1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 47 #include "nvme.h" 48 49 #define NVME_Q_DEPTH 1024 50 #define NVME_AQ_DEPTH 256 51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 53 54 /* 55 * We handle AEN commands ourselves and don't even let the 56 * block layer know about them. 57 */ 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 59 60 static int use_threaded_interrupts; 61 module_param(use_threaded_interrupts, int, 0); 62 63 static bool use_cmb_sqes = true; 64 module_param(use_cmb_sqes, bool, 0644); 65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 66 67 static struct workqueue_struct *nvme_workq; 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static int nvme_reset(struct nvme_dev *dev); 73 static void nvme_process_cq(struct nvme_queue *nvmeq); 74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 75 76 /* 77 * Represents an NVM Express device. Each nvme_dev is a PCI function. 78 */ 79 struct nvme_dev { 80 struct nvme_queue **queues; 81 struct blk_mq_tag_set tagset; 82 struct blk_mq_tag_set admin_tagset; 83 u32 __iomem *dbs; 84 struct device *dev; 85 struct dma_pool *prp_page_pool; 86 struct dma_pool *prp_small_pool; 87 unsigned queue_count; 88 unsigned online_queues; 89 unsigned max_qid; 90 int q_depth; 91 u32 db_stride; 92 void __iomem *bar; 93 struct work_struct reset_work; 94 struct work_struct remove_work; 95 struct timer_list watchdog_timer; 96 struct mutex shutdown_lock; 97 bool subsystem; 98 void __iomem *cmb; 99 dma_addr_t cmb_dma_addr; 100 u64 cmb_size; 101 u32 cmbsz; 102 u32 cmbloc; 103 struct nvme_ctrl ctrl; 104 struct completion ioq_wait; 105 }; 106 107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 108 { 109 return container_of(ctrl, struct nvme_dev, ctrl); 110 } 111 112 /* 113 * An NVM Express queue. Each device has at least two (one for admin 114 * commands and one for I/O commands). 115 */ 116 struct nvme_queue { 117 struct device *q_dmadev; 118 struct nvme_dev *dev; 119 char irqname[24]; /* nvme4294967295-65535\0 */ 120 spinlock_t q_lock; 121 struct nvme_command *sq_cmds; 122 struct nvme_command __iomem *sq_cmds_io; 123 volatile struct nvme_completion *cqes; 124 struct blk_mq_tags **tags; 125 dma_addr_t sq_dma_addr; 126 dma_addr_t cq_dma_addr; 127 u32 __iomem *q_db; 128 u16 q_depth; 129 s16 cq_vector; 130 u16 sq_tail; 131 u16 cq_head; 132 u16 qid; 133 u8 cq_phase; 134 u8 cqe_seen; 135 }; 136 137 /* 138 * The nvme_iod describes the data in an I/O, including the list of PRP 139 * entries. You can't see it in this data structure because C doesn't let 140 * me express that. Use nvme_init_iod to ensure there's enough space 141 * allocated to store the PRP list. 142 */ 143 struct nvme_iod { 144 struct nvme_request req; 145 struct nvme_queue *nvmeq; 146 int aborted; 147 int npages; /* In the PRP list. 0 means small pool in use */ 148 int nents; /* Used in scatterlist */ 149 int length; /* Of data, in bytes */ 150 dma_addr_t first_dma; 151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 152 struct scatterlist *sg; 153 struct scatterlist inline_sg[0]; 154 }; 155 156 /* 157 * Check we didin't inadvertently grow the command struct 158 */ 159 static inline void _nvme_check_size(void) 160 { 161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 173 } 174 175 /* 176 * Max size of iod being embedded in the request payload 177 */ 178 #define NVME_INT_PAGES 2 179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 180 181 /* 182 * Will slightly overestimate the number of pages needed. This is OK 183 * as it only leads to a small amount of wasted memory for the lifetime of 184 * the I/O. 185 */ 186 static int nvme_npages(unsigned size, struct nvme_dev *dev) 187 { 188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 189 dev->ctrl.page_size); 190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 191 } 192 193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 194 unsigned int size, unsigned int nseg) 195 { 196 return sizeof(__le64 *) * nvme_npages(size, dev) + 197 sizeof(struct scatterlist) * nseg; 198 } 199 200 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 201 { 202 return sizeof(struct nvme_iod) + 203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 204 } 205 206 static int nvmeq_irq(struct nvme_queue *nvmeq) 207 { 208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 209 } 210 211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 212 unsigned int hctx_idx) 213 { 214 struct nvme_dev *dev = data; 215 struct nvme_queue *nvmeq = dev->queues[0]; 216 217 WARN_ON(hctx_idx != 0); 218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 219 WARN_ON(nvmeq->tags); 220 221 hctx->driver_data = nvmeq; 222 nvmeq->tags = &dev->admin_tagset.tags[0]; 223 return 0; 224 } 225 226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 227 { 228 struct nvme_queue *nvmeq = hctx->driver_data; 229 230 nvmeq->tags = NULL; 231 } 232 233 static int nvme_admin_init_request(void *data, struct request *req, 234 unsigned int hctx_idx, unsigned int rq_idx, 235 unsigned int numa_node) 236 { 237 struct nvme_dev *dev = data; 238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 239 struct nvme_queue *nvmeq = dev->queues[0]; 240 241 BUG_ON(!nvmeq); 242 iod->nvmeq = nvmeq; 243 return 0; 244 } 245 246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 247 unsigned int hctx_idx) 248 { 249 struct nvme_dev *dev = data; 250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 251 252 if (!nvmeq->tags) 253 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 254 255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 256 hctx->driver_data = nvmeq; 257 return 0; 258 } 259 260 static int nvme_init_request(void *data, struct request *req, 261 unsigned int hctx_idx, unsigned int rq_idx, 262 unsigned int numa_node) 263 { 264 struct nvme_dev *dev = data; 265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 267 268 BUG_ON(!nvmeq); 269 iod->nvmeq = nvmeq; 270 return 0; 271 } 272 273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 274 { 275 struct nvme_dev *dev = set->driver_data; 276 277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 278 } 279 280 /** 281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 282 * @nvmeq: The queue to use 283 * @cmd: The command to send 284 * 285 * Safe to use from interrupt context 286 */ 287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 288 struct nvme_command *cmd) 289 { 290 u16 tail = nvmeq->sq_tail; 291 292 if (nvmeq->sq_cmds_io) 293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 294 else 295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 296 297 if (++tail == nvmeq->q_depth) 298 tail = 0; 299 writel(tail, nvmeq->q_db); 300 nvmeq->sq_tail = tail; 301 } 302 303 static __le64 **iod_list(struct request *req) 304 { 305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 307 } 308 309 static int nvme_init_iod(struct request *rq, unsigned size, 310 struct nvme_dev *dev) 311 { 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 313 int nseg = blk_rq_nr_phys_segments(rq); 314 315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 317 if (!iod->sg) 318 return BLK_MQ_RQ_QUEUE_BUSY; 319 } else { 320 iod->sg = iod->inline_sg; 321 } 322 323 iod->aborted = 0; 324 iod->npages = -1; 325 iod->nents = 0; 326 iod->length = size; 327 328 if (!