xref: /linux/drivers/nvmem/core.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 
21 struct nvmem_device {
22 	struct module		*owner;
23 	struct device		dev;
24 	int			stride;
25 	int			word_size;
26 	int			id;
27 	struct kref		refcnt;
28 	size_t			size;
29 	bool			read_only;
30 	int			flags;
31 	enum nvmem_type		type;
32 	struct bin_attribute	eeprom;
33 	struct device		*base_dev;
34 	struct list_head	cells;
35 	nvmem_reg_read_t	reg_read;
36 	nvmem_reg_write_t	reg_write;
37 	void *priv;
38 };
39 
40 #define FLAG_COMPAT		BIT(0)
41 
42 struct nvmem_cell {
43 	const char		*name;
44 	int			offset;
45 	int			bytes;
46 	int			bit_offset;
47 	int			nbits;
48 	struct device_node	*np;
49 	struct nvmem_device	*nvmem;
50 	struct list_head	node;
51 };
52 
53 static DEFINE_MUTEX(nvmem_mutex);
54 static DEFINE_IDA(nvmem_ida);
55 
56 static DEFINE_MUTEX(nvmem_cell_mutex);
57 static LIST_HEAD(nvmem_cell_tables);
58 
59 static DEFINE_MUTEX(nvmem_lookup_mutex);
60 static LIST_HEAD(nvmem_lookup_list);
61 
62 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
63 
64 static const char * const nvmem_type_str[] = {
65 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
66 	[NVMEM_TYPE_EEPROM] = "EEPROM",
67 	[NVMEM_TYPE_OTP] = "OTP",
68 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
69 };
70 
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 static struct lock_class_key eeprom_lock_key;
73 #endif
74 
75 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
76 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77 			  void *val, size_t bytes)
78 {
79 	if (nvmem->reg_read)
80 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81 
82 	return -EINVAL;
83 }
84 
85 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86 			   void *val, size_t bytes)
87 {
88 	if (nvmem->reg_write)
89 		return nvmem->reg_write(nvmem->priv, offset, val, bytes);
90 
91 	return -EINVAL;
92 }
93 
94 static ssize_t type_show(struct device *dev,
95 			 struct device_attribute *attr, char *buf)
96 {
97 	struct nvmem_device *nvmem = to_nvmem_device(dev);
98 
99 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
100 }
101 
102 static DEVICE_ATTR_RO(type);
103 
104 static struct attribute *nvmem_attrs[] = {
105 	&dev_attr_type.attr,
106 	NULL,
107 };
108 
109 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
110 				    struct bin_attribute *attr,
111 				    char *buf, loff_t pos, size_t count)
112 {
113 	struct device *dev;
114 	struct nvmem_device *nvmem;
115 	int rc;
116 
117 	if (attr->private)
118 		dev = attr->private;
119 	else
120 		dev = container_of(kobj, struct device, kobj);
121 	nvmem = to_nvmem_device(dev);
122 
123 	/* Stop the user from reading */
124 	if (pos >= nvmem->size)
125 		return 0;
126 
127 	if (count < nvmem->word_size)
128 		return -EINVAL;
129 
130 	if (pos + count > nvmem->size)
131 		count = nvmem->size - pos;
132 
133 	count = round_down(count, nvmem->word_size);
134 
135 	rc = nvmem_reg_read(nvmem, pos, buf, count);
136 
137 	if (rc)
138 		return rc;
139 
140 	return count;
141 }
142 
143 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
144 				     struct bin_attribute *attr,
145 				     char *buf, loff_t pos, size_t count)
146 {
147 	struct device *dev;
148 	struct nvmem_device *nvmem;
149 	int rc;
150 
151 	if (attr->private)
152 		dev = attr->private;
153 	else
154 		dev = container_of(kobj, struct device, kobj);
155 	nvmem = to_nvmem_device(dev);
156 
157 	/* Stop the user from writing */
158 	if (pos >= nvmem->size)
159 		return -EFBIG;
160 
161 	if (count < nvmem->word_size)
162 		return -EINVAL;
163 
164 	if (pos + count > nvmem->size)
165 		count = nvmem->size - pos;
166 
167 	count = round_down(count, nvmem->word_size);
168 
169 	rc = nvmem_reg_write(nvmem, pos, buf, count);
170 
171 	if (rc)
172 		return rc;
173 
174 	return count;
175 }
176 
177 /* default read/write permissions */
178 static struct bin_attribute bin_attr_rw_nvmem = {
179 	.attr	= {
180 		.name	= "nvmem",
181 		.mode	= 0644,
182 	},
183 	.read	= bin_attr_nvmem_read,
184 	.write	= bin_attr_nvmem_write,
185 };
186 
187 static struct bin_attribute *nvmem_bin_rw_attributes[] = {
188 	&bin_attr_rw_nvmem,
189 	NULL,
190 };
191 
192 static const struct attribute_group nvmem_bin_rw_group = {
193 	.bin_attrs	= nvmem_bin_rw_attributes,
194 	.attrs		= nvmem_attrs,
195 };
196 
197 static const struct attribute_group *nvmem_rw_dev_groups[] = {
198 	&nvmem_bin_rw_group,
199 	NULL,
200 };
201 
202 /* read only permission */
203 static struct bin_attribute bin_attr_ro_nvmem = {
