1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <linux/nvme-rdma.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 38 39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 /* 46 * We handle AEN commands ourselves and don't even let the 47 * block layer know about them. 48 */ 49 #define NVME_RDMA_NR_AEN_COMMANDS 1 50 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 51 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 52 53 struct nvme_rdma_device { 54 struct ib_device *dev; 55 struct ib_pd *pd; 56 struct kref ref; 57 struct list_head entry; 58 }; 59 60 struct nvme_rdma_qe { 61 struct ib_cqe cqe; 62 void *data; 63 u64 dma; 64 }; 65 66 struct nvme_rdma_queue; 67 struct nvme_rdma_request { 68 struct nvme_request req; 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_CONNECTED = (1 << 0), 84 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 85 NVME_RDMA_Q_DELETING = (1 << 2), 86 NVME_RDMA_Q_LIVE = (1 << 3), 87 }; 88 89 struct nvme_rdma_queue { 90 struct nvme_rdma_qe *rsp_ring; 91 u8 sig_count; 92 int queue_size; 93 size_t cmnd_capsule_len; 94 struct nvme_rdma_ctrl *ctrl; 95 struct nvme_rdma_device *device; 96 struct ib_cq *ib_cq; 97 struct ib_qp *qp; 98 99 unsigned long flags; 100 struct rdma_cm_id *cm_id; 101 int cm_error; 102 struct completion cm_done; 103 }; 104 105 struct nvme_rdma_ctrl { 106 /* read and written in the hot path */ 107 spinlock_t lock; 108 109 /* read only in the hot path */ 110 struct nvme_rdma_queue *queues; 111 u32 queue_count; 112 113 /* other member variables */ 114 struct blk_mq_tag_set tag_set; 115 struct work_struct delete_work; 116 struct work_struct reset_work; 117 struct work_struct err_work; 118 119 struct nvme_rdma_qe async_event_sqe; 120 121 int reconnect_delay; 122 struct delayed_work reconnect_work; 123 124 struct list_head list; 125 126 struct blk_mq_tag_set admin_tag_set; 127 struct nvme_rdma_device *device; 128 129 u64 cap; 130 u32 max_fr_pages; 131 132 union { 133 struct sockaddr addr; 134 struct sockaddr_in addr_in; 135 }; 136 137 struct nvme_ctrl ctrl; 138 }; 139 140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 141 { 142 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 143 } 144 145 static LIST_HEAD(device_list); 146 static DEFINE_MUTEX(device_list_mutex); 147 148 static LIST_HEAD(nvme_rdma_ctrl_list); 149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 150 151 static struct workqueue_struct *nvme_rdma_wq; 152 153 /* 154 * Disabling this option makes small I/O goes faster, but is fundamentally 155 * unsafe. With it turned off we will have to register a global rkey that 156 * allows read and write access to all physical memory. 157 */ 158 static bool register_always = true; 159 module_param(register_always, bool, 0444); 160 MODULE_PARM_DESC(register_always, 161 "Use memory registration even for contiguous memory regions"); 162 163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 164 struct rdma_cm_event *event); 165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 166 167 /* XXX: really should move to a generic header sooner or later.. */ 168 static inline void put_unaligned_le24(u32 val, u8 *p) 169 { 170 *p++ = val; 171 *p++ = val >> 8; 172 *p++ = val >> 16; 173 } 174 175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 176 { 177 return queue - queue->ctrl->queues; 178 } 179 180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 181 { 182 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 183 } 184 185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 186 size_t capsule_size, enum dma_data_direction dir) 187 { 188 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 189 kfree(qe->data); 190 } 191 192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 qe->data = kzalloc(capsule_size, GFP_KERNEL); 196 if (!qe->data) 197 return -ENOMEM; 198 199 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 200 if (ib_dma_mapping_error(ibdev, qe->dma)) { 201 kfree(qe->data); 202 return -ENOMEM; 203 } 204 205 return 0; 206 } 207 208 static void nvme_rdma_free_ring(struct ib_device *ibdev, 209 struct nvme_rdma_qe *ring, size_t ib_queue_size, 210 size_t capsule_size, enum dma_data_direction dir) 211 { 212 int i; 213 214 for (i = 0; i < ib_queue_size; i++) 215 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 216 kfree(ring); 217 } 218 219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 220 size_t ib_queue_size, size_t capsule_size, 221 enum dma_data_direction dir) 222 { 223 struct nvme_rdma_qe *ring; 224 int i; 225 226 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 227 if (!ring) 228 return NULL; 229 230 for (i = 0; i < ib_queue_size; i++) { 231 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 232 goto out_free_ring; 233 } 234 235 return ring; 236 237 out_free_ring: 238 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 239 return NULL; 240 } 241 242 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 243 { 244 pr_debug("QP event %s (%d)\n", 245 ib_event_msg(event->event), event->event); 246 247 } 248 249 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 250 { 251 wait_for_completion_interruptible_timeout(&queue->cm_done, 252 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 253 return queue->cm_error; 254 } 255 256 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 257 { 258 struct nvme_rdma_device *dev = queue->device; 259 struct ib_qp_init_attr init_attr; 260 int ret; 261 262 memset(&init_attr, 0, sizeof(init_attr)); 263 init_attr.event_handler = nvme_rdma_qp_event; 264 /* +1 for drain */ 265 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 266 /* +1 for drain */ 267 init_attr.cap.max_recv_wr = queue->queue_size + 1; 268 init_attr.cap.max_recv_sge = 1; 269 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 270 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 271 init_attr.qp_type = IB_QPT_RC; 272 init_attr.send_cq = queue->ib_cq; 273 init_attr.recv_cq = queue->ib_cq; 274 275 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 276 277 queue->qp = queue->cm_id->qp; 278 return ret; 279 } 280 281 static int nvme_rdma_reinit_request(void *data, struct request *rq) 282 { 283 struct nvme_rdma_ctrl *ctrl = data; 284 struct nvme_rdma_device *dev = ctrl->device; 285 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 286 int ret = 0; 287 288 if (!req->mr->need_inval) 289 goto out; 290 291 ib_dereg_mr(req->mr); 292 293 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 294 ctrl->max_fr_pages); 295 if (IS_ERR(req->mr)) { 296 ret = PTR_ERR(req->mr); 297 req->mr = NULL; 298 goto out; 299 } 300 301 req->mr->need_inval = false; 302 303 out: 304 return ret; 305 } 306 307 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 308 struct request *rq, unsigned int queue_idx) 309 { 310 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 311 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 312 struct nvme_rdma_device *dev = queue->device; 313 314 if (req->mr) 315 ib_dereg_mr(req->mr); 316 317 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 318 DMA_TO_DEVICE); 319 } 320 321 