(rq->rq_flags & RQF_DONTPREP)) { 329 rq->retries = 0; 330 rq->rq_flags |= RQF_DONTPREP; 331 } 332 return BLK_MQ_RQ_QUEUE_OK; 333 } 334 335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 336 { 337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 338 const int last_prp = dev->ctrl.page_size / 8 - 1; 339 int i; 340 __le64 **list = iod_list(req); 341 dma_addr_t prp_dma = iod->first_dma; 342 343 if (iod->npages == 0) 344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 345 for (i = 0; i < iod->npages; i++) { 346 __le64 *prp_list = list[i]; 347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 349 prp_dma = next_prp_dma; 350 } 351 352 if (iod->sg != iod->inline_sg) 353 kfree(iod->sg); 354 } 355 356 #ifdef CONFIG_BLK_DEV_INTEGRITY 357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 358 { 359 if (be32_to_cpu(pi->ref_tag) == v) 360 pi->ref_tag = cpu_to_be32(p); 361 } 362 363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 364 { 365 if (be32_to_cpu(pi->ref_tag) == p) 366 pi->ref_tag = cpu_to_be32(v); 367 } 368 369 /** 370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 371 * 372 * The virtual start sector is the one that was originally submitted by the 373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 374 * start sector may be different. Remap protection information to match the 375 * physical LBA on writes, and back to the original seed on reads. 376 * 377 * Type 0 and 3 do not have a ref tag, so no remapping required. 378 */ 379 static void nvme_dif_remap(struct request *req, 380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 381 { 382 struct nvme_ns *ns = req->rq_disk->private_data; 383 struct bio_integrity_payload *bip; 384 struct t10_pi_tuple *pi; 385 void *p, *pmap; 386 u32 i, nlb, ts, phys, virt; 387 388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 389 return; 390 391 bip = bio_integrity(req->bio); 392 if (!bip) 393 return; 394 395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 396 397 p = pmap; 398 virt = bip_get_seed(bip); 399 phys = nvme_block_nr(ns, blk_rq_pos(req)); 400 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 401 ts = ns->disk->queue->integrity.tuple_size; 402 403 for (i = 0; i < nlb; i++, virt++, phys++) { 404 pi = (struct t10_pi_tuple *)p; 405 dif_swap(phys, virt, pi); 406 p += ts; 407 } 408 kunmap_atomic(pmap); 409 } 410 #else /* CONFIG_BLK_DEV_INTEGRITY */ 411 static void nvme_dif_remap(struct request *req, 412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 413 { 414 } 415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 416 { 417 } 418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 419 { 420 } 421 #endif 422 423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 424 int total_len) 425 { 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 427 struct dma_pool *pool; 428 int length = total_len; 429 struct scatterlist *sg = iod->sg; 430 int dma_len = sg_dma_len(sg); 431 u64 dma_addr = sg_dma_address(sg); 432 u32 page_size = dev->ctrl.page_size; 433 int offset = dma_addr & (page_size - 1); 434 __le64 *prp_list; 435 __le64 **list = iod_list(req); 436 dma_addr_t prp_dma; 437 int nprps, i; 438 439 length -= (page_size - offset); 440 if (length <= 0) 441 return true; 442 443 dma_len -= (page_size - offset); 444 if (dma_len) { 445 dma_addr += (page_size - offset); 446 } else { 447 sg = sg_next(sg); 448 dma_addr = sg_dma_address(sg); 449 dma_len = sg_dma_len(sg); 450 } 451 452 if (length <= page_size) { 453 iod->first_dma = dma_addr; 454 return true; 455 } 456 457 nprps = DIV_ROUND_UP(length, page_size); 458 if (nprps <= (256 / 8)) { 459 pool = dev->prp_small_pool; 460 iod->npages = 0; 461 } else { 462 pool = dev->prp_page_pool; 463 iod->npages = 1; 464 } 465 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 467 if (!prp_list) { 468 iod->first_dma = dma_addr; 469 iod->npages = -1; 470 return false; 471 } 472 list[0] = prp_list; 473 iod->first_dma = prp_dma; 474 i = 0; 475 for (;;) { 476 if (i == page_size >> 3) { 477 __le64 *old_prp_list = prp_list; 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 479 if (!prp_list) 480 return false; 481 list[iod->npages++] = prp_list; 482 prp_list[0] = old_prp_list[i - 1]; 483 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 484 i = 1; 485 } 486 prp_list[i++] = cpu_to_le64(dma_addr); 487 dma_len -= page_size; 488 dma_addr += page_size; 489 length -= page_size; 490 if (length <= 0) 491 break; 492 if (dma_len > 0) 493 continue; 494 BUG_ON(dma_len < 0); 495 sg = sg_next(sg); 496 dma_addr = sg_dma_address(sg); 497 dma_len = sg_dma_len(sg); 498 } 499 500 return true; 501 } 502 503 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 504 unsigned size, struct nvme_command *cmnd) 505 { 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 507 struct request_queue *q = req->q; 508 enum dma_data_direction dma_dir = rq_data_dir(req) ? 509 DMA_TO_DEVICE : DMA_FROM_DEVICE; 510 int ret = BLK_MQ_RQ_QUEUE_ERROR; 511 512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 513 iod->nents = blk_rq_map_sg(q, req, iod->sg); 514 if (!iod->nents) 515 goto out; 516 517 ret = BLK_MQ_RQ_QUEUE_BUSY; 518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 519 DMA_ATTR_NO_WARN)) 520 goto out; 521 522 if (!nvme_setup_prps(dev, req, size)) 523 goto out_unmap; 524 525 ret = BLK_MQ_RQ_QUEUE_ERROR; 526 if (blk_integrity_rq(req)) { 527 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 528 goto out_unmap; 529 530 sg_init_table(&iod->meta_sg, 1); 531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 532 goto out_unmap; 533 534 if (rq_data_dir(req)) 535 nvme_dif_remap(req, nvme_dif_prep); 536 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 538 goto out_unmap; 539 } 540 541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 543 if (blk_integrity_rq(req)) 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 545 return BLK_MQ_RQ_QUEUE_OK; 546 547 out_unmap: 548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 549 out: 550 return ret; 551 } 552 553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 554 { 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 556 enum dma_data_direction dma_dir = rq_data_dir(req) ? 557 DMA_TO_DEVICE : DMA_FROM_DEVICE; 558 559 if (iod->nents) { 560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 561 if (blk_integrity_rq(req)) { 562 if (!rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_complete); 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 565 } 566 } 567 568 nvme_cleanup_cmd(req); 569 nvme_free_iod(dev, req); 570 } 571 572 /* 573 * NOTE: ns is NULL when called on the admin queue. 574 */ 575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 576 const struct blk_mq_queue_data *bd) 577 { 578 struct nvme_ns *ns = hctx->queue->queuedata; 579 struct nvme_queue *nvmeq = hctx->driver_data; 580 struct nvme_dev *dev = nvmeq->dev; 581 struct request *req = bd->rq; 582 struct nvme_command cmnd; 583 unsigned map_len; 584 int ret = BLK_MQ_RQ_QUEUE_OK; 585 586 /* 587 * If formated with metadata, require the block layer provide a buffer 588 * unless this namespace is formated such that the metadata can be 589 * stripped/generated by the controller with PRACT=1. 590 */ 591 if (ns && ns->ms && !blk_integrity_rq(req)) { 592 if (!