 cp = of_prop_next_string(prop, cp), index++) { 464 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 465 score = INT_MAX/2 - (index << 2); 466 break; 467 } 468 } 469 if (!score) 470 return 0; 471 } 472 473 /* Matching type is better than matching name */ 474 if (type && type[0]) { 475 if (!device->type || of_node_cmp(type, device->type)) 476 return 0; 477 score += 2; 478 } 479 480 /* Matching name is a bit better than not */ 481 if (name && name[0]) { 482 if (!device->name || of_node_cmp(name, device->name)) 483 return 0; 484 score++; 485 } 486 487 return score; 488 } 489 490 /** Checks if the given "compat" string matches one of the strings in 491 * the device's "compatible" property 492 */ 493 int of_device_is_compatible(const struct device_node *device, 494 const char *compat) 495 { 496 unsigned long flags; 497 int res; 498 499 raw_spin_lock_irqsave(&devtree_lock, flags); 500 res = __of_device_is_compatible(device, compat, NULL, NULL); 501 raw_spin_unlock_irqrestore(&devtree_lock, flags); 502 return res; 503 } 504 EXPORT_SYMBOL(of_device_is_compatible); 505 506 /** Checks if the device is compatible with any of the entries in 507 * a NULL terminated array of strings. Returns the best match 508 * score or 0. 509 */ 510 int of_device_compatible_match(struct device_node *device, 511 const char *const *compat) 512 { 513 unsigned int tmp, score = 0; 514 515 if (!compat) 516 return 0; 517 518 while (*compat) { 519 tmp = of_device_is_compatible(device, *compat); 520 if (tmp > score) 521 score = tmp; 522 compat++; 523 } 524 525 return score; 526 } 527 528 /** 529 * of_machine_is_compatible - Test root of device tree for a given compatible value 530 * @compat: compatible string to look for in root node's compatible property. 531 * 532 * Returns a positive integer if the root node has the given value in its 533 * compatible property. 534 */ 535 int of_machine_is_compatible(const char *compat) 536 { 537 struct device_node *root; 538 int rc = 0; 539 540 root = of_find_node_by_path("/"); 541 if (root) { 542 rc = of_device_is_compatible(root, compat); 543 of_node_put(root); 544 } 545 return rc; 546 } 547 EXPORT_SYMBOL(of_machine_is_compatible); 548 549 /** 550 * __of_device_is_available - check if a device is available for use 551 * 552 * @device: Node to check for availability, with locks already held 553 * 554 * Returns true if the status property is absent or set to "okay" or "ok", 555 * false otherwise 556 */ 557 static bool __of_device_is_available(const struct device_node *device) 558 { 559 const char *status; 560 int statlen; 561 562 if (!device) 563 return false; 564 565 status = __of_get_property(device, "status", &statlen); 566 if (status == NULL) 567 return true; 568 569 if (statlen > 0) { 570 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 571 return true; 572 } 573 574 return false; 575 } 576 577 /** 578 * of_device_is_available - check if a device is available for use 579 * 580 * @device: Node to check for availability 581 * 582 * Returns true if the status property is absent or set to "okay" or "ok", 583 * false otherwise 584 */ 585 bool of_device_is_available(const struct device_node *device) 586 { 587 unsigned long flags; 588 bool res; 589 590 raw_spin_lock_irqsave(&devtree_lock, flags); 591 res = __of_device_is_available(device); 592 raw_spin_unlock_irqrestore(&devtree_lock, flags); 593 return res; 594 595 } 596 EXPORT_SYMBOL(of_device_is_available); 597 598 /** 599 * of_device_is_big_endian - check if a device has BE registers 600 * 601 * @device: Node to check for endianness 602 * 603 * Returns true if the device has a "big-endian" property, or if the kernel 604 * was compiled for BE *and* the device has a "native-endian" property. 605 * Returns false otherwise. 606 * 607 * Callers would nominally use ioread32be/iowrite32be if 608 * of_device_is_big_endian() == true, or readl/writel otherwise. 609 */ 610 bool of_device_is_big_endian(const struct device_node *device) 611 { 612 if (of_property_read_bool(device, "big-endian")) 613 return true; 614 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 615 of_property_read_bool(device, "native-endian")) 616 return true; 617 return false; 618 } 619 EXPORT_SYMBOL(of_device_is_big_endian); 620 621 /** 622 * of_get_parent - Get a node's parent if any 623 * @node: Node to get parent 624 * 625 * Returns a node pointer with refcount incremented, use 626 * of_node_put() on it when done. 627 */ 628 struct device_node *of_get_parent(const struct device_node *node) 629 { 630 struct device_node *np; 631 unsigned long flags; 632 633 if (!node) 634 return NULL; 635 636 raw_spin_lock_irqsave(&devtree_lock, flags); 637 np = of_node_get(node->parent); 638 raw_spin_unlock_irqrestore(&devtree_lock, flags); 639 return np; 640 } 641 EXPORT_SYMBOL(of_get_parent); 642 643 /** 644 * of_get_next_parent - Iterate to a node's parent 645 * @node: Node to get parent of 646 * 647 * This is like of_get_parent() except that it drops the 648 * refcount on the passed node, making it suitable for iterating 649 * through a node's parents. 650 * 651 * Returns a node pointer with refcount incremented, use 652 * of_node_put() on it when done. 653 */ 654 struct device_node *of_get_next_parent(struct device_node *node) 655 { 656 struct device_node *parent; 657 unsigned long flags; 658 659 if (!node) 660 return NULL; 661 662 raw_spin_lock_irqsave(&devtree_lock, flags); 663 parent = of_node_get(node->parent); 664 of_node_put(node); 665 raw_spin_unlock_irqrestore(&devtree_lock, flags); 666 return parent; 667 } 668 EXPORT_SYMBOL(of_get_next_parent); 669 670 static struct device_node *__of_get_next_child(const struct device_node *node, 671 struct device_node *prev) 672 { 673 struct device_node *next; 674 675 if (!node) 676 return NULL; 677 678 next = prev ? prev->sibling : node->child; 679 for (; next; next = next->sibling) 680 if (of_node_get(next)) 681 break; 682 of_node_put(prev); 683 return next; 684 } 685 #define __for_each_child_of_node(parent, child) \ 686 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 687 child = __of_get_next_child(parent, child)) 688 689 /** 690 * of_get_next_child - Iterate a node childs 691 * @node: parent node 692 * @prev: previous child of the parent node, or NULL to get first 693 * 694 * Returns a node pointer with refcount incremented, use of_node_put() on 695 * it when done. Returns NULL when prev is the last child. Decrements the 696 * refcount of prev. 697 */ 698 struct device_node *of_get_next_child(const struct device_node *node, 699 struct device_node *prev) 700 { 701 struct device_node *next; 702 unsigned long flags; 703 704 raw_spin_lock_irqsave(&devtree_lock, flags); 705 next = __of_get_next_child(node, prev); 706 raw_spin_unlock_irqrestore(&devtree_lock, flags); 707 return next; 708 } 709 EXPORT_SYMBOL(of_get_next_child); 710 711 /** 712 * of_get_next_available_child - Find the next available child node 713 * @node: parent node 714 * @prev: previous child of the parent node, or NULL to get first 715 * 716 * This function is like of_get_next_child(), except that it 717 * automatically skips any disabled nodes (i.e. status = "disabled"). 718 */ 719 struct device_node *of_get_next_available_child(const struct device_node *node, 720 struct device_node *prev) 721 { 722 struct device_node *next; 723 unsigned long flags; 724 725 if (!node) 726 return NULL; 727 728 raw_spin_lock_irqsave(&devtree_lock, flags); 729 next = prev ? prev->sibling : node->child; 730 for (; next; next = next->sibling) { 731 if (!