1 /* 2 * FarSync WAN driver for Linux (2.6.x kernel version) 3 * 4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards 5 * 6 * Copyright (C) 2001-2004 FarSite Communications Ltd. 7 * www.farsite.co.uk 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 * 14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> 15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/version.h> 21 #include <linux/pci.h> 22 #include <linux/ioport.h> 23 #include <linux/init.h> 24 #include <linux/if.h> 25 #include <linux/hdlc.h> 26 #include <asm/io.h> 27 #include <asm/uaccess.h> 28 29 #include "farsync.h" 30 31 /* 32 * Module info 33 */ 34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); 35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); 36 MODULE_LICENSE("GPL"); 37 38 /* Driver configuration and global parameters 39 * ========================================== 40 */ 41 42 /* Number of ports (per card) and cards supported 43 */ 44 #define FST_MAX_PORTS 4 45 #define FST_MAX_CARDS 32 46 47 /* Default parameters for the link 48 */ 49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is 50 * useful, the syncppp module forces 51 * this down assuming a slower line I 52 * guess. 53 */ 54 #define FST_TXQ_DEPTH 16 /* This one is for the buffering 55 * of frames on the way down to the card 56 * so that we can keep the card busy 57 * and maximise throughput 58 */ 59 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control 60 * network layer */ 61 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow 62 * control from network layer */ 63 #define FST_MAX_MTU 8000 /* Huge but possible */ 64 #define FST_DEF_MTU 1500 /* Common sane value */ 65 66 #define FST_TX_TIMEOUT (2*HZ) 67 68 #ifdef ARPHRD_RAWHDLC 69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ 70 #else 71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ 72 #endif 73 74 /* 75 * Modules parameters and associated varaibles 76 */ 77 int fst_txq_low = FST_LOW_WATER_MARK; 78 int fst_txq_high = FST_HIGH_WATER_MARK; 79 int fst_max_reads = 7; 80 int fst_excluded_cards = 0; 81 int fst_excluded_list[FST_MAX_CARDS]; 82 83 module_param(fst_txq_low, int, 0); 84 module_param(fst_txq_high, int, 0); 85 module_param(fst_max_reads, int, 0); 86 module_param(fst_excluded_cards, int, 0); 87 module_param_array(fst_excluded_list, int, NULL, 0); 88 89 /* Card shared memory layout 90 * ========================= 91 */ 92 #pragma pack(1) 93 94 /* This information is derived in part from the FarSite FarSync Smc.h 95 * file. Unfortunately various name clashes and the non-portability of the 96 * bit field declarations in that file have meant that I have chosen to 97 * recreate the information here. 98 * 99 * The SMC (Shared Memory Configuration) has a version number that is 100 * incremented every time there is a significant change. This number can 101 * be used to check that we have not got out of step with the firmware 102 * contained in the .CDE files. 103 */ 104 #define SMC_VERSION 24 105 106 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ 107 108 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main 109 * configuration structure */ 110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA 111 * buffers */ 112 113 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ 114 #define LEN_RX_BUFFER 8192 115 116 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ 117 #define LEN_SMALL_RX_BUFFER 256 118 119 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ 120 #define NUM_RX_BUFFER 8 121 122 /* Interrupt retry time in milliseconds */ 123 #define INT_RETRY_TIME 2 124 125 /* The Am186CH/CC processors support a SmartDMA mode using circular pools 126 * of buffer descriptors. The structure is almost identical to that used 127 * in the LANCE Ethernet controllers. Details available as PDF from the 128 * AMD web site: http://www.amd.com/products/epd/processors/\ 129 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf 130 */ 131 struct txdesc { /* Transmit descriptor */ 132 volatile u16 ladr; /* Low order address of packet. This is a 133 * linear address in the Am186 memory space 134 */ 135 volatile u8 hadr; /* High order address. Low 4 bits only, high 4 136 * bits must be zero 137 */ 138 volatile u8 bits; /* Status and config */ 139 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. 140 * Transmit terminal count interrupt enable in 141 * top bit. 142 */ 143 u16 unused; /* Not used in Tx */ 144 }; 145 146 struct rxdesc { /* Receive descriptor */ 147 volatile u16 ladr; /* Low order address of packet */ 148 volatile u8 hadr; /* High order address */ 149 volatile u8 bits; /* Status and config */ 150 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. 151 * Receive terminal count interrupt enable in 152 * top bit. 153 */ 154 volatile u16 mcnt; /* Message byte count (15 bits) */ 155 }; 156 157 /* Convert a length into the 15 bit 2's complement */ 158 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ 159 /* Since we need to set the high bit to enable the completion interrupt this 160 * can be made a lot simpler 161 */ 162 #define cnv_bcnt(len) (-(len)) 163 164 /* Status and config bits for the above */ 165 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ 166 #define TX_STP 0x02 /* Tx: start of packet */ 167 #define TX_ENP 0x01 /* Tx: end of packet */ 168 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ 169 #define RX_FRAM 0x20 /* Rx: framing error */ 170 #define RX_OFLO 0x10 /* Rx: overflow error */ 171 #define RX_CRC 0x08 /* Rx: CRC error */ 172 #define RX_HBUF 0x04 /* Rx: buffer error */ 173 #define RX_STP 0x02 /* Rx: start of packet */ 174 #define RX_ENP 0x01 /* Rx: end of packet */ 175 176 /* Interrupts from the card are caused by various events which are presented 177 * in a circular buffer as several events may be processed on one physical int 178 */ 179 #define MAX_CIRBUFF 32 180 181 struct cirbuff { 182 u8 rdindex; /* read, then increment and wrap */ 183 u8 wrindex; /* write, then increment and wrap */ 184 u8 evntbuff[MAX_CIRBUFF]; 185 }; 186 187 /* Interrupt event codes. 188 * Where appropriate the two low order bits indicate the port number 189 */ 190 #define CTLA_CHG 0x18 /* Control signal changed */ 191 #define CTLB_CHG 0x19 192 #define CTLC_CHG 0x1A 193 #define CTLD_CHG 0x1B 194 195 #define INIT_CPLT 0x20 /* Initialisation complete */ 196 #define INIT_FAIL 0x21 /* Initialisation failed */ 197 198 #define ABTA_SENT 0x24 /* Abort sent */ 199 #define ABTB_SENT 0x25 200 #define ABTC_SENT 0x26 201 #define ABTD_SENT 0x27 202 203 #define TXA_UNDF 0x28 /* Transmission underflow */ 204 #define TXB_UNDF 0x29 205 #define TXC_UNDF 0x2A 206 #define TXD_UNDF 0x2B 207 208 #define F56_INT 0x2C 209 #define M32_INT 0x2D 210 211 #define TE1_ALMA 0x30 212 213 /* Port physical configuration. See farsync.h for field values */ 214 struct port_cfg { 215 u16 lineInterface; /* Physical interface type */ 216 u8 x25op; /* Unused at present */ 217 u8 internalClock; /* 1 => internal clock, 0 => external */ 218 u8 transparentMode; /* 1 => on, 0 => off */ 219 u8 invertClock; /* 0 => normal, 1 => inverted */ 220 u8 padBytes[6]; /* Padding */ 221 u32 lineSpeed; /* Speed in bps */ 222 }; 223 224 /* TE1 port physical configuration */ 225 struct su_config { 226 u32 dataRate; 227 u8 clocking; 228 u8 framing; 229 u8 structure; 230 u8 interface; 231 u8 coding; 232 u8 lineBuildOut; 233 u8 equalizer; 234 u8 transparentMode; 235 u8 loopMode; 236 u8 range; 237 u8 txBufferMode; 238 u8 rxBufferMode; 239 u8 startingSlot; 240 u8 losThreshold; 241 u8 enableIdleCode; 242 u8 idleCode; 243 u8 spare[44]; 244 }; 245 246 /* TE1 Status */ 247 struct su_status { 248 u32 receiveBufferDelay; 249 u32 framingErrorCount; 250 u32 codeViolationCount; 251 u32 crcErrorCount; 252 u32 lineAttenuation; 253 u8 portStarted; 254 u8 lossOfSignal; 255 u8 receiveRemoteAlarm; 256 u8 alarmIndicationSignal; 257 u8 spare[40]; 258 }; 259 260 /* Finally sling all the above together into the shared memory structure. 261 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been 262 * evolving under NT for some time so I guess we're stuck with it. 263 * The structure starts at offset SMC_BASE. 264 * See farsync.h for some field values. 265 */ 266 struct fst_shared { 267 /* DMA descriptor rings */ 268 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; 269 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; 270 271 /* Obsolete small buffers */ 272 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; 273 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; 274 275 u8 taskStatus; /* 0x00 => initialising, 0x01 => running, 276 * 0xFF => halted 277 */ 278 279 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, 280 * set to 0xEE by host to acknowledge interrupt 281 */ 282 283 u16 smcVersion; /* Must match SMC_VERSION */ 284 285 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major 286 * version, RR = revision and BB = build 287 */ 288 289 u16 txa_done; /* Obsolete completion flags */ 290 u16 rxa_done; 291 u16 txb_done; 292 u16 rxb_done; 293 u16 txc_done; 294 u16 rxc_done; 295 u16 txd_done; 296 u16 rxd_done; 297 298 u16 mailbox[4]; /* Diagnostics mailbox. Not used */ 299 300 struct cirbuff interruptEvent; /* interrupt causes */ 301 302 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ 303 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ 304 305 struct port_cfg portConfig[FST_MAX_PORTS]; 306 307 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ 308 309 u16 cableStatus; /* lsb: 0=> present, 1=> absent */ 310 311 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ 312 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ 313 314 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ 315 u16 cardMailbox[4]; /* Not used */ 316 317 /* Number of times the