204 	.attr	= {
205 		.name	= "nvmem",
206 		.mode	= 0444,
207 	},
208 	.read	= bin_attr_nvmem_read,
209 };
210 
211 static struct bin_attribute *nvmem_bin_ro_attributes[] = {
212 	&bin_attr_ro_nvmem,
213 	NULL,
214 };
215 
216 static const struct attribute_group nvmem_bin_ro_group = {
217 	.bin_attrs	= nvmem_bin_ro_attributes,
218 	.attrs		= nvmem_attrs,
219 };
220 
221 static const struct attribute_group *nvmem_ro_dev_groups[] = {
222 	&nvmem_bin_ro_group,
223 	NULL,
224 };
225 
226 /* default read/write permissions, root only */
227 static struct bin_attribute bin_attr_rw_root_nvmem = {
228 	.attr	= {
229 		.name	= "nvmem",
230 		.mode	= 0600,
231 	},
232 	.read	= bin_attr_nvmem_read,
233 	.write	= bin_attr_nvmem_write,
234 };
235 
236 static struct bin_attribute *nvmem_bin_rw_root_attributes[] = {
237 	&bin_attr_rw_root_nvmem,
238 	NULL,
239 };
240 
241 static const struct attribute_group nvmem_bin_rw_root_group = {
242 	.bin_attrs	= nvmem_bin_rw_root_attributes,
243 	.attrs		= nvmem_attrs,
244 };
245 
246 static const struct attribute_group *nvmem_rw_root_dev_groups[] = {
247 	&nvmem_bin_rw_root_group,
248 	NULL,
249 };
250 
251 /* read only permission, root only */
252 static struct bin_attribute bin_attr_ro_root_nvmem = {
253 	.attr	= {
254 		.name	= "nvmem",
255 		.mode	= 0400,
256 	},
257 	.read	= bin_attr_nvmem_read,
258 };
259 
260 static struct bin_attribute *nvmem_bin_ro_root_attributes[] = {
261 	&bin_attr_ro_root_nvmem,
262 	NULL,
263 };
264 
265 static const struct attribute_group nvmem_bin_ro_root_group = {
266 	.bin_attrs	= nvmem_bin_ro_root_attributes,
267 	.attrs		= nvmem_attrs,
268 };
269 
270 static const struct attribute_group *nvmem_ro_root_dev_groups[] = {
271 	&nvmem_bin_ro_root_group,
272 	NULL,
273 };
274 
275 static void nvmem_release(struct device *dev)
276 {
277 	struct nvmem_device *nvmem = to_nvmem_device(dev);
278 
279 	ida_simple_remove(&nvmem_ida, nvmem->id);
280 	kfree(nvmem);
281 }
282 
283 static const struct device_type nvmem_provider_type = {
284 	.release	= nvmem_release,
285 };
286 
287 static struct bus_type nvmem_bus_type = {
288 	.name		= "nvmem",
289 };
290 
291 static int of_nvmem_match(struct device *dev, void *nvmem_np)
292 {
293 	return dev->of_node == nvmem_np;
294 }
295 
296 static struct nvmem_device *of_nvmem_find(struct device_node *nvmem_np)
297 {
298 	struct device *d;
299 
300 	if (!nvmem_np)
301 		return NULL;
302 
303 	d = bus_find_device(&nvmem_bus_type, NULL, nvmem_np, of_nvmem_match);
304 
305 	if (!d)
306 		return NULL;
307 
308 	return to_nvmem_device(d);
309 }
310 
311 static struct nvmem_device *nvmem_find(const char *name)
312 {
313 	struct device *d;
314 
315 	d = bus_find_device_by_name(&nvmem_bus_type, NULL, name);
316 
317 	if (!d)
318 		return NULL;
319 
320 	return to_nvmem_device(d);
321 }
322 
323 static void nvmem_cell_drop(struct nvmem_cell *cell)
324 {
325 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
326 	mutex_lock(&nvmem_mutex);
327 	list_del(&cell->node);
328 	mutex_unlock(&nvmem_mutex);
329 	of_node_put(cell->np);
330 	kfree(cell->name);
331 	kfree(cell);
332 }
333 
334 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
335 {
336 	struct nvmem_cell *cell, *p;
337 
338 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
339 		nvmem_cell_drop(cell);
340 }
341 
342 static void nvmem_cell_add(struct nvmem_cell *cell)
343 {
344 	mutex_lock(&nvmem_mutex);
345 	list_add_tail(&cell->node, &cell->nvmem->cells);
346 	mutex_unlock(&nvmem_mutex);
347 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
348 }
349 
350 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
351 				   const struct nvmem_cell_info *info,
352 				   struct nvmem_cell *cell)
353 {
354 	cell->nvmem = nvmem;
355 	cell->offset = info->offset;
356 	cell->bytes = info->bytes;
357 	cell->name = info->name;
358 
359 	cell->bit_offset = info->bit_offset;
360 	cell->nbits = info->nbits;
361 
362 	if (cell->nbits)
363 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
364 					   BITS_PER_BYTE);
365 
366 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
367 		dev_err(&nvmem->dev,
368 			"cell %s unaligned to nvmem stride %d\n",
369 			cell->name, nvmem->stride);
370 		return -EINVAL;
371 	}
372 
373 	return 0;
374 }
375 
376 /**
377  * nvmem_add_cells() - Add cell information to an nvmem device
378  *
379  * @nvmem: nvmem device to add cells to.
380  * @info: nvmem cell info to add to the device
381  * @ncells: number of cells in info
382  *
383  * Return: 0 or negative error code on failure.