__of_device_is_available(next)) 732 continue; 733 if (of_node_get(next)) 734 break; 735 } 736 of_node_put(prev); 737 raw_spin_unlock_irqrestore(&devtree_lock, flags); 738 return next; 739 } 740 EXPORT_SYMBOL(of_get_next_available_child); 741 742 /** 743 * of_get_child_by_name - Find the child node by name for a given parent 744 * @node: parent node 745 * @name: child name to look for. 746 * 747 * This function looks for child node for given matching name 748 * 749 * Returns a node pointer if found, with refcount incremented, use 750 * of_node_put() on it when done. 751 * Returns NULL if node is not found. 752 */ 753 struct device_node *of_get_child_by_name(const struct device_node *node, 754 const char *name) 755 { 756 struct device_node *child; 757 758 for_each_child_of_node(node, child) 759 if (child->name && (of_node_cmp(child->name, name) == 0)) 760 break; 761 return child; 762 } 763 EXPORT_SYMBOL(of_get_child_by_name); 764 765 static struct device_node *__of_find_node_by_path(struct device_node *parent, 766 const char *path) 767 { 768 struct device_node *child; 769 int len; 770 771 len = strcspn(path, "/:"); 772 if (!len) 773 return NULL; 774 775 __for_each_child_of_node(parent, child) { 776 const char *name = strrchr(child->full_name, '/'); 777 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 778 continue; 779 name++; 780 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 781 return child; 782 } 783 return NULL; 784 } 785 786 /** 787 * of_find_node_opts_by_path - Find a node matching a full OF path 788 * @path: Either the full path to match, or if the path does not 789 * start with '/', the name of a property of the /aliases 790 * node (an alias). In the case of an alias, the node 791 * matching the alias' value will be returned. 792 * @opts: Address of a pointer into which to store the start of 793 * an options string appended to the end of the path with 794 * a ':' separator. 795 * 796 * Valid paths: 797 * /foo/bar Full path 798 * foo Valid alias 799 * foo/bar Valid alias + relative path 800 * 801 * Returns a node pointer with refcount incremented, use 802 * of_node_put() on it when done. 803 */ 804 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 805 { 806 struct device_node *np = NULL; 807 struct property *pp; 808 unsigned long flags; 809 const char *separator = strchr(path, ':'); 810 811 if (opts) 812 *opts = separator ? separator + 1 : NULL; 813 814 if (strcmp(path, "/") == 0) 815 return of_node_get(of_root); 816 817 /* The path could begin with an alias */ 818 if (*path != '/') { 819 int len; 820 const char *p = separator; 821 822 if (!p) 823 p = strchrnul(path, '/'); 824 len = p - path; 825 826 /* of_aliases must not be NULL */ 827 if (!of_aliases) 828 return NULL; 829 830 for_each_property_of_node(of_aliases, pp) { 831 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 832 np = of_find_node_by_path(pp->value); 833 break; 834 } 835 } 836 if (!np) 837 return NULL; 838 path = p; 839 } 840 841 /* Step down the tree matching path components */ 842 raw_spin_lock_irqsave(&devtree_lock, flags); 843 if (!np) 844 np = of_node_get(of_root); 845 while (np && *path == '/') { 846 path++; /* Increment past '/' delimiter */ 847 np = __of_find_node_by_path(np, path); 848 path = strchrnul(path, '/'); 849 if (separator && separator < path) 850 break; 851 } 852 raw_spin_unlock_irqrestore(&devtree_lock, flags); 853 return np; 854 } 855 EXPORT_SYMBOL(of_find_node_opts_by_path); 856 857 /** 858 * of_find_node_by_name - Find a node by its "name" property 859 * @from: The node to start searching from or NULL, the node 860 * you pass will not be searched, only the next one 861 * will; typically, you pass what the previous call 862 * returned. of_node_put() will be called on it 863 * @name: The name string to match against 864 * 865 * Returns a node pointer with refcount incremented, use 866 * of_node_put() on it when done. 867 */ 868 struct device_node *of_find_node_by_name(struct device_node *from, 869 const char *name) 870 { 871 struct device_node *np; 872 unsigned long flags; 873 874 raw_spin_lock_irqsave(&devtree_lock, flags); 875 for_each_of_allnodes_from(from, np) 876 if (np->name && (of_node_cmp(np->name, name) == 0) 877 && of_node_get(np)) 878 break; 879 of_node_put(from); 880 raw_spin_unlock_irqrestore(&devtree_lock, flags); 881 return np; 882 } 883 EXPORT_SYMBOL(of_find_node_by_name); 884 885 /** 886 * of_find_node_by_type - Find a node by its "device_type" property 887 * @from: The node to start searching from, or NULL to start searching 888 * the entire device tree. The node you pass will not be 889 * searched, only the next one will; typically, you pass 890 * what the previous call returned. of_node_put() will be 891 * called on from for you. 892 * @type: The type string to match against 893 * 894 * Returns a node pointer with refcount incremented, use 895 * of_node_put() on it when done. 896 */ 897 struct device_node *of_find_node_by_type(struct device_node *from, 898 const char *type) 899 { 900 struct device_node *np; 901 unsigned long flags; 902 903 raw_spin_lock_irqsave(&devtree_lock, flags); 904 for_each_of_allnodes_from(from, np) 905 if (np->type && (of_node_cmp(np->type, type) == 0) 906 && of_node_get(np)) 907 break; 908 of_node_put(from); 909 raw_spin_unlock_irqrestore(&devtree_lock, flags); 910 return np; 911 } 912 EXPORT_SYMBOL(of_find_node_by_type); 913 914 /** 915 * of_find_compatible_node - Find a node based on type and one of the 916 * tokens in its "compatible" property 917 * @from: The node to start searching from or NULL, the node 918 * you pass will not be searched, only the next one 919 * will; typically, you pass what the previous call 920 * returned. of_node_put() will be called on it 921 * @type: The type string to match "device_type" or NULL to ignore 922 * @compatible: The string to match to one of the tokens in the device 923 * "compatible" list. 924 * 925 * Returns a node pointer with refcount incremented, use 926 * of_node_put() on it when done. 927 */ 928 struct device_node *of_find_compatible_node(struct device_node *from, 929 const char *type, const char *compatible) 930 { 931 struct device_node *np; 932 unsigned long flags; 933 934 raw_spin_lock_irqsave(&devtree_lock, flags); 935 for_each_of_allnodes_from(from, np) 936 if (__of_device_is_compatible(np, compatible, type, NULL) && 937 of_node_get(np)) 938 break; 939 of_node_put(from); 940 raw_spin_unlock_irqrestore(&devtree_lock, flags); 941 return np; 942 } 943 EXPORT_SYMBOL(of_find_compatible_node); 944 945 /** 946 * of_find_node_with_property - Find a node which has a property with 947 * the given name. 948 * @from: The node to start searching from or NULL, the node 949 * you pass will not be searched, only the next one 950 * will; typically, you pass what the previous call 951 * returned. of_node_put() will be called on it 952 * @prop_name: The name of the property to look for. 953 * 954 * Returns a node pointer with refcount incremented, use 955 * of_node_put() on it when done. 956 */ 957 struct device_node *of_find_node_with_property(struct device_node *from, 958 const char *prop_name) 959 { 960 struct device_node *np; 961 struct property *pp; 962 unsigned long flags; 963 964 raw_spin_lock_irqsave(&devtree_lock, flags); 965 for_each_of_allnodes_from(from, np) { 966 for (pp = np->properties; pp; pp = pp->next) { 967 if (of_prop_cmp(pp->name, prop_name) == 0) { 968 of_node_get(np); 969 goto out; 970 } 971 } 972 } 973 out: 974 of_node_put(from); 975 raw_spin_unlock_irqrestore(&devtree_lock, flags); 976 return np; 977 } 978 EXPORT_SYMBOL(of_find_node_with_property); 979 980 static 981 const struct of_device_id *__of_match_node(const struct of_device_id *matches, 982 const struct device_node *node) 983 { 984 const struct of_device_id *best_match = NULL; 985 int score, best_score = 0; 986 987 if (!matches) 988 return NULL; 989 990 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 991 score = __of_device_is_compatible(node, matches->compatible, 992 matches->type, matches->name); 993 if (score > best_score) { 994 best_match = matches; 995 best_score = score; 996 } 997 } 998 999 return best_match; 1000 } 1001 1002 /** 1003 * of_match_node - Tell if a device_node has a matching of_match structure 1004 * @matches: array of of device match structures to search in 1005 * @node: the of device structure to match against 1006 * 1007 * Low level utility function used by device matching. 