(ns->pi_type && ns->ms == 8) && 593 req->cmd_type != REQ_TYPE_DRV_PRIV) { 594 blk_mq_end_request(req, -EFAULT); 595 return BLK_MQ_RQ_QUEUE_OK; 596 } 597 } 598 599 ret = nvme_setup_cmd(ns, req, &cmnd); 600 if (ret != BLK_MQ_RQ_QUEUE_OK) 601 return ret; 602 603 map_len = nvme_map_len(req); 604 ret = nvme_init_iod(req, map_len, dev); 605 if (ret != BLK_MQ_RQ_QUEUE_OK) 606 goto out_free_cmd; 607 608 if (blk_rq_nr_phys_segments(req)) 609 ret = nvme_map_data(dev, req, map_len, &cmnd); 610 611 if (ret != BLK_MQ_RQ_QUEUE_OK) 612 goto out_cleanup_iod; 613 614 blk_mq_start_request(req); 615 616 spin_lock_irq(&nvmeq->q_lock); 617 if (unlikely(nvmeq->cq_vector < 0)) { 618 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 619 ret = BLK_MQ_RQ_QUEUE_BUSY; 620 else 621 ret = BLK_MQ_RQ_QUEUE_ERROR; 622 spin_unlock_irq(&nvmeq->q_lock); 623 goto out_cleanup_iod; 624 } 625 __nvme_submit_cmd(nvmeq, &cmnd); 626 nvme_process_cq(nvmeq); 627 spin_unlock_irq(&nvmeq->q_lock); 628 return BLK_MQ_RQ_QUEUE_OK; 629 out_cleanup_iod: 630 nvme_free_iod(dev, req); 631 out_free_cmd: 632 nvme_cleanup_cmd(req); 633 return ret; 634 } 635 636 static void nvme_complete_rq(struct request *req) 637 { 638 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 639 struct nvme_dev *dev = iod->nvmeq->dev; 640 int error = 0; 641 642 nvme_unmap_data(dev, req); 643 644 if (unlikely(req->errors)) { 645 if (nvme_req_needs_retry(req, req->errors)) { 646 req->retries++; 647 nvme_requeue_req(req); 648 return; 649 } 650 651 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 652 error = req->errors; 653 else 654 error = nvme_error_status(req->errors); 655 } 656 657 if (unlikely(iod->aborted)) { 658 dev_warn(dev->ctrl.device, 659 "completing aborted command with status: %04x\n", 660 req->errors); 661 } 662 663 blk_mq_end_request(req, error); 664 } 665 666 /* We read the CQE phase first to check if the rest of the entry is valid */ 667 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 668 u16 phase) 669 { 670 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 671 } 672 673 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 674 { 675 u16 head, phase; 676 677 head = nvmeq->cq_head; 678 phase = nvmeq->cq_phase; 679 680 while (nvme_cqe_valid(nvmeq, head, phase)) { 681 struct nvme_completion cqe = nvmeq->cqes[head]; 682 struct request *req; 683 684 if (++head == nvmeq->q_depth) { 685 head = 0; 686 phase = !phase; 687 } 688 689 if (tag && *tag == cqe.command_id) 690 *tag = -1; 691 692 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 693 dev_warn(nvmeq->dev->ctrl.device, 694 "invalid id %d completed on queue %d\n", 695 cqe.command_id, le16_to_cpu(cqe.sq_id)); 696 continue; 697 } 698 699 /* 700 * AEN requests are special as they don't time out and can 701 * survive any kind of queue freeze and often don't respond to 702 * aborts. We don't even bother to allocate a struct request 703 * for them but rather special case them here. 704 */ 705 if (unlikely(nvmeq->qid == 0 && 706 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 707 nvme_complete_async_event(&nvmeq->dev->ctrl, 708 cqe.status, &cqe.result); 709 continue; 710 } 711 712 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 713 nvme_req(req)->result = cqe.result; 714 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 715 716 } 717 718 /* If the controller ignores the cq head doorbell and continuously 719 * writes to the queue, it is theoretically possible to wrap around 720 * the queue twice and mistakenly return IRQ_NONE. Linux only 721 * requires that 0.1% of your interrupts are handled, so this isn't 722 * a big problem. 723 */ 724 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 725 return; 726 727 if (likely(nvmeq->cq_vector >= 0)) 728 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 729 nvmeq->cq_head = head; 730 nvmeq->cq_phase = phase; 731 732 nvmeq->cqe_seen = 1; 733 } 734 735 static void nvme_process_cq(struct nvme_queue *nvmeq) 736 { 737 __nvme_process_cq(nvmeq, NULL); 738 } 739 740 static irqreturn_t nvme_irq(int irq, void *data) 741 { 742 irqreturn_t result; 743 struct nvme_queue *nvmeq = data; 744 spin_lock(&nvmeq->q_lock); 745 nvme_process_cq(nvmeq); 746 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 747 nvmeq->cqe_seen = 0; 748 spin_unlock(&nvmeq->q_lock); 749 return result; 750 } 751 752 static irqreturn_t nvme_irq_check(int irq, void *data) 753 { 754 struct nvme_queue *nvmeq = data; 755 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 756 return IRQ_WAKE_THREAD; 757 return IRQ_NONE; 758 } 759 760 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 761 { 762 struct nvme_queue *nvmeq = hctx->driver_data; 763 764 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 765 spin_lock_irq(&nvmeq->q_lock); 766 __nvme_process_cq(nvmeq, &tag); 767 spin_unlock_irq(&nvmeq->q_lock); 768 769 if (tag == -1) 770 return 1; 771 } 772 773 return 0; 774 } 775 776 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 777 { 778 struct nvme_dev *dev = to_nvme_dev(ctrl); 779 struct nvme_queue *nvmeq = dev->queues[0]; 780 struct nvme_command c; 781 782 memset(&c, 0, sizeof(c)); 783 c.common.opcode = nvme_admin_async_event; 784 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 785 786 spin_lock_irq(&nvmeq->q_lock); 787 __nvme_submit_cmd(nvmeq, &c); 788 spin_unlock_irq(&nvmeq->q_lock); 789 } 790 791 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 792 { 793 struct nvme_command c; 794 795 memset(&c, 0, sizeof(c)); 796 c.delete_queue.opcode = opcode; 797 c.delete_queue.qid = cpu_to_le16(id); 798 799 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 800 } 801 802 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 803 struct nvme_queue *nvmeq) 804 { 805 struct nvme_command c; 806 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 807 808 /* 809 * Note: we (ab)use the fact the the prp fields survive if no data 810 * is attached to the request. 811 */ 812 memset(&c, 0, sizeof(c)); 813 c.create_cq.opcode = nvme_admin_create_cq; 814 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 815 c.create_cq.cqid = cpu_to_le16(qid); 816 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 817 c.create_cq.cq_flags = cpu_to_le16(flags); 818 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 819 820 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 821 } 822 823 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 824 struct nvme_queue *nvmeq) 825 { 826 struct nvme_command c; 827 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 828 829 /* 830 * Note: we (ab)use the fact the the prp fields survive if no data 831 * is attached to the request. 832 */ 833 memset(&c, 0, sizeof(c)); 834 c.create_sq.opcode = nvme_admin_create_sq; 835 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 836 c.create_sq.sqid = cpu_to_le16(qid); 837 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 838 c.create_sq.sq_flags = cpu_to_le16(flags); 839 c.create_sq.cqid = cpu_to_le16(qid); 840 841 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 842 } 843 844 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 845 { 846 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 847 } 848 849 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 850 { 851 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 852 } 853 854 static void abort_endio(struct request *req, int error) 855 { 856 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 857 struct nvme_queue *nvmeq = iod->nvmeq; 858 u16 status = req->errors; 859 860 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 861 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 862 blk_mq_free_request(req); 863 } 864 865 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 866 { 867 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 868 struct nvme_queue *nvmeq = iod->nvmeq; 869 struct nvme_dev *dev = nvmeq->dev; 870 struct request *abort_req; 871 struct nvme_command cmd; 872 873 /* 874 * Shutdown immediately if controller times out while starting. The 875 * reset work will see the pci device disabled when it gets the forced 876 * cancellation error. All outstanding requests are completed on 877 * shutdown, so we return BLK_EH_HANDLED. 