384  */
385 static int nvmem_add_cells(struct nvmem_device *nvmem,
386 		    const struct nvmem_cell_info *info,
387 		    int ncells)
388 {
389 	struct nvmem_cell **cells;
390 	int i, rval;
391 
392 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
393 	if (!cells)
394 		return -ENOMEM;
395 
396 	for (i = 0; i < ncells; i++) {
397 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
398 		if (!cells[i]) {
399 			rval = -ENOMEM;
400 			goto err;
401 		}
402 
403 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
404 		if (rval) {
405 			kfree(cells[i]);
406 			goto err;
407 		}
408 
409 		nvmem_cell_add(cells[i]);
410 	}
411 
412 	/* remove tmp array */
413 	kfree(cells);
414 
415 	return 0;
416 err:
417 	while (i--)
418 		nvmem_cell_drop(cells[i]);
419 
420 	kfree(cells);
421 
422 	return rval;
423 }
424 
425 /*
426  * nvmem_setup_compat() - Create an additional binary entry in
427  * drivers sys directory, to be backwards compatible with the older
428  * drivers/misc/eeprom drivers.
429  */
430 static int nvmem_setup_compat(struct nvmem_device *nvmem,
431 			      const struct nvmem_config *config)
432 {
433 	int rval;
434 
435 	if (!config->base_dev)
436 		return -EINVAL;
437 
438 	if (nvmem->read_only)
439 		nvmem->eeprom = bin_attr_ro_root_nvmem;
440 	else
441 		nvmem->eeprom = bin_attr_rw_root_nvmem;
442 	nvmem->eeprom.attr.name = "eeprom";
443 	nvmem->eeprom.size = nvmem->size;
444 #ifdef CONFIG_DEBUG_LOCK_ALLOC
445 	nvmem->eeprom.attr.key = &eeprom_lock_key;
446 #endif
447 	nvmem->eeprom.private = &nvmem->dev;
448 	nvmem->base_dev = config->base_dev;
449 
450 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
451 	if (rval) {
452 		dev_err(&nvmem->dev,
453 			"Failed to create eeprom binary file %d\n", rval);
454 		return rval;
455 	}
456 
457 	nvmem->flags |= FLAG_COMPAT;
458 
459 	return 0;
460 }
461 
462 /**
463  * nvmem_register_notifier() - Register a notifier block for nvmem events.
464  *
465  * @nb: notifier block to be called on nvmem events.
466  *
467  * Return: 0 on success, negative error number on failure.
468  */
469 int nvmem_register_notifier(struct notifier_block *nb)
470 {
471 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
472 }
473 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
474 
475 /**
476  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
477  *
478  * @nb: notifier block to be unregistered.
479  *
480  * Return: 0 on success, negative error number on failure.
481  */
482 int nvmem_unregister_notifier(struct notifier_block *nb)
483 {
484 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
485 }
486 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
487 
488 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
489 {
490 	const struct nvmem_cell_info *info;
491 	struct nvmem_cell_table *table;
492 	struct nvmem_cell *cell;
493 	int rval = 0, i;
494 
495 	mutex_lock(&nvmem_cell_mutex);
496 	list_for_each_entry(table, &nvmem_cell_tables, node) {
497 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
498 			for (i = 0; i < table->ncells; i++) {
499 				info = &table->cells[i];
500 
501 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
502 				if (!cell) {
503 					rval = -ENOMEM;
504 					goto out;
505 				}
506 
507 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
508 								     info,
509 								     cell);
510 				if (rval) {
511 					kfree(cell);
512 					goto out;
513 				}
514 
515 				nvmem_cell_add(cell);
516 			}
517 		}
518 	}
519 
520 out:
521 	mutex_unlock(&nvmem_cell_mutex);
522 	return rval;
523 }
524 
525 static struct nvmem_cell *
526 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
527 {
528 	struct nvmem_cell *iter, *cell = NULL;
529 
530 	mutex_lock(&nvmem_mutex);
531 	list_for_each_entry(iter, &nvmem->cells, node) {
532 		if (strcmp(cell_id, iter->name) == 0) {
533 			cell = iter;
534 			break;
535 		}
536 	}
537 	mutex_unlock(&nvmem_mutex);
538 
539 	return cell;
540 }
541 
542 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
543 {
544 	struct device_node *parent, *child;
545 	struct device *dev = &nvmem->dev;
546 	struct nvmem_cell *cell;
547 	const __be32 *addr;
548 	int len;
549 
550 	parent = dev->of_node;
551 
552 	for_each_child_of_node(parent, child) {
553 		addr = of_get_property(child, "reg", &len);
554 		if (!addr || (len < 2 * sizeof(u32))) {
555 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
556 			return -EINVAL;
557 		}
558 
559 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
560 		if (!cell)
561 			return -ENOMEM;
562 
563 		cell->nvmem = nvmem;
564 		cell->np = of_node_get(child);
565 		cell->offset = be32_to_cpup(addr++);
566 		cell->bytes = be32_to_cpup(addr);
567 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568 
569 		addr = of_get_property(child, "bits", &len);
570 		if (addr && len == (2 * sizeof(u32))) {
571 			cell->bit_offset = be32_to_cpup(addr++);
572 			cell->nbits = be32_to_cpup(addr);
573 		}
574 
575 		if (cell->nbits)
576 			cell->bytes = DIV_ROUND_UP(
577 					cell->nbits + cell->bit_offset,
578 					BITS_PER_BYTE);
579 
580 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582 				cell->name, nvmem->stride);
583 			/* Cells already added will be freed later. */
584 			kfree(cell->name);
585 			kfree(cell);
586 			return -EINVAL;
587 		}
588 
589 		nvmem_cell_add(cell);
590 	}
591 
592 	return 0;
593 }
594 
595 /**
596  * nvmem_register() - Register a nvmem device for given nvmem_config.
597  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
598  *
599  * @config: nvmem device configuration with which nvmem device is created.
600  *
601  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
602  * on success.