1008 */ 1009 const struct of_device_id *of_match_node(const struct of_device_id *matches, 1010 const struct device_node *node) 1011 { 1012 const struct of_device_id *match; 1013 unsigned long flags; 1014 1015 raw_spin_lock_irqsave(&devtree_lock, flags); 1016 match = __of_match_node(matches, node); 1017 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1018 return match; 1019 } 1020 EXPORT_SYMBOL(of_match_node); 1021 1022 /** 1023 * of_find_matching_node_and_match - Find a node based on an of_device_id 1024 * match table. 1025 * @from: The node to start searching from or NULL, the node 1026 * you pass will not be searched, only the next one 1027 * will; typically, you pass what the previous call 1028 * returned. of_node_put() will be called on it 1029 * @matches: array of of device match structures to search in 1030 * @match Updated to point at the matches entry which matched 1031 * 1032 * Returns a node pointer with refcount incremented, use 1033 * of_node_put() on it when done. 1034 */ 1035 struct device_node *of_find_matching_node_and_match(struct device_node *from, 1036 const struct of_device_id *matches, 1037 const struct of_device_id **match) 1038 { 1039 struct device_node *np; 1040 const struct of_device_id *m; 1041 unsigned long flags; 1042 1043 if (match) 1044 *match = NULL; 1045 1046 raw_spin_lock_irqsave(&devtree_lock, flags); 1047 for_each_of_allnodes_from(from, np) { 1048 m = __of_match_node(matches, np); 1049 if (m && of_node_get(np)) { 1050 if (match) 1051 *match = m; 1052 break; 1053 } 1054 } 1055 of_node_put(from); 1056 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1057 return np; 1058 } 1059 EXPORT_SYMBOL(of_find_matching_node_and_match); 1060 1061 /** 1062 * of_modalias_node - Lookup appropriate modalias for a device node 1063 * @node: pointer to a device tree node 1064 * @modalias: Pointer to buffer that modalias value will be copied into 1065 * @len: Length of modalias value 1066 * 1067 * Based on the value of the compatible property, this routine will attempt 1068 * to choose an appropriate modalias value for a particular device tree node. 1069 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1070 * from the first entry in the compatible list property. 1071 * 1072 * This routine returns 0 on success, <0 on failure. 1073 */ 1074 int of_modalias_node(struct device_node *node, char *modalias, int len) 1075 { 1076 const char *compatible, *p; 1077 int cplen; 1078 1079 compatible = of_get_property(node, "compatible", &cplen); 1080 if (!compatible || strlen(compatible) > cplen) 1081 return -ENODEV; 1082 p = strchr(compatible, ','); 1083 strlcpy(modalias, p ? p + 1 : compatible, len); 1084 return 0; 1085 } 1086 EXPORT_SYMBOL_GPL(of_modalias_node); 1087 1088 /** 1089 * of_find_node_by_phandle - Find a node given a phandle 1090 * @handle: phandle of the node to find 1091 * 1092 * Returns a node pointer with refcount incremented, use 1093 * of_node_put() on it when done. 1094 */ 1095 struct device_node *of_find_node_by_phandle(phandle handle) 1096 { 1097 struct device_node *np; 1098 unsigned long flags; 1099 1100 if (!handle) 1101 return NULL; 1102 1103 raw_spin_lock_irqsave(&devtree_lock, flags); 1104 for_each_of_allnodes(np) 1105 if (np->phandle == handle) 1106 break; 1107 of_node_get(np); 1108 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1109 return np; 1110 } 1111 EXPORT_SYMBOL(of_find_node_by_phandle); 1112 1113 /** 1114 * of_property_count_elems_of_size - Count the number of elements in a property 1115 * 1116 * @np: device node from which the property value is to be read. 1117 * @propname: name of the property to be searched. 1118 * @elem_size: size of the individual element 1119 * 1120 * Search for a property in a device node and count the number of elements of 1121 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1122 * property does not exist or its length does not match a multiple of elem_size 1123 * and -ENODATA if the property does not have a value. 1124 */ 1125 int of_property_count_elems_of_size(const struct device_node *np, 1126 const char *propname, int elem_size) 1127 { 1128 struct property *prop = of_find_property(np, propname, NULL); 1129 1130 if (!prop) 1131 return -EINVAL; 1132 if (!prop->value) 1133 return -ENODATA; 1134 1135 if (prop->length % elem_size != 0) { 1136 pr_err("size of %s in node %s is not a multiple of %d\n", 1137 propname, np->full_name, elem_size); 1138 return -EINVAL; 1139 } 1140 1141 return prop->length / elem_size; 1142 } 1143 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1144 1145 /** 1146 * of_find_property_value_of_size 1147 * 1148 * @np: device node from which the property value is to be read. 1149 * @propname: name of the property to be searched. 1150 * @min: minimum allowed length of property value 1151 * @max: maximum allowed length of property value (0 means unlimited) 1152 * @len: if !=NULL, actual length is written to here 1153 * 1154 * Search for a property in a device node and valid the requested size. 1155 * Returns the property value on success, -EINVAL if the property does not 1156 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1157 * property data is too small or too large. 1158 * 1159 */ 1160 static void *of_find_property_value_of_size(const struct device_node *np, 1161 const char *propname, u32 min, u32 max, size_t *len) 1162 { 1163 struct property *prop = of_find_property(np, propname, NULL); 1164 1165 if (!prop) 1166 return ERR_PTR(-EINVAL); 1167 if (!prop->value) 1168 return ERR_PTR(-ENODATA); 1169 if (prop->length < min) 1170 return ERR_PTR(-EOVERFLOW); 1171 if (max && prop->length > max) 1172 return ERR_PTR(-EOVERFLOW); 1173 1174 if (len) 1175 *len = prop->length; 1176 1177 return prop->value; 1178 } 1179 1180 /** 1181 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1182 * 1183 * @np: device node from which the property value is to be read. 1184 * @propname: name of the property to be searched. 1185 * @index: index of the u32 in the list of values 1186 * @out_value: pointer to return value, modified only if no error. 1187 * 1188 * Search for a property in a device node and read nth 32-bit value from 1189 * it. Returns 0 on success, -EINVAL if the property does not exist, 1190 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1191 * property data isn't large enough. 1192 * 1193 * The out_value is modified only if a valid u32 value can be decoded. 1194 */ 1195 int of_property_read_u32_index(const struct device_node *np, 1196 const char *propname, 1197 u32 index, u32 *out_value) 1198 { 1199 const u32 *val = of_find_property_value_of_size(np, propname, 1200 ((index + 1) * sizeof(*out_value)), 1201 0, 1202 NULL); 1203 1204 if (IS_ERR(val)) 1205 return PTR_ERR(val); 1206 1207 *out_value = be32_to_cpup(((__be32 *)val) + index); 1208 return 0; 1209 } 1210 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1211 1212 /** 1213 * of_property_read_variable_u8_array - Find and read an array of u8 from a 1214 * property, with bounds on the minimum and maximum array size. 1215 * 1216 * @np: device node from which the property value is to be read. 1217 * @propname: name of the property to be searched. 