static void nvme_rdma_exit_request(void *data, struct request *rq, 322 unsigned int hctx_idx, unsigned int rq_idx) 323 { 324 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 325 } 326 327 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 328 unsigned int hctx_idx, unsigned int rq_idx) 329 { 330 return __nvme_rdma_exit_request(data, rq, 0); 331 } 332 333 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 334 struct request *rq, unsigned int queue_idx) 335 { 336 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 337 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 338 struct nvme_rdma_device *dev = queue->device; 339 struct ib_device *ibdev = dev->dev; 340 int ret; 341 342 BUG_ON(queue_idx >= ctrl->queue_count); 343 344 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 345 DMA_TO_DEVICE); 346 if (ret) 347 return ret; 348 349 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 350 ctrl->max_fr_pages); 351 if (IS_ERR(req->mr)) { 352 ret = PTR_ERR(req->mr); 353 goto out_free_qe; 354 } 355 356 req->queue = queue; 357 358 return 0; 359 360 out_free_qe: 361 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 362 DMA_TO_DEVICE); 363 return -ENOMEM; 364 } 365 366 static int nvme_rdma_init_request(void *data, struct request *rq, 367 unsigned int hctx_idx, unsigned int rq_idx, 368 unsigned int numa_node) 369 { 370 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 371 } 372 373 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 374 unsigned int hctx_idx, unsigned int rq_idx, 375 unsigned int numa_node) 376 { 377 return __nvme_rdma_init_request(data, rq, 0); 378 } 379 380 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 381 unsigned int hctx_idx) 382 { 383 struct nvme_rdma_ctrl *ctrl = data; 384 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 385 386 BUG_ON(hctx_idx >= ctrl->queue_count); 387 388 hctx->driver_data = queue; 389 return 0; 390 } 391 392 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 393 unsigned int hctx_idx) 394 { 395 struct nvme_rdma_ctrl *ctrl = data; 396 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 397 398 BUG_ON(hctx_idx != 0); 399 400 hctx->driver_data = queue; 401 return 0; 402 } 403 404 static void nvme_rdma_free_dev(struct kref *ref) 405 { 406 struct nvme_rdma_device *ndev = 407 container_of(ref, struct nvme_rdma_device, ref); 408 409 mutex_lock(&device_list_mutex); 410 list_del(&ndev->entry); 411 mutex_unlock(&device_list_mutex); 412 413 ib_dealloc_pd(ndev->pd); 414 kfree(ndev); 415 } 416 417 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 418 { 419 kref_put(&dev->ref, nvme_rdma_free_dev); 420 } 421 422 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 423 { 424 return kref_get_unless_zero(&dev->ref); 425 } 426 427 static struct nvme_rdma_device * 428 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 429 { 430 struct nvme_rdma_device *ndev; 431 432 mutex_lock(&device_list_mutex); 433 list_for_each_entry(ndev, &device_list, entry) { 434 if (ndev->dev->node_guid == cm_id->device->node_guid && 435 nvme_rdma_dev_get(ndev)) 436 goto out_unlock; 437 } 438 439 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 440 if (!ndev) 441 goto out_err; 442 443 ndev->dev = cm_id->device; 444 kref_init(&ndev->ref); 445 446 ndev->pd = ib_alloc_pd(ndev->dev, 447 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 448 if (IS_ERR(ndev->pd)) 449 goto out_free_dev; 450 451 if (!(ndev->dev->attrs.device_cap_flags & 452 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 453 dev_err(&ndev->dev->dev, 454 "Memory registrations not supported.\n"); 455 goto out_free_pd; 456 } 457 458 list_add(&ndev->entry, &device_list); 459 out_unlock: 460 mutex_unlock(&device_list_mutex); 461 return ndev; 462 463 out_free_pd: 464 ib_dealloc_pd(ndev->pd); 465 out_free_dev: 466 kfree(ndev); 467 out_err: 468 mutex_unlock(&device_list_mutex); 469 return NULL; 470 } 471 472 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 473 { 474 struct nvme_rdma_device *dev; 475 struct ib_device *ibdev; 476 477 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 478 return; 479 480 dev = queue->device; 481 ibdev = dev->dev; 482 rdma_destroy_qp(queue->cm_id); 483 ib_free_cq(queue->ib_cq); 484 485 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 486 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 487 488 nvme_rdma_dev_put(dev); 489 } 490 491 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 492 struct nvme_rdma_device *dev) 493 { 494 struct ib_device *ibdev = dev->dev; 495 const int send_wr_factor = 3; /* MR, SEND, INV */ 496 const int cq_factor = send_wr_factor + 1; /* + RECV */ 497 int comp_vector, idx = nvme_rdma_queue_idx(queue); 498 499 int ret; 500 501 queue->device = dev; 502 503 /* 504 * The admin queue is barely used once the controller is live, so don't 505 * bother to spread it out. 506 */ 507 if (idx == 0) 508 comp_vector = 0; 509 else 510 comp_vector = idx % ibdev->num_comp_vectors; 511 512 513 /* +1 for ib_stop_cq */ 514 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 515 cq_factor * queue->queue_size + 1, comp_vector, 516 IB_POLL_SOFTIRQ); 517 if (IS_ERR(queue->ib_cq)) { 518 ret = PTR_ERR(queue->ib_cq); 519 goto out; 520 } 521 522 ret = nvme_rdma_create_qp(queue, send_wr_factor); 523 if (ret) 524 goto out_destroy_ib_cq; 525 526 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 527 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 528 if (!queue->rsp_ring) { 529 ret = -ENOMEM; 530 goto out_destroy_qp; 531 } 532 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 533 534 return 0; 535 536 out_destroy_qp: 537 ib_destroy_qp(queue->qp); 538 out_destroy_ib_cq: 539 ib_free_cq(queue->ib_cq); 540 out: 541 return ret; 542 } 543 544 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 545 int idx, size_t queue_size) 546 { 547 struct nvme_rdma_queue *queue; 548 int ret; 549 550 queue = &ctrl->queues[idx]; 551 queue->ctrl = ctrl; 552 init_completion(&queue->cm_done); 553 554 if (idx > 0) 555 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 556 else 557 queue->cmnd_capsule_len = sizeof(struct nvme_command); 558 559 queue->queue_size = queue_size; 560 561 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 562 RDMA_PS_TCP, IB_QPT_RC); 563 if (IS_ERR(queue->cm_id)) { 564 dev_info(ctrl->ctrl.device, 565 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 566 return PTR_ERR(queue->cm_id); 567 } 568 569 queue->cm_error = -ETIMEDOUT; 570 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 571 NVME_RDMA_CONNECT_TIMEOUT_MS); 572 if (ret) { 573 dev_info(ctrl->ctrl.device, 574 "rdma_resolve_addr failed (%d).\n", ret); 575 goto out_destroy_cm_id; 576 } 577 578 ret = nvme_rdma_wait_for_cm(queue); 579 if (ret) { 580 dev_info(ctrl->ctrl.device, 581 "rdma_resolve_addr wait failed (%d).