603  */
604 
605 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
606 {
607 	struct nvmem_device *nvmem;
608 	int rval;
609 
610 	if (!config->dev)
611 		return ERR_PTR(-EINVAL);
612 
613 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
614 	if (!nvmem)
615 		return ERR_PTR(-ENOMEM);
616 
617 	rval  = ida_simple_get(&nvmem_ida, 0, 0, GFP_KERNEL);
618 	if (rval < 0) {
619 		kfree(nvmem);
620 		return ERR_PTR(rval);
621 	}
622 
623 	kref_init(&nvmem->refcnt);
624 	INIT_LIST_HEAD(&nvmem->cells);
625 
626 	nvmem->id = rval;
627 	nvmem->owner = config->owner;
628 	if (!nvmem->owner && config->dev->driver)
629 		nvmem->owner = config->dev->driver->owner;
630 	nvmem->stride = config->stride ?: 1;
631 	nvmem->word_size = config->word_size ?: 1;
632 	nvmem->size = config->size;
633 	nvmem->dev.type = &nvmem_provider_type;
634 	nvmem->dev.bus = &nvmem_bus_type;
635 	nvmem->dev.parent = config->dev;
636 	nvmem->priv = config->priv;
637 	nvmem->type = config->type;
638 	nvmem->reg_read = config->reg_read;
639 	nvmem->reg_write = config->reg_write;
640 	if (!config->no_of_node)
641 		nvmem->dev.of_node = config->dev->of_node;
642 
643 	if (config->id == -1 && config->name) {
644 		dev_set_name(&nvmem->dev, "%s", config->name);
645 	} else {
646 		dev_set_name(&nvmem->dev, "%s%d",
647 			     config->name ? : "nvmem",
648 			     config->name ? config->id : nvmem->id);
649 	}
650 
651 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
652 			   config->read_only || !nvmem->reg_write;
653 
654 	if (config->root_only)
655 		nvmem->dev.groups = nvmem->read_only ?
656 			nvmem_ro_root_dev_groups :
657 			nvmem_rw_root_dev_groups;
658 	else
659 		nvmem->dev.groups = nvmem->read_only ?
660 			nvmem_ro_dev_groups :
661 			nvmem_rw_dev_groups;
662 
663 	device_initialize(&nvmem->dev);
664 
665 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
666 
667 	rval = device_add(&nvmem->dev);
668 	if (rval)
669 		goto err_put_device;
670 
671 	if (config->compat) {
672 		rval = nvmem_setup_compat(nvmem, config);
673 		if (rval)
674 			goto err_device_del;
675 	}
676 
677 	if (config->cells) {
678 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
679 		if (rval)
680 			goto err_teardown_compat;
681 	}
682 
683 	rval = nvmem_add_cells_from_table(nvmem);
684 	if (rval)
685 		goto err_remove_cells;
686 
687 	rval = nvmem_add_cells_from_of(nvmem);
688 	if (rval)
689 		goto err_remove_cells;
690 
691 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
692 
693 	return nvmem;
694 
695 err_remove_cells:
696 	nvmem_device_remove_all_cells(nvmem);
697 err_teardown_compat:
698 	if (config->compat)
699 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
700 err_device_del:
701 	device_del(&nvmem->dev);
702 err_put_device:
703 	put_device(&nvmem->dev);
704 
705 	return ERR_PTR(rval);
706 }
707 EXPORT_SYMBOL_GPL(nvmem_register);
708 
709 static void nvmem_device_release(struct kref *kref)
710 {
711 	struct nvmem_device *nvmem;
712 
713 	nvmem = container_of(kref, struct nvmem_device, refcnt);
714 
715 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
716 
717 	if (nvmem->flags & FLAG_COMPAT)
718 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
719 
720 	nvmem_device_remove_all_cells(nvmem);
721 	device_del(&nvmem->dev);
722 	put_device(&nvmem->dev);
723 }
724 
725 /**
726  * nvmem_unregister() - Unregister previously registered nvmem device
727  *
728  * @nvmem: Pointer to previously registered nvmem device.
729  */
730 void nvmem_unregister(struct nvmem_device *nvmem)
731 {
732 	kref_put(&nvmem->refcnt, nvmem_device_release);
733 }
734 EXPORT_SYMBOL_GPL(nvmem_unregister);
735 
736 static void devm_nvmem_release(struct device *dev, void *res)
737 {
738 	nvmem_unregister(*(struct nvmem_device **)res);
739 }
740 
741 /**
742  * devm_nvmem_register() - Register a managed nvmem device for given
743  * nvmem_config.
744  * Also creates an binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
745  *
746  * @dev: Device that uses the nvmem device.
747  * @config: nvmem device configuration with which nvmem device is created.
748  *
749  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
750  * on success.
751  */
752 struct nvmem_device *devm_nvmem_register(struct device *dev,
753 					 const struct nvmem_config *config)
754 {
755 	struct nvmem_device **ptr, *nvmem;
756 
757 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
758 	if (!ptr)
759 		return ERR_PTR(-ENOMEM);
760 
761 	nvmem = nvmem_register(config);
762 
763 	if (!IS_ERR(nvmem)) {
764 		*ptr = nvmem;
765 		devres_add(dev, ptr);
766 	} else {
767 		devres_free(ptr);
768 	}
769 
770 	return nvmem;
771 }
772 EXPORT_SYMBOL_GPL(devm_nvmem_register);
773 
774 static int devm_nvmem_match(struct device *dev, void *res, void *data)
775 {
776 	struct nvmem_device **r = res;
777 
778 	return *r == data;
779 }
780 
781 /**
782  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
783  * device.
784  *
785  * @dev: Device that uses the nvmem device.
786  * @nvmem: Pointer to previously registered nvmem device.
787  *
788  * Return: Will be an negative on error or a zero on success.