1218 * @out_values: pointer to return value, modified only if return value is 0. 1219 * @sz_min: minimum number of array elements to read 1220 * @sz_max: maximum number of array elements to read, if zero there is no 1221 * upper limit on the number of elements in the dts entry but only 1222 * sz_min will be read. 1223 * 1224 * Search for a property in a device node and read 8-bit value(s) from 1225 * it. Returns number of elements read on success, -EINVAL if the property 1226 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1227 * if the property data is smaller than sz_min or longer than sz_max. 1228 * 1229 * dts entry of array should be like: 1230 * property = /bits/ 8 <0x50 0x60 0x70>; 1231 * 1232 * The out_values is modified only if a valid u8 value can be decoded. 1233 */ 1234 int of_property_read_variable_u8_array(const struct device_node *np, 1235 const char *propname, u8 *out_values, 1236 size_t sz_min, size_t sz_max) 1237 { 1238 size_t sz, count; 1239 const u8 *val = of_find_property_value_of_size(np, propname, 1240 (sz_min * sizeof(*out_values)), 1241 (sz_max * sizeof(*out_values)), 1242 &sz); 1243 1244 if (IS_ERR(val)) 1245 return PTR_ERR(val); 1246 1247 if (!sz_max) 1248 sz = sz_min; 1249 else 1250 sz /= sizeof(*out_values); 1251 1252 count = sz; 1253 while (count--) 1254 *out_values++ = *val++; 1255 1256 return sz; 1257 } 1258 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 1259 1260 /** 1261 * of_property_read_variable_u16_array - Find and read an array of u16 from a 1262 * property, with bounds on the minimum and maximum array size. 1263 * 1264 * @np: device node from which the property value is to be read. 1265 * @propname: name of the property to be searched. 1266 * @out_values: pointer to return value, modified only if return value is 0. 1267 * @sz_min: minimum number of array elements to read 1268 * @sz_max: maximum number of array elements to read, if zero there is no 1269 * upper limit on the number of elements in the dts entry but only 1270 * sz_min will be read. 1271 * 1272 * Search for a property in a device node and read 16-bit value(s) from 1273 * it. Returns number of elements read on success, -EINVAL if the property 1274 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1275 * if the property data is smaller than sz_min or longer than sz_max. 1276 * 1277 * dts entry of array should be like: 1278 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1279 * 1280 * The out_values is modified only if a valid u16 value can be decoded. 1281 */ 1282 int of_property_read_variable_u16_array(const struct device_node *np, 1283 const char *propname, u16 *out_values, 1284 size_t sz_min, size_t sz_max) 1285 { 1286 size_t sz, count; 1287 const __be16 *val = of_find_property_value_of_size(np, propname, 1288 (sz_min * sizeof(*out_values)), 1289 (sz_max * sizeof(*out_values)), 1290 &sz); 1291 1292 if (IS_ERR(val)) 1293 return PTR_ERR(val); 1294 1295 if (!sz_max) 1296 sz = sz_min; 1297 else 1298 sz /= sizeof(*out_values); 1299 1300 count = sz; 1301 while (count--) 1302 *out_values++ = be16_to_cpup(val++); 1303 1304 return sz; 1305 } 1306 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 1307 1308 /** 1309 * of_property_read_variable_u32_array - Find and read an array of 32 bit 1310 * integers from a property, with bounds on the minimum and maximum array size. 1311 * 1312 * @np: device node from which the property value is to be read. 1313 * @propname: name of the property to be searched. 1314 * @out_values: pointer to return value, modified only if return value is 0. 1315 * @sz_min: minimum number of array elements to read 1316 * @sz_max: maximum number of array elements to read, if zero there is no 1317 * upper limit on the number of elements in the dts entry but only 1318 * sz_min will be read. 1319 * 1320 * Search for a property in a device node and read 32-bit value(s) from 1321 * it. Returns number of elements read on success, -EINVAL if the property 1322 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1323 * if the property data is smaller than sz_min or longer than sz_max. 1324 * 1325 * The out_values is modified only if a valid u32 value can be decoded. 1326 */ 1327 int of_property_read_variable_u32_array(const struct device_node *np, 1328 const char *propname, u32 *out_values, 1329 size_t sz_min, size_t sz_max) 1330 { 1331 size_t sz, count; 1332 const __be32 *val = of_find_property_value_of_size(np, propname, 1333 (sz_min * sizeof(*out_values)), 1334 (sz_max * sizeof(*out_values)), 1335 &sz); 1336 1337 if (IS_ERR(val)) 1338 return PTR_ERR(val); 1339 1340 if (!sz_max) 1341 sz = sz_min; 1342 else 1343 sz /= sizeof(*out_values); 1344 1345 count = sz; 1346 while (count--) 1347 *out_values++ = be32_to_cpup(val++); 1348 1349 return sz; 1350 } 1351 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 1352 1353 /** 1354 * of_property_read_u64 - Find and read a 64 bit integer from a property 1355 * @np: device node from which the property value is to be read. 1356 * @propname: name of the property to be searched. 1357 * @out_value: pointer to return value, modified only if return value is 0. 1358 * 1359 * Search for a property in a device node and read a 64-bit value from 1360 * it. Returns 0 on success, -EINVAL if the property does not exist, 1361 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1362 * property data isn't large enough. 1363 * 1364 * The out_value is modified only if a valid u64 value can be decoded. 1365 */ 1366 int of_property_read_u64(const struct device_node *np, const char *propname, 1367 u64 *out_value) 1368 { 1369 const __be32 *val = of_find_property_value_of_size(np, propname, 1370 sizeof(*out_value), 1371 0, 1372 NULL); 1373 1374 if (IS_ERR(val)) 1375 return PTR_ERR(val); 1376 1377 *out_value = of_read_number(val, 2); 1378 return 0; 1379 } 1380 EXPORT_SYMBOL_GPL(of_property_read_u64); 1381 1382 /** 1383 * of_property_read_variable_u64_array - Find and read an array of 64 bit 1384 * integers from a property, with bounds on the minimum and maximum array size. 1385 * 1386 * @np: device node from which the property value is to be read. 1387 * @propname: name of the property to be searched. 1388 * @out_values: pointer to return value, modified only if return value is 0. 1389 * @sz_min: minimum number of array elements to read 1390 * @sz_max: maximum number of array elements to read, if zero there is no 1391 * upper limit on the number of elements in the dts entry but only 1392 * sz_min will be read. 1393 * 1394 * Search for a property in a device node and read 64-bit value(s) from 1395 * it. Returns number of elements read on success, -EINVAL if the property 1396 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 1397 * if the property data is smaller than sz_min or longer than sz_max. 1398 * 1399 * The out_values is modified only if a valid u64 value can be decoded. 1400 */ 1401 int of_property_read_variable_u64_array(const struct device_node *np, 1402 const char *propname, u64 *out_values, 1403 size_t sz_min, size_t sz_max) 1404 { 1405 size_t sz, count; 1406 const __be32 *val = of_find_property_value_of_size(np, propname, 1407 (sz_min * sizeof(*out_values)), 1408 (sz_max * sizeof(*out_values)), 1409 &sz); 1410 1411 if (IS_ERR(val)) 1412 return PTR_ERR(val); 1413 1414 if (!sz_max) 1415 sz = sz_min; 1416 else 1417 sz /= sizeof(*out_values); 1418 1419 count = sz; 1420 while (count--) { 1421 *out_values++ = of_read_number(val, 2); 1422 val += 2; 1423 } 1424 1425 return sz; 1426 } 1427 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 1428 1429 /** 1430 * of_property_read_string - Find and read a string from a property 1431 * @np: device node from which the property value is to be read. 1432 * @propname: name of the property to be searched. 