\n", ret); 582 goto out_destroy_cm_id; 583 } 584 585 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 586 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 587 588 return 0; 589 590 out_destroy_cm_id: 591 nvme_rdma_destroy_queue_ib(queue); 592 rdma_destroy_id(queue->cm_id); 593 return ret; 594 } 595 596 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 597 { 598 rdma_disconnect(queue->cm_id); 599 ib_drain_qp(queue->qp); 600 } 601 602 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 603 { 604 nvme_rdma_destroy_queue_ib(queue); 605 rdma_destroy_id(queue->cm_id); 606 } 607 608 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 609 { 610 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 611 return; 612 nvme_rdma_stop_queue(queue); 613 nvme_rdma_free_queue(queue); 614 } 615 616 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 617 { 618 int i; 619 620 for (i = 1; i < ctrl->queue_count; i++) 621 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 622 } 623 624 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 int i, ret = 0; 627 628 for (i = 1; i < ctrl->queue_count; i++) { 629 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 630 if (ret) { 631 dev_info(ctrl->ctrl.device, 632 "failed to connect i/o queue: %d\n", ret); 633 goto out_free_queues; 634 } 635 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 636 } 637 638 return 0; 639 640 out_free_queues: 641 nvme_rdma_free_io_queues(ctrl); 642 return ret; 643 } 644 645 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 646 { 647 int i, ret; 648 649 for (i = 1; i < ctrl->queue_count; i++) { 650 ret = nvme_rdma_init_queue(ctrl, i, 651 ctrl->ctrl.opts->queue_size); 652 if (ret) { 653 dev_info(ctrl->ctrl.device, 654 "failed to initialize i/o queue: %d\n", ret); 655 goto out_free_queues; 656 } 657 } 658 659 return 0; 660 661 out_free_queues: 662 for (i--; i >= 1; i--) 663 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 664 665 return ret; 666 } 667 668 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 669 { 670 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 671 sizeof(struct nvme_command), DMA_TO_DEVICE); 672 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 673 blk_cleanup_queue(ctrl->ctrl.admin_q); 674 blk_mq_free_tag_set(&ctrl->admin_tag_set); 675 nvme_rdma_dev_put(ctrl->device); 676 } 677 678 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 679 { 680 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 681 682 if (list_empty(&ctrl->list)) 683 goto free_ctrl; 684 685 mutex_lock(&nvme_rdma_ctrl_mutex); 686 list_del(&ctrl->list); 687 mutex_unlock(&nvme_rdma_ctrl_mutex); 688 689 kfree(ctrl->queues); 690 nvmf_free_options(nctrl->opts); 691 free_ctrl: 692 kfree(ctrl); 693 } 694 695 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 696 { 697 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 698 struct nvme_rdma_ctrl, reconnect_work); 699 bool changed; 700 int ret; 701 702 if (ctrl->queue_count > 1) { 703 nvme_rdma_free_io_queues(ctrl); 704 705 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 706 if (ret) 707 goto requeue; 708 } 709 710 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 711 712 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 713 if (ret) 714 goto requeue; 715 716 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 717 if (ret) 718 goto requeue; 719 720 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 721 722 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 723 if (ret) 724 goto stop_admin_q; 725 726 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 727 728 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 729 if (ret) 730 goto stop_admin_q; 731 732 nvme_start_keep_alive(&ctrl->ctrl); 733 734 if (ctrl->queue_count > 1) { 735 ret = nvme_rdma_init_io_queues(ctrl); 736 if (ret) 737 goto stop_admin_q; 738 739 ret = nvme_rdma_connect_io_queues(ctrl); 740 if (ret) 741 goto stop_admin_q; 742 } 743 744 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 745 WARN_ON_ONCE(!changed); 746 747 if (ctrl->queue_count > 1) { 748 nvme_start_queues(&ctrl->ctrl); 749 nvme_queue_scan(&ctrl->ctrl); 750 nvme_queue_async_events(&ctrl->ctrl); 751 } 752 753 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 754 755 return; 756 757 stop_admin_q: 758 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 759 requeue: 760 /* Make sure we are not resetting/deleting */ 761 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 762 dev_info(ctrl->ctrl.device, 763 "Failed reconnect attempt, requeueing...\n"); 764 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 765 ctrl->reconnect_delay * HZ); 766 } 767 } 768 769 static void nvme_rdma_error_recovery_work(struct work_struct *work) 770 { 771 struct nvme_rdma_ctrl *ctrl = container_of(work, 772 struct nvme_rdma_ctrl, err_work); 773 int i; 774 775 nvme_stop_keep_alive(&ctrl->ctrl); 776 777 for (i = 0; i < ctrl->queue_count; i++) { 778 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 779 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 780 } 781 782 if (ctrl->queue_count > 1) 783 nvme_stop_queues(&ctrl->ctrl); 784 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 785 786 /* We must take care of fastfail/requeue all our inflight requests */ 787 if (ctrl->queue_count > 1) 788 blk_mq_tagset_busy_iter(&ctrl->tag_set, 789 nvme_cancel_request, &ctrl->ctrl); 790 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 791 nvme_cancel_request, &ctrl->ctrl); 792 793 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 794 ctrl->reconnect_delay); 795 796 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 797 ctrl->reconnect_delay * HZ); 798 } 799 800 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 801 { 802 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 803 return; 804 805 queue_work(nvme_rdma_wq, &ctrl->err_work); 806 } 807 808 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 809 const char *op) 810 { 811 struct nvme_rdma_queue *queue = cq->cq_context; 812 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 813 814 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 815 dev_info(ctrl->ctrl.device, 816 "%s for CQE 0x%p failed with status %s (%d)\n", 817 op, wc->wr_cqe, 818 ib_wc_status_msg(wc->status), wc->status); 819 nvme_rdma_error_recovery(ctrl); 820 } 821 822 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 823 { 824 if (unlikely(wc->status != IB_WC_SUCCESS)) 825 nvme_rdma_wr_error(cq, wc, "MEMREG"); 826 } 827 828 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 829 { 830 if (unlikely(wc->status != IB_WC_SUCCESS)) 831 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 832 } 833 834 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 835 struct nvme_rdma_request *req) 836 { 837 struct ib_send_wr *bad_wr; 838 struct ib_send_wr wr = { 839 .opcode = IB_WR_LOCAL_INV, 840 .next = NULL, 841 .num_sge = 0, 842 .send_flags = 0, 843 .ex.invalidate_rkey = req->mr->rkey, 844 }; 845 846 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 847 wr.wr_cqe = &req->reg_cqe; 848 849 return ib_post_send(queue->qp, &wr, &bad_wr); 850 } 851 852 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 853 struct request *rq) 854 { 855 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 856 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 857 struct nvme_rdma_device *dev = queue->device; 858 struct ib_device *ibdev = dev->dev; 859 int res; 860 861 if (!blk_rq_bytes(rq)) 862 return; 863 864 if (req->mr->need_inval) { 865 res = nvme_rdma_inv_rkey(queue, req); 866 if (res < 0) { 867 dev_err(ctrl->ctrl.device, 868 "Queueing INV WR for rkey %#x failed (%d)\n", 869 req->mr->rkey, res); 870 nvme_rdma_error_recovery(queue->ctrl); 871 } 872 } 873 874 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 875 req->nents, rq_data_dir(rq) == 876 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 877 878 nvme_cleanup_cmd(rq); 879 sg_free_table_chained(&req->sg_table, true); 880 } 881 882 static int nvme_rdma_set_sg_null(struct nvme_command *c) 883 { 884 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 885 886 sg->addr = 0; 887 put_unaligned_le24(0, sg->length); 888 put_unaligned_le32(0, sg->key); 889 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 890 return 0; 891 } 892 893 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 894 struct nvme_rdma_request *req, struct nvme_command *c) 895 { 896 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 897 898 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 899 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 900 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 901 902 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 903 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 904 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 905 906 req->inline_data = true; 907 req->num_sge++; 908 return 0; 909 } 910 911 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 912 struct nvme_rdma_request *req, struct nvme_command *c) 913 { 914 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 915 916 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 917 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 918 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 919 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 920 return 0; 921 } 922 923 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 924 struct nvme_rdma_request *req, struct nvme_command *c, 925 int count) 926 { 927 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 928 int nr; 929 930 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 931 if (nr < count) { 932 if (nr < 0) 933 return nr; 934 return -EINVAL; 935 } 936 937 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 938 939 req->reg_cqe.done = nvme_rdma_memreg_done; 940 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 941 req->reg_wr.wr.opcode = IB_WR_REG_MR; 942 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 943 req->reg_wr.wr.num_sge = 0; 944 req->reg_wr.mr = req->mr; 945 req->reg_wr.key = req->mr->rkey; 946 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 947 IB_ACCESS_REMOTE_READ | 948 IB_ACCESS_REMOTE_WRITE; 949 950 req->mr->need_inval = true; 951 952 sg->addr = cpu_to_le64(req->mr->iova); 953 put_unaligned_le24(req->mr->length, sg->length); 954 put_unaligned_le32(req->mr->rkey, sg->key); 955 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 956 NVME_SGL_FMT_INVALIDATE; 957 958 return 0; 959 } 960 961 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 962 struct request *rq, unsigned int map_len, 963 struct nvme_command *c) 964 { 965 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 966 struct nvme_rdma_device *dev = queue->device; 967 struct ib_device *ibdev = dev->dev; 968 int count, ret; 969 970 req->num_sge = 1; 971 req->inline_data = false; 972 req->mr->need_inval = false; 973 974 c->common.flags |= NVME_CMD_SGL_METABUF; 975 976 if (!blk_rq_bytes(rq)) 977 return nvme_rdma_set_sg_null(c); 978 979 req->sg_table.sgl = req->first_sgl; 980 ret = sg_alloc_table_chained(&req->sg_table, 981 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 982 if (ret) 983 return -ENOMEM; 984 985 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 986 987 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 988 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 989 if (unlikely(count <= 0)) { 990 sg_free_table_chained(&req->sg_table, true); 991 return -EIO; 992 } 993 994 if (count == 1) { 995 if (rq_data_dir(rq) == WRITE && 996 map_len <= nvme_rdma_inline_data_size(queue) && 997 nvme_rdma_queue_idx(queue)) 998 return nvme_rdma_map_sg_inline(queue, req, c); 999 1000 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1001 return nvme_rdma_map_sg_single(queue, req, c); 1002 } 1003 1004 return nvme_rdma_map_sg_fr(queue, req, c, count); 1005 } 1006 1007 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1008 { 1009 if (unlikely(wc->status != IB_WC_SUCCESS)) 1010 nvme_rdma_wr_error(cq, wc, "SEND"); 1011 } 1012 1013 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1014 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1015 struct ib_send_wr *first, bool flush) 1016 { 1017 struct ib_send_wr wr, *bad_wr; 1018 int ret; 1019 1020 sge->addr = qe->dma; 1021 sge->length = sizeof(struct nvme_command), 1022 sge->lkey = queue->device->pd->local_dma_lkey; 1023 1024 qe->cqe.done = nvme_rdma_send_done; 1025 1026 wr.next = NULL; 1027 wr.wr_cqe = &qe->cqe; 1028 wr.sg_list = sge; 1029 wr.num_sge = num_sge; 1030 wr.opcode = IB_WR_SEND; 1031 wr.send_flags = 0; 1032 1033 /* 1034 * Unsignalled send completions are another giant desaster in the 1035 * IB Verbs spec: If we don't regularly post signalled sends 1036 * the send queue will fill up and only a QP reset will rescue us. 1037 * Would have been way to obvious to handle this in hardware or 1038 * at least the RDMA stack.. 1039 * 1040 * This messy and racy code sniplet is copy and pasted from the iSER 1041 * initiator, and the magic '32' comes from there as well. 1042 * 1043 * Always signal the flushes. The magic request used for the flush 1044 * sequencer is not allocated in our driver's tagset and it's 1045 * triggered to be freed by blk_cleanup_queue(). So we need to 1046 * always mark it as signaled to ensure that the "wr_cqe", which is 1047 * embeded in request's payload, is not freed when __ib_process_cq() 1048 * calls wr_cqe->done(). 