card thinks the host has 318 * missed an interrupt by not acknowledging 319 * within 2mS (I guess NT has problems) 320 */ 321 u32 interruptRetryCount; 322 323 /* Driver private data used as an ID. We'll not 324 * use this as I'd rather keep such things 325 * in main memory rather than on the PCI bus 326 */ 327 u32 portHandle[FST_MAX_PORTS]; 328 329 /* Count of Tx underflows for stats */ 330 u32 transmitBufferUnderflow[FST_MAX_PORTS]; 331 332 /* Debounced V.24 control input status */ 333 u32 v24DebouncedSts[FST_MAX_PORTS]; 334 335 /* Adapter debounce timers. Don't touch */ 336 u32 ctsTimer[FST_MAX_PORTS]; 337 u32 ctsTimerRun[FST_MAX_PORTS]; 338 u32 dcdTimer[FST_MAX_PORTS]; 339 u32 dcdTimerRun[FST_MAX_PORTS]; 340 341 u32 numberOfPorts; /* Number of ports detected at startup */ 342 343 u16 _reserved[64]; 344 345 u16 cardMode; /* Bit-mask to enable features: 346 * Bit 0: 1 enables LED identify mode 347 */ 348 349 u16 portScheduleOffset; 350 351 struct su_config suConfig; /* TE1 Bits */ 352 struct su_status suStatus; 353 354 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of 355 * the structure and marks the end of shared 356 * memory. Adapter code initializes it as 357 * END_SIG. 358 */ 359 }; 360 361 /* endOfSmcSignature value */ 362 #define END_SIG 0x12345678 363 364 /* Mailbox values. (portMailbox) */ 365 #define NOP 0 /* No operation */ 366 #define ACK 1 /* Positive acknowledgement to PC driver */ 367 #define NAK 2 /* Negative acknowledgement to PC driver */ 368 #define STARTPORT 3 /* Start an HDLC port */ 369 #define STOPPORT 4 /* Stop an HDLC port */ 370 #define ABORTTX 5 /* Abort the transmitter for a port */ 371 #define SETV24O 6 /* Set V24 outputs */ 372 373 /* PLX Chip Register Offsets */ 374 #define CNTRL_9052 0x50 /* Control Register */ 375 #define CNTRL_9054 0x6c /* Control Register */ 376 377 #define INTCSR_9052 0x4c /* Interrupt control/status register */ 378 #define INTCSR_9054 0x68 /* Interrupt control/status register */ 379 380 /* 9054 DMA Registers */ 381 /* 382 * Note that we will be using DMA Channel 0 for copying rx data 383 * and Channel 1 for copying tx data 384 */ 385 #define DMAMODE0 0x80 386 #define DMAPADR0 0x84 387 #define DMALADR0 0x88 388 #define DMASIZ0 0x8c 389 #define DMADPR0 0x90 390 #define DMAMODE1 0x94 391 #define DMAPADR1 0x98 392 #define DMALADR1 0x9c 393 #define DMASIZ1 0xa0 394 #define DMADPR1 0xa4 395 #define DMACSR0 0xa8 396 #define DMACSR1 0xa9 397 #define DMAARB 0xac 398 #define DMATHR 0xb0 399 #define DMADAC0 0xb4 400 #define DMADAC1 0xb8 401 #define DMAMARBR 0xac 402 403 #define FST_MIN_DMA_LEN 64 404 #define FST_RX_DMA_INT 0x01 405 #define FST_TX_DMA_INT 0x02 406 #define FST_CARD_INT 0x04 407 408 /* Larger buffers are positioned in memory at offset BFM_BASE */ 409 struct buf_window { 410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; 411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; 412 }; 413 414 /* Calculate offset of a buffer object within the shared memory window */ 415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) 416 417 #pragma pack() 418 419 /* Device driver private information 420 * ================================= 421 */ 422 /* Per port (line or channel) information 423 */ 424 struct fst_port_info { 425 struct net_device *dev; /* Device struct - must be first */ 426 struct fst_card_info *card; /* Card we're associated with */ 427 int index; /* Port index on the card */ 428 int hwif; /* Line hardware (lineInterface copy) */ 429 int run; /* Port is running */ 430 int mode; /* Normal or FarSync raw */ 431 int rxpos; /* Next Rx buffer to use */ 432 int txpos; /* Next Tx buffer to use */ 433 int txipos; /* Next Tx buffer to check for free */ 434 int start; /* Indication of start/stop to network */ 435 /* 436 * A sixteen entry transmit queue 437 */ 438 int txqs; /* index to get next buffer to tx */ 439 int txqe; /* index to queue next packet */ 440 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ 441 int rxqdepth; 442 }; 443 444 /* Per card information 445 */ 446 struct fst_card_info { 447 char __iomem *mem; /* Card memory mapped to kernel space */ 448 char __iomem *ctlmem; /* Control memory for PCI cards */ 449 unsigned int phys_mem; /* Physical memory window address */ 450 unsigned int phys_ctlmem; /* Physical control memory address */ 451 unsigned int irq; /* Interrupt request line number */ 452 unsigned int nports; /* Number of serial ports */ 453 unsigned int type; /* Type index of card */ 454 unsigned int state; /* State of card */ 455 spinlock_t card_lock; /* Lock for SMP access */ 456 unsigned short pci_conf; /* PCI card config in I/O space */ 457 /* Per port info */ 458 struct fst_port_info ports[FST_MAX_PORTS]; 459 struct pci_dev *device; /* Information about the pci device */ 460 int card_no; /* Inst of the card on the system */ 461 int family; /* TxP or TxU */ 462 int dmarx_in_progress; 463 int dmatx_in_progress; 464 unsigned long int_count; 465 unsigned long int_time_ave; 466 void *rx_dma_handle_host; 467 dma_addr_t rx_dma_handle_card; 468 void *tx_dma_handle_host; 469 dma_addr_t tx_dma_handle_card; 470 struct sk_buff *dma_skb_rx; 471 struct fst_port_info *dma_port_rx; 472 struct fst_port_info *dma_port_tx; 473 int dma_len_rx; 474 int dma_len_tx; 475 int dma_txpos; 476 int dma_rxpos; 477 }; 478 479 /* Convert an HDLC device pointer into a port info pointer and similar */ 480 #define dev_to_port(D) (dev_to_hdlc(D)->priv) 481 #define port_to_dev(P) ((P)->dev) 482 483 484 /* 485 * Shared memory window access macros 486 * 487 * We have a nice memory based structure above, which could be directly 488 * mapped on i386 but might not work on other architectures unless we use 489 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take 490 * physical offsets so we have to convert. The only saving grace is that 491 * this should all collapse back to a simple indirection eventually. 492 */ 493 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) 494 495 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) 496 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) 497 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) 498 499 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) 500 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) 501 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) 502 503 /* 504 * Debug support 505 */ 506 #if FST_DEBUG 507 508 static int fst_debug_mask = { FST_DEBUG }; 509 510 /* Most common debug activity is to print something if the corresponding bit 511 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to 512 * support variable numbers of macro parameters. The inverted if prevents us 513 * eating someone else's else clause. 514 */ 515 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \ 516 ; \ 517 else \ 518 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) 519 520 #else 521 #define dbg(X...) /* NOP */ 522 #endif 523 524 /* Printing short cuts 525 */ 526 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) 527 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) 528 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) 529 530 /* 531 * PCI ID lookup table 532 */ 533 static struct pci_device_id fst_pci_dev_id[] __devinitdata = { 534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, 536 537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, 539 540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, 542 543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, 545 546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, 548 549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 551 552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, 554 {0,} /* End */ 555 }; 556 557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); 558 559 /* 560 * Device Driver Work Queues 561 * 562 * So that we don't spend too much time processing events in the 563 * Interrupt Service routine, we will declare a work queue per Card 564 * and make the ISR schedule a task in the queue for later execution. 565 * In the 2.4 Kernel we used to use the immediate queue for BH's 566 * Now that they are gone, tasklets seem to be much better than work 567 * queues. 568 */ 569 570 static void do_bottom_half_tx(struct fst_card_info *card); 571 static void do_bottom_half_rx(struct fst_card_info *card); 572 static void fst_process_tx_work_q(unsigned long work_q); 573 static void fst_process_int_work_q(unsigned long work_q); 574 575 DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); 576 DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); 577 578 struct fst_card_info *fst_card_array[FST_MAX_CARDS]; 579 spinlock_t fst_work_q_lock; 580 u64 fst_work_txq; 581 u64 fst_work_intq; 582 583 static void 584 fst_q_work_item(u64 * queue, int card_index) 585 { 586 unsigned long flags; 587 u64 mask; 588 589 /* 590 * Grab the queue exclusively 591 */ 592 spin_lock_irqsave(&fst_work_q_lock, flags); 593 594 /* 595 * Making an entry in the queue is simply a matter of setting 596 * a bit for the card indicating that there is work to do in the 597 * bottom half for the card. Note the limitation of 64 cards. 