1433 * @out_string: pointer to null terminated return string, modified only if 1434 * return value is 0. 1435 * 1436 * Search for a property in a device tree node and retrieve a null 1437 * terminated string value (pointer to data, not a copy). Returns 0 on 1438 * success, -EINVAL if the property does not exist, -ENODATA if property 1439 * does not have a value, and -EILSEQ if the string is not null-terminated 1440 * within the length of the property data. 1441 * 1442 * The out_string pointer is modified only if a valid string can be decoded. 1443 */ 1444 int of_property_read_string(const struct device_node *np, const char *propname, 1445 const char **out_string) 1446 { 1447 const struct property *prop = of_find_property(np, propname, NULL); 1448 if (!prop) 1449 return -EINVAL; 1450 if (!prop->value) 1451 return -ENODATA; 1452 if (strnlen(prop->value, prop->length) >= prop->length) 1453 return -EILSEQ; 1454 *out_string = prop->value; 1455 return 0; 1456 } 1457 EXPORT_SYMBOL_GPL(of_property_read_string); 1458 1459 /** 1460 * of_property_match_string() - Find string in a list and return index 1461 * @np: pointer to node containing string list property 1462 * @propname: string list property name 1463 * @string: pointer to string to search for in string list 1464 * 1465 * This function searches a string list property and returns the index 1466 * of a specific string value. 1467 */ 1468 int of_property_match_string(const struct device_node *np, const char *propname, 1469 const char *string) 1470 { 1471 const struct property *prop = of_find_property(np, propname, NULL); 1472 size_t l; 1473 int i; 1474 const char *p, *end; 1475 1476 if (!prop) 1477 return -EINVAL; 1478 if (!prop->value) 1479 return -ENODATA; 1480 1481 p = prop->value; 1482 end = p + prop->length; 1483 1484 for (i = 0; p < end; i++, p += l) { 1485 l = strnlen(p, end - p) + 1; 1486 if (p + l > end) 1487 return -EILSEQ; 1488 pr_debug("comparing %s with %s\n", string, p); 1489 if (strcmp(string, p) == 0) 1490 return i; /* Found it; return index */ 1491 } 1492 return -ENODATA; 1493 } 1494 EXPORT_SYMBOL_GPL(of_property_match_string); 1495 1496 /** 1497 * of_property_read_string_helper() - Utility helper for parsing string properties 1498 * @np: device node from which the property value is to be read. 1499 * @propname: name of the property to be searched. 1500 * @out_strs: output array of string pointers. 1501 * @sz: number of array elements to read. 1502 * @skip: Number of strings to skip over at beginning of list. 1503 * 1504 * Don't call this function directly. It is a utility helper for the 1505 * of_property_read_string*() family of functions. 1506 */ 1507 int of_property_read_string_helper(const struct device_node *np, 1508 const char *propname, const char **out_strs, 1509 size_t sz, int skip) 1510 { 1511 const struct property *prop = of_find_property(np, propname, NULL); 1512 int l = 0, i = 0; 1513 const char *p, *end; 1514 1515 if (!prop) 1516 return -EINVAL; 1517 if (!prop->value) 1518 return -ENODATA; 1519 p = prop->value; 1520 end = p + prop->length; 1521 1522 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1523 l = strnlen(p, end - p) + 1; 1524 if (p + l > end) 1525 return -EILSEQ; 1526 if (out_strs && i >= skip) 1527 *out_strs++ = p; 1528 } 1529 i -= skip; 1530 return i <= 0 ? -ENODATA : i; 1531 } 1532 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1533 1534 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1535 { 1536 int i; 1537 printk("%s %s", msg, of_node_full_name(args->np)); 1538 for (i = 0; i < args->args_count; i++) { 1539 const char delim = i ? ',' : ':'; 1540 1541 pr_cont("%c%08x", delim, args->args[i]); 1542 } 1543 pr_cont("\n"); 1544 } 1545 1546 int of_phandle_iterator_init(struct of_phandle_iterator *it, 1547 const struct device_node *np, 1548 const char *list_name, 1549 const char *cells_name, 1550 int cell_count) 1551 { 1552 const __be32 *list; 1553 int size; 1554 1555 memset(it, 0, sizeof(*it)); 1556 1557 list = of_get_property(np, list_name, &size); 1558 if (!list) 1559 return -ENOENT; 1560 1561 it->cells_name = cells_name; 1562 it->cell_count = cell_count; 1563 it->parent = np; 1564 it->list_end = list + size / sizeof(*list); 1565 it->phandle_end = list; 1566 it->cur = list; 1567 1568 return 0; 1569 } 1570 1571 int of_phandle_iterator_next(struct of_phandle_iterator *it) 1572 { 1573 uint32_t count = 0; 1574 1575 if (it->node) { 1576 of_node_put(it->node); 1577 it->node = NULL; 1578 } 1579 1580 if (!it->cur || it->phandle_end >= it->list_end) 1581 return -ENOENT; 1582 1583 it->cur = it->phandle_end; 1584 1585 /* If phandle is 0, then it is an empty entry with no arguments. */ 1586 it->phandle = be32_to_cpup(it->cur++); 1587 1588 if (it->phandle) { 1589 1590 /* 1591 * Find the provider node and parse the #*-cells property to 1592 * determine the argument length. 1593 */ 1594 it->node = of_find_node_by_phandle(it->phandle); 1595 1596 if (it->cells_name) { 1597 if (!it->node) { 1598 pr_err("%s: could not find phandle\n", 1599 it->parent->full_name); 1600 goto err; 1601 } 1602 1603 if (of_property_read_u32(it->node, it->cells_name, 1604 &count)) { 1605 pr_err("%s: could not get %s for %s\n", 1606 it->parent->full_name, 1607 it->cells_name, 1608 it->node->full_name); 1609 goto err; 1610 } 1611 } else { 1612 count = it->cell_count; 1613 } 1614 1615 /* 1616 * Make sure that the arguments actually fit in the remaining 1617 * property data length 1618 */ 1619 if (it->cur + count > it->list_end) { 1620 pr_err("%s: arguments longer than property\n", 1621 it->parent->full_name); 1622 goto err; 1623 } 1624 } 1625 1626 it->phandle_end = it->cur + count; 1627 it->cur_count = count; 1628 1629 return 0; 1630 1631 err: 1632 if (it->node) { 1633 of_node_put(it->node); 1634 it->node = NULL; 1635 } 1636 1637 return -EINVAL; 1638 } 1639 1640 int of_phandle_iterator_args(struct of_phandle_iterator *it, 1641 uint32_t *args, 1642 int size) 1643 { 1644 int i, count; 1645 1646 count = it->cur_count; 1647 1648 if (WARN_ON(size < count)) 1649 count = size; 1650 1651 for (i = 0; i < count; i++) 1652 args[i] = be32_to_cpup(it->cur++); 1653 1654 return count; 1655 } 1656 1657 static int __of_parse_phandle_with_args(const struct device_node *np, 1658 const char *list_name, 1659 const char *cells_name, 1660 int cell_count, int index, 1661 struct of_phandle_args *out_args) 1662 { 1663 struct of_phandle_iterator it; 1664 int rc, cur_index = 0; 1665 1666 /* Loop over the phandles until all the requested entry is found */ 1667 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { 1668 /* 1669 * All of the error cases bail out of the loop, so at 1670 * this point, the parsing is successful. If the requested 1671 * index matches, then fill the out_args structure and return, 1672 * or return -ENOENT for an empty entry. 