1049 */ 1050 if ((++queue->sig_count % 32) == 0 || flush) 1051 wr.send_flags |= IB_SEND_SIGNALED; 1052 1053 if (first) 1054 first->next = ≀ 1055 else 1056 first = ≀ 1057 1058 ret = ib_post_send(queue->qp, first, &bad_wr); 1059 if (ret) { 1060 dev_err(queue->ctrl->ctrl.device, 1061 "%s failed with error code %d\n", __func__, ret); 1062 } 1063 return ret; 1064 } 1065 1066 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1067 struct nvme_rdma_qe *qe) 1068 { 1069 struct ib_recv_wr wr, *bad_wr; 1070 struct ib_sge list; 1071 int ret; 1072 1073 list.addr = qe->dma; 1074 list.length = sizeof(struct nvme_completion); 1075 list.lkey = queue->device->pd->local_dma_lkey; 1076 1077 qe->cqe.done = nvme_rdma_recv_done; 1078 1079 wr.next = NULL; 1080 wr.wr_cqe = &qe->cqe; 1081 wr.sg_list = &list; 1082 wr.num_sge = 1; 1083 1084 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1085 if (ret) { 1086 dev_err(queue->ctrl->ctrl.device, 1087 "%s failed with error code %d\n", __func__, ret); 1088 } 1089 return ret; 1090 } 1091 1092 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1093 { 1094 u32 queue_idx = nvme_rdma_queue_idx(queue); 1095 1096 if (queue_idx == 0) 1097 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1098 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1099 } 1100 1101 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1102 { 1103 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1104 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1105 struct ib_device *dev = queue->device->dev; 1106 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1107 struct nvme_command *cmd = sqe->data; 1108 struct ib_sge sge; 1109 int ret; 1110 1111 if (WARN_ON_ONCE(aer_idx != 0)) 1112 return; 1113 1114 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1115 1116 memset(cmd, 0, sizeof(*cmd)); 1117 cmd->common.opcode = nvme_admin_async_event; 1118 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1119 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1120 nvme_rdma_set_sg_null(cmd); 1121 1122 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1123 DMA_TO_DEVICE); 1124 1125 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1126 WARN_ON_ONCE(ret); 1127 } 1128 1129 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1130 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1131 { 1132 struct request *rq; 1133 struct nvme_rdma_request *req; 1134 int ret = 0; 1135 1136 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1137 if (!rq) { 1138 dev_err(queue->ctrl->ctrl.device, 1139 "tag 0x%x on QP %#x not found\n", 1140 cqe->command_id, queue->qp->qp_num); 1141 nvme_rdma_error_recovery(queue->ctrl); 1142 return ret; 1143 } 1144 req = blk_mq_rq_to_pdu(rq); 1145 1146 if (rq->tag == tag) 1147 ret = 1; 1148 1149 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1150 wc->ex.invalidate_rkey == req->mr->rkey) 1151 req->mr->need_inval = false; 1152 1153 req->req.result = cqe->result; 1154 blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1); 1155 return ret; 1156 } 1157 1158 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1159 { 1160 struct nvme_rdma_qe *qe = 1161 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1162 struct nvme_rdma_queue *queue = cq->cq_context; 1163 struct ib_device *ibdev = queue->device->dev; 1164 struct nvme_completion *cqe = qe->data; 1165 const size_t len = sizeof(struct nvme_completion); 1166 int ret = 0; 1167 1168 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1169 nvme_rdma_wr_error(cq, wc, "RECV"); 1170 return 0; 1171 } 1172 1173 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1174 /* 1175 * AEN requests are special as they don't time out and can 1176 * survive any kind of queue freeze and often don't respond to 1177 * aborts. We don't even bother to allocate a struct request 1178 * for them but rather special case them here. 1179 */ 1180 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1181 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1182 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1183 &cqe->result); 1184 else 1185 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1186 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1187 1188 nvme_rdma_post_recv(queue, qe); 1189 return ret; 1190 } 1191 1192 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1193 { 1194 __nvme_rdma_recv_done(cq, wc, -1); 1195 } 1196 1197 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1198 { 1199 int ret, i; 1200 1201 for (i = 0; i < queue->queue_size; i++) { 1202 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1203 if (ret) 1204 goto out_destroy_queue_ib; 1205 } 1206 1207 return 0; 1208 1209 out_destroy_queue_ib: 1210 nvme_rdma_destroy_queue_ib(queue); 1211 return ret; 1212 } 1213 1214 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1215 struct rdma_cm_event *ev) 1216 { 1217 if (ev->param.conn.private_data_len) { 1218 struct nvme_rdma_cm_rej *rej = 1219 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; 1220 1221 dev_err(queue->ctrl->ctrl.device, 1222 "Connect rejected, status %d.", le16_to_cpu(rej->sts)); 1223 /* XXX: Think of something clever to do here... */ 1224 } else { 1225 dev_err(queue->ctrl->ctrl.device, 1226 "Connect rejected, no private data.\n"); 1227 } 1228 1229 return -ECONNRESET; 1230 } 1231 1232 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1233 { 1234 struct nvme_rdma_device *dev; 1235 int ret; 1236 1237 dev = nvme_rdma_find_get_device(queue->cm_id); 1238 if (!dev) { 1239 dev_err(queue->cm_id->device->dma_device, 1240 "no client data found!\n"); 1241 return -ECONNREFUSED; 1242 } 1243 1244 ret = nvme_rdma_create_queue_ib(queue, dev); 1245 if (ret) { 1246 nvme_rdma_dev_put(dev); 1247 goto out; 1248 } 1249 1250 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1251 if (ret) { 1252 dev_err(queue->ctrl->ctrl.device, 1253 "rdma_resolve_route failed (%d).\n", 1254 queue->cm_error); 1255 goto out_destroy_queue; 1256 } 1257 1258 return 0; 1259 1260 out_destroy_queue: 1261 nvme_rdma_destroy_queue_ib(queue); 1262 out: 1263 return ret; 1264 } 1265 1266 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1267 { 1268 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1269 struct rdma_conn_param param = { }; 1270 struct nvme_rdma_cm_req priv = { }; 1271 int ret; 1272 1273 param.qp_num = queue->qp->qp_num; 1274 param.flow_control = 1; 1275 1276 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1277 /* maximum retry count */ 1278 param.retry_count = 7; 1279 param.rnr_retry_count = 7; 1280 param.private_data = &priv; 1281 param.private_data_len = sizeof(priv); 1282 1283 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1284 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1285 /* 1286 * set the admin queue depth to the minimum size 1287 * specified by the Fabrics standard. 1288 */ 1289 if (priv.qid == 0) { 1290 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1291 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1292 } else { 1293 /* 1294 * current interpretation of the fabrics spec 1295 * is at minimum you make hrqsize sqsize+1, or a 1296 * 1's based representation of sqsize. 1297 */ 1298 priv.hrqsize = cpu_to_le16(queue->queue_size); 1299 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1300 } 1301 1302 ret = rdma_connect(queue->cm_id, ¶m); 1303 if (ret) { 1304 dev_err(ctrl->ctrl.device, 1305 "rdma_connect failed (%d).