598 * That ought to be enough 599 */ 600 mask = 1 << card_index; 601 *queue |= mask; 602 spin_unlock_irqrestore(&fst_work_q_lock, flags); 603 } 604 605 static void 606 fst_process_tx_work_q(unsigned long /*void **/work_q) 607 { 608 unsigned long flags; 609 u64 work_txq; 610 int i; 611 612 /* 613 * Grab the queue exclusively 614 */ 615 dbg(DBG_TX, "fst_process_tx_work_q\n"); 616 spin_lock_irqsave(&fst_work_q_lock, flags); 617 work_txq = fst_work_txq; 618 fst_work_txq = 0; 619 spin_unlock_irqrestore(&fst_work_q_lock, flags); 620 621 /* 622 * Call the bottom half for each card with work waiting 623 */ 624 for (i = 0; i < FST_MAX_CARDS; i++) { 625 if (work_txq & 0x01) { 626 if (fst_card_array[i] != NULL) { 627 dbg(DBG_TX, "Calling tx bh for card %d\n", i); 628 do_bottom_half_tx(fst_card_array[i]); 629 } 630 } 631 work_txq = work_txq >> 1; 632 } 633 } 634 635 static void 636 fst_process_int_work_q(unsigned long /*void **/work_q) 637 { 638 unsigned long flags; 639 u64 work_intq; 640 int i; 641 642 /* 643 * Grab the queue exclusively 644 */ 645 dbg(DBG_INTR, "fst_process_int_work_q\n"); 646 spin_lock_irqsave(&fst_work_q_lock, flags); 647 work_intq = fst_work_intq; 648 fst_work_intq = 0; 649 spin_unlock_irqrestore(&fst_work_q_lock, flags); 650 651 /* 652 * Call the bottom half for each card with work waiting 653 */ 654 for (i = 0; i < FST_MAX_CARDS; i++) { 655 if (work_intq & 0x01) { 656 if (fst_card_array[i] != NULL) { 657 dbg(DBG_INTR, 658 "Calling rx & tx bh for card %d\n", i); 659 do_bottom_half_rx(fst_card_array[i]); 660 do_bottom_half_tx(fst_card_array[i]); 661 } 662 } 663 work_intq = work_intq >> 1; 664 } 665 } 666 667 /* Card control functions 668 * ====================== 669 */ 670 /* Place the processor in reset state 671 * 672 * Used to be a simple write to card control space but a glitch in the latest 673 * AMD Am186CH processor means that we now have to do it by asserting and de- 674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register 675 * at offset 9052_CNTRL. Note the updates for the TXU. 676 */ 677 static inline void 678 fst_cpureset(struct fst_card_info *card) 679 { 680 unsigned char interrupt_line_register; 681 unsigned long j = jiffies + 1; 682 unsigned int regval; 683 684 if (card->family == FST_FAMILY_TXU) { 685 if (pci_read_config_byte 686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { 687 dbg(DBG_ASS, 688 "Error in reading interrupt line register\n"); 689 } 690 /* 691 * Assert PLX software reset and Am186 hardware reset 692 * and then deassert the PLX software reset but 186 still in reset 693 */ 694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2); 695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 696 /* 697 * We are delaying here to allow the 9054 to reset itself 698 */ 699 j = jiffies + 1; 700 while (jiffies < j) 701 /* Do nothing */ ; 702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2); 703 /* 704 * We are delaying here to allow the 9054 to reload its eeprom 705 */ 706 j = jiffies + 1; 707 while (jiffies < j) 708 /* Do nothing */ ; 709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 710 711 if (pci_write_config_byte 712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { 713 dbg(DBG_ASS, 714 "Error in writing interrupt line register\n"); 715 } 716 717 } else { 718 regval = inl(card->pci_conf + CNTRL_9052); 719 720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); 721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); 722 } 723 } 724 725 /* Release the processor from reset 726 */ 727 static inline void 728 fst_cpurelease(struct fst_card_info *card) 729 { 730 if (card->family == FST_FAMILY_TXU) { 731 /* 732 * Force posted writes to complete 733 */ 734 (void) readb(card->mem); 735 736 /* 737 * Release LRESET DO = 1 738 * Then release Local Hold, DO = 1 739 */ 740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2); 741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2); 742 } else { 743 (void) readb(card->ctlmem); 744 } 745 } 746 747 /* Clear the cards interrupt flag 748 */ 749 static inline void 750 fst_clear_intr(struct fst_card_info *card) 751 { 752 if (card->family == FST_FAMILY_TXU) { 753 (void) readb(card->ctlmem); 754 } else { 755 /* Poke the appropriate PLX chip register (same as enabling interrupts) 756 */ 757 outw(0x0543, card->pci_conf + INTCSR_9052); 758 } 759 } 760 761 /* Enable card interrupts 762 */ 763 static inline void 764 fst_enable_intr(struct fst_card_info *card) 765 { 766 if (card->family == FST_FAMILY_TXU) { 767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054); 768 } else { 769 outw(0x0543, card->pci_conf + INTCSR_9052); 770 } 771 } 772 773 /* Disable card interrupts 774 */ 775 static inline void 776 fst_disable_intr(struct fst_card_info *card) 777 { 778 if (card->family == FST_FAMILY_TXU) { 779 outl(0x00000000, card->pci_conf + INTCSR_9054); 780 } else { 781 outw(0x0000, card->pci_conf + INTCSR_9052); 782 } 783 } 784 785 /* Process the result of trying to pass a received frame up the stack 786 */ 787 static void 788 fst_process_rx_status(int rx_status, char *name) 789 { 790 switch (rx_status) { 791 case NET_RX_SUCCESS: 792 { 793 /* 794 * Nothing to do here 795 */ 796 break; 797 } 798 799 case NET_RX_CN_LOW: 800 { 801 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name); 802 break; 803 } 804 805 case NET_RX_CN_MOD: 806 { 807 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name); 808 break; 809 } 810 811 case NET_RX_CN_HIGH: 812 { 813 dbg(DBG_ASS, "%s: Receive High Congestion\n", name); 814 break; 815 } 816 817 case NET_RX_DROP: 818 { 819 dbg(DBG_ASS, "%s: Received packet dropped\n", name); 820 break; 821 } 822 } 823 } 824 825 /* Initilaise DMA for PLX 9054 826 */ 827 static inline void 828 fst_init_dma(struct fst_card_info *card) 829 { 830 /* 831 * This is only required for the PLX 9054 832 */ 833 if (card->family == FST_FAMILY_TXU) { 834 pci_set_master(card->device); 835 outl(0x00020441, card->pci_conf + DMAMODE0); 836 outl(0x00020441, card->pci_conf + DMAMODE1); 837 outl(0x0, card->pci_conf + DMATHR); 838 } 839 } 840 841 /* Tx dma complete interrupt 842 */ 843 static void 844 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 845 int len, int txpos) 846 { 847 struct net_device *dev = port_to_dev(port); 848 struct net_device_stats *stats = hdlc_stats(dev); 849 850 /* 851 * Everything is now set, just tell the card to go 852 */ 853 dbg(DBG_TX, "fst_tx_dma_complete\n"); 854 FST_WRB(card, txDescrRing[port->index][txpos].bits, 855 DMA_OWN | TX_STP | TX_ENP); 856 stats->tx_packets++; 857 stats->tx_bytes += len; 858 dev->trans_start = jiffies; 859 } 860 861 /* 862 * Mark it for our own raw sockets interface 863 */ 864 static unsigned short farsync_type_trans(struct sk_buff *skb, 865 struct net_device *dev) 866 { 867 skb->dev = dev; 868 skb->mac.raw = skb->data; 869 skb->pkt_type = PACKET_HOST; 870 return htons(ETH_P_CUST); 871 } 872 873 /* Rx dma complete interrupt 874 */ 875 static void 876 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, 877 int len, struct sk_buff *skb, int rxp) 878 { 879 struct net_device *dev = port_to_dev(port); 880 struct net_device_stats *stats = hdlc_stats(dev); 881 int pi; 882 int rx_status; 883 884 dbg(DBG_TX, "fst_rx_dma_complete\n"); 885 pi = port->index; 886 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); 887 888 /* Reset buffer descriptor */ 889 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 890 891 /* Update stats */ 892 stats->rx_packets++; 893 stats->rx_bytes += len; 894 895 /* Push upstream */ 896 dbg(DBG_RX, "Pushing the frame up the stack\n"); 897 if (port->mode == FST_RAW) 898 skb->protocol = farsync_type_trans(skb, dev); 899 else 900 skb->protocol = hdlc_type_trans(skb, dev); 901 rx_status = netif_rx(skb); 902 fst_process_rx_status(rx_status, port_to_dev(port)->name); 903 if (rx_status == NET_RX_DROP) 904 stats->rx_dropped++; 905 dev->last_rx = jiffies; 906 } 907 908 /* 909 * Receive a frame through the DMA 910 */ 911 static inline void 912 fst_rx_dma(struct fst_card_info *card, unsigned char *skb, 913 unsigned char *mem, int len) 914 { 915 /* 916 * This routine will setup the DMA and start it 917 */ 918 919 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len); 920 if (card->dmarx_in_progress) { 921 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); 922 } 923 924 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */ 925 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */ 926 outl(len, card->pci_conf + DMASIZ0); /* for this length */ 927 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ 928 929 /* 930 * We use the dmarx_in_progress flag to flag the channel as busy 931 */ 932 card->dmarx_in_progress = 1; 933 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ 934 } 935 936 /* 937 * Send a frame through the DMA 938 */ 939 static inline void 940 fst_tx_dma(struct fst_card_info *card, unsigned char *skb, 941 unsigned char *mem, int len) 942 { 943 /* 944 * This routine will setup the DMA and start it. 945 */ 946 947 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); 948 if (card->dmatx_in_progress) { 949 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); 950 } 951 952 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ 953 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ 954 outl(len, card->pci_conf + DMASIZ1); /* for this length */ 955 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ 956 957 /* 958 * We use the dmatx_in_progress to flag the channel as busy 959 */ 960 card->dmatx_in_progress = 1; 961 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ 962 } 963 964 /* Issue a Mailbox command for a port. 965 * Note we issue them on a fire and forget basis, not expecting to see an 966 * error and not waiting for completion. 