1673 */ 1674 rc = -ENOENT; 1675 if (cur_index == index) { 1676 if (!it.phandle) 1677 goto err; 1678 1679 if (out_args) { 1680 int c; 1681 1682 c = of_phandle_iterator_args(&it, 1683 out_args->args, 1684 MAX_PHANDLE_ARGS); 1685 out_args->np = it.node; 1686 out_args->args_count = c; 1687 } else { 1688 of_node_put(it.node); 1689 } 1690 1691 /* Found it! return success */ 1692 return 0; 1693 } 1694 1695 cur_index++; 1696 } 1697 1698 /* 1699 * Unlock node before returning result; will be one of: 1700 * -ENOENT : index is for empty phandle 1701 * -EINVAL : parsing error on data 1702 */ 1703 1704 err: 1705 of_node_put(it.node); 1706 return rc; 1707 } 1708 1709 /** 1710 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1711 * @np: Pointer to device node holding phandle property 1712 * @phandle_name: Name of property holding a phandle value 1713 * @index: For properties holding a table of phandles, this is the index into 1714 * the table 1715 * 1716 * Returns the device_node pointer with refcount incremented. Use 1717 * of_node_put() on it when done. 1718 */ 1719 struct device_node *of_parse_phandle(const struct device_node *np, 1720 const char *phandle_name, int index) 1721 { 1722 struct of_phandle_args args; 1723 1724 if (index < 0) 1725 return NULL; 1726 1727 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1728 index, &args)) 1729 return NULL; 1730 1731 return args.np; 1732 } 1733 EXPORT_SYMBOL(of_parse_phandle); 1734 1735 /** 1736 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1737 * @np: pointer to a device tree node containing a list 1738 * @list_name: property name that contains a list 1739 * @cells_name: property name that specifies phandles' arguments count 1740 * @index: index of a phandle to parse out 1741 * @out_args: optional pointer to output arguments structure (will be filled) 1742 * 1743 * This function is useful to parse lists of phandles and their arguments. 1744 * Returns 0 on success and fills out_args, on error returns appropriate 1745 * errno value. 1746 * 1747 * Caller is responsible to call of_node_put() on the returned out_args->np 1748 * pointer. 1749 * 1750 * Example: 1751 * 1752 * phandle1: node1 { 1753 * #list-cells = <2>; 1754 * } 1755 * 1756 * phandle2: node2 { 1757 * #list-cells = <1>; 1758 * } 1759 * 1760 * node3 { 1761 * list = <&phandle1 1 2 &phandle2 3>; 1762 * } 1763 * 1764 * To get a device_node of the `node2' node you may call this: 1765 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1766 */ 1767 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1768 const char *cells_name, int index, 1769 struct of_phandle_args *out_args) 1770 { 1771 if (index < 0) 1772 return -EINVAL; 1773 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1774 index, out_args); 1775 } 1776 EXPORT_SYMBOL(of_parse_phandle_with_args); 1777 1778 /** 1779 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1780 * @np: pointer to a device tree node containing a list 1781 * @list_name: property name that contains a list 1782 * @cell_count: number of argument cells following the phandle 1783 * @index: index of a phandle to parse out 1784 * @out_args: optional pointer to output arguments structure (will be filled) 1785 * 1786 * This function is useful to parse lists of phandles and their arguments. 1787 * Returns 0 on success and fills out_args, on error returns appropriate 1788 * errno value. 1789 * 1790 * Caller is responsible to call of_node_put() on the returned out_args->np 1791 * pointer. 1792 * 1793 * Example: 1794 * 1795 * phandle1: node1 { 1796 * } 1797 * 1798 * phandle2: node2 { 1799 * } 1800 * 1801 * node3 { 1802 * list = <&phandle1 0 2 &phandle2 2 3>; 1803 * } 1804 * 1805 * To get a device_node of the `node2' node you may call this: 1806 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1807 */ 1808 int of_parse_phandle_with_fixed_args(const struct device_node *np, 1809 const char *list_name, int cell_count, 1810 int index, struct of_phandle_args *out_args) 1811 { 1812 if (index < 0) 1813 return -EINVAL; 1814 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1815 index, out_args); 1816 } 1817 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1818 1819 /** 1820 * of_count_phandle_with_args() - Find the number of phandles references in a property 1821 * @np: pointer to a device tree node containing a list 1822 * @list_name: property name that contains a list 1823 * @cells_name: property name that specifies phandles' arguments count 1824 * 1825 * Returns the number of phandle + argument tuples within a property. It 1826 * is a typical pattern to encode a list of phandle and variable 1827 * arguments into a single property. The number of arguments is encoded 1828 * by a property in the phandle-target node. For example, a gpios 1829 * property would contain a list of GPIO specifies consisting of a 1830 * phandle and 1 or more arguments. The number of arguments are 1831 * determined by the #gpio-cells property in the node pointed to by the 1832 * phandle. 1833 */ 1834 int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1835 const char *cells_name) 1836 { 1837 struct of_phandle_iterator it; 1838 int rc, cur_index = 0; 1839 1840 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); 1841 if (rc) 1842 return rc; 1843 1844 while ((rc = of_phandle_iterator_next(&it)) == 0) 1845 cur_index += 1; 1846 1847 if (rc != -ENOENT) 1848 return rc; 1849 1850 return cur_index; 1851 } 1852 EXPORT_SYMBOL(of_count_phandle_with_args); 1853 1854 /** 1855 * __of_add_property - Add a property to a node without lock operations 1856 */ 1857 int __of_add_property(struct device_node *np, struct property *prop) 1858 { 1859 struct property **next; 1860 1861 prop->next = NULL; 1862 next = &np->properties; 1863 while (*next) { 1864 if (strcmp(prop->name, (*next)->name) == 0) 1865 /* duplicate ! don't insert it */ 1866 return -EEXIST; 1867 1868 next = &(*next)->next; 1869 } 1870 *next = prop; 1871 1872 return 0; 1873 } 1874 1875 /** 1876 * of_add_property - Add a property to a node 1877 */ 1878 int of_add_property(struct device_node *np, struct property *prop) 1879 { 1880 unsigned long flags; 1881 int rc; 1882 1883 mutex_lock(&of_mutex); 1884 1885 raw_spin_lock_irqsave(&devtree_lock, flags); 1886 rc = __of_add_property(np, prop); 1887 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1888 1889 if (!rc) 1890 __of_add_property_sysfs(np, prop); 1891 1892 mutex_unlock(&of_mutex); 1893 1894 if (!rc) 1895 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1896 1897 return rc; 1898 } 1899 1900 int __of_remove_property(struct device_node *np, struct property *prop) 1901 { 1902 struct property **next; 1903 1904 for (next = &np->properties; *next; next = &(*next)->next) { 1905 if (*next == prop) 1906 break; 1907 } 1908 if (*next == NULL) 1909 return -ENODEV; 1910 1911 /* found the node */ 1912 *next = prop->next; 1913 prop->next = np->deadprops; 1914 np->deadprops = prop; 1915 1916 return 0; 1917 } 1918 1919 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) 1920 { 1921 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1922 kfree(prop->attr.attr.name); 1923 } 1924 1925 void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1926 { 1927 if (!IS_ENABLED(CONFIG_SYSFS)) 1928 return; 1929 1930 /* at early boot, bail here and defer setup to of_init() */ 1931 if (of_kset && of_node_is_attached(np)) 1932 __of_sysfs_remove_bin_file(np, prop); 1933 } 1934 1935 /** 1936 * of_remove_property - Remove a property from a node. 1937 * 1938 * Note that we don't actually remove it, since we have given out 1939 * who-knows-how-many pointers to the data using get-property. 