\n", ret); 1306 goto out_destroy_queue_ib; 1307 } 1308 1309 return 0; 1310 1311 out_destroy_queue_ib: 1312 nvme_rdma_destroy_queue_ib(queue); 1313 return ret; 1314 } 1315 1316 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1317 struct rdma_cm_event *ev) 1318 { 1319 struct nvme_rdma_queue *queue = cm_id->context; 1320 int cm_error = 0; 1321 1322 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1323 rdma_event_msg(ev->event), ev->event, 1324 ev->status, cm_id); 1325 1326 switch (ev->event) { 1327 case RDMA_CM_EVENT_ADDR_RESOLVED: 1328 cm_error = nvme_rdma_addr_resolved(queue); 1329 break; 1330 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1331 cm_error = nvme_rdma_route_resolved(queue); 1332 break; 1333 case RDMA_CM_EVENT_ESTABLISHED: 1334 queue->cm_error = nvme_rdma_conn_established(queue); 1335 /* complete cm_done regardless of success/failure */ 1336 complete(&queue->cm_done); 1337 return 0; 1338 case RDMA_CM_EVENT_REJECTED: 1339 cm_error = nvme_rdma_conn_rejected(queue, ev); 1340 break; 1341 case RDMA_CM_EVENT_ADDR_ERROR: 1342 case RDMA_CM_EVENT_ROUTE_ERROR: 1343 case RDMA_CM_EVENT_CONNECT_ERROR: 1344 case RDMA_CM_EVENT_UNREACHABLE: 1345 dev_dbg(queue->ctrl->ctrl.device, 1346 "CM error event %d\n", ev->event); 1347 cm_error = -ECONNRESET; 1348 break; 1349 case RDMA_CM_EVENT_DISCONNECTED: 1350 case RDMA_CM_EVENT_ADDR_CHANGE: 1351 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1352 dev_dbg(queue->ctrl->ctrl.device, 1353 "disconnect received - connection closed\n"); 1354 nvme_rdma_error_recovery(queue->ctrl); 1355 break; 1356 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1357 /* device removal is handled via the ib_client API */ 1358 break; 1359 default: 1360 dev_err(queue->ctrl->ctrl.device, 1361 "Unexpected RDMA CM event (%d)\n", ev->event); 1362 nvme_rdma_error_recovery(queue->ctrl); 1363 break; 1364 } 1365 1366 if (cm_error) { 1367 queue->cm_error = cm_error; 1368 complete(&queue->cm_done); 1369 } 1370 1371 return 0; 1372 } 1373 1374 static enum blk_eh_timer_return 1375 nvme_rdma_timeout(struct request *rq, bool reserved) 1376 { 1377 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1378 1379 /* queue error recovery */ 1380 nvme_rdma_error_recovery(req->queue->ctrl); 1381 1382 /* fail with DNR on cmd timeout */ 1383 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1384 1385 return BLK_EH_HANDLED; 1386 } 1387 1388 /* 1389 * We cannot accept any other command until the Connect command has completed. 1390 */ 1391 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, 1392 struct request *rq) 1393 { 1394 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1395 struct nvme_command *cmd = (struct nvme_command *)rq->cmd; 1396 1397 if (rq->cmd_type != REQ_TYPE_DRV_PRIV || 1398 cmd->common.opcode != nvme_fabrics_command || 1399 cmd->fabrics.fctype != nvme_fabrics_type_connect) 1400 return false; 1401 } 1402 1403 return true; 1404 } 1405 1406 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1407 const struct blk_mq_queue_data *bd) 1408 { 1409 struct nvme_ns *ns = hctx->queue->queuedata; 1410 struct nvme_rdma_queue *queue = hctx->driver_data; 1411 struct request *rq = bd->rq; 1412 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1413 struct nvme_rdma_qe *sqe = &req->sqe; 1414 struct nvme_command *c = sqe->data; 1415 bool flush = false; 1416 struct ib_device *dev; 1417 unsigned int map_len; 1418 int ret; 1419 1420 WARN_ON_ONCE(rq->tag < 0); 1421 1422 if (!nvme_rdma_queue_is_ready(queue, rq)) 1423 return BLK_MQ_RQ_QUEUE_BUSY; 1424 1425 dev = queue->device->dev; 1426 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1427 sizeof(struct nvme_command), DMA_TO_DEVICE); 1428 1429 ret = nvme_setup_cmd(ns, rq, c); 1430 if (ret != BLK_MQ_RQ_QUEUE_OK) 1431 return ret; 1432 1433 blk_mq_start_request(rq); 1434 1435 map_len = nvme_map_len(rq); 1436 ret = nvme_rdma_map_data(queue, rq, map_len, c); 1437 if (ret < 0) { 1438 dev_err(queue->ctrl->ctrl.device, 1439 "Failed to map data (%d)\n", ret); 1440 nvme_cleanup_cmd(rq); 1441 goto err; 1442 } 1443 1444 ib_dma_sync_single_for_device(dev, sqe->dma, 1445 sizeof(struct nvme_command), DMA_TO_DEVICE); 1446 1447 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1448 flush = true; 1449 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1450 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1451 if (ret) { 1452 nvme_rdma_unmap_data(queue, rq); 1453 goto err; 1454 } 1455 1456 return BLK_MQ_RQ_QUEUE_OK; 1457 err: 1458 return (ret == -ENOMEM || ret == -EAGAIN) ? 1459 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1460 } 1461 1462 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1463 { 1464 struct nvme_rdma_queue *queue = hctx->driver_data; 1465 struct ib_cq *cq = queue->ib_cq; 1466 struct ib_wc wc; 1467 int found = 0; 1468 1469 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1470 while (ib_poll_cq(cq, 1, &wc) > 0) { 1471 struct ib_cqe *cqe = wc.wr_cqe; 1472 1473 if (cqe) { 1474 if (cqe->done == nvme_rdma_recv_done) 1475 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1476 else 1477 cqe->done(cq, &wc); 1478 } 1479 } 1480 1481 return found; 1482 } 1483 1484 static void nvme_rdma_complete_rq(struct request *rq) 1485 { 1486 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1487 struct nvme_rdma_queue *queue = req->queue; 1488 int error = 0; 1489 1490 nvme_rdma_unmap_data(queue, rq); 1491 1492 if (unlikely(rq->errors)) { 1493 if (nvme_req_needs_retry(rq, rq->errors)) { 1494 nvme_requeue_req(rq); 1495 return; 1496 } 1497 1498 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1499 error = rq->errors; 1500 else 1501 error = nvme_error_status(rq->errors); 1502 } 1503 1504 blk_mq_end_request(rq, error); 1505 } 1506 1507 static struct blk_mq_ops nvme_rdma_mq_ops = { 1508 .queue_rq = nvme_rdma_queue_rq, 1509 .complete = nvme_rdma_complete_rq, 1510 .init_request = nvme_rdma_init_request, 1511 .exit_request = nvme_rdma_exit_request, 1512 .reinit_request = nvme_rdma_reinit_request, 1513 .init_hctx = nvme_rdma_init_hctx, 1514 .poll = nvme_rdma_poll, 1515 .timeout = nvme_rdma_timeout, 1516 }; 1517 1518 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1519 .queue_rq = nvme_rdma_queue_rq, 1520 .complete = nvme_rdma_complete_rq, 1521 .init_request = nvme_rdma_init_admin_request, 1522 .exit_request = nvme_rdma_exit_admin_request, 1523 .reinit_request = nvme_rdma_reinit_request, 1524 .init_hctx = nvme_rdma_init_admin_hctx, 1525 .timeout = nvme_rdma_timeout, 1526 }; 1527 1528 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1529 { 1530 int error; 1531 1532 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1533 if (error) 1534 return error; 1535 1536 ctrl->device = ctrl->queues[0].device; 1537 1538 /* 1539 * We need a reference on the device as long as the tag_set is alive, 1540 * as the MRs in the request structures need a valid ib_device. 