789  */
790 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
791 {
792 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
793 }
794 EXPORT_SYMBOL(devm_nvmem_unregister);
795 
796 static struct nvmem_device *__nvmem_device_get(struct device_node *np,
797 					       const char *nvmem_name)
798 {
799 	struct nvmem_device *nvmem = NULL;
800 
801 	mutex_lock(&nvmem_mutex);
802 	nvmem = np ? of_nvmem_find(np) : nvmem_find(nvmem_name);
803 	mutex_unlock(&nvmem_mutex);
804 	if (!nvmem)
805 		return ERR_PTR(-EPROBE_DEFER);
806 
807 	if (!try_module_get(nvmem->owner)) {
808 		dev_err(&nvmem->dev,
809 			"could not increase module refcount for cell %s\n",
810 			nvmem_dev_name(nvmem));
811 
812 		put_device(&nvmem->dev);
813 		return ERR_PTR(-EINVAL);
814 	}
815 
816 	kref_get(&nvmem->refcnt);
817 
818 	return nvmem;
819 }
820 
821 static void __nvmem_device_put(struct nvmem_device *nvmem)
822 {
823 	put_device(&nvmem->dev);
824 	module_put(nvmem->owner);
825 	kref_put(&nvmem->refcnt, nvmem_device_release);
826 }
827 
828 #if IS_ENABLED(CONFIG_OF)
829 /**
830  * of_nvmem_device_get() - Get nvmem device from a given id
831  *
832  * @np: Device tree node that uses the nvmem device.
833  * @id: nvmem name from nvmem-names property.
834  *
835  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
836  * on success.
837  */
838 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
839 {
840 
841 	struct device_node *nvmem_np;
842 	int index = 0;
843 
844 	if (id)
845 		index = of_property_match_string(np, "nvmem-names", id);
846 
847 	nvmem_np = of_parse_phandle(np, "nvmem", index);
848 	if (!nvmem_np)
849 		return ERR_PTR(-ENOENT);
850 
851 	return __nvmem_device_get(nvmem_np, NULL);
852 }
853 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
854 #endif
855 
856 /**
857  * nvmem_device_get() - Get nvmem device from a given id
858  *
859  * @dev: Device that uses the nvmem device.
860  * @dev_name: name of the requested nvmem device.
861  *
862  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
863  * on success.
864  */
865 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
866 {
867 	if (dev->of_node) { /* try dt first */
868 		struct nvmem_device *nvmem;
869 
870 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
871 
872 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
873 			return nvmem;
874 
875 	}
876 
877 	return __nvmem_device_get(NULL, dev_name);
878 }
879 EXPORT_SYMBOL_GPL(nvmem_device_get);
880 
881 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
882 {
883 	struct nvmem_device **nvmem = res;
884 
885 	if (WARN_ON(!nvmem || !*nvmem))
886 		return 0;
887 
888 	return *nvmem == data;
889 }
890 
891 static void devm_nvmem_device_release(struct device *dev, void *res)
892 {
893 	nvmem_device_put(*(struct nvmem_device **)res);
894 }
895 
896 /**
897  * devm_nvmem_device_put() - put alredy got nvmem device
898  *
899  * @dev: Device that uses the nvmem device.
900  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
901  * that needs to be released.
902  */
903 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
904 {
905 	int ret;
906 
907 	ret = devres_release(dev, devm_nvmem_device_release,
908 			     devm_nvmem_device_match, nvmem);
909 
910 	WARN_ON(ret);
911 }
912 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
913 
914 /**
915  * nvmem_device_put() - put alredy got nvmem device
916  *
917  * @nvmem: pointer to nvmem device that needs to be released.
918  */
919 void nvmem_device_put(struct nvmem_device *nvmem)
920 {
921 	__nvmem_device_put(nvmem);
922 }
923 EXPORT_SYMBOL_GPL(nvmem_device_put);
924 
925 /**
926  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
927  *
928  * @dev: Device that requests the nvmem device.
929  * @id: name id for the requested nvmem device.
930  *
931  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
932  * on success.  The nvmem_cell will be freed by the automatically once the
933  * device is freed.
934  */
935 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
936 {
937 	struct nvmem_device **ptr, *nvmem;
938 
939 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
940 	if (!ptr)
941 		return ERR_PTR(-ENOMEM);
942 
943 	nvmem = nvmem_device_get(dev, id);
944 	if (!IS_ERR(nvmem)) {
945 		*ptr = nvmem;
946 		devres_add(dev, ptr);
947 	} else {
948 		devres_free(ptr);
949 	}
950 
951 	return nvmem;
952 }
953 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
954 
955 static struct nvmem_cell *
956 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
957 {
958 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
959 	struct nvmem_cell_lookup *lookup;
960 	struct nvmem_device *nvmem;
961 	const char *dev_id;
962 
963 	if (!dev)
964 		return ERR_PTR(-EINVAL);
965 
966 	dev_id = dev_name(dev);
967 
968 	mutex_lock(&nvmem_lookup_mutex);
969 
970 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
971 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
972 		    (strcmp(lookup->con_id, con_id) == 0)) {
973 			/* This is the right entry. */
974 			nvmem = __nvmem_device_get(NULL, lookup->nvmem_name);
975 			if (IS_ERR(nvmem)) {
976 				/* Provider may not be registered yet. */
977 				cell = ERR_CAST(nvmem);
978 				break;
979 			}
980 
981 			cell = nvmem_find_cell_by_name(nvmem,
982 						       lookup->cell_name);
983 			if (!cell) {
984 				__nvmem_device_put(nvmem);
985 				cell = ERR_PTR(-ENOENT);
986 			}
987 			break;
988 		}
989 	}
990 
991 	mutex_unlock(&nvmem_lookup_mutex);
992 	return cell;
993 }
994 
995 #if IS_ENABLED(CONFIG_OF)
996 static struct nvmem_cell *
997 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
998 {
999 	struct nvmem_cell *iter, *cell = NULL;
1000 
1001 	mutex_lock(&nvmem_mutex);
1002 	list_for_each_entry(iter, &nvmem->cells, node) {
1003 		if (np == iter->np) {
1004 			cell = iter;
1005 			break;
1006 		}
1007 	}
1008 	mutex_unlock(&nvmem_mutex);
1009 
1010 	return cell;
1011 }
1012 
1013 /**
1014  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1015  *
1016  * @np: Device tree node that uses the nvmem cell.