1940 * Instead we just move the property to the "dead properties" 1941 * list, so it won't be found any more. 1942 */ 1943 int of_remove_property(struct device_node *np, struct property *prop) 1944 { 1945 unsigned long flags; 1946 int rc; 1947 1948 if (!prop) 1949 return -ENODEV; 1950 1951 mutex_lock(&of_mutex); 1952 1953 raw_spin_lock_irqsave(&devtree_lock, flags); 1954 rc = __of_remove_property(np, prop); 1955 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1956 1957 if (!rc) 1958 __of_remove_property_sysfs(np, prop); 1959 1960 mutex_unlock(&of_mutex); 1961 1962 if (!rc) 1963 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1964 1965 return rc; 1966 } 1967 1968 int __of_update_property(struct device_node *np, struct property *newprop, 1969 struct property **oldpropp) 1970 { 1971 struct property **next, *oldprop; 1972 1973 for (next = &np->properties; *next; next = &(*next)->next) { 1974 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1975 break; 1976 } 1977 *oldpropp = oldprop = *next; 1978 1979 if (oldprop) { 1980 /* replace the node */ 1981 newprop->next = oldprop->next; 1982 *next = newprop; 1983 oldprop->next = np->deadprops; 1984 np->deadprops = oldprop; 1985 } else { 1986 /* new node */ 1987 newprop->next = NULL; 1988 *next = newprop; 1989 } 1990 1991 return 0; 1992 } 1993 1994 void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1995 struct property *oldprop) 1996 { 1997 if (!IS_ENABLED(CONFIG_SYSFS)) 1998 return; 1999 2000 /* At early boot, bail out and defer setup to of_init() */ 2001 if (!of_kset) 2002 return; 2003 2004 if (oldprop) 2005 __of_sysfs_remove_bin_file(np, oldprop); 2006 __of_add_property_sysfs(np, newprop); 2007 } 2008 2009 /* 2010 * of_update_property - Update a property in a node, if the property does 2011 * not exist, add it. 2012 * 2013 * Note that we don't actually remove it, since we have given out 2014 * who-knows-how-many pointers to the data using get-property. 2015 * Instead we just move the property to the "dead properties" list, 2016 * and add the new property to the property list 2017 */ 2018 int of_update_property(struct device_node *np, struct property *newprop) 2019 { 2020 struct property *oldprop; 2021 unsigned long flags; 2022 int rc; 2023 2024 if (!newprop->name) 2025 return -EINVAL; 2026 2027 mutex_lock(&of_mutex); 2028 2029 raw_spin_lock_irqsave(&devtree_lock, flags); 2030 rc = __of_update_property(np, newprop, &oldprop); 2031 raw_spin_unlock_irqrestore(&devtree_lock, flags); 2032 2033 if (!rc) 2034 __of_update_property_sysfs(np, newprop, oldprop); 2035 2036 mutex_unlock(&of_mutex); 2037 2038 if (!rc) 2039 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 2040 2041 return rc; 2042 } 2043 2044 static void of_alias_add(struct alias_prop *ap, struct device_node *np, 2045 int id, const char *stem, int stem_len) 2046 { 2047 ap->np = np; 2048 ap->id = id; 2049 strncpy(ap->stem, stem, stem_len); 2050 ap->stem[stem_len] = 0; 2051 list_add_tail(&ap->link, &aliases_lookup); 2052 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 2053 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 2054 } 2055 2056 /** 2057 * of_alias_scan - Scan all properties of the 'aliases' node 2058 * 2059 * The function scans all the properties of the 'aliases' node and populates 2060 * the global lookup table with the properties. It returns the 2061 * number of alias properties found, or an error code in case of failure. 2062 * 2063 * @dt_alloc: An allocator that provides a virtual address to memory 2064 * for storing the resulting tree 2065 */ 2066 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 2067 { 2068 struct property *pp; 2069 2070 of_aliases = of_find_node_by_path("/aliases"); 2071 of_chosen = of_find_node_by_path("/chosen"); 2072 if (of_chosen == NULL) 2073 of_chosen = of_find_node_by_path("/chosen@0"); 2074 2075 if (of_chosen) { 2076 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 2077 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 2078 if (!name) 2079 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 2080 if (IS_ENABLED(CONFIG_PPC) && !name) 2081 name = of_get_property(of_aliases, "stdout", NULL); 2082 if (name) 2083 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 2084 } 2085 2086 if (!of_aliases) 2087 return; 2088 2089 for_each_property_of_node(of_aliases, pp) { 2090 const char *start = pp->name; 2091 const char *end = start + strlen(start); 2092 struct device_node *np; 2093 struct alias_prop *ap; 2094 int id, len; 2095 2096 /* Skip those we do not want to proceed */ 2097 if (!strcmp(pp->name, "name") || 2098 !strcmp(pp->name, "phandle") || 2099 !strcmp(pp->name, "linux,phandle")) 2100 continue; 2101 2102 np = of_find_node_by_path(pp->value); 2103 if (!np) 2104 continue; 2105 2106 /* walk the alias backwards to extract the id and work out 2107 * the 'stem' string */ 2108 while (isdigit(*(end-1)) && end > start) 2109 end--; 2110 len = end - start; 2111 2112 if (kstrtoint(end, 10, &id) < 0) 2113 continue; 2114 2115 /* Allocate an alias_prop with enough space for the stem */ 2116 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); 2117 if (!ap) 2118 continue; 2119 memset(ap, 0, sizeof(*ap) + len + 1); 2120 ap->alias = start; 2121 of_alias_add(ap, np, id, start, len); 2122 } 2123 } 2124 2125 /** 2126 * of_alias_get_id - Get alias id for the given device_node 2127 * @np: Pointer to the given device_node 2128 * @stem: Alias stem of the given device_node 2129 * 2130 * The function travels the lookup table to get the alias id for the given 2131 * device_node and alias stem. It returns the alias id if found. 2132 */ 2133 int of_alias_get_id(struct device_node *np, const char *stem) 2134 { 2135 struct alias_prop *app; 2136 int id = -ENODEV; 2137 2138 mutex_lock(&of_mutex); 2139 list_for_each_entry(app, &aliases_lookup, link) { 2140 if (strcmp(app->stem, stem) != 0) 2141 continue; 2142 2143 if (np == app->np) { 2144 id = app->id; 2145 break; 2146 } 2147 } 2148 mutex_unlock(&of_mutex); 2149 2150 return id; 2151 } 2152 EXPORT_SYMBOL_GPL(of_alias_get_id); 2153 2154 /** 2155 * of_alias_get_highest_id - Get highest alias id for the given stem 2156 * @stem: Alias stem to be examined 2157 * 2158 * The function travels the lookup table to get the highest alias id for the 2159 * given alias stem. It returns the alias id if found. 2160 */ 2161 int of_alias_get_highest_id(const char *stem) 2162 { 2163 struct alias_prop *app; 2164 int id = -ENODEV; 2165 2166 mutex_lock(&of_mutex); 2167 list_for_each_entry(app, &aliases_lookup, link) { 2168 if (strcmp(app->stem, stem) != 0) 2169 continue; 2170 2171 if (app->id > id) 2172 id = app->id; 2173 } 2174 mutex_unlock(&of_mutex); 2175 2176 return id; 2177 } 2178 EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2179 2180 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2181 u32 *pu) 2182 { 2183 const void *curv = cur; 2184 2185 if (!prop) 2186 return NULL; 2187 2188 if (!cur) { 2189 curv = prop->value; 2190 goto out_val; 2191 } 2192 2193 curv += sizeof(*cur); 2194 if (curv >= prop->value + prop->length) 2195 return NULL; 2196 2197 out_val: 2198 *pu = be32_to_cpup(curv); 2199 return curv; 2200 } 2201 EXPORT_SYMBOL_GPL(of_prop_next_u32); 2202 2203 const char *of_prop_next_string(struct property *prop, const char *cur) 2204 { 2205 const void *curv = cur; 2206 2207 if (!prop) 2208 return NULL; 2209 2210 if (!cur) 2211 return prop->value; 2212 2213 curv += strlen(cur) + 1; 2214 if (curv >= prop->value + prop->length) 2215 return NULL; 2216 2217 return curv; 2218 } 2219 EXPORT_SYMBOL_GPL(of_prop_next_string); 2220 2221 /** 2222 * of_console_check() - Test and setup console for DT setup 2223 * @dn - Pointer to device node 2224 * @name - Name to use for preferred console without index. ex. "ttyS" 2225 * @index - Index to use for preferred console. 2226 * 2227 * Check if the given device node matches the stdout-path property in the 2228 * /chosen node. If it does then register it as the preferred console and return 2229 * TRUE. Otherwise return FALSE. 