967 */ 968 static void 969 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) 970 { 971 struct fst_card_info *card; 972 unsigned short mbval; 973 unsigned long flags; 974 int safety; 975 976 card = port->card; 977 spin_lock_irqsave(&card->card_lock, flags); 978 mbval = FST_RDW(card, portMailbox[port->index][0]); 979 980 safety = 0; 981 /* Wait for any previous command to complete */ 982 while (mbval > NAK) { 983 spin_unlock_irqrestore(&card->card_lock, flags); 984 set_current_state(TASK_UNINTERRUPTIBLE); 985 schedule_timeout(1); 986 spin_lock_irqsave(&card->card_lock, flags); 987 988 if (++safety > 2000) { 989 printk_err("Mailbox safety timeout\n"); 990 break; 991 } 992 993 mbval = FST_RDW(card, portMailbox[port->index][0]); 994 } 995 if (safety > 0) { 996 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); 997 } 998 if (mbval == NAK) { 999 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); 1000 } 1001 1002 FST_WRW(card, portMailbox[port->index][0], cmd); 1003 1004 if (cmd == ABORTTX || cmd == STARTPORT) { 1005 port->txpos = 0; 1006 port->txipos = 0; 1007 port->start = 0; 1008 } 1009 1010 spin_unlock_irqrestore(&card->card_lock, flags); 1011 } 1012 1013 /* Port output signals control 1014 */ 1015 static inline void 1016 fst_op_raise(struct fst_port_info *port, unsigned int outputs) 1017 { 1018 outputs |= FST_RDL(port->card, v24OpSts[port->index]); 1019 FST_WRL(port->card, v24OpSts[port->index], outputs); 1020 1021 if (port->run) 1022 fst_issue_cmd(port, SETV24O); 1023 } 1024 1025 static inline void 1026 fst_op_lower(struct fst_port_info *port, unsigned int outputs) 1027 { 1028 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); 1029 FST_WRL(port->card, v24OpSts[port->index], outputs); 1030 1031 if (port->run) 1032 fst_issue_cmd(port, SETV24O); 1033 } 1034 1035 /* 1036 * Setup port Rx buffers 1037 */ 1038 static void 1039 fst_rx_config(struct fst_port_info *port) 1040 { 1041 int i; 1042 int pi; 1043 unsigned int offset; 1044 unsigned long flags; 1045 struct fst_card_info *card; 1046 1047 pi = port->index; 1048 card = port->card; 1049 spin_lock_irqsave(&card->card_lock, flags); 1050 for (i = 0; i < NUM_RX_BUFFER; i++) { 1051 offset = BUF_OFFSET(rxBuffer[pi][i][0]); 1052 1053 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); 1054 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1055 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); 1056 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); 1057 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); 1058 } 1059 port->rxpos = 0; 1060 spin_unlock_irqrestore(&card->card_lock, flags); 1061 } 1062 1063 /* 1064 * Setup port Tx buffers 1065 */ 1066 static void 1067 fst_tx_config(struct fst_port_info *port) 1068 { 1069 int i; 1070 int pi; 1071 unsigned int offset; 1072 unsigned long flags; 1073 struct fst_card_info *card; 1074 1075 pi = port->index; 1076 card = port->card; 1077 spin_lock_irqsave(&card->card_lock, flags); 1078 for (i = 0; i < NUM_TX_BUFFER; i++) { 1079 offset = BUF_OFFSET(txBuffer[pi][i][0]); 1080 1081 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); 1082 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); 1083 FST_WRW(card, txDescrRing[pi][i].bcnt, 0); 1084 FST_WRB(card, txDescrRing[pi][i].bits, 0); 1085 } 1086 port->txpos = 0; 1087 port->txipos = 0; 1088 port->start = 0; 1089 spin_unlock_irqrestore(&card->card_lock, flags); 1090 } 1091 1092 /* TE1 Alarm change interrupt event 1093 */ 1094 static void 1095 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) 1096 { 1097 u8 los; 1098 u8 rra; 1099 u8 ais; 1100 1101 los = FST_RDB(card, suStatus.lossOfSignal); 1102 rra = FST_RDB(card, suStatus.receiveRemoteAlarm); 1103 ais = FST_RDB(card, suStatus.alarmIndicationSignal); 1104 1105 if (los) { 1106 /* 1107 * Lost the link 1108 */ 1109 if (netif_carrier_ok(port_to_dev(port))) { 1110 dbg(DBG_INTR, "Net carrier off\n"); 1111 netif_carrier_off(port_to_dev(port)); 1112 } 1113 } else { 1114 /* 1115 * Link available 1116 */ 1117 if (!netif_carrier_ok(port_to_dev(port))) { 1118 dbg(DBG_INTR, "Net carrier on\n"); 1119 netif_carrier_on(port_to_dev(port)); 1120 } 1121 } 1122 1123 if (los) 1124 dbg(DBG_INTR, "Assert LOS Alarm\n"); 1125 else 1126 dbg(DBG_INTR, "De-assert LOS Alarm\n"); 1127 if (rra) 1128 dbg(DBG_INTR, "Assert RRA Alarm\n"); 1129 else 1130 dbg(DBG_INTR, "De-assert RRA Alarm\n"); 1131 1132 if (ais) 1133 dbg(DBG_INTR, "Assert AIS Alarm\n"); 1134 else 1135 dbg(DBG_INTR, "De-assert AIS Alarm\n"); 1136 } 1137 1138 /* Control signal change interrupt event 1139 */ 1140 static void 1141 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) 1142 { 1143 int signals; 1144 1145 signals = FST_RDL(card, v24DebouncedSts[port->index]); 1146 1147 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 1148 ? IPSTS_INDICATE : IPSTS_DCD)) { 1149 if (!netif_carrier_ok(port_to_dev(port))) { 1150 dbg(DBG_INTR, "DCD active\n"); 1151 netif_carrier_on(port_to_dev(port)); 1152 } 1153 } else { 1154 if (netif_carrier_ok(port_to_dev(port))) { 1155 dbg(DBG_INTR, "DCD lost\n"); 1156 netif_carrier_off(port_to_dev(port)); 1157 } 1158 } 1159 } 1160 1161 /* Log Rx Errors 1162 */ 1163 static void 1164 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1165 unsigned char dmabits, int rxp, unsigned short len) 1166 { 1167 struct net_device *dev = port_to_dev(port); 1168 struct net_device_stats *stats = hdlc_stats(dev); 1169 1170 /* 1171 * Increment the appropriate error counter 1172 */ 1173 stats->rx_errors++; 1174 if (dmabits & RX_OFLO) { 1175 stats->rx_fifo_errors++; 1176 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", 1177 card->card_no, port->index, rxp); 1178 } 1179 if (dmabits & RX_CRC) { 1180 stats->rx_crc_errors++; 1181 dbg(DBG_ASS, "Rx crc error on card %d port %d\n", 1182 card->card_no, port->index); 1183 } 1184 if (dmabits & RX_FRAM) { 1185 stats->rx_frame_errors++; 1186 dbg(DBG_ASS, "Rx frame error on card %d port %d\n", 1187 card->card_no, port->index); 1188 } 1189 if (dmabits == (RX_STP | RX_ENP)) { 1190 stats->rx_length_errors++; 1191 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", 1192 len, card->card_no, port->index); 1193 } 1194 } 1195 1196 /* Rx Error Recovery 1197 */ 1198 static void 1199 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, 1200 unsigned char dmabits, int rxp, unsigned short len) 1201 { 1202 int i; 1203 int pi; 1204 1205 pi = port->index; 1206 /* 1207 * Discard buffer descriptors until we see the start of the 1208 * next frame. Note that for long frames this could be in 1209 * a subsequent interrupt. 1210 */ 1211 i = 0; 1212 while ((dmabits & (DMA_OWN | RX_STP)) == 0) { 1213 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1214 rxp = (rxp+1) % NUM_RX_BUFFER; 1215 if (++i > NUM_RX_BUFFER) { 1216 dbg(DBG_ASS, "intr_rx: Discarding more bufs" 1217 " than we have\n"); 1218 break; 1219 } 1220 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1221 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); 1222 } 1223 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); 1224 1225 /* Discard the terminal buffer */ 1226 if (!(dmabits & DMA_OWN)) { 1227 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1228 rxp = (rxp+1) % NUM_RX_BUFFER; 1229 } 1230 port->rxpos = rxp; 1231 return; 1232 1233 } 1234 1235 /* Rx complete interrupt 1236 */ 1237 static void 1238 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) 1239 { 1240 unsigned char dmabits; 1241 int pi; 1242 int rxp; 1243 int rx_status; 1244 unsigned short len; 1245 struct sk_buff *skb; 1246 struct net_device *dev = port_to_dev(port); 1247 struct net_device_stats *stats = hdlc_stats(dev); 1248 1249 /* Check we have a buffer to process */ 1250 pi = port->index; 1251 rxp = port->rxpos; 1252 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); 1253 if (dmabits & DMA_OWN) { 1254 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", 1255 pi, rxp); 1256 return; 1257 } 1258 if (card->dmarx_in_progress) { 1259 return; 1260 } 1261 1262 /* Get buffer length */ 1263 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); 1264 /* Discard the CRC */ 1265 len -= 2; 1266 if (len == 0) { 1267 /* 1268 * This seems to happen on the TE1 interface sometimes 1269 * so throw the frame away and log the event. 1270 */ 1271 printk_err("Frame received with 0 length. Card %d Port %d\n", 1272 card->card_no, port->index); 1273 /* Return descriptor to card */ 1274 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1275 1276 rxp = (rxp+1) % NUM_RX_BUFFER; 1277 port->rxpos = rxp; 1278 return; 1279 } 1280 1281 /* Check buffer length and for other errors. We insist on one packet 1282 * in one buffer. This simplifies things greatly and since we've 1283 * allocated 8K it shouldn't be a real world limitation 1284 */ 1285 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); 1286 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { 1287 fst_log_rx_error(card, port, dmabits, rxp, len); 1288 fst_recover_rx_error(card, port, dmabits, rxp, len); 1289 return; 1290 } 1291 1292 /* Allocate SKB */ 1293 if ((skb = dev_alloc_skb(len)) == NULL) { 1294 dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); 1295 1296 stats->rx_dropped++; 1297 1298 /* Return descriptor to card */ 1299 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1300 1301 rxp = (rxp+1) % NUM_RX_BUFFER; 1302 port->rxpos = rxp; 1303 return; 1304 } 1305 1306 /* 1307 * We know the length we need to receive, len. 1308 * It's not worth using the DMA for reads of less than 1309 * FST_MIN_DMA_LEN 1310 */ 1311 1312 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { 1313 memcpy_fromio(skb_put(skb, len), 1314 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), 1315 len); 1316 1317 /* Reset buffer descriptor */ 1318 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); 1319 1320 /* Update stats */ 1321 stats->rx_packets++; 1322 stats->rx_bytes += len; 1323 1324 /* Push upstream */ 1325 dbg(DBG_RX, "Pushing frame up the stack\n"); 1326 if (port->mode == FST_RAW) 1327 skb->protocol = farsync_type_trans(skb, dev); 1328 else 1329 skb->protocol = hdlc_type_trans(skb, dev); 1330 rx_status = netif_rx(skb); 1331 fst_process_rx_status(rx_status, port_to_dev(port)->name); 1332 if (rx_status == NET_RX_DROP) { 1333 stats->rx_dropped++; 1334 } 1335 dev->last_rx = jiffies; 1336 } else { 1337 card->dma_skb_rx = skb; 1338 card->dma_port_rx = port; 1339 card->dma_len_rx = len; 1340 card->dma_rxpos = rxp; 1341 fst_rx_dma(card, (char *) card->rx_dma_handle_card, 1342 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len); 1343 } 1344 if (rxp != port->rxpos) { 1345 dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); 1346 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); 1347 } 1348 rxp = (rxp+1) % NUM_RX_BUFFER; 1349 port->rxpos = rxp; 1350 } 1351 1352 /* 1353 * The bottom halfs to the ISR 1354 * 1355 */ 1356 1357 static void 1358 do_bottom_half_tx(struct fst_card_info *card) 1359 { 1360 struct fst_port_info *port; 1361 int pi; 1362 int txq_length; 1363 struct sk_buff *skb; 1364 unsigned long flags; 1365 struct net_device *dev; 1366 struct net_device_stats *stats; 1367 1368 /* 1369 * Find a free buffer for the transmit 1370 * Step through each port on this card 1371 */ 1372 1373 dbg(DBG_TX, "do_bottom_half_tx\n"); 1374 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1375 if (!port->run) 1376 continue; 1377 1378 dev = port_to_dev(port); 1379 stats = hdlc_stats(dev); 1380 while (! 