878 */ 879 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 880 dev_warn(dev->ctrl.device, 881 "I/O %d QID %d timeout, disable controller\n", 882 req->tag, nvmeq->qid); 883 nvme_dev_disable(dev, false); 884 req->errors = NVME_SC_CANCELLED; 885 return BLK_EH_HANDLED; 886 } 887 888 /* 889 * Shutdown the controller immediately and schedule a reset if the 890 * command was already aborted once before and still hasn't been 891 * returned to the driver, or if this is the admin queue. 892 */ 893 if (!nvmeq->qid || iod->aborted) { 894 dev_warn(dev->ctrl.device, 895 "I/O %d QID %d timeout, reset controller\n", 896 req->tag, nvmeq->qid); 897 nvme_dev_disable(dev, false); 898 nvme_reset(dev); 899 900 /* 901 * Mark the request as handled, since the inline shutdown 902 * forces all outstanding requests to complete. 903 */ 904 req->errors = NVME_SC_CANCELLED; 905 return BLK_EH_HANDLED; 906 } 907 908 iod->aborted = 1; 909 910 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 911 atomic_inc(&dev->ctrl.abort_limit); 912 return BLK_EH_RESET_TIMER; 913 } 914 915 memset(&cmd, 0, sizeof(cmd)); 916 cmd.abort.opcode = nvme_admin_abort_cmd; 917 cmd.abort.cid = req->tag; 918 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 919 920 dev_warn(nvmeq->dev->ctrl.device, 921 "I/O %d QID %d timeout, aborting\n", 922 req->tag, nvmeq->qid); 923 924 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 925 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 926 if (IS_ERR(abort_req)) { 927 atomic_inc(&dev->ctrl.abort_limit); 928 return BLK_EH_RESET_TIMER; 929 } 930 931 abort_req->timeout = ADMIN_TIMEOUT; 932 abort_req->end_io_data = NULL; 933 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 934 935 /* 936 * The aborted req will be completed on receiving the abort req. 937 * We enable the timer again. If hit twice, it'll cause a device reset, 938 * as the device then is in a faulty state. 939 */ 940 return BLK_EH_RESET_TIMER; 941 } 942 943 static void nvme_free_queue(struct nvme_queue *nvmeq) 944 { 945 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 946 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 947 if (nvmeq->sq_cmds) 948 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 949 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 950 kfree(nvmeq); 951 } 952 953 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 954 { 955 int i; 956 957 for (i = dev->queue_count - 1; i >= lowest; i--) { 958 struct nvme_queue *nvmeq = dev->queues[i]; 959 dev->queue_count--; 960 dev->queues[i] = NULL; 961 nvme_free_queue(nvmeq); 962 } 963 } 964 965 /** 966 * nvme_suspend_queue - put queue into suspended state 967 * @nvmeq - queue to suspend 968 */ 969 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 970 { 971 int vector; 972 973 spin_lock_irq(&nvmeq->q_lock); 974 if (nvmeq->cq_vector == -1) { 975 spin_unlock_irq(&nvmeq->q_lock); 976 return 1; 977 } 978 vector = nvmeq_irq(nvmeq); 979 nvmeq->dev->online_queues--; 980 nvmeq->cq_vector = -1; 981 spin_unlock_irq(&nvmeq->q_lock); 982 983 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 984 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 985 986 free_irq(vector, nvmeq); 987 988 return 0; 989 } 990 991 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 992 { 993 struct nvme_queue *nvmeq = dev->queues[0]; 994 995 if (!nvmeq) 996 return; 997 if (nvme_suspend_queue(nvmeq)) 998 return; 999 1000 if (shutdown) 1001 nvme_shutdown_ctrl(&dev->ctrl); 1002 else 1003 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1004 dev->bar + NVME_REG_CAP)); 1005 1006 spin_lock_irq(&nvmeq->q_lock); 1007 nvme_process_cq(nvmeq); 1008 spin_unlock_irq(&nvmeq->q_lock); 1009 } 1010 1011 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1012 int entry_size) 1013 { 1014 int q_depth = dev->q_depth; 1015 unsigned q_size_aligned = roundup(q_depth * entry_size, 1016 dev->ctrl.page_size); 1017 1018 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1019 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1020 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1021 q_depth = div_u64(mem_per_q, entry_size); 1022 1023 /* 1024 * Ensure the reduced q_depth is above some threshold where it 1025 * would be better to map queues in system memory with the 1026 * original depth 1027 */ 1028 if (q_depth < 64) 1029 return -ENOMEM; 1030 } 1031 1032 return q_depth; 1033 } 1034 1035 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1036 int qid, int depth) 1037 { 1038 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1039 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1040 dev->ctrl.page_size); 1041 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1042 nvmeq->sq_cmds_io = dev->cmb + offset; 1043 } else { 1044 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1045 &nvmeq->sq_dma_addr, GFP_KERNEL); 1046 if (!nvmeq->sq_cmds) 1047 return -ENOMEM; 1048 } 1049 1050 return 0; 1051 } 1052 1053 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1054 int depth) 1055 { 1056 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1057 if (!nvmeq) 1058 return NULL; 1059 1060 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1061 &nvmeq->cq_dma_addr, GFP_KERNEL); 1062 if (!nvmeq->cqes) 1063 goto free_nvmeq; 1064 1065 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1066 goto free_cqdma; 1067 1068 nvmeq->q_dmadev = dev->dev; 1069 nvmeq->dev = dev; 1070 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1071 dev->ctrl.instance, qid); 1072 spin_lock_init(&nvmeq->q_lock); 1073 nvmeq->cq_head = 0; 1074 nvmeq->cq_phase = 1; 1075 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1076 nvmeq->q_depth = depth; 1077 nvmeq->qid = qid; 1078 nvmeq->cq_vector = -1; 1079 dev->queues[qid] = nvmeq; 1080 dev->queue_count++; 1081 1082 return nvmeq; 1083 1084 free_cqdma: 1085 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1086 nvmeq->cq_dma_addr); 1087 free_nvmeq: 1088 kfree(nvmeq); 1089 return NULL; 1090 } 1091 1092 static int queue_request_irq(struct nvme_queue *nvmeq) 1093 { 1094 if (use_threaded_interrupts) 1095 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1096 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1097 else 1098 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1099 nvmeq->irqname, nvmeq); 1100 } 1101 1102 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1103 { 1104 struct nvme_dev *dev = nvmeq->dev; 1105 1106 spin_lock_irq(&nvmeq->q_lock); 1107 nvmeq->sq_tail = 0; 1108 nvmeq->cq_head = 0; 1109 nvmeq->cq_phase = 1; 1110 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1111 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1112 