1541 */ 1542 error = -EINVAL; 1543 if (!nvme_rdma_dev_get(ctrl->device)) 1544 goto out_free_queue; 1545 1546 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1547 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1548 1549 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1550 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1551 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1552 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1553 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1554 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1555 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1556 ctrl->admin_tag_set.driver_data = ctrl; 1557 ctrl->admin_tag_set.nr_hw_queues = 1; 1558 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1559 1560 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1561 if (error) 1562 goto out_put_dev; 1563 1564 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1565 if (IS_ERR(ctrl->ctrl.admin_q)) { 1566 error = PTR_ERR(ctrl->ctrl.admin_q); 1567 goto out_free_tagset; 1568 } 1569 1570 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1571 if (error) 1572 goto out_cleanup_queue; 1573 1574 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1575 1576 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1577 if (error) { 1578 dev_err(ctrl->ctrl.device, 1579 "prop_get NVME_REG_CAP failed\n"); 1580 goto out_cleanup_queue; 1581 } 1582 1583 ctrl->ctrl.sqsize = 1584 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1585 1586 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1587 if (error) 1588 goto out_cleanup_queue; 1589 1590 ctrl->ctrl.max_hw_sectors = 1591 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1592 1593 error = nvme_init_identify(&ctrl->ctrl); 1594 if (error) 1595 goto out_cleanup_queue; 1596 1597 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1598 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1599 DMA_TO_DEVICE); 1600 if (error) 1601 goto out_cleanup_queue; 1602 1603 nvme_start_keep_alive(&ctrl->ctrl); 1604 1605 return 0; 1606 1607 out_cleanup_queue: 1608 blk_cleanup_queue(ctrl->ctrl.admin_q); 1609 out_free_tagset: 1610 /* disconnect and drain the queue before freeing the tagset */ 1611 nvme_rdma_stop_queue(&ctrl->queues[0]); 1612 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1613 out_put_dev: 1614 nvme_rdma_dev_put(ctrl->device); 1615 out_free_queue: 1616 nvme_rdma_free_queue(&ctrl->queues[0]); 1617 return error; 1618 } 1619 1620 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1621 { 1622 nvme_stop_keep_alive(&ctrl->ctrl); 1623 cancel_work_sync(&ctrl->err_work); 1624 cancel_delayed_work_sync(&ctrl->reconnect_work); 1625 1626 if (ctrl->queue_count > 1) { 1627 nvme_stop_queues(&ctrl->ctrl); 1628 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1629 nvme_cancel_request, &ctrl->ctrl); 1630 nvme_rdma_free_io_queues(ctrl); 1631 } 1632 1633 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1634 nvme_shutdown_ctrl(&ctrl->ctrl); 1635 1636 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1637 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1638 nvme_cancel_request, &ctrl->ctrl); 1639 nvme_rdma_destroy_admin_queue(ctrl); 1640 } 1641 1642 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1643 { 1644 nvme_uninit_ctrl(&ctrl->ctrl); 1645 if (shutdown) 1646 nvme_rdma_shutdown_ctrl(ctrl); 1647 1648 if (ctrl->ctrl.tagset) { 1649 blk_cleanup_queue(ctrl->ctrl.connect_q); 1650 blk_mq_free_tag_set(&ctrl->tag_set); 1651 nvme_rdma_dev_put(ctrl->device); 1652 } 1653 1654 nvme_put_ctrl(&ctrl->ctrl); 1655 } 1656 1657 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1658 { 1659 struct nvme_rdma_ctrl *ctrl = container_of(work, 1660 struct nvme_rdma_ctrl, delete_work); 1661 1662 __nvme_rdma_remove_ctrl(ctrl, true); 1663 } 1664 1665 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1666 { 1667 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1668 return -EBUSY; 1669 1670 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1671 return -EBUSY; 1672 1673 return 0; 1674 } 1675 1676 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1677 { 1678 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1679 int ret = 0; 1680 1681 /* 1682 * Keep a reference until all work is flushed since 1683 * __nvme_rdma_del_ctrl can free the ctrl mem 1684 */ 1685 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1686 return -EBUSY; 1687 ret = __nvme_rdma_del_ctrl(ctrl); 1688 if (!ret) 1689 flush_work(&ctrl->delete_work); 1690 nvme_put_ctrl(&ctrl->ctrl); 1691 return ret; 1692 } 1693 1694 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1695 { 1696 struct nvme_rdma_ctrl *ctrl = container_of(work, 1697 struct nvme_rdma_ctrl, delete_work); 1698 1699 __nvme_rdma_remove_ctrl(ctrl, false); 1700 } 1701 1702 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1703 { 1704 struct nvme_rdma_ctrl *ctrl = container_of(work, 1705 struct nvme_rdma_ctrl, reset_work); 1706 int ret; 1707 bool changed; 1708 1709 nvme_rdma_shutdown_ctrl(ctrl); 1710 1711 ret = nvme_rdma_configure_admin_queue(ctrl); 1712 if (ret) { 1713 /* ctrl is already shutdown, just remove the ctrl */ 1714 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1715 goto del_dead_ctrl; 1716 } 1717 1718 if (ctrl->queue_count > 1) { 1719 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1720 if (ret) 1721 goto del_dead_ctrl; 1722 1723 ret = nvme_rdma_init_io_queues(ctrl); 1724 if (ret) 1725 goto del_dead_ctrl; 1726 1727 ret = nvme_rdma_connect_io_queues(ctrl); 1728 if (ret) 1729 goto del_dead_ctrl; 1730 } 1731 1732 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1733 WARN_ON_ONCE(!changed); 1734 1735 if (ctrl->queue_count > 1) { 1736 nvme_start_queues(&ctrl->ctrl); 1737 nvme_queue_scan(&ctrl->ctrl); 1738 nvme_queue_async_events(&ctrl->ctrl); 1739 } 1740 1741 return; 1742 1743 del_dead_ctrl: 1744 /* Deleting this dead controller... */ 1745 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1746 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1747 } 1748 1749 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1750 { 1751 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1752 1753 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1754 return -EBUSY; 1755 1756 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1757 return -EBUSY; 1758 1759 flush_work(&ctrl->reset_work); 1760 1761 return 0; 1762 } 1763 1764 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1765 .name = "rdma", 1766 .module = THIS_MODULE, 1767 .is_fabrics = true, 1768 .reg_read32 = nvmf_reg_read32, 1769 .reg_read64 = nvmf_reg_read64, 1770 .reg_write32 = nvmf_reg_write32, 1771 .reset_ctrl = nvme_rdma_reset_ctrl, 1772 .free_ctrl = nvme_rdma_free_ctrl, 1773 .submit_async_event = nvme_rdma_submit_async_event, 1774 .delete_ctrl = nvme_rdma_del_ctrl, 1775 .get_subsysnqn = nvmf_get_subsysnqn, 1776 .get_address = nvmf_get_address, 1777 }; 1778 1779 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1780 { 1781 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1782 int ret; 1783 1784 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1785 if (ret) 1786 return ret; 1787 1788 ctrl->queue_count = opts->nr_io_queues + 1; 1789 if (ctrl->queue_count < 2) 1790 return 0; 1791 1792 dev_info(ctrl->ctrl.device, 1793 "creating %d I/O queues.\n", opts->nr_io_queues); 1794 1795 ret = nvme_rdma_init_io_queues(ctrl); 1796 if (ret) 1797 return ret; 1798 1799 /* 1800 * We need a reference on the device as long as the tag_set is alive, 1801 * as the MRs in the request structures need a valid ib_device. 