1017  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1018  *      for the cell at index 0 (the lone cell with no accompanying
1019  *      nvmem-cell-names property).
1020  *
1021  * Return: Will be an ERR_PTR() on error or a valid pointer
1022  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1023  * nvmem_cell_put().
1024  */
1025 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1026 {
1027 	struct device_node *cell_np, *nvmem_np;
1028 	struct nvmem_device *nvmem;
1029 	struct nvmem_cell *cell;
1030 	int index = 0;
1031 
1032 	/* if cell name exists, find index to the name */
1033 	if (id)
1034 		index = of_property_match_string(np, "nvmem-cell-names", id);
1035 
1036 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1037 	if (!cell_np)
1038 		return ERR_PTR(-ENOENT);
1039 
1040 	nvmem_np = of_get_next_parent(cell_np);
1041 	if (!nvmem_np)
1042 		return ERR_PTR(-EINVAL);
1043 
1044 	nvmem = __nvmem_device_get(nvmem_np, NULL);
1045 	of_node_put(nvmem_np);
1046 	if (IS_ERR(nvmem))
1047 		return ERR_CAST(nvmem);
1048 
1049 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1050 	if (!cell) {
1051 		__nvmem_device_put(nvmem);
1052 		return ERR_PTR(-ENOENT);
1053 	}
1054 
1055 	return cell;
1056 }
1057 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1058 #endif
1059 
1060 /**
1061  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1062  *
1063  * @dev: Device that requests the nvmem cell.
1064  * @id: nvmem cell name to get (this corresponds with the name from the
1065  *      nvmem-cell-names property for DT systems and with the con_id from
1066  *      the lookup entry for non-DT systems).
1067  *
1068  * Return: Will be an ERR_PTR() on error or a valid pointer
1069  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1070  * nvmem_cell_put().
1071  */
1072 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1073 {
1074 	struct nvmem_cell *cell;
1075 
1076 	if (dev->of_node) { /* try dt first */
1077 		cell = of_nvmem_cell_get(dev->of_node, id);
1078 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1079 			return cell;
1080 	}
1081 
1082 	/* NULL cell id only allowed for device tree; invalid otherwise */
1083 	if (!id)
1084 		return ERR_PTR(-EINVAL);
1085 
1086 	return nvmem_cell_get_from_lookup(dev, id);
1087 }
1088 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1089 
1090 static void devm_nvmem_cell_release(struct device *dev, void *res)
1091 {
1092 	nvmem_cell_put(*(struct nvmem_cell **)res);
1093 }
1094 
1095 /**
1096  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1097  *
1098  * @dev: Device that requests the nvmem cell.
1099  * @id: nvmem cell name id to get.
1100  *
1101  * Return: Will be an ERR_PTR() on error or a valid pointer
1102  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1103  * automatically once the device is freed.
1104  */
1105 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1106 {
1107 	struct nvmem_cell **ptr, *cell;
1108 
1109 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1110 	if (!ptr)
1111 		return ERR_PTR(-ENOMEM);
1112 
1113 	cell = nvmem_cell_get(dev, id);
1114 	if (!IS_ERR(cell)) {
1115 		*ptr = cell;
1116 		devres_add(dev, ptr);
1117 	} else {
1118 		devres_free(ptr);
1119 	}
1120 
1121 	return cell;
1122 }
1123 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1124 
1125 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1126 {
1127 	struct nvmem_cell **c = res;
1128 
1129 	if (WARN_ON(!c || !*c))
1130 		return 0;
1131 
1132 	return *c == data;
1133 }
1134 
1135 /**
1136  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1137  * from devm_nvmem_cell_get.
1138  *
1139  * @dev: Device that requests the nvmem cell.
1140  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1141  */
1142 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1143 {
1144 	int ret;
1145 
1146 	ret = devres_release(dev, devm_nvmem_cell_release,
1147 				devm_nvmem_cell_match, cell);
1148 
1149 	WARN_ON(ret);
1150 }
1151 EXPORT_SYMBOL(devm_nvmem_cell_put);
1152 
1153 /**
1154  * nvmem_cell_put() - Release previously allocated nvmem cell.