dev->online_queues++; 1113 spin_unlock_irq(&nvmeq->q_lock); 1114 } 1115 1116 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1117 { 1118 struct nvme_dev *dev = nvmeq->dev; 1119 int result; 1120 1121 nvmeq->cq_vector = qid - 1; 1122 result = adapter_alloc_cq(dev, qid, nvmeq); 1123 if (result < 0) 1124 return result; 1125 1126 result = adapter_alloc_sq(dev, qid, nvmeq); 1127 if (result < 0) 1128 goto release_cq; 1129 1130 result = queue_request_irq(nvmeq); 1131 if (result < 0) 1132 goto release_sq; 1133 1134 nvme_init_queue(nvmeq, qid); 1135 return result; 1136 1137 release_sq: 1138 adapter_delete_sq(dev, qid); 1139 release_cq: 1140 adapter_delete_cq(dev, qid); 1141 return result; 1142 } 1143 1144 static struct blk_mq_ops nvme_mq_admin_ops = { 1145 .queue_rq = nvme_queue_rq, 1146 .complete = nvme_complete_rq, 1147 .init_hctx = nvme_admin_init_hctx, 1148 .exit_hctx = nvme_admin_exit_hctx, 1149 .init_request = nvme_admin_init_request, 1150 .timeout = nvme_timeout, 1151 }; 1152 1153 static struct blk_mq_ops nvme_mq_ops = { 1154 .queue_rq = nvme_queue_rq, 1155 .complete = nvme_complete_rq, 1156 .init_hctx = nvme_init_hctx, 1157 .init_request = nvme_init_request, 1158 .map_queues = nvme_pci_map_queues, 1159 .timeout = nvme_timeout, 1160 .poll = nvme_poll, 1161 }; 1162 1163 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1164 { 1165 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1166 /* 1167 * If the controller was reset during removal, it's possible 1168 * user requests may be waiting on a stopped queue. Start the 1169 * queue to flush these to completion. 1170 */ 1171 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1172 blk_cleanup_queue(dev->ctrl.admin_q); 1173 blk_mq_free_tag_set(&dev->admin_tagset); 1174 } 1175 } 1176 1177 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1178 { 1179 if (!dev->ctrl.admin_q) { 1180 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1181 dev->admin_tagset.nr_hw_queues = 1; 1182 1183 /* 1184 * Subtract one to leave an empty queue entry for 'Full Queue' 1185 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1186 */ 1187 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1188 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1189 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1190 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1191 dev->admin_tagset.driver_data = dev; 1192 1193 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1194 return -ENOMEM; 1195 1196 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1197 if (IS_ERR(dev->ctrl.admin_q)) { 1198 blk_mq_free_tag_set(&dev->admin_tagset); 1199 return -ENOMEM; 1200 } 1201 if (!blk_get_queue(dev->ctrl.admin_q)) { 1202 nvme_dev_remove_admin(dev); 1203 dev->ctrl.admin_q = NULL; 1204 return -ENODEV; 1205 } 1206 } else 1207 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1208 1209 return 0; 1210 } 1211 1212 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1213 { 1214 int result; 1215 u32 aqa; 1216 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1217 struct nvme_queue *nvmeq; 1218 1219 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1220 NVME_CAP_NSSRC(cap) : 0; 1221 1222 if (dev->subsystem && 1223 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1224 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1225 1226 result = nvme_disable_ctrl(&dev->ctrl, cap); 1227 if (result < 0) 1228 return result; 1229 1230 nvmeq = dev->queues[0]; 1231 if (!nvmeq) { 1232 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1233 if (!nvmeq) 1234 return -ENOMEM; 1235 } 1236 1237 aqa = nvmeq->q_depth - 1; 1238 aqa |= aqa << 16; 1239 1240 writel(aqa, dev->bar + NVME_REG_AQA); 1241 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1242 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1243 1244 result = nvme_enable_ctrl(&dev->ctrl, cap); 1245 if (result) 1246 return result; 1247 1248 nvmeq->cq_vector = 0; 1249 result = queue_request_irq(nvmeq); 1250 if (result) { 1251 nvmeq->cq_vector = -1; 1252 return result; 1253 } 1254 1255 return result; 1256 } 1257 1258 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1259 { 1260 1261 /* If true, indicates loss of adapter communication, possibly by a 1262 * NVMe Subsystem reset. 1263 */ 1264 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1265 1266 /* If there is a reset ongoing, we shouldn't reset again. */ 1267 if (work_busy(&dev->reset_work)) 1268 return false; 1269 1270 /* We shouldn't reset unless the controller is on fatal error state 1271 * _or_ if we lost the communication with it. 1272 */ 1273 if (!(csts & NVME_CSTS_CFS) && !nssro) 1274 return false; 1275 1276 /* If PCI error recovery process is happening, we cannot reset or 1277 * the recovery mechanism will surely fail. 1278 */ 1279 if (pci_channel_offline(to_pci_dev(dev->dev))) 1280 return false; 1281 1282 return true; 1283 } 1284 1285 static void nvme_watchdog_timer(unsigned long data) 1286 { 1287 struct nvme_dev *dev = (struct nvme_dev *)data; 1288 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1289 1290 /* Skip controllers under certain specific conditions. */ 1291 if (nvme_should_reset(dev, csts)) { 1292 if (!nvme_reset(dev)) 1293 dev_warn(dev->dev, 1294 "Failed status: 0x%x, reset controller.\n", 1295 csts); 1296 return; 1297 } 1298 1299 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1300 } 1301 1302 static int nvme_create_io_queues(struct nvme_dev *dev) 1303 { 1304 unsigned i, max; 1305 int ret = 0; 1306 1307 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1308 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1309 ret = -ENOMEM; 1310 break; 1311 } 1312 } 1313 1314 max = min(dev->max_qid, dev->queue_count - 1); 1315 for (i = dev->online_queues; i <= max; i++) { 1316 ret = nvme_create_queue(dev->queues[i], i); 1317 if (ret) 1318 break; 1319 } 1320 1321 /* 1322 * Ignore failing Create SQ/CQ commands, we can continue with less 1323 * than the desired aount of queues, and even a controller without 1324 * I/O queues an still be used to issue admin commands. This might 1325 * be useful to upgrade a buggy firmware for example. 1326 */ 1327 return ret >= 0 ? 0 : ret; 1328 } 1329 1330 static ssize_t nvme_cmb_show(struct device *dev, 1331 struct device_attribute *attr, 1332 char *buf) 1333 { 1334 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1335 1336 return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1337 ndev->cmbloc, ndev->cmbsz); 1338 } 1339 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1340 1341 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1342 { 1343 u64 szu, size, offset; 1344 resource_size_t bar_size; 1345 struct pci_dev *pdev = to_pci_dev(dev->dev); 1346 void __iomem *cmb; 1347 dma_addr_t dma_addr; 1348 1349 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1350 if (!