1381 (FST_RDB(card, txDescrRing[pi][port->txpos].bits) & 1382 DMA_OWN) 1383 && !(card->dmatx_in_progress)) { 1384 /* 1385 * There doesn't seem to be a txdone event per-se 1386 * We seem to have to deduce it, by checking the DMA_OWN 1387 * bit on the next buffer we think we can use 1388 */ 1389 spin_lock_irqsave(&card->card_lock, flags); 1390 if ((txq_length = port->txqe - port->txqs) < 0) { 1391 /* 1392 * This is the case where one has wrapped and the 1393 * maths gives us a negative number 1394 */ 1395 txq_length = txq_length + FST_TXQ_DEPTH; 1396 } 1397 spin_unlock_irqrestore(&card->card_lock, flags); 1398 if (txq_length > 0) { 1399 /* 1400 * There is something to send 1401 */ 1402 spin_lock_irqsave(&card->card_lock, flags); 1403 skb = port->txq[port->txqs]; 1404 port->txqs++; 1405 if (port->txqs == FST_TXQ_DEPTH) { 1406 port->txqs = 0; 1407 } 1408 spin_unlock_irqrestore(&card->card_lock, flags); 1409 /* 1410 * copy the data and set the required indicators on the 1411 * card. 1412 */ 1413 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, 1414 cnv_bcnt(skb->len)); 1415 if ((skb->len < FST_MIN_DMA_LEN) 1416 || (card->family == FST_FAMILY_TXP)) { 1417 /* Enqueue the packet with normal io */ 1418 memcpy_toio(card->mem + 1419 BUF_OFFSET(txBuffer[pi] 1420 [port-> 1421 txpos][0]), 1422 skb->data, skb->len); 1423 FST_WRB(card, 1424 txDescrRing[pi][port->txpos]. 1425 bits, 1426 DMA_OWN | TX_STP | TX_ENP); 1427 stats->tx_packets++; 1428 stats->tx_bytes += skb->len; 1429 dev->trans_start = jiffies; 1430 } else { 1431 /* Or do it through dma */ 1432 memcpy(card->tx_dma_handle_host, 1433 skb->data, skb->len); 1434 card->dma_port_tx = port; 1435 card->dma_len_tx = skb->len; 1436 card->dma_txpos = port->txpos; 1437 fst_tx_dma(card, 1438 (char *) card-> 1439 tx_dma_handle_card, 1440 (char *) 1441 BUF_OFFSET(txBuffer[pi] 1442 [port->txpos][0]), 1443 skb->len); 1444 } 1445 if (++port->txpos >= NUM_TX_BUFFER) 1446 port->txpos = 0; 1447 /* 1448 * If we have flow control on, can we now release it? 1449 */ 1450 if (port->start) { 1451 if (txq_length < fst_txq_low) { 1452 netif_wake_queue(port_to_dev 1453 (port)); 1454 port->start = 0; 1455 } 1456 } 1457 dev_kfree_skb(skb); 1458 } else { 1459 /* 1460 * Nothing to send so break out of the while loop 1461 */ 1462 break; 1463 } 1464 } 1465 } 1466 } 1467 1468 static void 1469 do_bottom_half_rx(struct fst_card_info *card) 1470 { 1471 struct fst_port_info *port; 1472 int pi; 1473 int rx_count = 0; 1474 1475 /* Check for rx completions on all ports on this card */ 1476 dbg(DBG_RX, "do_bottom_half_rx\n"); 1477 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { 1478 if (!port->run) 1479 continue; 1480 1481 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) 1482 & DMA_OWN) && !(card->dmarx_in_progress)) { 1483 if (rx_count > fst_max_reads) { 1484 /* 1485 * Don't spend forever in receive processing 1486 * Schedule another event 1487 */ 1488 fst_q_work_item(&fst_work_intq, card->card_no); 1489 tasklet_schedule(&fst_int_task); 1490 break; /* Leave the loop */ 1491 } 1492 fst_intr_rx(card, port); 1493 rx_count++; 1494 } 1495 } 1496 } 1497 1498 /* 1499 * The interrupt service routine 1500 * Dev_id is our fst_card_info pointer 1501 */ 1502 irqreturn_t 1503 fst_intr(int irq, void *dev_id, struct pt_regs *regs) 1504 { 1505 struct fst_card_info *card; 1506 struct fst_port_info *port; 1507 int rdidx; /* Event buffer indices */ 1508 int wridx; 1509 int event; /* Actual event for processing */ 1510 unsigned int dma_intcsr = 0; 1511 unsigned int do_card_interrupt; 1512 unsigned int int_retry_count; 1513 1514 if ((card = dev_id) == NULL) { 1515 dbg(DBG_INTR, "intr: spurious %d\n", irq); 1516 return IRQ_NONE; 1517 } 1518 1519 /* 1520 * Check to see if the interrupt was for this card 1521 * return if not 1522 * Note that the call to clear the interrupt is important 1523 */ 1524 dbg(DBG_INTR, "intr: %d %p\n", irq, card); 1525 if (card->state != FST_RUNNING) { 1526 printk_err 1527 ("Interrupt received for card %d in a non running state (%d)\n", 1528 card->card_no, card->state); 1529 1530 /* 1531 * It is possible to really be running, i.e. we have re-loaded 1532 * a running card 1533 * Clear and reprime the interrupt source 1534 */ 1535 fst_clear_intr(card); 1536 return IRQ_HANDLED; 1537 } 1538 1539 /* Clear and reprime the interrupt source */ 1540 fst_clear_intr(card); 1541 1542 /* 1543 * Is the interrupt for this card (handshake == 1) 1544 */ 1545 do_card_interrupt = 0; 1546 if (FST_RDB(card, interruptHandshake) == 1) { 1547 do_card_interrupt += FST_CARD_INT; 1548 /* Set the software acknowledge */ 1549 FST_WRB(card, interruptHandshake, 0xEE); 1550 } 1551 if (card->family == FST_FAMILY_TXU) { 1552 /* 1553 * Is it a DMA Interrupt 1554 */ 1555 dma_intcsr = inl(card->pci_conf + INTCSR_9054); 1556 if (dma_intcsr & 0x00200000) { 1557 /* 1558 * DMA Channel 0 (Rx transfer complete) 1559 */ 1560 dbg(DBG_RX, "DMA Rx xfer complete\n"); 1561 outb(0x8, card->pci_conf + DMACSR0); 1562 fst_rx_dma_complete(card, card->dma_port_rx, 1563 card->dma_len_rx, card->dma_skb_rx, 1564 card->dma_rxpos); 1565 card->dmarx_in_progress = 0; 1566 do_card_interrupt += FST_RX_DMA_INT; 1567 } 1568 if (dma_intcsr & 0x00400000) { 1569 /* 1570 * DMA Channel 1 (Tx transfer complete) 1571 */ 1572 dbg(DBG_TX, "DMA Tx xfer complete\n"); 1573 outb(0x8, card->pci_conf + DMACSR1); 1574 fst_tx_dma_complete(card, card->dma_port_tx, 1575 card->dma_len_tx, card->dma_txpos); 1576 card->dmatx_in_progress = 0; 1577 do_card_interrupt += FST_TX_DMA_INT; 1578 } 1579 } 1580 1581 /* 1582 * Have we been missing Interrupts 1583 */ 1584 int_retry_count = FST_RDL(card, interruptRetryCount); 1585 if (int_retry_count) { 1586 dbg(DBG_ASS, "Card %d int_retry_count is %d\n", 1587 card->card_no, int_retry_count); 1588 FST_WRL(card, interruptRetryCount, 0); 1589 } 1590 1591 if (!do_card_interrupt) { 1592 return IRQ_HANDLED; 1593 } 1594 1595 /* Scehdule the bottom half of the ISR */ 1596 fst_q_work_item(&fst_work_intq, card->card_no); 1597 tasklet_schedule(&fst_int_task); 1598 1599 /* Drain the event queue */ 1600 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; 1601 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; 1602 while (rdidx != wridx) { 1603 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); 1604 port = &card->ports[event & 0x03]; 1605 1606 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); 1607 1608 switch (event) { 1609 case TE1_ALMA: 1610 dbg(DBG_INTR, "TE1 Alarm intr\n"); 1611 if (port->run) 1612 fst_intr_te1_alarm(card, port); 1613 break; 1614 1615 case CTLA_CHG: 1616 case CTLB_CHG: 1617 case CTLC_CHG: 1618 case CTLD_CHG: 1619 if (port->run) 1620 fst_intr_ctlchg(card, port); 1621 break; 1622 1623 case ABTA_SENT: 1624 case ABTB_SENT: 1625 case ABTC_SENT: 1626 case ABTD_SENT: 1627 dbg(DBG_TX, "Abort complete port %d\n", port->index); 1628 break; 1629 1630 case TXA_UNDF: 1631 case TXB_UNDF: 1632 case TXC_UNDF: 1633 case TXD_UNDF: 1634 /* Difficult to see how we'd get this given that we 1635 * always load up the entire packet for DMA. 1636 */ 1637 dbg(DBG_TX, "Tx underflow port %d\n", port->index); 1638 hdlc_stats(port_to_dev(port))->tx_errors++; 1639 hdlc_stats(port_to_dev(port))->tx_fifo_errors++; 1640 dbg(DBG_ASS, "Tx underflow on card %d port %d\n", 1641 card->card_no, port->index); 1642 break; 1643 1644 case INIT_CPLT: 1645 dbg(DBG_INIT, "Card init OK intr\n"); 1646 break; 1647 1648 case INIT_FAIL: 1649 dbg(DBG_INIT, "Card init FAILED intr\n"); 1650 card->state = FST_IFAILED; 1651 break; 1652 1653 default: 1654 printk_err("intr: unknown card event %d. ignored\n", 1655 event); 1656 break; 1657 } 1658 1659 /* Bump and wrap the index */ 1660 if (++rdidx >= MAX_CIRBUFF) 1661 rdidx = 0; 1662 } 1663 FST_WRB(card, interruptEvent.rdindex, rdidx); 1664 return IRQ_HANDLED; 1665 } 1666 1667 /* Check that the shared memory configuration is one that we can handle 1668 * and that some basic parameters are correct 1669 */ 1670 static void 1671 check_started_ok(struct fst_card_info *card) 1672 { 1673 int i; 1674 1675 /* Check structure version and end marker */ 1676 if (FST_RDW(card, smcVersion) != SMC_VERSION) { 1677 printk_err("Bad shared memory version %d expected %d\n", 1678 FST_RDW(card, smcVersion), SMC_VERSION); 1679 card->state = FST_BADVERSION; 1680 return; 1681 } 1682 if (FST_RDL(card, endOfSmcSignature) != END_SIG) { 1683 printk_err("Missing shared memory signature\n"); 1684 card->state = FST_BADVERSION; 1685 return; 1686 } 1687 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ 1688 if ((i = FST_RDB(card, taskStatus)) == 0x01) { 1689 card->state = FST_RUNNING; 1690 } else if (i == 0xFF) { 1691 printk_err("Firmware initialisation failed. Card halted\n"); 1692 card->state = FST_HALTED; 1693 return; 1694 } else if (i != 0x00) { 1695 printk_err("Unknown firmware status 0x%x\n", i); 1696 card->state = FST_HALTED; 1697 return; 1698 } 1699 1700 /* Finally check the number of ports reported by firmware against the 1701 * number we assumed at card detection. Should never happen with 1702 * existing firmware etc so we just report it for the moment. 