2230 */ 2231 bool of_console_check(struct device_node *dn, char *name, int index) 2232 { 2233 if (!dn || dn != of_stdout || console_set_on_cmdline) 2234 return false; 2235 return !add_preferred_console(name, index, 2236 kstrdup(of_stdout_options, GFP_KERNEL)); 2237 } 2238 EXPORT_SYMBOL_GPL(of_console_check); 2239 2240 /** 2241 * of_find_next_cache_node - Find a node's subsidiary cache 2242 * @np: node of type "cpu" or "cache" 2243 * 2244 * Returns a node pointer with refcount incremented, use 2245 * of_node_put() on it when done. Caller should hold a reference 2246 * to np. 2247 */ 2248 struct device_node *of_find_next_cache_node(const struct device_node *np) 2249 { 2250 struct device_node *child; 2251 const phandle *handle; 2252 2253 handle = of_get_property(np, "l2-cache", NULL); 2254 if (!handle) 2255 handle = of_get_property(np, "next-level-cache", NULL); 2256 2257 if (handle) 2258 return of_find_node_by_phandle(be32_to_cpup(handle)); 2259 2260 /* OF on pmac has nodes instead of properties named "l2-cache" 2261 * beneath CPU nodes. 2262 */ 2263 if (!strcmp(np->type, "cpu")) 2264 for_each_child_of_node(np, child) 2265 if (!strcmp(child->type, "cache")) 2266 return child; 2267 2268 return NULL; 2269 } 2270 2271 /** 2272 * of_find_last_cache_level - Find the level at which the last cache is 2273 * present for the given logical cpu 2274 * 2275 * @cpu: cpu number(logical index) for which the last cache level is needed 2276 * 2277 * Returns the the level at which the last cache is present. It is exactly 2278 * same as the total number of cache levels for the given logical cpu. 2279 */ 2280 int of_find_last_cache_level(unsigned int cpu) 2281 { 2282 u32 cache_level = 0; 2283 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); 2284 2285 while (np) { 2286 prev = np; 2287 of_node_put(np); 2288 np = of_find_next_cache_node(np); 2289 } 2290 2291 of_property_read_u32(prev, "cache-level", &cache_level); 2292 2293 return cache_level; 2294 } 2295 2296 /** 2297 * of_graph_parse_endpoint() - parse common endpoint node properties 2298 * @node: pointer to endpoint device_node 2299 * @endpoint: pointer to the OF endpoint data structure 2300 * 2301 * The caller should hold a reference to @node. 2302 */ 2303 int of_graph_parse_endpoint(const struct device_node *node, 2304 struct of_endpoint *endpoint) 2305 { 2306 struct device_node *port_node = of_get_parent(node); 2307 2308 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2309 __func__, node->full_name); 2310 2311 memset(endpoint, 0, sizeof(*endpoint)); 2312 2313 endpoint->local_node = node; 2314 /* 2315 * It doesn't matter whether the two calls below succeed. 2316 * If they don't then the default value 0 is used. 2317 */ 2318 of_property_read_u32(port_node, "reg", &endpoint->port); 2319 of_property_read_u32(node, "reg", &endpoint->id); 2320 2321 of_node_put(port_node); 2322 2323 return 0; 2324 } 2325 EXPORT_SYMBOL(of_graph_parse_endpoint); 2326 2327 /** 2328 * of_graph_get_port_by_id() - get the port matching a given id 2329 * @parent: pointer to the parent device node 2330 * @id: id of the port 2331 * 2332 * Return: A 'port' node pointer with refcount incremented. The caller 2333 * has to use of_node_put() on it when done. 2334 */ 2335 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2336 { 2337 struct device_node *node, *port; 2338 2339 node = of_get_child_by_name(parent, "ports"); 2340 if (node) 2341 parent = node; 2342 2343 for_each_child_of_node(parent, port) { 2344 u32 port_id = 0; 2345 2346 if (of_node_cmp(port->name, "port") != 0) 2347 continue; 2348 of_property_read_u32(port, "reg", &port_id); 2349 if (id == port_id) 2350 break; 2351 } 2352 2353 of_node_put(node); 2354 2355 return port; 2356 } 2357 EXPORT_SYMBOL(of_graph_get_port_by_id); 2358 2359 /** 2360 * of_graph_get_next_endpoint() - get next endpoint node 2361 * @parent: pointer to the parent device node 2362 * @prev: previous endpoint node, or NULL to get first 2363 * 2364 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2365 * of the passed @prev node is decremented. 2366 */ 2367 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2368 struct device_node *prev) 2369 { 2370 struct device_node *endpoint; 2371 struct device_node *port; 2372 2373 if (!parent) 2374 return NULL; 2375 2376 /* 2377 * Start by locating the port node. If no previous endpoint is specified 2378 * search for the first port node, otherwise get the previous endpoint 2379 * parent port node. 2380 */ 2381 if (!prev) { 2382 struct device_node *node; 2383 2384 node = of_get_child_by_name(parent, "ports"); 2385 if (node) 2386 parent = node; 2387 2388 port = of_get_child_by_name(parent, "port"); 2389 of_node_put(node); 2390 2391 if (!port) { 2392 pr_err("graph: no port node found in %s\n", 2393 parent->full_name); 2394 return NULL; 2395 } 2396 } else { 2397 port = of_get_parent(prev); 2398 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2399 __func__, prev->full_name)) 2400 return NULL; 2401 } 2402 2403 while (1) { 2404 /* 2405 * Now that we have a port node, get the next endpoint by 2406 * getting the next child. If the previous endpoint is NULL this 2407 * will return the first child. 2408 */ 2409 endpoint = of_get_next_child(port, prev); 2410 if (endpoint) { 2411 of_node_put(port); 2412 return endpoint; 2413 } 2414 2415 /* No more endpoints under this port, try the next one. */ 2416 prev = NULL; 2417 2418 do { 2419 port = of_get_next_child(parent, port); 2420 if (!port) 2421 return NULL; 2422 } while (of_node_cmp(port->name, "port")); 2423 } 2424 } 2425 EXPORT_SYMBOL(of_graph_get_next_endpoint); 2426 2427 /** 2428 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 2429 * @parent: pointer to the parent device node 2430 * @port_reg: identifier (value of reg property) of the parent port node 2431 * @reg: identifier (value of reg property) of the endpoint node 2432 * 2433 * Return: An 'endpoint' node pointer which is identified by reg and at the same 2434 * is the child of a port node identified by port_reg. reg and port_reg are 2435 * ignored when they are -1. 2436 */ 2437 struct device_node *of_graph_get_endpoint_by_regs( 2438 const struct device_node *parent, int port_reg, int reg) 2439 { 2440 struct of_endpoint endpoint; 2441 struct device_node *node = NULL; 2442 2443 for_each_endpoint_of_node(parent, node) { 2444 of_graph_parse_endpoint(node, &endpoint); 2445 if (((port_reg == -1) || (endpoint.port == port_reg)) && 2446 ((reg == -1) || (endpoint.id == reg))) 2447 return node; 2448 } 2449 2450 return NULL; 2451 } 2452 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 2453 2454 /** 2455 * of_graph_get_remote_port_parent() - get remote port's parent node 2456 * @node: pointer to a local endpoint device_node 2457 * 2458 * Return: Remote device node associated with remote endpoint node linked 2459 * to @node. Use of_node_put() on it when done. 2460 */ 2461 struct device_node *of_graph_get_remote_port_parent( 2462 const struct device_node *node) 2463 { 2464 struct device_node *np; 2465 unsigned int depth; 2466 2467 /* Get remote endpoint node. */ 2468 np = of_parse_phandle(node, "remote-endpoint", 0); 2469 2470 /* Walk 3 levels up only if there is 'ports' node. */ 2471 for (depth = 3; depth && np; depth--) { 2472 np = of_get_next_parent(np); 2473 if (depth == 2 && of_node_cmp(np->name, "ports")) 2474 break; 2475 } 2476 return np; 2477 } 2478 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2479 2480 /** 2481 * of_graph_get_remote_port() - get remote port node 2482 * @node: pointer to a local endpoint device_node 2483 * 2484 * Return: Remote port node associated with remote endpoint node linked 2485 * to @node. Use of_node_put() on it when done. 2486 */ 2487 struct device_node *of_graph_get_remote_port(const struct device_node *node) 2488 { 2489 struct device_node *np; 2490 2491 /* Get remote endpoint node. */ 2492 np = of_parse_phandle(node, "remote-endpoint", 0); 2493 if (!np) 2494 return NULL; 2495 return of_get_next_parent(np); 2496 } 2497 EXPORT_SYMBOL(of_graph_get_remote_port); 2498