(NVME_CMB_SZ(dev->cmbsz))) 1351 return NULL; 1352 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1353 1354 if (!use_cmb_sqes) 1355 return NULL; 1356 1357 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1358 size = szu * NVME_CMB_SZ(dev->cmbsz); 1359 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1360 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1361 1362 if (offset > bar_size) 1363 return NULL; 1364 1365 /* 1366 * Controllers may support a CMB size larger than their BAR, 1367 * for example, due to being behind a bridge. Reduce the CMB to 1368 * the reported size of the BAR 1369 */ 1370 if (size > bar_size - offset) 1371 size = bar_size - offset; 1372 1373 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1374 cmb = ioremap_wc(dma_addr, size); 1375 if (!cmb) 1376 return NULL; 1377 1378 dev->cmb_dma_addr = dma_addr; 1379 dev->cmb_size = size; 1380 return cmb; 1381 } 1382 1383 static inline void nvme_release_cmb(struct nvme_dev *dev) 1384 { 1385 if (dev->cmb) { 1386 iounmap(dev->cmb); 1387 dev->cmb = NULL; 1388 } 1389 } 1390 1391 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1392 { 1393 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1394 } 1395 1396 static int nvme_setup_io_queues(struct nvme_dev *dev) 1397 { 1398 struct nvme_queue *adminq = dev->queues[0]; 1399 struct pci_dev *pdev = to_pci_dev(dev->dev); 1400 int result, nr_io_queues, size; 1401 1402 nr_io_queues = num_online_cpus(); 1403 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1404 if (result < 0) 1405 return result; 1406 1407 if (nr_io_queues == 0) 1408 return 0; 1409 1410 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1411 result = nvme_cmb_qdepth(dev, nr_io_queues, 1412 sizeof(struct nvme_command)); 1413 if (result > 0) 1414 dev->q_depth = result; 1415 else 1416 nvme_release_cmb(dev); 1417 } 1418 1419 size = db_bar_size(dev, nr_io_queues); 1420 if (size > 8192) { 1421 iounmap(dev->bar); 1422 do { 1423 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1424 if (dev->bar) 1425 break; 1426 if (!--nr_io_queues) 1427 return -ENOMEM; 1428 size = db_bar_size(dev, nr_io_queues); 1429 } while (1); 1430 dev->dbs = dev->bar + 4096; 1431 adminq->q_db = dev->dbs; 1432 } 1433 1434 /* Deregister the admin queue's interrupt */ 1435 free_irq(pci_irq_vector(pdev, 0), adminq); 1436 1437 /* 1438 * If we enable msix early due to not intx, disable it again before 1439 * setting up the full range we need. 1440 */ 1441 pci_free_irq_vectors(pdev); 1442 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1443 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1444 if (nr_io_queues <= 0) 1445 return -EIO; 1446 dev->max_qid = nr_io_queues; 1447 1448 /* 1449 * Should investigate if there's a performance win from allocating 1450 * more queues than interrupt vectors; it might allow the submission 1451 * path to scale better, even if the receive path is limited by the 1452 * number of interrupts. 1453 */ 1454 1455 result = queue_request_irq(adminq); 1456 if (result) { 1457 adminq->cq_vector = -1; 1458 return result; 1459 } 1460 return nvme_create_io_queues(dev); 1461 } 1462 1463 static void nvme_del_queue_end(struct request *req, int error) 1464 { 1465 struct nvme_queue *nvmeq = req->end_io_data; 1466 1467 blk_mq_free_request(req); 1468 complete(&nvmeq->dev->ioq_wait); 1469 } 1470 1471 static void nvme_del_cq_end(struct request *req, int error) 1472 { 1473 struct nvme_queue *nvmeq = req->end_io_data; 1474 1475 if (!error) { 1476 unsigned long flags; 1477 1478 /* 1479 * We might be called with the AQ q_lock held 1480 * and the I/O queue q_lock should always 1481 * nest inside the AQ one. 1482 */ 1483 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1484 SINGLE_DEPTH_NESTING); 1485 nvme_process_cq(nvmeq); 1486 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1487 } 1488 1489 nvme_del_queue_end(req, error); 1490 } 1491 1492 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1493 { 1494 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1495 struct request *req; 1496 struct nvme_command cmd; 1497 1498 memset(&cmd, 0, sizeof(cmd)); 1499 cmd.delete_queue.opcode = opcode; 1500 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1501 1502 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1503 if (IS_ERR(req)) 1504 return PTR_ERR(req); 1505 1506 req->timeout = ADMIN_TIMEOUT; 1507 req->end_io_data = nvmeq; 1508 1509 blk_execute_rq_nowait(q, NULL, req, false, 1510 opcode == nvme_admin_delete_cq ? 1511 nvme_del_cq_end : nvme_del_queue_end); 1512 return 0; 1513 } 1514 1515 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1516 { 1517 int pass; 1518 unsigned long timeout; 1519 u8 opcode = nvme_admin_delete_sq; 1520 1521 for (pass = 0; pass < 2; pass++) { 1522 int sent = 0, i = queues; 1523 1524 reinit_completion(&dev->ioq_wait); 1525 retry: 1526 timeout = ADMIN_TIMEOUT; 1527 for (; i > 0; i--, sent++) 1528 if (nvme_delete_queue(dev->queues[i], opcode)) 1529 break; 1530 1531 while (sent--) { 1532 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1533 if (timeout == 0) 1534 return; 1535 if (i) 1536 goto retry; 1537 } 1538 opcode = nvme_admin_delete_cq; 1539 } 1540 } 1541 1542 /* 1543 * Return: error value if an error occurred setting up the queues or calling 1544 * Identify Device. 0 if these succeeded, even if adding some of the 1545 * namespaces failed. At the moment, these failures are silent. TBD which 1546 * failures should be reported. 1547 */ 1548 static int nvme_dev_add(struct nvme_dev *dev) 1549 { 1550 if (!dev->ctrl.tagset) { 1551 dev->tagset.ops = &nvme_mq_ops; 1552 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1553 dev->tagset.timeout = NVME_IO_TIMEOUT; 1554 dev->tagset.numa_node = dev_to_node(dev->dev); 1555 dev->tagset.queue_depth = 1556 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1557 dev->tagset.cmd_size = nvme_cmd_size(dev); 1558 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1559 dev->tagset.driver_data = dev; 1560 1561 if (blk_mq_alloc_tag_set(&dev->tagset)) 1562 return 0; 1563 dev->ctrl.tagset = &dev->tagset; 1564 } else { 1565 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1566 1567 /* Free previously allocated queues that are no longer usable */ 1568 nvme_free_queues(dev, dev->online_queues); 1569 } 1570 1571 return 0; 1572 } 1573 1574 static int nvme_pci_enable(struct nvme_dev *dev) 1575 { 1576 u64 cap; 1577 int result = -ENOMEM; 1578 struct pci_dev *pdev = to_pci_dev(dev->dev); 1579 1580 if (pci_enable_device_mem(pdev)) 1581 return result; 1582 1583 pci_set_master(pdev); 1584 1585 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1586 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1587 goto disable; 1588 1589 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1590 result = -ENODEV; 1591 goto disable; 1592 } 1593 1594 /* 1595 * Some devices and/or platforms don't advertise or work with INTx 1596 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1597 * adjust this later. 1598 */ 1599 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1600 if (result < 0) 1601 return result; 1602 1603 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1604 1605 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1606 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1607 dev->dbs = dev->bar + 4096; 1608 1609 /* 1610 * Temporary fix for the Apple controller found in the MacBook8,1 and 1611 * some MacBook7,1 to avoid controller resets and data loss. 1612 */ 1613 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1614 dev->q_depth = 2; 1615 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1616 "queue depth=%u to work around controller resets\n", 1617 dev->q_depth); 1618 } 1619 1620 /* 1621 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1622 * populate sysfs if a CMB is implemented. Note that we add the 1623 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1624 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1625 * NULL as final argument to sysfs_add_file_to_group. 