1802 */ 1803 ret = -EINVAL; 1804 if (!nvme_rdma_dev_get(ctrl->device)) 1805 goto out_free_io_queues; 1806 1807 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1808 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1809 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1810 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1811 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1812 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1813 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1814 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1815 ctrl->tag_set.driver_data = ctrl; 1816 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1817 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1818 1819 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1820 if (ret) 1821 goto out_put_dev; 1822 ctrl->ctrl.tagset = &ctrl->tag_set; 1823 1824 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1825 if (IS_ERR(ctrl->ctrl.connect_q)) { 1826 ret = PTR_ERR(ctrl->ctrl.connect_q); 1827 goto out_free_tag_set; 1828 } 1829 1830 ret = nvme_rdma_connect_io_queues(ctrl); 1831 if (ret) 1832 goto out_cleanup_connect_q; 1833 1834 return 0; 1835 1836 out_cleanup_connect_q: 1837 blk_cleanup_queue(ctrl->ctrl.connect_q); 1838 out_free_tag_set: 1839 blk_mq_free_tag_set(&ctrl->tag_set); 1840 out_put_dev: 1841 nvme_rdma_dev_put(ctrl->device); 1842 out_free_io_queues: 1843 nvme_rdma_free_io_queues(ctrl); 1844 return ret; 1845 } 1846 1847 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1848 { 1849 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1850 size_t buflen = strlen(p); 1851 1852 /* XXX: handle IPv6 addresses */ 1853 1854 if (buflen > INET_ADDRSTRLEN) 1855 return -EINVAL; 1856 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1857 return -EINVAL; 1858 in_addr->sin_family = AF_INET; 1859 return 0; 1860 } 1861 1862 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1863 struct nvmf_ctrl_options *opts) 1864 { 1865 struct nvme_rdma_ctrl *ctrl; 1866 int ret; 1867 bool changed; 1868 1869 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1870 if (!ctrl) 1871 return ERR_PTR(-ENOMEM); 1872 ctrl->ctrl.opts = opts; 1873 INIT_LIST_HEAD(&ctrl->list); 1874 1875 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1876 if (ret) { 1877 pr_err("malformed IP address passed: %s\n", opts->traddr); 1878 goto out_free_ctrl; 1879 } 1880 1881 if (opts->mask & NVMF_OPT_TRSVCID) { 1882 u16 port; 1883 1884 ret = kstrtou16(opts->trsvcid, 0, &port); 1885 if (ret) 1886 goto out_free_ctrl; 1887 1888 ctrl->addr_in.sin_port = cpu_to_be16(port); 1889 } else { 1890 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1891 } 1892 1893 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1894 0 /* no quirks, we're perfect! */); 1895 if (ret) 1896 goto out_free_ctrl; 1897 1898 ctrl->reconnect_delay = opts->reconnect_delay; 1899 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1900 nvme_rdma_reconnect_ctrl_work); 1901 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1902 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1903 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1904 spin_lock_init(&ctrl->lock); 1905 1906 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1907 ctrl->ctrl.sqsize = opts->queue_size - 1; 1908 ctrl->ctrl.kato = opts->kato; 1909 1910 ret = -ENOMEM; 1911 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1912 GFP_KERNEL); 1913 if (!ctrl->queues) 1914 goto out_uninit_ctrl; 1915 1916 ret = nvme_rdma_configure_admin_queue(ctrl); 1917 if (ret) 1918 goto out_kfree_queues; 1919 1920 /* sanity check icdoff */ 1921 if (ctrl->ctrl.icdoff) { 1922 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1923 goto out_remove_admin_queue; 1924 } 1925 1926 /* sanity check keyed sgls */ 1927 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1928 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1929 goto out_remove_admin_queue; 1930 } 1931 1932 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1933 /* warn if maxcmd is lower than queue_size */ 1934 dev_warn(ctrl->ctrl.device, 1935 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1936 opts->queue_size, ctrl->ctrl.maxcmd); 1937 opts->queue_size = ctrl->ctrl.maxcmd; 1938 } 1939 1940 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1941 /* warn if sqsize is lower than queue_size */ 1942 dev_warn(ctrl->ctrl.device, 1943 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1944 opts->queue_size, ctrl->ctrl.sqsize + 1); 1945 opts->queue_size = ctrl->ctrl.sqsize + 1; 1946 } 1947 1948 if (opts->nr_io_queues) { 1949 ret = nvme_rdma_create_io_queues(ctrl); 1950 if (ret) 1951 goto out_remove_admin_queue; 1952 } 1953 1954 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1955 WARN_ON_ONCE(!changed); 1956 1957 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1958 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1959 1960 kref_get(&ctrl->ctrl.kref); 1961 1962 mutex_lock(&nvme_rdma_ctrl_mutex); 1963 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1964 mutex_unlock(&nvme_rdma_ctrl_mutex); 1965 1966 if (opts->nr_io_queues) { 1967 nvme_queue_scan(&ctrl->ctrl); 1968 nvme_queue_async_events(&ctrl->ctrl); 1969 } 1970 1971 return &ctrl->ctrl; 1972 1973 out_remove_admin_queue: 1974 nvme_stop_keep_alive(&ctrl->ctrl); 1975 nvme_rdma_destroy_admin_queue(ctrl); 1976 out_kfree_queues: 1977 kfree(ctrl->queues); 1978 out_uninit_ctrl: 1979 nvme_uninit_ctrl(&ctrl->ctrl); 1980 nvme_put_ctrl(&ctrl->ctrl); 1981 if (ret > 0) 1982 ret = -EIO; 1983 return ERR_PTR(ret); 1984 out_free_ctrl: 1985 kfree(ctrl); 1986 return ERR_PTR(ret); 1987 } 1988 1989 static struct nvmf_transport_ops nvme_rdma_transport = { 1990 .name = "rdma", 1991 .required_opts = NVMF_OPT_TRADDR, 1992 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 1993 .create_ctrl = nvme_rdma_create_ctrl, 1994 }; 1995 1996 static void nvme_rdma_add_one(struct ib_device *ib_device) 1997 { 1998 } 1999 2000 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2001 { 2002 struct nvme_rdma_ctrl *ctrl; 2003 2004 /* Delete all controllers using this device */ 2005 mutex_lock(&nvme_rdma_ctrl_mutex); 2006 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2007 if (ctrl->device->dev != ib_device) 2008 continue; 2009 dev_info(ctrl->ctrl.device, 2010 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2011 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2012 __nvme_rdma_del_ctrl(ctrl); 2013 } 2014 mutex_unlock(&nvme_rdma_ctrl_mutex); 2015 2016 flush_workqueue(nvme_rdma_wq); 2017 } 2018 2019 static struct ib_client nvme_rdma_ib_client = { 2020 .name = "nvme_rdma", 2021 .add = nvme_rdma_add_one, 2022 .remove = nvme_rdma_remove_one 2023 }; 2024 2025 static int __init nvme_rdma_init_module(void) 2026 { 2027 int ret; 2028 2029 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2030 if (!nvme_rdma_wq) 2031 return -ENOMEM; 2032 2033 ret = ib_register_client(&nvme_rdma_ib_client); 2034 if (ret) { 2035 destroy_workqueue(nvme_rdma_wq); 2036 return ret; 2037 } 2038 2039 nvmf_register_transport(&nvme_rdma_transport); 2040 return 0; 2041 } 2042 2043 static void __exit nvme_rdma_cleanup_module(void) 2044 { 2045 nvmf_unregister_transport(&nvme_rdma_transport); 2046 ib_unregister_client(&nvme_rdma_ib_client); 2047 destroy_workqueue(nvme_rdma_wq); 2048 } 2049 2050 module_init(nvme_rdma_init_module); 2051 module_exit(nvme_rdma_cleanup_module); 2052 2053 MODULE_LICENSE("GPL v2"); 2054