1703 */ 1704 if (FST_RDL(card, numberOfPorts) != card->nports) { 1705 printk_warn("Port count mismatch on card %d." 1706 " Firmware thinks %d we say %d\n", card->card_no, 1707 FST_RDL(card, numberOfPorts), card->nports); 1708 } 1709 } 1710 1711 static int 1712 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, 1713 struct fstioc_info *info) 1714 { 1715 int err; 1716 unsigned char my_framing; 1717 1718 /* Set things according to the user set valid flags 1719 * Several of the old options have been invalidated/replaced by the 1720 * generic hdlc package. 1721 */ 1722 err = 0; 1723 if (info->valid & FSTVAL_PROTO) { 1724 if (info->proto == FST_RAW) 1725 port->mode = FST_RAW; 1726 else 1727 port->mode = FST_GEN_HDLC; 1728 } 1729 1730 if (info->valid & FSTVAL_CABLE) 1731 err = -EINVAL; 1732 1733 if (info->valid & FSTVAL_SPEED) 1734 err = -EINVAL; 1735 1736 if (info->valid & FSTVAL_PHASE) 1737 FST_WRB(card, portConfig[port->index].invertClock, 1738 info->invertClock); 1739 if (info->valid & FSTVAL_MODE) 1740 FST_WRW(card, cardMode, info->cardMode); 1741 if (info->valid & FSTVAL_TE1) { 1742 FST_WRL(card, suConfig.dataRate, info->lineSpeed); 1743 FST_WRB(card, suConfig.clocking, info->clockSource); 1744 my_framing = FRAMING_E1; 1745 if (info->framing == E1) 1746 my_framing = FRAMING_E1; 1747 if (info->framing == T1) 1748 my_framing = FRAMING_T1; 1749 if (info->framing == J1) 1750 my_framing = FRAMING_J1; 1751 FST_WRB(card, suConfig.framing, my_framing); 1752 FST_WRB(card, suConfig.structure, info->structure); 1753 FST_WRB(card, suConfig.interface, info->interface); 1754 FST_WRB(card, suConfig.coding, info->coding); 1755 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); 1756 FST_WRB(card, suConfig.equalizer, info->equalizer); 1757 FST_WRB(card, suConfig.transparentMode, info->transparentMode); 1758 FST_WRB(card, suConfig.loopMode, info->loopMode); 1759 FST_WRB(card, suConfig.range, info->range); 1760 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); 1761 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); 1762 FST_WRB(card, suConfig.startingSlot, info->startingSlot); 1763 FST_WRB(card, suConfig.losThreshold, info->losThreshold); 1764 if (info->idleCode) 1765 FST_WRB(card, suConfig.enableIdleCode, 1); 1766 else 1767 FST_WRB(card, suConfig.enableIdleCode, 0); 1768 FST_WRB(card, suConfig.idleCode, info->idleCode); 1769 #if FST_DEBUG 1770 if (info->valid & FSTVAL_TE1) { 1771 printk("Setting TE1 data\n"); 1772 printk("Line Speed = %d\n", info->lineSpeed); 1773 printk("Start slot = %d\n", info->startingSlot); 1774 printk("Clock source = %d\n", info->clockSource); 1775 printk("Framing = %d\n", my_framing); 1776 printk("Structure = %d\n", info->structure); 1777 printk("interface = %d\n", info->interface); 1778 printk("Coding = %d\n", info->coding); 1779 printk("Line build out = %d\n", info->lineBuildOut); 1780 printk("Equaliser = %d\n", info->equalizer); 1781 printk("Transparent mode = %d\n", 1782 info->transparentMode); 1783 printk("Loop mode = %d\n", info->loopMode); 1784 printk("Range = %d\n", info->range); 1785 printk("Tx Buffer mode = %d\n", info->txBufferMode); 1786 printk("Rx Buffer mode = %d\n", info->rxBufferMode); 1787 printk("LOS Threshold = %d\n", info->losThreshold); 1788 printk("Idle Code = %d\n", info->idleCode); 1789 } 1790 #endif 1791 } 1792 #if FST_DEBUG 1793 if (info->valid & FSTVAL_DEBUG) { 1794 fst_debug_mask = info->debug; 1795 } 1796 #endif 1797 1798 return err; 1799 } 1800 1801 static void 1802 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, 1803 struct fstioc_info *info) 1804 { 1805 int i; 1806 1807 memset(info, 0, sizeof (struct fstioc_info)); 1808 1809 i = port->index; 1810 info->kernelVersion = LINUX_VERSION_CODE; 1811 info->nports = card->nports; 1812 info->type = card->type; 1813 info->state = card->state; 1814 info->proto = FST_GEN_HDLC; 1815 info->index = i; 1816 #if FST_DEBUG 1817 info->debug = fst_debug_mask; 1818 #endif 1819 1820 /* Only mark information as valid if card is running. 1821 * Copy the data anyway in case it is useful for diagnostics 1822 */ 1823 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) 1824 #if FST_DEBUG 1825 | FSTVAL_DEBUG 1826 #endif 1827 ; 1828 1829 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); 1830 info->internalClock = FST_RDB(card, portConfig[i].internalClock); 1831 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); 1832 info->invertClock = FST_RDB(card, portConfig[i].invertClock); 1833 info->v24IpSts = FST_RDL(card, v24IpSts[i]); 1834 info->v24OpSts = FST_RDL(card, v24OpSts[i]); 1835 info->clockStatus = FST_RDW(card, clockStatus[i]); 1836 info->cableStatus = FST_RDW(card, cableStatus); 1837 info->cardMode = FST_RDW(card, cardMode); 1838 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); 1839 1840 /* 1841 * The T2U can report cable presence for both A or B 1842 * in bits 0 and 1 of cableStatus. See which port we are and 1843 * do the mapping. 1844 */ 1845 if (card->family == FST_FAMILY_TXU) { 1846 if (port->index == 0) { 1847 /* 1848 * Port A 1849 */ 1850 info->cableStatus = info->cableStatus & 1; 1851 } else { 1852 /* 1853 * Port B 1854 */ 1855 info->cableStatus = info->cableStatus >> 1; 1856 info->cableStatus = info->cableStatus & 1; 1857 } 1858 } 1859 /* 1860 * Some additional bits if we are TE1 1861 */ 1862 if (card->type == FST_TYPE_TE1) { 1863 info->lineSpeed = FST_RDL(card, suConfig.dataRate); 1864 info->clockSource = FST_RDB(card, suConfig.clocking); 1865 info->framing = FST_RDB(card, suConfig.framing); 1866 info->structure = FST_RDB(card, suConfig.structure); 1867 info->interface = FST_RDB(card, suConfig.interface); 1868 info->coding = FST_RDB(card, suConfig.coding); 1869 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); 1870 info->equalizer = FST_RDB(card, suConfig.equalizer); 1871 info->loopMode = FST_RDB(card, suConfig.loopMode); 1872 info->range = FST_RDB(card, suConfig.range); 1873 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); 1874 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); 1875 info->startingSlot = FST_RDB(card, suConfig.startingSlot); 1876 info->losThreshold = FST_RDB(card, suConfig.losThreshold); 1877 if (FST_RDB(card, suConfig.enableIdleCode)) 1878 info->idleCode = FST_RDB(card, suConfig.idleCode); 1879 else 1880 info->idleCode = 0; 1881 info->receiveBufferDelay = 1882 FST_RDL(card, suStatus.receiveBufferDelay); 1883 info->framingErrorCount = 1884 FST_RDL(card, suStatus.framingErrorCount); 1885 info->codeViolationCount = 1886 FST_RDL(card, suStatus.codeViolationCount); 1887 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); 1888 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); 1889 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); 1890 info->receiveRemoteAlarm = 1891 FST_RDB(card, suStatus.receiveRemoteAlarm); 1892 info->alarmIndicationSignal = 1893 FST_RDB(card, suStatus.alarmIndicationSignal); 1894 } 1895 } 1896 1897 static int 1898 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, 1899 struct ifreq *ifr) 1900 { 1901 sync_serial_settings sync; 1902 int i; 1903 1904 if (ifr->ifr_settings.size != sizeof (sync)) { 1905 return -ENOMEM; 1906 } 1907 1908 if (copy_from_user 1909 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { 1910 return -EFAULT; 1911 } 1912 1913 if (sync.loopback) 1914 return -EINVAL; 1915 1916 i = port->index; 1917 1918 switch (ifr->ifr_settings.type) { 1919 case IF_IFACE_V35: 1920 FST_WRW(card, portConfig[i].lineInterface, V35); 1921 port->hwif = V35; 1922 break; 1923 1924 case IF_IFACE_V24: 1925 FST_WRW(card, portConfig[i].lineInterface, V24); 1926 port->hwif = V24; 1927 break; 1928 1929 case IF_IFACE_X21: 1930 FST_WRW(card, portConfig[i].lineInterface, X21); 1931 port->hwif = X21; 1932 break; 1933 1934 case IF_IFACE_X21D: 1935 FST_WRW(card, portConfig[i].lineInterface, X21D); 1936 port->hwif = X21D; 1937 break; 1938 1939 case IF_IFACE_T1: 1940 FST_WRW(card, portConfig[i].lineInterface, T1); 1941 port->hwif = T1; 1942 break; 1943 1944 case IF_IFACE_E1: 1945 FST_WRW(card, portConfig[i].lineInterface, E1); 1946 port->hwif = E1; 1947 break; 1948 1949 case IF_IFACE_SYNC_SERIAL: 1950 break; 1951 1952 default: 1953 return -EINVAL; 1954 } 1955 1956 switch (sync.clock_type) { 1957 case CLOCK_EXT: 1958 FST_WRB(card, portConfig[i].internalClock, EXTCLK); 1959 break; 1960 1961 case CLOCK_INT: 1962 FST_WRB(card, portConfig[i].internalClock, INTCLK); 1963 break; 1964 1965 default: 1966 return -EINVAL; 1967 } 1968 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); 1969 return 0; 1970 } 1971 1972 static int 1973 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, 1974 struct ifreq *ifr) 1975 { 1976 sync_serial_settings sync; 1977 int i; 1978 1979 /* First check what line type is set, we'll default to reporting X.21 1980 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be 1981 * changed 1982 */ 1983 switch (port->hwif) { 1984 case E1: 1985 ifr->ifr_settings.type = IF_IFACE_E1; 1986 break; 1987 case T1: 1988 ifr->ifr_settings.type = IF_IFACE_T1; 1989 break; 1990 case V35: 1991 ifr->ifr_settings.type = IF_IFACE_V35; 1992 break; 1993 case V24: 1994 ifr->ifr_settings.type = IF_IFACE_V24; 1995 break; 1996 case X21D: 1997 ifr->ifr_settings.type = IF_IFACE_X21D; 1998 break; 1999 case X21: 2000 default: 2001 ifr->ifr_settings.type = IF_IFACE_X21; 2002 break; 2003 } 2004 if (ifr->ifr_settings.size == 0) { 2005 return 0; /* only type requested */ 2006 } 2007 if (ifr->ifr_settings.size < sizeof (sync)) { 2008 return -ENOMEM; 2009 } 2010 2011 i = port->index; 2012 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); 2013 /* Lucky card and linux use same encoding here */ 2014 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == 2015 INTCLK ? CLOCK_INT : CLOCK_EXT; 2016 sync.loopback = 0; 2017 2018 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { 2019 return -EFAULT; 2020 } 2021 2022 ifr->ifr_settings.size = sizeof (sync); 2023 return 0; 2024 } 2025 2026 static int 2027 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2028 { 2029 struct fst_card_info *card; 2030 struct fst_port_info *port; 2031 struct fstioc_write wrthdr; 2032 struct fstioc_info info; 2033 unsigned long flags; 2034 2035 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); 2036 2037 port = dev_to_port(dev); 2038 card = port->card; 2039 2040 if (!capable(CAP_NET_ADMIN)) 2041 return -EPERM; 2042 2043 switch (cmd) { 2044 case FSTCPURESET: 2045 fst_cpureset(card); 2046 card->state = FST_RESET; 2047 return 0; 2048 2049 case FSTCPURELEASE: 2050 fst_cpurelease(card); 2051 card->state = FST_STARTING; 2052 return 0; 2053 2054 case FSTWRITE: /* Code write (download) */ 2055 2056 /* First copy in the header with the length and offset of data 2057 * to write 2058 */ 2059 if (ifr->ifr_data == NULL) { 2060 return -EINVAL; 2061 } 2062 if (copy_from_user(&wrthdr, ifr->ifr_data, 2063 sizeof (struct fstioc_write))) { 2064 return -EFAULT; 2065 } 2066 2067 /* Sanity check the parameters. We don't support partial writes 2068 * when going over the top 2069 */ 2070 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE 2071 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) { 2072 return -ENXIO; 2073 } 2074 2075 /* Now copy the data to the card. 2076 * This will probably break on some architectures. 2077 * I'll fix it when I have something to test on. 2078 */ 2079 if (copy_from_user(card->mem + wrthdr.offset, 2080 ifr->ifr_data + sizeof (struct fstioc_write), 2081 wrthdr.size)) { 2082 return -EFAULT; 2083 } 2084 2085 /* Writes to the memory of a card in the reset state constitute 2086 * a download 2087 */ 2088 if (card->state == FST_RESET) { 2089 card->state = FST_DOWNLOAD; 2090 } 2091 return 0; 2092 2093 case FSTGETCONF: 2094 2095 /* If card has just been started check the shared memory config 2096 * version and marker 2097 */ 2098 if (card->state == FST_STARTING) { 2099 check_started_ok(card); 2100 2101 /* If everything checked out enable card interrupts */ 2102 if (card->state == FST_RUNNING) { 2103 spin_lock_irqsave(&card->card_lock, flags); 2104 fst_enable_intr(card); 2105 FST_WRB(card, interruptHandshake, 0xEE); 2106 spin_unlock_irqrestore(&card->card_lock, flags); 2107 } 2108 } 2109 2110 if (ifr->ifr_data == NULL) { 2111 return -EINVAL; 2112 } 2113 2114 gather_conf_info(card, port, &info); 2115 2116 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { 2117 return -EFAULT; 2118 } 2119 return 0; 2120 2121 case FSTSETCONF: 2122 2123 /* 2124 * Most of the settings have been moved to the generic ioctls 2125 * this just covers debug and board ident now 2126 */ 2127 2128 if (card->state != FST_RUNNING) { 2129 printk_err 2130 ("Attempt to configure card %d in non-running state (%d)\n", 2131 card->card_no, card->state); 2132 return -EIO; 2133 } 2134 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { 2135 return -EFAULT; 2136 } 2137 2138 return set_conf_from_info(card, port, &info); 2139 2140 case SIOCWANDEV: 2141 switch (ifr->ifr_settings.type) { 2142 case IF_GET_IFACE: 2143 return fst_get_iface(card, port, ifr); 2144 2145 case IF_IFACE_SYNC_SERIAL: 2146 case IF_IFACE_V35: 2147 case IF_IFACE_V24: 2148 case IF_IFACE_X21: 2149 case IF_IFACE_X21D: 2150 case IF_IFACE_T1: 2151 case IF_IFACE_E1: 2152 return fst_set_iface(card, port, ifr); 2153 2154 case IF_PROTO_RAW: 2155 port->mode = FST_RAW; 2156 return 0; 2157 2158 case IF_GET_PROTO: 2159 if (port->mode == FST_RAW) { 2160 ifr->ifr_settings.type = IF_PROTO_RAW; 2161 return 0; 2162 } 2163 return hdlc_ioctl(dev, ifr, cmd); 2164 2165 default: 2166 port->mode = FST_GEN_HDLC; 2167 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", 2168 ifr->ifr_settings.type); 2169 return hdlc_ioctl(dev, ifr, cmd); 2170 } 2171 2172 default: 2173 /* Not one of ours. Pass through to HDLC package */ 2174 return hdlc_ioctl(dev, ifr, cmd); 2175 } 2176 } 2177 2178 static void 2179 fst_openport(struct fst_port_info *port) 2180 { 2181 int signals; 2182 int txq_length; 2183 2184 /* Only init things if card is actually running. This allows open to 2185 * succeed for downloads etc. 2186 */ 2187 if (port->card->state == FST_RUNNING) { 2188 if (port->run) { 2189 dbg(DBG_OPEN, "open: found port already running\n"); 2190 2191 fst_issue_cmd(port, STOPPORT); 2192 port->run = 0; 2193 } 2194 2195 fst_rx_config(port); 2196 fst_tx_config(port); 2197 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); 2198 2199 fst_issue_cmd(port, STARTPORT); 2200 port->run = 1; 2201 2202 signals = FST_RDL(port->card, v24DebouncedSts[port->index]); 2203 if (signals & (((port->hwif == X21) || (port->hwif == X21D)) 2204 ? IPSTS_INDICATE : IPSTS_DCD)) 2205 netif_carrier_on(port_to_dev(port)); 2206 else 2207 netif_carrier_off(port_to_dev(port)); 2208 2209 txq_length = port->txqe - port->txqs; 2210 port->txqe = 0; 2211 port->txqs = 0; 2212 } 2213 2214 } 2215 2216 static void 2217 fst_closeport(struct fst_port_info *port) 2218 { 2219 if (port->card->state == FST_RUNNING) { 2220 if (port->run) { 2221 port->run = 0; 2222 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); 2223 2224 fst_issue_cmd(port, STOPPORT); 2225 } else { 2226 dbg(DBG_OPEN, "close: port not running\n"); 2227 } 2228 } 2229 } 2230 2231 static int 2232 fst_open(struct net_device *dev) 2233 { 2234 int err; 2235 struct fst_port_info *port; 2236 2237 port = dev_to_port(dev); 2238 if (!try_module_get(THIS_MODULE)) 2239 return -EBUSY; 2240 2241 if (port->mode != FST_RAW) { 2242 err = hdlc_open(dev); 2243 if (err) 2244 return err; 2245 } 2246 2247 fst_openport(port); 2248 netif_wake_queue(dev); 2249 return 0; 2250 } 2251 2252 static int 2253 fst_close(struct net_device *dev) 2254 { 2255 struct fst_port_info *port; 2256 struct fst_card_info *card; 2257 unsigned char tx_dma_done; 2258 unsigned char rx_dma_done; 2259 2260 port = dev_to_port(dev); 2261 card = port->card; 2262 2263 tx_dma_done = inb(card->pci_conf + DMACSR1); 2264 rx_dma_done = inb(card->pci_conf + DMACSR0); 2265 dbg(DBG_OPEN, 2266 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", 2267 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, 2268 rx_dma_done); 2269 2270 netif_stop_queue(dev); 2271 fst_closeport(dev_to_port(dev)); 2272 if (port->mode != FST_RAW) { 2273 hdlc_close(dev); 2274 } 2275 module_put(THIS_MODULE); 2276 return 0; 2277 } 2278 2279 static int 2280 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) 2281 { 2282 /* 2283 * Setting currently fixed in FarSync card so we check and forget 2284 */ 2285 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) 2286 return -EINVAL; 2287 return 0; 2288 } 2289 2290 static void 2291 fst_tx_timeout(struct net_device *dev) 2292 { 2293 struct fst_port_info *port; 2294 struct fst_card_info *card; 2295 struct net_device_stats *stats = hdlc_stats(dev); 2296 2297 port = dev_to_port(dev); 2298 card = port->card; 2299 stats->tx_errors++; 2300 stats->tx_aborted_errors++; 2301 dbg(DBG_ASS, "Tx timeout card %d port %d\n", 2302 card->card_no, port->index); 2303 fst_issue_cmd(port, ABORTTX); 2304 2305 dev->trans_start = jiffies; 2306 netif_wake_queue(dev); 2307 port->start = 0; 2308 } 2309 2310 static int 2311 fst_start_xmit(struct sk_buff *skb, struct net_device *dev) 2312 { 2313 struct fst_card_info *card; 2314 struct fst_port_info *port; 2315 struct net_device_stats *stats = hdlc_stats(dev); 2316 unsigned long flags; 2317 int txq_length; 2318 2319 port = dev_to_port(dev); 2320 card = port->card; 2321 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); 2322 2323 /* Drop packet with error if we don't have carrier */ 2324 if (!netif_carrier_ok(dev)) { 2325 dev_kfree_skb(skb); 2326 stats->tx_errors++; 2327 stats->tx_carrier_errors++; 2328 dbg(DBG_ASS, 2329 "Tried to transmit but no carrier on card %d port %d\n", 2330 card->card_no, port->index); 2331 return 0; 2332 } 2333 2334 /* Drop it if it's too big! MTU failure ? */ 2335 if (skb->len > LEN_TX_BUFFER) { 2336 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, 2337 LEN_TX_BUFFER); 2338 dev_kfree_skb(skb); 2339 stats->tx_errors++; 2340 return 0; 2341 } 2342 2343 /* 2344 * We are always going to queue the packet 2345 * so that the bottom half is the only place we tx from 2346 * Check there is room in the port txq 2347 */ 2348 spin_lock_irqsave(&card->card_lock, flags); 2349 if ((txq_length = port->txqe - port->txqs) < 0) { 2350 /* 2351 * This is the case where the next free has wrapped but the 2352 * last used hasn't 2353 */ 2354 txq_length = txq_length + FST_TXQ_DEPTH; 2355 } 2356 spin_unlock_irqrestore(&card->card_lock, flags); 2357 if (txq_length > fst_txq_high) { 2358 /* 2359 * We have got enough buffers in the pipeline. Ask the network 2360 * layer to stop sending frames down 2361 */ 2362 netif_stop_queue(dev); 2363 port->start = 1; /* I'm using this to signal stop sent up */ 2364 } 2365 2366 if (txq_length == FST_TXQ_DEPTH - 1) { 2367 /* 2368 * This shouldn't have happened but such is life 2369 */ 2370 dev_kfree_skb(skb); 2371 stats->tx_errors++; 2372 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", 2373 card->card_no, port->index); 2374 return 0; 2375 } 2376 2377 /* 2378 * queue the buffer 2379 */ 2380 spin_lock_irqsave(&card->card_lock, flags); 2381 port->txq[port->txqe] = skb; 2382 port->txqe++; 2383 if (port->txqe == FST_TXQ_DEPTH) 2384 port->txqe = 0; 2385 spin_unlock_irqrestore(&card->card_lock, flags); 2386 2387 /* Scehdule the bottom half which now does transmit processing */ 2388 fst_q_work_item(&fst_work_txq, card->card_no); 2389 tasklet_schedule(&fst_tx_task); 2390 2391 return 0; 2392 } 2393 2394 /* 2395 * Card setup having checked hardware resources. 