1155  *
1156  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1157  */
1158 void nvmem_cell_put(struct nvmem_cell *cell)
1159 {
1160 	struct nvmem_device *nvmem = cell->nvmem;
1161 
1162 	__nvmem_device_put(nvmem);
1163 }
1164 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1165 
1166 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1167 {
1168 	u8 *p, *b;
1169 	int i, bit_offset = cell->bit_offset;
1170 
1171 	p = b = buf;
1172 	if (bit_offset) {
1173 		/* First shift */
1174 		*b++ >>= bit_offset;
1175 
1176 		/* setup rest of the bytes if any */
1177 		for (i = 1; i < cell->bytes; i++) {
1178 			/* Get bits from next byte and shift them towards msb */
1179 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1180 
1181 			p = b;
1182 			*b++ >>= bit_offset;
1183 		}
1184 
1185 		/* result fits in less bytes */
1186 		if (cell->bytes != DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE))
1187 			*p-- = 0;
1188 	}
1189 	/* clear msb bits if any leftover in the last byte */
1190 	*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1191 }
1192 
1193 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1194 		      struct nvmem_cell *cell,
1195 		      void *buf, size_t *len)
1196 {
1197 	int rc;
1198 
1199 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1200 
1201 	if (rc)
1202 		return rc;
1203 
1204 	/* shift bits in-place */
1205 	if (cell->bit_offset || cell->nbits)
1206 		nvmem_shift_read_buffer_in_place(cell, buf);
1207 
1208 	if (len)
1209 		*len = cell->bytes;
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * nvmem_cell_read() - Read a given nvmem cell
1216  *
1217  * @cell: nvmem cell to be read.
1218  * @len: pointer to length of cell which will be populated on successful read;
1219  *	 can be NULL.
1220  *
1221  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1222  * buffer should be freed by the consumer with a kfree().
1223  */
1224 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1225 {
1226 	struct nvmem_device *nvmem = cell->nvmem;
1227 	u8 *buf;
1228 	int rc;
1229 
1230 	if (!nvmem)
1231 		return ERR_PTR(-EINVAL);
1232 
1233 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1234 	if (!buf)
1235 		return ERR_PTR(-ENOMEM);
1236 
1237 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1238 	if (rc) {
1239 		kfree(buf);
1240 		return ERR_PTR(rc);
1241 	}
1242 
1243 	return buf;
1244 }
1245 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1246 
1247 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1248 					     u8 *_buf, int len)
1249 {
1250 	struct nvmem_device *nvmem = cell->nvmem;
1251 	int i, rc, nbits, bit_offset = cell->bit_offset;
1252 	u8 v, *p, *buf, *b, pbyte, pbits;
1253 
1254 	nbits = cell->nbits;
1255 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1256 	if (!buf)
1257 		return ERR_PTR(-ENOMEM);
1258 
1259 	memcpy(buf, _buf, len);
1260 	p = b = buf;
1261 
1262 	if (bit_offset) {
1263 		pbyte = *b;
1264 		*b <<= bit_offset;
1265 
1266 		/* setup the first byte with lsb bits from nvmem */
1267 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1268 		if (rc)
1269 			goto err;
1270 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1271 
1272 		/* setup rest of the byte if any */
1273 		for (i = 1; i < cell->bytes; i++) {
1274 			/* Get last byte bits and shift them towards lsb */
1275 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1276 			pbyte = *b;
1277 			p = b;
1278 			*b <<= bit_offset;
1279 			*b++ |= pbits;
1280 		}
1281 	}
1282 
1283 	/* if it's not end on byte boundary */
1284 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1285 		/* setup the last byte with msb bits from nvmem */
1286 		rc = nvmem_reg_read(nvmem,
1287 				    cell->offset + cell->bytes - 1, &v, 1);
1288 		if (rc)
1289 			goto err;
1290 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1291 
1292 	}
1293 
1294 	return buf;
1295 err:
1296 	kfree(buf);
1297 	return ERR_PTR(rc);
1298 }
1299 
1300 /**
1301  * nvmem_cell_write() - Write to a given nvmem cell
1302  *
1303  * @cell: nvmem cell to be written.
1304  * @buf: Buffer to be written.
1305  * @len: length of buffer to be written to nvmem cell.
1306  *
1307  * Return: length of bytes written or negative on failure.
1308  */
1309 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1310 {
1311 	struct nvmem_device *nvmem = cell->nvmem;
1312 	int rc;
1313 
1314 	if (!nvmem || nvmem->read_only ||
1315 	    (cell->bit_offset == 0 && len != cell->bytes))
1316 		return -EINVAL;
1317 
1318 	if (cell->bit_offset || cell->nbits) {
1319 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1320 		if (IS_ERR(buf))
1321 			return PTR_ERR(buf);
1322 	}
1323 
1324 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1325 
1326 	/* free the tmp buffer */
1327 	if (cell->bit_offset || cell->nbits)
1328 		kfree(buf);
1329 
1330 	if (rc)
1331 		return rc;
1332 
1333 	return len;
1334 }
1335 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1336 
1337 /**
1338  * nvmem_cell_read_u32() - Read a cell value as an u32
1339  *
1340  * @dev: Device that requests the nvmem cell.
1341  * @cell_id: Name of nvmem cell to read.
1342  * @val: pointer to output value.
1343  *
1344  * Return: 0 on success or negative errno.
1345  */
1346 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1347 {
1348 	struct nvmem_cell *cell;
1349 	void *buf;
1350 	size_t len;
1351 
1352 	cell = nvmem_cell_get(dev, cell_id);
1353 	if (IS_ERR(cell))
1354 		return PTR_ERR(cell);
1355 
1356 	buf = nvmem_cell_read(cell, &len);
1357 	if (IS_ERR(buf)) {
1358 		nvmem_cell_put(cell);
1359 		return PTR_ERR(buf);
1360 	}
1361 	if (len != sizeof(*val)) {
1362 		kfree(buf);
1363 		nvmem_cell_put(cell);
1364 		return -EINVAL;
1365 	}
1366 	memcpy(val, buf, sizeof(*val));
1367 
1368 	kfree(buf);
1369 	nvmem_cell_put(cell);
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1373 
1374 /**
1375  * nvmem_device_cell_read() - Read a given nvmem device and cell
1376  *
1377  * @nvmem: nvmem device to read from.
1378  * @info: nvmem cell info to be read.