1626 */ 1627 1628 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1629 dev->cmb = nvme_map_cmb(dev); 1630 1631 if (dev->cmbsz) { 1632 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1633 &dev_attr_cmb.attr, NULL)) 1634 dev_warn(dev->dev, 1635 "failed to add sysfs attribute for CMB\n"); 1636 } 1637 } 1638 1639 pci_enable_pcie_error_reporting(pdev); 1640 pci_save_state(pdev); 1641 return 0; 1642 1643 disable: 1644 pci_disable_device(pdev); 1645 return result; 1646 } 1647 1648 static void nvme_dev_unmap(struct nvme_dev *dev) 1649 { 1650 if (dev->bar) 1651 iounmap(dev->bar); 1652 pci_release_mem_regions(to_pci_dev(dev->dev)); 1653 } 1654 1655 static void nvme_pci_disable(struct nvme_dev *dev) 1656 { 1657 struct pci_dev *pdev = to_pci_dev(dev->dev); 1658 1659 pci_free_irq_vectors(pdev); 1660 1661 if (pci_is_enabled(pdev)) { 1662 pci_disable_pcie_error_reporting(pdev); 1663 pci_disable_device(pdev); 1664 } 1665 } 1666 1667 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1668 { 1669 int i, queues; 1670 u32 csts = -1; 1671 1672 del_timer_sync(&dev->watchdog_timer); 1673 1674 mutex_lock(&dev->shutdown_lock); 1675 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1676 nvme_stop_queues(&dev->ctrl); 1677 csts = readl(dev->bar + NVME_REG_CSTS); 1678 } 1679 1680 queues = dev->online_queues - 1; 1681 for (i = dev->queue_count - 1; i > 0; i--) 1682 nvme_suspend_queue(dev->queues[i]); 1683 1684 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1685 /* A device might become IO incapable very soon during 1686 * probe, before the admin queue is configured. Thus, 1687 * queue_count can be 0 here. 1688 */ 1689 if (dev->queue_count) 1690 nvme_suspend_queue(dev->queues[0]); 1691 } else { 1692 nvme_disable_io_queues(dev, queues); 1693 nvme_disable_admin_queue(dev, shutdown); 1694 } 1695 nvme_pci_disable(dev); 1696 1697 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1698 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1699 mutex_unlock(&dev->shutdown_lock); 1700 } 1701 1702 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1703 { 1704 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1705 PAGE_SIZE, PAGE_SIZE, 0); 1706 if (!dev->prp_page_pool) 1707 return -ENOMEM; 1708 1709 /* Optimisation for I/Os between 4k and 128k */ 1710 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1711 256, 256, 0); 1712 if (!dev->prp_small_pool) { 1713 dma_pool_destroy(dev->prp_page_pool); 1714 return -ENOMEM; 1715 } 1716 return 0; 1717 } 1718 1719 static void nvme_release_prp_pools(struct nvme_dev *dev) 1720 { 1721 dma_pool_destroy(dev->prp_page_pool); 1722 dma_pool_destroy(dev->prp_small_pool); 1723 } 1724 1725 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1726 { 1727 struct nvme_dev *dev = to_nvme_dev(ctrl); 1728 1729 put_device(dev->dev); 1730 if (dev->tagset.tags) 1731 blk_mq_free_tag_set(&dev->tagset); 1732 if (dev->ctrl.admin_q) 1733 blk_put_queue(dev->ctrl.admin_q); 1734 kfree(dev->queues); 1735 kfree(dev); 1736 } 1737 1738 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1739 { 1740 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1741 1742 kref_get(&dev->ctrl.kref); 1743 nvme_dev_disable(dev, false); 1744 if (!schedule_work(&dev->remove_work)) 1745 nvme_put_ctrl(&dev->ctrl); 1746 } 1747 1748 static void nvme_reset_work(struct work_struct *work) 1749 { 1750 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1751 int result = -ENODEV; 1752 1753 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1754 goto out; 1755 1756 /* 1757 * If we're called to reset a live controller first shut it down before 1758 * moving on. 1759 */ 1760 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1761 nvme_dev_disable(dev, false); 1762 1763 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1764 goto out; 1765 1766 result = nvme_pci_enable(dev); 1767 if (result) 1768 goto out; 1769 1770 result = nvme_configure_admin_queue(dev); 1771 if (result) 1772 goto out; 1773 1774 nvme_init_queue(dev->queues[0], 0); 1775 result = nvme_alloc_admin_tags(dev); 1776 if (result) 1777 goto out; 1778 1779 result = nvme_init_identify(&dev->ctrl); 1780 if (result) 1781 goto out; 1782 1783 result = nvme_setup_io_queues(dev); 1784 if (result) 1785 goto out; 1786 1787 /* 1788 * A controller that can not execute IO typically requires user 1789 * intervention to correct. For such degraded controllers, the driver 1790 * should not submit commands the user did not request, so skip 1791 * registering for asynchronous event notification on this condition. 1792 */ 1793 if (dev->online_queues > 1) 1794 nvme_queue_async_events(&dev->ctrl); 1795 1796 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1797 1798 /* 1799 * Keep the controller around but remove all namespaces if we don't have 1800 * any working I/O queue. 1801 */ 1802 if (dev->online_queues < 2) { 1803 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1804 nvme_kill_queues(&dev->ctrl); 1805 nvme_remove_namespaces(&dev->ctrl); 1806 } else { 1807 nvme_start_queues(&dev->ctrl); 1808 nvme_dev_add(dev); 1809 } 1810 1811 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1812 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1813 goto out; 1814 } 1815 1816 if (dev->online_queues > 1) 1817 nvme_queue_scan(&dev->ctrl); 1818 return; 1819 1820 out: 1821 nvme_remove_dead_ctrl(dev, result); 1822 } 1823 1824 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1825 { 1826 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1827 struct pci_dev *pdev = to_pci_dev(dev->dev); 1828 1829 nvme_kill_queues(&dev->ctrl); 1830 if (pci_get_drvdata(pdev)) 1831 device_release_driver(&pdev->dev); 1832 nvme_put_ctrl(&dev->ctrl); 1833 } 1834 1835 static int nvme_reset(struct nvme_dev *dev) 1836 { 1837 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1838 return -ENODEV; 1839 if (work_busy(&dev->reset_work)) 1840 return -ENODEV; 1841 if (!queue_work(nvme_workq, &dev->reset_work)) 1842 return -EBUSY; 1843 return 0; 1844 } 1845 1846 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1847 { 1848 *val = readl(to_nvme_dev(ctrl)->bar + off); 1849 return 0; 1850 } 1851 1852 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1853 { 1854 writel(val, to_nvme_dev(ctrl)->bar + off); 1855 return 0; 1856 } 1857 1858 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1859 { 1860 *val = readq(to_nvme_dev(ctrl)->bar + off); 1861 return 0; 1862 } 1863 1864 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1865 { 1866 struct nvme_dev *dev = to_nvme_dev(ctrl); 1867 int ret = nvme_reset(dev); 1868 1869 if (!ret) 1870 flush_work(&dev->reset_work); 1871 return ret; 1872 } 1873 1874 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1875 .name = "pcie", 1876 .module = THIS_MODULE, 1877 .reg_read32 = nvme_pci_reg_read32, 1878 .reg_write32 = nvme_pci_reg_write32, 1879 .reg_read64 = nvme_pci_reg_read64, 1880 .reset_ctrl = nvme_pci_reset_ctrl, 1881 .free_ctrl = nvme_pci_free_ctrl, 1882 .submit_async_event = nvme_pci_submit_async_event, 1883 }; 1884 1885 static int nvme_dev_map(struct nvme_dev *dev) 1886 { 1887 struct pci_dev *pdev = to_pci_dev(dev->dev); 1888 1889 if (pci_request_mem_regions(pdev, "nvme")) 1890 return -ENODEV; 1891 1892 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1893 if (!dev->bar) 1894 goto release; 1895 1896 return 0; 1897 release: 1898 pci_release_mem_regions(pdev); 1899 return -ENODEV; 1900 } 1901 1902 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1903 { 1904 int node, result = -ENOMEM; 1905 struct nvme_dev *dev; 1906 1907 node = dev_to_node(&pdev->dev); 1908 if (node == NUMA_NO_NODE) 1909 set_dev_node(&pdev->dev, first_memory_node); 1910 1911 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1912 if (!dev) 1913 return -ENOMEM; 1914 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1915 GFP_KERNEL, node); 1916 if (!dev->queues) 1917 goto free; 1918 1919 dev->dev = get_device(&pdev->dev); 1920 pci_set_drvdata(pdev, dev); 1921 1922 result = nvme_dev_map(dev); 1923 if (result) 1924 goto free; 1925 1926 INIT_WORK(&dev->reset_work, nvme_reset_work); 1927 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1928 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1929 (unsigned long)dev); 1930 mutex_init(&dev->shutdown_lock); 1931 init_completion(&dev->ioq_wait); 1932 1933 result = nvme_setup_prp_pools(dev); 1934 if (result) 1935 goto put_pci; 1936 1937 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1938 id->driver_data); 1939 if (result) 1940 goto release_pools; 1941 1942 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1943 1944 queue_work(nvme_workq, &dev->reset_work); 1945 return 0; 1946 1947 release_pools: 1948 nvme_release_prp_pools(dev); 1949 put_pci: 1950 put_device(dev->dev); 1951 nvme_dev_unmap(dev); 1952 free: 1953 kfree(dev->queues); 1954 kfree(dev); 1955 return result; 1956 } 1957 1958 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1959 { 1960 struct nvme_dev *dev = pci_get_drvdata(pdev); 1961 1962 if (prepare) 1963 nvme_dev_disable(dev, false); 1964 else 1965 nvme_reset(dev); 1966 } 1967 1968 static void nvme_shutdown(struct pci_dev *pdev) 1969 { 1970 struct nvme_dev *dev = pci_get_drvdata(pdev); 1971 nvme_dev_disable(dev, true); 1972 } 1973 1974 /* 1975 * The driver's remove may be called on a device in a partially initialized 1976 * state. This function must not have any dependencies on the device state in 1977 * order to proceed. 1978 */ 1979 static void nvme_remove(struct pci_dev *pdev) 1980 { 1981 struct nvme_dev *dev = pci_get_drvdata(pdev); 1982 1983 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1984 1985 pci_set_drvdata(pdev, NULL); 1986 1987 if (!pci_device_is_present(pdev)) 1988 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 1989 1990 flush_work(&dev->reset_work); 1991 nvme_uninit_ctrl(&dev->ctrl); 1992 nvme_dev_disable(dev, true); 1993 nvme_dev_remove_admin(dev); 1994 nvme_free_queues(dev, 0); 1995 nvme_release_cmb(dev); 1996 nvme_release_prp_pools(dev); 1997 nvme_dev_unmap(dev); 1998 nvme_put_ctrl(&dev->ctrl); 1999 } 2000 2001 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2002 { 2003 int ret = 0; 2004 2005 if (numvfs == 0) { 2006 if (pci_vfs_assigned(pdev)) { 2007 dev_warn(&pdev->dev, 2008 "Cannot disable SR-IOV VFs while assigned\n"); 2009 return -EPERM; 2010 } 2011 pci_disable_sriov(pdev); 2012 return 0; 2013 } 2014 2015 ret = pci_enable_sriov(pdev, numvfs); 2016 return ret ? ret : numvfs; 2017 } 2018 2019 #ifdef CONFIG_PM_SLEEP 2020 static int nvme_suspend(struct device *dev) 2021 { 2022 struct pci_dev *pdev = to_pci_dev(dev); 2023 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2024 2025 nvme_dev_disable(ndev, true); 2026 return 0; 2027 } 2028 2029 static int nvme_resume(struct device *dev) 2030 { 2031 struct pci_dev *pdev = to_pci_dev(dev); 2032 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2033 2034 nvme_reset(ndev); 2035 return 0; 2036 } 2037 #endif 2038 2039 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2040 2041 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2042 pci_channel_state_t state) 2043 { 2044 struct nvme_dev *dev = pci_get_drvdata(pdev); 2045 2046 /* 2047 * A frozen channel requires a reset. When detected, this method will 2048 * shutdown the controller to quiesce. The controller will be restarted 2049 * after the slot reset through driver's slot_reset callback. 2050 */ 2051 switch (state) { 2052 case pci_channel_io_normal: 2053 return PCI_ERS_RESULT_CAN_RECOVER; 2054 case pci_channel_io_frozen: 2055 dev_warn(dev->ctrl.device, 2056 "frozen state error detected, reset controller\n"); 2057 nvme_dev_disable(dev, false); 2058 return PCI_ERS_RESULT_NEED_RESET; 2059 case pci_channel_io_perm_failure: 2060 dev_warn(dev->ctrl.device, 2061 "failure state error detected, request disconnect\n"); 2062 return PCI_ERS_RESULT_DISCONNECT; 2063 } 2064 return PCI_ERS_RESULT_NEED_RESET; 2065 } 2066 2067 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2068 { 2069 struct nvme_dev *dev = pci_get_drvdata(pdev); 2070 2071 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2072 pci_restore_state(pdev); 2073 nvme_reset(dev); 2074 return PCI_ERS_RESULT_RECOVERED; 2075 } 2076 2077 static void nvme_error_resume(struct pci_dev *pdev) 2078 { 2079 pci_cleanup_aer_uncorrect_error_status(pdev); 2080 } 2081 2082 static const struct pci_error_handlers nvme_err_handler = { 2083 .error_detected = nvme_error_detected, 2084 .slot_reset = nvme_slot_reset, 2085 .resume = nvme_error_resume, 2086 .reset_notify = nvme_reset_notify, 2087 }; 2088 2089 static const struct pci_device_id nvme_id_table[] = { 2090 { PCI_VDEVICE(INTEL, 0x0953), 2091 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2092 NVME_QUIRK_DISCARD_ZEROES, }, 2093 { PCI_VDEVICE(INTEL, 0x0a53), 2094 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2095 NVME_QUIRK_DISCARD_ZEROES, }, 2096 { PCI_VDEVICE(INTEL, 0x0a54), 2097 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2098 NVME_QUIRK_DISCARD_ZEROES, }, 2099 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2100 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2101 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2102 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2103 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2104 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2105 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2106 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2107 { 0, } 2108 }; 2109 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2110 2111 static struct pci_driver nvme_driver = { 2112 .name = "nvme", 2113 .id_table = nvme_id_table, 2114 .probe = nvme_probe, 2115 .remove = nvme_remove, 2116 .shutdown = nvme_shutdown, 2117 .driver = { 2118 .pm = &nvme_dev_pm_ops, 2119 }, 2120 .sriov_configure = nvme_pci_sriov_configure, 2121 .err_handler = &nvme_err_handler, 2122 }; 2123 2124 static int __init nvme_init(void) 2125 { 2126 int result; 2127 2128 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2129 if (!nvme_workq) 2130 return -ENOMEM; 2131 2132 result = pci_register_driver(&nvme_driver); 2133 if (result) 2134 destroy_workqueue(nvme_workq); 2135 return result; 2136 } 2137 2138 static void __exit nvme_exit(void) 2139 { 2140 pci_unregister_driver(&nvme_driver); 2141 destroy_workqueue(nvme_workq); 2142 _nvme_check_size(); 2143 } 2144 2145 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2146 MODULE_LICENSE("GPL"); 2147 MODULE_VERSION("1.0"); 2148 module_init(nvme_init); 2149 module_exit(nvme_exit); 2150