2396 * Should be pretty bizarre if we get an error here (kernel memory 2397 * exhaustion is one possibility). If we do see a problem we report it 2398 * via a printk and leave the corresponding interface and all that follow 2399 * disabled. 2400 */ 2401 static char *type_strings[] __devinitdata = { 2402 "no hardware", /* Should never be seen */ 2403 "FarSync T2P", 2404 "FarSync T4P", 2405 "FarSync T1U", 2406 "FarSync T2U", 2407 "FarSync T4U", 2408 "FarSync TE1" 2409 }; 2410 2411 static void __devinit 2412 fst_init_card(struct fst_card_info *card) 2413 { 2414 int i; 2415 int err; 2416 2417 /* We're working on a number of ports based on the card ID. If the 2418 * firmware detects something different later (should never happen) 2419 * we'll have to revise it in some way then. 2420 */ 2421 for (i = 0; i < card->nports; i++) { 2422 err = register_hdlc_device(card->ports[i].dev); 2423 if (err < 0) { 2424 int j; 2425 printk_err ("Cannot register HDLC device for port %d" 2426 " (errno %d)\n", i, -err ); 2427 for (j = i; j < card->nports; j++) { 2428 free_netdev(card->ports[j].dev); 2429 card->ports[j].dev = NULL; 2430 } 2431 card->nports = i; 2432 break; 2433 } 2434 } 2435 2436 printk_info("%s-%s: %s IRQ%d, %d ports\n", 2437 port_to_dev(&card->ports[0])->name, 2438 port_to_dev(&card->ports[card->nports - 1])->name, 2439 type_strings[card->type], card->irq, card->nports); 2440 } 2441 2442 /* 2443 * Initialise card when detected. 2444 * Returns 0 to indicate success, or errno otherwise. 2445 */ 2446 static int __devinit 2447 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) 2448 { 2449 static int firsttime_done = 0; 2450 static int no_of_cards_added = 0; 2451 struct fst_card_info *card; 2452 int err = 0; 2453 int i; 2454 2455 if (!firsttime_done) { 2456 printk_info("FarSync WAN driver " FST_USER_VERSION 2457 " (c) 2001-2004 FarSite Communications Ltd.\n"); 2458 firsttime_done = 1; 2459 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); 2460 } 2461 2462 /* 2463 * We are going to be clever and allow certain cards not to be 2464 * configured. An exclude list can be provided in /etc/modules.conf 2465 */ 2466 if (fst_excluded_cards != 0) { 2467 /* 2468 * There are cards to exclude 2469 * 2470 */ 2471 for (i = 0; i < fst_excluded_cards; i++) { 2472 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { 2473 printk_info("FarSync PCI device %d not assigned\n", 2474 (pdev->devfn) >> 3); 2475 return -EBUSY; 2476 } 2477 } 2478 } 2479 2480 /* Allocate driver private data */ 2481 card = kmalloc(sizeof (struct fst_card_info), GFP_KERNEL); 2482 if (card == NULL) { 2483 printk_err("FarSync card found but insufficient memory for" 2484 " driver storage\n"); 2485 return -ENOMEM; 2486 } 2487 memset(card, 0, sizeof (struct fst_card_info)); 2488 2489 /* Try to enable the device */ 2490 if ((err = pci_enable_device(pdev)) != 0) { 2491 printk_err("Failed to enable card. Err %d\n", -err); 2492 kfree(card); 2493 return err; 2494 } 2495 2496 if ((err = pci_request_regions(pdev, "FarSync")) !=0) { 2497 printk_err("Failed to allocate regions. Err %d\n", -err); 2498 pci_disable_device(pdev); 2499 kfree(card); 2500 return err; 2501 } 2502 2503 /* Get virtual addresses of memory regions */ 2504 card->pci_conf = pci_resource_start(pdev, 1); 2505 card->phys_mem = pci_resource_start(pdev, 2); 2506 card->phys_ctlmem = pci_resource_start(pdev, 3); 2507 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { 2508 printk_err("Physical memory remap failed\n"); 2509 pci_release_regions(pdev); 2510 pci_disable_device(pdev); 2511 kfree(card); 2512 return -ENODEV; 2513 } 2514 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { 2515 printk_err("Control memory remap failed\n"); 2516 pci_release_regions(pdev); 2517 pci_disable_device(pdev); 2518 kfree(card); 2519 return -ENODEV; 2520 } 2521 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); 2522 2523 /* Register the interrupt handler */ 2524 if (request_irq(pdev->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card)) { 2525 printk_err("Unable to register interrupt %d\n", card->irq); 2526 pci_release_regions(pdev); 2527 pci_disable_device(pdev); 2528 iounmap(card->ctlmem); 2529 iounmap(card->mem); 2530 kfree(card); 2531 return -ENODEV; 2532 } 2533 2534 /* Record info we need */ 2535 card->irq = pdev->irq; 2536 card->type = ent->driver_data; 2537 card->family = ((ent->driver_data == FST_TYPE_T2P) || 2538 (ent->driver_data == FST_TYPE_T4P)) 2539 ? FST_FAMILY_TXP : FST_FAMILY_TXU; 2540 if ((ent->driver_data == FST_TYPE_T1U) || 2541 (ent->driver_data == FST_TYPE_TE1)) 2542 card->nports = 1; 2543 else 2544 card->nports = ((ent->driver_data == FST_TYPE_T2P) || 2545 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; 2546 2547 card->state = FST_UNINIT; 2548 spin_lock_init ( &card->card_lock ); 2549 2550 for ( i = 0 ; i < card->nports ; i++ ) { 2551 struct net_device *dev = alloc_hdlcdev(&card->ports[i]); 2552 hdlc_device *hdlc; 2553 if (!dev) { 2554 while (i--) 2555 free_netdev(card->ports[i].dev); 2556 printk_err ("FarSync: out of memory\n"); 2557 free_irq(card->irq, card); 2558 pci_release_regions(pdev); 2559 pci_disable_device(pdev); 2560 iounmap(card->ctlmem); 2561 iounmap(card->mem); 2562 kfree(card); 2563 return -ENODEV; 2564 } 2565 card->ports[i].dev = dev; 2566 card->ports[i].card = card; 2567 card->ports[i].index = i; 2568 card->ports[i].run = 0; 2569 2570 hdlc = dev_to_hdlc(dev); 2571 2572 /* Fill in the net device info */ 2573 /* Since this is a PCI setup this is purely 2574 * informational. Give them the buffer addresses 2575 * and basic card I/O. 2576 */ 2577 dev->mem_start = card->phys_mem 2578 + BUF_OFFSET ( txBuffer[i][0][0]); 2579 dev->mem_end = card->phys_mem 2580 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); 2581 dev->base_addr = card->pci_conf; 2582 dev->irq = card->irq; 2583 2584 dev->tx_queue_len = FST_TX_QUEUE_LEN; 2585 dev->open = fst_open; 2586 dev->stop = fst_close; 2587 dev->do_ioctl = fst_ioctl; 2588 dev->watchdog_timeo = FST_TX_TIMEOUT; 2589 dev->tx_timeout = fst_tx_timeout; 2590 hdlc->attach = fst_attach; 2591 hdlc->xmit = fst_start_xmit; 2592 } 2593 2594 card->device = pdev; 2595 2596 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, 2597 card->nports, card->irq); 2598 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", 2599 card->pci_conf, card->phys_mem, card->phys_ctlmem); 2600 2601 /* Reset the card's processor */ 2602 fst_cpureset(card); 2603 card->state = FST_RESET; 2604 2605 /* Initialise DMA (if required) */ 2606 fst_init_dma(card); 2607 2608 /* Record driver data for later use */ 2609 pci_set_drvdata(pdev, card); 2610 2611 /* Remainder of card setup */ 2612 fst_card_array[no_of_cards_added] = card; 2613 card->card_no = no_of_cards_added++; /* Record instance and bump it */ 2614 fst_init_card(card); 2615 if (card->family == FST_FAMILY_TXU) { 2616 /* 2617 * Allocate a dma buffer for transmit and receives 2618 */ 2619 card->rx_dma_handle_host = 2620 pci_alloc_consistent(card->device, FST_MAX_MTU, 2621 &card->rx_dma_handle_card); 2622 if (card->rx_dma_handle_host == NULL) { 2623 printk_err("Could not allocate rx dma buffer\n"); 2624 fst_disable_intr(card); 2625 pci_release_regions(pdev); 2626 pci_disable_device(pdev); 2627 iounmap(card->ctlmem); 2628 iounmap(card->mem); 2629 kfree(card); 2630 return -ENOMEM; 2631 } 2632 card->tx_dma_handle_host = 2633 pci_alloc_consistent(card->device, FST_MAX_MTU, 2634 &card->tx_dma_handle_card); 2635 if (card->tx_dma_handle_host == NULL) { 2636 printk_err("Could not allocate tx dma buffer\n"); 2637 fst_disable_intr(card); 2638 pci_release_regions(pdev); 2639 pci_disable_device(pdev); 2640 iounmap(card->ctlmem); 2641 iounmap(card->mem); 2642 kfree(card); 2643 return -ENOMEM; 2644 } 2645 } 2646 return 0; /* Success */ 2647 } 2648 2649 /* 2650 * Cleanup and close down a card 2651 */ 2652 static void __devexit 2653 fst_remove_one(struct pci_dev *pdev) 2654 { 2655 struct fst_card_info *card; 2656 int i; 2657 2658 card = pci_get_drvdata(pdev); 2659 2660 for (i = 0; i < card->nports; i++) { 2661 struct net_device *dev = port_to_dev(&card->ports[i]); 2662 unregister_hdlc_device(dev); 2663 } 2664 2665 fst_disable_intr(card); 2666 free_irq(card->irq, card); 2667 2668 iounmap(card->ctlmem); 2669 iounmap(card->mem); 2670 pci_release_regions(pdev); 2671 if (card->family == FST_FAMILY_TXU) { 2672 /* 2673 * Free dma buffers 2674 */ 2675 pci_free_consistent(card->device, FST_MAX_MTU, 2676 card->rx_dma_handle_host, 2677 card->rx_dma_handle_card); 2678 pci_free_consistent(card->device, FST_MAX_MTU, 2679 card->tx_dma_handle_host, 2680 card->tx_dma_handle_card); 2681 } 2682 fst_card_array[card->card_no] = NULL; 2683 } 2684 2685 static struct pci_driver fst_driver = { 2686 .name = FST_NAME, 2687 .id_table = fst_pci_dev_id, 2688 .probe = fst_add_one, 2689 .remove = __devexit_p(fst_remove_one), 2690 .suspend = NULL, 2691 .resume = NULL, 2692 }; 2693 2694 static int __init 2695 fst_init(void) 2696 { 2697 int i; 2698 2699 for (i = 0; i < FST_MAX_CARDS; i++) 2700 fst_card_array[i] = NULL; 2701 spin_lock_init(&fst_work_q_lock); 2702 return pci_module_init(&fst_driver); 2703 } 2704 2705 static void __exit 2706 fst_cleanup_module(void) 2707 { 2708 printk_info("FarSync WAN driver unloading\n"); 2709 pci_unregister_driver(&fst_driver); 2710 } 2711 2712 module_init(fst_init); 2713 module_exit(fst_cleanup_module); 2714