1379  * @buf: buffer pointer which will be populated on successful read.
1380  *
1381  * Return: length of successful bytes read on success and negative
1382  * error code on error.
1383  */
1384 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1385 			   struct nvmem_cell_info *info, void *buf)
1386 {
1387 	struct nvmem_cell cell;
1388 	int rc;
1389 	ssize_t len;
1390 
1391 	if (!nvmem)
1392 		return -EINVAL;
1393 
1394 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1395 	if (rc)
1396 		return rc;
1397 
1398 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1399 	if (rc)
1400 		return rc;
1401 
1402 	return len;
1403 }
1404 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1405 
1406 /**
1407  * nvmem_device_cell_write() - Write cell to a given nvmem device
1408  *
1409  * @nvmem: nvmem device to be written to.
1410  * @info: nvmem cell info to be written.
1411  * @buf: buffer to be written to cell.
1412  *
1413  * Return: length of bytes written or negative error code on failure.
1414  */
1415 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1416 			    struct nvmem_cell_info *info, void *buf)
1417 {
1418 	struct nvmem_cell cell;
1419 	int rc;
1420 
1421 	if (!nvmem)
1422 		return -EINVAL;
1423 
1424 	rc = nvmem_cell_info_to_nvmem_cell(nvmem, info, &cell);
1425 	if (rc)
1426 		return rc;
1427 
1428 	return nvmem_cell_write(&cell, buf, cell.bytes);
1429 }
1430 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1431 
1432 /**
1433  * nvmem_device_read() - Read from a given nvmem device
1434  *
1435  * @nvmem: nvmem device to read from.
1436  * @offset: offset in nvmem device.
1437  * @bytes: number of bytes to read.
1438  * @buf: buffer pointer which will be populated on successful read.
1439  *
1440  * Return: length of successful bytes read on success and negative
1441  * error code on error.
1442  */
1443 int nvmem_device_read(struct nvmem_device *nvmem,
1444 		      unsigned int offset,
1445 		      size_t bytes, void *buf)
1446 {
1447 	int rc;
1448 
1449 	if (!nvmem)
1450 		return -EINVAL;
1451 
1452 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1453 
1454 	if (rc)
1455 		return rc;
1456 
1457 	return bytes;
1458 }
1459 EXPORT_SYMBOL_GPL(nvmem_device_read);
1460 
1461 /**
1462  * nvmem_device_write() - Write cell to a given nvmem device
1463  *
1464  * @nvmem: nvmem device to be written to.
1465  * @offset: offset in nvmem device.
1466  * @bytes: number of bytes to write.
1467  * @buf: buffer to be written.
1468  *
1469  * Return: length of bytes written or negative error code on failure.
1470  */
1471 int nvmem_device_write(struct nvmem_device *nvmem,
1472 		       unsigned int offset,
1473 		       size_t bytes, void *buf)
1474 {
1475 	int rc;
1476 
1477 	if (!nvmem)
1478 		return -EINVAL;
1479 
1480 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1481 
1482 	if (rc)
1483 		return rc;
1484 
1485 
1486 	return bytes;
1487 }
1488 EXPORT_SYMBOL_GPL(nvmem_device_write);
1489 
1490 /**
1491  * nvmem_add_cell_table() - register a table of cell info entries
1492  *
1493  * @table: table of cell info entries
1494  */
1495 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1496 {
1497 	mutex_lock(&nvmem_cell_mutex);
1498 	list_add_tail(&table->node, &nvmem_cell_tables);
1499 	mutex_unlock(&nvmem_cell_mutex);
1500 }
1501 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1502 
1503 /**
1504  * nvmem_del_cell_table() - remove a previously registered cell info table
1505  *
1506  * @table: table of cell info entries
1507  */
1508 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1509 {
1510 	mutex_lock(&nvmem_cell_mutex);
1511 	list_del(&table->node);
1512 	mutex_unlock(&nvmem_cell_mutex);
1513 }
1514 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1515 
1516 /**
1517  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1518  *
1519  * @entries: array of cell lookup entries
1520  * @nentries: number of cell lookup entries in the array
1521  */
1522 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1523 {
1524 	int i;
1525 
1526 	mutex_lock(&nvmem_lookup_mutex);
1527 	for (i = 0; i < nentries; i++)
1528 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1529 	mutex_unlock(&nvmem_lookup_mutex);
1530 }
1531 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1532 
1533 /**
1534  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1535  *                            entries
1536  *
1537  * @entries: array of cell lookup entries
1538  * @nentries: number of cell lookup entries in the array
1539  */
1540 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1541 {
1542 	int i;
1543 
1544 	mutex_lock(&nvmem_lookup_mutex);
1545 	for (i = 0; i < nentries; i++)
1546 		list_del(&entries[i].node);
1547 	mutex_unlock(&nvmem_lookup_mutex);
1548 }
1549 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1550 
1551 /**
1552  * nvmem_dev_name() - Get the name of a given nvmem device.
1553  *
1554  * @nvmem: nvmem device.
1555  *
1556  * Return: name of the nvmem device.
1557  */
1558 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1559 {
1560 	return dev_name(&nvmem->dev);
1561 }
1562 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1563 
1564 static int __init nvmem_init(void)
1565 {
1566 	return bus_register(&nvmem_bus_type);
1567 }
1568 
1569 static void __exit nvmem_exit(void)
1570 {
1571 	bus_unregister(&nvmem_bus_type);
1572 }
1573 
1574 subsys_initcall(nvmem_init);
1575 module_exit(nvmem_exit);
1576 
1577 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1578 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1579 MODULE_DESCRIPTION("nvmem Driver Core");
1580 MODULE_LICENSE("GPL v2");
1581